Synthesis of Scientific Workflows:
Theory and Practice of an Anstance-Aware Approach

Vedran Kasalica

Synthesis of Scientific Workflows: Theory
and Practice of an Instance-Aware Approach

Synthese van Wetenschappelijke Workflows: Theorie en
Praktijk van een Instantiebewuste Benadering

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Utrecht University op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het col-
lege voor promoties in het openbaar te verdedigen op maandag 21 november 2022
des middags te 12.15 uur.

door

Vedran Kasalica

geboren op 2 April 1992
te Kotor, Montenegro

Promotor:
Prof.dr. G. Keller

Copromotor:
Prof.dr. A.-L. Lamprecht

Za ljeta u Komarnici

Contents

Page
1 Introduction 1
1.1 Methods .. 4
1.2 Contributions. 5
2 Background 9
2.1 Program Synthesis . . . O o |
2.2 Scientific Workflow Synthe51s o I
2.3 SLTL-based Workflow Synthesis 14
3 From SLTL to SLTL~ 19
3.1 Challenges in SLTL Workflow Synthesis 21
3.2 Transducers .25
3.3 SLTL® . . . e e ... 28
3.4 Transducer Synthe51s w1th Temporal Goals . [
3.5 Evaluation and Discussion. 34
3.6 Related Work < 1)
4 Workflow Synthesis as a SAT Problem M
4.1 Modelling User Intent 43
4.2 Encoding Workflow Synthesis in Proposmonal Loglc 48
4.3 Encoding the DomainModel 51
4.4 Encoding the Temporal Constraints 54
4.5 Solving the Encoded Problem. - V4
5 APE (the Automated Pipeline Explorer) v2 61
5.1 Architecture . 63
5.2 Domain Model T 23
5.3 Automated Workflow Composmon 65
5.4 Workflow Implementation. 69
5.5 RelatedWork .72
6 Case Studies 77
6.1 Geovisualisation < A

6.2 Geo-Analytical QuestlonAnswermg S * ¥

6.3 Proteomics Data Analysis .
6.4 Geo-Event Question Answering .
6.5 Discussion .

7 Evaluation

7.1 Runtime Performance of APE v2 .

7.2 Third-Party Applications of APE v2 .

7.3 APE v2 User Experiences

8 Conclusion

8.1 Outlook. .o
8.2 Concluding Remarks

Backmatter
Bibliography
Summary
Samenvatting
Curriculum Vitae

Acknowledgments

. 107
. 119
. 121

123

. 125
. 131
. 132

135

. 136
. 138

139

153

155

157

159

CHAPTER 1

Introduction

Contemporary science across all disciplines is increasingly computational, and
many scientists regularly face the need of producing software themselves to become
able to solve their specific data analysis problems. Many of these programs are es-
sentially computational pipelines, i.e., sequences of calls to existing computational
components, where the new program is mainly responsible for the coordination of
the flow of data between them [11].

Scientific workflow management systems (WMS) support researchers in assem-
bling computational components into complex scientific workflows [2, 12, 16, 95,
147]. WMSs facilitate workflow execution and monitoring directly within the same
framework. However, they typically require the users to know (1) which tools are
well (or best) suited for the task, (2) how to connect them to solve the specific prob-
lems, (3) which connections are possible with regard to the compatibility of input
and output data types and formats, and other kinds of technicalities.

INPUT OUTPUT
EH -7 |:| WORKFLOW
: 7\ SYNTHESIS
Table Map preview WORKFLOW
OUTPUT

Draw
‘ E | 9 water

Table —_— Map preview

1#!/bin/bash </>

2 unset noclobber

3out ps=%0'.ps’

41in table='movements.xyz'

5gmt pscoast -Scornflowerblue -R2.81/560.52/7.84/53.75r -JM6i -W0.1lp,black -Df -K -P > $out ps
6 gmt pscoast -Gdarkseagreen2 -R -J -W0.1lp,black -Df -K -P -0 >> Sout ps

7gmt psxy -R -J -0 -Sc0.05 -Gred -Wthinnest $in table >> $out ps

8gs -sDEVICE=x11 Sout ps

Figure 1.1: An example of a workflow composition (synthesis) process.

Semantics-based automated workflow composition techniques strive to assist users
in the discovery and composition of purpose-specific workflows [26, 81, 90, 105].
Ideally, users would only need to state their intentions about the workflow at an
abstract, conceptual level (e.g. by providing information about the available inputs
and intended output data, or particular kinds of operations to use or avoid), and the
workflow environment would automatically translate the specification into a con-

| 3

crete executable workflow (as illustrated in Figure 1.1). This is essentially a case
of program synthesis (considered to be one of the central problems in the theory of
programming [113]), which, in the general formulation, aims to find a program that
meets a given specification.

Let us consider a geovisualisation scenario where the user, e.g., a biologist, wants
to plot bird migration data to assess the relation between bird migrations and the
land topography. In order to do so, the user has to specify the scientific workflow
that would process the topography and migration data and visualise it on a map.
However, the user could, instead of manually selecting each workflow step, specify
the goal as a synthesis problem and use the process to compose the desired solution
automatically. A synthesis process is illustrated in Figure 1.1. The user specifies the
available data and the desired output, and uses the synthesis process to automati-
cally compose a workflow solution. The solution is then executed to get the intended
map as a result.

A similar approach could be implemented in the domain of life sciences or any
other scientific field that uses computational components. Converting experimental
biological data into interpretable results increasingly involves the combination of
multiple, diverse computational tools into pipelines or workflows performing spe-
cific sequences of operations [11, 44, 134]. Figuring out which tools are applicable
(and in which order), and scientifically meaningful is often hard in practice, particu-
larly when the tools were not developed by the same research group, consortium or
company. The idea of automated workflow synthesis is to let an algorithm perform
or assist the user in this process.

Workflow synthesis approaches rely heavily on well-defined and rich domain an-
notations. However, such annotations are hard to find for an arbitrary scientific
workflow. That is why many of the current approaches that aim to automate work-
flow composition restrict the problem and focus on either well-defined and curated
domains [145] or the automation of individual workflows steps, instead of the work-
flow as a whole [46, 87].

The international eScience community has created a comprehensive infrastructure
of tools, services and platforms that support the work with scientific workflows. No-
table results are (1) the EDAM ontology [64] of bioscientific terms, which provides
semantical annotations of the domain terminology, (2) bio.tools [66], a publicly cu-
rated tools annotation repository in bioinformatics and the life sciences, and (3) the
Core Concept Data (CCD) ontology of geo-analytical terms [120]. Availability of
these semantic annotations of various domains allows for advancement in practical
usage of program synthesis methods.

In this dissertation, I focus on temporal logic-based approaches to program syn-
thesis, and in particular on a new synthesis approach based on SLTL* (Extended
Semantic Linear Time Logic) [72].

The approach is based on SLTL (Semantic Linear Time Logic) synthesis, originally
proposed by Steffen et al. [130]. The SLTL-based approach has been used for the
automated composition of scientific workflows in the PROPHETS [108] framework
(within the jJABC working environment [131]) and demonstrated to be useful in
various studies [3, 89, 111]. Inspired by the SLTL-based formalism and based on
the lessons learned by its application to scientific workflows, this dissertation aims

4| Chapter 1 — Introduction

to improve the approach and provide a workflow synthesiser tailored to scientific
applications. In the early phase of my research, two observations were central, (1)
the SLTL-based loose programming approach is unable to distinguish data instances,
and (2) the close integration with the jABC framework made it difficult to connect
PROPHETS to the software ecosystem of the eScience community. First, scientific
workflows frequently reuse already generated data in later stages, and might ac-
cumulate multiple different data instances with the same type signature. These
have to be distinguishable and separately identifiable to ensure correct data trans-
fer between the components of the workflow. However, in SLTL models, states are
collections of available type propositions. As a result, when there are multiple data
instances of the same type, their signatures are identical and the framework is not
able to distinguish them. This leads to ambiguity in the interpretation of the synthe-
sised solutions, which may prevent the creation of executable workflows. Second,
to facilitate uptake by practitioners, the new implementation should aim to simplify
the import of semantic domain knowledge and export of synthesised workflows in
formats that are commonly used in the eScience community. In addition, it should
provide its functionalities through an API, a GUI and potentially a CLI.

1.1 Methods

This section presents the methodology I used while conducting the research pre-
sented. My goal is to provide a practical solution to a scientific question, and that
comes with some specific challenges common to computer engineering tasks.

The difference between solving a problem in theory and in practice can be quite
substantial. To provide an approach that can solve synthesis problems in practice
one needs to be aware of the questions the scientists might pose, as well as of the
knowledge that is currently available in various domains, i.e., its content and the
formats in which it can be presented.

My goal is to provide a framework, grounded in a sound theory, which is able
to successfully solve problems which occur in practice. This is a methodology com-
monly used in Software Engineering, which motivated me to adopt the core princi-
ples of Agile (Research) methodology [14, 135] in my research. I interpret the core
principles as follows.

1. Individuals and Interactions over Processes and Tools - In our case, the
needs of scientists in various domains should be the priority. The infrastructure
and existing domains are important, but the needs of individuals should drive
the development of our formalism.

2. Working Software over Comprehensive Documentation - In our case the
theory and implementations are not required to be documented in detail (in
form of a paper) after each improvement, but rather aim at making sure that
the formalism captures the desired features.

3. Customer Collaboration over Contract Negotiation - The goal is to collab-
orate with users (scientists) to improve our formalism, as opposed to devel-
oping a framework individually and expecting users (scientists) to adapt their
infrastructure accordingly.

4. Responding to Change over Following a Plan - Considering that I did not

Section 1.2 — Contributions | 5

know all the desired features of such a formalism up front, I had to be flexible
and change our priorities over time.

My research comprises four recurring steps (1) discovering desired features, (2)
formally defining the features (and extending the existing theory to facilitate them,
when needed), (3) implementing the formalism and (4) evaluating the formalism
on real examples (as illustrated Figure 1.2). This entails that this dissertation, apart
from the theoretical and practical contributions, presents a number of case studies
I performed in collaboration with specialists from various scientific domains. The
studies aim to evaluate the introduced formalism and motivate its improvements.

beta v1.0

SLTL to
Propositional
Logic

Export to CWL
and APE API

v1.1 A% v2.0

Web

Data
Dimensions

Discov e

Figure 1.2: Agile Research Methodology

1.2 Contributions

My research, as presented in Figure 1.2, revolves around a practical solution (the
APE framework) to the workflow synthesis process. Over the years I have researched
various scenarios that required workflow synthesis. They both, motivated and eval-
uated my approach. Figure 1.2 presents four key cycles that contributed to the final
framework. Each of the cycles is characterised by a specific APE release, its main fea-
ture and a case study(es) that motivated its improvements. This section identifies
my three main contributions in the process.

SLTL*-specified Transducer Synthesis The main theoretical contribution of
this dissertation is the introduction of the Extended Semantic Linear Time Logic
(SLTL™). I developed it in collaboration with Natasha Alechina and Brian Logan [72]

6| Chapter 1 — Introduction

and it is presented in Chapter 3. The logic formalises workflow properties and the
approach employs a Transducer Synthesis to synthesise the corresponding solutions.

SLTL” is, simply put, an extension of Linear Time Logic (LTL) that uses labelled
edges, first-order elements and term taxonomies to enrich the semantics. An SLTL*
model can be interpreted as a workflow that satisfies a given SLTL” formula (tem-
poral goal). The model comprises a set of multi-transducers® depicting workflow
operations and a corresponding transducer-port binding. The port binding repre-
sents a dependency between operations, where operation inputs depend on existing
operation outputs. The individual instances (input and output transducer-ports) are
crucial to fully automate workflow composition and to keep the information about
the data provenance.

In addition, I introduce the concept of data dimensions, disjoint sets of proper-
ties where each set characterises a specific aspect (dimension) of data. In an n-
dimensional domain, a data type is characterised by an n-tuple of dimensional prop-
erties. For example, in the life sciences domain each data object is characterised by a
data type and a data format (e.g., Mass spectrum in Thermo RAW format), therefore
it is a 2-dimensional domain. This concept further enriches the domain annotations,
simplifies the problem specification and improves the quality of the synthesis results.

Automated Pipeline Explorer The second major contribution presented in this
dissertation is a framework that implements the introduced formalism. Chapter 4
introduces a mechanism to translate the workflow synthesis problem for a given
SLTL” encoding into a propositional format [75]. Such encoding allows the usage
of an off-the-shelf SAT (Boolean satisfiability problem) solver, such as MiniSAT [38],
to compute the candidate solutions. Chapter 5 follows with the implementation of
the formalism in a tool - the APE (Automated Pipeline Explorer) framework [74].
I implemented APE as a library that supports a CLI (command line interface), API
(application programming interface) and GUI (graphical user interface).

Case studies in Geo- and Life-sciences The third major contribution is a set of
case studies done in collaboration with scientists from geo- and life-sciences, as pre-
sented in Chapter 6. This goes beyond the traditional computer science field. The
main goal of the case studies is to guide the further development of formalism. My
work on setting up the domain annotations and encoding a use case in the geovisual-
isation domain [73] and the collaboration with geoscientists on question-answering
in GIS [84, 120] helped to better understand the importance of distinguishing data
instances on the underlying logic level (e.g., by introducing SLTL*). In addition, the
GIS case studies motivated the concept of data dimensions. Originally I assumed
that an arbitrary domain would not characterise data with more than two disjoint
properties (data type and format). However, GIS case studies demonstrated that our
formalism must support an arbitrary number of data dimensions, as some semantic
domain annotations require up to four dimensions to characterise data.

The second goal of the case studies is to demonstrate the applicability and to
evaluate the quality of the approach. While each case study contributes toward this
goal, the collaborative work on workflow synthesis in the proteomics domain [76]
stands out. It demonstrates the potential of the SLTL* workflow synthesis approach

1A multi-transducer is a finite deterministic automaton with multiple input and output ports (i.e., it
takes a tuple of k inputs and produces a tuple of 1 outputs, k, 1 > 0).

Section 1.2 — Contributions |7

“in the wild”, as it uses APE over a publicly available domain, without any further
annotations, to solve given problems. Furthermore, the case study guides the future
annotation processes by pointing out important improvement points and expected
challenges.

