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Abstract 

BEHAVIOUR RECOGNITION AND MONITORING OF THE 

ELDERLY USING WEARABLE WIRELESS SENSORS 

Dynamic behaviour modelling and nonlinear classification 

methods and implementation 

 

Keywords 

Ambient Assisted Living, dimension reduction, classification, state 

probability. 

In partnership with iMonSys – an emerging company in the passive 

care field – a new system, “Verity”, is being developed to fulfil the role of a 

passive behaviour monitoring and alert detection device, providing an 

unobtrusive level of care and assessing an individual’s changing behaviour 

and health status whilst still allowing for independence of its elderly user.  In 

this research, a Hidden Markov Model incorporating Fuzzy Logic-based 

sensor fusion is created for the behaviour detection within Verity, with a 

method of Fuzzy-Rule induction designed for the system’s adaptation to a 

user during operation.  A dimension reduction and classification scheme 

utilising Curvilinear Distance Analysis is further developed to deal with the 

recognition task presented by increasingly nonlinear and high dimension 

sensor readings, and anomaly detection methods situated within the Hidden 

Markov Model provide possible solutions to identification of health concerns 

arising from independent living.  Real-time implementation is proposed 

through development of an Instance Based Learning approach in 

combination with a Bloom Filter, speeding up the classification operation and 

reducing the storage requirements for the considerable amount of 

observation data obtained during operation.  Finally, evaluation of all 

algorithms is completed using a simulation of the Verity system with which 

the behaviour monitoring task is to be achieved.  
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Chapter 1 

Introduction 

 
1.1 Background and Motivations 

The number of elderly and infirm living in sheltered accommodation is 

increasing, with more people of retirement age in the UK choosing to “age in 

place” with some form of support - 473,000 in 2008/2009 [1] - yet in figures 

calculated by Help the Aged, the number of those actually being supported 

decreased by a dramatic 13% in the years 2000 to 2006 [2] with the trend 

declared likely to continue in successive years.  This has been attributed to 

local authorities being given the right to restrict access to home help if those 

requesting it did not meet their imposed “eligibility criteria” [3], essentially 

resulting in those assessed as “critical” cases receiving financial assistance 

for home care and the “low” or “moderate” receiving little to no help.  At the 

same time, AgeUK [2] noted that “17% of older people have less than weekly 

contact with family, friends and neighbours”.  These facts and figures show 

that there is increased risk for those not being monitored or personally cared 

for: from minor incidents in the home, from illness which causes immobility or 

from other unforeseeable scenarios which as such would go undetected if no 

contact is made with the individual over a long period of time.  

Many monitoring systems currently exist for installation in the homes of 

the elderly and infirm who require monitoring but cannot afford direct care 

from a “home helper” or the fees required for care in a residential home [4].  

The need for such a monitoring system can be suggested by either the 

individual wanting help, or in many cases the concerned family of such an 

individual.  Systems range from simple, wearable pendant and button 

devices worn around the neck or wrist for emergency use [5], whereby if the 

user experiences difficulties, at the press of the button the home-inbuilt 

system can call a nominated contact who can then communicate with the 



Introduction 

2 
 

individual; to the intelligent systems which monitor the entire home through 

use of smart sensing and visual monitoring, using information from 

distributed sensors to formulate a status estimation of the user [6 , 7].  These 

“Ambient Assisted Living” (AAL) systems all have underlying algorithmic and 

computational frameworks and principles on which they rely, either simple 

non-intelligent means where personal monitoring is triggered by the user (i.e. 

the pendant systems) or more intelligent methods using numerous 

mathematical techniques to reach logical estimations of the current status of 

the user, as exemplified by the smart home-integrated systems above.  The 

intelligent methods are researched and documented extensively in the 

literature in the healthcare, biomedical engineering and applied mathematics 

fields [8]; each technique is suited specifically to different applications 

requiring a form of behaviour or sequence monitoring with a determinable 

“state” output.   A significant limitation of the current passive behaviour 

monitoring systems developed for the elderly population however, is in the 

lack of consideration of human reasoning for the determining of states from 

observable data even with the intelligent methods documented in the 

respective fields; the majority (as evident even from a short literature review) 

utilise high dimension training examples with which to infer a state belief 

based purely on correlations in data, where in fact such correlations may be 

indicative of some other state when viewed contextually within a sequence 

[9], or the high dimensionality obstructs the true determinable state [10].  

Human reasoning is still a considerably effective employable tool for these 

uncertain situations in state determining, when the subject being observed is 

human and has the ability to provide an indication themselves of their own 

current status – an overlooked aspect of human behaviour monitoring that 

this work intends to utilise and build upon.  The issue of high dimensionality 

obstructing pattern recognition is approached and overcome here with a 

dimension reduction and classification scheme enabling linear separation of 

observation data in order to further support the reasoning provided by a user 

in an alert scenario. 

A key requirement of intelligent passive monitoring systems is that they 

not only provide the estimation of a state based on the pure observable data, 

but are able to identify states which do not fit the determined “normal” 
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behaviour of the user so as to alert the relevant service or care provider of an 

instance where some form assistance is necessary.  Within these devices 

therefore can typically be found numerous methods employed for the action 

of such tasks: static and dynamic behaviour probability models, anomaly and 

outlier detection models and fault diagnosis methods.  The software system 

developed for this work incorporates variations of such models and methods, 

combining them with an additional human reasoning ability through intelligent 

programming and direct voice communication with the user – an approach to 

passive behaviour monitoring not previously considered and documented in 

the literature of the area or products available on the commercial market. 

Combining the hardware developed alongside the research with the 

intelligent methods developed herein, we produce Verity: a passive system to 

be used alongside traditional methods of monitoring elderly persons who 

choose to live without 24 hour personal care (i.e. home visits, medical health 

checks, one-to-one telecommunication), yet still require a level of round-the-

clock observation for assurance of their wellbeing through Ambient Assisted 

Living.  The hardware consists of a wearable sensor system and a mobile 

phone specially developed for the application, affording the user the ability for 

behaviour monitoring external to the home unlike with previous devices 

requiring home integration; the software ensures a definitive decision 

regarding the user’s state through execution of newly developed and 

combined dimension reduction, classification and optimisation techniques 

overcoming the uncertainty previously encountered with other systems.  

Verity indeed requires extensive testing of each built-in function with the 

developed software before being acceptable for use in a trial - where key 

data can be obtained to further aid in its on-going development past the 

limitations of this research. 

1.2 Aims 

The overall aim of this research is to investigate, develop and optimise 

suitable intelligent recognition methods to be incorporated into a specialised 

behaviour monitoring device, such that the information made available to it 

through the ambient sensing of a user is adequately utilised to inform a belief 

of their current behavioural state.  The proposed scheme is required to 
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combine multiple sensor readings and ascertain a likelihood of emission from 

each behavioural state such that the most likely at any time point within the 

monitoring window can be determined according to the observations of the 

device.  The current Hidden Markov Model is modified to account for the 

multidimensional, nonlinear and significantly dynamic observations from the 

often-uncertain readings provided by the sensors in order to inform of the 

state belief, by implementing a method of fusion which ensures an element of 

human reasoning inherently informs of each decision (Chapters 4 & 5). 

The modifications will increase the usability by a standard user however 

they will also increase computation and storage space in the short term so 

the secondary aim focusses on the optimisation of the first such that the 

result is usable not only in the behaviour monitoring scheme but in other 

similar fields requiring similarly applied methods of state determining.  The 

developed solution is then capable of overlooking the linearity (or lack 

thereof) of the training data and learning through pure exposure to the data 

set whether or not a new observation is classifiable to one of the already 

learned human-reasoned classes, with a significant speedup in real-time 

performance over previously developed methods documented both in the 

literature and as part of this research (Chapters 6 & 7). 

1.3 Contributions 

I. A combined Hidden Markov Model and Fuzzy Inference System is 

developed as a means of incorporating a higher element of human 

reasoning in the behaviour monitoring device, in which an error 

detection scheme is further created and integrated to adequately 

identify instances where the determined state is not as expected 

(Chapters 4 & 7). 

II. A new method for pattern recognition of nonlinear and high dimension 

sensor data is proposed through the application of a dimension 

reduction and classification technique to the original raw data, with 

details of its implementation and results of its experimental operation 

included to establish its effectiveness when compared to standard 

Neural Network techniques of classification of such data (Chapter 5). 
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III. A new method of Instance-Based classification based on established 

means is developed to address the problem of computation speed and 

storage requirements when large data sets are involved, with results 

documented to support the claims of superiority in situations 

previously utilising other such methods (Chapter 6). 

1.4 Thesis Outline 

Chapter 2 contains the literature review of applications and systems 

relevant to the Ambient Assisted Living device developed in this research.  

Background information and implementations of the mathematical techniques 

utilised and built-on herein is also provided as a means of introducing and 

explaining their relevance with respect to the application. 

Chapter 3 documents and explains the hardware of the system along 

with the preliminary control methods and algorithms required to provide 

subsequent state-determining operations with the necessary information. 

Chapter 4 details the Hidden Markov Model and Fuzzy Inference 

system developed in first stage of the research which facilitates the state-

determining based on the sensors’ observations of the user and how the 

linguistic “rules” that govern how the combined observations are dealt with 

interface with the established model. 

Chapter 5 deals with the creation of the dimension reduction scheme 

used to facilitate the classification operation of the raw sensor data in a high 

dimension space in which it has no linear manifold, which in turn helps both 

visualise the input data that informs of a state belief and enables the model to 

update autonomously; thus removing the need for employing the linguistic 

rules which govern the fusion of the initial sensor observations by reducing 

the probability operation to a simple mathematical decision based on trained 

data. 

Chapter 6 optimises the classification operation for high dimension data 

resulting in a compressed format in which the training data is stored and 

subsequent unseen values are classified according to previous sightings 

within the training set.  The method allows for a more streamlined system 

which is capable of expanding the storage of data as the system is used and 

is influenced by the memory techniques employed in the human brain. 
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Chapter 7 provides a behavioural change detection scheme for the 

combined Hidden Markov Model-based system: utilising the model’s output 

as expected normal behaviour the method is capable of detecting outliers 

within the observations and state decisions in order to raise alert scenarios.  

Example scenarios are given where these methods can detect possible fault  

situations with a user and the combined system incorporating all aspects of 

the research is tested in simulation using observations obtained with the 

hardware in order to provide evidence of its potential suitability in a real 

scenario. 

Finally, in Chapter 8, concluding remarks are made with respect to the 

overall implementation of the combined system before limitations are 

identified and further work suggested based on the techniques developed in 

the preceding pages.  

The framework of the system itself utilising the Hidden Markov Model, 

its constituent components and their location within this thesis is provided 

below. 
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Chapter 2 

Literature Review 
This section of the thesis reviews related applications and solutions of 

relevance to the application and problems researched in this work. 

First, current projects in the Ambient Assisted Living field of research 

are reviewed as a means of providing a background to the Verity project, 

before the Hidden Markov Model - the primary algorithmic mechanism within 

this application - is considered and explained, along with a significant 

overview of applications in the same field which also utilise a similar 

methodology in the determining of a state probability.  Subsequently, similar 

applications which employ a different control scheme are also reviewed, and 

distinctions made as to why the Hidden Markov Model method is more suited 

to this system.  Following logically from this starting point, the use of a multi -

sensor system for behaviour monitoring is considered literarily, before the 

issue of data dimensionality is considered as a precursor to the classification, 

optimisation and learning schemes that are then detailed in relation to that 

developed as part of this research.  Finally the subject of errors is addressed 

when dealing with the identification of an anomalous value within a series, in 

both the behaviour monitoring and manufacturing fields that inspired the 

development of the schemes for this research. 
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2.1 Recent Ambient Assisted Living Projects 

In recent years, the increased requirement for elderly behaviour 

monitoring through technological solutions has generated an entire section of 

academic research devoted to the development of Ambient Assisted Living 

(AAL) systems, as evidenced by this literature review.  AAL projects typically 

have considerable academic involvement and as such can be found 

spanning multiple institutions and have strong partnerships with the 

commercial sector; but whilst their research is all but guaranteed to apply to a 

specific device or system, the methods and practises implemented in the 

behaviour monitoring task are transferrable between systems and help inform 

the development of successive devices and on-going research into the AAL 

field. 

The Independent LifeStyle Assistant™ (ILSA) was a Honeywell 

Laboratories research project into AAL intended to develop a system 

enabling monitoring and support of the elderly population wishing to live 

longer and independently in their homes, as opposed to being 

institutionalised as a means of receiving round-the-clock care and assistance 

[11].  The system was conceived to be wholly relied upon by the elderly user: 

providing monitoring of the home environment, health status, fall detection, 

medication reminders and even assisting in the activation of lighting within 

the home.  The project avoided the detailed analysis of a user with respect to 

the medical conclusions reachable by observation of vital signs etc. through 

ambient sensing, instead focussing on the similar assistance provided by an 

in-home caregiver – alerting the required authorities if safety is compromised 

and allowing off-site caregivers to access information regarding the user and 

their wellbeing in their own home. 

The multi-agent system incorporated only passive devices, with 

occupancy and location determining being accomplished through use of 

motion sensors installed within the experimental environment.  The user 

interface was considered to be pioneering at the time (the project ran 2000 – 

2003), having consisted solely of a portable touch-screen with wireless 

access to the internet as a means of interacting with and reminding the 

elderly user of necessary actions in much the same way as a physical 
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caregiver would.  Initially - as with the Verity device of this research – an 

additional mode of interaction was considered to be through telephone 

communication, however testing and trials returned results to indicate that in 

this in-home system, the visual feedback from the touch-screen was more 

effective.  This aspect of the research highlighted that the method in which a 

message is delivered and the voice used to communicate it requires careful 

consideration so as not to alienate or unnerve the elderly user – automated 

telephone interactions were identified to be “cognitively overwhelming” for the 

elderly user [11].  Verity’s decision and verbal interaction trees however are 

designed to be amiable and comforting for the user, and intend to overcome 

the barriers possibly experienced with the ILSA project due to the increased 

exposure of elderly people to such voice-activated systems utilised by 

modern technology not prevalent at the time of Honeywell’s study. 

The Information Technology for Assisted Living at Home (ITALH) 

project was a collaboration between Tampere University of Technology, 

Finland, University of Berkely, California and Aarhus University, Denmark 

that incorporated the sub-project, UUTE: utilising novel sensors, wireless 

communication and service platforms to provide a level of support and 

monitoring for selected groups of patients requiring assistance in daily living 

[12].  

The UUTE project developed a home network consisting of specialised 

sensor nodes and a “home client”, connected to a wireless network which 

was in turn linked to an external storage server.  Nodes were home-

integrated and user-triggered, allowing for the collection of data from a weight 

scale, blood pressure and ECG data and a bed sensor capable of monitoring 

sleeping activity provided information regarding heart rate and respiration.  

Communication between nodes and the end user was based partially on the 

Zigbee wireless protocol, with information obtained from each sensor 

processed by the home client and sent to storage on its local hard drive.  The 

data was then transmitted on a daily schedule to a UUTE server, where it is 

viewable by caregivers and those capable of providing support.  With 

intentions of being able to detect motion, falls, health status and provide a 

level of motivation for possible “rehabilitation” of users, the UUTE system 
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perhaps differs from Verity only in its increased reliability on home integration 

of sensors and nodes. 

Despite the project therefore primarily being an exercise in Wireless 

Sensor Network (WSN) integration within the home as a means of building a 

platform for the monitoring application, the conclusions and experiences 

obtained help inform of future possibilities and limitations of such a system; 

as considered with Verity, wearable sensors communicating with integrated 

nodes wirelessly in the UUTE system presented issues with power 

consumption and data quality.  For this reason the communication protocols 

incorporated within Verity were specially selected and the hardware sourced 

for the purpose of wearability and longevity of power – enabling a more 

independent living style for the user without their need to concern themselves 

with being monitored only when in the house or near a power supply. 

Another significant AAL project is that of the Service Oriented 

Programmable Smart Environments for Older Europeans, SOPRANO: a 

consortium consisting of 24 partners from 7 countries, including small 

businesses, public companies and academic institutions all working towards 

researching and producing devices and systems capable of improving the 

quality of life for the elderly in Europe.  The consortium structure and skillset 

enables SOPRANO to access state-of-the-art technologies in order to 

produce a platform capable of providing a flexible and personalisable solution 

to elderly monitoring [13]. 

Within the SOPRANO project, a smart home which incorporated sensor 

nodes and actuators to assist in the care and independent lifestyle of the 

elderly user was proposed: user-identified issues informed of the platforms’ 

need for incorporation of methods of fall detection, household equipment 

control and user interaction to ensure safety and security [14].  This approach 

to AAL is very user-involved and does somewhat encroach on the idea of a 

passive monitoring system; with the control of the environment forming a key 

aspect of the device, it poses a moral question as to whether or not it is 

indeed assisting the elderly with an independent lifestyle.  Verity maintains 

the independence of the user by simply co-existing with them whilst ensuring 

a level of monitoring occurs – thus ensuring passive care and assistance 

when required through alert triggering to caregivers. 
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The PERSONA (Perceptive Spaces Promoting Independent Aging) 

project and consortium dealt with the design of self-organizing middleware for 

an AAL platform intended to be fully scalable over its period of use to account 

for a multitude of monitoring scenarios [15].  Daily activities were monitored 

and observed using sensors located in and around the user’s environment, 

allowing for interactions with household objects, room occupancy, posture 

identification and location to be detected and form a status estimation for the 

user [16].  Many technologies were incorporated into the PERSONA systems 

[17], with the well-established communication protocols of 3G, Bluetooth and 

WiFi forming the basis for the WSN; where emergent technologies were 

identified as desirable for inclusion within an AAL system – textile sensors, 

Zigbee communication and Speech Recognition were all highlighted as 

significant enhancements for behaviour monitoring of the elderly.  In 

particular we find the latter technology of speech recognition to be most 

applicable to Verity: given the already identified need to communicate with an 

elderly user in the most effective way possible, speech recognition was 

identified in the PERSONA project as a method of providing the end user 

with the ability to adapt the monitoring system to their own specific needs [15]. 

Developing on the notion of speech recognition for the task of elderly 

monitoring, the Voice Controlled Assistive Care and Communication Services 

for the Home (vAssist) project was initiated in 2011 with the goal of providing 

voice controlled home care and communication services for elderly suffering 

from chronic diseases and those with motor skill impairments.  The intention 

is to develop interfaces and communication applications using natural voice 

interaction, with the aim of reducing the cost of existing hardware used in 

elderly care and enhancing the quality afforded to them with current 

technology [18].  

The AAL Forum has also begun the ASSAM (Assistants for Safe 

Mobility) project [19], which builds on the notion of mobile devices assisting 

elderly users and those with declining cognitive capabilities.  The assistive 

systems will range from wheelchairs to handled-walkers embedded with 

smart interfaces to enable multi-sensor observations and data to inform a 

user of their location and notify of impending dangers etc. through use of 

environmental scanning and interaction with devices around the home.  With 
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the natural language interaction, this project further combines the principles 

outlined in the aforementioned others in order to provide a user with a more 

convenient and amiable approach to assistance whilst maintaining a 

standard of independent living.  Despite not performing much in the line of 

behaviour monitoring, the passive devices and integration primarily with the 

user rather than the environment are similar in execution to those of the 

wearable Verity device – existing solely to enhance the user experience 

without becoming intrusive. 

With the MobileSage Project [20], also an AAL consortium development, 

we find a truly mobile and hand-held system with functionality although 

significantly dissimilar to Verity, having a form factor evidently identified as 

worthwhile to employ for usage by the elder generation.  The case usage 

scenario in [21] highlights an elderly user who whilst not afraid of technology, 

has no wish to learn a new skill set in order to use a device or system that 

may assist her everyday life.  The concept is a “Help-on-Demand” application 

embedded within a smartphone, and with access to a Content Management 

System which stores the user profile and details regarding the objects or 

technological devices for which the user requires help.  The system delivers 

personalised instructions via the smartphone, possibly utilising natural 

language synthesis and motion graphics, as a means of assisting the user 

through the process of interaction with the everyday object which is identified 

using Near Field Communication (NFC) tags located in that area.  The mode 

of delivery and interaction with the user is akin to the Verity system and 

serves as a means of making life easier for the elderly who find daily tasks 

difficult perhaps due to eyesight loss, or motor skill impairments.  Verity has 

the ability to also provide such users with assistive information such as 

location, or provide feedback regarding observable vital signs regarding their 

health.  However, despite the slew of projects in the AAL field, Verity sits 

comfortably in an area not currently occupied by a device or system capable 

of fulfilling the mobile, discreet, passive behaviour monitoring task required 

by elderly users. 
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2.2 The Hidden Markov Model for Behaviour 

Monitoring 

The above identified AAL devices and systems each utilise different 

intelligent frameworks with which to execute the tasks for which they are 

intended, be it assisting in daily life through increasing mobility and 

awareness of surroundings (ASSAM, SOPRANO and MobileSage) or 

through the passive behaviour monitoring employed to provide caregivers 

with alerts regarding their elderly users’ health (vAssist, PERSONA, UUTE).   

Specialised sensors are utilised in such systems to provide the most 

accurate numerical representation of a specific, observable property of the 

user – be it through observation in the home using distributed sensors or as 

part of a wearable network, with each sensor performing a different task to 

inform of a user’s behavioural state.  The passive behaviour monitoring is 

here the focus of the research for the Verity project, developing a system 

capable of observing the user through the wearable sensors as a means of 

determining current behaviour and wellbeing status. 

As the behaviour of the user is not directly observable through sensing, 

it is therefore hidden and can only be estimated based on collaborative data 

from sensor observations.  For example, a typical wearable motion sensor 

would be in the form of an accelerometer which, whilst able to indicate that 

movement is occurring, is not able to state definitely that the motion being 

observed is specifically walking or running or is a symptom of some motor-

related disability [22].  This problem is tackled in behaviour monitoring 

applications through use of multiple sensors and intelligent, programmable 

estimations of state based on probabilities of occurrence or through 

preconceived notions of behaviour by a trained professional [23 , 24 , 25].    

What is required for the autonomous passive behaviour monitoring is 

knowledge of how a behavioural state is typified by a sensor’s observation, 

before applying some form of estimation process to reach a conclusion as to 

what state the user is exhibiting based on the combination of each sensor 

reading.  Human behaviours are continuously changing: in a real-time, 

around-the-clock monitoring system, the sensor observations and their 

combinations change constantly and the behaviour monitoring problem 
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becomes a dynamic one, resulting in the necessity for a model capable of 

handling such a case.  

The Hidden Markov Model (HMM) [26 , 27] is a statistical model, which 

takes as its input a visible observation emitted from a hidden state.  The goal 

of an HMM is to determine this hidden state producing the observation, which 

is itself typically located in a sequence of states with the observations forming 

a sequence of model inputs.  For reference, its parameters and 

implementation are detailed in Appendix A.  The standard variation of a 

Markov Model, however, differs in its visibility of the emitting state: the goal of 

such an implementation is typically to predict a future state based on current 

state alone, with the past states being viewed as independent and having no 

relationship to the decision of future possibilities.   

With the ability to recover a hidden data sequence from only the visible 

observations resulting from the data itself, the HMM is utilised in a broad 

spectrum of applications not necessarily concerned with monitoring.  Within 

the bioscience field, for example, the model is ideal for gene prediction - 

where each state emits random DNA strings of random length, which are 

observable as a means to determine the gene producing them [28] - and in 

protein structure prediction and genetic mapping  [29].  Cryptanalysis and 

cryptography benefit significantly from the utilisation of Hidden Markov 

Models [30], with hidden states representing internal states of 

countermeasures and outputs being the observations of the side channel 

[31]; and in the measurement of partial discharge (PD), the time-varying and 

sequential properties lend themselves to be modelled with an HMM such that 

PD patterns can be classified to inform of insulation system defects [32]. 

The Hidden Markov Model is therefore well suited to applications where 

sensors can obtain observations of the user, either directly through personal 

contact or indirectly through visual monitoring, for the purposes of 

determining their current state.  The application of the models by [33] and 

[34] can be termed indirect, with information obtained from video streams and 

the still images which constitute them.  A major aspect of both of works is 

concerned with the context in which the behavioural state is observed.  The 

use of a hierarchical architecture HMM [35] allows layers to consider various 

aspects of the detected behaviour.  The deduction is that for true detection 
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and understanding of behaviour from the observation, the spatial and 

temporal contexts must be considered along with the activity itself.   

The sequential nature of speech means that the HMM is ideal for 

applying to speech recognition.  Rabiner [36 , 37] notes that the left-right 

HMM therefore has the desirable property that it is capable of modelling such 

signals where observable properties change over time.  When the first 

element of a spoken word is observed, there can be given a distinct 

probability of hearing another sound in sequence.  This is termed as left-right 

because the states viewed must progress logically from left to right to ideally 

model the sequence i.e. no state may transition backwards.  The ergodic 

model however is usually applied to the behaviour recognition tasks of the 

monitoring systems reviewed here: realistically speaking, the initial state of 

the monitoring system is only important in the first few iterations of the model; 

as almost all states can allow transition from one to another the observation 

sequence can only logically belong to a limited (if not single) number of state 

sequences as the model progresses over time. 

The initial and key concern with Verity is in the identification of the 

state/behaviour sequence exhibited by the elderly user of the system, where 

only the sensor observations and user-interaction are available to reach a 

logical estimate of their current status.  This sequence further enables in the 

detection of problems and issues experienced on a daily basis, as the 

disparity between the prediction of a state and the actual observation of a 

state can indicate that the user is exhibiting an unusual behaviour not 

expected as part of their current trend of states.   

The sequence problem is often considered in the literature in articles 

detailing an HMM application unrelated to behaviour monitoring.  Bengio 

details many applications of HMMs to sequential data with particular interest 

taken in speech recognition [38].  Bengio considers the Viterbi algorithm [39] 

as the most suitable method for sequence determining with an HMM in data 

with a low number of state transition probabilities.  This would indicate that 

for inclusion in a behaviour monitoring system where the number of distinctly 

dissimilar states can be found to be small, the Viterbi method is ideal.  For 

speech recognition where the number of transition probabilities is remarkably 

higher given the complexity of the data being modelled, other graph search 
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methods are seen to be more appropriately applied.  Chung and Liu [33] 

successfully applied the Viterbi algorithm to the behaviour recognition task, 

with specific application to the activity extraction layer of their model. 

Li [40] actually proposes a method that is said to outperform the 

traditional HMM and its sequence-determining in some cases, as more of the 

information available is used to reach a conclusion regarding the current 

state.  The method is derived from applying probability theory to the original 

model, where two fundamental properties of HMMs are considered from 

which the variation of the HMM is recognised.  Li notes the wide variety of 

applications of HMMs and their common characteristic of the determining of 

states based solely on the immediately preceding state.  The proposed HMM 

with States Depending on Observations (HMMSDO) uses not only the 

preceding state but the preceding observation to formulate a state belief.  It is 

notable in the paper that when the method is applied to the prediction of 

protein secondary structures, the HMM may achieve better results except in 

cases where training data is large; a property presumably explainable by the 

fact that the HMMSDO incorporates more parameters which only after 

numerous training iterations will have a noticeable improvement over the 

traditional model.  The new model structure could well be applied in the 

behaviour monitoring of individuals where the volume of data available for 

training may be suitably large and could even be considered for the Verity 

system developed here once the initial stages are successfully implemented 

and the amount of data used for calculation of state sequences is deemed 

large enough to benefit from this further modification. 

The deliberation over use of the HMM and hierarchical models for 

behaviour modelling can be attributed to the differences in the definition of 

human behaviour.  Atallah and Yang conducted a survey of pervasive 

sensing applied to behaviour profiling [41], identifying that activities can not 

only be viewed as belonging to a consecutive sequence (as assumed by 

many machine learning techniques), but also as concurrent and interleaving.  

For example, with concurrent scenarios in behaviour monitoring terms being 

those where multiple complex activities occur at the same instance, a user 

standing up to cook in the kitchen whilst simultaneously talking to a person in 

the next room is viewable as 3 possible states existing in parallel.  An 
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interleaving state scenario would, building upon the above example case, 

include the instance where the user halts their cooking process momentarily 

to perhaps walk to the refrigerator to obtain some ingredients before 

returning to the cooking task and resuming the previous concurrent activities.  

This poses a challenge for machine learning techniques which only model 

the sequential properties of behaviours - assuming a probability of 

transitioning from one state to the next rather than incorporating assumptions 

of multiple behaviours either existing at one instance, or in a cyclical format 

where an activity is interrupted as a means to accomplish another.  Within 

the Hidden Markov Model however there is an ability to view the above 

scenarios as singular state instances, with the observations regarding the 

user’s motion and physical signs indicating a “kitchen usage” state, or 

“cooking” state which incorporate all above sub-states, thus overlooking the 

complexity of combining multiple states to deduce behaviour. 

Subsequently, it is recognised in the survey that there is “across subject 

variability” which is attributed to the varying abilities of subjects both 

physically and mentally.  Such differences cause models to react in differing 

ways but if the model is incapable of catering for the changes then the 

behaviour will be identified incorrectly.  The pervasive characteristics of such 

monitoring devices are also considered, with respect to the level of security 

offered to the user by devices capable of viewing them directly and inferring 

status based on their posture and/or movement.  The concern arises not only 

due to the method of storage of the data being utilised, but in the manner in 

which it is gathered.  This problem is lessened in [42] even though the 

method uses vision to infer a belief.  The image of the user obtained by a 

visual sensor is converted into a non-descript blob shape which extracts 

them from their environment.  This allows sufficient information to be 

gathered regarding their location and posture, but also has the benefit of 

reducing the user’s concerns of privacy given that the image cannot be 

reconstituted into a full and accurate representation of them. 

2.3 Multi-Sensor Fusion 

With wearable sensor systems employed for passive behaviour 

monitoring, observations are produced by each sensor concurrently and 
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recognition of a state therefore involves estimation based on the multiple 

readings being taken as a single observational input.   

The case of multiple sensor observations being used as single (vector) 

inputs to an HMM such as that identified for use in this research is not 

commonly addressed in the literature; instead, behaviours or states are 

usually inferred solely from a single observation, with a probability of 

occurrence for a state being defined explicitly at the time of model creation.  

Therefore, with the Verity implementation utilising multiple sensors, the fusion 

of the multiple sensor observations into a single, useful value is required in 

order to successfully exploit the HMM’s ability to identify the most likely 

behaviour.   

The traditional HMM uses probability distributions or discrete probability 

values assigned to single observations.  In the behaviour recognition task, 

more detailed models take observations from a variety of sources to 

ascertain an intelligent estimate of the hidden state.  When the hidden state 

can be determined with greater accuracy if a number of observation sources 

are reviewed, the fusion of such inputs must be considered [43 , 44 , 45].  

What must be taken into consideration, however, is that this fusion of multiple 

sensors can in some cases produce worse results than the output of the best 

single sensor (“catastrophic fusion”, [46]), due to the possibility of inaccurate 

sensor readings being combined with those evaluated to be more accurate 

[44].  Before use in the HMM, the numerous readings must be effectively 

fused to best reflect the information they convey when viewed together.  The 

weighting scheme for the fusion of sensors must be carefully considered 

before their inclusion as an observation, so as not to over emphasise the 

significance of one sensor when compared to another otherwise the above 

stated problem may arise.  Non-discriminant fusion is desired in applications 

where each sensor reading has an equal influence on the determining of the 

state; that is to say that the weight applied to each reading is calculated so 

that the fusion distribution is a pure summation of individual sensor readings. 

Discriminant sensor fusion in multi-sensor systems has two modalities 

of operation [47].  Centralised fusion concerns the collection of sensor data 

from the individual nodes distributed in the system and combining the values 

at a central location, where the inference of a state is performed using the 
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data available to this central point.  Decentralised fusion operates without a 

central fusion site, with each sensor site (or multiple sites in a single system) 

incorporating its own method of fusion to determine how much value to 

contribute to the state inference process.  Decentralised Fusion results in a 

scalable and modular system, with the ability to easily increase the number of 

nodes contributing to the behaviour determining task.     

The Dempster-Shafer Theory (DST) of data combination incorporates a 

level of “ignorance” into the discriminant fusion process, with evidential 

information informing of the plausibility of an independent observation’s 

occurrence - whereby the resultant combined observation regarding a state is 

specified as a belief function rather than as a probability distribution.  In the 

military-applied Target Identification application of [48], the authors compare 

the DST to the Bayesian method of sensor fusion, concluding through 

experimentation that the former’s evidence-based approach is slower to 

reach a state decision than the latter which utilises probabilities of occurrence 

in its fusion of multiple sensor values.  It is in Bayesian Theory that we find 

the Hidden Markov Model and thus identify the most appropriate form of 

fusion for behaviour monitoring applications with multiple sensors to involve 

probabilities rather than evidential beliefs. 

Broadly speaking, like many passive behaviour monitoring systems 

Verity consists of a central hub in which the processing of the multiple sensor 

readings occurs and behaviours are inferred; however whilst each sensor is 

independently capable of providing a useful reading, the collaboration of one 

or more sensors is required as a means of ensuring reliability in the 

combined fusion task.  Discriminant fusion methods adjust this output 

observation based on multiple readings informing of the reliability of each 

sensor’s performance.  In the case of wearable sensor systems, the motion 

of users and environmental factors can impact on a single sensor’s ability to 

provide a useful result.  Contact, pressure, and temperature sensors can all 

be affected considerably by the motion of a user: disconnections between the 

sensing surface and the user can result in periods of null values, and high 

acceleration may ramp a sensed value to its maximum – both instances 

causing considerable issues in fusion circumstances when averaging 

operations are used to identify periods of activity. 
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Kalman Filtering is useful in the situation where one sensor’s reliability 

may be called into question until compared with observations obtained from 

another, independent sensor through time series analysis of both sensors.  

The filter is implemented in many systems requiring precise information from 

imprecise observations, such as in GPS navigation of consumer vehicles [49], 

and in robotic applications [50], where the dynamic weighting of the sensor 

evidence which has an ongoing expectation value regarding positioning and 

location, for example, is used to estimate the current state of the system.  

The requirement for implementation is that all dynamics of the system and 

noise are known, with the estimation error being minimised when the noise 

causing the uncertainty is white (Gaussian) noise [51].  In actuality, the 

Kalman filter is somewhat akin to the Hidden Markov Model in the fact that 

what is being found is essentially a “hidden state” based upon observations 

with probabilities of occurrence, however the filter value is a continuous one 

as opposed to the model’s discrete hidden state.  The components of the 

filter are not too dissimilar as a result:  transition and observation models are 

employed as a means of state estimation, along with process and 

observation noise covariance matrices.  The assumption is that the actual 

observed state at a time step evolves from the state occurring at the previous 

time step, a value determined by the combining of transition probability, the 

expected process noise experienced by the system, the observation from the 

system and in turn, its expected noise.  The model will predict the state of the 

system (a priori) based on the previous updated state estimate, before then 

updating based on information obtained through observation (a posteriori).  

Theoretically, the updated estimate is improved with the inclusion of the 

observation information, which will then inform of the next a priori estimate – 

continuing in a cyclical manner.  With the example of GPS positioning, the 

filter is implemented to combat the fact that the location obtained by satellite 

is only an estimate (due to noise experienced through transmission, 

gravitational pull etc.), with the physical laws of motion and knowledge of the 

noise values informing more precisely of the position due to the 

compensatory influence they have on the estimation value obtained from the 

uncertain GPS reading.  In the aforementioned case of motion affecting 

contact sensor readings in behaviour monitoring: the acceleration values 
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obtained through an independent sensor is able to provide this compensatory 

information so that their readings are perhaps “discarded” or “smoothed” to 

incorporate the uncertainty of observation. 

With the availability and variety of sensors increasing, the number of 

applications which can benefit is also increasing and as a result the data 

fusion problem is a growing topic of research for military defence, robotic 

control, machinery monitoring and medical diagnosis [52 , 53 , 54].  In the 

survey of [52], the authors identify that fusion is a multi-layered process 

whereby the input data requires pre-processing before refining and 

correlation, even before the involvement of any human inputs or decisions.  

The study performed by Lee et al. [43] focuses more specifically on the 

problems associated with data fusion when applied to healthcare monitoring, 

in particular the pervasive aspect which the research conducted herein (and 

as part of the larger project that the research will be ultimately applied to) 

intends to address.  The circumstances and application of their work are very 

similar (Chapter 3 provides the evidence for this) in that the monitoring 

system considered is to have both contact and environment sensors taking 

readings from the user and their surroundings for combining in context to 

determine the individual’s state.  An issue arising from the use of sensor-

based observations in probability models directly is their reliability in real-

world scenarios.  The authors similarly note that certain contact sensors may 

display motion artefacts in their readings due to intermittent connections 

caused by friction during motion, therefore requiring that the sensor reading 

must be appropriately cleaned on the base station post-acquisition utilising 

prior knowledge of the noise characteristics of such sensors.  The previous 

standard Markov Model technique is dismissed in favour of “modifying a 

triadic context of hierarchical class analysis” (an approach applied to 

folksonomy mining [55]) which utilises the available information from the 

system’s sensors to estimate a user’s state in a spatial and temporal context.  

