40 research outputs found

    Grid Analysis of Radiological Data

    Get PDF
    IGI-Global Medical Information Science Discoveries Research Award 2009International audienceGrid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services

    Distributed computing and data storage in proteomics: many hands make light work, and a stronger memory

    Get PDF
    Modern day proteomics generates ever more complex data, causing the requirements on the storage and processing of such data to outgrow the capacity of most desktop computers. To cope with the increased computational demands, distributed architectures have gained substantial popularity in the recent years. In this review, we provide an overview of the current techniques for distributed computing, along with examples of how the techniques are currently being employed in the field of proteomics. We thus underline the benefits of distributed computing in proteomics, while also pointing out the potential issues and pitfalls involved.acceptedVersio

    Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin.

    Get PDF
    Water is often found to mediate interactions between a ligand and a protein. It can play a significant role in orientating the ligand within a binding pocket and contribute to the free energy of binding. It would thus be extremely useful to be able to accurately predict the position and orientation of water molecules within a binding pocket. Recently, we developed the WaterDock protocol that was able to predict 97% of the water molecules in a test set. However, this approach generated false positives at a rate of over 20% in most cases and whilst this might be acceptable for some applications, in high throughput scenarios this is not desirable. Here we tackle this problem via the inclusion of knowledge regarding the solvation structure of ligand functional groups. We call this new protocol WaterDock2 and demonstrate that this protocol maintains a similar true positive rate to the original implementation but is capable of reducing the false-positive rate by over 50%. To improve the usability of the method, we have also developed a plugin for the popular graphics program PyMOL. The plugin also contains an implementation of the original WaterDock.GAR is supported by the Memorial Sloan Kettering Cancer Center, NIH grant P30 CA008748

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    Computational Saturation Screen Reveals the Landscape of Mutations in Human Fumarate Hydratase

    Get PDF
    Single amino acid substitutions within protein structures often manifest with clinical conditions in humans. The mutation of a single amino can significantly alter protein folding and stability, or change protein dynamics to influence function. The chemical engineering field has developed a large toolset for predicting the influence of point mutations with the aim of guiding the design of improved and more stable proteins. Here, we reverse this general protocol and adapt these tools for the prediction of damaging mutations within proteins. Mutations to fumarate hydratase (FH), an enzyme of the citric acid cycle, can lead to human diseases. The inactivation of FH by mutation causes leiomyomas and renal cell carcinoma by subsequent fumarate buildup and reduction in available malate. We present a scheme for accurately predicting the clinical effects of every possible mutation in FH by adaptation to a database of characterized damaging and benign mutations. Using energy prediction tools Rosetta and FoldX coupled with molecular dynamics simulations, we accurately predict individual mutations as well as mutational hotspots with a high disruptive capability in FH. Furthermore, through dynamic analysis, we find that hinge regions of the protein can be stabilized or destabilized by mutations, with mechanistic implications for the functional ability of the enzyme. Finally, we categorize all potential mutations in FH into functional groups, predicting which known mutations in the human population are loss of function, therefore having clinical implications, and validate our findings through metabolomics data of characterized human cell lines

    Specification and Runtime Workflow Support in the ASKALON Grid Environment

    Get PDF

    Synthesis of Scientific Workflows: Theory and Practice of an Instance-Aware Approach

    Get PDF
    The last two decades brought an explosion of computational tools and processes in many scientific domains (e.g., life-, social- and geo-science). Scientific workflows, i.e., computational pipelines, accompanied by workflow management systems, were soon adopted as a de-facto standard among non-computer scientists for orchestrating such computational processes. The goal of this dissertation is to provide a framework that would automate the orchestration of such computational pipelines in practice. We refer to such problems as scientific workflow synthesis problems. This dissertation introduces the temporal logic SLTLx, and presents a novel SLTLx-based synthesis approach that overcomes limitations in handling data object dependencies present in existing synthesis approaches. The new approach uses transducers and temporal goals, which keep track of the data objects in the synthesised workflow. The proposed SLTLx-based synthesis includes a bounded and a dynamic variant, which are shown in Chapter 3 to be NP-complete and PSPACE-complete, respectively. Chapter 4 introduces a transformation algorithm that translates the bounded SLTLx-based synthesis problem into propositional logic. The transformation is implemented as part of the APE (Automated Pipeline Explorer) framework, presented in Chapter 5. It relies on highly efficient SAT solving techniques, using an off-the-shelf SAT solver to synthesise a solution for the given propositional encoding. The framework provides an API (application programming interface), a CLI (command line interface), and a web-based GUI (graphical user interface). The development of APE was accompanied by four concrete application scenarios as case studies for automated workflow composition. The studies were conducted in collaboration with domain experts and presented in Chapter 6. Each of the case studies is used to assess and illustrate specific features of the SLTLx-based synthesis approach. (1) A case study on cartographic map generation demonstrates the ability to distinguish data objects as a key feature of the framework. It illustrates the process of annotating a new domain, and presents the iterative workflow synthesis approach, where the user tries to narrow down the desired specification of the problem in a few intuitive steps. (2) A case study on geo-analytical question answering as part of the QuAnGIS project shows the benefits of using data flow dependencies to describe a synthesis problem. (3) A proteomics case study demonstrates the usability of APE as an “off-the-shelf” synthesiser, providing direct integration with existing semantic domain annotations. In addition, a manual evaluation of the synthesised results shows promising results even on large real-life domains, such as the EDAM ontology and the complete bio.tools registry. (4) A geo-event question-answering study demonstrates the usability of APE within a larger question-answering system. This dissertation answers the goals it sets to solve. It provides a formal framework, accompanied by a lightweight library, which can solve real-life scientific workflow synthesis problems. Finally, the development of the library motivated an upcoming collaborative project in the life sciences domain. The aim of the project is to develop a platform which would automatically compose (using APE) and benchmark workflows in computational proteomics
    corecore