The dissertation is structured as follows. Chapter 2 presents the background of the
workflow synthesis problem as well as the SLTL-based synthesis formalism we build
on. Chapter 3 introduces formally the SLTL*-based synthesis and presents the com-
plexity of three classes of SLTL"-based synthesis problems. Chapter 4 presents the
transformation formalism, used to translate a given domain and problem specifica-
tion into propositional logic, with the goal of using SAT solving techniques to reason
over it. Chapter 5 introduces the APE (Automated Pipeline Explorer) framework,
which implements the aforementioned synthesis approach. Chapter 6 presents the
case studies I performed in collaboration with scientists from life- and geo-sciences
to assess the usability of APE v2 (the latest version of APE). Chapter 7 presents
the runtime evaluation of the APE v2 framework and observations obtained from
a survey of the APE framework users. Chapter 8 concludes the dissertation with a
discussion of some related applications and potential future directions for the frame-
work.

Note that, in the remaining chapters I use the academic “we” when I refer to any
of my contributions, as most of my research was performed in collaboration with
external researchers.

CHAPTER 2

Background

Abstract - The dissertation introduces a novel scientific workflow syn-
thesis, i.e., automated composition, approach, which relies on an
existing temporal (SLTL)-based approach and builds upon it. This
chapter provides an overview of the existing program synthesis ap-
proaches, and focuses on workflow synthesis as their subset. Un-
like the program synthesis approaches, which often have to limit
the structure of synthesised programs to provide efficient automated
composition approaches, scientific workflow synthesis has, by defi-
nition, well-defined and structured composition goals. The scientific
workflows can be represented as acyclic directed graphs, and are used
as such in practice. This loop-free structure allows for an efficient syn-
thesis, without compromising the workflow structure. The temporal
logic (SLTL)-based synthesis approach presented in the chapter, al-
lows for an automated composition of scientific workflows based on
an abstract description of the problem. The approach is used as a
basis for the contributions presented in the following chapters.

Section 2.1 — Program Synthesis | 11

The scientific workflows are some of the main structures used to process data in
modern computational science, as presented in the introductory chapter. Chapter 1
describes the difficulties that contemporary scientists are facing due to the increased
amount of computational tools available. Distinguishing and identifying tools that
are needed for a task is increasingly hard. Therefore, semantics-based automated
workow composition, i.e., workflow synthesis, techniques have been used to sim-
plify the process. This chapter presents the background of the workflow synthesis
research presented in the dissertation. Section 2.1 provides an overview of the pro-
gram synthesis as a whole, before Section 2.2 presents scientific workflow synthesis
problems. Finally, Section 2.3 presents in detail the temporal logic-based workflow
synthesis approach, which inspired and supported the research presented in the dis-
sertation.

2.1 Program Synthesis

Unlike typical compilers that translate well-defined high-level languages to machine
code using sets of syntactic rules, program synthesis is typically accomplished by
performing some type of search over the search space of programs that are con-
sistent w.r.t. a specification, usually resulting in more than one possible solution.
Two major challenges in program synthesis are the state explosion of the search
space [97, 1371, caused by the combinatorial nature of the problem, and the correct
interpretation of the user intent. Both are non-trivial problems that were tackled
from different angles throughout the years. This resulted in the development of
various synthesis techniques [20, 53], as well as their application to many different
domains. According to Gulwani [50], each synthesis approach can be characterised
by three essential dimensions: (1) the format in which the user intent, i.e., the prob-
lem specification, is provided, (2) the search space of candidate programs in which
it searches, and (3) the algorithm used to perform the search.

User intent is an obvious choice for a key characteristic of synthesis approaches.
It defines the interaction between the user and the synthesis framework, essential
for the applicability of the approach. The main goals, when modelling a user in-
tent, are to provide an intuitive technique for describing the problem specification
(what is considered intuitive typically depends on the targeted users) and to remove
ambiguities in the specification.

Early synthesis approaches relied on the existence of a complete and formal spec-
ification of the program. Some approaches used theorem provers to construct a
proof of the user specification, and the logical program itself [48, 102], while oth-
ers used program transformations over abstract program specifications to produce
the desired low-level programs [101]. However, providing the initial specification
proved to be as complex as writing the program itself. This led to a focus shift [125,
126, 132] from deductive program specifications to inductive specifications, such as
input-output examples, partial specification, etc. It has become common practice to
have an interactive loop between the user and the synthesis algorithm, where the
user, based on the provided candidate solutions in the previous step, can provide
additional examples or specification constraints to resolve ambiguities.

12| Chapter 2 — Background

Many current approaches use formal logic descriptions to provide the user in-
tent [128]. The description is used to capture the logical relation between the
program input and the program output. However, these types of specifications are
usually hard to construct, as they require the user to be familiar with the underly-
ing logic. Although the work presented in this dissertation falls under this category,
similarly to the PROPHETS framework for loose programming [91, 108], it uses
natural-language templates for providing the specification, and so accounts for users
not trained in logics or formal specification. This type of user intent would, accord-
ing to [50], be categorised between logical and natural language specifications.

Although the formal specification allows for an accurate description of the user
intent, end users might not find it intuitive and straightforward. To solve this issue,
some approaches focus on an example-based specification format [49, 51] to model
the user intent. This type of problem specification allows users to provide examples
of desired outputs based on given inputs.

Some approaches allow for a partial description of the program as part of the spec-
ification of the user intent. These approaches are also called sketching, implemented
by the Sketch system [127]. Loose programming, as it is used in PROPHETS, is an-
other example of the same underlying idea. As an example from the eScience com-
munity, the WINGS (Workflow Instance Generation and Selection) framework [46]
employs the idea of providing a workflow template, where individual steps can be
left out and are automatically included based on the context when the template is
instantiated.

Finally, programmers might consider a programming language as the best tool for
specifying their intent. This is applied in superoptimisation of code [52, 112], and
in the synthesis of program inverses [35], such as compression/decompression, en-
cryption/decryption, etc.

The search space is defined by the structures that can be provided as a synthesis
output, as well as by the restrictions made on the problem implementation. Further-
more, its size and complexity are crucial for the computational complexity of the
synthesis problem. The search space should keep a balance between the expressive
power of the framework and the efficiency of a search over it. In other words, it
should be comprehensive enough to support a large set of candidate programs, and
at the same time restrictive enough to support efficient search mechanisms. Synthe-
sis approaches tend to limit the search space in some way to improve their runtime
performance.

In practice, the search space can vary from programs in general programming
languages to such in domain-specific formalisms. It is defined by the supported op-
erators and control structures. The approach presented in this dissertation targets
programs that restrict control structure to linear/sequential programs, also referred
to as loop-free programs. Another such approach is the previously mentioned super-
optimisation approach [52], implemented using SMT solvers. Loop-free programs
can express a wide range of computations, such as text-editing programs [93, 106],
API call sequences [100], and unbounded data type manipulations [88].

Other approaches allow the user to provide a skeleton (grammar) of the space of
possible programs in addition to the specification [7]. As the grammar provides a

Section 2.2 — Scientific Workflow Synthesis | 13

structure for the hypothesis space, these approaches can yield more efficient search
procedures. Additionally, a strict grammar ensures better interpretability of the can-
didate solutions. Examples of such approaches include the Sketch [127] and WINGS
systems, and the looping templates described by Srivastava et al. [128].

The search technique can be based on enumeration search algorithms, deduction,
constraint solving, statistical techniques, or a combination of them. The approach
presented in this dissertation uses constraint solving techniques, also categorised as
logical reasoning-based techniques. The main idea is to reduce the synthesis problem
to a SAT problem, and then use an off-the-shelf SAT solver to explore the search
space. The reduction typically involves two steps: constraint generation and con-
straint solving. The constraint generation procedure involves the generation of the
logical constraints, such as the logical relations between inputs and outputs, whereas
the resolving of the constraints yields the desired program. The latter involves
the translation of the generated logical constraints into the corresponding SAT con-
straints and the usage of the SAT solver as the synthesis reasoner. Counterexample-
guided inductive synthesis (CEGIS) is another popular solving technique. It origi-
nates from Counterexample-guided abstraction refinement (CEGAR) [28] in com-
bination with debugging using counterexamples [124]. CEGIS is an inductive syn-
thesis approach where synthesis is driven by counterexamples usually provided by a
constraint solver. Examples of systems that utilise CEGIS are PYCO [61], a tool that
performs constrained synthesis from component libraries and the aforementioned
Sketch system.

2.2 Scientific Workflow Synthesis

This dissertation focuses on computational pipelines, commonly referred to as sci-
entific workflows. These loop-free programs can be represented as finite acyclic
directed graphs, where nodes depict operations, i.e., computational tools, and edges
depict data and/or control flow dependencies. As mentioned in the introductory
chapter, scientific workflows play a key role in modern computational science re-
search, such as life science [92] and geo-science [6]. Data analyses must be tailored
to highly complex data and processes, hence, scientists regularly use sophisticated
workflows, composed of several software tools and data resources.

The problem of scientific workflow synthesis, given a computational problem spec-
ification, is to produce a scientific workflow that satisfies the specification. This sim-
plification of the problem, when compared to the general program synthesis, allows
researchers to optimise the synthesis approach and provide more lightweight solu-
tions. For example, systems, such as Wings [46] and the tool recommender system in
Galaxy [87] focus on finding individual tools to fill in the gaps in existing workflows.
These types of approaches synthesise a workflow by instantiating the missing steps
within the provided workflow structure. On the other hand, systems such as Al plan-
ning in GIS [39, 150] Magallanes [116], SHARE [138] and HYDRA [13, 115] and
PROPHETS [108] synthesise complete workflows based on abstract specifications.
These approaches rely on well-annotated domains that allow them to automatically
chain together compatible operations and compose valid workflows. The Magal-

14| Chapter 2 — Background

lanes system, as well as the Al planning in GIS approaches, focus on composing web
services in bioinformatics and geo-science, respectively. The SHARE and HYDRA
query engines allow the generation of fully executable pipelines. To accomplish
that, they rely on well-annotated and curated semantic domain annotations - SADI
registry [144], as well as the SPARQL query language. The PROPHETS framework
provides a synthesis of scientific workflows based on temporal logic specifications.
It requires semantic annotations that describe the domain vocabulary and opera-
tion with respect to their inputs-output dependencies. Finally, synthesis approaches,
such as the one provided by Nextflow [33], focus on synthesising optimal workflow
executables. Instead of synthesising the structure of the workflow, they utilise a
given data-flow structure to implement optimisations, such as the parallelism, in the
resulting executable file.

This dissertation focuses on the synthesis of complete workflows as they provide
a broad field of application. More concretely, it focuses on the temporal logic-based
synthesis approach behind the PROPHETS system, as it supports workflow synthe-
sis in an arbitrary semantically annotated domain. The approach has an additional
advantage, that unlike some of the other approaches, it can work with limited do-
main annotations. Such semantic annotations are readily available in some scientific
domains, such as the life-sciences [92, 111].

PROPHETS is a plugin to the jABC modelling framework for eXtreme model-
driven development (XMDD) [104, 131]. It allows workflow developers to mark
connections between workflow building blocks as “loosely specified” and run the
synthesiser to turn the loose specification into a fully specified and executable work-
flow part. The specification is provided in the Semantic Linear Time Logic (SLTL) [130],
which is an extension of the Linear Time Logic (LTL). Users can formulate additional
constraints for the loose specification that the synthesiser takes into account. There-
fore PROPHETS provides a constraint editor with natural-language constraint tem-
plates, which the users can easily fill with terms from a domain-specific controlled
vocabulary.

The following section describes the SLTL-based synthesis approach which under-
lines the PROPHETS framework. The dissertation uses the approach as a base that
it builds upon.

2.3 SLTL-based Workflow Synthesis

The SLTL-based synthesis method was initially proposed by Steffen et al. [41, 130],
following the revised formulation in [91]. The section presents the syntax and se-
mantics of SLTL, as well as the SLTL-based workflow synthesis problem.

Workflow synthesis with the SLTL-based method relies on semantic annotations,
i.e., a domain model, about the data types and operations in the targeted applica-
tion area. Domain models comprise data type/operation taxonomies (referred to as
Taxp/Taxo) as controlled vocabularies, and a set I'A of semantic annotations of
the available tools using terms from the domain taxonomies.

Definition 1. A taxonomy is a weakly connected directed acyclic graph G = (V, E)
where the vertices V are terms in 0, which describes entities of a domain, and the
directed edges E define relations between the entities. Taxonomies have a designated

Section 2.3 — SLTL-based Workflow Synthesis | 15

root element vy € V that has no outgoing edges. All other elements in V have at least
one outgoing edge.

The set of all abstract (D,) and concrete types (D,) in the domain model is de-

noted by D = D, u D,, and the set of all abstract (O,) and concrete operations (O.)
by O = O, u O.. The type taxonomy is a taxonomy with § = D and the operation
taxonomy is a taxonomy with 6 = O. Terms from these taxonomies are used for the
semantic tool annotation in the domain.
Definition 2. A semantic tool annotation is a triple (o, Use,, Gen,)', where o € O, is
a concrete operation (tool) from the domain, Use, C D is the set of types that must be
available before its execution (i.e. its input types) and Gen, € D is the set of types that
are created by its execution (i.e. its output types). The set FA comprises all semantic
tool annotations of the domain model.

The semantic tool annotations F'A define the synthesis universe, which constitutes
the search space in which the synthesis algorithm looks for solutions to the synthesis
problem. It combines the domain knowledge into an abstract representation of all
possible solutions.

Definition 3. The synthesis universe is a triple (27, O, Trans) where
+ D is a set of concrete and abstract data types.
+ O, is a set of concrete operations (tools).
s Trans = (d,o,d') is a set of transitions where d, d' € 2P and o € O,.

The synthesis universe can be constructed from the semantic tool annotations as
follows: For each d € 27, a state in the universe is created. The transition (d, o, d’) is
added to Trans iff Use, € d and d’ = d u Gen,. Each path in the synthesis universe
represents a possible workflow. Note that albeit potentially very large, the synthesis
universe is finite. It can however contain loops and therefore represent infinite paths
(workflows). The synthesis problem is to find (finite) paths p in the synthesis universe
that satisfy the formal specification ® of the intended scientific workflow (p = @),
provided in the form of an SLTL formula.

Definition 4. For a given taxonomy over a set of terms 6, taxonomy expressions are
defined as follows:
TE = a|-TE|TEATE|TEVTE

where a € 6 is a term from the taxonomy.

Definition 5. Semantic Linear Time Logic (SLTL) is a semantically enriched version of
linear time logic (LTL) that is focused on finite paths. The syntax of SLTL is given by
the following BNF:

d == true | type(d.) | =@ | @AD | <0,> ®|GD|DUD
where d. and o, represent taxonomy expressions over types and operations, respectively.

Definition 6. Let (2°,0,, Trans) be the synthesis universe and p an alternating se-
quence of type sets and operations, defined as p = (dp,01,d1,02,ds2,...,dk-1, 0k, d)

IThe original definition also includes the sets Kll (defines those types that are destroyed and there-
fore removed from the set of types that were available prior to execution of the operation) and Forbid
(a set of types that must not be available before execution of the operation), but we omit them here as
they are not commonly used, nor relevant for the workflow synthesis problems that we address with this
dissertation.