There are environmental and body sensors, which through a triadic relation 

form one set with time and location forming the other two.  The notion is that 

based on the relation of the three sets as exhibited through testing, they can 

be integrated into a triadic class hierarchy from which knowledge is extracted 

and a medical professional or carer has the ability to then make a diagnosis 
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or decision based on the information provided.  A shortfall of such an 

implementation in healthcare monitoring is that whilst it may take in temporal 

aspects of the readings (i.e. time spent in a state) it does not consider the 

sequential properties of behaviour modelling in the way that the HMM can.   

The same fusion notion can be applied to the Programming by 

Demonstration (PbD) task, which utilises multiple combined sensors from 

which readings are taken during the learning phase of the device’s operation.  

Typically the programmer performs an action using the device, which is 

recorded and learnt by the device for an autonomous execution phase.  In 

[56] the PbD device of a “Cyberglove” is used which contains both tactile 

sensors and the inbuilt bend-sensing strips to inform the system of the grasp 

shapes and whether or not such a shape is being executed as the result of 

grasping a real-world object (as opposed to an empty hand).  The 

combination of the two sensing systems distinguishes between two very 

different states of holding and not-holding, that otherwise may not be 

determinable using just one of the sensing systems.  The Cyberglove is used 

to record different shapes and sensor values observable from holding and 

touching numerous objects and an HMM is trained utilising the Baum-Welch 

algorithm [57] in order to ensure maximum recognition of observations-to-

states.  This application takes the inputs of the two sensor types and 

determines intelligently the connections to the state output using the 

Expectation Minimisation process of the algorithm, therefore bypassing the 

need to identify correlations and reasoning for the combination of sensor 

readings producing the states. 

A similar such application is developed in [58], with gesture recognition 

forming a key aspect of the activity recognition of an elderly user on a daily 

basis.  Five basic gesturing states of come here, go fetching (sic), go away, 

sit down and stand up are identified as being observable intents of motion 

when viewed with a wearable finger sensor.  The sensor is an inertial sensor 

capable of providing 3D acceleration, angular velocity, magnetic and 

temperature data and connects to a PDA (Personal Digital Assistant) which 

sends the data to a desktop through a Wi-Fi connection where all state 

inference occurs.  A hierarchical HMM once more is employed to classify the 

gestures, after the combination - with a 3 layer Neural Network (NN) of 
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observable readings from the finger sensor and two other inertial sensors 

located on the body at the waist and foot - provides the inputs to the model.   

The system can theoretically detect multiple daily activities for the 

elderly user with the combined body-worn network in a coarse-grain way: 

standing, sitting and lying are identified as “zero displacement activities”, 

“transitional activities” are made up of such states as lying-to-sitting and level 

walking-to-stair walking, and “strong displacement activities” contains walking 

upstairs and running.  The NNs classify the waist and foot activity as 

monitored with the inertial sensor into 3 types (stationary, transitional and 

cyclic) before the outputs are sent to the fusion centre to integrate the 

activities and categorise them based on a set of rules indicating the states as 

described above. 

The zero displacement and transitional activities are then more finely 

classified through the analysis of the inertial sensors and their current 

observations, enabling such distinctions as sitting or standing-to-sitting based 

on the orientation of the waist sensor, for example.  The HMM is used to 

further classify the strong displacement states by recognising the patterns in 

the time series data from each of the sensors.  The fusion of the sensor 

readings and the coarse- and fine-grained classification processes result in 

test accuracies of 86% and above, with the HMM being employed only when 

deemed necessary according to the detection of a possible strong 

displacement activity.  The system as a whole is shown to perform suitably 

well for the recognition task, utilising the extra two sensors worn at the waist 

and foot to significantly assist in the distinctions between many subtly 

detectable states.   

With a single, key sensor however, it is also possible to identify 

activities of a user without the need for fusion or corroboration with other 

sensors.  Curone et al. [59] describe an algorithm used to detect posture 

utilising a triaxial accelerometer.  With detectable states such as falling, lying 

down and standing, the algorithm is integrated into a wearable device where 

it classifies the user’s activities in an experimental scenario with an above 

90% accuracy.  Once the required behaviour probability detection systems 

are developed with Verity using a multi-sensor approach, it would be feasible 

based on the findings in [59] to assess the reliability of each sensor in 
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isolated conditions perhaps as a means to further provide evidence for a 

state decision. 

The recent survey conducted by Pantelopoulos and Bourbakis [60] 

specifies typical sensors used in these wearable systems and their intended 

uses, with attention paid to the fact that “wearable health-monitoring system 

design needs to take into account several wearability criteria” which includes 

size, specific application and the security of the data gathered for use in state 

determining.  It is also recognised that there is no single ideal design for 

behaviour monitoring systems, with each application requiring careful 

consideration in all aspects of implementation.  Rather understandably, a 

wearable monitoring system must not “hinder any of the user’s movements or 

actions” and radiation concerns need to be accounted for in the design of any 

system utilising radio transmission.  As discussed previously, the pervasive 

nature of the monitoring itself is noted to be a significant consideration, given 

that the information gathered by such devices is inherently personal and 

requires considerable security measures to ensure it remains accessible only 

to the desired people.  Some systems reviewed are identified to be too 

cumbersome, consisting of too many, large, user-controlled modules to be 

called “autonomous” [61], whereas others performed suitably well in their 

evaluation given that they are unobtrusive and require little attention from the 

user on a daily basis – a property identified by much similar research to be of 

utmost importance in the design of new passive behaviour monitoring 

systems. 

When the system being used is self-contained and has no means of 

direct location detection/recognition, the sensing platform must be equipped 

such that a location can be inferred through other means.  The eWatch 

system proposed by Maurer et al. [62] is another wearable device of an 

unobtrusive form-factor, which tracks the user’s whereabouts using a variety 

of sensors whose readings are compared using the nearest-neighbour 

method to determine the most likely environment.  An innovative 

development, eWatch uses a microphone and light sensor to record and 

analyse the lighting and audio conditions in different environments and 

locations, taking note of the brightness, frequencies of the light present and 

the intensity of sounds in order to distinguish between most-visited places.  
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The resultant database comprised of 600 data recordings at 18 locations,   

with combinatorial results for the light and sound values resulting in success 

rates of a minimum of 66% and maximum of 98% when the locations were 

revisited and analysis of the light and audio recordings was performed by 

comparison with those used in the training phase.  The sensors in eWatch 

are indeed few, but the error rate is proven to be low with the combination of 

the multiple sensors providing the most accurate readings.  This fact goes 

further towards showing that the combination of many semi-certain results 

allows for greater certainty in the determining of state or environment.   

Home-installed variations have been at the forefront of monitoring-

device development for many years, with distributed sensor networks 

providing the basis for many developed products. The authors of [63] and 

[64] successfully develop methods of processing the large volume of 

contextual data from a “Smart Home” environment in which sensors and 

devices are located throughout – thereby intelligently inferring a belief of a 

user’s current health state. The system developed in [65] goes further into 

identifying the health status of the user by measuring observable life-signs 

while typical daily tasks are undertaken (bathing, sleeping etc.), thereby 

reducing the awareness of the user that they are being monitored. Those 

developed in [45] and [23] go beyond ambient monitoring and introduce a 

body-worn element to further enhance the monitoring reliability; whereas in 

[66] the authors address the perceived invasive nature of these wearable 

devices by developing a system which does not necessarily require the user 

to be wearing a sensor board, yet is able to detect the user’s location based 

on observations of interaction with the home-installed sensor network. The 

authors of [67] both highlight and deal with the difficulties of a pervasive 

system’s reliability, inaccuracy and contextual vagueness through use of 

evidential fusion based on belief and uncertainty of sensor data.  

Whilst acknowledging the documented drawbacks of devices which 

utilise a wearable or contact-requiring technology, they usually do so in order 

to ascertain high-accuracy results which can inform the assessor or health 

care professional of their current health/behavioural state to a more 

reasonable degree than other monitoring devices. For example, the 

application in [68] is utilised to assess the severity of a user’s motor 
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complications which arise from Parkinson’s disease – the device remains in 

contact so as to obtain constant data to inform of their status in a way that 

pure visual observation would not. Literature surveys [69 , 70 , 71] of recent 

emerging technology being used for research into health monitoring discuss 

wearable devices (“healthwear”) that are able to gather sensor data to 

provide both spatial and contextual information about the user’s environment 

and their internal health-state in the same way that the system developed 

here in this research is intended to. The MIThril system of [72] was 

developed to be a “practical, modular system of hardware and software for 

research in wearable sensing and context-aware interaction”, consisting of 

multiple sensing devices which can be integrated within a user’s clothing or 

placed inconspicuously about their person. The system uses state of the art 

technology to “hoard” data about the user and their environment before 

estimating their current state. The central control node is capable of 

interfacing with mobile phones, cameras, Wi-Fi and even head-mounted 

displays and the sensor hub has the ability to interface with more hubs in 

order to expand the sensing capabilities – but a single hub is capable of 

working with pulse oximeters, respiratory, EEG (Electroencephalography), 

blood sugar and CO2 sensors to provide the MIThril framework and software 

with information suitable enough to determine whether the user is in such 

states as standing, walking or running with a classifier such as the HMM. The 

device goes much further than being solely a passive, wearable system 

though: attaching to the user with medical electrodes to read vital signs as 

would be similarly carried out in a medical environment – thus removing that 

pervasive aspect afforded by subtler monitoring devices.  

Whilst developed primarily for use in research, a flaw in such a data-

gathering method in technology developed for consumers is its invasiveness. 

The electrocardiogram (EKG) approach of MIThril in determining heart rate is 

widely used in wearable devices [73 , 74 , 75] yet the need to optimally 

position and apply 2+ electrodes significantly decreases its usability by a lay-

person. Installing heart rate monitors more discretely however is certainly a 

possibility, with novel ideas proving successful in numerous cases – the 

review of [76] describes the placement of electrodes and sensors about the 

home to detect the user during their periods of interaction with those devices.  
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Such locations include bathtubs, taps, beds and even toilets and therefore 

eliminate the notion and awareness of the monitoring process.  In one such 

application, 15 thermistors located under the bed sheet and one in the 

bedroom allowed for significant temperature information to be obtained to 

inform of the user’s body movements during sleep through analysis of the 

change of temperature distribution.  Another application attempted to remove 

the intrusiveness of the typical lead-approach to EKG measurements, with 

conductive textile electrodes placed in the pillow and bed sheet as a means 

of always maintaining contact with the body without the need for direct 

placement with electrodes, allowing for EKG and respiration readings 97% of 

the time during the sleep process.  The inner wall of the bathtub was 

identified as an ideal placement opportunity for electrodes to read signs 

whilst the user bathes, as well as the bottom surface providing the perfect 

location for a photoplethysmographic (PPG) sensor due to the permanent 

contact with the users’ buttocks.  From the signal obtained with the PPG 

sensor, respiration information is easily obtained using a low pass filter.  

Recently, Apple Inc. filed a patent [77] to embed an electrical cardiac 

monitor into their cellular devices which works to determine heart rate 

through the user’s contact with the metallic housing and another specific 

location on the device, thus providing the user with the ability to determine 

when they can and cannot be monitored.  Intentions by an organisation such 

as this for inclusion in devices so widely available provides evidence that 

product designers are willing to provide the consumer market with the 

opportunity to monitor their own wellbeing, and that in the ever-changing field 

of technology, “healthwear” is a lucrative industry. 

The communication between the wearable sensors of these devices 

and even multiple instances of the same devices (nodes) around the 

environment in a Smart Home is also a growing field of research, with 

applications utilising numerous wireless standards in order to enable the 

transfer of information gathered at the sensor nodes to the main processing 

centre for identification and classification of a state [23 , 78 , 79 , 80 , 81].  

RFID, Bluetooth, Zigbee and 802.11g are all typical modalities of 

communication in the intelligent healthcare monitoring systems, with none yet 

identified in the literature as more suitable than another for a specific 
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application.  As such, Verity uses a wireless protocol optimised for ultra-low 

power operation of these typical wireless body area networks in order to 

achieve the same result (Chapter 3). 

2.4 The Curse of Dimensionality for 

Classification 

As problems become defined by a richer and greater variety of sources 

of data, dimensionality can increase.  The high dimensionality of data can 

lead to complex non-linearly separable clusters developing in the higher 

dimension space which are not easily identified by simple classification 

methods.  The data may in fact contain values in one manifold which allow it 

to be perfectly separated, however the influence of other dimensions may 

obscure the required classifiable relationships present in the data.   

An issue arises in high dimension data when the distance which 

separates clusters is too small to enable differentiation, or the data within the 

clusters themselves is too sparse.  The ability to detect outliers in sparse high 

dimension data is a commonly tackled problem; [82] notes that with 

increasing dimensionality, it becomes increasingly difficult and inaccurate to 

estimate the multidimensional distributions of the data points, thus the 

concept of locality is difficult to define and classification purely according to 

data density becomes complex and impractical when confronted with the 

original high dimension representation.   

This “curse of dimensionality” is commonly referenced; the greater the 

number of data attributes (dimensions) the lesser the ability to make sense of 

the data.  This is relevant when addressing the k-Nearest Neighbour (kNN) 

function [83] due to the fact that with a higher dimension, standard Euclidean 

distance functions lose their usefulness and so clustering with such methods 

becomes less accurate.  There are essentially 4 main problems which relate 

to the “curse of dimensionality” and the increasing number of attributes [84 , 

85 , 86]: Optimisation becomes difficult, relative distance between extreme 

points converges to 0 (discrimination between nearest and farthest neighbour 

becomes poor), dimensions become “noise” - given that their relevance to 

the data may be little - and some dimensions may even “exhibit correlations 

among each other”, thus becoming redundant. 
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A dimension reduction technique capable of separating nonlinear 

clusters from the high dimension results in a lower dimension dataset on 

which successive linear-based operations can be performed – for example a 

simple binary classifier trained on the newly linear separated data is able to 

then identify an untrained data point’s membership to a cluster.   

Within the dimension reduction field are a multitude of techniques for 

dealing with nonlinear, high dimension data, with many sharing basic 

underlying principles to reach the lower dimension representation of a 

complex nonlinear data set:  Sammon’s mapping, Isomap, Curvilinear 

Component (and Distance) Analysis all seek to replicate similar distances 

between points located in a high dimension after placement in the lower 

dimension, by a means of gradient descent or iterative error reduction 

methods. 

Sammon’s mapping [87] is considered to be one of the first described 

nonlinear dimension reduction techniques, simply aiming to minimize the 

error function representing how well the configuration of points in the high 

dimension (n-space) fits the projection in the lower dimension (p-space):   
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Where i  and j  are two vectors found in n-space, with a distance *

ijd  

between them (typically measured as Euclidean, or “straight-line”).  The error 

function is reduced by a method of steepest descent, moving the points in the 

p-space incrementally based on the calculated error such that the result 

when re-calculated ( ijd ) is the minimum value at the final point placement in 

the lower dimension.   

Isomap [88] works in a very similar manner by identifying distances 

between points according to a geodesic measurement over Sammon’s basic 

Euclidean, pointing out that the shortest path distance between far apart 

points on the manifold can appear deceptively close in the high dimensional 

space when measured with a straight line distance.  The first step in 

implementing such a technique is in the identification of which points on the 

manifold are neighbours based on the distances between the pair of vectors 
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i  and j , before their connection to each other through a metric of either kNN 

or interconnection based on their falling within a pre-set radius.  These pairs 

are then stored in a graph with edge weights equal to their distance ijd .  The 

geodesic distance calculation is an estimation of shortest distance between 

all point pairs on the manifold, which is computed using a simple graph 

search algorithm returning weights based on the between-pair distances and 

is stored in a matrix of geodesic graph distances   ,G GD d i j .  

As with Sammon’s mapping, the projection error in p-space is 

minimised such that the manifold’s geodesic distance is preserved as 

Euclidean distance according to: 

    2G p L
E D D    (2) 

Where pD  is the matrix of distances between vectors i  and j  in the 

lower dimension, and 2L
A the matrix norm 2

, iji j
A .    “centres” the 

matrices allowing for the eigenvectors and eigenvalues to be computed and 

the projection coordinates chosen according to top p eigenvectors of the 

matrix  GD . 

Despite improving on the functionality of the Sammon Mapping of the 

high dimension to the lower dimension to better represent points at different 

ends of the manifold, what is recognised by Lee et al. [89] in their creation of 

the Curvilinear Distance Analysis (CDA) [90] is that Isomap’s random 

selection of point pairs results in the lower dimension manifold appearing as 

a torn and stretched representation of the original data set, with the initial 

distribution being replicated incorrectly.  Essentially, the Isomap procedure 

works to preserve long distances in the manifold by comparison with shorter 

ones.  Employing vector quantisation to obtain the initial prototypes for 

pairing yields better results, without the problem of tearing; however 

representation of 3D manifolds still remains unsatisfactory when neighbours 

are identified at opposite ends of the manifold – the resultant projection 

typically appears “crushed” and stretched due to the “parasitic link” in the 

centre of the manifold which is unable to be overcome with Isomap.  The 

Curvilinear Component Analysis (CCA) [91] on which Lee et al. base their 

scheme on, also attempts to find  a lower dimension representation of a 
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manifold which “minimises a cost function based on interpoint distances in 

both input and output spaces”. 

A new cost function is created in CCA which is capable of unfolding 

strongly nonlinear structures, and in its minimisation a significant speedup in 

projection is found.  This function is not too dissimilar to Isomap, which takes 

as inputs the Euclidean distance between vector quantisation-identified point 

pairs,  , ,n

i j i jd d n n :  
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At its core, the function aims to reduce the error between the high 

dimension distances (
,

n

i jd ) and the lower dimension representation (
,

p

i jd ), with 

the addition of the extra bounded and monotonically decreasing function 

  , ,p

i jF d t  which enables the local topology to be recreated more reliably – 

the step function can be used to identify points that fall within a chosen 

neighbourhood, resulting in local representation being favoured in the error 

calculation over larger distances.  This neighbourhood is ideally decreasing 

so that the projection remains suitably representative of the original manifold. 

The CDA scheme further enhances CCA by eliminating the Euclidean 

distances between pairs (
,

n

i jd ) from the calculation, which is identified to be a 

problem in manifolds such as a spiral - which would link neighbouring points 

through the manifold rather than around it and result in further projection 

errors.  The replacement is with the curvilinear distance, 
,

n

i j , which is a sum 

of “Euclidian lengths of all links in the shortest path from centroid i  to 

centroid j , provided there are no ‘shortcut’ links”, resulting in a distance 

which doesn’t cut through a manifold.   
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The projection is a true “unfolding” of the high dimension data set, with 

the curvilinear distances “flattened” to Euclidean in the lower dimension, 

which has significant benefits for nonlinear projection requiring visualisation 

of the manifold. 
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The extensive (yet non-exhaustive) survey of [92] highlights key 

techniques utilised in the dimension reduction arena, distinguishing the types 

of dimension reduction methods applicable to both linear and nonlinear data.  

The theory outlined is that in high-dimension data sets with both linear and 

nonlinear properties, not all variables measured are “important” and therefore 

become obsolete from subsequent operations, allowing for their removal by 

dimension reduction.  The authors consider Principle Component Analysis 

(PCA) [93] as the best linear dimension reduction technique, as it seeks to 

find a lesser number of linear combinations of the original high-dimension 

variables with the largest variance, resulting in a reduced dataset described 

by the first few combinations.  Random Projection methods are also 

considered, whereby the high-dimension data is simply projected into a lower 

dimension space in a randomised nature and clustered before the next 

processing step is administered.  Results are shown to be more suitable than 

PCA for speed, yet a slight loss in accuracy is expected.   

A combinatorial method for dimension reduction is described in [94] 

which applies itself to speech recognition using HMMs.  Linear Discriminant 

Analysis is employed to find a low dimensional projection of data such that 

the variation between and within classes is largest, before the mean 

parameters used in an HMM for pattern recognition are found for the data 

with Reduced Rank Estimation.  

Neural network based classifiers can also be applied to nonlinear high 

dimension data in order to identify the nonlinear relationship and classify 

successive points according to the properties of the data set.  The problem 

with such approaches is their need for trial-and-error in the choice of the 

number of layers, neurons and iterations if the data set is not considered 

“standard”.  The end result may also be impractical if the determined 

“solution” for a parameter has actually fallen in a local minimum, thereby 

producing false results and reducing the sensitivity of the classifier. 

With multiple sensors used in the behaviour monitoring task, the 

dimensionality of the resultant observation set is considerably high, 

especially when the system can be expanded upon to incorporate more 

sensors throughout use – thus instigating a significant need to identify 

correlations between sensor readings which make up each dimension as a 
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means of classification.  With such physiologically observable signals as 

heart rate and acceleration or temperature and acceleration making up one 

manifold of a data set, their often nonlinear relationship requires overcoming 

through dimension reduction in order to better enable in the determining of 

state probabilities which are subsequently used in sequence determining 

models like the HMM.   

2.5 Instance Based Learning 

Instance Based Learning (IBL) takes directly sampled data from any 

system and constructs a hypothesis regarding similarity without the need to 

generalise a model based on the often high dimensional and nonlinear data – 

resulting in a classifier which makes its decisions according to the actual data 

and hypothesis rather than an abstraction formed from its analysis.  Through 

training, data instances are stored in some form of memory which is then 

accessible for subsequent classification operations, where a query is 

submitted and compared with all trained values according to some distance 

metric in order to ascertain its membership to the encoded classes.   

With the often-extensive amount of data available to (and supplied by) 

passive behaviour monitoring systems due to high dimensionality and 

nonlinearity, the time taken to postulate a relationship between state and 

observation can be significant and require multiple rounds of training before 

an adequate hypothesis is formed.  The data orientated approach of IBL 

would remove the need for model generation and therefore show promise for 

speedup during the classification process. 

It is commonly accepted that the genus of and starting point for IBL 

algorithms is the simple k-Nearest Neighbour classifier [95]: saving training 

instances to some data structure such that other instances may be compared 

distance-wise with those local data already classified to return a possible 

containing state for the new instance [96].   

The Nearest Neighbour algorithm implementation can be considered in 

several ways.  Traditionally, the literal interpretation is to assess the k-

Nearest Neighbours for their class membership, with the majority class being 

considered the winner to which the query point is attributed [83].  Another 

interpretation can be extrapolated to operate on a similar basis to fixed radius 
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nearest neighbour searching [97], classifying points according to a majority 

vote within a radius: rather than assessing a pre-defined number of points as 

in kNN, a pre-defined radius,  , is determined within which the class of all 

points are tallied and the majority is then considered to be the winner (in a 

tie-break situation, the radius might be expanded).   

   
0
max , where x j

j J
c q p c q p q 

 

      
   

0 x n   (5) 

Equation (5) illustrates the selection process during which the query 

point q  is assigned to the class c .   The winning class is that which contains 

the majority of trained data points p  within the given radius  .   

With a kNN algorithm, the data may have a very high dimensionality 

resulting in the requirement for an expansive storage space in which to hold 

all data accurately.  Similarly, the increase in the amount of data to parse in 

order to determine those points within close proximity to the queried instance 

has a significant effect on the speed at which the algorithm can operate.  

With IBL methods that operate on dynamically updating data streams the 

problems can arise quickly and more noticeably than on more static data [98] 

– but the mining operations occurring on the data sets also have a significant 

bearing on the tolerance of the speed at which they occur.  Pattern [96 , 99] 

and anomaly detection may vary in their importance to the application [100 , 

101 , 102 , 103 , 104]: from a machine-health point of view the sooner a 

problem is detected after examining multiple signals then the sooner the fault 

can be corrected (similarly with network intrusion detection [101]), however in 

the case of financial data or worker-behaviour analysis an anomaly which 

would indicate that future behaviour required modification may only become 

apparent over a longer period of time and so instant calculation and 

processing is less vital [105 , 106 , 107].  For operations which attempt to 

classify data in a continuous stream there is typically a need to function in 

real- or close to real-time such that the data itself is then able to be used in 

subsequent look-up operations for determining another instance’s 

classification. 

There are a number of instance-based classification algorithms that 

address the speed optimisation issue for real-time operation in a number of 

fields.   The IBL approach to classification in data streams is considered in 
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[98], highlighting the key requirements that learning algorithms must be 

highly adaptive and deal with the time-varying concepts that come with a 

continuous data stream – with the IBL method considering only a small 

subset of the stream rather than the entire universe of samples which would 

result in heavy computation.   

The memory created in this developed solution for data stream 

classification is autonomously updated, taking the arrival of a new sample as 

a reason to re-assess the relevance of all cases currently stored based on a 

neighbourhood metric.  A set of samples within a neighbourhood of the new 

arrival are considered as candidates for removal, with the exception of those 

most recently added due to the fact that noisy data may be diff icult to 

distinguish from the beginning of a concept change.  In the case that the 

class of the newest sample is the most frequent among those in the 

candidate set, then all samples of a different class within that neighbourhood 

are discarded, maintaining the memory’s relevance to the data stream. 

RIONA (Rule Induction with Optimal Neighbourhood Algorithm) 

combines rule induction and IBL to inform of a state decision based not on an 

entire rule base, but on a restricted set within the neighbourhood of the test 

case [108].  Utilising kNN the decision is made in a vastly accelerated 

manner, with the solution reportedly proving more suitable for kNN problems 

and rule based classifiers.  The algorithm considers only the samples 

covered by the rules matching the test case falling within a specified 

neighbourhood.  A rule is constructed based on the test case and a 

neighbouring sample, then checked for consistency with the other samples in 

the neighbourhood.  If the new rule is indeed feasible given the samples, the 

original sample is added to the support set for that rule. 

Recognising that the brute-force approach to a nearest neighbour 

search is often the best when dimensionality is high, Toyama et al. [109] 

propose a method to greatly reduce the search time and return a correct set 

of k-Nearest Neighbours with a high probability, exploiting the marginal 

distribution of the nearest neighbours in low dimensions and the fact that “a 

very close pair in the original m dimensions is also close in a few l 

dimensions in high probability”.  Utilising a PCA approach, only the first few 

values of a projected data point in a lower dimension are checked, which, 
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with a predictable ratio, reduces the search time experienced if executed in 

the original dimension.   

As highlighted by Toyama et al., for large data sets with high 

dimensionality ( d ), searching through n  instances of a data set in order to 

determine those within the closest proximity can take an extensive amount of 

time, given that all pairs require evaluation using a distance measure such as 

Euclidean or Hamming.  When considering the traditional nearest neighbours 

algorithm, the time complexity is deducible to be  2O dn , when sorting is 

employed to determine the k-Nearest Neighbours.   

Locality Sensitive Hashing (LSH) [110] provides adequate means to 

speed up the process of nearest neighbour searching, overcoming the above 

issue by storing the data in another variable-tolerance, compressed format 

which is easily searchable and requires only simple look-up operations to 

determine possible immediate neighbours which can then be subjected to a 

linear search to directly find the k-Nearest Neighbours.  The principle behind 

LSH is to hash the sample data in such a way that the probability of two 

points hashing to the same location of a 1-dimensional data structure is 

higher for objects that are close to each other than for those that are further 

apart.  Given a subsequent query point, the most similar points in the 

database are desired to be found so that the class of the unknown value can 

be inferred as a result.  With the high dimension data processed with an LSH 

function, the database is easily searchable without the need to employ a 

distance metric in the initial look-up of all samples and queries, given that 

processing occurs in the storage stage – reducing the overall computation 

from a distance search of all points, to a select few. 

The process of simple LSH is thus: identify the dimensionality in which 

the database exists, and randomly select a family of vectors from a Gaussian 

distribution each with a dimensionality equal to that of the original data space.  

The dot product of the point in the database and each of these random 

vectors is then found, before the result is divided by a value termed the 

“bucket width” – which then when subjected to the floor operation results in 

an integer value known as the “hash location” in the 1-dimensional structure.  

At each respective hash location/bucket the original database vectors are 
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then stored, in theory with each vector in one location sharing similar 

dimensional values.  The bucket width essentially acts as an upper radius for 

the nearest neighbour operation, with nearby vectors in the high dimension 

space falling into the same hash location if the bucket width is appropriately 

sized.  Increasing the width will increase the number of points that fall inside 

it, thus reducing the size of the final database.  The trade-off in the 

implementation of an LSH is between having a larger table with a smaller 

final linear search to locate the nearest neighbours, or in having a more 

compressed table with more vectors to consider [111].    

Once a query point’s location is identified with the same LSH functions 

as used to encode the original database, the vectors contained within the 

hash locations form the searchable list for the subsequent standard nearest 

neighbour operation; a speedup in identification of the k-Nearest Neighbours 

is therefore observed due to the decreased number of pairwise distance 

operations carried out on all data.  The fact remains however, that whilst the 

database has been optimally indexed to allow for faster query speed, the 

sample storage requirements remain high as no compression occurs beyond 

the dimension reduction on each point possibly chosen to be employed at the 

active hash locations [112]. 

Whilst IBL algorithms have multiple advantages over parametric and 

model-based algorithms, especially in the storage of new, unseen instances 

(other algorithms would typically require complete re-examination of the data 

set in order to be wholly inclusive of the new data points where IBL methods 

simply “insert” the new data instance without disrupting any previously 

determined hypothesis), with large and sparse data sets there comes a 

problem in the storage of all instances.  This is especially the case if future 

instances not currently contained within the data structure require insertion - 

thus increasing the size of the structure to a degree which may result in the 

decreased efficiency of the lookup mechanism or even cause overflow of the 

storage space.  Taking influence from the LSH data structure, involving 

hashing and indexing of high dimension vectors: a solution appears in the 

form of a Bloom Filter, which is capable of holding an extensive amount of 

data in a limited space in order to facilitate a simple checking of the data 

point for membership to a state. 
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Originally developed by Burton H. Bloom [113 , 114], a Bloom Filter is a 

simple data structure which holds information regarding an element’s 

membership to the data set that the filter represents, storing it in a 

compressed format as governed by the multiple properties of the filter.  The 

filter itself is actually a finite-length bit vector (in the original implementation; 

subsequent filter designs allow for dynamic resizing [115 , 116]) which in its 

unpopulated state contains only zeros, or null values.  The zeros are set to 

ones to correspond with the outcome of a series hash functions when an 

input element/vector is presented to them.  The input element will then have 

a series of corresponding values set to one in the array which when queried 

in a later operation indicates that the element belongs to that filter and 

therefore to that data set.  With more hash functions, more activated values 

can appear in the filter, which although ultimately increases the certainty of 

the element’s membership when the corresponding values are checked for 

activation, in standard Bloom Filters increases the false-positive rate due to a 

higher collision rate.  In practise, for each application there are an optimal 

number of hash functions as discussed below.  The flaw of a Bloom Filter in 

its ability to produce these false-positives – incorrect “hits” which indicate an 

element is a member of that set when in fact it is not – is considered an 

acceptable trade-off against its efficiency.  This “flaw” actively influences how 

to implement a Bloom Filter for a specific application, with multiple factors 

requiring consideration in order to determine the most acceptable false-

positive rate before any learning or memory operation can occur if accuracy 

in classification is required over compression rate. 

A Bloom Filter is capable of reducing a data set of n  instances of any 

size/dimension to a simple array consisting of m  bits.  The lookup to 

determine another instance’s membership to the class’s representative array 

requires only a check of the h  hash function’s bits in that array, where graph 

search algorithms may require processing n  elements for a returned 

membership value.  These values of n , m  and h  are reliant on each other 

and all optimisable depending on the aim of the application (i.e. compression 

percentage, recollection accuracy etc.).  Their combination influences the 

rate of false-positives for the given data set in the filter: 



Literature Review 

39 
 

  /1
Bloom Filter 1 1 (1 )

h
hn

hn m h

fpP e
m


  

         

 
 

(6) 

Provided that the number of hash functions is set at its optimum (7) to 

minimise the false-positive rate, the minimum false-positive rate for a filter 

with the above parameters resolves to be as in (8), relying solely on the 

number of hash functions used for encoding: 
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The Bloom Filter implementation described by [117] deals with the 

matter of privacy as identified previously in applications such as passive 

behaviour monitoring, suggesting collaboration with a kNN classification 

method as a means of  allowing the sharing of data whilst preserving its 

privacy.  Real data values are hidden by encoding the sensitive information 

with hash functions and storing them in a Bloom Filter which is accessible by 

the querying party.  The results received from a query won’t compromise the 

original data privacy, as the hash function operates one-way and is typically 

rather difficult to decode when a good hash is employed.  A hash is received 

as part of a query and the kNN to that obfuscated query are selected from 

the database with results returned to the requester without their need to see 

the actual information database. 

In a similar way, Bloom Filters passed as messages in computing 

protocols are a means of reducing the transmission size of large databases.  

In the application of web cache sharing, a proxy will hold information 

regarding which sites it holds in its database which is in the form of a Bloom 

Filter.  To reduce the number of transmissions over a network, proxies will 

periodically broadcast their Bloom Filter rather than the entire site list, 

resulting in each proxy maintaining multiple Bloom Filters which they can 

query to ascertain the presence of a site on another proxy [118].  

Mitzenmacher [119] introduces the concept of a Compressed Bloom Filter 

which can subsequently improve performance in the transmission and web 

traffic reduction application, reducing the number of bits broadcast and the 

computations per query at the expense of an increased processing overhead 

in the end machines required to compress and decompress the data. 
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Identifying that when Bloom Filters are the objects transferred between 

proxies, the number of hash functions to be used must be optimised for the 

size of the transmission and not the size of the initial filter or its contents: the 

value is chosen such that the probability of an entry in the filter is 1 with a 

probability 0.3, rather than 0.5 as with an uncompressed filter which is 

optimised for storage size.  This reduction in probability allows for a smaller 

value of m which is then easily compressed to improve transmission size.  It 

is found that the number of hash functions minimising the false positives 

without compression maximises the false positives with compression, 

therefore indicating that for compression and transmission of the Filters in the 

manner outlined in [119], compression will always decrease the likelihood of 

false positives.  This does however introduce the need for increased 

processing in the compression and decompression of the transmitted filter, 

and therefore proves unfeasible for behaviour monitoring applications 

required to operate at high speeds for real-time classification.  Such an 

implementation would be recommended though when transmission is 

required between the monitoring device and a storage medium perhaps after 

a period of monitoring has elapsed, reducing the packet sizes and power 

consumption as a result. 

Combining the LSH theory with Bloom Filters, Mitzenmacher and Kirsch 

further develop a Distance-Sensitive Bloom Filter [120] in which the random 

hash functions of a standard Bloom Filter are replaced by LSH functions, 

allowing for queries to identify locations containing possible neighbours of the 

same class based solely on their distance from the initial lookup location 

within the filter.  The modification is shown to not enhance the performance 

of a standard Bloom Filter in basic lookups, yet by limiting the goals of the 

scheme it shows potential for numerous applications in networking and 

database fields – a fact employable in behaviour monitoring where an 

observation can be queried to a database to ascertain its membership and 

similarity to points of the same class, with the added bonus that the storage 

structure is in a compressed format and thus allows for expansion to include 

further untrained points if necessary. 
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2.6 Fault and Anomaly Detection 

With the detection and recognition of behaviours there must also be an 

anomalous behaviour detection scheme in order for the device to become 

truly useful in operation.  Many care systems relay state information and 

behaviour sequences to a central hub located in the care home, or to an 

online webpage that can be monitored remotely by the caregiver from 

anywhere and at any time.  The drawback of such systems is their 

requirement for human involvement at what can be seen to be the most 

critical time in the monitoring: that of an irregular reading or behavioural 

event.  If there were an inclusion of an autonomous fault detection scheme to 

assess the validity of the data retrieved during operation before the caregiver 

or monitor were informed, the faults and anomalous behaviour could be 

isolated at an earlier stage before any danger escalates. 

Anomalies can be seen in the dynamic data as it is computed, i.e. a 

monitored behaviour should not logically occur after the previously seen 

behaviour; or in data obtained over a long collection period, whereby the 

current behaviour pattern does not fit with that usually witnessed.  In the case 

of the behaviour pattern mismatch, there is usually a threshold in place which 

determines whether the difference in behaviour has reached a point where 

the user could be experiencing problems.  When the monitoring is periodic - 

in the sense that the observations determine a sequence of states in an hour 

or maybe over a day – the monitoring process can reference previous 

collected data to ascertain a probability of anomalous activity.  For a reliable 

and logical monitoring service, the data would be collected over a 24 hour 

period given that the majority of tasks experienced are repeated to some 

degree on a daily basis.  A work by Virone, Noury and Demongeot [121] 

employs a smart home system to monitor a subject over a simulated 70 day 

period and obtain average values for room habitation on a daily basis.  The 

average acts as a probability of room occupation, against which the actual 

room occupation at an instance is compared.  With thresholds set for under 

and over-occupation, should the current value deviate from the expected 

then a suitable alarm is triggered.  Parameters are defined for serious and 

minor deviations, with checks made with the user to ascertain whether an 



Literature Review 

42 
 

alarm should be triggered.  The scheme uses simple statistical analysis to 

govern the detection and the results show effective application.  It is shown 

that it becomes easier to detect anomalies in data which is more predictable 

and given context information an event which has a low probability of 

occurrence is classed as an anomaly [63].  An issue arises however in the 

distinction between weekdays and weekends (as noted by the authors) as 

the behaviour pattern may differ on such days.  For any monitoring product of 

this type (daily behavioural traits, rather than sequential behaviours), this is a 

significant consideration [9]. 

An analysis of room occupation and activity data could provide 

information about the day and nature of the activity itself.  These monitoring 

systems usually take the form of smart homes which incorporate numerous 

built in sensors to observe various areas and objects in the home.  Helal, 

Cook and Schmalz [122] developed a system using the already-equipped 

CASAS Smart Apartment at Washington State University which was able to 

provide detailed information about the user regarding their activity schedules 

and behavioural patterns, highlighting specific instances where a task was 

incorrectly executed or forgotten.  The system used techniques including 

Markov modelling to recognise behaviours and the experimental results 

showed that 98% of activities were correctly identified. 

Although applied to a subject who is still active at work, the principles 

addressed by Barger, Brown and Alwan [64] are applicable and transferable 

to elderly behaviour monitoring.  Their observation is that a worker with 

variable work days will upon observation have noticeable deviations in 

“normal” behaviour on a day to day basis.  This could affect an alarm system 

unfavourably given that a detected unusual behaviour may in fact be due to 

the subject being at work and using various rooms of the house at different 

times and by varying amounts.  The data obtained can however be analysed 

to logically identify work days by the activity in given rooms, and the time at 

which each activity occurs.  Once such an operation is applied, the issue of 

unusual behaviour is addressed.  The viewing of room activity data may 

return clusters when averaged for day-to-day over a long observation period, 

but there may be activities which do not fit with the usual pattern.  This may 

be due to simple tasks requiring unusual trips to rooms, or tasks occurring 
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which may have taken longer than expected.  These events are classed as 

random and are therefore not fully considered by the behaviour detection 

scheme.  The personal monitoring of the user through wearable devices may 

require such considerations when the behaviour of the user deviates from the 

normal.  The overall behaviour pattern may vary very little over a long period, 

but on a daily view there may be some activities which occur only for very 

short periods.  In such circumstances, the temporal considerations expressed 

in [35] come into effect.  Whilst the observed behaviours may be possible in a 

shorter timescale, they must be queried for correctness when the larger 

sequence is considered.  Repeated observations of these behaviour 

instances may indicate problems with the individual which could range from 

dementia or Alzheimer’s when consistent repeated room occupation is 

observed, to Narcolepsy with Cataplexy [123] or Sleep Apnoea when a body 

sensor system is utilised and consistent repeated body stillness is observed. 

The task of anomaly detection in behaviour models can even draw on 

methods implemented in traditional fault detection of industrial systems.  With 

a behaviour model, there are similar aspects which can be translated to the 

industrial system.  The inputs to an industrial system may be equivalent to 

the observation sensors used in the behaviour system with the outputs, 

instead of being a continuous signal typically providing information regarding 

the health or productivity of the machine in question, being the behavioural 

states determined from the sensor observations.  In industrial fault detection 

the actual values for inputs and outputs are usually unknown, so sensors are 

used at the input and output to provide measured values and the fault 

detection is treated as an observation problem [124].  With the behaviour 

model the actual inputs are known as they come directly from the sensor 

readings of the subject, and the outputs are the states determined by the 

process.  The process is the only thing which can vary in healthcare 

monitoring schemes, with some opting to employ the probabilistic sequence 

models [33 , 125 , 126] while others use fuzzy techniques and fusion to 

combine the raw sensor readings [43 , 127].  Due to the similarities in the 

system topology, faults which occur in the industrial system in actuators, 

inputs, controllers and the process itself can be applied to the behaviour 

system.  The fault occurring in an input may be due to the failure of a sensor; 
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the actuator fault may be seen as a problem with the user; and a controller or 

process fault could arise due to incorrect behaviour model parameters.  The 

scheme must therefore be capable of not only detecting a fault but identifying 

the type experienced in order to correct the system or trigger the appropriate 

alert scenario.  Despite the suitability of the application in behaviour 

monitoring, a literature search returns few relevant discussions on the topic.   

An extensive survey by Chandola, Banerjee and Kumar of anomaly 

detection methods [102] discusses the many developments in the field and 

the applications to which each methodology is best suited.  A point made in 

the survey of significance to this research is the distinction between anomaly 

and novelty detection.  Where an anomaly can be seen abstractly as data 

which does not fit with a normal observed pattern, a novelty is first detected 

as such but then reasoned to be part of the new normal behaviour and is 

then incorporated into the normal view for future behaviour comparisons.  In 

the case of the monitoring system, this may be prevalent in the early stages 

of implementation where the learning of the user’s behaviour patterns occurs 

at its highest rate.  The default normal behaviour may be a variation for a 

user, yet the initial anomaly detected may actually be part of their usual 

pattern, requiring a test by the system to ascertain if this is the case before 

proceeding with the consequential action.  This is an issue faced by outlier 

detection in computer networks, where the dilemma for effective detection 

stems from the need to have large amounts of sequential data in order to 

successfully formulate a belief of normal behaviour [101] before adequate 

detection techniques are applied.  Again, the need for contextual awareness 

becomes significant when evaluating a sequence for anomalousness in 

computer networks.    A process U viewed amid some other processes may 

be normal yet infrequent; however when process U  is seen to occur after 

processes S  and T  the situation signifies a network attack.  In many ways 

this reflects the temporal problems with human behaviour monitoring 

discussed earlier. 

Fine [100] proposed a clustering method for use with behaviour 

anomaly detection whereby the observations used are collected over the 

span of a 24 hour period.  The data is assessed as a whole and compared 

with previous data which has been termed normal.  The observation is taken 
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over such a period due to the fact that while behaviours may be cyclic on a 

daily basis, their timings may differ throughout the day.  The example given 

imagines that the subject remains asleep for half an hour extra on one day 

and therefore causes all subsequent actions to occur later than usual.  If the 

single instance of an action were to be compared with a previous day at the 

same time, the distance between the two would be great.  However, if the 

actions were viewed as a whole throughout the day, it would be seen that 

there was a shift in all actions by the same amount based on the 

observations surrounding it.  The method computes the Hamming distance 

between two observations, cycling through the 24 hour data and increasing 

or decreasing the weights as similarities occur.  The Levenshtein distance is 

also calculated to assess the similarities, thereby allowing for the time 

difference which may be apparent.  The experimental results are promising, 

yet after the clustering of the observations for anomaly detection both 

distance computation methods return similar results.  The underlying 

principle of analysing observation distances as a whole appears a reliable 

aspect to include in a behaviour monitoring implementation.  

It is not such an abstraction to recognise the relevance of the Hidden 

Markov Model as used for behaviour monitoring for application to error and 

fault detection, if the hidden states to be discovered are perhaps outliers and 

anomalies trained on observations which indicate such a fact.  Joshi and 

Phova attempt to classify network traffic as either an “attack” or “normal” 

behaviour by building a predictive anomaly detection system based on the 

HMM [128].  Observations are labelled according to values obtained during a 

TCP session, with a certain combination of observations indicating whether 

the TCP session is indicative of an attack or not. 

Jecheva [129] similarly discusses the application of HMMs for intrusion 

detection, noting that there are differences between misuse detection and 

anomaly detection.  Misuse detection focusses on alarm generation based on 

attack signatures that are known to indicate intrusive activity and as a result 

are ineffective when presented with unknown attacks.  Anomaly detection 

however deals with the creation of an expectation profile of standard usage, 

where any deviation from this “normal” is considered to be an anomaly and 

thus triggers an alarm.  In the HMM implementation documented, the latter 
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scenario is facilitated through use of a threshold acting on the Viterbi 

algorithm used for sequence determining.  Once the observations regarding 

system calls are processed by the Viterbi algorithm to determine the user 

activity sequence, the mean of all probabilities of the most probable state at 

each time step is calculated and compared to a user-defined threshold.  If the 

mean activity probability appears less than the threshold considered 

indicative of a normal activity sequence, the intrusion detection sequence 

marks the process as an anomaly.   

This modification and use of the inherent HMM ability for sequence 

determining is not a widely adopted approach in the literature, as the model 

itself is typically used with the hidden states directly describing different forms 

of normal or abnormal behaviour as inferred through observations.  Utilising 

the probabilities calculated at each stage to ascertain a likelihood of 

abnormality is therefore an expansion of the HMM’s typical use which doesn’t 

impede on the functionality of the sequence determining; instead for the 

purposes of behaviour monitoring it may in fact prove useful where the 

primary aim is to determine a state, which consequently informs of 

abnormalities with a sequence. 

2.7 Summary 

The review of the current state of the art in the behaviour monitoring 

and assistive care fields informed of the multitude of different commercial 

products and research projects concerning ambient assisted living, with a 

number of provisos and considerations learnt and drawn regarding possible 

implementation of the Verity system: from size and form factor, to operational 

requirements including the ease of use where the elderly are concerned and 

aspects regarding the intrusiveness of the monitoring device. 

The Hidden Markov Model was identified as the most appropriate model 

for use in passive behaviour monitoring due to its probability characteristics 

and decision ability based on observations obtained through distributed 

sensors, with a number of current and past applications providing evidence 

that such a model can be successfully implemented for the outlined 

monitoring task. 
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From identification of the Hidden Markov Model, it was observed that 

multi-sensor fusion is required in order to more adequately perform the 

classification with a distributed sensor system; Kalman filtering was identified 

as an ideal method to combat noisy observations through the employment of 

multiple sensors, and fuzzy and discriminant fusion techniques were 

compared as a means to discover the most appropriate for application in 

Verity. 

 The issue of dimensionality was addressed when behaviour monitoring 

applications utilise rich and varied data sources, resulting in the requirement 

to overcome the need for classification in high dimensional spaces: which 

often provides a model with imperfect information due to differences in the 

weighting of each dimension of data.  Key dimension reduction methods of 

relevance to similar data to that obtained through behaviour monitoring were 

reviewed; identifying that manifold learning and unfolding proves most 

suitable in applications aiming for visualisation of data, as well as succeeding 

in the generation of an element of linearity in the lower dimension from a 

higher dimension nonlinear source to facilitate the classification task. 

In the case of large datasets, nearest neighbour Instance Based 

Learning algorithms often fail in practicality due to large storage and 

computation requirements.  Implementation of an IBL method for the 

behaviour monitoring application was suggested as a means of speeding up 

classification of sensor data before use in the HMM, without the need for 

implicit dimension reduction beforehand.  Database storage with a Bloom 

Filter was described as a means to overcome the size problem associated 

with large quantities of high dimensionality data, with literature reviewed 

detailing successful usage in similar IBL applications. 

Finally the issue of anomaly detection in behaviour monitoring was 

covered, with similarities drawn between the manufacturing industry, 

networking and system anomaly prediction applications in their applied 

methods for finding faults.  Current monitoring systems were described which 

utilise temporal aspects of state detection to identify errors, and the HMM 

was discussed as being a more than suitable means of detecting anomalies 

with applications of some schemes in the network and machine fault 

diagnosis fields providing evidence of the model’s viability for such a use. 
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Chapter 3 

Verity: Hardware and 

Preliminary Operations 
The device on which this research is primarily intended to run and is 

being developed for is portable, unobtrusive and designed to be self-

contained such that all operations can be carried out with no further 

programming input from either the user or the system designer once the 

automated algorithms are implemented.  The complete system – base station 

and direct monitoring device - is called Verity, and will continue to be referred 

to as such throughout this work.  Verity was developed alongside this 

research by other members of the project and this section details the 

hardware and the operations which execute in the initial stages of the 

behaviour monitoring process on the system before the intelligent 

identification algorithms developed in this research receive their input data. 
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3.1 System Hardware and Interaction 

 
Figure 1 Overview of the structure of Verity and interaction between the on-board modules  

In Verity we develop a mobile sensor platform, designed to deliver 

enhanced and integrated personal monitoring and communications, with a 

primary target market of elderly users who find themselves with a 

requirement for a level of care only possible through round-the-clock 

observation, which would otherwise prove costly or impractical if provided 

through direct contact with an in-home carer. 

Verity exploits state of the art technology to enable an efficient and 

unobtrusive method of data gathering from a user through a combined 

sensor approach, with the functionality of a voice-operated mobile phone 

embedded within the system as a means of communication with both user 

and care provider when intelligently-triggered alarms or alerts require 

external confirmation or attention.   

Verity is a system comprising two separate components: the base 

station and the direct monitoring device (Figure 1), each in turn consisting of 

specialised modules designed for various aspects of the behaviour 

monitoring task.  The base station is constructed to resemble a mobile 

telephone-type device, being no bigger and weighing no more than a 

standard mobile telephone.  Its primary function is in gathering secondary 

data and processing the sensor observation information received from the 
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direct monitoring device.  The direct monitoring device is intended to be as 

unobtrusive as a wrist watch, therefore is sized for inconspicuous placement 

on the wrist and named the Wrote (wrist mote).  It is designed to be worn in 

direct contact with the radial artery, such that the on-board sensors are 

optimally placed to obtain the primary readings from the user.  

 
Figure 2 Verity's base station layout; the left and right images show the top and underside, 

respectively. 

As ambient assisted living devices – and more specifically, passive 

monitoring systems – are by their very nature meant to be inconspicuous, the 

design of the Verity is therefore an important factor when developing a new 

product aimed at this market; with Verity modelled as it is, this remit is 

satisfied. 

The developed base station (Figure 2) is primarily concerned with 

processing data gathered by the Wrote and the subsequent decisions to be 

made based on this data using the algorithms developed in this research to 

obtain a state belief. It houses the main intelligence of the system.  Figure 1 

and Figure 2 show the contents and layout of the base station, with the 3 key 

areas of inter-device communication (radio), user communication (voice) and 

alert communication (mobile) highlighted.  Within these areas are contained 

relevant components for actuation of the device’s purpose, such as a GSM 



Verity: Hardware and Preliminary Operations 

51 
 

module (the Quad-Band-capable Siemens MC55i, from Cinterion) with SIM 

card interface for mobile telephony, a vibration motor for haptic feedback of a 

call alert (JinLong 4FC1B1301781), a GPS receiver (Fastrax IT321) to 

provide accurate information regarding the location of the device/user, a 

microSD memory card slot for storage of voice information for the voice 

recognition chip as well as a speaker (Star Micronics’ SCB-13A) and 

omnidirectional electret condenser microphone (WM-63PR from Panasonic) 

to enable multi-way communication between the user-and-system for the 

mobile phone and voice control aspects of its operation.   

There are 3 processing chips on the base station controlling each 

function independently, for: dedicated communication with the Wrote, voice 

recognition, and completing the main data operations. The communication 

chip is a Sensium CC981 ultra-low-power wireless enabled sensor interface 

from Toumaz (TZ1030, with internal module interaction as shown in Figure 3) 

which contains an embedded 8051 microprocessor and a radio transceiver.  

 
Figure 3 The TZ1030 Ultra Low Power Wireless Sensor Interface 

The sensor interface uses AMx™ Mixed Signal Technology [130] 

developed by Toumaz which exploits the “sub-threshold” region of the 

transistor, in which CMOS operations consume very little power due to their 

barely-on state.  As a result, the current through such transistors in this 

region is an extremely low few nanoamps.  It was found by Toumaz that 

during operation in this region, the voltage/current characteristics formed a 

“well defined exponential” which could be exploited by the system to make 

use of the physical properties of the transistors as mathematical building 

blocks for a number of processing functions.  The chip is ideal for use in 
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wearable monitoring device applications, as its ultra-low power requirements 

resulting from real-time processing in the sub threshold, analogue domain 

mean that the battery size is reduced and lasts much longer than with non-

AMx™ technologies.  It has a 64kb on-board programming and RAM 

capability and as such an amount of pre-processing of sensor values such as 

those obtained for heart rate could occur locally on its 8051 processor, 

however in the Verity implementation the PIC control chip handles all data 

operations on the base station and the CC981 acts solely to receive the 

observation values transmitted from the Wrote by the sister-CC981 located 

there.  Another unique feature of this chip is its built-in temperature sensor 

which can be utilised to provide a further estimation about the current state of 

the user’s environment when coupled with its partner temperature sensor – 

again situated on the Wrote.  Whilst it also has a number of sensor ports 

available for attaching subsequent analogue or digital devices to which it can 

interface, the base station connects its 3D accelerometer directly to the PIC, 

leaving the CC981 for communication.  This secondary accelerometer works 

to identify the orientation of the user when analysed in correlation with 

another located on the Wrote.  

The chip does have a self-contained radio transceiver and as such the 

base station has within its package an aerial with which to receive the signals 

from the wrist device. The aerial connected to the Sensium chip is used 

solely for communication with the Wrote’s sensors, but 2 other aerials on the 

base station are utilised by the GPS module and the GSM module present for 

communication via mobile telephony (specifically the Antenova A10340).  

The GPS module is intended to be available to be called into use during 

operation in the event that the user either requests their location, or the 

person in contact with them through the GSM module desires to know where 

they are currently located in the instance that they are unable to answer for 

themselves. 

The GSM module provides Verity with mobile telephony capabilities 

once there is also a SIM card connected and registered to the GSM network.  

On the base station however, there are no interface buttons - nor is there a 

graphical interface as would be expected of a device incorporating a mobile 

telephone. Instead of manual input (which may be deemed too complex for 
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the elderly demographic at which Verity is aimed – as discussed in Chapter 

2), there is a voice recognition and communication module (from Sensory - 

the RSC-4128), which communicates directly with the user through natural 

language and currently accepts simple confirmation responses of Yes, OK 

and No, as well as a more specific limited vocabulary which is tailored to the 

user, its general application for the elderly and the speech recognition trees 

used in the call request or verbal state identification operations, i.e. “shower”, 

“neighbour”, “daughter”, “warden”, “call centre”, “doctor”, “emergency 

services”, “key holder” and “quiet” are currently all programmed for 

recognition within the Sensory chip.  The voice chip activates when an 

erroneous event or unusual state transition is detected by the control unit, or 

when an inbound telephone call is connected.  Similar trees activate in the 

event of a fall and an incoming call, as well as periodically if a sensor input 

indicates a specific state is occurring e.g. the user may be required to 

indicate that they are in the “shower” as a means of explaining a temperature 

increase or a lack of detection of any observable signs.  All speech trees are 

given as reference in Appendix B. 

The control unit chip of the base station (a Microchip 

PIC24FJ256GB106) is the primary centre of the data processing, in which all 

of the intelligent algorithms will be running after capturing the sensor 

readings.  It performs initial recognition of the states of a user and controls 

the voice-based human-machine interaction when required by the individual 

processes running the device.  A detected event triggers a dialog between 

the user and Verity mainly for confirmation of a responding action or to help 

reduce the false-positives of state detection.  In this scenario, the user is 

alerted of a situation by communication (through the speaker) with the 

device, which is preloaded with a series of statements or questions which 

relate to a number of scenarios possible during its use. The alert follows a 

decision tree where at each stage the user is required to either confirm or 

deny a statement, causing the device to adjust its operation accordingly. The 

states include observable states and hidden states.  

The observable states, such as Fall, On Table, No Communication and 

Communication (the latter two referring to communication between Wrote 

and base station, again discussed further in Chapter 7) can be determined 
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from sensor and component readings directly, with little to no algorithmic 

processes requiring a call into use.  The typical result of the majority of the 

Fall and No Communication states is an emergency dial-out.  

Before making a call, the voice chip starts a dialog with the user for 

confirmation that the detected scenario is indeed correct.  Upon confirmation 

or indeed lack thereof, the base station nominates the most appropriate 

contact in its list to connect with; the user has the ability to choose whomever 

they wish to have stored on the device – from relatives to neighbours, or 

perhaps paid carers and the emergency services.  At this point, Verity 

essentially becomes a mobile telephone with the ability to inform the 

nominated contact of the user’s current observable state and the readings 

which have resulted in their being involved in the situation.  Should the need 

arise, the GPS module can also activate in order to assist in the locating of 

the user if they are not present in their own home at the time of an incident 

occurring, relating to the other call participant the user’s coordinates through 

an SMS text message or speech synthesis. 

A selection of hidden states, e.g. Sleeping, Sitting, Standing, Walking, 

Running, and Abnormal are estimations of the inferable behaviours of a user 

which are not explicitly determinable from the sensor readings alone like 

those of a Fall.  A behaviour classifier is developed in this research for the 

possible detection of these initially identified states, and as such is the focus 

of subsequent sections of this work. These detected states can then 

subsequently be used for lifestyle analysis and abnormality detection. 

The Wrote is tasked with gathering the primary data from the user and 

is designed around the communication chip, as shown in Figure 4. The 

temperature of both the user and their environment is captured using 

(respectively) Vernier surface temperature sensors attached to and 

embedded within the Sensium CC981. A simple piezoresistive pressure 

sensor (Huake Elec-Tech’s HK 2000G), is attached to the device and placed 

in permanent contact with the radial artery to obtain readings interpretable as 

pulse values. The 3-axis accelerometer (Murata Electronics Oy’s CMA3000-

D01) is utilised to provide a value of acceleration experienced by the wearer 

and also the current orientation of their wrist. The sampled sensor data after 
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pre-processing are stored in an FIFO buffer in the RAM for transmission to 

the base station. The transmitted data package is defined as in Figure 5. 

 
Figure 4 The Wrote layout; the left and right images show the top and underside, respectively 

 

Figure 5 Transmitted data package structure 

Communication between the Wrote and the base station is based on 

the Toumaz Nano Sensor Protocol (NSP) of [131].  The base station first 

searches for a free RF channel on which to communicate and then allocates 

it to the Wrote.  Once the Wrote is detected, it “handshakes” to establish a 

communication link for data transmission. The sensor data is then packed 

into a message and sent to the base station. The base station and the Wrote 

then go into sleep mode for a time period and wake up ready for the next 

transmission.  

3.2 Sensor Sampling and Pre-processing 

Four sensors are incorporated directly into the Wrote for the purpose of 

detecting a select number of “hidden” states of a user.  Skin temperature and 

heart rate are 2 detectable physiological measurements that are used by 

Verity as health indicators and to provide early alerts for possible signs of 

 

 

power 
switch 

radio 

pulse 
interface 

temperature 
interface 

microcontroller 

power 
management debug port 

accelerometer 

external memory 



Verity: Hardware and Preliminary Operations 

56 
 

illness.  In order to improve the robustness of the detection, ambient 

temperature, orientation and 3 accelerations are measured as supplementary 

signals for use in the state decision process, where the 5 currently identified 

“basic” states can adequately be estimated according to our definitions 

(Chapter 4).  The following sampling and pre-processing steps were devised 

by the project team alongside the research detailed in this work to provide 

the behaviour determining models with reliable observation values. 

3.2.1 Temperature measurements 

The internal temperature sensor of the CC981 chip is used for ambient 

temperature measurement (that of the user’s surroundings) and an externally 

connected thermistor is used for skin temperature measurement. The internal 

temperature sensor is a parasitic PNP device embedded on-chip.  With a 

fixed constant current source, a voltage is generated which fluctuates in 

response to different experienced temperatures.  Through the on-chip 11 bit 

Analogue-to-Digital Converter (ADC), the voltage is sampled and filtered and 

further calibrated to reflect the ambient temperature. 

A Vernier surface temperature sensor is connected to the chip as an 

external sensor.  With a fast response speed and high accuracy, a 0.03°C (0 

to 40°C) resolution and a nominal resistance value of 20KΩ it is more than 

suitable for the measurement of the user’s skin temperature.  This external 

temperature sensor shares a common interface with the internal one; a 

constant current source drives the thermistor to generate a voltage which is 

then sampled through the ADC.  The current source is programmable to 

between 1µA to 12.125µA depending on the requirements. 

3.2.2 Acceleration measurement 

A 3-axis accelerometer (the same Murata Electronics Oy CMA3000-

D01 as on the base station) is used for motion detection. It uses capacitive 

3D-MEMS technology and has ultra-low power consumption: 1µA for 1HZ 

sample rate. The accelerometer is directly connected through the Serial 

Peripheral Interface (SPI) of the Wrote chip for sending acceleration values 

to the base station. However, the fall detection operation is implemented on-

chip in order to ensure a rapid response. To reduce the amount of 
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computation associated with Euclidean geometry, the L1-norm (Taxicab 

Norm) is used instead of the L2-norm (the Euclidean Norm) to calculate the 

intensity of the acceleration vector.  The three accelerations from the X, Y 

and Z axis are therefore combined as absolute values to provide a scalar 

value for the gravity experienced by the device: 

 
1

Acceleration
n

i

i

g x

X Y Z





  


 (9) 

 
Figure 6 The L1-norm of a fall 

The L1-norm describing a fall is shown in Figure 6.  It can be seen from 

the figure that a significant peak of the L1-norm exists for a fall. It can reach 

7.5g for about 0.4s and typically a valley of less than 1g occurs before the 

peak. Based on these observations, a fall detection algorithm was developed: 

1. Save every acceleration sample into an FIFO buffer and calculate its L1-

norm. 

2. If the L1-norm is higher than a predetermined threshold, open a 1 second 

window for the fall detection operation. A 100Hz sample rate is used, 

therefore a 1 second window comprises of 50 samples before and 50 

samples after the threshold is exceeded. 

3. Calculate the L1-norms for the first half window and the last half window. 

If there are L1-norms of less than a threshold (of less than 1g), a fall is 

alerted. 
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3.2.3 Heart rate measurement 

Heart rate dynamics has prognostic significance for the progression of 

several cardiac diseases [132]. Longitudinal analysis of heart rate variability 

also has the potential to prove clinically useful in differentiating the 

progression of a disease process, which may be a significant additional 

functionality of the system. Verity measures heart rate with a piezoresistive 

sensor (Figure 7), aided by the accelerometer in a bid to “clean” the typically 

noisy result due to motion obtained by the piezoresistive sensor alone. 

Simply, the sensor measures the pressure changes at the wrist due to the 

heartbeat, which in turn affects the resistance of the piezoresistive material. 

V+ V-

Output

R2 R4

R1 R3

 
Figure 7 Piezoresistive sensor for gathering pressure data caused by pulse 

 
Figure 8 Conditioning circuit for filtering of unclean signals obtained by the piezoresistive 

sensor 

The output voltages of the piezoresistive sensor are sent to a 

conditioning circuit for the pulse measurement (Figure 8). Because the Wrote 

is a wireless platform, it inherently suffers from high-frequency interference; 

the voltages are first filtered by an RC circuit with a common-mode cut-off 

frequency of 15.9Hz and a differential-mode cut-off frequency of 758Hz. 

Considering a typical heart rate is measured to between 1 and 2Hz, the 

differential signal is further fed to a high-pass filter and a second-order low-

pass filter. The high-pass filter is designed to have a cut-off frequency of 
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0.5Hz, with the low-pass filter designed to have a cut-off frequency of 

17.6Hz. The output of the conditioning circuit is then sampled by the ADC of 

the Wrote’s control chip for further processing. 

The sampled pressure signals are often contaminated by noise mainly 

due to motion. Two signal processing methods are therefore developed to 

ensure a more robust heart rate measurement: the first is an adaptive peak 

detector to overcome signal shift and the second is a Kalman filter [133] 

which takes into account the motion influence, as described in the literature 

review of Chapter 2. 

The pressure signals are sampled at 250Hz, which, due to being a 

multiple of 50Hz, may result in them suffering from the work frequency noise. 

Therefore, 2 cycles of 50Hz – i.e. 10 samples – are averaged to overcome 

the interference. Due to heart rate variability [132], a heart pulse period can 

demonstrate a difference of up to 300ms. This causes difficulty for heart rate 

measurement, especially for restless users if the interference from such 

motion has a very similar frequency and magnitude to that of a heartbeat. 

Adaptive peak detection is conducted to extract a heartbeat; the basic idea is 

to predict the time of the next pulse by setting a blind period during which a 

detected electric pulse is ignored. 

Two thresholds are defined, oldvol_thresh and oldnum_thresh , where 

oldvol_thresh  is the threshold for a possible peak signal and oldnum_thresh  is 

the width of the blind period - in this period any peak will be accounted for as 

interference. 

1. Scan n  voltages to compare with the oldvol_thresh . If   oldvol_threshiv 

where ni ...1 ,  iv  is detected as a peak.  

2. Ignore the next oldnum_thresh  samples, thereby resuming at 

oldnum_threshii  . 

3. Repeat steps 1 and 2 for peak detection of all n  samples. 

4. Count how many samples between 2 peaks have a pulse period T . Then 

pulse rate 
T

Z
1

  is fed to a Kalman filter for optimal estimation as the 

value kx̂  used below.  



Verity: Hardware and Preliminary Operations 

60 
 

5. Calculate the maximum voltage maxv  and the minimum voltage 
minv  in the 

n samples. 

6. Both thresholds are updated as:  

 minmax1 +×= vvkoldvol_thresh  (10) 

kx

k
oldnum_thresh

ˆ
= 2

 (11) 

7. Go to 1 for pulse detection of next n  samples using (10) and (11) as the 

new thresholds. 

The proposed peak detection algorithm uses the adaptive voltage 

threshold (10) to cope with variable pressure strength and the adaptive blind 

window (11) to cope with the noise from motion. The width of the blind 

window is adjustable according to the estimated pulse rate given by the 

Kalman filter.  

A Kalman filter is a set of recursive equations which provide optimal 

smoothing, estimation and prediction of states from sensor inputs: taking into 

account the system model, its uncertainty and the sensor and noise model. 

Since its inception it has been a versatile engineering solution that is widely 

used in signal processing, control engineering, and sensor fusion for such 

applications as robotic control [50].  Consider a discrete linear system: 

111   kkkk wBuAxx  (12) 

where state x  and u  are system state and input; w  is system noise, 

   kQNwp ,0~ . The observation function is 

1 kkk vHxz  (13) 

where z  is the system output with noise v ,    kRNvp ,0~ . 

A Kalman filter takes two steps for optimal estimation: 

Model based prediction 

11
ˆˆ


 kkk

BuxAx  (14) 

k

T

kk
QAAPP  1  

(15) 

Observation based correction 

  1
 k

T

k

T

kk RHHPHPK  (16) 

 
kkkkk xHzKxx ˆˆˆ 

 
(17) 

 
kkk PHKIP 
 

(18) 
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where K  is the Kalman gain. It is adjusted by considering the uncertainty of 

model P  and of observation R . 

Van Der Pol [134] stated that heartbeat can be modelled as a relaxation 

oscillator, whose frequency is dependent on the energy supplied [135]. For a 

short time window, the energy can be assumed to change less, therefore the 

pulse rate can be approximated as: 

11   kkk wxx  (19) 

where w  is the model uncertainty with a normal distribution    QNwp ,0~  to 

represent heart rate variability, which can be caused by several physiological 

and mental aspects [136 , 137]. 

The pulse rate x  is observed to be z  by the piezoresistive sensor in 

step 4 above, and modelled as: 

1 kkk vxz  (20) 

where v  is the sensor noise with a normal distribution    RNvp ,0~ . From 

experimentation, the motion of a user can introduce strong elements of noise 

into the sensor’s observations. However, both the amplitude and the time of 

the motion are not predictable, which makes the extraction of a heart rate 

reading for “restless” users very difficult. The 3-axis acceleration values 

obtained from the accelerometer are used as a measure of the motion, which 

determines the uncertainty of a piezoresistive sensor reading. The variance 

1R  for m  samples is thus defined as:  

     



m

i

ACCACC

m

i

ACCACC

m

i

ACCACC ZiZYiYXiXR
111

1
 (21) 

where  iX ACC ,  iYACC , and  iZ ACC  are accelerations in the 3 directions and

ACCX , ACCY , and ACCZ  are mean accelerations for period m . The absolute 

modulus is used instead of the mean square root in order to ease 

computation.  

 Considering the uncertainty due to motion for the kth sample, the 

variance of kv  in (20) is defined as:  









112

111

,

 ,

tRT

tRT
Rk  (22) 

where 
12 TT  . When 

11 tR  , the user exhibits less motion. Heart rate 

variability kw  in this case is the main signal present and more emphasis 
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should be placed on the sensor reading z . Therefore, kv  has a lower 

variance of kR . When 
11 tR  , there is a stronger instantaneous motion which 

causes an unreliable sensor reading. The variance kR  is given a higher value 

to reduce the Kalman gain in (16). The heart rate is then updated by the 

Kalman filter iteratively through steps (14)-(18), with 1A , 0B , and 1H . 

Through testing with a preliminary Verity system, this developed motion-

adaptive heart rate estimation has been verified to be robust against the 

motion experienced by a user whilst wearing the device. 

Through parameter tuning, a robust heart rate detector is achieved. 

With hardware filtering and using 1000n , 56.01 K , 59.02 K in the peak 

detection algorithm and 50m , 1501 t , 100Q , 1001 T , 8502 T in the 

Kalman filter, this approach can be compared with a mean filter algorithm. An 

example of the pulse signals and accelerations is shown in Figure 9.  

 
Figure 9 Pulse signals affected by the user's motion 

The sampled voltage of the pulse signal can be seen to be the “jagged”, 

more analogue-appearing trace, with the signal after the peak detection 

shown as a more digital-appearing trace in the top graph of the figure. The 

acceleration signals reflect the motion of a user on each axis. For a smoother 

motion, the proposed peak detection algorithm can effectively overcome 

noise to extract reliable a heartbeat value. However, when the observed 

motion becomes more intense, (e.g. 800 to 1000 samples), heartbeats are 

commingled with motion and are indistinguishable in the piezoresistive 

signals. The peak detection algorithm alone fails to capture these heartbeats 
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where the Kalman filter approach effectively overcomes interference from 

motion.  

 
Figure 10 Pulse rate estimation with the Kalman Filter 

Figure 10 shows the heart rate estimation with the Kalman filter, in 

comparison with the mean filtering of the detected pulses. The pulse rate 

obtained in step 4 is the erratic signal shown, varying between 40 and 

100bpm due to the user’s motion. The mean of 30 samples is calculated to 

reduce the influence of motion noise and is shown as the smoother signal, 

achieving a variance of 12bpm and effectively smoothing out the original 

signal. The proposed Kalman filter based heart rate estimation is shown as 

the most linear trace, further exhibiting the fact that the method has cleaned 

the signal to a more useable value. It is shown that reliable heartbeat 

estimation is obtained with overall variance of only 2bpm. Therefore, the 

proposed method effectively deals with the noise from motion for the 

piezoresistive sensor-based heart rate measurement. 

3.3 Sensor Operation in Practice 

In order to suitably approximate states of the user based on the 

information gathered by the sensors, the possible states must be accurately 

defined in terms of the readings which may be obtained.  In such 

circumstances, testing with a wide variety of subjects would be desirable in 

order to formulate an average reading for each of the sensors which will 

typify a state.  These averaged readings form the basis of the initial 
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definitions for the predetermined states, with the intention that through use 

and further operation by a single user the readings typifying states will adapt 

to be user-specific. An increased number of sensors would result in greater 

definition for a state, yet with the four sensors available in the system, the 

fusion will provide relatively certain results regarding the observed state.  

Ambiguous state assumptions arise when the sensors are accurate yet the 

state is too similar to another to be distinguished correctly.  In this case, the 

more probable state is determined considering the transition likelihoods. 

The sensors used by the system greatly influence the probability of 

isolating the correct state from the number of likely states.  The fusion of 

sensor readings provides greater certainty of a state belief than with a single 

reading, yet if the sensors obtaining the readings are unreliable then the 

fusion result will be falsified.  The temperature sensors applied in contact with 

the body measure the heat emitted at that site.  At worst, the sensor will read 

the temperature of the skin surface as well as the temperature of the 

containing device – which may vary in temperature given its many constituent 

components.  However in most situations, the sensor will read and return an 

accurate reading given that it only has the one affecting variable of heat.  The 

same properties apply to the ambient temperature sensor which is measuring 

the surrounding air temperature, yet the inaccuracies may develop when 

considering clothing covering the area or affecting the general air flow over 

the sensor.  These two points may further lead to incorrect state 

identifications if other sensors were not considered. 

The accelerometer has a large influence on the state determining as its 

returned value greatly differs from one predetermined state to the next.  

Should the two temperature sensors return ambiguous values which may 

belong to both a state such as Sleeping and also to Walking, the 

accelerometer value will indicate which state the user’s motion is typical of. 

The sensor most likely to return an inaccurate value is the pulse sensor.  