16| Chapter 2 — Background

where the workflow bound k € Ny, d; € 2P and o; € O.. Path p (or po) satisfies formula
® (po E ®) in SLTL, under (27, 0., Trans), according to the following definition:

p; = true true for every path

pi =Ed iff DTax(d;)+ d (under propositional logic)

pi E P if p#®

pi = D1 A Dy iff pE®PiApE Py

piE<0>® iff k>iand OTax(04+1) + o (under
propositional logic) and p;1 E ®

pi = G iff Vee{i,...k}:p, D

pi E O1UD, iff Jxeli,..k}:Vye{i,....,0—1}:

Py E P, and Pz E d,
where p; is defined as:

pi = (di70i+1adi+17 ...,Ok,dk) when i€ {0, ,k - 1}
pi = (dk) when i=k

while the used functions for the evaluation of the taxonomic information, OTax :
O. - 29 and DTax : 2P+ — 2P are defined as follows:

OTax :x v+~ {o|oedrvo(z)}
DTaz: X »{d|3xe X :dedrvp(x)}

with the taxonomy is-a relation utilised to create a set of derivable terms for each
a € 0, by the following recursive definition:

drvg(a) = {a} u{X|3a’ eis-a(a,a’) : X e drvg(a’)}

In addition to the globally (G) and until (U) operators as defined above, we will
use two additional operators to simplify the notation: X ®, interpreted as < true > ®,
denotes the next-time operator, and F'®, interpreted as trueU ®, denotes finally
operator.

The SLTL-based synthesis problem is defined as follows.

Definition 7 (SLTL workflow synthesis). The SLTL workflow synthesis problem is:
given a synthesis universe (2, 0., Trans) and an SLTL formula ® (the goal formula),
is there an alternating sequence of type sets and operations p that satisfies the formula
® (p e ®) under (2P, 0., Trans).

The PROPHETS framework implements a tableau algorithm that solves SLTL work-
flow synthesis problems, having exponential worst-case complexity [130]. The com-
plexity, as well as the fact that the library is used within a larger jABC framework,
reflects on the runtime. For example, PROPHETS exceeds a timeout of one hour
when synthesising workflows of length 10 in the geovisualisation domain [73]. The
framework provides an additional implementation, based on a monadic second-
order logic?. The runtime does not show drastic improvements in the runtime when

2Monadic second-order logic is a second order logic where no function variables are allowed and the
relation variables are required to be monadic, i.e., of arity one [56].

Section 2.3 — SLTL-based Workflow Synthesis |17

synthesising larger workflows. The synthesis approach is, however, not publicly
available and thus is not assessed further.

The SLTL-based synthesis approach allows for an exhaustive exploration of the
synthesis universe, covering and evaluating all possible operation combinations.
However, as discussed in the following chapter, a major limitation of this method
in practice is its inability to distinguish data instances. This is due to the semantics
of the underlying temporal logic, and the representation of states as sets of data
types.

To be able to reason over different instances of the same kind of data, and to
provide the user with a formalism that allows full control over the solutions, the
approach has to be improved. In addition, the development of jABC, the PROPHETS’
working environment, has been discontinued and superseded by the work on the
Cinco SCCE Meta-Tooling Suite [109, 110]. To continue this work on automated
workflow composition a replacement for the PROPHETS framework is needed, as
the framework is closely integrated into the jABC ecosystem. The following chapters
present the extension of the SLTL formalism, as well as a new implementation of the
formalism, that addresses the mentioned limitations.

CHAPTER 3

From SLTL to SLTL?

Abstract - A major limitation of temporal logic-based approaches
to automatically synthesising a workflow to accomplish a particular
computational task from a set of computational tools, is their inability
to distinguish data objects with the same type signature. This leads
to ambiguity in the specification of the required solution, which may
prevent the creation of an executable workflow. This chapter intro-
duces a workflow synthesis approach that is able to keep track of
data objects. We view synthesis as a problem of orchestrating trans-
ducers representing computational tools to achieve a temporal logic
specification. We show that the bounded SLTL* workflow synthesis
problem (where the maximum number of times each tool is used is
known in advance) is NP-complete, and the dynamic SLTL* workflow
synthesis problem (where the number of times a tool is used is not
known in advance) is PSPACE-complete. Finally, this chapter shows
how the SLTL*-based approach overcomes the limitations of previous
approaches, using case studies from the GIS domain for illustration.

This chapter is based on the following publication:

Kasalica, V., Alechina, N., Lamprecht, A.-L. & Logan, B., “Instance-Aware Synthesis of Work-
flows Specified in Temporal Logic”, Journal of Artificial Intelligence Research (JAIR), 2023,
Submitted and under review.

Section 3.1 — Challenges in SLTL Workflow Synthesis | 21

The creation of scientific workflows can be challenging. Workflow developers
need to identify the relevant workflow components from often large collections of
computational tools, and compose them correctly (order, type compatibility) to solve
a given computational problem. Automating workflow synthesis reduces the re-
quired time and the likelihood of errors.

This chapter introduces a scientific workflow synthesis approach that is able to
keep track of data objects. The chapter is structured as follows. Section 3.1 presents
the limitations of the SLTL-based synthesis approach, which we try to overcome.
Section 3.2 presents semantically annotated multi-transducers as the formal back-
ground. In Section 3.3 we describe an extension of SLTL with first-order features,
and our new approach to transducer orchestration with temporal goals in Sec-
tion 3.4. Section 3.5 presents the application to the aforementioned geovisualization
case study and evaluates the new approach with respect to the existing SLTL-based
approach. Section 3.6 presents related approaches which tackle the synthesis of
computational tools.

3.1 Challenges in SLTL Workflow Synthesis

The SLTL (Semantic Linear Temporal Logic) [130] synthesis approach has been used
for the automated composition of scientific workflows in the PROPHETS [108] and
APE v1.0 [74] frameworks. SLTL is an extension of Linear Temporal Logic (LTL)
which introduces labelled edges and term taxonomies to enrich the semantics. An
SLTL model can be interpreted as a workflow which satisfies a given SLTL formula
(temporal goal). The model contains states representing sets of available data types,
and edges representing the operations performed over the data.

The original SLTL-based synthesis approaches suffer from two main limitations:
an inability to distinguish data objects of the same type and an inability to express
data-tool dependencies. This leads to ambiguity in the specification of the required
solution, which may prevent the creation of an executable workflow. To solve that
problem, we extend Semantic Linear Temporal Logic (SLTL) to be able to talk about
objects (data instances). We call the resulting logic SLTL*. Under this formalism, we
view synthesis as a problem of orchestrating transducers representing computational
tools to achieve a temporal logic (SLTL") specification.

Distinguishing data objects is crucial, as scientific workflows frequently reuse
data generated in earlier stages, resulting in multiple different data objects with the
same type signature. These objects must be distinguished to ensure correct data
transfer between the components of the workflow. However, in SLTL models, states
are sets of available type propositions. As a result, when there are multiple data
objects of the same type, their signatures are identical. This leads to ambiguity
in the interpretation of a required solution (which operation should be applied to
which data object), and may prevent the creation of an executable workflow.

As an example, consider the synthesis of geovisualisation workflows for gener-
ating maps depicting bird movement patterns in the Netherlands [73], as briefly
mentioned in Chapter 1. The synthesis goal is to generate a workflow over an exist-
ing set of GIS tools that can be used to plot bird movement data and city coordinates

22| Chapter 3 — From SLTL to SLTL*

(both provided as CSV files) on a map. The map should plot the water and land,
while the bird movement and city coordinates should be plotted as lines and points,
respectively. The workflow specification, therefore, indicates the two CSV files (i.e.,
of type “CSV”) containing coordinates of cities and bird movements as inputs. The
specification further requires that operations “Plot water”, “Plot coast”, “Plot points”
and “Plot lines” are used, and that an output of type “PostScript” is produced. The
corresponding specification in SLTL (where F' means “eventually”, (Plot_water)®
means ® holds after applying operator Plot_water, and X means “in the next state”,
the full syntax is presented in Chapter 2) is given by:

CSV ACSV A F({Plot_water)F({Plot_coast)(F
({Plot_points)F(Plot lines)true))) A F(PostScript A -Xtrue)

However, as the two inputs have the same type (“CSV”), the SLTL specification
cannot express that the cities should be depicted as points, whereas the bird move-
ments should be connected with lines, or even that both input files should be used.
Figure 3.1 shows some possible interpretations of two different SLTL models satisfy-
ing the specification generated by APE v1 [74]. The rectangles represent operations
performed, ellipses represent data objects used, and the arrows depict data flows.
The arrows also indicate if the data are an input for the operation (red, dotted) or
an output of the operation (green, solid). Figures 3.1(a) and (b) correspond to two
different interpretations of the shortest model (with respect to the number of op-
erations performed). However, although the model satisfies the SLTL specification,
neither interpretation uses both of the inputs: interpretation (a) does not use the
bird movement data, while (b) does not use the city coordinates. Figures 3.1(c)
and (d) are interpretations of a “longer” model, which performs two transformation
operations, instead of one. Interpretation (c) is indeed a valid solution to the prob-
lem. The workflow creates a simple map of the Netherlands, depicting the sea as
blue, the coast as green and the bird movements as dots on the map. In contrast,
interpretation (d) does not use the bird movement data.

To encode such dependencies, existing approaches typically rely on workarounds.
For example, our previous work [73] proposes an incremental approach where each
segment of the workflow (not containing multiple objects of a data type) is synthe-
sised separately and then composed to produce the final map annotations; e.g., once
the city locations are plotted, the corresponding workflow is extended by a newly
synthesised workflow that plots the bird movement. However, such workarounds as-
sume that the target workflow can be decomposed into independent sub-problems
(which is not always the case), and do not enable full automation of workflow syn-
thesis.

The inability to distinguish data objects also means it is not possible to express
data-tool dependencies, i.e., to specify properties that relate tools to existing data.
This can result in synthesised workflows containing redundant operations, that is,
the same type of operation being performed over the same data multiple times. For
many solutions of length n, the solver can create a solution of length n + 1 that
performs the same type of operations and introduces a redundant operation that is

Section 3.1 — Challenges in SLTL Workflow Synthesis

—

init GMT

-

PR

init GMT

—

\

h)
S
£ |
£
g

Plot water
pscoast_S

Plot coast
pscoast G

-

Plot coast
pscoast_G

—

b

— :

)[csv2xyz

......

......

Plot points
psxyz_P

b
b

A 4

Plot points | :
psxyz P

Y

init GMT

Plot water
pscoast_S

Plot coast
pscoast_G

e
e

) csv2xyz

Plot points |}
psxyz_P

init GMT

Plot water
pscoast_S

Plot land
pscoast_G

) csv2xyz

Plot points
psxyz_P

csv2xyz

. Plot lines csv2xyz
) psxyz_L I H

PostScript

) Plot lines
psxyz L
PostScript

Plot lines
psxyz L

Plot lines

psxyz_L

O] Dol

PostScript

a) b) c) d)

PostScript

Figure 3.1: Possible synthesis solution interpretations.

consistent with the workflow specification, for example, repeating the same transfor-
mation of data multiple times. To illustrate, [84] evaluated the 20 shortest solutions
for 10 different workflow synthesis scenarios in geoinformation systems (GIS) and
found that 70% of the workflows generated by APE v1 contained such redundant
operations (Figure 3.2 illustrates one of such errors). Figure 3.2a presents a correct
workflow that was synthesised for the given question. The workflow comprises two
operations (blue rectangles), and thus, is considered to be of length 2. In contrast,
Figure 3.2b presents a workflow of length 4 that contains redundancy errors. The
main redundancy comes from the usage of the IDWinterval (marked in red) trans-
formation tool multiple times over the same object (first workflow input).

In this chapter, we present a new approach to the synthesis of workflows, which
preserves and utilises information about data objects in a workflow. Our approach
combines and extends workflow synthesis using the temporal logic SLTL and con-
troller synthesis for transducers [5, 32] originally developed for the automated gen-
eration of controllers for manufacturing facilities. Referring to individual objects

24| Chapter 3 — From SLTL to SLTL*

Workflow INPUT

Workflow INPUT in

I ExtractFieldR ValuestoPointM al

in

in
s IDWInterval
out
out

" FieldRasterlntervalA ~_» {_ LatticeVectorA >y v

¢ LatticeVectorA

{

Workflow OUTPUT

(a) Correct, with no errors. (b) Correct, with a redundancy error.

Figure 3.2: Example of a redundancy error in workflows synthesised for question “What is
the average temperature within each PC4 area in Amsterdam?”

(physical and virtual) is essential in the manufacturing domain. However, there
are significant differences in our approach; for example, in the specification formal-
ism and in the assumption that workflows are acyclic. We show that the bounded
SLTL® workflow synthesis problem (where the maximum number of times each tool
is used is known in advance) is NP-complete, and the dynamic SLTL* workflow syn-
thesis problem (where the number of times a tool is used is not known in advance)
is PSPACE-complete.

The following chapters aim to solve the bounded synthesis problem in practice.
The idea is to translate the SLTL” specification into propositional logic and use the
MiniSAT [38] solver to synthesise the solutions. The translation into propositional
logic [75] is presented in Chapter 4, while the APE (for Automated Pipeline Ex-
plorer) [74] framework that implements the approach is presented in Chapter 5.
The APE v2 is the latest version of our framework that implements the SLTL*-based

Section 3.2 — Transducers | 25

approach and extends on the previous APE v1 that captures the SLTL-based ap-
proach.

3.2 Transducers

We model the tools used in workflow synthesis as multi-transducers as in [32]. A
transducer is a finite deterministic automaton with outputs [59]. A multi-transducer
has multiple input and output ports (i.e., it takes a tuple of k inputs and produces
a tuple of [outputs, k,I > 0). However, unlike [32], we add semantic annotations
on the transitions of a transducer to constrain the types of symbols that can be used
as inputs, and also specify the types of outputs. We assume that the annotations
come from some set of unary predicates Ly and that each input and output for
each transition is annotated with zero or finitely many predicates from this set.
Transitions of a transducer with & input and [output ports correspond to k + I-
ary relations from the set of predicates Lo. To distinguish the input and output
arguments in a predicate, we label them with two superscripts, e.g., P*! corresponds
to a predicate of arity k + [where the first k£ arguments correspond to inputs and the
last [to outputs.
Definition 8 (Semantically annotated multi-transducer). A semantically annotated
multi-transducer T = (X, S, s0, £ & k L L1, Lo, O, U, G) is a deterministic transition
system with inputs and outputs, where:

+ X is the alphabet (of both inputs and outputs),
S is a non-empty finite set of states,
s € S is the initial state,
f:8x %k — Sis the state transition function,
g: S x ¥F — ¥l is the output function,
k is the number of input ports and [is the number of output ports,
Ly is a finite set of unary predicates (types of inputs and outputs),
Lo is a finite set of k + l-ary predicates (types of operators/transitions),
O is a function from the set of transitions Tr = {(s,a,s’,b) | f(s,a) =s',g(s,a) =
b} to Lo

o U:Tr — 257" and G : Tr — 2" annotate inputs and outputs of tr € Tr.

We assume that transducers have a distinguished state s, that takes care of in-
correct inputs. In the interests of readability, we sometimes omit the s.,.,. state in
the examples below. We also only use examples of transducers with a single state
(not counting s.). Some tools and resources used in workflows are more naturally
modelled as a multi-state transducer. For example, the Google Maps Geocoding API
will return an error if more than 50 requests are submitted in a second, and mod-
elling such a request counter requires multiple states. However, this is a modelling
choice, and any multi-state transducer can be simulated by a finite set of single-state
transducers connected by a port binding (introduced below).

We use transducers (representing tools) to generate state transition systems corre-
sponding to a particular instantiation of a workflow. In what follows we essentially
treat symbols from X as placeholders for concrete data objects (such as specific
files etc.) that are manipulated by the tools represented by the transducers. Only

* 6 ¢ 6 6 0 0 o

26| Chapter 3 — From SLTL to SLTL*

psxyz_P

6

Figure 3.3: Example multi-transducer that performs the psxyz P operation.

ing
in2

(data) objects that satisfy the properties assigned by U(t) result in transitions to
a state other than s, and where the corresponding outputs satisfy the properties
assigned by G(t). When objects of the appropriate type are given as inputs (substi-
tuted for the symbols) to a transducer transition, new objects are produced with the
properties specified for the output.

For example, the semantically annotated transducer in Figure 3.3 corresponds
to functional annotations for the operation psxyz P used in the introductory ex-
ample. The operation can be modelled as T = (%, 5,50, f,9,2,1, Ly, Lo, O,
U, G), where ¥ = {tab,ps,plo,err}, S = {so,Serr}, f(s0,(tab,ps)) = so and
9(s0, (tab,ps)) = plo; all other transitions lead to s, and output err. The types
language is Ly = {XY Z_table, PostScript}, while the set of operations/transitions
is Lo = {pszyz_P%'(tab, ps,plo)}. The annotations for the only meaningful transi-
tion are: O(sg, (tab,ps), so,plo) = pszyz_ P> (tab, ps,plo), U(so, (tab, ps), so, plo) =
({XY Z_table},{PostScript)}), G((so, (tab, ps), so,plo) = { PostScript}.

A workflow consists of a number of tools connected together. We model
this as a port binding of a set of transducers. For a multi-transducer 7% =
(%,8%, 88, f*, g%, k*, 1", L7", Lo, O%, U”, G*), the input port 1 < i < k* is denoted
by in,,;, and the output port 1 < j < [* by out, ;. The values at the input port i
and output port j of transducer 7% are denoted as val(in, ;) and val(out, ;), re-
spectively. The values reflect the type of data that is required as input/provided as
output. Similarly, val(in,) and val(out,) denote the vectors of values at the input
and output ports of 7. The domain of the val function is L1 U {e}, where e denotes
the empty type, i.e., the port requires (input port) or creates (output port) no data.
As in [32], we use index z = 0 to denote the inputs and outputs of the environment.
That is, transducer T° specifies the inputs to the workflow and the required outputs:
the outputs of the environment are the initial inputs to the set of transducers rep-
resenting computational tools, 7,..., 7™, and the inputs to the environment are
outputs of 7%, ..., T™.

Definition 9 (Port binding). Given a set of semantically-annotated multi-transducers
T°,...,T™, a port binding c is a set of pairs of the form (out, j, in, ;) (Where z,y €
{0,...,m} and i,j are port numbers in {1,...,k*} and {1,...,1Y}, respectively) that
represent connections between the output port j of multi-transducer y and input port
1 of multi-transducer x. A workflow port binding in addition satisfies the following
constraints:
¢ each input port is connected to at most one output port (if, for some i €
{1,...,k"}, in,,; does not appear in c, its value is assumed to be empty, i.e.,
val(ing;) = €);
o there are no loops, i.e., there is no path along the edges' which is either port

1Each pair (outy,j,iny ;) in a binding can be seen as an edge between z and y. A path z1,...,z,

Section 3.2 — Transducers | 27

2 2 2
XYZ table ’ Ps® | Plo® L e postScript
XYZ table psxyz_P
tab?, ps' | plo? psxyz_L
PostScript

Figure 3.4: A workflow modelled as a port binding between two transducers.

bindings or links between input and output ports of the same transducer in
T, ..., T™.
A port binding together with a set of inputs generates a finite labelled state tran-
sition system (a finite path).
Definition 10 (STS generated by a port binding). Given a set of transducers
T°,...,T™, a port binding ¢ and an input tuple a = ay,...,a, annotated with
Ai,..., A, where A; € Ly for 1 < j < n, the transducers will make a finite num-
ber of transitions try ..., try for some k < m, giving rise to a state transition system
(path)

qo, Pi(ag,b1),q1, P2(a1,bz), ..., Pr(akx-1,bx), g

where
* qo,-..,q are sets of ground atomic formulas (states of);
+ transitions between states q; and q;11 are labelled by the operator application
P (ai, bi+1)
Pi € O(t?’l),
a;_1 are inputs and b; (fresh constants) are outputs of tr;,
ag = a are the values on the output port of the environment,
q0 = Ujeq1,...n3{P(a;) | P e Aj},
¢ ¢i=qi-1V{P(b)|3j(b=Dbyi;, Pe G(tr;);)}.

Figure 3.4 illustrates a port binding between two transducers that can plot points
(psxyz_P) and lines (psxyz L). If the environment is modelled as transducer 0,
(psxyz_P) as transducer 1 and (psxyz_L) as transducer 2, the binding is as follows:
{(Outo71, Z‘TL271), (OUtO,Q, z'nl,l), (Out0,3, Z.nl,g),

(out11,in2,2), (outa1,ing1)}. Given specific input files a, b and ¢, this binding gen-
erates the following state transition system:

* 6 ¢ o

along the edges in a port binding exists if some output port of x; is connected to some input port of z2,
an output port of o is connected to an input port of xz3,..., and an output port of z,,_; is connected to
an input port of z.,

28| Chapter 3 — From SLTL to SLTL*

qo ={XY Z Table(a), XY Z Table(b), PostScript(c)}
pszyz_ P> (b, c,d)
{XYZ Table(a), XY Z Table(b), PostScript(c),
PostScript(d)}
09 = pszyz_L*'(a,d,e)
qo ={XYZ Table(a), XY Z Table(b), PostScript(c),
PostSeript(d), PostScript(e)}

01

q1

3.3 SLTL*

In this section, we extend Semantic Linear Temporal Logic (SLTL) [130] to be able
to talk about (data) objects. We call the resulting logic SLTL".

Similar to SLTL, SLTL® presupposes the existence of semantic type hierarchies.
The low level operation names and signatures, such as psxyz_P?!(z,y,z), are un-
likely to be known to the users who specify a workflow. Users are more likely to use
a high-level specification of an operation, such as Plot_Points'! (u,v) (where u is
the input file with coordinates and v is the output map). This necessitates including
more operation names in the specification language than those corresponding to the
transducers, and a representation of a relationship between concrete and abstract
operations. In addition, a user may also specify properties of files which are not in
the standard type hierarchy, such as Birds(a) to say that file a contains data on the
movements of birds.

Unlike SLTL, SLTL” introduces a distinguished binary predicate R to track ‘ances-
tor relations’ between objects. An object a is an ancestor of object b, R(a,b), if either
a = b or b is an output of an operation that had as one of the inputs an object a’ such
that R(a,a’) (note that R is a transitive relation). While the user may not know the
order of operations and the required types of their inputs, they may want to specify
that an operation should be performed either directly on the input file or on a file
derived from it. For example, a user may require that Plot_Points'!(u,v) should
be applied either to a file containing coordinates of cities (C'ities(u)) or to a file that
has been obtained from w by performing some processing, Cities(w) A R(u,w).

The syntax of SLTL” is defined relative to the following alphabet:

+ a countable set of variables Var = {z,y,z,...},
a countable set of constants Con = {a,b,c,...},
a finite set L! of unary predicate symbols that includes Lz,
a finite set L° of predicates symbols that includes Lo,
a distinguished binary predicate R,
identity relation between terms, =,
propositional connectives true, -, A,
temporal operators G (always in the future) and U (until), and dynamic op-
erators (P*!(ty,... try)), PPle LO.

* 6 6 6 6 0 o

Section 3.3 - SLTL® |29

Terms are variables or constants, where each constant depicts a (data) object in a
workflow execution. Atomic formulas are of the form P(t;), where P € L!, R(t,t5)
or t; = ty, where P and R are a unary and a binary predicate, respectively, and ¢;
and t, are terms.

The set of ground atomic formulas built using types L' will be denoted by AtE'
The states will be subsets of AtL". The set of ground atoms constructed using ‘con-
crete’ operators Lo will be denoted by AtL©. Transitions between states correspond
to elements of At*© (we assume that there are no parallel operations by two or
more transducers).

We define an ‘implements’ relation 1> between atomic formulas over At-© and for-
mulas built using L to say that a description of a concrete operation is an implemen-
tation of an abstract one. This relation is derived from semantic hierarchies for a par-
ticular domain. For example, pszyz_ P%*'(a,b,c) implements Draw_Points'(a,c),
symbolically, pszyz_P*'(a,b,c) > Draw_Points*'(a,c).

The syntax of SLTL” is given by the following BNF:

O = true | P(t)| R(t1,t2) | - P | PAD|
(P(t1,....t:))® | G® | OUD | 32 |t =t

P(t) depicts property of a term ¢, where P ¢ Lt, (P(ty,...,t,))® means ‘after apply-
ing operation P(t1,...,t,), ® holds’, G and U are ‘globally’ and ‘until’.

Given a set of ground atoms A, we define the domain of A, dom(A), to be the set
of all constants occurring in A. An assignment # on A is a function from the set of
variables, Var into dom(A). For a term ¢, [t]y = ¢ if ¢ is a constant, and 6(¢) if ¢ is
a variable. Sentences of SLTL” are formulas with no free variables. Workflows are
specified by sentences of SLTL".

An SITL* model 7 = (qo,01,41,02, G2, ---sqk—1, 0k, qx) iS a finite alternating se-
quence of states (subsets of AtLt) and ground transition relations (elements of
AtLo). We denote by 7;, 0 < i < k, the suffix ¢;, 041, ..., q of 7; for i = k, 7 = (q).
We denote by 6;, 0 < i < k, an assignment over ¢; U {0;41}, and 6, an assignment
over ¢i. Note that given a state ¢; in m, it is possible to compute the reflexive and
transitive relation R on dom(q;) from o1, ..., 0;.

Definition 11 (Truth conditions in SLTL* models). Let © = (qo,01,¢1,02,
G2, -, qk—1, 0k, qr) be an SLTL® model. The relation “r satisfies formula ® under as-

30| Chapter 3 — From SLTL to SLTL*

signment 0” (w,0 £ ®) as mg, 0y £ ® by induction below:

m;,0; E true

i, 0; & P(t) if P([tle.) €

w0 Bty =ty uf [tile, = [t2]e,

i, 0; E R(t1,t2) iff R([t1]s,, [t2]0,)

i, 0; & =P iff 7,0,

i, 0; E @1 A Do iff m,0; =Py AT, 0; E Dy

i, 0; & Jxd iff 3dedom(q;u{ois1}) (mi,0;[x — d] = D)

iy 0i E(P(t1,...,t5))® iff o1 >P([t1]e,,---,[tnle;)
and m;41,0;:1 E®and k>0
i, 0; E GO iff Vjie{i,...,k}:m;,0;=®
i, 0; = ©,UP, iff Fjefi,...k}:
Vme{i,..,j—1}:
T, Om = 1 and 7;,0; = Oy

We use the standard definitions for v and —. In addition to the G and U oper-
ators as defined above, we will use two additional operators to simplify notation:
X @, interpreted as (true)®, denotes the next-time operator, and F'®, interpreted as
true U ®, denotes eventually operator. Note that although we can refer to transi-
tions, the logic is much closer to LTL on finite traces (LTL;) than to Linear Dynamic
Logic on finite traces LDL in [31].

3.4 Transducer Synthesis with Temporal Goals

In this section, we define three workflow synthesis problems and analyse their com-
plexity. The three synthesis problems differ in expressive power, applicability as well
as complexity, and thus, are presented individually.

Definition 12 (Bounded workflow synthesis). The bounded workflow synthesis
problem is: given a set of semantically annotated multi-transducers, T*,...,T™, an
SLTL* formula ® (the goal formula), and an initial input tuple a, is there a port binding
for some subset of T, ..., T™ such that the resulting SLTL* model satisfies ®.

Theorem 1. The bounded workflow synthesis problem is NP-complete.

Proof. For membership in NP, observe that a port binding, for a fixed set of trans-
ducers and input objects, is polynomial in the size of the problem input. Hence it is
possible to guess a port binding, generate the corresponding state sequence (which
is of finite length polynomial in the input since there are no cycles in the binding),
and check whether it satisfies the formula ® in polynomial time. This means that the
problem can be solved by a non-deterministic Turing machine in polynomial time.
For NP-hardness, we use a reduction from the satisfiability of CNF formulas. Let
¢ be a CNF formula over variables p1,...,p,. The reduction is as follows. The set
of n transducers contains, for each p;, a p;-transducer that on input x outputs y that

Section 3.4 — Transducer Synthesis with Temporal Goals | 31

has property P;. Let ¢r(¢) be a translation of ¢ into first-order logic that replaces p;
with 32 P;(z) and -p; with Vz-P;(x). (Since ¢ is in CNF, all negations occur only
on propositional variables.) Then ¢ is satisfiable iff there is a positive answer to the
bounded workflow synthesis problem for this set of transducers, an input a with an
empty set of annotations, and a goal formula F'tr(¢). O

In bounded workflow synthesis, the workflow is restricted to the specified set
of tools represented by T,..., 7™ (some of which could be copies of the same
tool). Recall that workflows are acyclic, so each T can be used at most once in the
workflow. However, it is often not possible to specify how many copies of a given
transducer may be needed. For example, a user may not know in advance how many
times e.g., a postscript generator will need to be used and hence how many copies
of the postscript generator transducer to specify.