Placed over the radial artery close to the wrist, the sensor is intended to 

detect the pulse through deformations of its piezoelectric membrane.  Not 

many applications regarding heart-rate monitoring with a single sensor (as 

opposed to multiple electrodes used by ECGs, for example) use piezoelectric 

membranes and instead opt for the photoplethysmographic approach to 
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detect SpO2 concentration either in the extremities of the digits or on the 

wrist.  Such devices use a high power due to the constant need to illuminate 

the light source and monitor the detector.  Although this method is subject to 

some motion influences (distance to the skin can reduce accuracy in 

detection of the light reflected) it is considered more reliable than the piezo 

method [138].  Given that the device is low-power and must operate fully with 

the other sensors however, the piezo method - with its low power 

consumption characteristics [139 , 140] - was chosen for the pulse detection.   

The issue arises when deformations are detected which occur not due to the 

pulse through the artery but to the motion of the user and friction between the 

membrane and the skin surface.  A Fourier Transform of the readings taken 

by the sensor can provide details of the component frequencies which make 

up the reading.  [140] is a patent for a device which uses the piezo 

implementation and uses a Fast Fourier Transform to process the data 

regarding deformations.  The observation is that the noise from motion will 

have less periodic properties than the readings caused by pulse 

deformations and thus the period of the pulse may still be extracted from the 

transformed data.  In the case of extreme noise which appears to mask the 

pulse reading, filtering methods may be applied to no avail if the reading itself 

is not contained in the signal.  This is where the other sensors and their 

influence on the state definition are to be considered with a higher weighting.   

3.4 Summary 

This chapter has served as an introduction to the Verity system, 

detailing the construction of the device itself and the initial processes 

employed to provide the subsequent intelligent methods devised in this work 

with the most suitable form of data in order to reach a conclusion of the 

users’ behavioural state.  The two main separate components of the base 

station and wrist-mounted device were explained in detail and their internal 

components’ relevance to the behavioural state-determining was explained.  

The following chapters describe the algorithms and principles developed in 

the research and utilised in the programming and software implementation of 

Verity, in order to provide a complete overview of the system as a whole. 
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Chapter 4 

A Hidden Markov Model and 

Fuzzy Inference System for 

Behaviour Recognition 
Whilst for Verity the observation of a single sensor may have a 

probability of belonging to many possible behaviour states, a fusion of 

multiple observations from multiple sensors will provide a more concise 

selection of states from which they could be emitted.  The combination of 

these observations is of primary concern for this application, as the 

probability scheme employed within Verity is the Hidden Markov Model 

(HMM): typically taking as its input a series of singular observations and 

predicting the most likely state capable of emitting such an observation at 

each step.  The result is a sequence of states which approximate – in this 

case – the behaviour of the user.   

This section details our adaptation of the traditional HMM to incorporate 

the Fuzzy Inference System (FIS), providing the model with observation 

probabilities based on the combination of available sensor readings.  Also 

discussed is the initial “intelligent” updating method for the FIS, developed 

with the intent to fully autonomise the system such that the governing fuzzy 

rules adapt to the user during operation over time.  
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4.1 The Adapted Hidden Markov Model 

As was discussed in the Literature Review of Chapter 2, the Hidden 

Markov Model (HMM) is a well-implemented and ideal mathematical model 

for use within a behaviour monitoring and classification system, which takes 

observations as inputs and determines the most likely state to emit such 

observations as a way of estimating the behaviour of a user.  Whilst formally 

identifying the behaviour of a user cannot simply be taken as a mathematical 

problem due to many influencing factors, modelling behaviour transitions and 

probabilities of occurrence can provide reasonable estimation of a user’s 

state based on available evidence.  For this reason, we employ the HMM 

within Verity only as a means to estimate behaviour, with subsequent 

confirmatory checks made using speech-based interaction to further enforce 

the observation-informed estimation.  

The standard HMM is used to model a sequence of discrete, unseen 

states from a sequence of associated observations  and requires an 

observation probability matrix, referred to as b in the literature, which details 

the probability of seeing all possible observations in each of the possible 

states that can be emitted by the system (in the behaviour monitoring case: 

the user).  For the Verity application, it is difficult to define each observation 

probability in turn, especially when an observation used in this system 

currently comprises of more than one reading – and is essentially a multi-

dimensional observation vector in itself – due to the sheer number of 

observations one would have to consider to ensure all possible scenarios are 

accounted for.  The solution in this case is to develop a suitable method to 

fuse multiple sensor readings into a single state-associated observation 

probability, bypassing the need to explicitly define or train the probability 

matrix for each user of Verity. 

With the requirement also of Verity to provide subsequent data for a 

medical professional so that they might be able to diagnose possible health 

problems with the user, there is some necessity to incorporate natural-

language and human knowledge.  The belief is that it is better understood the 

reasoning for a behaviour if it is defined through natural language and has a 

basis in human knowledge than if the algorithm is programmed in a purely 
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numerical fashion with the HMM obtaining its observation probability values 

from training data - which could actually be inherently erroneous or ignore 

vital observation scenarios which inform of a state and were not seen during 

the training period.   

The result is the inclusion of the Fuzzy Inference System (FIS), which 

directly interfaces with the sensor values as they enter the system to provide 

the observation probability value in a much more simplistic and human-

knowledge-based approach than in the standard implementation: fusing 

multiple sensor readings into one and determining the observation probability 

for a state which would typically be found in the standard, discrete probability 

matrix.  Subsequent operations continue as normal, with the FIS considered 

for all intents and purposes as a separate system within the HMM. 

4.2 The Fuzzy Fusion of Sensor Inputs 

The application of a Fuzzy System in HMMs is not uncommon.  

Kelarestaghi, Slimane and Vincent [141] describe an adjusted HMM which 

modifies all of its algorithms to utilise variations on fuzzy MIN and MAX 

operators.  For example, the usual Forward algorithm’s summing and 

multiplying induction step now takes values determined by the lower 

probability – that of transition or seeing the observation in a state.  Methods 

of incorporating additive and non-additive fuzzy systems in HMMs are shown 

by Verma and Hanmandlu [142], using fuzzy re-estimations of the Baum-

Welch algorithm for the determining of the HMM parameters. For virtual 

reality training of Bone Marrow Harvesting, de Moraes and dos Santos 

Machado [143] discuss a fuzzy approach to return a value of membership of 

an observation sequence to a state.   

The usual observation sequence in an HMM is of the form 

T, ...OO, OOO 321 , where iO  will usually be a single random variable to which 

a probability of occurrence in a state iS  is assigned  ki Ob .  The problem 

arises when the observation is a combination of many continuous values, 

such as that of the Verity multi-sensor system.  Assigning probability values 

to each possible combination of sensor readings is a laborious task, after 

which there needs to be a method of determining the single probability value 
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for that state. Continuous observations have been considered in HMMs 

previously [36], with a continuous probability distribution replacing the usual 

observation probability matrix:  

     jtj SqtxPtxb   (23) 

In Verity, however, the FIS is therefore solely applied to the  kb j  

values in place of the usual matrix or probability distribution, making it a 

system independent of - yet incorporated into - the HMM, as in Figure 11 (the 

grey shaded box is where in the traditional HMM one would find the possible 

observations and their output probabilities from the states).  The parameters 

of the FIS depend on the number of states in the HMM, as it determines the 

number of linguistic knowledge rules needed which govern the memberships.  

Rather than the HMM consulting the observation matrix or distribution, it 

consults the FIS to return the probability of seeing the combination input 

sensor values in that state. 

 
Figure 11 The FIS interaction within the HMM 

For each of the Z  sensors ( ) making up the observation V  there 

should be G  membership functions ( f ) in which a reading from that sensor 

can belong.  For each of the N  states there must be at least 1 rule to 

determine the activation, given the sensor readings.  The number of 

membership functions within each sensor’s range is determined by a 

combination of human knowledge of the application and required accuracy, 
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but in the general example given below only a small number of memberships 

are used for simplicity. Firstly the range of readings possible from the sensor 

must be split into G  individual (human determined) fuzzy variables according 

to the application, then for all memberships within the system the triangular-

form fuzzy sets (Figure 12) can be generalised thus (actual memberships are 

application specific and can be drawn from experience and testing, or 

relevant data provided by a healthcare professional in the case of this 

behaviour monitoring): 

LB = lower bound of sensor range  

 CiQ = key value of individual range (median), 1, ,i G
  

UB = upper bound of sensor range
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(26) 

 
Figure 12 An example of 3 membership functions for a single sensor, using the generalising 

equations and the Median "key" value 

For each individual sensor this will give G membership functions which 

can be descriptively tagged with names such as “ low”, “medium” and “high”.  

The advantage of this method over discretizing every possible observation 

output to a probability is that for a fuzzy definition, only a single sensor 

reading which typifies the membership  CiQ  needs to be known for it to 
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become the centre point of the function; for example a membership of “hot” 

body contact temperature may be centred on 38° but as the system is used 

increasingly, the membership may be seen to be more relevant when centred 

at 37°.  This inclusion of an element of human reasoning in the system gives 

a greater degree of accuracy in the estimation of observation probabilities, as 

the state definitions are themselves based on human knowledge. With the 

shape of the membership function in place, the key values describing the 

membership (i.e. its median) can easily be updated as the system is used.  

The rules which activate each state in the FIS are ideally constructed 

from linguistic rules provided by a physician - or knowledgeable third-party - 

for each user.  It is reasoned that they will have a greater idea of what 

readings each user should exhibit whilst in the states defined in the model, 

and therefore the determined probabilities will be more appropriate as they 

consider this element of human knowledge.  In this way, they may also be 

able to view the data obtained by the system and have a greater 

understanding of the user’s condition at the time.  In the first instance a 

general rule base for all users can be formed at the time of programming the 

system, which will - as usage increases - adapt to the user according to the 

feedback received in operation.  A fuzzy rule is constructed from the 

membership functions for each sensor, for example with 4 sensors, where 

 z  is the zth sensor reading: 

“State 1 is activated if 
1  is LOW , 

2  is LOW , 
3  is HIGH and 

4  is MEDIUM” 

 Once the fuzzy rules are linguistically defined for each state ( jS ), its 

degree of activation  jS  in the FIS is considered using Mamdani’s min-

operation method [144] over all sensor activations,  1 z Z    .   

       1 2j zS           1 z Z 
 

(27) 

With Z  sensors, a maximum of Z  conditions make up a rule for one 

state observation probability value  kb j .  Therefore the probability of all 

sensors producing the corresponding observation value iO  in that state, 

expressed in HMM terminology:  

    
1
min ,j kz z t j

z Z
b k P O q S 

 

    
Nj 1  
Tt 1  

Mk 1
 

(28) 
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Updating the entire HMM with a standard method such as the Baum-

Welch algorithm [26] is inappropriate if the observation probabilities are 

obtained from a fusion of multiple sensors governed by a fuzzy system of 

human reasoning rather than being determined through training with example 

sets, as activation of a state and the sensor fusion weighting is subjective 

according to the user and the knowledgeable professional.  The transition 

and starting probabilities for the states, however, can continue to be updated 

using the Baum-Welch approach if the FIS updates with a more tailored 

method of learning from examples which expand on the already-known 

relationships.  During operation it may be that a new observation with an 

undefined state membership occurs, which would require the triggering of a 

confirmation scenario with the user or professional as a means of identifying 

the current state, so that its activation conditions can be included in the rule 

base.  A rule-learning method such as that proposed by Hong and Lee [145] 

suffices to take a series of multi-dimensional observations and their 

corresponding state activations as a supervision signal in order to infer a 

relationship between the inputs and outputs, producing linguistic rules which 

describe the input conditions required for each state activation.  The scheme 

is used in Verity’s rule induction step with the addition of a best-approach 

measure developed herein to enable the creation of the most concise rule 

base from given data. 

4.3 Induction of the Fuzzy System Rules 

This technique takes as its inspiration that put forward by Hong and Lee 

[145], modified and with an additional decision measure which assesses the 

initial database of input observations to ascertain the best dimension to begin 

the rule learning with, to ensure that the most concise rule base can be 

formed for a given FIS consisting of more than 2 dimensions.  The original 

method put forward by the authors used a clustering technique to group the 

output states according to similarity due to their continuous-value nature, 

returning a result after fuzzification, rule inference and defuzzification which 

required hard-limiting to ascertain the state an observation belonged to.  

Here the technique is modified to deal with - and output - probabilities of 

occurrence of discrete states, assuming P  inputs (dimensions, d , of the 
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input data) are required to identify a state - indicating the presence of P  

antecedents per rule.  The membership functions are assumed to be 

triangular as described above, with the median value governing the central 

peak of a function and therefore the lower weighting of contribution an 

observation has as its value tends to the limits of the triangular function.  

  The aim is to build a rule matrix which consists solely of activated cells, 

from a rule matrix which is initially sparse due to the presence of 

observations in all dimensions which together don’t activate a state (Figure 

13).   
D

im
e
n
s
io

n
 1

 

5 a a  a c 

4 c b  b c 

3 a   b c 

2 a     

1 b c c c b 

  1 2 3 4 5 

  Dimension 2 

Figure 13 Example rule matrix for a P=2 dimensional input fuzzy system, with 3 state outputs 

An activated cell indicates the presence of a state in all P dimensions 

at that location, for example in the unprocessed rule matrix of Figure 13:  

a        1 1 22 3 5 1 2input input input       
 

and   

a        1 2 25 1 2 4input input input          

What can be seen in this 2 dimensional example is that gaps in 

activated cells for state “a” exist which could be closed, thus removing the 

need for an OR () operation and thus removing one of the antecedents of 

the above rules.  Over a large input space this can eliminate a considerable 

number of rules and antecedents from the rule base, which when more 

observations are added would be significantly large if there was no method 

employed to eliminate the unnecessary activation conditions.  This procedure 

reduces the time required to parse a rule base and allows for inclusion of 

other observations not seen or predicted by the original human knowledge 

governing the observation probability determining procedure. 
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Step 1: Identify Key Values 

The smallest difference between values in each dimension (x) is first 

required to be found in order to determine their resolution in the rule matrix 

(for example, in Figure 13 the resolution for each dimension is 1 due to the 

discrete integer values which make up an input).  This step is akin to a 

clustering procedure in Instance Based Learning (IBL), sorting the data (29)-

(30) to identify the relationship between adjacent values through a k-Nearest 

Neighbours approach.  Here though, as we deal with the sorting of each 

dimension in turn, the Euclidean distance metric is essentially a standard 

subtraction (31) between adjacent values in a dimension, with the smallest 

difference providing us with the value of a unit (32). The unit value informs of 

number, which is the number and initial support of all membership functions 

belonging to that dimension, and the size (resolution) of each dimension in 

the multidimensional matrix (33).   

 nx xxxxunsorted ,,, 321
  (29) 

 xx unsortedsorted sort   (30) 

( xsorted is then re-indexed for the next step)   

  12312 ,,  nnx xxxdifference   Px 1
 

esinput valu ofnumber n
 

(31) 

 xx differenceunit min   (32) 

   
1

minmax








 


x

xx
x

unit

sortedsorted
number  Px 1

 (33) 

Step 2: Memberships 

The initial membership functions for each dimension are all triangular 

with xunit2  support (Figure 14).  For ease of simplification during the merge, 

each dimension has an array for the start  a , triangular peak  b  and finish 

 c  of each membership, much like the 
1Q , 

2Q  and 3Q of Figure 12.  Each 

dimension range starts at 0 and is symmetrical about the centre of the range 

of known inputs. 

Each dimension of the data has number membership functions, each 

triangular and described by the following equations. 
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   xx sortedb min1 
  (34) 

   xxx sortednumberb max   (35) 

    xxx unitibib  1   (36) 

    xxx unitbc  11   (37) 

     xxxx sortedsortednumberc minmax    (38) 

   1 ibic xx   12  xnumberi
 

Px 1
 

(39) 

  01 xa   (40) 

   1 ibia xx   xnumberi 2
 

Px 1
 

(41) 

 
Figure 14 Basic triangular membership function for the fuzzy rule induction 

Step 3: Rule Matrix 

A combination of antecedents activates a state, as with any FIS.  The 

values of the antecedents are determined in relation to the cells of the rule 

matrix and the location of the common cell holds the value of the activated 

state (i.e. 
1 2 3, , , , pd d d d state    ) with an assumed maximum fuzzy 

membership value.  If the input value falls within the bounds (the support, in 

membership function terms) of the cell, it is known to belong to that cell.  T  is 

the total number of observations in the set.  Figure 15 shows the rule matrix 
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for a 2 dimensional data set and the associated values according to the 

above definitions. 

  jicell x   

          jciunsortedjaiunsortedj xxxx  :R  

Ti 1
 

Px 1
 

(42) 

        1 2, , , , ,x x x PRuleMatrix cell i cell i cell i cell i state    Ti 1
 

Px 1
 

(43) 

The total size of the rule matrix, and therefore populatable number of cells, is 

equal to the total number of membership functions over all dimensions i.e. 

1x x Pnumber number number   . 

1 5number   

 1 5cell  
1S  

1S   1S  
3S  

 

 1 4cell  
3S  

2S   2S  
3S  

 

 1 3cell  
1S    2S  

3S  
 

 1 2cell  
1S      

 

 1 1cell  
2S  

3S  
3S  

3S  
2S  

 

   2 1cell   2 2cell   2 3cell   2 4cell   2 5cell   

  2 5number    

Figure 15 Example rule matrix now formatted ready for the merge operations 

Step 4: Merging Operations 

A review of the literature returns a number of techniques created for the 

condensing and re-evaluation of a rule base in a fuzzy system.  For example, 

that proposed by Nefti, Oussalah and Kaymak [146] operates on the 

membership functions directly, combining those adjacent to each other with 

contributing data to the same rules in order to form a single function.  

Functions with a higher population of contributing data weight the resultant 

single function to have a higher value about the original’s peak.  Rule 

induction is performed on the new functions, with explicit peak values forming 

the basis of a rule – however multiple instances of the same rule can occur 

for functions thus requiring further condensing of the rule base to eliminate 

reproductions.  There are 5 merging operations outlined in the original paper 
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of Hong and Lee, intended to reduce the rule matrix to the point where the 

occupied cells constitute more of the matrix than the empty cells to ensure 

the most concise set of linguistic rules possible is formed and therefore 

identify this technique to be most appropriate to apply to Verity.  The 

operations work on adjacent rows and columns of cells of each dimension of 

the data in the matrix, where here the examples show 2 dimensions for ease 

of explanation and visualisation.  A row or column describes the range of a 

membership function for one dimension of the data, with any state recorded 

in a cell of that row or column indicating that it can be found within the 

bounds of that dimension’s fuzzy range.   

Each time a row/column is merged in the matrix to eliminate empty cells 

or combine those that contain the same state, (i.e. 
xxx ddd ˆ

1  
) , the 

membership functions are also updated by amending the parameters in the 

order as written below.  In this example, the term “  ” signifies “empty list” i.e. 

remove an entry; and for all updating processes, xnumberi 2 , with  1x

here. 

Circumstance 1:  

If all cells in adjacent rows/columns are the same. 

 
1S  

1S  

→ 

1S  

1S  
1S  

1S  

2S  
2S  

2S  

   

3S  
3S  

3S  

1d  
2d   

1d̂  

Update Memberships: 

The second of the two identical rows/columns is removed; the 

membership function start value and the previous membership function end 

and central values are removed to create one large membership function, 

incorporating both ranges into one.  

   iax   (44) 

   1icx   (45) 
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 
   








 


2

1ibib
ib xx

x
  (46) 

   1ibx   (47) 

   :,:,:,,iRuleMatrix   (48) 

Circumstance 2:  

If adjacent cells are the same or one is empty, with at least one cell in 

the row/column not empty. 

1S   

→ 

1S  

 1S  
1S  

2S  
2S  

2S  

   

3S   3S  

 3S   3S  

1d  
2d   

1d̂  

Update Memberships: 

The update process is the same as Circumstance 1, removing one of 

the rows/columns and incorporating two membership functions into one. 

Circumstance 3:  

If an entire row/column is empty and the cells in adjacent rows/columns 

are the same. 

1S   
1S  

→ 

1S  

1S   
1S  1S  

2S   
2S  

2S  

 
 

  

3S   
3S  3S  

1d  
2d  3d   

1d̂  

Update Memberships: 

The middle empty row/column is removed; the second of the identical 

rows/columns’ membership function start value and the first membership 
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function end and central values are removed to create one large membership 

function, incorporating the range spanning the empty row/column into one.  

   1iax   (49) 

Equation (44)   

   icx   (50) 

Equation (45)   

 
     








 


3

11
1

ibibib
ib xxx

x
  (51) 

   1ibx   (52) 

   ibx   (53) 

    :,:,:,,1iRuleMatrix   (54) 

Equation (48)   

Circumstance 4:  

If an entire row/column is empty and the cells in adjacent rows/columns 

are the same or either is empty. 

1S   
 

→ 

1S  

 
 

1S  
1S  

2S   
2S  

2S  

 
 

  

3S   
 3S  

 
 

3S   3S  

1d  
2d  3d   

1d̂  

Update Memberships:  

The update process is the same as Circumstance 3, removing the 

empty row/column and combining the adjacent two to populate all possible 

cells in the remaining row/column. 

Circumstance 5:  

If an entire row/column is empty and all the adjacent cells on one side 

have the same region, and all the adjacent cells on the other side have the 

same region yet one different from the other, merge the three into two. 
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1S   
2S  

→ 

1S  
2S  

1S   
2S  

1S  
2S  

1S   
2S  

1S  
2S  

1S   
2S  

1S  
2S  

1S   
2S  

1S  
2S  

1d  
2d  3d   

1d̂  
2d̂  

Update Memberships: 

The middle empty row/column is removed; the second row/column 

membership function start and central values and the first row/column 

membership function end and central values are removed.  The end value of 

the first row/column function and the start value of the second row/column 

function take the central value of the empty row/column, to create two larger 

membership functions where there were originally three spanning an empty 

row/column. 

Equations (49),(45),(53),(48).  

Step 5: Rule and Membership Function Creation 

The merge steps created a condensed rule matrix which can now be 

interpreted to give the rules.  After the merging, each cell 

  statedddd p ,,,, 321   is used in the formulation of a single linguistic rule: 

  stateoutputdinputdinputdinput PPxxxx    THEN ,,, IF 11    

The membership functions are also reduced solely to those that activate 

the rules.  A typical triangular function now has a start-point of  iax , peak at 

 ibx  and end-point of  icx . 

It can be seen that for every non-zero cell in the matrix, a rule can be 

formed.  In some cases, reviewing the rules and the associated membership 

functions will lead to the discovery that some dimensions of the input data will 

have no bearing on the output i.e. a dimension may only have a single 

membership function and therefore all values observed from that dimension 

fall into the same function.  Due to the nature of the merging operations these 

insignificant dimensions’ functions will be a constant 1 over the range of 

inputs when viewed graphically. 
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Row 

Total 

 
1S   3S     

→ 

1S  
3S   2 

 
1S   1S     1S    1 

 
1S  

2S  
3S     

1S  
2S  

3S  3 

 
 

2S  
2S  

3S    
2S  

3S   2 

 
    3S   3S    1 

 
 

2S     
3S  

2S  
3S   2 

 
↓     11 

 
1S  

2S  
1S  

3S  
3S  

3S       

 
  

2S          

 
  

3S          

Column 

Total 
1 1 3 1 1 1 8     

Figure 16 Determining best merge start axis by assessing the number of states in each 
dimension   

The 5 merge operations are carried out in the order specified here so 

that the best merge can be achieved.  It is possible however to have some 

variation in the number of rules identified depending on which order the axes 

are addressed in each merging operation.  Following Hong and Li [145], the 

assumed default merge process is 1st dimension, 2nd dimension etc. for each 

operation.  However, through a visual inspection of 2D data, it can be seen 

that merging first in one axis will result in a smaller rule base than merging in 

another.  Thus, determining the best axis in which to begin merging can 

increase the efficiency of the process and therefore the efficiency of the rules.   

For the purposes of reference in this work, we term the merging decision 

condition rule to be the “Unique Measure Merge”. 
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As shown in the initial matrix of Figure 16 - created ready for the merge 

operations - if we were to compute the number of unique entries belonging to 

a single row/column and sum the total unique entries per axis, we can see 

that if one axis has a smaller total then the merging as per the above 

operations will result in a more concise table, and therefore less rules. It may 

be the case that the number of total rules is less than this preliminary total; 

with the above example the lower column merge shows 8 unique active cells 

yet the merge operation will condense the 3 
3S  states on the right of the 

matrix into a single rule and the row merge shows 11 unique active cells yet 

the 
1S  states present at the top will condense into a single rule – resulting in 

rule bases of 6 and 10 respectively. Applying this theory throughout the 

merge operations in each dimension should result in a more general rule 

base for the given data and thus a more concise set of rules. 

4.4 Preliminary Tests 

With the models to be used for the behaviour detection identified and 

now modified to be fit for purpose within the Verity system, a test platform 

was developed to ensure that the correct approach was being taken to 

solving the behaviour monitoring task.   

The ideal solution to creating a simple verification interface was through 

use of MathWorks’ Matlab software and creating theoretical outputs which 

would be produced by the Verity device during actual operation.  In order to 

design the interface accurately and appropriately, now after having identified 

the possible mechanisms to be implemented, the parameters required 

determining.  

Through collaboration with the project’s partner, iMonSys, as a result of 

their discussion with an advising General Practitioner: a selection of primary 

states was identified with which to prove the concept was correct.  Taking as 

an example an average person belonging to the “elderly population”, the daily 

tasks one might face were broken down into simplistic descriptive actions, as 

per examples in Table I.  It can be viewed that the base states are extreme 

abstractions of the activity, however physiologically the observations on the 

body would be deemed to be considerably similar on average.  It may be 

more appropriate to assign each state based on exertion levels, in which 
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case a range of 1-5 would indicate high-intensity strain at the upper end, with 

the lower end indicating a period of rest.  However, for the sake of ease of 

explanation to the user and visualisation of the data, the base states remain 

as the verb labels in Verity and throughout this work; states 1-5 are, 

respectively: Sleeping, Sitting, Standing, Walking and Running.   

Table I Examples of how an activity may be classed as a descriptive state 

Activity Base State 

sleeping Sleeping 
lying down Sleeping 

sitting Sitting 

watching television Sitting 
reading Sitting 

working at a computer Sitting 

eating and drinking Sitting 
sitting Sitting 

bathing Sitting 

standing Standing 
showering Standing 
washing up Standing 

ironing Standing 
cooking Standing 
walking Walking 

shopping Walking 
cleaning Walking/Running 

gardening Walking/Running 

running Running 
vacuuming Running 

 

These 5 states are certainly not exhaustive in describing human 

behaviour; as was discussed in the literature review states can be 

interleaving and be comprised of multiple observable states when examined.  

In an example of Golfing, the user of the system is observable to be perhaps 

Running as well as Standing according to Verity, who is observing the user 

through the device situated on the wrist and receiving readings of high 

motion as the arm is swung, yet the base station situated in the pocket is 

reading a less significant motion indicator and thus causing a disparity 

between states.  Here we therefore make the distinction that Verity is capable 

of adequately identifying instances as defined in Table I, where the 

placement of the system on both the wrist and in the pocket affords readings 

typical of those states with respect to motion and other observable signs 

coming from the sensors.  Over time the perhaps infinite number of 
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determinable states will be accounted for with an expanded Verity system, 

however in this implementation we focus on identification of only these select 

few. 

The 5 current hidden states of the HMM in the Verity application are 

initialised - with transition probabilities between each defined based on 

expectation and reasoning as explained above with the assistance of a 

knowledgeable professional.  Operation of the system may later inform of 

better transition likelihoods, which through an intelligent updating method 

(such as the typical Baum-Welch approach with expectation minimisation) 

can replace those put forth initially.  However, to remain as a system 

operating under human assumptions and knowledge, the foreseeable 

approach is as outlined here.  The starting probabilities are contained within 

a transition matrix of size determined by the number of possible states within 

the system.  In this initial case, transition probability ija
 
is given by a matrix of 

5-by-5 incorporating the above named states: 

























50.025.015.010.00

25.040.025.010.00

10.035.020.035.00

010.030.035.025.0

0020.035.045.0

ija
  (55) 

The transition from one state through to the next according to the above 

matrix is therefore: 

1. Sleeping to Sitting:0.35. 

2. Sitting to Standing: 0.30. 

3. Standing to Walking:0.35. 

4. Walking to Running:0.25. 

With the exception of Standing, it can be seen that in the assumptions 

of the above transition probabilities each state has a higher probability of 

remaining the current state than transitioning out of it – therefore requiring an 

observation change with a significantly large enough probability to cause a 

state change within the HMM.  Quite often the state of Standing was seen to 

not be a terminal state in any sequence, with a transition to Sitting or Walking 

more likely – hence the higher probabilities of transition for both of these 

states from here. 
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In all subsequent operations within Verity, the transitions are effectively 

defined according to an increasing level of exertion, from Sleeping as the first 

state through to Running as the fifth.  The principle of transition and “allowed” 

transitions can be summarised in Figure 17. 

 
Figure 17 Initial state transitions within Verity, with line weight between states denoting 

probability strength 

 Once the sensors’ fuzzy membership probabilities are identified, the 

linguistic rules which activate the states can be constructed based on prior 

knowledge and assumptions regarding the conditions in which each are 

observed: 

0. Sleeping: Ambient Temperature is Hot, Contact Temperature is not Cold, 

Pulse Reading is Normal and Acceleration is Nil 

It is assumed that a sleeping user will be in a warm bed, with a contact 

temperature varying between normal and hot based on typical sleeping 

conditions.  The pulse rate should be relaxed, and for the majority of the 

sleep period, average acceleration should be zero. 
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1. Sitting: Ambient Temperature is Normal, Contact Temperature is Normal, 

Pulse Reading is Normal and Acceleration is Nil 

Sitting typically occurs in a comfortable environment, providing the 

assumption that both the environmental and contact temperatures will be 

considered normal, along with the pulse reading remaining normal due to 

no exertion – informing of the zero acceleration value also. 

2. Standing: Ambient Temperature is not Hot, Contact Temperature is 

Normal, Pulse Reading is Normal and Acceleration is Nil 

Given that standing is in the test case seen as an “intermediate” state, 

with a transition into sitting or walking usually imminent, the user is 

assumed to be in an outside or transient environment and therefore could 

vary between room and outdoor temperatures.  The contact temperature 

would be normal, along with the no-implied-exertion normal pulse reading 

and zero acceleration. 

3. Walking: Ambient Temperature is not Hot, Contact Temperature is 

Normal, Pulse Reading is not Low and Acceleration is Minimal 

Again walking assumes space available to move in, therefore a cool or 

moderate environmental temperature with a normal body temperature.  

Depending on the user, the pulse can vary from a rest rate to a more 

motion-indicating rate and is therefore not likely to be low; the 

acceleration here is upgraded to minimal which is dependent on the 

speed of the user. 

4. Running: Ambient Temperature is not Hot, Contact Temperature is not 

Cold, Pulse Reading is High and Acceleration is High 

Running provides the most detectable state from the observations, as the 

extremes of the ranges are most likely to be observed whilst a user is in 

motion.  Running (or heavy exertion) would imply a comfortable 

environment and therefore wouldn’t be too warm, and the temperature of 

the user should not be cold as they exert heat during motion.  The pulse 

would understandably be higher than in any other state, with the 

acceleration following the same reasoning. 

These state definitions are currently “basic”, with the expectation and 

understanding that with use and experimentation, more states may be 

required to describe more situations and that the above definitions may be 
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amended.  Distinction of the activities as identified in Table I require testing 

with the device to ascertain motion levels and temperature/pulse changes 

throughout the actions, with the assumption that different users will exhibit 

varying physical changes not generalisable as with the 5 base states due to 

differing behavioural habits and personal traits i.e. motor/coordination issues, 

the user’s weight or even left handedness influencing an eating style etc. 

 The basic assumptive rules result in the fuzzy memberships for each of 

the sensor readings describing shapes as in Figure 18.  With all variables 

now defined either explicitly or as functions describing ranges (the 

memberships), the test sequence of observations for our 5 possible states 

(Table II) is loaded to the model such that the system operates as in real-time 

in the simulated environment of Matlab: taking one observation vector as an 

input with which to determine the possible state that produced it.  Both the 

Forward-Backward and Viterbi sequence determining methods (Appendix A) 

were employed to assess their effectiveness, providing quantitative 

information on their suitability for the behaviour monitoring.  

 

Figure 18 Preliminary test system membership functions 
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Table II Observation sequence used for testing of the HMM with actual and detected states 

Observation 
Temperature   State 

Ambient Contact Pulse  Acceleration Actual Viterbi 
Forward-
Backward 

1 35 37 75 0.01 Sleeping Sleeping Sleeping 
2 35 37 75 0.01 Sleeping Sleeping Sleeping 
3 35 37 75 0.01 Sleeping Sleeping Sleeping 
4 35 37 75 0.01 Sleeping Sleeping Sleeping 
5 31 37 75 0.01 Sitting Standing Sitting 
6 30 37 75 0.01 Sitting Sitting Sitting 
7 29 37 75 0.01 Sitting Standing Sitting 
8 28 37 75 0.01 Sitting Sitting Sitting 
9 27 37 77 0.01 Sitting Standing Sitting 

10 26 37 79 0.01 Standing Sitting Standing 
11 25 37 81 0.02 Standing Standing Standing 
12 24 37 83 0.04 Standing Sitting Standing 
13 23 37 85 0.06 Standing Standing Standing 
14 22 37 87 0.08 Standing Sitting Standing 
15 21 37 89 0.10 Standing Standing Standing 
16 20 37 91 0.12 Standing Sitting Standing 
17 19 37 93 0.14 Standing Standing Standing 
18 18 37 95 0.16 Walking Walking Walking 
19 18 37 95 0.18 Walking Walking Walking 
20 18 37 95 0.20 Walking Walking Walking 
21 18 37 95 0.22 Walking Walking Walking 
22 18 37 95 0.24 Walking Walking Walking 
23 18 37 95 0.26 Walking Walking Walking 
24 18 37.1 100 0.28 Walking Walking Walking 
25 18 37.1 110 0.30 Walking Walking Walking 
26 18 37.1 120 0.32 Walking Walking Walking 
27 18 37.1 125 0.35 Walking Walking Walking 
28 18 37.1 130 0.40 Walking Walking Walking 
29 18 37.1 140 0.50 Running Running Running 
30 18 37.1 150 0.60 Running Running Running 
31 18 37.1 155 0.70 Running Running Running 
32 18 37.1 157 0.75 Running Running Running 
33 18 37.1 160 0.80 Running Running Running 
34 18 37.1 155 0.75 Running Running Running 
35 18 37.1 150 0.60 Running Running Running 
36 18 37.1 145 0.50 Running Running Running 
37 18 37.1 143 0.40 Walking Walking Walking 
38 18 37.1 135 0.35 Walking Walking Walking 
39 18 37.1 130 0.30 Walking Walking Walking 
40 18 37 120 0.25 Walking Walking Walking 
41 18 37 110 0.20 Walking Walking Walking 
42 18 37 100 0.15 Walking Walking Walking 
43 20 37 95 0.15 Standing Standing Standing 
44 25 37 85 0.08 Sitting Sitting Sitting 
45 27 37 80 0.08 Sitting Standing Sitting 
46 28 37 80 0.08 Sitting Sitting Sitting 
47 28 37 80 0.06 Sitting Standing Sitting 
48 28 37 75 0.05 Sitting Sitting Sitting 
49 28 37 75 0.05 Sitting Standing Sitting 
50 28 37 75 0.05 Sitting Sitting Sitting 

As both Table II and Figure 19 show, the state determining with the 

combined HMM and FIS is, in the Forward-Backward algorithm 

implementation, adequate and as expected given the parameters and rules 
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as defined.  With the employment of the Viterbi algorithm however – which 

can adjust the entire determined state sequence at each step – the final 

sequence (that displayed in both the table and figure) appears erratic in the 

transitional stages of Sitting and Standing.  As the states are being 

determined, the output for these instances is actually always Sitting rather 

than alternating between the two; it is only as the next state occurs that the 

previous is amended to being Standing in every other instance.  This is due 

to the maximum probability and likelihood as determined by the Viterbi 

method that the sequence of observations is best explained by these states  

transitioning back-and-forth between each other given their transition 

probabilities, which in this test case could be too similar to avoid the 

repetition between the two.  It does however show that at this test stage if a 

user were to exhibit such behaviour for real, that the two sequence 

determining methods disagree, therefore indicating the possibility that the 

behaviour sequence is unusual given the parameters: something considered 

in the later error detection chapter of this work. 

 
Figure 19 Results with FIS and HMM with above parameters and observations 

With the FIS constructed as described and using the information 

programmed initially with human knowledge, the combined system is proven 

to be rather adequate in its behaviour detection.  Utilising the fuzzy rule 

inference scheme however, we assume that for testing purposes the 

observation probabilities for each state based on the sensor reading 
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combination have not yet been defined, and we aim to identify the 

membership functions and rules which best describe the activation of each 

state based on the above observation sequence by taking the “actual” 

observed state sequence as a supervision signal for training. 