Definition 13 (Unbounded workflow synthesis). The unbounded workflow synthe-
sis problem is: given a set of semantically annotated multi-transducers, T*,...,T™,
an SLTL* formula ® (the goal formula), and an initial input tuple a, are there non-
negative integers ni, ..., n,, is there a port binding for n, copies of T*, ..., n,, copies
of T™, such that the resulting SLTL* model satisfies .

We show in [72] that the unbounded workflow synthesis problem is undecidable
for m > 1. However, for a subset of goal formulas, a slight modification of the
unbounded synthesis problem is decidable.

Definition 14 (Feasible goal formulas). A feasible goal formula is an SLTL* formula
o =F(p1 A...Ad,) where each ¢; is either of the form
o 39 (x;) where 1)(z;) is a boolean combination of atoms P(x;) with P € L' or
o Jy1 . yn(P(y1, ..., Yn))true

Instead of a fixed binding of copies of transducers, we construct a dynamic bind-
ing. Intuitively, now the orchestrator is going to construct a new port binding af-
ter each transition by the transducers, collect the outputs, and construct a binding
again. A useful intuition may be to think of the orchestrator as a planner and of the
transducers as operator schemas. The difference from classical planning is as fol-
lows: we do not know all the objects in advance, since new objects can be created;
properties of objects are not changed once they are established; and the properties
of objects in the goal formula are all unary. We can even specify which operators
should be used in the workflow, although without specifying how their arguments
relate to other terms in the formula.

The difference from the unbounded orchestration problem is that the ‘width’ of
binding constructed at each step is restricted to using only one copy of each trans-
ducer at a single time (e.g., we do not take to copies of 7" and bind the output ports
of the environment to the input ports of both copies).

Definition 15 (Dynamic workflow synthesis). The dynamic workflow synthesis prob-
lem is as follows: given a finite set of semantically annotated multi-transducers
T',...,T™, a feasible goal formula F(¢y A ... A ¢,), and an initial input tuple a,
is there a sequence of port bindings such that the initial port binding allocates elements
from a to some input ports of a subset of T*,...,T™, and each subsequent binding
allocates outputs from the previous step to (possibly different) input ports of a (possibly

32| Chapter 3 — From SLTL to SLTL*

different) subset of T*,...,T™, and the transition system generated by the transducers
under this sequence of bindings satisfies the goal formula.

Lemma 1. The dynamic SLTL* workflow synthesis problem is PSPACE-hard.

Proof. The proof is by reduction from STRIPS planning. An instance of a proposi-
tional STRIPS planning problem as defined in [Bylander 1994] is a tuple (P, O,Z,G)
where
+ P is a finite set of ground atomic formulas, called the conditions;
+ O is a finite set of operators, where each operator o has the form Pre = Post:
i+ Pre consists of two disjoint subsets of P, called positive preconditions o*
and negative preconditions o~ of the operator, such that the conjunction
of 0" and negated o~ conditions is satisfiable;
-+ Post consists of two disjoint subsets of P, called positive postconditions
o, and negative postconditions o_ of the operator, such that the conjunc-
tion of o, and negated o_ conditions is satisfiable;
+ 7T c P is the initial state; and
+ G, the goal condition, consists of two disjoint subsets of P, called positive
goals G, and negative goals G_, such that the conjunction of G, and negations
of conditions in G_ is satisfiable.
The effect of a finite sequence of operators (o1, ...,0,) on a state s is formalised as
follows:
* Res(s,())=s
e If o csand o_ns =@, Res(s,(0)) =(suUos) N o_; otherwise Res(s, (0)) = s.
* Res(s,(01,...,0,)) = Res(Res(s,01),(02,...,0,))
(01,...,0,) is a solution to an instance of propositional STRIPS planning problem
if Res(Z,(01,...,0,)) is a goal state, that is, G, < Res(Z, (o1,...,0,)) and G_ N
Res(Z,(01,...,0,)) = @. An instance of propositional STRIPS planning problem is
satisfiable if has a solution.

The idea of the reduction is as follows. Given (P,0,Z,G), for each operator in
O, there is a transducer with one input port and one output port. The inputs and
outputs of the transducers correspond to the states in the planning process. Con-
ditions in P become unary predicates which are annotations of inputs and outputs.
The initial input is annotated with properties of Z, and the goal formula asserts that
in the future there is an output annotated with properties of G.

Let O = {01,...,0,m} and P = {p1,...,pr}. Then L° = {O;(z,y) : 0; € O} and
L' = {P,...,P.}. We define a translation function ¢r, from propositional to first
order formulas with variable x, as follows:

¢ try(pi) = Pi(x)

o tra(=pi) = -Pi(x)

o try(dr A AQE) =tra(P1) A Atry(dr)
For simplicity, we identify sets of formulas with conjunctions of those formulas when
appropriate. We also identify a set of unary predicates annotating a variable z with
a set of atomic formulas in z using those predicates. We introduce the following
notation: for an object z, the set of L’ formulas it is annotated with is denoted by
ann(z).

For a set of atoms Z of the form P;(z), where P; € L!, we denote by tr;!(Z) the

Section 3.4 — Transducer Synthesis with Temporal Goals | 33

set {p; e P:tr.(p;) € Z}.

Given an instance of propositional planning problem (P,0,Z,G), we generate an

instance of a dynamic SLTL® workflow synthesis problem (77,...,7™, a,) where:
+ each T* corresponds to o; € O. Each T} has one input port and one output port,
and has one transition ' = (s}, 2%, s},y") that takes one input z* and outputs

4 U(tY) = tryi (of)

4 if tryi(0;) nann(z') = @, G(t") = tryi(Res(try!(ann(z"))),0;)) (intu-
itively, if the input «* is annotated with ¢r,:(s), and its annotations sat-
isfy the preconditions of o;, then G(t') = tryi (Res(s,0:)). Else G(t') =
ann(z")[z"[y'].

+ ann(a) =tre(I)
+ the goal formula is 3z F tr. (G, A Ay eg_ —9-)-

Clearly, the reduction is polynomial in the size of (P,0,Z,G).

To show that if (P,0,Z,G) is satisfiable then the corresponding dynamic SLTL*
workflow synthesis problem has a solution, assume that there is a sequence of oper-
ators (o1, ...,0,) such that Res(Z, (o1, ...,0,)) satisfies G. Then there is a sequence
of bindings (outo1,in1,1); (out1,1,in21); ...; (outy1,ing,1) that on input a satisfy-
ing tr,(Z) eventually produces output b satisfying ¢r,(G). The corresponding state
transition system satisfies 3z F tr. (G, A Ay g ~9-)-

Conversely, if there is a sequence of bindings (outo 1,in1,1); (out11,in21); ...;
(outy,1,in0,1) that on input « satisfying ¢r,(Z) produces a state transition system
satisfying 3z F tr.(G+ A Ay eg_ —9-), this means that an output b generated by one
of the bindings satisfies ¢r,(G). Hence the corresponding sequence of planning op-
erators transforms the state Z into a goal state satisfying G. O

Theorem 2. The dynamic workflow synthesis problem is PSPACE-complete.

Proof. We first introduce some notation and terminology. Let us denote by K =

,,,,,, m k™ the maximal number of input ports that can be used simultaneously in
parallel.

Observe that the set L' is finite; a complete description of an object in terms of
the types in L! is a conjunction of atoms and negated atoms for each type P € L.
There are 21Xl such complete descriptions, which we will refer to as supertypes.

Let us consider first the case where the goal formula is of the form F3z+)(x). If an
object satisfying 1) can be constructed at all, there is a sequence of states leading to a
state which contains an object satisfying «). This sequence does not have repetitions.
Each state can be uniquely described as an allocation of one of oIl supertypes to
each of possible K input ports (the outputs are produced deterministically), so there
are 2IL'*K different states. Clearly, the sequence leading from the initial state to a
(x) state can be exponentially long. However, similarly to classical planning, a
state can be represented in polynomial space by listing at most |L!| positive prop-
erties for each of K input ports. A path-exists(q, gz, N) algorithm that checks the
existence of a path of length N between states ¢; and ¢, (where ¢- satisfies the goal
test, that is, outputs a ¢)(x) object) requires polynomial space; for N = 1 it checks
whether ¢; = ¢ or there is a single step transition between them; for N > 1 it re-

34| Chapter 3 — From SLTL to SLTL*

cursively calls plan-exists(q1, g3, [N/2]) and plan-exists(qs, g2, |V /2]). Note that N
represented in binary takes O(logN) space, so is polynomial in the input size [22].

To check whether the required operators have been used, we can modify the path-
exists(q1, g2, N) algorithm to return the set of operator names encountered on the
path from ¢; to ¢2. Observe that this set of names (unlike the complete list of all
ground operator formulas on the path) is polynomial in the input size.

The problem of generating several objects with specified types is no harder than
for a single object, because properties of objects persist.

PSPACE-hardness is shown by Lemma 1. O

3.5 Evaluation and Discussion

The section presents benefits of the new SLTL*-based formalism, when compared
to the existing SLTL-based one. The evaluation of the usability of the framework is
further evaluated in Chapter 6. Our implementation of the approach (APE v2) is
used to explore new solutions to existing problems in life- and geo-science domains.
The case studies include domain expert opinions and evaluations of the composed
solutions.

We show, using recent case studies, how the SLTL*-based formalism overcomes
the limitations of the SLTL-based approach described in this chapter. We use the
most recent implementations of each of the formalisms, APE v2 and APE v1, respec-
tively, to run the synthesis.

The evaluation focuses on examples from recent case studies in Geosciences and
the corresponding domains. Each of the use cases is further evaluated according to
the following criteria.

+ Optimal solutions - Solutions of the synthesis are optimal if no redundant or
incorrect steps are included.

¢ Unique model - Each obtained temporal logic model identifies a single work-
flow implementation. A model is not unique if it can be interpreted as two or
more workflow implementations.

+ Fully automated - A synthesis of a problem is fully automated if it does not
require any manual steps apart from providing the temporal specification of
the problem.

We focus on benefits of the SLTL*-based approach compared to the existing SLTL-
based one. To accomplish that, we evaluate the results by comparing them to con-
crete target workflows. We are evaluating specific features of the framework, rather
than the applicability of the synthesis approach. The latter is covered in Chapter 6.

3.5.1 Geovisualisation

The example given in the introductory section illustrates the limitations of the SLTL-
based formalism when it comes to data object distinction. The example is in fact a
fragment of a larger geovisualisation case study [73], that aims to synthesise work-
flows that visualise bird movements in the Netherlands with respect to the regional
topography. The synthesis is performed over a set of GMT? (The Generic Mapping

2https://www.generic-mapping-tools.org/

Section 3.5 — Evaluation and Discussion |35

Tools) operations, annotated with respect to their inputs and outputs, and an ontol-
ogy that classifies the utilised data types and operations. The operations are mod-
elled as single state multi-transducers, and thus, a simple input/output annotation
is sufficient. For example transducers from Figure 3.3 is modelled as an operation
psxyz_P with two inputs (XYZ_Table and PostScript) and one output (PostScript). The
original encoding of the problem comprises multiple files of the same format/type
as input. This reflects similar scenarios in other domains and makes an interesting
evaluation.

To encode such a problem using an SLTL-based framework, the specification must
be manually divided into sub-problems that do not contain multiple objects of the
same data type. Subsequently, the resulting sub-workflows must be manually com-
bined into the target workflow. In the geovisulisation case study, the presented
approach was used to split the target workflow into four target sub-workflows that
were solved separately using the SLTL-based approach. The shortest solution to the
problem is a workflow of length 17.

Notice that whether the problem can be divided into valid sub-problems under
the SLTL formalism, depends on the problem specification. For example, a domain
model that contains tools with multiple inputs of the same type might not support
such an approach. To illustrate, if we want to combine data tracking various flocks
of the tracked bird species, we have to use a tool that would combine the tracking
files into one. The corresponding workflow must include such operation with two
(or more) input files of the same type/format, and thus, the corresponding workflow
fragment is not expressible in SLTL even with manual workarounds.

The SLTL*-based formalism, however, captures such specifications with a single
formula that can be fed to the SLTL” synthesis engine, APE v2 in our case. Con-
sidering that the explanatory (see Figure 3.1) and the complete target workflows
have similar structures, we illustrate the encoding on the explanatory case before
we present the complete encoding. The specification can be formalised in SLTL* as
follows:

;= CSV(a) A CSV(b) A Cities(a) A Birds(b) A F 3z (Plot_water®! (z1))
(F 3zo(Plot_coast™" (x2))(F 3z3, Iy(R(a,y) A (Plot_points* (y,x3))
(F 3z4,32(R(b, 2) A (Plot_lines" ' (z,z4))true))))) A F 3zs(Tool’! (x5))
(PostScript(xs) A R(z1,x5) A R(za,x5) A R(z3,25) A R(24,25) A =X true))

It ensures that bird coordinates (labelled Birds(b)) are connected by lines, while
city coordinates (labelled Cities(a)) are depicted as points. As a result, the work-
flow interpretations in Figure 3.1(a)-(d) can be distinguished, and only the work-
flows satisfying the specification will be synthesised. For this workflow fragment,
APE v2 generates exactly one workflow of length 7, which corresponds to the de-
sired workflow in Figure 3.1(c).

Similarly, we use SLTL” to encode the full target workflow used in the [73] case
study as follows:

36| Chapter 3 —From SLTL to SLTL*

Optimal | Unique | Fully
Use Case solutions | model | automated
Geovisualisation SLIL v
SITL” v v v
GIS Question SLTL v
Answering SLTL® v v v

Table 3.1: Comparison of the SLTL- and SLTL”-based synthesis approaches in the Geovisu-
alisation and GIS Question Answering case studies (*assuming that the specified problem is
divisible in sub-problems expressible under SLTL).

CSV(a) ACSV(b) A Cities(a) A Birds(b) A F 3z, (Draw_boundary_frame®' (z1))true
A F 3zo(Add_table® (z2))(F 33, 3z, Colour_palette(x3)(2D_sur faces® (xq,x3,14))
(F 3z5(Gradient_generation®*(z5))(F 3z¢, 3x7 Colour_palette(xg)

(2D_sur faces™ (zg,27))(R(x3,26) A =(z3 = 6) A (F 3zg, I20
(Draw_color_range™'(zs,x9))(R(zg,zs) A (F 3x10, Iy (R(a,y)A
(Plot_points*'(y,x10))(F 3x11, 32(R(b, 2) A (Plot_lines**(z,211))

(F 3x15(Draw_political_borders”*(z12))true))))))))))

A F 3213(To0l”! (x13))(PostScript(z13) A R(x1,213) A R(2,213)

A R(x3,713) A R(x4,713) A R(5,713) A R(76,713) A R(77,713) A R(78,713)

A R(z9,213) A R(210,713) A R(211,213) A R(212,213) A - Xrue))

APE v2 is able to synthesise the full 17-step workflow for this case study in a fully
automated fashion. The evaluation according to the three criteria presented earlier,
is presented in Table 3.1.