The input observations and readings from each sensor are processed 

as outlined above, determining the number of initial membership functions 

and the resolution required of each and the total size of the rule matrix.  The 

test observation sequence generates an initial rule matrix of size: 

Ambient Contact Pulse AccelerationRuleMatrix number number number number     

which is an 18×2×86×80 matrix, consisting of 247680 cells – though not 

all cells are active with states. 

 
Figure 20 Resultant memberships after merging row-then-column 

Submitting the rule matrix to the merge operations purely through a 

row-then-column approach, the resultant membership functions appear as in 

Figure 20, with rules inferred as per Table III.  What is immediately apparent 

is that with the merging procedure the membership functions change 




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considerably to accommodate only those observations witnessed as part of 

the input sequence, thereby removing irrelevant ones and creating others 

where necessary to better describe the relationship between observation and 

state.  

Table III Rules inferred after merging row-then-column 

New Rule 
IF THEN 

Ambient Contact Pulse  Acceleration State 

1 3 1 1 1 0 
2 1 1 1 1 1 
3 1 1 2 2 1 
4 1 1 2 3 1 
5 1 1 3 3 1 
6 2 1 1 1 2 
7 1 1 2 1 2 
8 1 1 3 2 2 
9 1 1 4 3 2 

10 1 1 5 3 3 
11 1 1 4 4 3 
12 1 1 5 4 3 
13 1 1 5 5 4 

The number of membership functions for the ambient temperature input 

is the only one which matches the original FIS, however the central values 

and the overlap between adjacent memberships differs because of the lack 

of observations at the lower and upper bounds of the originals’ range.  The 

contact temperature is essentially removed from the FIS, inferring that it has 

no direct bearing on the determining of any of the states seen in the input 

sequence.  The pulse reading input gains 2 extra membership ranges, with a 

significantly large range covering the 100-160bpm observations governing 

the Walking and Running states, and a smaller range spanning 84-87bpm 

which contributes to the determining of the Sitting and Standing states.  

Acceleration also gains 2 functions, with the rules indicating that extreme 

motion does indeed infer Walking and Running, but at the lower ranges it is 

not just acceleration governing the state decision.  

Now, implementing the Unique Measure Merge described previously, 

the results differ as explained by Figure 21 and Table IV.  Again, there are a 

few immediately apparent differences between the original FIS and this 

inferred one. 
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Figure 21 Resultant memberships after Unique Measure Merging 

Table IV Rules inferred after Unique Measure Merging 

New Rule 
IF THEN 

Ambient Contact Pulse  Acceleration State 

1 6 1 1 1 0 
2 4 1 1 1 1 
3 3 1 1 2 1 
4 4 1 1 2 1 
5 2 1 1 1 2 
6 3 1 1 1 2 
7 5 1 1 1 2 
8 1 1 1 2 2 
9 2 1 1 2 2 

10 2 1 1 3 2 
11 1 1 1 3 3 
12 1 1 1 4 4 

Firstly, it is now the case that 2 of the dimensions of the observation 

data have been deemed irrelevant to the state determining in the test case, 

with contact temperature and pulse reading now providing no differentiation 

support between any of the states – thus the state probability decisions rely 

on ambient temperature and acceleration alone.  Ambient temperature gains 







A Hidden Markov Model and Fuzzy Inference System for Behaviour Recognition 

93 
 

3 more membership ranges, which builds on the resolution of the previous 

rule inference to now help differentiate between all states - splitting the first 

membership range into 4 separate ranges; whereas acceleration’s reduction 

of a range comes in its merge of the second function with the first to 

encompass values of 0-0.07 for acceleration in the test case.  Overall, the 

change in order of row/column merging for each dimension has resulted in 

one less rule in the rule base, and in this case the effective removal of two of 

the dimensions of the data without a loss in the classification reliability of the 

FIS for observation probability determining.   

Future observations however may not be explicitly accounted for with 

this approach, as not all possible outcomes have been considered in the 

inference of the rules purely with the supervision signal – this is using the 

instances provided by the training sequence to infer a relationship between 

observations and states and does not account for human knowledge that 

may be beneficial in future classifications.  What the technique has provided 

is a means to adapt the system to a user after a considerable period of usage, 

where from a record of their observable signs and states can be inferred the 

values that are specific to them: a knowledge-based approach may assume 

that the “hot” temperature for a user’s environment extends from 30° to 40°, 

but it may be more appropriate if their standard observable values for “hot” 

only ever reach 32° and anything seen subsequently over this value is 

deemed to be an indication of an error or abnormality, thus increasing the 

device’s suitably to adapt to an individual. 

4.5 Summary 

A Fuzzy Inference System-incorporated approach has here been shown 

to greatly assist in fusion of multiple sensors for Hidden Markov Model-based 

behaviour recognition, when a single observation/state probability is needed 

in the Hidden Markov Model inferring.  The detailed method computerises 

human knowledge into fuzzy rules and has been seen to be efficient in the 

observation probability parameter determining process, especially when data 

for the model is unavailable for traditional training methods and human 

knowledge more appropriately describes an observable process as in 

behaviour recognition.  This combined approach provides scope for the 
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future creation of models where there are a greater number of inputs 

determining a single output yet the model is still governed by human 

reasoning. 

The development and subsequent inclusion of the rule inference 

process provides the basic Hidden Markov Model with the ability to operate 

autonomously, yet maintain an element of human reasoning in its modality of 

providing observation probabilities for combined sensor inputs.  The rules 

inferred after a period which can be considered “training” are useful in the 

tailoring of the system to a specific user, removing irrelevant ranges and 

identifying values over which a state could be considered “erroneous”, and 

informing a healthcare professional of the operational bounds of each user 

for each predetermined state, thus becoming a useful diagnostic tool for any 

behaviour-related issues which may arise in time. 
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Chapter 5 

Dimension Reduction and 

Classification 
Fuzzy rule induction is ideal for adapting the Hidden Markov Model-

based system to the user as more and more usage information becomes 

available.  However, as the system expands to monitor more of the user with 

an increased variety of sensors, the data retrieved increases in 

dimensionality and the observations’ relation to a state becomes increasingly 

nonlinear.  The interpretation of such data using linguistic rules is now 

increasingly more difficult when operating directly in the high dimensional 

space, where the nonlinear manifold exhibits an increased complexity.  

Dimension reduction can unveil a lower-dimension manifold embedded within 

the high dimension data which explains the observation/state relationship 

more explicitly, allowing for better and simpler classification and visualisation. 

The Curvilinear Distance Analysis for Linear Classification method is 

here developed to “unfold” the complex nonlinear manifold embedded in the 

multi-dimensional data into a lower dimension, where it becomes linearly 

separable.  This lower dimension data affords a simple linear classifier – 

trained on the newly de-embedded manifold – the ability to always classify 

successive data from the same system.    
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5.1 Principle 

The measurement of straight-line (Euclidean) distance within high 

dimension data is unreliable given its tendency to misrepresent true topology 

– in a high dimension space, data may appear clustered, yet when viewed 

from a single dimension the same data may actually be quite sparsely 

distributed or in fact consist of many component clusters.  Similarly, 

identifying linear correlations (based on a least-squares approach) in the data 

as in Principle Component Analysis (PCA) [93 , 147] is not guaranteed to be 

accurate in nonlinear high dimension data given that such a distance 

relationship is unreliable.  When reducing dimensions, it is therefore feasible 

to assume that reconstructing data purely with such a distance is inadequate 

and will result in similarly inseparable clusters as in the higher dimension 

space.   

At present, nonlinear dimension reduction methods approach de-

embedding problems in much the same manner as outlined here: taking the 

high dimension data’s clusters as separate entities within a singular manifold 

and linking them through the most logical prototypes of data so as not to 

stretch the resultant projection.  This is exemplified by Meng, Leung and Xu 

[148] who succeed in high dimension manifold learning, by developing a 

method of finding the approximate edges of clusters in the high dimension 

and creating a “passage” between them which does not cut through the 

intrinsic manifold, instead smoothly connecting clusters such that 2D 

projection results in linear separation.  Rosman et al. [149] similarly claim to 

improve on the Isomap technique, ignoring a geodesic distance as a linkage 

between points when it is inconsistent with Isomap’s assumption of convexity 

in the high dimension and resulting in projections which more appropriately 

describe data with “arbitrary boundaries and ‘holes’”.  Though not explicitly 

reducing dimensionality for the purposes of classification, projection to a 

lower dimension with the method provides an ability to further process data 

more accurately as it still contains the key features embedded within it.  

Within the original high dimension data, an embedded manifold of 

interest may appear classifiable by a Euclidean metric within its constituent 

clusters, however when each cluster is considered as a part of a whole high 
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dimension manifold the Euclidean distance can fail to accurately represent 

similarity between adjacent values – being more appropriately described by a 

global distance measure which considers the entire data space.  Curvilinear 

distance is one such measure which accounts for the topology of a high 

dimension manifold where Euclidean does not; Figure 22 provides a 

comparison between the standard Euclidean approach to identifying point-to-

point similarity, and the principle upon which Curvilinear distance operates: 

linking points within the data space rather than “through” what can be 

considered a complex manifold.  

 
Figure 22 (a) Euclidean Distance measure "cuts" through a high dimension manifold, where a 

Curvilinear Distance measure (b) traverses the manifold to obtain a distance value 

The Curvilinear Distance Analysis (CDA) technique of Lee et al. [90] is 

considered here, yet significantly extended to incorporate a method of 

separating clusters while reducing the intrinsic dimension of the data to 

produce Curvilinear Distance Analysis for Linear Classification (CDALC).  

CDA is capable of preserving the higher dimension space’s data topology 

while also sufficiently reproducing the local environment when said data is 

projected to the lower dimension.   

The scheme proposed takes as its input a multi-dimensional training 

data set, in which a combination of dimensional values signifies classification 

to a cluster.  Within Verity, this is essentially the multi-dimensional 

observation vector and the cluster identified as the classifier is the hidden 

state of the HMM that produced it.   Let  TMxxxX ,,, 21   be the data set of 

observations, where N

i Rx   is in an N  dimensional space.  Without loss of 

generality, we know that there are two classes, 
NM

A RX  1
 and 

NM

B RX  2
 in 
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NMRX  , where 21 MMM  . Because 
AX  and 

BX  are not linearly 

separable, a nonlinear boundary has to be determined by multiple layered 

neural networks or nonlinear kernels if the classification of points belonging 

to these states is carried out directly in the high dimension space.  This can 

be a tedious trial-and-error process, especially with networks that operate 

with multiple variable parameters.   

Processing each of the class clusters in turn, those points which typify 

the topology of the cluster are identified as “prototypes”.  These prototypes 

are then interlinked according to a predetermined neighbourhood, before 

each cluster is then connected to another via a single link and a graph 

created detailing curvilinear distances between all prototypes in the data set.  

The set   NMT

BA RXXX  ,  is projected to a lower dimension

  NnRXX nMT

ba   ,, , where these distances are recreated as Euclidean, 

thus “flattening” the high dimension data and linearly separating the clusters  

aX  and bX  in the lower dimensional space.  Based on distance to their 

closest prototype, successive points can be interpolated efficiently and 

projected from the high to the low dimension and once separated a simple 

classifier, e.g. a single layer perceptron, can be used to identify their parent 

cluster.  This proposed approach is summarised in Figure 23.   

 
Figure 23 Dimension reduction with subsequent classification 

The CDALC method is shown to be capable (through our testing) of 

successfully reducing up to 13 dimensions of data to 2 for successive 
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classification, however with all data sets the most appropriate dimension in 

which to project varies depending on the influence of each original dimension.  

Here we assume an equal weighting on the contribution of each dimension of 

the Verity sensor data due to their constant variation and identify an 

appropriate lower dimension to be 2: affording us the ability to view the 

interaction between the states embedded in the 4D space and train our linear 

perceptrons on simple 2D data.   

The CDA method of [90] was itself a further extension to the technique 

of Curvilinear Component Analysis (CCA) [91], and serves to unfold the data 

from high-dimension n-space to the low-dimension p-space.  The distances 

between prototypes of the single manifold are kept, whilst the remaining data 

points from within that manifold are projected such that their p-space 

distance is comparable to the n-space distance about the closest prototype.  

The principle is used extensively to reduce single 3D manifolds to 2D, in 

reduction of dimensions of visual data [89] and in Mass Spectrometry [150]. 

Figure 24 shows a simple, general example of how in 2D, the data 

clusters (letters, in this case) are more easily identifiable than in the 3D 

representation.  If the original 3D data were to be used in a supervised 

learning scheme for classification, the properties of each cluster would be 

unclear as some overlap between letters occurs.  In such cases where this 

sort of data has been used for training, subsequent inputs are sometimes 

incorrectly classified when their properties place them within the overlap.  If 

the dimensionally reduced data is used there is a higher likelihood of correct 

classification given that during training the separate cluster sets are able to 

be identified as such, with each having significantly different properties to 

another. 

 
Figure 24 Reduction from 3D to 2D space results in better identification and separation 

The documented CDA method is not equipped to tackle classification as 

required by the Verity system defined here.  If data consisting of multiple 

clusters is treated as a single combined manifold, the properties which make 
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a cluster unique can be lost in its projection to a lower dimension.  Treating 

the clusters as separate homogenous manifolds and then linking (chain-like) 

together as one before projecting enables internal cluster structure to be 

retained in the same way that the overall topology is in the conventional CDA.   

As in CDA, the data clusters are first quantised to provide the 

multidimensional prototypes – the vectors typifying a cluster’s structure.  The 

combined view of all prototypes in each cluster together approximates the 

layout of the high dimension manifold, with connections between each 

informing of the overall structure of the data set and the linkage distance 

between the prototyped clusters.  A graph is created using these prototypes 

as the graph nodes, with the curvilinear distance calculated as the distance 

between prototypes using a standard routing algorithm (Dijkstra is the 

favoured one in this case [151]) and is therefore the total distance traversed 

along the path which connects them.  The distance between each is such 

that it enables retention of global topology between dimensions once 

projected, thereby appearing as an “unfolding” of a manifold into the lower 

dimension. 

Whilst in CDA the interpolation of successive unseen data points uses 

the common Euclidean distance to project locally (the shortcomings of which 

when used in a high dimension were discussed above and in the literature 

review of Chapter 2), a curvilinear distance more adequately represents a 

relation between data points in clusters as it enables visible separation over 

long distances and retains a better global topology.  In this scheme the 

projection of supplementary interpolated points is therefore computed 

according to curvilinear distance also, given that CDA’s employed Euclidean 

distance measure for local representation would be impossible to utilise 

effectively after the interconnection with curvilinear distance; this global 

distance is theoretically longer than Euclidean, therefore requiring the 

“stretching” of links as described in Chapter 2, with parasitic connections 

resulting which misrepresent the true topology of the manifold. 

The order and basis of steps in this method follow those set forth by 

Lee et al. [89], however for the purposes of linear classification we modify the 

quantisation, prototyping and interlinking stages to ensure the high dimension 

manifold achieves maximum separation when projected in the similarly 
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modified projection step, thus creating the CDALC method.  This 

implementation is intended to require as little involvement with the user as 

possible, so there are few adjustable parameters.  Currently within the 

method the most significant variable parameter is the tolerable loss of the 

vector quantisation; a higher value results in the quantised points 

generalising the clusters to a higher degree and thus computation is lighter, 

yet the resultant representation after interpolation can be seen to be less 

accurate.   

5.2 Implementation of CDALC 

Figure 25 explains the proposed operation of the Dimension Reduction 

operation: the processing of the data to obtain the prototypes via quantisation 

allows for interlinking to appropriately describe the cluster layout, before each 

state cluster is itself interlinked and projected to the lower dimension where 

the prototypes provide landmarks for the subsequently retrieved data to ally 

themselves to for the classification process with a standard linear classifier.  

 

 
Figure 25 The 5 step process to reduce the dimensionality of the data set 

 

Prototype 
Connection 

Matrix 

Low-
Dimension 
Prototypes 

State 
Connection 

Matrix 

Prototypes 

Linearly Separable, Low-Dimension Data Set 

Non-Linearly Separable, High-Dimension Data Set 

Quantisation 

Prototype 
Interlinking 

State Linking 

Prototype 
Projection to Low 

Dimension 

Original Data 
Interpolation & 

Projection to Low 
Dimension 



Dimension Reduction and Classification 

102 
 

5.2.1 Quantisation 

From experimentation it is found that raw, high dimension data is not 

always conducive to computationally fast operations.  A distance relation in 

the n-space can be in the order of thousands, which when summing for the 

error over all data points can place great strain on a typical system.  

Normalising all input data to values between 0 and 1 first solves this problem, 

allowing for fair consideration of inter-dimensional distances (non-normalised 

data using a Euclidean distance measure can put unfair weighting on 

dimensions with larger scales) and ensures that no distance calculations 

between points should produce results of too high an order to be 

computationally tractable (i.e. maximum straight line distance in a unit space 

is 2 ).  Given that the result in p-space is used solely for clustering and 

classification purposes and does not require attributing to a measurement or 

unit, the normalised distance representation will readily suffice.   

 

Figure 26 Prototype identification and tuning based on distances to local data points 

A prototype is a data point in the n-space which will serve as a marker 

in the p-space around which data points can be projected.  Using vector 

quantisation, the best prototypes representing these data sets can be 

determined.  We approach each cluster individually and create prototypes 

within them in order to provide a decent generalisation of that cluster’s 

topology.  Any vector quantisation method may be employed, where here a 
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dynamic vector quantisation is utilised, which uses a competitive update 

scheme to bring the prototypes to a more reliable representation of the data. 

Taking the first data point in the cluster, it is assessed for distance to 

each other point, with the maximum returned distance informing of the radius 

outside which a point is considered a prototype – by combining it with a 

_tolerable loss value.  The _tolerable loss essentially determines how much of 

a bearing the maximum distance has on the neighbourhood, with a lesser 

_tolerable loss value meaning more determinable prototypes as fewer data 

points fall into the radius (as shown in Figure 26).  Once the value for the 

radius has been set, each point in turn is assessed for its closeness to a 

prototype using the neighbourhood value: if the point falls within the radius of 

a prototype, that prototype moves to be closer to that point by a value set by 

alpha, or if it falls outside the radius it then becomes a new prototype itself to 

be considered by subsequent neighbourhood assessments. 

In order to ensure the fair moving of the prototype between two or more 

constituent points, rather than working on the mean distance between all 

which would require constant re-evaluation of each vector, alpha is a distance 

which decreases with every iteration from a maximum to a minimum value 

set by the programmer and acts on the difference between prototype P and 

point j:   

maxmin
max

max

iteration

iteration

Pj

alpha
alpha d alpha

alpha

 
   
 
 

 (56) 

The maximum number of iterations used in the quantisation, maxiteration , 

determines the speed at which the prototype moves between the two vectors 

until such time as the maximum has been reached – when the distance is 

then equal to the minimum moveable distance possible, minalpha .  When 

maxiteration  has been achieved, the prototypes will describe the data as per 

Figure 26, having reduced the number of points to be considered by selecting 

those which best describe the data.  The pseudo code below serves to 

further explain the quantisation process. 
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The convergence to an optimum number of prototypes will typically 

occur early on in the process provided the _tolerable loss and 
maxalpha  values 

are suitably defined for the data set (typically both  0,1 ) – it is at this iteration 

we can stop the vector quantisation or choose to continue on for the set 

number of iterations.  This step is performed for each cluster, before the next 

step links each cluster internally for the proceeding interconnection 

throughout the manifold. 

5.2.2 Prototype Interlinking 

This step requires another initial neighbourhood radius to be set, which 

in this instance is the mean of the 3 shortest distances between all 

prototypes (to enable at least one point to be encompassed by the radius for 

the first iteration):  





3

13

1

i

iinit ak  (57) 

Where a  is an ordered list (from low to high) of distances between all 

prototypes in the cluster.  The step-increase of the neighbourhood per 

for each cluster 

max_distance is 0 

for all data points in cluster 

if distance between 2 points is greater than max_distance 

 distance becomes max_distance 

end 

end 

radius = max_distance × tolerable_loss 

prototype = [] 

prototype_num = 0 

while iteration is acceptable or prototype_num continues to 

increase 

   for all data points in cluster 

   for all prototypes  

if data point is not within radius of prototype 

      data point becomes a prototype 

     prototype_num = prototype_num + 1 

     else 

move closest prototype within radius by 

alpha_, an amount which decreases with 

every iteration 

     end 

end 

  end 

end 

end 
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iteration is then found with the initial neighbourhood and the maximum 

distance between prototypes:  

 max

init
step

k
k

a
  (58) 

A square linkage matrix (59) is also created which contains information 

about which prototypes within a cluster are connected.  It consists of  2
a  

entries and is initially populated entirely by “Infinity” ( ) values to symbolise 

all are initially non-traversable links. 



























 (59) 

When evaluating each individual prototype i , if another, j , falls within 

the neighbourhood radius then the linkage matrix updates to accommodate 

the distance between the two at that index point ( ijlink ).  Once the 

neighbourhood is evaluated, Dijkstra’s algorithm is employed to ascertain 

whether or not prototypes can now reach all other prototypes through the 

created linkages.  In the initial instance with the first prototype this will 

obviously be impossible; we decide if all linkages are traversable by returning 

the maximum distance in the Dijkstra matrix: if the maximum distance 

remains “ ” there are still some unreachable prototypes.  If some are still 

unreachable, the neighbourhood radius increases by a step-size and the 

evaluation process continues until the maximum distance is reduced.  Once 

the linkages are all traversable, it can be said that the cluster is fully 

connected.  The process repeats for all clusters until they are all internally 

linked.  

The linkage matrix at each stage updates with the first calculated 

distance between prototypes: if the neighbourhood radius happens to include 

a prototype via the calculated Euclidean distance before it is reachable via 

curvilinear distance through the Dijkstra routing algorithm, the Euclidean 

distance becomes the shortest from one prototype to another.  However, if 

the curvilinear encompasses a prototype before the neighbourhood expands, 

then that distance is the one considered the shortest.  This avoids a web-like 

connection matrix which can cause subsequent projection errors. 
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CDA originally used a k-Nearest Neighbours approach to internal linking 

which sometimes would result in a parasitic connection between parts of a 

manifold.  This parasitic connection could result in the unfolded manifold 

having two distant prototypes connected by a single link spanning the entire 

projection, thus being an unrealistic representation of the data set.  The 

automated method here is more suited to the CDA process for classification 

than the documented original as it removes the possibility of such 

connections.  Through use of the Dijkstra algorithm, constantly assessing the 

cluster for already apparent connections via a Euclidean distance, the best 

representation of curvilinear distance is found without compromising a 

cluster’s topology by cutting through paths to other prototypes.  A trade-off in 

this enhanced representation of a cluster however is the increased time 

consumption experienced from the repeat employment of the routing 

algorithm not shared by the standard k-NN approach CDA, as it requires all 

prototypes to be considered during every iteration for the determining of the 

presence of a path between them rather than linking solely according to 

prototype neighbours falling within a fixed radius. 

Figure 27 visualises the connection between prototypes within a state 

cluster.  Whilst in an iteration of the linking process prototypes 1 and 5 would 

fall within the same radius, as can be seen on the adjacent matrix a 

connection already existed between the two – in this case by travelling via 

prototype 2 or prototype 6 would allow for arrival at prototype 5.  If we didn’t 

neighbourhood is average of 2 smallest Euclidean distances between 

prototypes 

step is neighbourhood ÷ max Euclidean distance between prototypes 

 

while (max distance between all prototypes determined through 

Dijkstra is infinite) 

for all prototypes in state cluster 

for all prototypes in state cluster 

if (distance between both prototypes is less 

than neighbourhood) 

if (prototypes not already connected in 

Dijkstra graph) 

 both prototypes linked 

end 

end 

end 

end 

neighbourhood is neighbourhood + step 

end 
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use this curvilinear distance method, the Euclidean connections between 1 

and 5 (shown as the dotted line) and 2 and 6 would cause projection errors, 

as they cross paths in order to reach their destination prototypes.  An attempt 

at replication of this distance would result in stretching and tearing of the 

cluster manifold in order to obtain a minimised projection error. 

 

Figure 27 Internal connections within a cluster and the prototype linkages from one to another.  
The dotted line shows the Euclidean variation of traversal from point 1 to 5 which ignores the 

already computed Curvilinear distance via points 6 or 2 

5.2.3 State Linking 

In order to represent the clusters in a lower (unfolded) dimension such 

that the topology of the higher dimension is retained – yet maximum 

separation achieved for linear classification – the clusters are linked through 

their furthest distance from each other.  That is to say that each cluster, once 

internally linked, has each of its prototypes evaluated for its Euclidean 

distance to all other prototypes in other clusters.  The maximum distance 

from one cluster to another (i.e. furthest distance between two prototypes of 

different clusters) then becomes the minimum linking distance and therefore 

the shortest distance present between clusters in the lower dimension.  

Figure 28 demonstrates the linking, with clusters 1 through 5 linked 

independently to their closest neighbour forming a chain link from the first to 

the last.   

The output of this step is a matrix of distances between prototypes of 

the data set.  The matrix effectively forms a “map” of how far apart each 

prototype should be from each other now that they are all linked in such a 

way as to be viewed as a “roll” or a “folded” plane.  This means that once 
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projected to the lower dimension, there should be no concerns regarding 

stretching of linkages or tearing of the plane, as it is just an unfolding of 

prototypes from a higher dimension. 

 
Figure 28 Linking of the clusters by maximum distance: 1 to 2 via ab, 2 to 3 via cd, 3 to 4 via ef 

and 4 to 5 via gh 

5.2.4 Prototype Projection to Low Dimension 

The determining of the curvilinear distances between all prototypes in 

all clusters occurs as in the original CDA implementation, using Dijkstra’s 

algorithm to calculate and produce a matrix which contains all pairwise 

curvilinear distances for the data set.   

The projection involves reducing the error between the computed 

curvilinear distances of the n-space and the new equivalent Euclidean 

distances in the lower dimension p-space.  The result is an “unfolded” or 

“flattened” representation of the original n-space data which retains the 

distances between prototypes of a cluster yet separation between clusters 

has been maximised. 

The error function sought to be minimised is: 

    ,,

2

1,

,,

p

ji

n

ji

p

ji

n

jiCDA dFdE 


  (60) 

Where above, n

ji,  is the calculated curvilinear distance in n-space and 

p

jid ,  is the Euclidean distance in p-space between prototypes i  and j .  The 

function F  weighs the contribution of the prototype pair so that local 

reproduction is favoured over global – thus the larger the distance in p-space 

over n-space the less of a bearing it has on the error and projection and 

varies between 0 and 1 when its argument increases and decreases 
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respectively over time.  It is intended that this factor enable the CDA method 

to reproduce more effectively the smaller distances over larger ones within 

the manifold.   

 









0,1

0,0
,

,

,

, p

ji

p

jip

ji
d

d
dF




  (61) 

The neighbourhood distance value of   must be large enough to allow 

fast convergence [89] and suitable representation of the high dimension data 

when projected, yet small enough to avoid preserving long Euclidean 

Distances when the projected manifold is nonlinear.  Higher   values 

consider more distances in the low dimension p-space, thus increasing the 

accuracy of projection in the global area over the local area.  This means it 

must be initially higher than the maximum value in the n

ji,  matrix in order to 

unfold the n-space manifold correctly on a global scale before addressing the 

local projections, as the value of   decreases every iteration and therefore 

optimises smaller distance relationships: 

min

min
max

max

iteration 


 


 
  

 
 (62) 

The initial projection of the prototypes is random in the lower dimension 

p-space.  The distance between each prototype is calculated as in the 

previous step, except now in this lower dimension (which is much quicker 

and less computationally complex given the difference in dimension vectors).  

The result is another distance matrix which is comparable to that previously 

computed, with the intention now to move these projected prototypes about 

each other in order to match the high dimension distances with as little error 

as possible.  The above equation (60) is minimised to the point of acceptable 

error, at which point the moving of the prototypes ceases. 

In order to minimise the projection error of the prototypes from the high 

dimension to the low dimension via gradient descent of (60), all but one 

prototype are moved in a single iteration of the relocation step; instead of the 

usual method of updating the projections where a single point moves 

according to the position of others, this procedure holds a point iz  stationary 

and moves others ijz   radially around it.  Computationally, this adaptation 

process for the location of prototypes is much lighter than a standard gradient 
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descent method, as it is not necessary for the computation of all  1 / 2N N   

distances in the n- and p-spaces, just the distance between prototype 
iz  and 

all others [91]: 

  , , ,

,

,
j ip n p

j j i j i j i j p

i j

z z
z z F d d

d
  


    (63) 

The value of  , the learning rate, is usually time-decreasing to ensure 

a convergence: 

t


1

0
  (64) 

After the acceptable adjustment of the prototypes about iz according to 

equations (63) and (64) for one iteration, the distance ,

p

i jd  is recalculated for 

the movement of the next prototype in the set.  Once all prototypes have 

been located and their placement converges to a minimum (local or global),  

the projection error is then calculated with equation (60).  Rather than wait 

until convergence for large sets, however, the option to cease relocation of 

prototypes can be taken once the projection error has reached a suitably low 

value as defined at the outset by its recalculation periodically throughout the 

process. 

5.2.5 Original Data Interpolation and Projection to Low 

Dimension 

Once the initial data prototypes have been acceptably located in the 

lower dimension, the original sensor observation data which these prototypes 

describe must be similarly placed also.  Given that the prototypes represent 

the data’s clusters, their projections in the p-space can be taken as 

landmarks around which to project these other points from within the data set.   

Given that for this developed algorithm the linkage between clusters in 

the high dimension is a single connection, the resultant representation in p-

space is required to be somewhat stretched in order to maintain the 

curvilinear distances calculated with as little error as possible.  This forces 

the original point interpolation and projection scheme developed for CDA to 

be further modified to accommodate the change.  As a result, the “local”, 

direct mapping of point-to-prototype Euclidean distance is replaced with a 

“global” mapping using the curvilinear distances (which may be significantly 
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larger than Euclidean given the traversal of prototypes) - as was used in the 

projection of the original prototypes.  This means that instead of locating the 

x-closest prototypes to a data point and projecting in p-space according to 

their Euclidean distance to them (as in the original CDA), we first identify the 

3 closest prototypes according to their Euclidean distance.  Had just 1 

prototype been taken as a reference location, the projection of the point may 

be anywhere 360º about the prototype; 2 prototypes would result in 2 

possible positions whereas 3 allows for adequate triangulation of the 

interpolated point. 

We typically determine the first closest prototype’s distance to the other 

two not through the straight-line distance but the curvilinear, as it may be true 

that all closest prototypes belong to different clusters and therefore to 

represent locally (given the stretching of the links) is not possible.  Using 

these curvilinear distances, as in the linking of the original prototypes, the 

data is embedded on the same multi-dimensional manifold and “unfolded” 

into the lower dimension with the prototypes, rather than having its projection 

compromised through usage of the Euclidean distance for a cross-state 

distance measurement which would stretch its placement as in a standard 

nearest neighbour approach. 

 
Figure 29 Selection of 3 closest prototypes to data point (with light grey neighbourhood) in 

higher dimension and the subsequent projections in the lower dimension 

Figure 29 graphically explains the process of point interpolation and 

location identification.  With the high dimension clusters’ prototypes being 

internally linked, the connection between clusters is taken as the “bridge” 

which enables multiple cluster prototype positions to inform of the point’s 

location.  In the case of this figure, the point is closest to prototypes 1, 2 and 

3 as they fall within its pre-defined radius.  As can be seen in the resultant 
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projection, the point is placed within the pattern of the darker cluster, yet its 

exact location determined by distance from the lighter cluster’s prototype 

(with the label “3”). 

The optimization of the error function for the point projection works the 

same as with CDA, whereby a single point is moved in relation to all others in 

order to minimize the error between the high dimension curvilinear and the 

low dimension Euclidean distances to the closest prototypes.  Instead of a 

global assessment for the error of the projection, we are only concerned with 

the local projection about the prototypes which describe the manifold and 

therefore N  here represents the total number of neighbours used in the 

triangulation of location of the projected point (which in this case, would be 3 

as explained above).  For the interpolation the error function appears as: 

 
2

, ,

, 1

N
n p

CDApoint i j i j

i j

E point dpoint


   (65) 

Given that now, the points are being moved one-at-a-time with respect 

to the prototypes, the relocation algorithm is updated to reflect this: 

 
p

pn

dpoint

totypeclosestPropoint
dpointpointpointpoint


   (66) 

Again the values of pdpoint  are recalculated after a relocation and this 

step repeats until the error (65) is suitably small for each projected point. 

Once the original data set is projected, clusters are visible in the p-

space as being linearly separable: so long as the maximum distance 

between clusters is large enough to overcome possible projection errors 

which may project prototypes in too close a proximity to others from different 

clusters.  

It can be proven that a data set can always be made linearly separable 

with the proposed method if the distances from the high dimension space are 

retained; thus a single layer perceptron is sufficient for subsequent 

classification.  Figure 30 describes how the FIS is replaced with the 

Dimension Reduction and Classification scheme (the grey box is effectively 

removed once its values are used in the reduction process) before its output 

is sent to the cascading perceptron network described below which 

differentiates between each state now that they are linearly separable. 
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Figure 30 The new dimension reduction scheme which interacts within the HMM using the data 

from the original FIS 

5.2.6 Linear Separability 

A standard perceptron is a linear classifier, capable of predicting an 

observation vector’s state as belonging to a binary class (Figure 31).  

 

Figure 31 Basic perceptron construction, with input vectors x multiplied by weights w before 
the addition of the bias, b.  The output is a binary value informing of the classification 
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The input observation is mapped to  f x , a binary output: 

 
1  if . 0

0 otherwise 

w x b
f x

 
 


 (67) 

Within the perceptron, there are the vector weights, w, which act on the 

vector x  and a single constant bias value b  which is applied to the dot 

product with no regard for the input value. 

For proof of the algorithm’s suitability, we assume the state clusters 
AX  

and 
BX  are mapped to a lower space to be aX  and bX .  It is theorised that 

aX  and bX are linearly separable if the linking distance 

   ba diamdiamd XX  , where  diam  is the diameter of a cluster, i.e. the 

maximum in-cluster distance in the completed distance matrix (59). 

The furthest points for 
AX  and 

BX  are labelled as 
Ax  and 

Bx  in the high 

dimension.  They are projected to the low dimension space as ax  and bx .  A 

perceptron can therefore be constructed with weight and bias: 

 

ab

ab

xx

xx
W




  (68) 

 T b a
a a

b a

x x
b x diam X

x x


  


 (69) 

The line function for classification can be written as: 

   T b a
i i a a

b a

x x
net W x b x x diam X

x x


    


 (70) 

With the perceptron output    netxf sgn .  For any sample aix  taken 

from cluster A, the net output can be obtained from (70): 

 
 

      0

T

b a

ai i a a ai a A

b a

x x
net x x x diam X x x diam X

x x


      


 (71) 

Therefore the perceptron output   0aixf .   

For any sample bix  taken from cluster B, the net output can again be 

obtained from (70): 

 
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 (72) 
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Given that: 

   baab XdiamXdiamxxd   (73) 

Then it stands to reason that: 
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 
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 

   

 

(74) 

Therefore the perceptron output   1bixf .  The projection in the low 

dimension space is linearly separable.  Using the perceptron as a simple 

linear classifier, it has been proven that the two originally high dimension-

embedded, nonlinear classes become linearly separable once projected to 

the lower dimension – provided that the linking distance between them is 

longer than the sum of their within-cluster diameters, which is always the 

case if the two furthest prototypes in each cluster are used as connecting 

nodes for the global curvilinear distance calculations. As a result, we can 

employ the perceptron as a classifier for the once high dimension data that 

was intrinsically nonlinear.  

For the scheme used here in the HMM, a cascading network of 

perceptrons is employed to differentiate one state from all others as a means 

of simply classifying the observation data in the low dimension.  Figure 32 

shows the principle method of distinguishing 5 states from each other utilising 

4 perceptrons, as is the case for the Verity application. 

 
Figure 32 Cascading Perceptron Network differentiating between 5 different states  
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5.3 Common Data Set Examples 

Many data sets exist for the testing of classification methods and 

dimension reduction techniques.  Commonly the most difficult problem is in 

representing and separating nonlinearly separable data.  The publically 

available data sets used here to illustrate suitability and effectiveness of the 

algorithm are Fisher’s Iris Data, Bupa Liver Data, Breast Cancer Data and 

Wine Data – all of which are available from the UCI Machine Learning 

Repository [152] for such purposes.  A 3 dimensional set of artificial test data 

was also created to aid in the visualisation of the reduction method, given 

that the other sets are impossible to project (for visualisation purposes) in 

their original high dimensional form. 

All 5 data sequences are split into two separate sets, with one set used 

in the prototyping and projection and the other for successive testing.  The 

dimensionality of each data set varies significantly, with the maximum being 

13 for the Wine Data and the minimum being the 3D artificial data. 

The results of each reduction can be seen in Figure 33 to Figure 38, 

where the resultant projection of successive data is promising yet obviously 

not without error (discussed in the next section).  The prototypes of the test 

data are projected as unbounded circles, with the interpolated points from 

both the initial test sequence and the successive data being distinguishable 

by their darker, bounded edges. 