We notice that the SLTL-based approach requires manual steps to split the problem
into solvable fragments, and to combine the solved fragments into an executable
workflow. The SLTL*-based framework supports specifying the existence of multiple
data objects (files) characterised by the same type of data and format. This allows us
to encode more accurately the user intent and automate the composition of a much
wider range of workflows. Furthermore, we have seen an example of a specification
that is not solvable by the SLTL-based approach even with the manual fragmentation
of the problem.

Finally, unlike the SLTL* model that can be directly translated into a workflow
implementation, the SLTL model does not preserve data dependencies. Therefore,
SLTL models require post-processing to be translated into a workflow implementa-
tion. This process however is not always straightforward and solutions that contain
data repetitions, such as the presented one, cannot be uniquely implemented. In
such cases further steps are needed to determine the implementation that fits the
users’ intent.

All the data used to run the case study and generate the results is available at
https://github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT.

https://github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT

Section 3.5 — Evaluation and Discussion | 37

3.5.2 Geo-Analytical Question Answering

In the introduction we mentioned the Geo-Analytical Question Answering case
study [84], where APE v1 was used to automatically synthesise workflows that an-
swer given livability questions (such as “What is the accessibility of parks for each
administrative region in Amsterdam?”). The study shows quite promising results,
but it also points out a limitation of the underlying formalism. It shows that around
70% of the 72 synthesised workflows® contain redundant operations. The reason
for that in the majority of the cases is a repetition of transformations over same the
data objects. To avoid such occurrences the user would specify a constraint of the
form “Do not transform the same data multiple times”. The SLTL formalism, how-
ever cannot capture such constraints, as it does not express dependencies between
operations and data objects. The closest it can get to specifying the constraint is to
express constraint of the form “Do not perform more than one transformation” (in
SLTL written as G((Transform)true = XG - (T'ransform)true)). Such constraint
is too restrictive for the given scenario as it prevents transformations of any other
data object. Therefore such redundancies are unavoidable under the SLTL-based
approach, i.e., when using the APE v1 system.

The SLTL*-based approach behind APE v2 allows us to express data object specific
constraints, including their interaction with individual operations, i.e., data-tool de-
pendencies. This allows us to avoid the aforementioned redundancies by preventing
more than one transformation over each data object in SLTL®, as follows.

Oy ==(F Iz, ((Trans form® (z1))F(Transform*°(z1))true))a
~(F3z1((Transform*°(x1))F(Transform*° (z,))true)) 3.1

where the operation Transform is a superclass (in the domain taxonomy) of all the
operations that perform transformations.

The constraint ensures 1) that the results (outputs) of transformations are not
transformed again, and 2) that individual data objects are not transformed more
than once. Adding such a constraint to the specification of the geovisualisation case
study is sufficient to exclude the detected workflows containing redundant opera-
tions from the synthesised workflows.

The evaluation according to the three criteria presented earlier, is presented in
Table 3.1. Due to the expressive power of the SLTL formalism, the framework cannot
ensure optimal solutions at each desired length of the workflow, as longer solutions
tend to introduce many candidate workflows that contain redundant information.
The SLTL* formalism, on the other hand, excludes occurrences of such operations
and explores new approaches to processing the data at each length. Both approaches
solve the specifications from the case study in a fully automated fashion. However,
as some of the candidate solutions create multiple data objects at the same time,
the SLTL-based approach cannot guarantee a unique interpretation of the models.

All the data used to run the case study and generate the results is available at
https://github.com/sanctuuary/APE_UseCases/tree/dev/QuAnGIS.

3For each of the five livability question on average 14 different candidate workflows were synthesised.

https://github.com/sanctuuary/APE_UseCases/tree/dev/QuAnGIS

38| Chapter 3 — From SLTL to SLTL*

SLTL
Solutions | Encoding | Solving Max length | Average
found time (sec) | time (sec) | explored length
Q1 20 1.8 0.8 4 3.5
Q2 8 2.23 0.1 8 4.5
Q3 20 3.85 0.9 6 4.45
Q4 4 4.1 0.4 8 5
Q5 20 1.9 0.8 5 4.05
SLTL”
Solutions | Encoding | Solving Max length | Average
found time (sec) | time (sec) | explored length
Q1 20 4.1 0.8 5 4.35
Q2 1 7.1 0.2 8 1
Q3 20 6.8 1.8 6 4.45
Q4 1 7.2 0.3 8 2
Q5 20 4.8 0.9 6 4.55

Table 3.2: Comparison of the SLTL-based (APE v1) and SLTL®-based approach (APE v2)
runtime in the GIS Question Answering case study.

3.5.3 Performance of the new implementation

To evaluate the runtime of each of the formalisms, we focus on their latest imple-
mentations, namely, APE vl and APE v2. APE v2 relies on the SAT-based encoding
introduced in APE vl and expands on it, and thus, the encoding that relies on the
constraints supported by both formalism yields equally good synthesis execution
times. On the other hand, case studies that utilise SLTL*-specific features, such as
the one presented on Geovisualisation, cannot be fully automated using the APE v1
formalism, and thus the runtime comparison is not possible. That is why we com-
pare the runtime of APE v2-generated optimal solutions over the GIS QA case study,
with the APE v1-generated suboptimal solutions. To accomplish that we use the set
of constraints defined in the original case study, and in the case of APE v2 we add
the additional SLTL” constraint presented in Formula 3.1. The case study comprises
five research questions and, for each, solutions up to length 8 are synthesised (with
an upper limit of 20 workflows per question). The question that we evaluate are:

Q1: “What is the number of sports facilities in each PC4 area?”,

Q2: “What is the proportion of elderly people living in each PC4 area in Amster-
dam?”,

Q3: “What is the accessibility of parks for each PC4 area in Amsterdam??”,

Q4: “What is the amount of noise pollution in each PC4 area in Amsterdam?” and

Q5: “What is the average temperature within each PC4 area in Amsterdam?”.

The comparison of the runtime of APE v1 and APE v2 formalisms is presented in
Table 3.2. All experiments were performed on a PC with a 2.50GHz i7-6500U CPU
with 16GB RAM running on Ubuntu 20.04. The recorded times were recorded as

Section 3.6 — Related Work | 39

average times out of 10 individual runs.

We notice that the SLTL”-based approach excludes approximately 70% of the so-
lutions which contain redundant steps in the original study (performed using the
SLTL-based approach). This is usually reflected in either fewer solutions (e.g., Q2
and Q4 result in only one solution each up to length 8) or longer average length
of the solutions (e.g., although Q1 and Q5 result in the same number of solutions,
the SLTL”-based approach excludes the shorter solutions and explores longer work-
flows). The only case where this is not directly visible from the table is Q3, where the
new solutions of length 6 substitute those of the same length containing redundan-
cies. When it comes to the synthesis time, both approaches yield similar runtime,
which shows us that the synthesis over the new encoding in practice performs as
well as its predecessor. The downside is that an SLTL* formula, which allows us to
exclude the undesirable solutions (see Formula 3.1), slightly increases the proposi-
tional encoding time. That is however expected, as we use arbitrary SLTL* formulas,
while the existing approach (APE v1) restricts constraints to predefined SLTL tem-
plates. Such arbitrary SLTL” formulas suffer from the exponential blowup in size
when encoded in propositional form, a problem inherent to even simpler tempo-
ral logics (including SLTL). We have however managed to optimise the encoding,
to provide an implementation that in practice substantially reduces the mentioned
problems.

3.6 Related Work

This section presents an overview of the approaches that tackle the synthesis of
computational components, often described using input/output dependencies.

Pnueli and Rosner [114] prove that the synthesis of distributed finite-state con-
trollers for a given specification is undecidable. Furthermore, Lustig and Vardi [97]
show that the synthesis of component libraries for data-flow composition, where
components are chained together w.r.t. their outputs and inputs, is also undecid-
able*. This motivated the SLTL*-based approach, as did many others, to bound the
problem space to reach decidability.

Let us consider approaches that use transition systems with data and some form of
quantification in the specification language, such as [15, 23, 24, 30]. The decidabil-
ity of verification and synthesis in such settings is usually obtained by imposing some
kind of boundedness assumption on the domains of states in the transition systems.
In comparison, the SLTL*-based approach does not start with the bounded domain
assumption, but boundedness is a consequence of the shape of transition systems
corresponding to workflows, as they are acyclic. The complexity of the problem is
also lower as a result.

The two approaches introduced by Gulwani, Jha et al. [52, 69] aim to synthe-
sise finite loop-free programs from libraries of atomic program statements. The ap-
proaches restrict the number of resources that are available, as well as the struc-
ture of solutions to loop-free data flow diagrams. The loop-free program synthesis
from component libraries problems can be seen as a scientific workflow synthesis.

“Chapter 3 shows that the unbounded SLTL® synthesis problem is undecidable as well.

40| Chapter 3 — From SLTL to SLTL*

Instead of looking at scientific workflows as compositions of existing tools and oper-
ations, they can be seen as compositions of elements from component libraries. The
two approaches [52, 69] use libraries of atomic program statements for synthesis,
and therefore, they provide executable scripts as solutions. They both implement
constraint-based synthesis from components using a satisfiability modulo theories
(SMT) solver. The difference between the two approaches is the format in which the
specification is provided. While [52] relies on a formal specification in first-order
logic, [69] models it as an input-output oracle.

The approach introduced by Iannopollo et al. [61] provides another synthesis
from component libraries approach. It sets a bound on the number of chosen com-
ponents to solve the decidability problem. The approach instantiates the CEGIS
(Counterexample-Guided Inductive Synthesis) paradigm, in which synthesis is car-
ried out by an iterative algorithm. The algorithm comprises two steps. First, a
discrete problem is solved by a constraint solver to retrieve a candidate solution.
Second, the solution is verified according to a provided specification, and either ac-
cepted or added as a counterexample to the solver in the first step. The specification
is given as Linear Temporal Logic (LTL)-based Assume/Guarantee (A/G) Contracts.
An A/G contract describes the assumptions that a component makes on its environ-
ment and the guarantees it provides. The LTL A/G contract framework captures both,
Assumption and Guarantee as Linear Temporal Logic (LTL) formulas. The compo-
nents are annotated according to the inputs, outputs, assumptions and guarantees.
The LTL A/G contract-based synthesis implementation is provided by the PYCO [60]
tool. Despite the fact that the LTL. A/G contract-based and the SLTL”-based synthesis
focus on different paradigms, they share many similarities®. The components under
LTL A/G contracts can be seen as operations over inputs and outputs under SLTL",
combined with some additional SLTL”* constraints which ensure A/G rules. In ad-
dition, both approaches provide data types in form of taxonomies, the difference is
that the LTL A/G contract-based approach restricts them to trees.

5The theoretical framework allows for the components and system specifications to be more general
than the A/G contracts. However, we focus on the LTL A/G contracts, as the corresponding implementa-
tion PYCO is provided.

CHAPTER 4

Workflow Synthesis as a SAT
Problem

Abstract - Workflow synthesis is used by scientists to aid their explo-
ration of possible solutions to their problems. As such, it is expected
to be responsive and to be able to generate suggestions in a relatively
short time frame. Considering the impressive progress of SAT solving
in recent decades, we utilise SAT solving in our synthesis approach.
This chapter presents semantic modelling used in the bounded SLTL”
synthesis problem, introduced in the previous chapter, and its transla-
tion into a propositional encoding, that can be fed to an off-the-shelf
SAT solver. First, the chapter describes the modelling framework used
to express user intent. It comprises the structure and format of the
domain knowledge, namely, tool annotations and data taxonomies
used to specify the problem specifications as SLTL” constraints. Sec-
ond, the chapter introduces a mechanism that captures the expected
structure of the solution and the domain knowledge in propositional
logic. Finally, the chapter presents a mechanism that translates ar-
bitrary problem specifications, in the form of SLTL* constraints, into
propositional logic, and an illustrative synthesis run over such an en-
coding.

Several applications of APE in scientific case studies have shown that
it is able to efficiently synthesise purposeful workflows. The case
studies comprise research done within the scope of this dissertation
(presented in detail in Chapter 6), as well as independent studies
as part of the related work (described in Section 7.2). We use the
example from the geovisualisation application domain as a running
example in this chapter.

This chapter is based on the following publications:

Kasalica, V. & Lamprecht, A.-L., “Workflow Discovery with Semantic Constraints: The
SAT-Based Implementation of APE”, Electronic Communications of the EASST, vol. 78,
May 2020, DOI: 10.14279/tuj . eceasst.78.1092, URL: https://journal.ub.tu-
berlin.de/eceasst/article/view/1092 (visited on 05/17/2020).

Kasalica, V., Alechina, N., Lamprecht, A.-L. & Logan, B., “Instance-Aware Synthesis of
Workflows Specified in Temporal Logic”, Journal of Artificial Intelligence Research (JAIR),
2023, Submitted and under review.

https://doi.org/10.14279/tuj.eceasst.78.1092
https://journal.ub.tu-berlin.de/eceasst/article/view/1092
https://journal.ub.tu-berlin.de/eceasst/article/view/1092

Section 4.1 — Modelling User Intent | 43

To allow for efficient use of the workflow composition in practice, this chapter
focuses on a framework that solves the SLTL”-based bounded synthesis problem
(described in Chapter 3). We have shown that in practice, bounding the size of
the solution workflows does not restrict the usability of the framework [76, 84]. In
addition, the bounding of the search space makes the workflow synthesis problem
NP-complete [72]. The complexity allows the usage of off-the-shelf solvers while
keeping the full expressive power of the SLTL* language. Considering the impressive
progress of SAT solving [99] in recent decades, driven by annual competitions and
impressive breakthroughs in the development of heuristics, we aim to utilise SAT
solving in the synthesis approach.

To encode the problem in propositional logic (more specifically in conjunctive
normal form, used by SAT solvers), we (1) must define a format in which the user
can specify their intent, and (2) propose a mechanism for translating such model
into propositional encoding.

4.1 Modelling User Intent

Chapter 1 describes obtaining an accurate description of a user intent, that is, the
specification of the desired program, as one of the main challenges in program syn-
thesis -.The main goals of modelling a user intent are an intuitive method of provid-
ing the specification and removing ambiguities in the specification.