Using the curvilinear dimension reduction method, placement is 

optimised to the point where the overall error between recreated distance in 

the lower and actual distance in the higher dimension is reduced to less than 

0.1.  In practice this results in reasonable representations of the original data, 

whilst not being too computationally time consuming.  If the application 

requires it, the maximum number of iterations of error reduction can be set – 

however to achieve optimal representation this would require other 

parameters within the CDA method to be adjusted to accommodate the 

change. 

It can be clearly seen that the each of the clusters within the original 

data set is reproduced separately and without overlap in the lower dimension, 

and the interpolated points also fit within the respective boundaries laid out 
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by their prototypes – thus providing the linear separation required for the 

application of the neural network or other such similar procedure.  

 

 
Figure 33 Dimension Reduction Algorithm applied to Fisher's Iris Data 

 

 
Figure 34 Dimension Reduction Algorithm applied to Bupa Liver Data 

 

 
Figure 35 Dimension Reduction Algorithm applied to Breast Cancer Data 
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Figure 36 Dimension Reduction Algorithm applied to Wine Data. [Arrow explained in “Testing 

and Results”] 

 

 
Figure 37 Artificial 3D data created for testing purposes. Note the nonlinear properties of each 

"bowl" overlapping another 

 

 
Figure 38 Dimension Reduction Algorithm applied to Artificial 3D data. Note now the separation 

between each "bowl" and the correct classification of each data point within 

5.3.1 Testing and Results 

Whilst it is evident that the clusters are adequately represented as 

linearly separate in the lower dimension, it is also possible to see that in 
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some data sets there will be misclassifications of some of the successive, 

unseen data points.  Given that the neighbourhood radius is used to 

determine the membership to a cluster, if a prototype falls too close to a point 

which does not belong to that cluster, the point immediately associates itself 

with that cluster.  This is evident in the Wine Data set where one point which 

would normally belong to the middle class has in fact been identified as being 

a member of the top class (indicated by the arrow present in Figure 36).  A 

different means of “closest” prototype selection (more prototypes informing of 

the closest class prototype, or perhaps average distance) may in fact place 

the wrongly-located point in the correct class, however it may be at further 

cost to other point placements within the projection.   

What should be noted is that within Fisher’s Iris Data (Figure 33), the 

two nonlinearly separable clusters of Iris Virginica and Versicolor have been 

separated and the interpolated points have been successfully tagged to the 

correct cluster with no such error.  With many supervised learning techniques 

this would also be possible, however through prototyping the initial clusters 

we have achieved a generalised view of each set, to which the 

neighbourhood function of successive points adequately allows for correct 

interpolation.  

Using Matlab once more for its rapid visualisation ability, the 

effectiveness of the dimension reduction/clustering can be tested using a 

comparable neural network approach.  A feed-forward back-propagation 

network is capable of solving almost any problem provided the network 

parameters are correctly chosen.  In this test the Iris data in its raw form is 

submitted to the network and training commenced.  The network consists of 

2 layers and 20 neurons in the input layer and is trained for 1000 epochs or 

until the generalisation stops improving.  Then the pre-processed, dimension 

reduced data is submitted to a similarly constructed 2 layer network.  

With the non-reduced data, the classifications are returned as values 

which must be taken to one significant figure to provide a class; the reduced 

data provides correct classes of 1, 2 or 3 straight from the network.  In the 

case of the non-reduced data 97% were correctly classified after hard limiting 

the output to an integer class.  With the reduced raw data 100% of Irises 

were returned as the correct class with no further processing required.  The 
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difference in performance error was 10-9 less for the reduced data, producing 

a more accurate result.  

Conducting an experiment with a 3 layer network with different numbers 

of hidden layer neurons also returns a similar result.  With 10 neurons in the 

hidden layer, the maximum error in classification for raw data is 1, where the 

maximum for the processed is 10-8.  With 20 neurons, the raw data training 

error increases to 2 at the point where training reaches the best performance; 

processed data again has a maximum classification error of 10-8.  These 

results (displayed in Table V) show that the networks are much more 

receptive for classification if the data being classified can first be linearly 

separated. 

Table V Comparison of training performance of non-reduced and reduced Fisher’s Iris data in 
Feed-Forward Back-Propagation networks 

Number 
of Layers 

Number of 
Neurons 

Performance Error 

Original 
Dimension 

Reduced 
Dimension 

2 20 3 0 
3 10 1 10

-8
 

3 20 2 10
-8
 

Given that the data can be separated in the lower dimension space with 

this method, it is now suited to simple binary classification; one perceptron 

could be used for each cluster whereby the output is 1 or 0 depending on its 

membership to that cluster.  Using the high dimension, nonlinearly separable 

data, the perceptron training fails to converge and therefore cannot be used 

as a correct classifier.  In Matlab, three perceptrons are trained with the raw 

data and the processed data, to a maximum of 1000 epochs each or earlier if 

the performance reaches the required value.  Figure 39 shows the training 

performances with a comparison detailed in Table VI, with the Virginica and 

Versicolor sets in the high-dimension failing to achieve a suitable weight and 

bias value allowing for generalization.  In the lower dimension, all sets are 

correctly trained, with results reflecting this (Figure 40).  Presenting values to 

the higher-dimension-trained networks gave an error of 60% for the two 

conflicting sets, where the lower-dimension-trained networks had a 0% error 

rate.  
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Figure 39 Results of training 3 perceptrons with Raw Fisher's Iris Data. Note the lower two 
results showing non-converging performance at maximum iterations, therefore not being 

linearly separable  
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Figure 40 Results of training 3 perceptrons with Dimensionally Reduced Fisher's Iris Data. Note 
that now, the lower two results show converging performance before reaching the maximum 

number of iterations, thus indicating that all 3 classes are linearly separable 
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Table VI Further comparison of training performance of non-reduced and reduced Fisher’s Iris 
data in the Perceptron 

Iris 
Performance Error Epochs 

Original 
Dimension 

Reduced 
Dimension 

Original 
Dimension 

Reduced 
Dimension 

Setosa 0 0 4 12 
Virginica 0.0533 0 1000 137 

Versicolor 0.02 0 1000 3 

The dimension reduction and classification scheme is, in its initial offline 

training, a time consuming process for large data sets.  With high-

dimensional data consisting of an extensive amount of data points, the vector 

quantisation and linking steps can take copious amounts of computer 

operation cycles, yet it is in the reduction of projection error of the prototypes 

that we find the lengthiest process.  Given a vast amount of data, linking the 

prototypes which generalise the component clusters results in an expansive 

graph which must be evaluated in every time-step during the minimisation of 

the projection error.  When the projection space is of multiple orders of 10 

larger than the initial data space (due to the “flattening” of the manifolds in 

the reduction method), the random projections which are to be relocated to 

minimise error can require that great distances be traversed in order to reach 

their optimum placement.  In the above tests the 5 cluster artificial data took 

longest to optimise placements to a highly accurate degree (multiple 

experiments took 30-40 seconds each), yet once the prototypes of the 

training data are located, successive interpolation of unseen points can be 

done in real-time in a matter of cycles to a very high degree of accuracy 

(much quicker than with a kNN approach to classification).  With this speedy 

interpolation being followed by the employment of a simple perceptron, the 

combined system is both fast and accurate in its classification of unseen data 

points from a nonlinear high dimension data set.  

The only intended variable parameter in this system is the tolerable loss 

of the vector quantization step.  Setting the value to close to 1 will result in 

fewer prototypes of the data and therefore faster projections, yet the trade-off 

is a lower accuracy result.  With a lower tolerable loss (all examples here 

used 0.1) the reproduction maintains obvious shape characteristics of the 

clusters from the high dimension given the increased number of prototypes 

(the 3D artificial data shows that the “bowl” shape is inherent within the 
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reduced projection).  Ultimately it is at the discretion of the user of the 

method to decide on the accuracy of the topology reproduction given its 

trade-off with training speed. 

The interpolation technique places the successive points in the lower 

dimension space within a few short iterations, and as such once the data’s 

clusters have been prototyped it is possible to use the system in a real-time 

application to determine membership to a state.  A problem may arise if the 

prototypes of the data begin to generalise only a small subset of a cluster. As 

the system evolves, more data may be present in a cluster which causes 

them to become sparser and as a result the prototypes don’t generalise that 

cluster as well as with a more compact data set.  Therefore during 

interpolation, closeness to the correct state can be reduced.  Re-evaluating 

the system’s prototypes periodically will overcome this issue, and a further 

enhancement could be achieved through ensuring that prototypes of the data 

also encompass boundaries of the clusters themselves.   

At present, the nearest prototype to a data point determines the state to 

which that point belongs.  It is supposed that if prototypes have a “strength” 

or “weighting” of belonging to a cluster, the closest prototype can be 

evaluated to see how likely it is that the new point belongs to it.  If the 

distance to the next prototype is further, yet the strength of belonging to that 

cluster is greater, a trade-off mechanism can be evaluated to more 

adequately classify the data point to a cluster.  It is in the adjusting of this 

neighbourhood function that the method will become a more useful tool in the 

supervised classification of data sets and the successive unsupervised 

interpolation of unseen data points.  The next chapter details the 

enhancements made to the k-Nearest Neighbours classification method 

employed in part within the dimension reduction scheme.  Where the 

manifold learning and classification here worked on a global scale, relating 

data points to each other according to curvilinear distances through high 

dimension manifolds, the kNN classification was only utilised for an indication 

of local topology and similarity determining on a localised scale.  Both 

methods have merit when combined in the above way, as they serve to 

provide a “complete” picture of the multi-dimension dataset, however when 

the classification within Verity only concerns local rather than global 
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relationships, an enhancement to the kNN method could prove more suitable 

based on the computational speedup over this manifold learning and 

classification.   

5.4 Summary 

Our Curvilinear Distance Analysis for Linear Classification (CDALC) 

method consistently provides results which fully satisfy the criteria needed for 

interpolation and classification of unseen data points.  In the dimension 

reduction we accomplish two feats: production of a data set which retains its 

general topology from the high to the low dimension (with an allowable error) 

- thereby maintaining overall data set characteristics - and an increased 

usability of the set for successive operations with linear classification 

methods.  Linking of clusters embedded within the high dimension manifold 

through our new approach of determining maximum within-cluster distance 

always ensures linear separation after projection.  

Experiments on a number of widely applied and utilised data sets show 

the suitability of the dimension reduction scheme not only for visualisation of 

high dimension data but in its ability to linearly separate data that typically 

would be ineffectively operated on with standard machine learning and 

intelligent methods.  Taking Fisher’s Iris Data as a primary example it was 

shown that the two not-linearly separable classes within the data are not 

adequately classified with multi-layered networks and simple binary 

classifiers.  Processing the data with the dimension reduction scheme 

produced 3 separate classes with a 100% correct classification rate for all 

networks which previously produced unsatisfactory results with the raw, 

unprocessed data.   

For intrinsically nonlinear datasets with more than 2 dimensions the 

CDALC process has been shown to be suitable for linear classification and 

visualisation, however attention is turned towards classification speedup and 

storage requirement reduction in the next chapter by dealing with localised 

similarity and optimisation of the classification procedure, without the need to 

generalise a data set through the above CDALC method which models the 

data according to calculated prototypes.   
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Chapter 6 

Optimisation of the 

Classification Procedure with 

Instance Based Learning 
The Dimension Reduction and Classification scheme is well suited to 

applications requiring linear separation of nonlinear data sets and 

visualisation of data classes typically unviewable in their high dimension form.  

However, the time consumed in the determining of similarity between close 

data points in the projected lower dimension space is a drawback when a 

real-time application is considered.  The two schemes proposed and 

compared in this chapter utilise Bloom Filter-based storage to create two 

types of what we term “Bloom Memory”, where the training data is optimally 

compressed into a single, indexable array which is then used as a simple 

look-up table to determine which class subsequent unseen data belongs to.  

Both vary in their mechanisms to reach the same goal; however it can be 

shown that each has its own merits depending on operational circumstances 

and both can be seen to draw operational aspects from biological memory 

equivalents.  They are employed to optimise the speed and storage space of 

the standard instance-based learning (IBL), k-Nearest Neighbours (kNN) 

approach to classification and are shown to work adequately in the 

classification application where the high dimension source data is intrinsically 

nonlinear.  
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6.1 Principle 

 
Figure 41 Bloom Filter principle with a set of two states as members and a filter length of m 

The Bloom Filter is essentially a look-up table used to determine 

whether or not an element is present in a data set.  A look-up operation is 

only of a complexity equal to the number of hash functions employed for 

encoding ( h ), which is vastly improved on that required in a search algorithm 

and is influenced by no other factors such as data set length.  A set of input 

values are each submitted to a hash function to produce an integer value 

(“H”, in Figure 41) which identifies a location in the m-length bit vector to be 

set to a value of 1, thereby indicating the presence of a member of that set 

when checked during the look-up operation.  Any number of input data – 

where each datum can be of any length – can be stored in the vector, 

provided that the correct number of hash functions is chosen to overcome the 

probability of false-positives, i.e. values set to 1 in the filter that signify the 

presence of an encoded value where in fact no encoding took place. 

Using a Bloom Filter eliminates the need to store large sets in their raw 

form in a single structure, which, depending on the dimensionality of the input 

data, could in its uncompressed state take up extensive memory space which 

could otherwise be better utilised by an application.  The limitation of the 

Bloom Filter if used unmodified for the classification operation is that if the 

query point is not already trained and present in the filter then there will be no 
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matched-class output as a result.  A solution would be to build on the 

structure of the Bloom Filter to exploit its speed in querying membership, 

whilst incorporating a method of searching possible neighbours of the query 

to determine whether these points are also encoded in the memory.  In such 

a manner, the resultant “Bloom Memory” would be capable of exacting 

subsequent query checks after the training stage that would assess whether 

a query point belongs to the class of its neighbouring points if the actual 

query point is not present in the initial filter.  The look-up speed would not be 

significantly reduced compared to the initial Bloom Filter form, as the checks 

for the neighbour point’s presence would also only require assessing the 

contents of h  locations for each potential neighbour – therefore still 

exhibiting a speedup in comparison to a standard distance check of the initial 

data.  It is the problem of determining the most appropriate way to address 

this variable neighbourhood search that is the focus of research documented 

in this chapter. 

6.2 Hierarchical Bloom Memory (HBM) 

The simplest approach to the neighbourhood checking problem is in 

having multiple Bloom Filters employed for multiple resolutions of encoded 

data, where the highest resolution is akin to querying the data point itself and 

the lowest resolution querying the maximum acceptable neighbourhood 

around the original data point.  Figure 42 illustrates the concept of the 

hierarchical construction of the filter layers ( TL ) in the proposed Bloom 

Memory.  A query point is initially checked for membership at the highest 

resolution vector of 0 .  If there is an activated entry in the layer at this 

resolution level, then the class ( C ) to which the point is attributed is most 

likely going to be that of the same point already contained within this filter.  

Continuing the querying operation with the other resolution layers would in 

theory yield results to confirm this fact, as with each layer in the memory the 

neighbourhood increases and therefore includes more instances belonging to 

the respective classes.  Conversely, if the initial layer returns no activated 

entries then the resolution is decreased and the relevant layers are checked 

for activation. 
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Figure 42 Hierarchical construction of Bloom Memory – the labels represent data points viewed 
as one dimension. The highest resolution of ω0 is checked first, with subsequent resolutions 

being checked to ascertain likelihood of membership 

This method of decreasing the resolution to determine point-presence is 

much like in the quantisation step of the Dimension Reduction Scheme 

developed in the preceding chapter, where an expanding neighbourhood 

radius considers all points it encompasses to determine the most likely 

membership class.  As a variation on the kNN approach to classification, the 

speedup experienced by checking the Bloom Memory over the standard 

iteration through a data set for pairwise distance calculations significantly 

improves on real-time classification of data, especially in instances where the 

encoded data set is of multiple dimensions as in the Verity application.  The 

speedup is significant during operation as the encoding process effectively 

pre-calculates the pairwise distances, thereby assigning neighbours to the 

same locations within the memory ready for the lookup operation.   

 

Figure 43 The expanding radius about a point, which can be considered its "neighbourhood" 

Figure 43 shows the basic principle using the pre-set resolutions for 

neighbourhood radii – the central query point is here attributed to being in the 
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same class as the two other points sharing resolution 
0  with a higher 

probability than those in the decreasing resolutions of 
1  to 

3 . 

 
Figure 44 The encoding process for Hierarchical Bloom Memory 

 
Figure 45 The querying process for Hierarchical Bloom Memory 

The encoding process for the Bloom Memory learns the input vectors 

and their associated states for subsequent point classification in the querying 

process.  An input vector is pre-processed to ascertain which resolutions it 

will fall into, before these multiple resolution values are hashed and the 

resultant respective locations in the memory are activated with a value which 
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represents that vector’s class (Figure 44).  Classification simply requires 

knowledge of which resolution the query point falls into in the memory, in 

which there are also some corresponding points previously encoded by the 

learning step.  The multiple resolutions that the query point can belong to are 

first determined through the same formula as in the encoding scheme, before 

these resolution values are hashed and checked in the memory for activation 

according to the idea above.  The presence of an active bit at the location 

specified by the hash function indicates that there is another point within the 

neighbourhood of the query point that was previously encoded in the memory.  

The classes of these points identified at the location are recorded, with the 

probability of membership determined according to the density of these 

recorded classes about the query point (Figure 45).  As the resolution 

decreases (and the neighbourhood radius expands), the weighting of the 

densities of the classes decreases similarly, according to the theory that the 

further away a point is from a query the less likely it is that they are related. 

 

6.2.1 Encoding 

The first task to be completed before the populating of the memory is 

the decision of the base and power values which determine the resolutions 

encoded into the memory.  These T  resolutions (for example 
0  to 

3  as in 

Figure 43) are used to compute the area in which an unseen instance N  at 

that resolution most likely belongs when it is presented to the filter, so after 

training all that is needed for classification are the initially used hash 

functions and the multiple resolutions that the filter is storing.  A resolution 

base value b  is used to encode each data point into the memory before 

subsequent resolutions are influenced by the chosen power-base value p .  

Generalising, where     is the floor operator: 

 
1( ) t

t t

N
N p

p b
 

 
  

    

0 t T   (75) 

The choice of b  is best influenced by the precision of the raw data.  For 

example, data sets with points accurate to 10-3 would be best allocated to 

resolutions with a base of 10-3 – any higher may result in the misgrouping of 

non-similar points for the first layer of the memory, whilst any lower would 
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make the resolution operations irrelevant in the first few layers.  p  is chosen 

such that the resolution operation “rounds-down” the value of the data point 

to that degree of accuracy as t  increases.  An example of the process (with 

single-dimension data points, for simplicity) is shown in Table VII; t  

increases to the total number of resolutions T  desired to be stored in the 

memory – chosen either based on available storage space or required 

degree of point generalisation. 

A standard Bloom Filter size, m, is affected by the minimum number of 

inserted elements, n, for a given false-positive rate 
fpP  - assuming an optimal 

number of hash functions h is chosen (according to ln 2
m

h
n

 ) [153]: 

2

ln( )

(ln 2)

fpn P
m     (76) 

According to equation (76), the maximum size of the Hierarchical Bloom 

Memory is now also affected by the number of resolutions, T , chosen to 

represent the data; each resolution receives its own layer in the memory: 

2

ln( )
Mem

(ln 2)

fp

size

n P T
 

 

 (77) 

Each decreasing resolution should, however, require a lesser-sized 

layer due to the lesser number of inserted elements – therefore the estimate 

for memory size in (77) should never theoretically be reached and acts solely 

as an indication of upper limit for the size of the memory.  Table VII for 

example would require the insertion of 5 elements for resolution 
0 , where 

resolution 
4  combines two input vectors into the same element and therefore 

requires only 4 element insertions.  

Table VII Example resolution operation, with b=10
-3

 and p=10. 

Raw Data (N) ω0 ω1 ω2 ω3 ω4 

132.589 1 325 890 1 325 800 1 325 000 1 320 000 1 300 000 

129.999 1 299 990 1 299 900 1 299 000 1 290 000 1 200 000 

86.426 864 260 864 200 864 000 860 000 800 000 

85.512 855 120 855 100 855 000 850 000 800 000 

0.985 9850 9800 9000 0 0 

When the parameters of the Bloom Memory have been defined, the 

encoding of each instance and its various resolution values into each layer 

( L ) can take place.  The raw data is typically of vector form, which is hashed 

as a whole as a sequence of integers with either a single, or multiple 
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functions to produce h integers used as indexes for locations within the 

layers of the memory, as per Figure 42.  Each memory layer corresponds to 

a resolution, with all buckets in a layer capable of holding a number of values 

equal to the number of classes, S , in the data set.  The system works 

similarly to a counting Bloom Filter [115], by incrementing a “bucket” by 1 

every time it is hit by one of the h  hash function’s outputs.  The bucket hit 

count is accompanied by a label which indicates to which class,  , the hits 

belong (78), as illustrated by Figure 46. 
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Figure 46 Insertion of an element into a layer in the memory, with the labelled "bucket" 
indicating the class to which the element belongs 

Here 
tL  represents the resolution layer of the memory (to a maximum of 

T layers), with 
xH  equal to the one of the h  locations given by hashing the 

element vector belonging to class 
s : which is also the state value (C ) 

inserted in the memory at the same location. 

       1,t x t x t x sL H L H C L H     0 t T   
0 x h   

(78) 

         

      

B
LO

O
M

 M
EM

O
R

Y 

H1(Y) α21 

      H1(Z) α11 

      ⁞ ⁞ 

   

H
A

SH
 

O
U

TP
U

TS
 H1(Y), H1(Z)  H2(X) H2(Y) H2(Z) α12 α21 

Elements to be stored 

→ 

H2(Y), H2(Z) 

→ 

⁞ ⁞ 

[Y1, Y2, Y3, … Yn] = α2 H3(Y), H3(Z) H3(X) H3(Y) H3(Z) α12 α21 

[Z1, Z2, Z3, … Zn] = α1 H4(Y), H4(Z) ⁞ ⁞ 

  Hh(Y), Hh(Z)  H4(Z) α11 

      H4(Y) α21 

      ⁞ ⁞ 

      Hh(Y) Hh(Z) α21 α11 

Figure 47 Insertion of 2 other elements into a layer in the memory, with one belonging to the 
same class as the first 

If there is already a hit count present in the layer at the location 

indicated by a hash function, the class to which the count belongs is checked.  
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If the class differs from that of the element being inserted, a new count is 

begun adjacent to this in that bucket and the new class label associated with 

it – otherwise, the class’s hit count increases (as shown in Figure 47, where 

an element is inserted in a location which already contains that class).  The 

element is inserted into each layer at its various resolutions, such that the 

memory contains a record of it and its localised area ready for subsequent 

lookups.   

6.2.2 Querying 

The standard Bloom Filter implementation uses simple element look-

ups to determine whether or not an element is present in the storage array.  

The query vector is hashed with the same hash functions used for the 

original data storage, and each hash-returned location in the bit-vector is 

checked for the presence of an active “1”.  If all locations return activations, 

there is a significant probability that the query vector has been seen by the 

Bloom Filter by an amount which factors in the false positive probability – that 

is the chance that all activations are not in fact the result of the one element 

having been seen but a number of elements that happened to hash to the 

same locations. 

For the Bloom Memory, the condition which must be true to indicate the 

presence of the element ( N ) in the resolution layer t can be expressed as: 

         
1

| , 1t x t x s t x

x h

L H N C L H L H N h
 

  
 

0 t T   
0 s S   

(79) 

i.e. at each location in a layer – given by the hash of the data point – the 

total hit count for a given class must be at least 1.  If non-zero values are 

present at each of the hash locations, the layer therefore possibly contains a 

record of the data point and the number of activations is recorded to provide 

an idea of how many of the same instances have been encoded to it.  Given 

the counting-nature of the memory, the highest possible number of points 

that could have been seen is equal to the lowest number over all of the active 

locations for that data point: 

     min
0
min |t x t x s

x h
activated L H N C L H 

 
     

0 s S   (80) 

This number equates to the possible number of instances that match 

the query point that are present in that layer of the memory, therefore the 
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number of matching points within that resolution.  The membership query 

must propagate through all layers of the memory in order to enable the 

optimum decision as to which class in which resolution the point belongs to.  

In order to facilitate look-ups, the different resolutions of the query point are 

calculated and submitted to the layers, with the number of points present at 

each layer recorded.  The aggregation of these results inform of the density 

of points for each class within the point’s neighbourhood, up to the maximum 

resolution step offered by the memory.  Figure 48 illustrates the principle of 

the results of a query; points between resolutions are the utilised values.  

Each circular representation of a resolution value is synonymous with a layer 

in the memory.  

 

Figure 48 Example to explain the principle of point location within radii of a query point  

The decision to classify the instant to a specific class is based on the 

density of points in the surrounding area of the query point, with the theory 

that a higher density in the immediate surrounding area would realistically be 

a better match for a point that was surrounded by a lower density.  With the 

scheme structured as it is - allocating points on a resolution basis - the 

density of points in each resolution for that class have a varying influence on 

the query point’s classification.  If the class has a lower number of training 

points in a higher resolution over a class with a higher number of points in a 

lower resolution, the weighting of the resolutions determine which class wins 

out.  The initial calculation required is termed the Layer Density, which 

determines the proportion of points allocated to a class at a single layer level  
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in all classes.  The number of points in a previous layer is discounted, as this 

has already been considered by a previous layer calculation and so is 

subtracted to give the number of points solely in this resolution. 
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0 s S   (81) 

The Weighted Layer Density accounts for how much of an influence the 

resolution is on the classification of the query point.  Points in a lower 

resolution have a lesser influence as they may be present at the very far end 

of the resolution’s range, therefore have little bearing on the query point 

when compared to points in higher resolutions and thus closer to the data 

point.  The weighting value is taken from the resolution calculation, as each 

resolution step decreases the accuracy of the query point by the power-base 

value p , therefore it is reasonable to assume the influence of any points in 

this region is also reduced by such a factor. 

   WLD LD t

t s t s p   
 

0 t T   
0 s S   

(82) 

The Class Weighted Density is the sum over all layers’ calculated 

densities within a single class. 

   
0

CWD WLDs t s

t T

 
 

 
 

0 s S   (83) 

To use the calculated values in a probability scheme, thereby 

associating the classification with a probability of occurrence, the values of 

the CWD  for each class are calculated relative to those of the other classes 

to give the Class Probability. 
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0 s S   (84) 

The query point is then classified as belonging to the class which has 

the highest CP  over all classes, as this class is most likely to have seen the 

query point due to the density of similar points over all layers.  It may be the 

case that the class has the exact-same point in its highest layer, or the lower 

layers have a much larger density of similar points than those of other 

classes. 
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6.2.3 Experimental Results 

A 20000 vector data set [154], consisting of 16 dimensions per vector 

and describing written characters belonging to the standard 26-character 

English alphabet was used to validate the effectiveness of the above 

methodology.  The set was split into a training and classification set, with just 

under 15000 vectors being inserted into the memory during training and the 

remainder being used for validation.  Fisher’s Iris Data was also used as a 

secondary training set due to its commonplace use for validation in kNN-

alternative schemes, with just under 25% of the data set’s vectors being used 

for classification purposes (i.e. not seen during training).  The resolutions 

used for testing had a base value b  of 2-1 and a power value p of 2, due to 

the fact that the raw values were already integers and were no larger than 15 

in any dimension – any lower base values or higher power values would have 

resulted in different resolutions outputting the same values.  Comparison with 

the kNN classifier being sought to optimise returned the results displayed in 

Table VIII.  Evidently (and as expected), the true positive success rate is 

suitably high for the standard kNN approach to classification, with the single 

parameter of an adjustable k.  The highest correct classification percentage 

yielded for the letter recognition set resulted from classifying according to the 

single closest neighbour to the query point in this data set, at a time cost of 

over 2 and a half minutes.  Similarly for the Iris data the results were all as 

expected, with 100% classification across all variations.   

Table VIII Experimental results for Hierarchical Bloom Memory 

Data Set 
kNN Classification Hierarchical Bloom Memory 

k=1 k=3 k=5 
p=2, b=2

-1
, 

ω=2 
p=2, b=2

-1
, 

ω=5 
p=2, b=2

-

1
, ω=10 

Letter 
Recognition 

% 
Correct 

94.81 94.81 94.77 64.54 66.56 66.56 

Time 
(ms) 

162 073 162 631 163 042 858 2839 6784 

Iris 

% 
Correct 

100 100 100 100 100 100 

Time 
(ms) 

82 274 314 5 6 26 

With the Hierarchical Bloom Memory, whilst the highest correct 

classification percentage is less for the letter data, the time cost associated 

with such a result is at most just under 3 seconds (66% correct).  If the 

reduction by 2% in true positives is acceptable (to 64% correct), the time cost 
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further reduces to just less than 1 second (858ms).  The main advantage of 

this memory variant for the Iris data, as can be seen above, is the incredible 

reduction in time cost associated with the classification.  For no loss in the 

recognition rate, classification can be completed in almost 1/20th of the time 

when compared to the standard kNN approach.  As an aside to the results in 

the table above, where the test determined how well an untrained data point 

was classified: for direct classification of the input training set i.e. a check to 

determine how well the memory has recall ability, the time cost is 

approximately 6 seconds, with a correct classification rate of 97.3% for the 

letter recognition data and less than 0.01 second and 100% for the Iris data.  

Compare this with a kNN approach applied to the same letter recognition 

training data – with each value in the entire set being compared pairwise for 

distances to each other to determine classification – and it is evident that the 

Bloom Memory can recall stored data much quicker than utilising a kNN 

method which returns 100% correct classifications in 7.5 minutes when using 

a value of k=3. 

The Hierarchical Bloom Memory takes into account the density and 

weighting of the data points in the data set for each of the classes, providing 

a classification result in the form of probabilities of membership to each class.  

Density-based clustering has proven successful in identification of outliers as 

it considers sparse and dense regions within the data yet it has not been 

significantly employed for the purposes of classification based on the same 

principle, a fact observed by Plant et al. [155].   The authors introduce a 

classification scheme based on the local density of a query point, assigning it 

to the class in which it most appropriately fits according to the set of within-

class kNN and their densities.  Similar to the implementation of the 

Hierarchical Bloom Memory, the class determining process relies on a 

number of calculated factors based on the density of classes about a point, 

first identifying the mean distance between said point and the kNN belonging 

to each class.  This initial value of “Direct Density” is said to enhance the 

pure kNN approach to classification as it has no majority voting and therefore 

objects belonging to rarer classes have the ability for correct classification 

based on their density in a data set. 
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The secondary decision value determines the degree to which a point 

can be considered an outlier of a class, by first identifying the density of the 

class itself (average within-class distance) and then dividing the Direct 

Density by this “Indirect Density”, to arrive at a value approximating 1 if the 

point is situated within a distinct class boundary, and a value higher as the 

point is located further beyond the majority and can be considered as an 

outlier.  Assigning the point according solely to the outlier factor is shown to 

be ineffective where a point lies in similarly dense class regions, but 

combination with the Direct Density to assign it to the class with a low outlier 

factor and higher class frequency in the local neighbourhood proves more 

successful as it considers both the global and local regions about a point. 

This density-based method of class identification is somewhat more 

useful in sets with interweaved classes, where the boundaries are 

indeterminable and a data point isn’t necessarily going to belong to the class 

with a data point in the immediate vicinity, as in those sets employed for 

experimentation in the above authored work and this research contained 

here.  In the case of non-linearly separable data, quite often the classes are 

sparse and overlap so these similar methods of classification can prove not 

only beneficial in their result form (outlier factors and probabilities in the 

respective cases), but in their speed of processing large data sets and 

classification effectiveness when compared with the standard kNN approach. 

Whilst the Hierarchical Bloom Memory is effective in its operation in 

terms of speed over a standard search approach as evidenced by the results 

above, the storage space required is variable depending on results desired 

and can perhaps in an extreme circumstance increase on the memory 

utilised in storage of the raw data for a kNN approach.  The reasoning - whilst 

the performance speed will always be increased over the iterative process 

used by standard searches provided that the number of hash functions 

utilised is less than the size of the data set - is that classification performance 

significantly relies on the number of resolutions encoded within the memory, 

where a higher number of stored data resolutions results in greater accuracy, 

yet more layers.  As in the letter recognition set used above, at the lowest 

level (highest resolution) it may be that the stored values aren’t falling within 

the same data range as the query values, thereby resulting in a resolution 
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decrease to where queries fall in multiple classes according to density in that 

data range and performance correctness reduces (where in a kNN approach 

there would be no such experience).  A mid-resolution spanning both of 

these would perhaps increase in the classification accuracy at a cost of 

increased storage within the memory; therefore it is a trade-off between 

space and performance in this set-resolution approach. 

A variable resolution method with the ability to encode the pure data 

values and then assess a variable neighbourhood during the query process 

would increase the performance ability, without compromise of storage space 

and with a visible speedup in encoding.  Adapting the memory scheme to 

utilise more “intelligent” hashes generated by Locality Sensitive Hash (LSH) 

functions, as first described in [110], affords the encoding process the ability 

to act solely on raw values without need to pre-process to provide a multiple 

resolution data set. 

Locality Sensitive Hash functions are a family of hash functions which 

speed up the nearest neighbour search by hashing vectors considered as 

neighbours to the same locations with a higher probability than vectors 

further apart.  In a kNN application, LSH functions are employed to encode 

data vectors according to this principle into a data structure which at each 

location will then contain neighbouring vectors, therefore a query operation 

will return multiple vectors encoded at the hash location which then can be 

acted upon with standard distance metrics to obtain those k-Nearest 

Neighbours.  Rather than having to iterate through an entire data set and 

suffer from substantial computation in neighbour-finding, the LSH approach 

speeds up the operation to return only those vectors with a possibility of 

being neighbours on which the more detailed operations can occur to find the 

definitive neighbouring vectors. 

  Since their inception, multiple hash table-based applications have 

been developed to exploit the LSH properties to optimise the kNN algorithm 

[156 , 157], yet there has not been documented a technique developed in 

order to produce a classifier capable of both determining the most likely state 

for a query and its likelihood of membership using a similar approach to the 

density-based classification detailed above.  LSH implementations require 

the storage of the original vectors for detailed classification operations and 
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therefore data structures quite often exist alongside the original vector 

storage and act solely as look-up tables, thereby allowing for only 

computational speedup and not storage optimisation.      

For the application we deal with here and for general optimisation of the 

kNN IBL method, we remove the need to process a data set into different 

resolutions for storage within a Bloom Filter and replace the standard hash 

functions with LSH functions which are able to maintain the neighbourhood of 

similar vectors/points from the original data set when they encode the vector 

to memory.  This then removes the need for multiple resolution layers within 

the memory, as a check for similar points within a radius requires only a 

search of neighbouring buckets to the query instead of multiple checks to the 

layers within the previous memory implementation’s hierarchy.  The result is 

a more compact memory, consisting of much less entries over the HBM 

method and an increased operability due to the variable neighbourhood – the 

radius to be assessed in order to determine a possible/likely class for a query 

point can be adjusted to achieve the desired functionality and classification 

accuracy. 

6.3 Localised Bloom Memory (LBM) 

So called due to its ability to retain the proximity relationship between 

raw points, neighbours and their encoded counterparts, the Localised Bloom 

Memory modifies the previous Hierarchical Bloom Memory mostly through 

use of the Locality Sensitive Hash Functions and the initial data processing.  

Due to the nature of an LSH, there are certain parameters that must be 

defined in order to make the hashes usable in the memory application.  A 

simple LSH function can be described by: 

h
h

z v b
LSH



  
  
   

 (85) 

Where v  is the vector to be hashed and Z  is a family of random 

vectors, chosen at random from a Gaussian distribution, for example  0,1N .  

Another random value b  in the range  0,  is then added to the scalar 

projection which is then quantised by  , which is the width of the bin in 

which a data point may fall into.      is the floor operator.  Operationally,   is 
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akin to a resolution used in the previous Hierarchical Bloom Memory, as it 

determines how close two vectors must be in order for them to be hashed to 

the same bucket.  Ideally, similar vectors would be located in neighbouring 

buckets, so the accuracy of the hash in recreating a distance relationship 

from the d  dimensional space to the storage space is dependent on this 

value of  .  A larger   will result in more vectors hashed to the same points.  

Figure 49 graphically explains an LSH function, with the point v  here being 

hashed to the same bucket (9 here) as the last data point as its value of b  

falls within the bucket bounds of   on the projection vector of 
hz . 

 

          

1 2 3 4 5 6 7 8 9 10 
Figure 49 Geometry of Locality Sensitive Hash functions and resultant storage in a hash table 

If the data vectors to be trained are accurate to a value of 0.1, it would 

be advisable to set this value as  , where similarly integer input vectors 

would benefit from having the value of   set to 1 to ensure neighbouring 

vectors are only located 1 bucket away after the floor operation.  This value 

directly affects the size of the memory, m , if the family of random vectors Z  

adhere to the suggested values (  0,1N ), where     is the ceiling operator: 
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The value of m  is therefore at most equal to the sum of the projected 

highest value of each dimension, divided by the bucket width, due to the 

random vector family having a maximum value of 1 in each dimension – thus 

the maximum dot product is determined by the input vector alone. 