To encode our problem as a constraint-solving problem, we need a strict model of
the problem specifications. We follow the modelling approach introduced by Steffen
et al. [41, 103, 129, 130] for this purpose. The approach has proven to be easy to
use and effective in practice [3, 73, 111]. The modelling framework comprises two
main components, (1) the domain model, defining the vocabulary of the domain (in
the form of taxonomies) and input/output annotations (with respect to the given vo-
cabulary) of the available operations, and (2) the problem specification, user-defined
constraints that describe the given problem.

4.1.1 Modelling Domain Knowledge: Taxonomies

To properly capture user intent, it is essential to use clear and precise terminology.
It should be abstract enough not to require users to be familiar with some low-level
concepts (e.g., concrete tools) in the domain, and still concrete enough to accurately
capture the desired goal. To support different levels of abstraction, terms for domain
tools and data types are structured as taxonomies, tree-like structures composed of
semantic tools and data types, respectively.

According to the aforementioned modelling framework a taxonomy 7 = (C, A, —)
is a weakly connected directed acyclic graph, where C represents a set of concrete
elements from the domain (e.g., a concrete tool), A represents a set of conceptual
elements, or classes, used to provide abstraction over the concrete elements, and —
is a relation is_a (subsumption relation) over the two sets, specifically, over concrete
and conceptual elements ¢ — a, where c € C,a € A, or pairs of conceptual elements
a1 = as, where aq,as € A.

The definition is based on the assumption that the subclass relation is jointly ex-

44 | Chapter 4 — Workflow Synthesis as a SAT Problem

haustive, and leaf classes are mutually disjoint. Tool taxonomies support such an
assumption, as executable operations (tools) used in a workflow implementation
are atomic low-level concepts and are modelled as leaves of the taxonomy. Further-
more, each of the leaves represents a different program execution, and thus the
leaves are mutually disjoint. However, this is not always the case.

Unlike executable operations, which are usually well defined (e.g., a concrete
command line call, an API call, etc.), data types are more ambiguous, and require
some post-processing to fit our assumption. Their definition might vary within dif-
ferent domains, and it is not possible to simply list all atomic data types. For ex-
ample, the HTML format in a documentation building domain could be considered
an atomic concept and would be modelled as a leaf of the taxonomy. However, in
bioinformatics, more specifically in EDAM ontology that classifies concept in bioin-
formatics [64], the HTML format has multiple subclasses, one which is FASTA-HTML
- a specialised HTML file format (for the simplicity of the following example let us
assume that FASTA-HTML is the only subclass of the HTMIL format in the domain).
Therefore, if we assume that the subclass relation is jointly exhaustive, there should
be a “plain HTML” format that captures the non-FASTA-HTML files. Unfortunately
in practice, the domains do not model such “plain” data types, as their semantics
can be sometimes ambiguous. For example, in case of adding a new sub-format -
EMBL-HTML, the semantics of “plain HTML” changes to non-FASTA-HTML and non-
EMBL-HTML. As the models evolve, these concepts would change their scope as
well.

Lack of “plain” types, unfortunately, in practice leads to some inaccurate annota-
tions, as the umbrella terms (e.g., HTML) get used in place of “plain” (e.g., “plain
HTML”) terms. For example, we notice that bio.tools [66], a community-curated
repository of tool annotations in bioinformatics, comprises substantial amount of
tool that work with reports in “plain HTML” format, which are annotated as reports
in HTML'. This type of annotation is informative enough for an average user of the
bio.tools platform. The main goal of the platform is “to provide a comprehensive
registry of software and databases, facilitating researchers from across the spectrum of
biological and biomedical science to find, understand, utilise and cite the resources they
need in their day-to-day work.”. However, when used in workflow synthesis [76],
such annotations influence greatly the quality of our synthesis results, as they al-
low usage of specialised terms (e.g., FASTA-HTML) in place of the plain (e.g., “plain
HTML”) ones. Therefore, we post-process such domains, introduce the “plain” types
when needed, and adjust the tool annotations accordingly. These steps improve
the quality of the domain models that we work with, and allow us to assume an
exhaustive subsumption relation in the process.

Domain models, such as the bioinformatics domain we used in the previous ex-
ample, show us that a single taxonomy term is often not sufficient to characterise a
data object. In many domains, data are classified according to multiple disjoint crite-
ria. We refer to them as data dimensions and each dimension represents a taxonomy
where leaf classes are mutually disjoint.

IThe list of tools is available at https://bio.tools/t?sort=score&ord=desc&outputDataTypeID
="data_2048"&outputDataFormatID="format_2331".

Section 4.1 — Modelling User Intent | 45

add_XYZ_table

Adding
table

add_cpt

lodules with
color palette
output

Modules with
xyz file output

Convert to Convert to
image files pdf files
Convertion of
PostScript files,

Display
PostScript files

Kdding colo
palette

Data
presentation

Modules with
grid file output

Modules having
certain output

rocessin
Adding data 3 g

Adding
grid file

Environment

setup
initGMT

Data Modules having
generation certain input

Modules with
grid file input
Modules witl
color palette
input

[xyz2grd | [makecpt | [(grdgradient| | grdview |

psbasemap_B

pscoast_Bt |

psbasgmaR_B(

pscoast_Bt

psbasemap_Bt

psbasemap_U

Draw
windrose

Modules with
xyz file input

|~ Gradient
generation

Color palette
generation

Draw time

Convertion to stamp logo

grid files

Draw political
borders

Draw watel
borders

sph2grd |

pscoast_|]

[pscoast_F]

Figure 4.1: Tool Taxonomy for the Geovisualization Use Case Scenario

Data dimensions

In some domain models which are defined within a specific framework, such as the
domain model comprising the Generic Mapping Tools (GMT) [141] in [73], one
term is sufficient to characterise a data instance. For example, the content of a
PostScript file in that domain can only be a plot. However, if we move to a broader
domain of image manipulation, a text file can contain a colour code (e.g., #F22B00)
that should be used, the content that should be printed, or even a type of font that
should be used. In such a domain textual file would be the format of the data, while
font name could be the type of the data. The such two-dimensional characterisa-
tion is quite common in the bioinformatics domain, provided by the EDAM ontology
classification [64]. Furthermore, in a GIS question answering domain [84] a sin-
gle geo-analytical concept (data instance) is characterised by four different aspects,
(1) geometric layer types, which generalise geometric properties of layers, (2) core
concepts of spatial information [85], which capture what these layers represent. (3)
measurement levels of attributes, as well as the notion of (4) extensiveness.

To allow for accurate domain modelling in these domains, we introduce data di-
mensions, where each dimension characterises an aspect of a data instance. Within
the pesented framework, each domain can have an arbitrary number d of data di-
mensions, and d-tuples are used to characterise data instances in the domain. To
keep the domain modelling structured and coherent, the data dimensions are dis-
joint, and each is represented as a (sub-)taxonomy.

46| Chapter 4 — Workflow Synthesis as a SAT Problem

[xYz_tabe_fie | [x¥_tabe_fie | NetCDF lables]

Sun raster [Binary Color palette
files @ table
Grid-line Data tables PostScript l
registration

Pixel P, Plots
format Printable
formats

{ Intensfile

‘/JPEG\ [PDF] rPNG ‘
NetCDF

(ba) (o) (om) (o) (ed) [(m) (] [ed]) (o) (@] (nd) (o) (i)

iscellaneous
grid formats.

Figure 4.2: Type Taxonomy for the Geovisualization Use Case Scenario

Although data dimensions are not an explicit construct within SLTL”?, the syntax
of the language allows conjunctions of data properties. Therefore, the difference
between a one-dimensional and multi-dimensional domain reflects in specifying a
property of a data instance, or conjunction of properties. For simplicity of the en-
coding, the following sections of the chapter focuses on a simple, one-dimensional
type taxonomy.

Technically, we use a subset of the W3C Web Ontology Language (OWL) [9] to
represent the taxonomies. OWL is a well-known Semantic Web language designed
to represent ontologies, which has become the de facto standard for ontologies in
many domains. Major domain ontologies, such as the EDAM data and methods
ontology in bioinformatics, are provided in OWL and can thus directly be used in
the presented framework. OWL can be used to describe complex relations between
classes, but this framework only uses the concepts and concept inclusions (i.e., only
the taxonomy part of the OWL file) to define and classify the taxonomy elements.

4.1.2 Modelling Domain Knowledge: Tool Annotations

To combine concrete tools, the synthesiser needs to know how these tools operate
over data types. In practice, tools can perform complex operations over data types
and implement various transformations on them. However, at the semantic level, we
abstract these relations into two basic functions, known from the data-flow analysis:
¢ use(-): Cpy - P(Cr) —for a tool x to be executed, elements of the set of types
use(x) must be available
+ gen(-): Cy — P(Cr) - after execution of a tool x, elements of the set of type
gen(x) are available
The two functions can also be referred to as input(-) and output(-) respectively,
which is more natural terminology for computational tools. Table 4.1 lists a se-
lection of concrete tools from the geovisualization case study, each with its name,
function description and its (possibly empty) sets of input and output types®. In

2Notice that the domain is one-dimensional, and thus, each input/output is annotated with one term.
In the case of an n-dimensional domain, each input/output would be annotated using n-tuples.

Section 4.1 — Modelling User Intent | 47

practice, it has proven to be reasonable to only use the “payload” inputs/outputs
in the annotation, and not all parameters that a tool might have. The latter tends
to blow up the search space without actually being helpful to find new meaningful
solutions. Therefore, in practice, each tool annotation represents a parametrised
version of a software, i.e., a concrete tool instance where the parameters are fixed.

We distinguish two types of parameters. The first group comprises parameters that
define the operation, e.g., a parameter that defines whether the GMT tool pscoast®
plots water mass or political borders. Such parameters are crucial for defining the
input/output dependencies and in practice often result in multiple input/output an-
notations per single software [73, 120]. The second group comprises parameters
that calibrate the operation, e.g., the GMT parameter “+w”* can define the thick-
ness of lines that depicts political borders. Such parameters are often set to a default
value per tool annotation and can be manually adjusted before the execution when
needed [73].

Name Description Type in Type out
add_grd Provide a grid file NetCDF
grdgradient | Compute directional gradient | NetCDF Intensfile
makecpt Make color palette tables cpt file cpt file
grdview 3D imaging of gridded data NetCDF, cpt_file | PostScript
pscoast W | Draw water borders PostScript PostScript
initGMT Set-up the GMT environment PostScript
gs Display graphical files Plots

Table 4.1: Annotation of concrete tools in Geovisualization Use Case Scenario

Technically, we use a JSON representation for the tool annotations that follows
the structure of the bio.tools schema [63] applied in the bio.tools registry [66]. For
each tool function, we annotate its name and ID, the operation(s) that it performs, a
set of inputs, a set of outputs and a command that corresponds to the tool execution.
The last information is crucial for the automated implementation of the workflow.
The current version of APE supports simple shell commands as well as CWL (Com-
mon Workflow Language) [8] annotations. The two result in a shell script or CWL
workflow implementation, respectively.

4.1.3 Modelling Problem Specifications

The presented framework captures the problem specifications in SLTL” (see detailed
syntax in Chapter 3). The specification comprises (1) the initial data provided by
the user, modelled as the output of the 0O-th operation, (2) the data expected as
the output, modelled as inputs to the (n + 1)-th operation (where n is the length
of the workflow), and (3) a set of constraints specified in SLTL” that describe the
desired workflow. The constraints can be specified directly in SLTL*, or in a natural

Shttps://docs.generic-mapping-tools.org/6.3/pscoast.html
“https://docs.generic-mapping-tools.org/6.3/cookbook/features.html#wpen-attrib

https://docs.generic-mapping-tools.org/6.3/pscoast.html
https://docs.generic-mapping-tools.org/6.3/cookbook/features.html#wpen-attrib

48 | Chapter 4 — Workflow Synthesis as a SAT Problem

language, by filling the natural language (NL) templates, that translate directly to
SLTL*. The solutions of the corresponding bounded workflow synthesis problem
represent workflows in the given domain.

» B Workflow
Nex‘ Ne"‘ Mn ouTPUT

Workflow
INPUT

out,?

oul” T >
ouy! .- o
outy*! Cing > ot

—
shared memory

outy®
0

outy

outg!

Figure 4.3: Shared memory design

4.2 Encoding Workflow Synthesis in Propositional
Logic

To solve the synthesis problem using existing constraint solvers we incorporate some
well-known ideas from planning as satisfiability [77, 78]. We provide an encoding
of the general workflow structure, which is further enhanced with propositional con-
straints that correspond to the domain model, as well as the propositional encoding
of the SLTL” specified user intent. Finally, an off-the-shelf SAT solver (MiniSAT [38])
is used as a reasoning engine. This section covers each of the mentioned steps. First,
we describe the encoding of the general workflow structure in propositional logic.
Second, we discuss the encoding of the domain model, i.e., the encoding of the tax-
onomy structure and operation input and output dependencies. Third, we explain
the propositional encoding of the temporal SLTL* constraints that correspond to a
user intent. Finally, we present the constraint solving and the synthesised solutions.

4.2.1 Encoding the Workflow Structure

As mentioned in the previous chapters, this dissertation focuses on computational
pipelines, that is, linear workflows that represent the sequential execution of tools
with no explicit branching on the control-flow level. These correspond to SLTL*
models, described in Chapter 3. To encode such structures, the presented framework
utilises the shared memory design, i.e., workflow structure design where each tool
can access the data created by any of the preceding tools. The design follows the
structure presented in Figure 4.3°.

In the same way that the SLTL” models do not contain loops, we assume that
each loop within a workflow can be flattened into a repetitive sequence of tools.
Therefore, the framework is restricted to finite sequences of states and does not
support the infinite behaviour of the system.

For our initial encoding, we need a formula which enforces that the crucial aspects
of the workflow structure are encoded. Let L° be the set of operations and L! the

5Notice that the presented structures of the program resemble the transducer orchestration presented
in Chapter 3. Each tool has a list of inputs and outputs which will be in turn connected.

Section 4.2 — Encoding Workflow Synthesis in Propositional Logic | 49

set of all the data types (including the ‘empty type’ €°), k and [the biggest input and
output type indexes among the domain tools, respectively, i.e., the biggest number
of inputs/outputs per tool, and

*

op(m;) a unary predicate depicting that the operation op is implemented as
the i-th tool in the sequence,

ty(in]) a unary predicate depicts that the data type ty is used as the j-th input
of the i-th tool in the sequence,

ty(out]) a unary predicate depicts that the data type ty is generated as the j-th
output of the i-th tool in the sequence,

Bmd(m21 , outj2) a binary predicate that binds tool inputs and the correspond-
ing tool outputs, the example depicts that the tool input in}, ! is provided as the
tool output out’;).

R(X,Y) a binary predicate depicting the ancestor relation R, as described in
Chapter 3. The given example ensures that the data instance X is an ancestor
of the data instance Y, where X and Y are tool inputs/outputs (e.g., in] or
out?).