6.3.1 Encoding 

The size, h , of the family of random vectors ( Z ) is assigned according 

to accuracy of projection and in order to maximise the likelihood of 

neighbouring data vectors to fall into the same bucket.  As shown in Figure 

49, the single projection vector in this instance places two points (including 

the query) in the same bucket whereas another projection vector may not.  

Ideally, the number of random vectors should be large enough to ensure 

neighbouring projections whilst increasing the dataset compression amount.   

The encoding process for each vector in the data set can begin after the 

family of random vectors are defined, and follows the same operation as the 

previous memory but utilises the LSH function of equation (85) instead.  The 

encoded values are placed into the memory associated with the respective 

hash functions, where each vector (V ) is represented by a “hit” at a “bucket” 

much like the previous memory except this time the label of the vector (its 

index i, i.e. position in the training set) indicates its presence at that location 

(87).   

x i x
x

z v b
memory i



    
  

    

0 i n   
0 x h   

(87) 

The memory structure is as the previous would be but with a single 

memory layer per hash function.  From a visual perspective, the result after 

training should show activated buckets now appearing in clusters due to the 

locality properties of the hash functions maintaining proximities of similar 

points from the high dimension to the lower dimension.  Figure 50 illustrates 

an example layout of the Localised Bloom Memory, where it can be seen that 

a higher concentration of points hash to the same “central” values of a cluster.  

On the two projection lines of 1Z  and 2Z  it can clearly be seen that data points 

do hash to different locations, yet both hash functions return memory arrays 

in which points considered neighbours are located next to each other.  The 

more hash functions used, the more likely it will be that neighbouring points 
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in the original data space hash to more neighbour locations in each array, 

thereby increasing certainty of neighbour relationships between vectors.  It 

can be seen that our example vector 
1V  with hash function 

1Z  is placed in a 

location with 
3V  and 

5V , despite being either side of the projection line and 

therefore not classifiable as a neighbour.  However, with 
2Z  we find a more 

reliable projection where 
1V  is placed in the same location as 

10V  which is in 

the immediate vicinity of our example vector. 

Examination of the buckets either side of the location of 
1V  returns again 

values considered more as neighbours, and it is in this property that we find 

the exploitable advantage over the Hierarchical approach as we can identify 

likely neighbours by expanding our bucket search rather than having to 

encode separate vectors for every resolution. 

Unlike the Hierarchical Bloom Memory (Figure 46 and Figure 47), the 

bucket positions in the Localised variant contain indexes of encoded vectors 

rather than a “count” of hits for a state.  This could theoretically result in a 

bucket holding a record of every single vector in the training set, however 

provided the number of LSH functions is less than the dimensionality of the 

training data there is always going to be an element of compression in this 

memory over the storage of the raw vectors.  Comparatively with the HBM 

approach, the LBM implementation also improves on the storage as it stores 

only h  rather than h T  values per vector in a single table.  

As a consequence of the storage of indexes rather than vectors, there 

must be an index catalogue which indicates to which class each of those 

stored indexes belong (Figure 51).  The indexes of the vectors are stored in 

ranges with a corresponding “class” association - this removes the need to 

store the data vectors themselves as in a traditional LSH Bloom Filter, where 

each of the vectors are also stored for recollection [112], as the actual values 

of the vectors and their distance to the query point are not used to determine 

the class of the query point but only the density of those classes surrounding 

it within a given radius.   
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     Element to be stored     
     [X1, X2, X3, … Xn] = V1     
        ↓        
     HASH OUTPUTS     
     h1 = 07     
     h2 = 09     
        ↓        

h1 
01 02 03 04 05 06 07 08 09 10 11 12 13 

- - - V9 V2 
V4 

V7 
V5 V3 

V1 
V10 V8 V6 - - - 

h2 
01 02 03 04 05 06 07 08 09 10 11 12 13 

- - V2 
V7 

V9 V5 
V3 V8 V6 - V4 

V1 

V10 
- - - - 

 

 
Figure 50 Construction of Localised Bloom Memory with one memory array used per hash 

function and a 2D representation of the LSH functions (here there are 2 hash functions, Z1 and 
Z2 producing hash values h1 and h2) 

 

 1 1, nV V        2 31,n nV V       3 41,n nV V     

α1 α2 α3 α4 α5 
Figure 51 Construction of the index catalogue that accompanies the main Localised Bloom 

Memory structure for an example set of 5 classes 
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The first step is to cluster the input vector data  1, NV V  into classes (
s ), 

assigning each member (
xV ) a consecutive index value such that the entire 

set is ordered and in distinct classes, as in Figure 51 where a member range 

is equal to the next index after the last class member,    1 1,n s n sV V    .  

The catalogue is then constructed such that each of these ranges is assigned 

the class to which it represents, so that a simple check of the Bloom Memory 

returning an index can then return its member class by a lookup of the range 

into which that index falls in the catalogue.     

The storage of additional, unseen vectors after training is also very 

simple in comparison to other methods, as just the index of the new vector, 
iV , 

is determined according to its class 
s  in comparison to the current catalogue, 

and the memory at the required hash locations is updated as with any other 

vector encoded during training (88).   

1

1s

n n

i

V V





 


 1i n N    (88) 

Once a new vector is to be added to the memory after training, the 

class to which it belongs  s  will increase its membership number by one.  

This will result in the index of the new vector being additional to the last index 

present for that class, thereby increasing that class’ range:   1n sV   .  

Subsequently, all other indexes for the other classes in the catalogue also 

increase their values by 1 to accommodate the increase in stored vectors.  

For instance, a new vector which is associated with class 2  in Figure 51 is 

added to that range so the new range effectively becomes 

   1 21, 1n nV V    .  Subsequently, all index points in the memory greater 

than  2 1nV    now increase by 1 to make space for the new vector in class 

 s , which is inserted at the relevant hash locations in the respective 

memory.  Then the catalogue index ranges above the inserted point simply 

increase by one also and thus the memory has expanded to include the new 

value.  Subtraction of a data point from the memory, perhaps due to 

irrelevance at some point in the future, simply reverses the procedure. 
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6.3.2 Querying 

Again the retrieval method for this form of memory differs from the 

typical Bloom Filter, yet the operation is akin to the standard LSH recall 

procedure with “bucket” checking.  There is no chance of collisions between 

data vectors because each vector has its own record in separate hash 

function memory layers, so once located at the hash locations there is 100% 

certainty that a point is encoded within the memory at the same location.  

This, however, is the variable element of this system: the size of each 

location.  Neighbouring points are required to be encoded to neighbouring 

locations, thus the resolution decides what is considered a “neighbouring 

point” in the context of the training set.  To query a data point, what is 

essentially required is to determine how many points lie within its 

neighbourhood and identify which class has the highest density and therefore 

probability to take ownership of the data point. 

Due to the nature of the LSH functions, the radius which identifies as 

the neighbourhood can be variable unlike in the previous Hierarchical 

variation with its “set” resolutions.  This is a significant advantage of this 

memory in the variability of the querying operation – once the data is stored, 

it can be operated on according to the application i.e. a wider radius to 

consider will possibly take into account an entire class in one operation, 

whereas a smaller radius will decide on the query point class based on 

immediate density.  Thus, the querying operation first requires consideration 

of the radius step ( stepr ) and the maximum radius ( maxr ) in order to determine 

whether the query vector QV  or a neighbour is present (
xT  is 1 or 0 depending 

on presence or not, respectively) in the hash function layer, 
xmemory .  J  here 

is the set of all indexes seen at all locations queried, with the presence of the 

query or a neighbour indicated if a member of the set is seen over all h hash 

function layers (89).  

x Q x

x

z V b
J memory r



     
    
      
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The radius search of bucket locations begins at 1 radius step, which is 

essentially the direct lookup of the query point’s hash locations if the 

step/resolution is 1.  If however the radius step is greater, the number of hash 

buckets considered for 1 radius is larger and thus a larger area about the 

query point (as in Figure 48) at each radius is considered.  As before, each of 

the hash locations examined in the query process must contain a record of 

the same index point in order to be considered a storage location of a single 

point (90).  With the expanding radius, however, the decision to state that a 

point is located in the neighbourhood of the query point can only be made 

once the maximum radius has been reached and all seen points are 

examined.  Thus an indexed vector is only considered a neighbour of the 

query point if it is seen h  times throughout the neighbourhood check.  The 

radius at which the point is seen is determined to be equal to the maximum 

radius step at which one of the hashes identified it, and it is at this point that 

the index is checked against the catalogue and its class is recorded as being 

at this radius. 

As with the hierarchical implementation, points located within the same 

immediate locality (1 resolution step) as the query point have an influence of 

1 on the location of the query point.  As each radius, r, is to be one more than 

the previous, then the influence factor is ½ that of the previous: as in theory 

there is twice the radius into which a point may fall around the query point.  

Within each radius, there will be multiple steps whose buckets will require 

checking and summing to give the total points within a radius.  Once the total 

number of points at each radius for a class has been found (  sr  ), the 

scheme progresses like the Hierarchical Bloom Memory in order to ascertain 

a density value for the class.  The Layer Density of (81) becomes the Radius 

Density: 
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The weighting of the density is then taken into account: 
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(92) 

At which point the Class Weighted Density and the Class Probabilities 

can be calculated, with the above new terms. 
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The query point is then classified as belonging to the class which has 

the highest CP  over all classes, as this class is most likely to have seen the 

query point due to the density of similar points over all radii. 

6.3.3 Experimental Results 

Table IX Experimental results for Localised Bloom Memory versus kNN and the standard LSH 
Bloom FIlter 

Data Set 

kNN Classification 
Localised Bloom Memory 

LSH Bloom Filter 

k=1 k=3 k=5 
ω=0.001, 
rstep=5, 

rmax=4000 

ω=0.01, 
rstep=1, 

rmax=450 

ω=0.01, 
rstep=1, 

rmax=400 

Letter 
Recognition 

% 
Correct 

94.81 94.81 94.77 
80.5 

80.17 
85.03 
81.27 

74.71 
73.96 

Time 
(ms) 

162 073 162 631 163 042 
99 309 
99 000 

65 302 
64 295 

38 260 
38 200 

        

     

ω=0.01, 
rstep=1, 
rmax=50 

ω=0.01, 
rstep=1, 
rmax=40 

ω=0.1, 
rstep=1, 
rmax=5 

Iris 

% 
Correct 

100 100 100 
100 
100 

100 
100 

100 
100 

Time 
(ms) 

82 274 314 
7 
7 

5 
5 

4 
4 

The same data set as used before is submitted to the Localised Bloom 

Memory in order to validate the effectiveness of the above, modified 

methodology.  The set was again split into training and classification sets, 

with none of the classification set being directly encoded into the memory 

before being presented for testing.  The resolution  , radius step stepr  and 

maximum radius maxr  are all variable, and the results of multiple combinations 
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can be seen in Table IX.  For these experiments, the hash number h  was set 

at 10. 

A correct classification is considered to be when the highest percentage 

of likelihood belongs to the class that matches the actual class of the query 

point.  In reality, the output of the scheme is a series of probabilities that 

when combined further with other methods, i.e. Hidden Markov Models for 

time series modelling within Verity, will enable the correct state to be chosen 

based on more than just the classification percentage.  

For the new LBM, the most accurate set of variables was found to 

achieve a correct classification rate of 85.03% with the Letter Recognition 

data.  With Fishers’ Iris Data, consistent correct classification rates of 100% 

for unseen data were returned, again at a fraction of the time required to 

compute values for the kNN operation.  The Iris results show that the density 

calculation methodology with locality sensitive hashing can improve upon the 

standard nearest-neighbour approach, as more properties of the data set are 

considered than solely the proximity of data points in a significantly shorter 

time.  To possibly improve on the LBM performance with the Letter 

Recognition data, the number of hash functions was increased to 30, with 

resolution, step and maximum radius set at 0.01, 10 and 450 respectively.  

Whilst the storage requirement increases over a raw vector and kNN 

approach at this hash number, the performance for classification increases to 

88% in a time of 100419ms – another speedup in classification over kNN for 

a drop of only 7% accuracy for a large data set. 

Whilst carrying out the experiments with the new Localised Bloom 

Memory, a test was run at the same time to assess the accuracy when 

compared with the standard LSH method.  As LSH functions store data in a 

compressed format yet retain the proximity values of the high dimension, 

typically alongside the raw vector data a hash table can be maintained 

containing the compressed, indexed data.  This enables much faster 

searching through all vectors to determine the closest as in a kNN approach: 

the values within the “radius” of a query point are the only vectors to have 

their Euclidean Distance to the point determined, rather than the entire data 

set.  The speed improvement over a kNN approach does rely on a trade-off 

with the maximum neighbourhood radius, however, as can be seen in the 
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earlier tests.  The difference in accuracy between the new density calculation 

method and the nearest-neighbour approach with the LSH method is very 

small (all tests with the Letter Recognition and Iris data returned differences 

of just ~1% in favour of the new method), but with improved accuracy seen 

as the variable parameters are more adequately identified.  In many cases, 

the nearest neighbour to the query point within a specified radius would not 

indicate the correct class, whereas the consideration of multiple points and 

their density in relation to the query point returned the correct classification. 

 
Figure 52 Letter Recognition Data Set results with both Hierarchical Bloom Memory and 

Localised Bloom Memory variants in comparison to the standard kNN 

Whilst unable to significantly rival the standard kNN results for 

correctness in large, high-class density data sets such as that of the Letter 

Recognition, the reduction in storage space when optimal hash numbers are 

chosen and the expandability of the memory provide advantage over usage 

of the standard LSH operation to determine the nearest neighbours for 

classification of unseen data points.  In comparison with the Hierarchical 

Bloom Memory (Figure 52 and Figure 53), this variant may be slightly less 

time-efficient yet the storage space is significantly reduced and performance 

increased when the optimum number of hash functions (for compression i.e. 

less than the dimensionality) is employed. 
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Figure 53 Fisher's Iris Data Set results with both Hierarchical Bloom Memory and Localised 

Bloom Memory variants in comparison to the standard kNN 

6.4 Reasoning 

The idea of Bloom Memory takes inspiration from the natural processes 

observable in the brain during the stages of object and element recognition, 

with inferably similar properties to some beliefs about the various memory 

centres present in adults.  What has been identified through study of the 

brain is that recognition occurs in multiple areas at the same time [158 , 159 , 

160], depending on the subject and context of the element being recognised.  

[161 , 162] highlight the common belief that recognition involves the 

interaction of multiple functional components; whilst not discussing the 

evidence to support the subsequent notion that these functions exist in 

various brain areas, it is noted that cerebral injury can impair the ability to 

accurately recall information that would otherwise be easily retrieved had all 

brain areas remained “intact”.  Along with work such as that by Marr [163] 

and Van Belle [164], there is strong evidence suggesting that familiar objects 

are not represented by single active properties stored in some recognition 

centre in the brain but that a set of properties are needed in order for 

successful identification and that recognition can also depend on the physical 

arrangement of these properties as much as the properties themselves.  With 

the Bloom Memory, the entire storage bank is required to be present in order 

to accurately and effectively return results as to whether an instance is stored 
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in the memory – if a portion of the bank is lost, the memory system is 

rendered ineffective in much the same way as trauma would affect natural 

recognition.  The capability for deletion of an instance in the memory can be 

likened to selective memory or some form of approved forgetfulness, where it 

may be the case that the storage in the memory requires reassessing for 

optimisation and so unused or irrelevant material is disposed of to make 

room for more useful elements. Each hash function must also return the 

same value of membership in order to successfully acknowledge the 

presence of an instance in the memory, again mirroring the theory that in 

humans all evidence must be available in order to determine the identity of 

an element or object.  With the pseudo-random outputs of the hash functions 

for the resolution-based memory there is also similarity to neuronal activation 

in the human brain, given that there is no consistent theory of why specific 

neurons in the brain activate when they do upon the observation of an 

instance and they are not always localised to one area in a brain region.  

Conversely, the localised hashing scheme of the latter memory also mimics 

activation of neurons in local regions when similar instances are observed – 

enforcing connections in that area. 

The storage of decreased resolution instances which generalise 

multiple higher-resolution instances is given credence as an algorithmic 

physiological equivalent, as in the literature it has also been shown that 

considerable modification of an image to be recognised does not necessarily 

limit our ability to determine its identity.  [165] and [166] worked with 

extremely low resolution and degraded images, yet reached the conclusion 

that even with the reduced visual information the recognition rate was still 

high, thus indicating that class identification is still possible after a significant 

reduction in data resolution.  [167] noted that the ability to tolerate 

degradation in data increases with familiarity – that is to say that missing or 

altered values in a data object will have less impact on its probability of 

recognition if the object is in context.  

Taking on board the above points regarding similarity to biological 

memory and the effectiveness of each of the bloom-variants described here, 

the benefits of employing either in a suitable application are numerous when 

considering the possible alternatives.  Whilst the Hierarchical Bloom Memory 
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is simplistic in its implementation, from the Iris Data’s experimental results it 

is obviously considerably effective at generalising the properties of this 

nonlinear and relatively high dimension data set and therefore results in 

superior speed for the same performance over other comparable 

classification methods and certainly improves on the storage requirements 

and time complexity of the standard k-Nearest Neighbours approach to 

classification in the high dimension space.  The Letter Recognition test data 

is not so suitably classified with the HBM variation, due to the fact that at the 

lowest resolution it may be that a value is not covered by the appropriate 

range and therefore results in a lesser-certain classification.  Improvements 

to the resolution determining stage would possibly increase the reliability of 

classification in significantly larger data sets (over the 4 dimensions for the 

successfully classified Iris Data) however some testing is required to 

determine the best parameters for each data set encoded with the HBM.  The 

Localised Bloom Memory returns a higher rate of recognition than the 

Hierarchical variant for previously unseen points with the Letter Recognition 

Data, with a further significant advantage that the radius considered for the 

density calculations can be increased if necessary to further incorporate a 

larger area in the data space.  The main advantages of both scheme’s usage 

in the classification application is the returning of a value which can inform of 

the reasoning for a classification rather than simply acknowledgement of 

membership, i.e. if a point bears similarity to surrounding points, the density 

value reflects this and the classification is assigned accordingly.  Both 

variants perform suitably well with the smaller Iris Data set, though it can be 

argued that due to the slight time cost difference the Hierarchical variant is 

more suited to smaller sets and thus the Localised more apt at classifying the 

larger sets as in the case of the Letter Recognition data – however theory 

would indicate that both can prove adept for classification when provided with 

adequate parameters for the data set in question.   

An application in which there is a requirement to classify data that is 

intrinsically familial will therefore benefit from utilising these density-based 

memories so that possible outliers can be identified and further investigated if 

the application requires it.  Both memories have their merits with respect to 
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the classification of data, however it is also in the reduction of storage space 

for large, high-dimensional data sets that they possess a significant benefit. 

6.5 Summary 

This chapter has introduced two new storage, recollection and 

classification schemes for data sets that either have high dimensionality, or a 

considerable amount of data requiring significant compression in order to be 

of use in a classification application.  The identification of the requirement for 

the development of these schemes arose due to the necessity for optimising 

the classification operation detailed in the previous chapter, whereby large 

data sets of high dimensionality were required to be significantly processed in 

order to increase their usability in the Verity behaviour monitoring application.   

Where previously the classification decision came from the proximity to 

an already encoded/trained data point in a transposed, lower dimension data 

space (thus introducing an element of uncertainty with regards to training-

data-positioning) – the principles of the above developed memories allow the 

data to be encoded in a relatively “pure” form, thus maintaining their 

localisations within the data set and allowing successive data points to be 

classified according to direct proximity in the high dimension space, with 

much less processing than any other method.  Both methods exhibit an 

increased usability in the event of storage of subsequent data points possibly 

arising from correct classification, where the previous dimension reduction 

technique would require complete re-evaluation of data-describing prototypes 

in order for the new point to be included.  The Bloom Memories here are 

more suited to real-time operation in cases where a kNN approach would 

prove beneficial yet storage space is limited. 

Evidence of both schemes’ effectiveness was provided through 

commonly used data sets as before, with the results of the Localised Bloom 

Memory proving statistically adept at classifying unseen data points in high 

dimension data sets based on a kNN approach, where the Hierarchical 

Bloom Filter improves on classification speed in lower dimension data sets 

where parameters for nearest-neighbour determining are more inferable from 

examination of the training data. 
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Chapter 7 

Behavioural Change Detection 

and the Combined Behaviour 

Monitoring System 
This chapter details the behavioural change detection scheme 

employed within the Verity system in order to identify and alert the user or 

carer to issues which may be evident through analysis of the wearer’s 

behaviour patterns over time, or even be immediately visible after they exhibit 

a specific series or sequence of states.  The principles take their inspirations 

directly from those implemented in current industrial and personal monitoring 

systems, and are programmed into the graphical interface further detailed 

here, used to simulate real usage of Verity in a typical scenario.  The 

simulation is shown to be suitable enough such that the algorithms and 

methods detailed in the preceding chapters provide adequate and accurate 

bases for inclusion within the actual Verity application. 
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The models documented within this thesis were developed with the 

intention of applying them to the behaviour monitoring system of Verity.  For 

the effective operation of Verity in identifying anomalous or erroneous results 

regarding a user’s behaviour, there must be a method of locating those 

states and state sequences exhibited by the user which are deemed out of 

context given their typical usage scenarios. 

7.1 Detection of Possible Behaviour Issues 

The HMM is a probability model: providing most likely sequences and 

states at individual time steps.  It is driven by probabilities determined by 

numerous means: be it through testing, with adaptive optimisation algorithms 

or the newly developed techniques contained herein which identify 

probabilities based on patterns and/or clustering.  The probability returned for 

the activation of any state not only provides information about that which is 

most likely, but it can also be interpreted as a value which classifies its 

degree of anomalousness, where low probabilities denote deviations from the 

norm [104 , 168].   

The following identified types of anomalies are purely technical 

identifications and not associated explicitly with a specific reasoning for their 

existence according to the users’ health status.  Any errors arising from a 

deviation from what is expected are based solely on probabilities as 

determined by the models employed within Verity and are not explicit 

indicators of illness or behavioural concerns but are instead to be treated as 

early indicators of possible problems that the user may exhibit over extended 

observation once an error scenario occurs.  These 4 instances do not by any 

means constitute an exhaustive list of all detectable problems with a user, 

and instead are identified as those of key significance to the Verity system in 

its current state.  We desire not to develop another interfacing model for the 

detection of problems and instead place specific emphasis on utilisation of 

the HMM and its constituent parts as outlined in this work due to their 

collaborative ability to produce probabilities interpretable as certainty values. 
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7.1.1 Type1 Anomaly 

This first form of anomaly can be explained in terms of  t i : the 

Forward-Backward probability of the user being in a certain state i at time t 

given the observations and model; and  ˆ
t i : the Viterbi probability of the 

user exhibiting the observations in state i at time t, given previous states and 

observations: 

     
1

1

ˆmax arg maxt t t
i N

i N

e t i i  
 

 

 
        

 
 1 i N   (95) 

Due to state probabilities decreasing as the Viterbi algorithm 

progresses (the probability is for the state terminating the sequence),  ˆ
t i  is 

required to be rescaled thus: 
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(96) 

The error therefore is the difference between the probabilities of the 

winning state determined by the FB method and the probability of the 

corresponding state from the Viterbi method.  As the value of  e t  tends to 0, 

the model’s sequence determining methods will be producing similar 

estimations of the user’s state.  It can therefore be said that the certainty of 

the observations being produced by that state is high, given that according to 

both observation sequence and state sequence transitions both methods 

produce the same result.  In the instances where the values differ 

significantly i.e. tend closer to 1, the certainty of the state producing the 

observations at that time step is lessened due to the larger disparity between 

both methods.   

This type of anomaly detection algorithm can inform whether the 

observation is unlikely to have occurred in that scenario, even if the Viterbi 

algorithm makes sense of it as a part of the state sequence.  In such a case, 

there is significant possibility that the Hidden Markov Model parameters are 

insufficiently defined for explicit detection of the state in question, with 

observation or state transition probabilities incorrectly approximated for use 

within this variation of the model for this particular user. 
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This is closest to the Output Observer (OO) method of fault detection 

[169], comparing the real, instantaneous observation sequence probability as 

determined with the Forward-Backward calculation with the nominal state 

sequence based probabilities from the Viterbi algorithm.  The residuals are 

therefore computed as the difference between the probabilities of the current 

state determined through both methods to give a certainty measure.  The 

residuals should be low when fault free (i.e. greatly certain if both methods 

return the same probability), therefore enabling the detection of faults through 

a simple threshold test [124 , 170].  

In the event that the type1 anomaly is detected in the system, it signifies 

that the model being used to describe the user is incorrectly defined, with the 

parameters providing the probability values for each state possibly over or 

underestimated based on human knowledge or inferred from the training 

cases, depending on the probability determining model currently employed.  

In the case that the Hidden Markov Model is employing the Fuzzy Inference 

System as a means of identifying observation probabilities based on the 

human-defined, weighted fusion of the sensor readings, one solution to the 

error is to check with the user directly through vocal interaction (as explained 

in Chapter 3) as a means of recalibrating the membership functions or rules 

governing that observation or transition probability.   

If the observation probabilities are at fault in the Dimension Reduction 

and Classification scheme, there is likelihood that the set of training 

examples used did not encompass a situation where the observations 

described the determined state adequately enough, therefore the prototypes 

incorrectly surmised the data: leaving the subsequent unseen observations 

producing the error with an extrapolation of a probability from existing data 

rather than an explicitly defined one.  What would be required in this instance 

is a re-training of the prototypes with this new value after similar confirmation 

with a user that they are not experiencing any other problems at that instant, 

perhaps due to the fact that as part of a state sequence the observed sensor 

values don’t match those expected and thus indicate an erroneous behaviour 

from the user. 

Again in the Bloom Memory implementation of probability determining, 

the density of training points within the Memory Layer may not be significant 
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enough to indicate a satisfactory probability of existence for the observation 

vector, therefore there is yet another requirement to insert this value into the 

memory after another confirmation process such that subsequent instances 

of this vector’s appearance are accounted for. 

7.1.2 Type2 Anomaly 

A type2 anomaly is based further on the certainty of the winning state.  If 

the probability of the winning state occurring (
winP ) is close to the other states’ 

probabilities, its certainty (  ) is lessened due to the possibility that the 

observation falls close to a boundary used in the probability determining 

process: i.e. it has very little dominating likelihood of occurring in the current 

winning state if only a slight change in one of the sensor readings will result 

in the returning of another state.  For all active states (with the exception of 

the scenario where the winning state is a single active state), the proximity to 

the mean of the probability over all those states is calculated.  When the 

probability is close to the mean, the instance can be deemed uncertain (   

tends to 0). 

 t iP q S    

  : 0t ii P q S   
1 i N   (97) 

winP    
 

(98) 

In the case where the value of   falls within a specified threshold to 

indicate significant uncertainty it can be said that state transition and 

observation probabilities are again misdefined in the behavior recognition 

model.  Unlike the previous error however, this would not arise due to an 

observable anomaly with the user (such as exhibiting a behavior typical of 

another observation) as the parameters involved are all single model-based, 

i.e. they don’t compare different state determining methods and therefore are 

a result of the defined probabilities being imprecise.  Here the transition 

probabilities can be reassessed to ensure the weighting of an observation 

after being seen in a certain state is significant enough to overcome the 

threshold value and enhance certainty, or again the observation probabilities 

can be checked and the appropriate probability determining scheme updated 

accordingly as indicated for the previous anomaly. 
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7.1.3 Type3 Anomaly 

An equally likely scenario develops when the observation witnessed 

does not belong at all in the sequence – that is, it is not emitted from a state 

which can be transitioned to from the current state, which, in our ergodic, 

interconnected-state model would indicate the presence of a new unseen 

state or observation from a currently defined state not seen or considered 

before.  This will result in the model returning an error given that the most 

likely state now has a probability of 0 due to the insufficiently modelled 

observations, behaviours and their transitions.  Detecting such an error 

primarily requires monitoring of the relevant observation probability 

determining scheme returning the values to the Hidden Markov Model, where 

if the probabilities over all states having seen observation O  is 0, the 

inference is that the model has not seen such an observation before and 

therefore requires either reassessing or triggering an alert as per the 

standard procedure of user interaction (Verity communicating via speech), 

with alert type3 as the cause: 

   
1

N

all t j t

j

P O b O


  1 t T   (99) 

An instance where this form of anomaly could arise is likely if not all 

possible observations and associated states were captured during the 

training phase, or if the user exhibits a behaviour typical of an unprogrammed 

state which is subsequently required to be included.  In an instance where 

the observation is indicative of a serious issue with the user, i.e. a stroke or 

heart attack indicated by increase in temperatures and heart rates, the 

observation would either trigger this type of anomaly due to the state not 

having been seen during training, or the type4 anomaly described below 

which detects a difference in detected state at an instant and the detected 

state as part of the entire sequence. 

For the scenario where type3 anomalies are detected, the model 

requires updating to include the new, “safe” state if the user agrees that it is a 

standard state in which they can be observed (or parameters of current 

states adjusted to incorporate the new observation as explained for the 

previous anomalies), or the alerting of an external carer or service to the fact 
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that the user is exhibiting erroneous behaviour.  Both solutions are executed 

through communication with Verity through the speech recognition module. 

7.1.4 Type4 Anomaly 

A type4 anomaly is a slight variant on both type3 and type1 anomalies 

and can occur simply when the state at a time step differs for each state 

determining method within the HMM i.e. the Viterbi state ( *tq ) and the 

winning state according to pure observation probability (  j tb O ) do not match: 

 
1

* arg maxt j t
j N

q b O
 

    .  Factoring in the probability based purely on the 

observation (  j tb O ) affords the ability to assess whether or not the 

observation and determined state are equivalent in their likelihoods, as 

suggested above: if the observation probability is highest for perhaps the 

state of Running, yet the determined state according to the Viterbi method 

( *tq ) returns Sleeping with higher probability over its Running probability, this 

may in fact indicate a period of distress for the user such as in the instance of 

a heart attack or some other such observable problem.  The probability from 

Viterbi is rescaled as in (96) to give  ˆ
t j , which is then compared with  j tb O  

rather than the Forward-Backwards’  t j  as in type1, after the condition of 

their output state-difference is met: 

     
1

ˆ * arg max,

0, otherwise

t j tt j t
j N

q b Oj b O
C


 

    
 


 1 t T   (100) 

 
1,

0, otherwise
t

C k
e O


 


 
 (101) 

Where here k  is some decimal constant in the range  0,1  used as a 

threshold to identify whether or not the difference between the two differing 

states is significant enough to trigger an alarm.  The returned states must first 

be identified as different before the identification of by how much, however, 

so that instances where the same state is determined but with differing 

probabilities are not misclassified as errors when in fact they are just 

“unlikely”.  It is these misclassifications that are handled by type1 and type2 

anomaly conditions, where the likelihood of the state is addressed rather than 

the disparity between two differing states. 
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As well as identifying possible occurrences of serious health problems 

such as heart attacks, when viewing the entire state determining process as 

a whole sequence - perhaps after a significant period of monitoring - this 

type4 anomaly will prove quite useful for the detection of behaviour changes 

as it has the potential to highlight instances where the user exhibits 

behaviour not considered likely according to the transition probabilities 

programmed at the start of the process.  Where a non-threatening state is 

observed (i.e. the user has in fact begun a higher level of exertion 

immediately from a rest period, thereby triggering a Sleeping to a Running 

state change) then the transition probability between the two requires 

amending to allow for such an observation sequence, through the interactive 

speech confirmation process implemented within Verity.  

7.1.5 Further Anomaly Detection 

One suggested mode of operation for behaviour classification and 

associated error detection would be to break the monitoring process down 

into “blocks”, with a single block representing a certain time period in the 

user’s day during which observations and states can be taken and compared 

with those from previous days, where all states and the above error types 

calculated for a block on one day are simply compared with one another for 

discrepancies – the theory being that over a period of time if all errors are 

seen within similar periods on different days, the user is exhibiting a constant, 

unusual behaviour that needs further investigation or reconsideration of the 

model and parameters used. 

Thresholds can be set which trigger alarms when the comparison 

between states, their probabilities or error values in a specified time period or 

“block” is too large to be acceptable as part of a standard routine.  A block, 

for example, may be considered to be variable and consist of an expected 

period of activity or linguistic description of the part of the day to which it is 

associated. Figure 54 describes a possible scenario for a user that forms a 

full description of their day.   

The blocks describe the periods of the day tailored to the user, thereby 

providing the system with a standard expected series of observations based 

on the time period with which to compare previous results and those within 



Behavioural Change Detection and the Combined Behaviour Monitoring System 

164 
 

the block itself.  The sleep period, for example, would comprise primarily of 

low acceleration, low heart rate and a relatively constant temperature – 

properties assumed from experience and knowledge of the scenario.  

However, the Morning, Afternoon and Evening periods are significantly 

variable on a daily basis and may have to encompass activities such as 

shopping, cleaning or situations like bathing and washing up.  These variable 

periods would cause the most conflict on a daily basis if compared with 

previous days, as with any user there is no guarantee of a “set” pattern of 

activities.  

Hour 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

                

                        

                        

                        

                        

                        

                        

                        

 

 Sleep Period   Breakfast   Morning Period   Lunchtime 
                       
 Afternoon   Teatime   Evening Period   Sleep prep 

                       
Figure 54 An example breakdown of a user's day into descriptive blocks 

These block descriptions have the ability also to scale to larger time 

frames where for analysis such periods as weeks, months, seasons etc. can 

be assessed with previously captured periods for all the error types described 

above and possible issues identified with the user as a result (health issues 

or care requirements, for example).  Whilst some detectable anomalies such 

as types 1 and 2 can be considered to be errors with model parameters more 

so than with the user, the type 3 and 4 anomalies would be more serious if 

detected immediately as they indicate a problem scenario is currently 

unfolding that requires immediate attention.  However, when the probabilities 

as determined by the type4 anomaly are compared over time – perhaps with 

this block method – there may be seen to be a slow change in the user’s 

behaviour as they move more to exhibit one state at a specific time instead of 

another, thereby indicating a general shift in behaviour patterns that either 

need investigation as an indicator of slower-onset health issues, or simple 
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model adjustment with supervision from a knowledgeable professional who 

can make sense of the cause of change.  As discussed in Chapter 2, time-

series and sequence analysis of a user’s daily (or weekly, or other large time 

frame) behaviour in order to determine errors and possible faults is a large 

field of research that requires more in-depth analysis than is addressed in 

this work, however with a starting position such as this identified with the 

above errors and reasoning, there is a significant enough basis on which to 

develop further techniques which utilise our developed models to build a 

complete behaviour monitoring system for the elderly and those requiring 

constant care.   

7.2 The Combined System in Simulation 

Throughout the research work detailed in this thesis the primary aim 

has been to develop the decision making and probability determining 

mechanisms for inclusion in a personal and wearable device, Verity, used for 

the constant behaviour and state monitoring of an elderly or infirm user.  As a 

result, the techniques developed have been tailored specifically to the 

problems identified at each stage of the practical system’s development and 

those which have arisen as the result of the implementation of a previous 

technique. 

 
Figure 55 Combined Behaviour Monitoring System test configuration 

 

User 

Wrote on wrist 

Base Station 

Computer 

Temperature Acceleration Pulse 

Direct Contact 

Wireless Communication 

USB Wired Connection 



Behavioural Change Detection and the Combined Behaviour Monitoring System 

166 
 

For ease of algorithm testing, visualisation and debugging, the multiple 

algorithmic systems developed for the research were combined in software 

for simulation to assess their inter-operability such that once the device is 

complete, they can simply be programmed into their respective device 

locations ready for use with the observation-gathering sensors. 

A combination of software environments were used in order to optimise 

the simulation process, with different programmes employed according to 

their suitability for the task at hand.  MathWorks’ Matlab is most suited to the 

rapid visualisation of data in graphical format, with the object-oriented 

language of C# programmed with Microsoft’s Visual Studio allowing for easily 

modifiable and application specific graphical interfaces for complex 

algorithms running on a standard home computer. 

With the Wrote situated on the user’s wrist transmitting sensor readings 

wirelessly through the paired-Sensium CC981 control chips to the Verity 

base station – which is connected to the computer via a COM port through 

USB (Figure 55) – the Visual Studio software began to update the specially 

designed graphical interface with which the observations and state results 

can be viewed in real-time.   

With the system now ready for operation, the readings from the sensors 

were gathered and assessed in order to formulate a series of initial rules and 

to define the parameters for transition, as per human knowledge.  The data 

gathering with Verity resulted in a series of 30 data readings (Table X) 

obtained from the sensors over the course of operation, each with an 

attributed state which was observed to have produced such readings.  Based 

on these readings and the known state that was producing them, the 

membership functions and rules were constructed using human knowledge of 

the situation/observation relationship.   

It is worth noting that the readings returned by the preliminary test with 

Verity do not match those used during the simulated experiments in previous 

sections, with some ranges and values exhibiting considerable differences to 

those originally used.  In Table X it can be seen that the ambient temperature 

does not fluctuate at all, primarily due to the fact that all states and 

behaviours were observed in the same environment.  Contact temperature 

does not centre on an expected 37°C, but instead is around 10°C lower due 
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to the thermal characteristics of the sensor and its placement on the user’s 

wrist.  In practice, this does not affect the system as all values can be seen 

as arbitrary and only used as indicators of a state, with scale being 

inconsequential.  The pulse also varies by a minimal amount, though a 

marked increase can be seen in the higher-motion instances of the later 

states; the motion here is also greater than the original range specified and 

serves as a significant indicator of state – with the earlier, more docile-

appearing behaviours being reflected with a lower value.   

Table X Verity Data obtained during Testing and Simulation 

No. Ambient Contact Pulse Motion Orientation State 

1 28.699 28.776 76.142 0.000 1 2 
2 28.699 28.776 76.142 0.000 0 1 

3 28.699 28.818 80.213 0.000 0 1 
4 28.699 28.818 80.213 0.000 0 1 
5 28.699 28.818 80.213 0.000 0 1 

6 28.699 28.838 81.967 0.256 0 3 
7 28.699 28.838 80.213 0.170 0 1 
8 28.699 28.838 81.967 0.114 1 2 

9 28.699 28.838 81.967 0.114 1 2 
10 28.699 28.849 81.967 0.115 1 2 
11 28.699 28.849 81.967 0.172 1 2 

12 28.699 28.849 81.967 0.172 8 2 
13 28.699 28.838 81.967 0.598 8 4 
14 28.699 28.838 81.967 1.084 8 4 

15 28.699 28.849 81.967 1.170 8 4 
16 28.699 28.849 81.967 0.827 8 4 
17 28.699 28.849 81.967 0.458 8 3 

18 28.699 28.828 81.967 0.458 8 3 
19 28.699 28.828 81.967 0.458 8 3 
20 28.699 28.797 81.967 0.458 8 3 

21 28.699 28.797 81.967 0.515 8 3 
22 28.699 28.797 81.967 0.516 8 3 
23 28.699 28.683 81.967 0.686 8 4 

24 28.699 28.683 81.967 0.686 10 4 
25 28.699 28.683 81.967 1.627 10 4 
26 28.699 28.662 81.967 1.799 10 4 

27 28.699 28.704 81.967 2.370 0 4 
28 28.699 28.704 81.967 2.828 0 4 
29 28.699 28.704 81.967 2.484 0 4 

30 28.699 28.704 81.967 2.484 0 4 

The orientation value (Figure 56) was here included as an indicator 

primarily for debugging purposes and would only serve in the real system as 

a marker for a healthcare professional to ascertain changes in the user’s 
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orientation during each behaviour, with the later possibility of including some 

conditions which assist in the detection of a Sleeping or “collapsed” user 

perhaps based on the position of their wrist after a period of inactivity.  To 

exclude the orientation value from the fuzzy rules in this first instance was a 

decision based on the fact that a wrist may be in any location on any axis 

during any observed behaviour, therefore to explicitly model with rules would 

be unwise and may put too much bearing on a behaviour according solely to 

the position of the Wrote.  

 
Figure 56 Orientation of the device and corresponding value 

The transition parameters of the Hidden Markov Model remain the 

same, with ija  specified as in (102) and given the observed starting state, the 

initial state probability vector   is as in (103) where there is an observed 

higher likelihood that the starting state is Standing over all others. 
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 (103) 

Using the Verity-gathered sensor results, the membership functions 

used in the original experiments were amended to arrive at those shown in 

Figure 57, which are used in the governing fuzzy rules (again specified here, 

with reasoning as in Chapter 4):  
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0. Sleeping: Ambient Temperature is Hot, Contact Temperature is not Cold, 

Pulse Reading is Normal and Acceleration is Nil 

1. Sitting: Ambient Temperature is Normal, Contact Temperature is Normal, 

Pulse Reading is Normal and Acceleration is Nil 

2. Standing: Ambient Temperature is not Hot, Contact Temperature is 

Normal, Pulse Reading is Normal and Acceleration is Nil 

3. Walking: Ambient Temperature is not Hot, Contact Temperature is 

Normal, Pulse Reading is not Low and Acceleration is Minimal 

4. Running: Ambient Temperature is not Hot, Contact Temperature is not 

Cold, Pulse Reading is High and Acceleration is High 

 
Figure 57 Membership functions for fuzzy inference system used in simulation experiments 
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Figure 58 The Verity Monitoring Platform Graphical User Interface (GUI) for testing and 
debugging.  Top image indicates a Standing state, with the lower image displaying a Sitting 

state  

Figure 58 shows the graphical interface during operation as viewed 

from a debugging perspective.  In standard operation, the user would not see 

such a screen and instead be effectively “blind” to their data and the 

observation-dependent states: only being made aware of issues and/or 
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states if requested or if the system requires some input by them for 

qualification of a result. 

The figure shows the sensor readings from the Wrote with only a short 

lag from the data retrieval stage to the processing of the results.  The key 

indicators are the Heartbeat, Temperatures and Acceleration which are 

located anticlockwise from top right.  The GPS location is envisioned to be 

situated on the same screen (here shown in the bottom right) so that the 

person conducting the monitoring is able to view the whereabouts of the user 

and perhaps form a better idea of why at certain stages the readings present 

as they do i.e. an incline may indicate why the user is presenting a high 

temperature and fast heartbeat, whereas a city-based, indoor shopping 

location may explain high acceleration and/or temperature. 

Using the newly defined rules and memberships, the same sensor 

readings are submitted as observations to Verity’s state determining scheme 

using the FIS, which returns the states being exhibited by the user wearing 

the device.  In the first example of the system returning state values, (the 

upper image of Figure 58) the orientation of the device is shown to be within 

the top right section of the indicator and therefore signifies to us that the user 

is upright, with their arm by their side and pointing towards the ground (a 

value of 2, 1 or 8 indicates such a position, as shown in Figure 56).  Along 

with the other observations of a low acceleration and relatively steady 

heartbeat and temperature, the conclusion reached is that the user is 

Standing given the observations in isolation (using both the Forward-

Backward procedure of state determining and the raw FIS winning state) and 

Sitting based on the results obtained from the Viterbi procedure – taking into 

account previous states and transitions.  Using our defined error detection 

scheme this disparity flags up as type1, type2 and type4 anomalies given the 

mismatch of states and the closeness of each of the respective determined 

possible states’ probabilities.  In the case of the type1 anomaly the disparity 

between probabilities for Standing and Sitting is low for both state 

determining methods, yet significant enough to trigger the detection with a 

threshold of 0.2, where the type2 anomaly has a value close to 0 - also 

indicating close probabilities for the two states and therefore a lesser 

certainty that it is a winning state based on the Forward-Backward method.  
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The type4 anomaly triggers with the initial condition of a differing state from 

both the FIS and the Viterbi method: with the Viterbi accounting for 

transitions, the FIS outputs a value of Standing based on the observation and 

therefore the error flag  te O  is activated when the applied threshold of 0.2 is 

again reached.  During the testing procedure this input observation was the 

only such error to occur due to the other observations being typical for their 

states, and no thresholds were otherwise exceeded.  The GUI indicates the 

results of the different methods also, as can be seen with the lit icons on the 

right of the screen and in the debug window in the lower centre, where the 

values for each sensor are also provided to a higher accuracy for the use of a 

professional or for debugging purposes. 

As the user’s position changes from Standing to Sitting, the GUI reflects 

the fact (the lower image of the figure) by visualising the change from an 

upright orientation of the device to a horizontal orientation, thus indicating 

that the user now has the device parallel to the ground as is indicative of a 

user with their arm perhaps resting on a chair.  This change, coupled with the 

observable change in temperature, motion (acceleration) and heartbeat has 

resulted in the conclusion with both state-determining methods that the user 

was Sitting at that instant.  It is likely that the sequence-state of Sitting now 

observed is now more certain due to the instantaneous result from the FIS 

being the same as both Viterbi and FB methods, and subsequent states will 

require feasible transitions from Sitting before any decision is made as to the 

user’s behavioural state with the Viterbi method.  The gathered readings and 

associated states were then submitted to the State Visualiser which executes 

(offline) the Dimension Reduction and Classification procedures detailed in 

Chapter 5.  Figure 59 shows the visualiser window that has successfully 

taken the readings from their initial 5 dimensions to the more easily viewable 

2, without loss of structure and resulting in the creation of 4 linearly separable 

state clusters with which subsequent classification of unseen data points can 

occur (note that the state of Sleeping was not observed in this test of Verity 

and data gathering procedure due to the conditions indicating such a state 

not being easily obtainable during testing).  
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Figure 59 State Visualisation with results obtained during real-time Verity operation.  States are 
separable with the lines on the figure and are labelled accordingly. 

With the data set now having been processed and the prototypes for 

the state determining identified, the perceptrons which generalise the states 

are created and trained in order to allow for distinction between, and 

classification of, subsequent unseen data points.  Table XI shows the weights 

produced using the Verity data from the live testing, with Table XII showing 

the results of classification with the perceptrons for previously unseen data 

points.  The combined HMM and FIS is now updated in order to incorporate 

the new neural network: the dimension reduction scheme identifies a 

correlation between data and state in the lower dimension once sufficient 

data has been obtained with which to train, resulting in the removal of the 

original FIS used to classify the unseen data.  Now, the data would be 

presented to the perceptron network after dimension reduction and a 
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probability of occurrence given with which to use in the HMM rather than the 

previous Fuzzy probability value.   

Table XI Weights from training perceptrons with Verity Data 

State Perceptron Weight 1 Weight 2 Weight 3 

1 -3.3668 -3.7487 -5.9766 

2 -6.5034 -6.1405 -37.5824 
3 -11.3990 -12.2098 -0.4053 
4 16.9053 18.2461 -4.3193 

Table XII Result of using trained weights on unseen data points 

Ambient Contact Pulse Motion Orient. Actual 
Result 

(Probability) 

28.699 28.838 80.213 0.000 0 1 1 (0.98) 
28.699 28.838 76.142 0.170 0 1 1 (0.98) 

28.699 28.849 81.967 0.114 8 2 2 (0.99) 
28.699 28.797 81.967 0.458 6 3 3 (0.98) 
28.699 28.662 80.213 1.799 0 4 4 (0.98) 

28.699 28.704 81.967 1.799 10 4 4 (0.99) 

Table XIII Result of classification with Localised Bloom Memory for unseen data points 

     State Probability  

Ambient Contact Pulse Motion Orient. 1 2 3 4 Actual 

28.699 28.838 80.213 0.000 0 0.985 0.011 0.003 0.001 1 
28.699 28.838 76.142 0.170 0 0.501 0.369 0.000 0.129 1 
28.699 28.849 81.967 0.114 8 0.000 0.782 0.198 0.020 2 

28.699 28.797 81.967 0.458 6 0.005 0.385 0.498 0.112 3 
28.699 28.662 80.213 1.799 0 0.385 0.188 0.035 0.392 4 
28.699 28.704 81.967 1.799 10 0.000 0.003 0.014 0.983 4 

The same training instances were submitted to both Bloom Memory 

schemes also, in order to ascertain suitability for inclusion within Verity.   

Table XIII shows the results of the more successful Localised Bloom Memory 

implementation, returning 100% classification correctness on the same 

unseen data as used in the previous experiment. 

Table XIV details a comparison between the 4 different state probability 

determining methods, with key parameters that resulted in the best 

classification rates during experimentation.  With the FIS the training time is 

indeterminable due to the nature of the system: knowing the scenario and 

viewing the initial data the rules are constructed linguistically and 

programmed accordingly, with amendments made to ensure that the 

membership functions most adequately surmise the situation.  Classification 

takes little time, as all that is required is determining which sensor 

membership range a reading falls into, with the basic Mamdani minimum 
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decision made as to which state most likely produces the readings.  States 

are identified correctly primarily because the membership functions and rules 

directly describe the system, therefore errors are evident only with unseen 

observations and incorrectly modelled behaviours. 

Table XIV Best recognition rates and performance times for the 3 state determining methods 
classifying the previously unseen test data in isolation  

Method Key Parameters 
Training 

Time (ms) 
Classification 

Time (ms) 
Correct (%) 

Fuzzy 
Inference 
System 

5 rules, 

3 membership 
functions per 

sensor 

- 17 100 

Dimension 
Reduction with 

Linear 

Perceptrons 

_ 0.1tolerable loss  , 

min 0.02alpha  , 

max 0.5alpha   
5713 154 100 

Hierarchical 
Bloom 

Memory 

1b   , 

2p  , 
5  , 

10h   

11 2 67 

Localised 
Bloom 

Memory 

1stepr  , 

max 10000r  , 

0.001  , 

30h   

32 94 100 

Despite being the longest in its classification process, the classification 

with dimension reduction scheme also took under 1 second, however it is in 

the training (projection) of the prototypes that we cement this as the most 

time consuming method over all of those developed with an outlay of nearly 6 

seconds to prototype and project the 30-member training set.  Classification 

is again 100% accurate for the experiment, with the returned membership 

values tending very close to 1 due to the certainty through dimension 

reduction that the unseen data points fall within the newly created linear 

boundaries between classes.   

  Submitting the same data to be trained with the Hierarchical Bloom 

Memory takes just 11ms with the identified optimum parameters, returning 

the lacklustre 67% correctness for classification in only 2ms.  The returned 

incorrectly classified states may be deemed a worthwhile loss in accuracy 

based on the speed of classification if the scheme in which the HBM was 

employed merely “estimated” a state membership, however for the Verity 
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application it may be seen as too inconclusive for use in behaviour 

monitoring. 

The Localised Bloom Memory perhaps provides the best result over all 

methods, with a short training period and acceptable classification speed, the 

100% correctness and format of probability values seems most appropriate 

for use in the proceeding Hidden Markov Model.  The hash number used to 

produce the useful result was 30, a number significantly higher than the 

data’s original dimensionality, producing a number of memory layers with 

more space requirements than the raw data – though the higher performance 

in classification over the other methods comparatively (accounting for both 

training time and correctness) sets the LBM as the most suitable candidate 

scheme for future inclusion within the Verity system. 

7.3 Summary 

This chapter has detailed the final elements and aspects developed for 

inclusion within Verity, and the combination of the previous chapters’ 

methodologies for enhancing and achieving the goals intended by the 

behaviour monitoring device have gone some way to explaining and 

exhibiting the effectiveness of the device in simulated operation.  Four 

variations of detectable anomalies and errors possible with the Hidden 

Markov Model implementation in a behaviour monitoring application were 

explicitly identified and possible causes suggested, with scope for the 

detection of other erroneous scenarios discussed and action procedures 

detailed for the event of such situations arising. 

All methods developed within the research for the behaviour monitoring 

project were tested as part of simulated experiments with real data gathered 

from the Verity device, with each method exhibiting strengths and 

weaknesses in different areas of operation.  The Fuzzy Inference System 

was identified as the most reliable scheme for operation in the first instance 

where states are determinable by human analysis of observation data – 

perhaps as a means of providing the initial Verity system with a working 

model on which rules can be expanded and tailored to a user before a more 

statistical and methodical approach is employed for the determining of 

probabilities in a lower dimension.   
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The dimension reduction scheme not only proved effective in the 

visualisation of the high dimension behaviour data – giving visual 

representation of observations that fall outside of the majority of state data – 

but in the speed of classification once the training data is learnt and projected.  

The combination of these two points further the method’s practicality in the 

behaviour monitoring application when a secondary user requires access to 

the gathered data for diagnostic purposes, however in comparison to the 

latter two schemes developed perhaps doesn’t exhibit a greater efficiency in 

the classification process. 

The two Bloom Memories require no model inference from the data and 

can therefore be populated almost instantaneously in comparison to the other 

methods, returning better and more practical probability results than the 

previous (though not necessarily more applicable values over the initial FIS 

based on the human knowledge).  However the Localised Bloom Memory is 

speedy, efficient and easily usable: proving most adept at classification of the 

sample Verity data thus serving well as a starting scheme on which to base 

the behaviour monitoring system.  
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Chapter 8 

Conclusions, Observations 

and Further Work 
In this chapter conclusions are drawn from the research conducted for 

the project and documented in the previous chapters, discoveries and 

developments are reflected upon and interesting elements which arose 

during the process are identified with suggestions provided such that further 

work may possibly be undertaken based upon the findings. 

For the research were developed three different probability determining 

methods for inclusion within the Hidden Markov Model as a means of 

replacing standard observation probability definitions, with each scheme also 

proving suitable for applications other than behaviour monitoring where the 

updating of probabilities during use is required.  Here the most significant 

contribution to the behaviour monitoring and state identification and 

classification fields is identified to be the Localised Bloom Memory, with the 

other developed methods’ benefits and drawbacks highlighted as properties 

suiting them to various aspects of the monitoring process.  Further work is 

suggested as a means of continuing the research based on the findings 

detailed in the previous chapters.  
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8.1 Conclusions 

It is worth noting that the majority of the techniques and methods 

developed for this research and documented in this thesis were programmed 

and tested in isolation from the intended hardware device, in a simulated 

environment.  The key operational parameters and probabilistic Hidden 

Markov Model at the heart of the Verity system had been identified in the 

preliminary stages of the research process, with industrial partner iMonSys 

stipulating that the result of the research should be a pervasive device 

capable of providing a monitoring platform for the elderly and infirm.  

Incorporating the methods researched here into the device requires further 

consideration insofar as adapting the language in which they are written in 

the test software to that of the language of the hardware, and will foreseeably 

operate effectively in symbiosis with the on-board sensors for which they 

were purposefully designed. 

In the creation of the combined Hidden Markov Model and Fuzzy 

Inference System we have integrated two probabilistic methods to form a 

single, usable model for the first instance of our behaviour monitoring 

application.  The identification of the HMM as ideal for the task of sequential 

behaviour determining proposed a problem for the incorporation of the 

multiple sensors which were to provide observation values as a means of 

evidencing a state’s occurrence, as no such models existed in the literature 

to deal with the issue.  Fuzzy Inference Systems by their nature incorporate 

multiple sources of information which combine to produce a single, useable 

value which in our case resulted in the observation probability previously 

described by an explicitly defined matrix in a standard HMM.  The outcome is 

a system transferable to many applications requiring the fusion of multiple 

input observations into a single value to infer a state belief as part of a larger 

sequence of events or instances.  Comparably, using a continuous 

distribution HMM to model the observation values obtained with the sensors 

results in ineffective combination of evidence available to the system when 

again further consideration is required to determine how much weighting 

each sensor requires towards the final probability value; the behaviour 

monitoring application here benefits due to the element of human reasoning 
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forming the basis for the fusion step and informing of the independent 

weightings of the sensors due to their contribution to the fuzzy rules. 

The 4 schemes created to detect possible instances of a behavioural 

change with an elderly user take the HMM and its state sequence 

determining methods as a means of identifying issues, viewing the 

probabilities of state occurrences as indicators of certainty when compared 

with other state probabilities generated by the model.  Each error type is also 

transferrable to other implementations of the HMM in different applications 

because of their definitions, i.e. with state certainty as calculated in the type2 

identification, any state determined by an HMM can be evaluated for 

reliability against other possible states and thus trigger further investigation if 

required.  The inclusion of the 4-type error detection scheme for Verity 

provides a complete framework on which to build successive detection 

methods, allowing for an initial version of Verity to exist in order to identify 

other behavioural change indicators detectable with the developed 

probabilistic model. 

It can be concluded from the development of the Curvilinear Distance 

Analysis for Linear Classification technique that utilisation of a manifold’s 

global distance is most appropriate when considering the topology and 

interlinking of state clusters, especially when maximum separation is required 

for the purposes of training with a linear classifier.  Analysis of comparable 

dimension reduction techniques in the literature review highlighted that 

previous developments suffered from drawbacks in their projection and 

successive interpolation steps;  although not perfect the CDALC approach to 

the issue provides a guaranteed means of separating data clusters inherent 

to the nonlinear manifold and ensures that no “parasitic links” which cause 

stretching and tearing of a data set occur, certainly not in the sets of 

dimensionality of up to 13 tested in this research.  Training a linear classifier 

such as the perceptron used here is much easier on sets with a visible and 

determinable plane of separation, as they allow for optimum placement of the 

line function for classification within an uninhabited data space where a 

classifier operating on nonlinear data must find a position minimising an error 

value which may never reach 0.  This is evident through the testing with the 

multi-layered neural network which failed to classify each set of the test data 
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to an acceptable degree of accuracy for our system, with the dimensionally 

reduced set instead succeeding in all trials and thus proving the CDALC is 

effective for binary classifiers. 

The dimension reduction scheme does require storage of the raw high 

dimension data alongside the lower dimension, as with an expanding system 

the reduced dimension data needs to be retrained to be inclusive of points  

seen since the last training period.  This poses issues for devices like Verity 

with low storage memory ability desiring to operate entirely online, so 

identification of the Bloom Filter and the Hierarchical and Localised variants 

of our developed memory utilising the filter principles affords a more optimal 

classification scheme which can operate directly in the high dimension.  

Comparing the approach to the standard k-Nearest Neighbours as a 

benchmark does show that the memory variants classify the lower dimension 

data sets in a much faster time (less than 6% in one instance).  However, a 

slight sacrifice must be made for data sets of a larger dimensionality which 

do not garner as high a result in the classification, but do remain capable of 

being processed at a high speed for “approximate” membership queries.  It is 

these instances which would then require further investigation through 

methods not detailed or explored within this research.  When applied to the 

Verity system and the classification values used in the HMM as probabilities 

of membership to a state, the Localised Bloom Memory performs most 

accurately over the entire collection of probability determining methods and 

succeeds to be the most suitable to be incorporated into the first Verity 

implementation. 

8.2 Observations 

The behaviour monitoring field – especially when considering devices 

aimed at the elderly – is one that is ever-expanding as a result of constantly 

emerging new technologies and the further identification of particular 

subsections of the elderly population who require differing standards of care.  

The probability determining and classification schemes developed here 

were born of identifying a need to deal with the nonlinear and high dimension 

data commonly obtained with current behaviour monitoring devices and 

passive monitoring systems that is not typically considered from an 
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optimisation viewpoint, instead such system’s practical usability is addressed 

more so than the data and its format for processing.  Here the method of 

delivery of the data is addressed alongside the improvement of its usability in 

a monitoring application, with the developed schemes for fuzzy inference and 

fusion, dimension reduction and high dimension classification applicable 

cross-platform primarily in the intended field and any field which utilises 

extensive high dimension, nonlinear and complexly distributed input data as 

a means of inferring the state of a model-able system. 

To keep abreast of all developments in practical behaviour monitoring is 

a difficult task, given that the state of the art is difficult to identify in each of 

the different sub-fields when each product released onto the market or 

researched in an academic environment utilises a different method of 

obtaining results from the previous development, or perhaps modifies a 

current standard without identifying similarities or differences with other such 

devices.   

With this single application of each development in the field, rarely is it 

found that a technique is applied to another device or product in a similar 

context.  The basis for many devices is typically a single premise or problem 

that has been previously addressed (detecting behaviours, analysing 

patterns etc.), yet the method used in solving the problem is less desirable 

than the creation of a new one designed specifically for the application at 

hand – i.e. the techniques designed for Verity are novel when compared with 

others due to the design requirements, yet there are many ways of reaching 

the same goal by study of other systems. 

Working towards developing control methods for a real system has 

provided focus and direction to the research and informed the structure of the 

thesis into a document detailing its development through each stage, with 

every technique created and adapted with the Verity system in mind.  Further 

stages of development as highlighted in the next section focus on the 

optimisation and enhancement of the techniques created within this thesis to 

better the implementation of Verity as a passive behaviour monitoring system 

for the elderly. 
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8.3 Further Work 

As with any new development or modification of a technique, there can 

be identified areas of expansion to enhance suitability for an application.  The 

research conducted here was certainly not exhaustive, however time, budget 

and experience constraints influenced the extent to which the research was 

conducted.  In this section are detailed a number of possible areas of interest 

for further work on the project. 

8.3.1 The Hidden Markov Model 

The first stage of the research was in the development of the combined 

Hidden Markov Model and Fuzzy Inference System that would form the basis 

for all subsequent steps.  The model operates effectively under the 

constraints of the system, with the variables and observations structured as 

they are.  The inclusion of the Fuzzy Rule induction technique enhanced by 

the identified “least-rules” Unique Measure Merge condition means that over 

time, the Fuzzy Inference System can be updated to better attune to the user.  

However, it was only proposed that the standard Baum-Welch technique for 

HMM updating would be sufficient to ensure that all other bounds and 

parameters remained relevant to the user, and that the HMM and Fuzzy 

elements of the system would require independent updating in order to 

maintain adequate operation once re-combined. 

A considerable and not unreasonable area identified for expansion 

arising from this part of the system is therefore in the updating of the models 

as a whole rather than as separate entities, foreseeably accomplishable 

through modification of the Baum-Welch algorithm to incorporate the 

parameter changes required for the linguistic rules to update periodically 

also; currently at the programming stage there needs to be an understanding 

of each observable state in order for the rules to make sense, and therefore 

training of the system is impossible without a knowledgeable operator in the 

initial stage. 

Further enhancements can be made in the testing of the combined 

model with a wide variety of user data.  In the research there was only a 

single set of data obtained with Verity that was used throughout, and 

informed of the format of the data such that “estimated” observations could 
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be created to test the system further.  With a larger number of subjects 

providing sensor data, the initial Fuzzy rules could be more generalised to a 

larger population, and through the induction method any irrelevant or 

erroneous parameters could be excluded as a means of tailoring more 

specifically to each user.  

8.3.2 Dimension Reduction 

Throughout the development of the CDALC constraints were identified 

that were thought might hinder the operation in the final hardware device.  

The Dijkstra graph traversal technique employed to link the prototypes of the 

data set is a search algorithm which takes an extensive amount of CPU 

power to reach a satisfactory solution for a large number of prototypes, and 

therefore on an embedded chip is quite possibly impractical when the data 

set to consider is one obtained from a lengthy period of operation.  This 

drawback led to the notion that the dimension reduction scheme would not 

operate on-chip, but instead be handled by an offline system, or be utilised 

only in a period where the monitoring process could easily be relaxed in its 

intensity to allow for the on-board resources to focus on the prototype linking.  

As such, the further work on this element of the system would focus on the 

handling of the linking stage either through identification of another method or 

the development of a hardware system capable of operating at the required 

speed to integrate with the current Verity system.   

A further possibility is to incorporate the Bloom Memory of the next 

stage into the dimension reduction technique to allow for a speed up in 

distance calculations – taking the locality expansion aspect of the memory as 

a means of providing the search algorithm with the distance from one 

prototype to the next.  However, as in its basic form the Bloom Memory can 

be seen to replace the combined dimension reduction technique and neural 

network anyway, modifying the inferior technique for the purposes of 

classification is impractical unless the dimension reduction is required solely 

for the visualisation of state data and not its classification. 
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8.3.3 Bloom Memory 

The theoretical operation of the Bloom Memory in its Hierarchical form 

is suitable for small, sparse data sets; in its classification of large, dense and 

high-resolution sets it requires more consideration of operational parameters 

when compared to the kNN technique it is intended to replace – despite 

enabling a better storage modality than simply recording all data points in a 

high-dimension space, denser sets require experimentation for the 

identification of optimum resolution values used to store the initial data where 

a kNN approach does not.  The developed density calculations used to 

obtain a class probability are capable of reasoning the classification of a data 

point more adequately than with any other technique considered within the 

research however, as they base their result on the likelihood of the point 

being seen in the locality of other such points which share similar properties.  

It is with the previously mentioned dense sets however that problems may 

arise, but with further investigation the optimal radii and resolutions could be 

found for each set considered – and while not practical perhaps as an all-

encompassing solution to the kNN method it certainly appears adequate 

enough for inclusion within the on-board system of Verity due to its rapid 

classification and storage space reduction. 

The Localised Bloom Memory again operates similarly, however the 

ability to expand the storage space and modify the radius considered as 

“local” to a point is where the benefits lie during operation in Verity.  As the 

user provides more and more data during standard operation, the system is 

expected to require further storage and faster identification of states given 

the larger amount of data to consider every time.  Further work needs to 

focus on the expansion techniques and to assess at which point (if any) the 

memory fails to return adequate results due to an over-population of each 

class.   

Testing both methods with the standard data sets used in the field does 

provide useful evidence to suggest further work is needed, yet for inclusion 

within Verity once again more data sets from testing with the actual hardware 

would be considered more beneficial. 
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8.3.4 Errors and Anomalies 

  It was identified in the early stages of the research those conditions 

under which Verity would alert a medical or care professional that the user 

was experiencing problems.  The properties of the HMM as a probability 

model meant that intrinsically, detecting issues based on probabilities was 

more than adequate as it is all that is possible when states are identified 

based solely on observations; with some states also identified based on 

follow-up communication with the user, further anomalies and issues can be 

more adequately discovered and the probability based detections can act as 

backup reasoning for alerting of a problem. 

It is desired that not only instantaneous errors be detected, but as 

previously stated: that long-term problems be identified as to the user’s state 

and wellbeing.  As with many applications detailed in the literature review, the 

overview of an entire series of states in comparison with perhaps another 

user or the same user at a different time may be an indicator that problems 

are developing that need addressing.  Further work would focus on the 

assessment of which currently employed technique within the field is most 

appropriate for Verity without compromising any of the error types developed 

in this research.  Once more, a larger set of data with which to test with 

would provide greater ability to tune the error detection methods specifically 

for the application. 

8.3.5 General Improvements to the System 

The Verity hardware was being developed simultaneously to the 

software algorithms and operational systems documented here.  Each stage 

of the hardware development enabled a greater selection of possibilities for 

the system, with the incorporation of more sensors more states and more 

functions beyond the scope of the simple behaviour monitoring task could be 

identified and accomplished.  Any further work on anything identified here as 

part of the methodology research into dealing with nonlinear and high 

dimensional sensor data obtained from behaviour monitoring devices would 

extend further than the requirements of Verity, theoretically improving its 

usability in a real environment beyond the considerations of the initial brief if 

they were implemented with appropriate consideration. 
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Appendix A 
The traditional HMM consists of five key components.  There are N  

states ( S ) into which M  observations ( V ) can belong, with probabilities 

defined by a probability distribution  jB b k , where j  is the current state 

and k  the observation number.  The probability of transitioning from one 

state to another is an element in a state transition probability distribution 

matrix which is defined as ijA a  where i  is the current state and j  the 

proceeding state (i.e. the state after the transition).  The final element of the 

model is termed  : the initial state distribution, which is a record of the 

probability of seeing any state at the first time instance.  The elements of the 

model are defined thus: 

 1 2 3, , , , NS S S S S  (A1) 

 1 2 3, , , , MV V V V V  (A2) 

 1ij t j t ia P q S q S    

(Note that 
tq  is the state at time t ) 

(A3) 

    at j k t jb k P V t q S   
1 j N   

1 k M   
(A4) 

 1i iP q S    1 j N   (A5) 

The model is commonly denoted in its compact form as: 

 , ,A B   (A6) 

A Hidden Markov Model can solve 2 problems: 

1. Given an observation sequence  1 2, , , TO O O O  and a model  , how 

can the probability of the observation sequence’s occurrence,  P O   be 

efficiently calculated? 

2. Given an observation sequence   1 2, , , TO O O O and a model  , how 

can an optimal state sequence  1 2, , , TQ q q q  be chosen to best 

explain the observations? 
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Calculating sequence probability  

For the solution to both problems, the Forward-Backward procedure 

can be used, with the forward part being solely of use for the first problem: 

   1 2, , , ,t t t ii P O O O q S    (A7) 

I. Initialise: 

   1 1i ii b O   1 i N   (A8) 

II. Inductive step: 

     1 1

N

t t ij j t

i i

j i a b O  



 
  
 
  

1 1t T    

1 j N   
(A9) 

III. Terminate: 

   
1

N

T

i

P O i 


  
 
 (A10) 

Thus by induction can be found the probability of terminating in state 
iS  

at time t  having been presented with the observation sequence and the 

model. 

Calculating an optimal sequence 

With the introduction of a state sequence requirement, the probabilities 

of proceeding states to the end of the sequence must be taken into account.  

For this problem the backward part of the Forward-Backward procedure is 

calculated: 

   1 2, , , ,t t t T t ii P O O O q S     (A11) 

I. Arbitrary Initialisation - assuming that the end state is certain, the previous 

probabilities of a state sequence occurring can be calculated:  

  1T i   1 i N   (A12) 

II. Inductive step: 

     1 1

1

N

t ij j t t

j

i a b O j  



  
1, 2, ,1t T T    

1 i N   
(A13) 

This calculation aids in the finding of an optimal state sequence for the 

given observations, yet the definition of “optimal” is open to interpretation.  A 

state sequence may consist of states which are most likely at each time step 

given the observation sequence - regardless of the possibility of the state 
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sequence occurring.  It may also be a sequence which most logically flows 

from one state to the next, i.e. takes into account the probability of 

transitioning from the previous state to the current, along with the observation 

sequence.  For the first of such variations, both previously calculated 

Forward-Backward parts are employed together. 

The probability of being in a single state at a time, given the 

observations and model is defined as: 

   ,t t ii P q S O    (A14) 

The above equation can be written in terms of the Forward-Backward 

variables: 

 
   

   
1

t t

t N

t t

i

i i
i

i i

 


 





 

(A15) 

Taking the maximum value of (A14) gives the individually most likely 

state at that time: 

  
1

arg maxt t
i N

q i
 

  1 t T   (A16) 

The Viterbi Algorithm takes into account the likelihood of state 

transitions in sequence, unlike the previous method.  In this property it can be 

seen to have globally optimised the output, using all available information 

from within the model.  Therefore the resulting state sequence is entirely 

possible given the observations presented to the model.  However, the 

algorithm adjusts the entire sequence to match the most likely state at the 

time; if the next observation most likely belongs to a state which it is unlikely 

to reach from the current state, the backtracked sequence may change to 

accommodate it and increase the likelihood of the sequence.   

What is being determined can be expressed as  ,P Q O  : the 

probability of seeing the state sequence and the observation sequence given 

the model.   t i  is the highest probability along a single state sequence as 

calculated at time t , accounting for the first t  observations and terminating 

with state jS .  The state sequence itself is given in the array  , which is 

populated with the state maximising that probability calculated by   at each 

step. 
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I. Initialise: 

   1 1i ii b O   1 i N   (A17) 

 1 0i    (A18) 

II. Recursion Step: 

     1
1
maxt t ij j t

i N
j i a b O  

 
     2 t T   

1 j N   
(A19) 

   1
1

arg maxt t ij
i N

i i a  
 

     
2 t T   

1 j N   (A20) 

III. Terminate: 

  
1
max T

i N
P i

 
   (A21104) 

  
1

arg maxT T
i N

q i

 

   (A22) 

IV. The backtracking procedure: 

  
1
max T

i N
P i

 
   (A23) 

 1 1t t tq q 

   1, 2, ,1t T T    (A24) 

The resulting state sequence,  , is that which is most likely to have 

occurred in order to reach the state most likely to have emitted the 

observation at time T , given transitions from previous states. 
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Appendix B 

 
Figure B1 Speech recognition tree used to identify the necessity for calling for assistance in the 

event of an abnormal state detection 

 
Figure B2 Speech interaction to confirm the states of motion and silencing of the speech 

interaction at the user’s request 
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state 
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KQ1: “Are you all right?” 

Voice: Yes/No 

KS3: “I think I 
should call 
someone” 

KS4: “I will ring 
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be sure” 

Ring emergency 
services 

Return 

Search voice and ring 

Voice: Yes/No 
KS3: “I am 

reading you” 

Q5: “Who shall I 
ring?” 

Contact List 

No response 
5 times 

No, Time Out 

No, Time Out 

Yes 

Yes 

 

Stable state of 
WALKING || RUNNING 

Start Timer 1 

Quiet = FALSE 

Timer 1 expired && 
“Stable state of 

WALKING || RUNNING” 
&& Quiet == FALSE 

Restart Timer 1 

KS30: “It’s good to take 
some exercise” 

Quiet == FALSE && 
Q13: Quiet 

KS27: “Sorry” 

Quiet = TRUE 
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Figure B3 Speech recognition tree used to identify the necessity for calling for assistance in the 

event of a detected fall 

 
Figure B4 The standard speech interaction tree used to begin the monitoring process 
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No 
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Hidden 
Markov Model 

inference 

Exhibiting 
a stable 
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Figure B5 Speech interaction tree to remind the user to take the base station of Verity with them 

whilst wearing the Wrote 

 
 
 

 
Figure B6 Speech recognition tree for an event where the Wrote is removed during the state 

inference process 
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