Under the given syntax, workflows of length n (n € N), where n is a bound of our
workflow, are encoded as follows:

éz

(V op(m)

i=1 opeLU

/\ (\V ty(m]))

tyeLt

||>3

_.o

(\V ty (out{))

tyeLt

»m
L&

i-11-1

/:\ ((inl)v \/ \/ Bind(in’ outq)) 4.1)

p=04g=0

H>L o>'

An alternative representation of the formula that we use in this chapter is:

W, =(¥ie [1,n], 30p € L) op (i)
(Vie[0,n], VJ e [0,k—1],3tye L") ty (inl)A
(Vie[0,n],V [O,k:—l],EItyeLt)ty(outf)/\
(Vie[0,n],Vje[0,k-1])

(e (mz) Y% (Elp €[0,i-1],3q€[0,l1-1]) Bind(in?, outg)) 4.2)

The formula ensures that each step of the workflow has an operation associated
with it, and that each data instance (workflow inputs and outputs, tool inputs, tool
outputs) has a type associated with it. Furthermore, it ensures that each data type

6¢ represents the absence of data types, e.g., an output out*g labelled as e(out{) depicts that the i-th
tool does not have the j-th output.

50| Chapter 4 — Workflow Synthesis as a SAT Problem

used as input is bound to an existing data type (available as a tool output or as one
of the provided inputs). Finally, to ensure that the data binding relates pairs of the
same data types, we extend the encoding with an additional formula, as follows.

[Wainalln =" (Vie [0,n],Vje[0,k-1],Vpe[0,i-1],vqe[0,l-1],Vty e L)
Bind(inf, outl) = (ty (mZ) <ty (out]))A
2 (Vie[0,n],Vje[0,k-1],Vpel[in],¥qe[0,]-1]) ~Bind(in],out?)
(4.3)

The formula ensures that (1) each binding pair is annotated with the same data
types, i.e., the type of the data instance in memory (created as a tool output) corre-
sponds to the expected tool input type. In addition, the formula ensures that (2) the
tool inputs can only reference data instances available in memory, i.e., a tool input
cannot be a data instance that is not created yet.

Encoding of predicates used to describe additional information, not crucial in
interpreting the structure of the actual workflow, such as the ancestor relation R, is
presented separately in the following sections.

Example 1. Our goal is to synthesise a workflow of length n = 2, where the biggest
domain input and output type indexes are k = 2 and | = 1. The first step of the encoding
is the workflow structure, as follows:

[(W1l2 = ((3op1, 0p2 € L) op1(m1) A opa(ma))A
((3tyr, tya, tys, tya, tys, tys € LT) tyy (ind) A tyz(ing) A tys(ind
Atys(ing) Atys(ind) A tye(ind))A
((3tys, tys, tys € LT) tyr (outd) Atya(out?) Atys(outd))a
(e(ind) v Bind(in, outd))A
(e(iny) v Bind(ing, out)))A
(e(in) v Bind(inY, outy) v Bind(inl, outy))a
(e(in7) v Bind(in},outy) v Bind(ini, out?))A
(e(in9) v Bind(in3, outy) v Bind(in3, out?) v Bind(in, out3)) A

e(in}) v Bind(ink, outd) v Bind(in}, out?) v Bind(ink, out)
1 2 0 2 1 2 2

An additional formula is introduced to ensure the data binding. Segments of the
formula are encoded as follows:

Section 4.3 — Encoding the Domain Model | 51

[Wginall2 ﬂBind(ing, 0ut8) v ((Vty € LT)ty(mO) < ty(outo))/\

= (
(~Bind(inj, out)) v ((Vty € LT)ty(ing) < ty(outy)) A ...A
(ﬁBind(iné, out)) v (Vty e L)ty(ind) < ty(out(l)))/\
(-Bind(ing,outd) v ((Vty € LMty(inl) < ty(outy))A
~Bind(ing, out?) A ~Bind(ing, outy) A ~Bind(ing, out{)A

~Bind(ing, outy) A ~Bind(in?, outy) A ~Bind(in},out))

4.3 Encoding the Domain Model

Once the initial structure has been encoded, we define the rules that translate our
domain knowledge into a set of propositional formulas. This includes (1) preserving
input and output types for each tool, (2) preserving the classifications defined by the
taxonomy, and (3) ensuring that none of the states in our encoded transition system
violates the intended structure, that is, ensuring that each state that corresponds
to a tool (or type) is represented by exactly one tool (or type) predicate. These
constraints ensure that our structure can be unambiguously mapped to exactly one
workflow representation. The rest of this section presents this encoding of the
domain model.

Preserving tool inputs. Let n be the workflow bound and k the biggest input
type index. To preserve tool input relation, for each tool X and the list of types
Y1,Ys,...,Y,, where p < k and Y; € input(X) for j € [1, p], we define the formula:

[n(X)] +=(¥i € [1,n])
(X(mo) = (% € [0.p-1]) Yy(ind) n (V) € [p.k]) e(ind))) (4.4)

The formula encodes a condition where the usage of the tool X in a certain tool state
m,; requires precisely the types Y7, ...,Y], to be provided as inputs to it, i.e., Y;(in])
where j € [0, p]. Notice the order of inputs is fixed, according to the tool annotations
provided.

Example 2. We extend Example 1 with the encoding of tool inputs. Remember that
the length of the workflow is n = 2 and input index is k = 2. To simplify the example
we present the encoding of a single tool input, using the tool makecpt (see Table 4.1),
which makes a ‘color palette tables’ and the input type it requires is a ‘cpt_file’. The
encoding is as follows:

[In(makecpt)]]> := (makecpt(mo) = cpt_file(ind) A e(ing)) A
(makecpt(my) = cpt_file(in]) A €(iny))A
(makecpt(ms) = ept_file(ind) A e(iny))

The second output state is labelled as an empty type as the input index of the do-
main (number of input states) is higher than the number of expected inputs by the
makecpt operation.

52| Chapter 4 — Workflow Synthesis as a SAT Problem

Preserving tool outputs. The following set of formulas encodes the preservation of
the tool output relations. Let n be the workflow bound and / the biggest output type
index. For each tool X and list of types Y3, ..,Y),, where p <! and Y, € output(X),
Vj € [1,p] we define the formula:

[Out(X)]ln :=(Vie[1,n])
(X(mi) = ((Vj €[0,p-1]) Y;(out]) A (V] € [p,1]) e(outZ)) (4.5)

1 The formula encodes a condition where the usage of the tool X in a tool state
m;, enforces strictly the types Y7,..,Y, to be provided in the output type states
that follow the operation, i.e., Yj(outf), for j € [0,p]. In case p is smaller than the
number of output states, the rest of the type states are empty.

Example 3. We extend Example 2 with the encoding of tool outputs. Remember that
the length of the workflow is n = 2 and the output index is | = 1. To simplify the
example we show the encoding of a single tool input for the mentioned tool makecpt
(see Table 4.1). The tool has one output type, which is cpt_file. The encoding is as
follows:

[Out(makecpt)]]s := (makecpt(mg) = cpt_file(out))) A
(makzecpt(ml) = cpt_file(out?)) A
(makecpt(ms) = cpt_file(outy))

Notice that none of the output states was labelled with an empty type as the number
of outputs of the makecpt operation is the same as the output index of the domain,
i.e., the number of output states in the model.

Preserving taxonomy classification. To preserve a classification provided by the
taxonomy, we introduce a set of formulas that encode the dependency between
tool/type ontology concepts and their subclasses. At the encoding step, we assume
that the taxonomies implement an exhaustive subsumption relation where all leaf
concepts are mutually disjoint. As we have mentioned in Section 4.1.1, tool tax-
onomies adhere to the assumption, while the type taxonomies usually require a
post-processing step.

Introducing “plain” classes improves the quality of the domain annotations and fa-
cilitates exhaustive subsumption relations. Furthermore, we combine this approach
with the concept of multi-dimensional data (described in Section 4.1.1), which en-
sures that leaves within the same dimension are mutually disjoint.

Exhaustive subsumption relations imply that once a non-leaf tool/type has been
used in a state, at least one of its subclasses needs to be used as well, and vice
versa. For each non-leaf taxonomy term X in the tool taxonomy and the list of its
subclasses Y7,..Y), such that Y; — X, Vi € [1, p] we define the following formula:

[Tz (X)), = (Vi € [Ln]) (X (m;) = (3 € [1,p]) ¥ (my))
A(YG e [Lp)(Yi(m)) = X () (4.6)

The first part of the formula enforces the usage of at least one of the sub-tools of
X in a certain state, providing that X was used in that state as well. The second

Section 4.3 — Encoding the Domain Model | 53

part of the formula enforces usage of the tool X, providing that at least one of its
sub-tools is used in the same state.

Similarly, for each non-leaf taxonomy term X in the type taxonomy and the list
of its subclasses Y7, ..Y), such that ¥; — X, Vi € [1,p] where k and [are the biggest
input and output type indexes among the domain tools, we define the following
formula:

[(Taz* (X)), :=(Vie[1,n],Vpe[0,k-1],Vqe [0,I-1])
(X(in}) = (37 € [L.p]) Yi(in]) A
(Vj e [1,p))(Y;(in}) = X (in}))) A
(X(outg.) = (3j € [1,p]) Y;(out]) A
(¥ € [1,p]) (Yj(out]) = X (out}))) 4.7)
The transition to the encoding of the type taxonomy classification is trivial, as the

only difference is the state that is encoded (e.g., in] instead of m;), and thus, the
complete encoding is omitted.

Example 4. We extend Example 3 with the encoding of tool and type taxonomies. To
keep the example simple, we show the encoding of a sub-taxonomy that consists of an
abstract tool Write title and its two sub-tools pscoast_Bt and psbasemap Bt (see the
right-hand side of Figure 4.1). For simplicity of the notion the tools are abbreviated as
WT, C Bt and B_Bt, respectively. The encoding is as follows:

(Taz®(WT)]2 := (WT(my) = C_Bt(mi) v B_Bt(m1)) A
(C_Bt(m1) = WT(m1)) A (B_Bt(mi) = WT(m1)) A
(WT(m2) = C_Bt(ms) v B_Bt(m2)) A
(C_Bt(mg) = WT(mg)) A (B_Bt(mg) = WT(mQ)) AN
Enforcing mutual exclusion of concrete tools/types. To ensure that each solu-
tion provided by the solver corresponds to exactly one workflow structure, we have
to avoid conflicts of using two different concrete tools or types in the same state
of the structure. As we have previously mentioned, we assume an exhaustive sub-
sumption relation that models concrete tools/types as taxonomy leaves, and thus,
to enforce the tool/type uniqueness it is sufficient to preserve mutually disjoint tax-

onomy leaves. Let n be the workflow bound. For each pair of concrete tools X; and
X5, we introduce the formula

[Conf(X1,X2)]ln = (Vie[1,n])(=X1(m:) v =Xa(m;)) (4.8)

to eliminate conflicts regarding the usage of multiple concrete tools simultaneously.
The formula forbids the usage of two different concrete tools in a single tool state.
Similarly, we can encode mutual exclusion of a pair of types Y; and Y5, where k£ and
[are the biggest input and output type indexes among the domain tools, as follows:

[Conf(Y1,Y2)]l = (Vi€ [0,n])((V € [0,k = 1])(=Yi(in]) v =Ya(in]))
(V5 €[0,0-1])(=Yi(out]) v -Ya(out]))) (4.9)

54 | Chapter 4 — Workflow Synthesis as a SAT Problem

Example 5. We extend Example 4 with the encoding of mutual exclusion of concrete
tools and types. To simplify the example we only show the encoding of mutual exclusion
of two concrete tools, makecpt and gs (see Figure 4.1), while omitting the mutual
exclusion of data types. The encoding is as follows:

[Conf(makecpt, gs)]2 := (~makecpt(my) v —=gs(m1)) A
(ﬂmakecpt(mg) % —\gs(mg))

4.4 Encoding the Temporal Constraints

To restrict the synthesis to workflows that fit a specific task we use the SLTL* spec-
ification. Users use the specification to define the provided workflow inputs, the
desired workflow outputs, and to describe the expected workflow structure.

To accomplish that, we provide a mechanism for transforming SLTL” formulas into
propositional logic. The transformation framework is an extension of our previous
work that transforms SLTL formulas to propositional logic [75]. We extend the
syntax to cover SLTL*, accompanied by a parser for the logic.

Both transformations, of the SLTL and the SLTL* language, are based on the
framework introduced by Biere et al. [17], which provides a mechanism for trans-
forming arbitrary LTL formulas into propositional formulas. The paper distinguishes
between transformations of LTL formulas that include loops in their path, and those
that do not. As we are dealing with loop-free computational workflows here, we
focus on the latter.

To encode the SLTL” formulas in propositional logic, we introduce some additional
propositional predicates.

The ancestor relation (R) is an SLTL® concept introduced in Chapter 3 used to
define a transitive relation between generated data objects and their ‘ancestors’, i.e.,
objects used to generate it. Let n be the workflow bound, k and [the biggest input
and output indexes. We define the corresponding propositional encoding as follows.

[R(X)]n :=(Vie[1,n],¥pe[0,k-1],Vqe[0,1-1]) (R(in?,in?) A R(out?,out?) A
R(inj,out]) A (Vj€[i,n]) Bind(in},out]) = R(out;’.,inf))/\
(Vi17i27i3 € [177’L:|, VP17P27p3 € [Oal_l])
(1‘%(0ut]fl1 , outf;) A R(outfj, outf;) = R(outfl1 , outf:) (4.10)

The identity relation (IS) is a predicate we introduce to skolemize our SLTL” for-
mula, with respect to the first-order logic concepts. Let n be the workflow bound, %
and [the biggest input and output indexes, the predicates are encoded as follows.

[IS(X)]n = (Vie[l,n],Vpe[0,I1-1])IS(out?, out?) (4.11)

Translation of SLTL” to the propositional encoding is presented in the following
definition.
Definition 16. Let n be the workflow bound, k and [the biggest input and output in-
dexes, respectively, t,t1,to,.. are SLTL" terms (constants or variables) and = a variable.

Section 4.4 — Encoding the Temporal Constraints | 55

The notion [[®]]¢, for i € [0,n] refers to the interpretation of the SLTL® formula ® in
the i-th state of the path of length n, where states are described as sets of data instances
and properties over them. States are connected by transitions labelled with operations.
Translation of SLTL* formulas into propositional format is defined as follows:

[truell’, := true
[P, = P(t) A ((Vpe0,i], Vg e [0,1-1])
IS(t,out}) = P(outg))
[[tl = t2:|i1 = (Vp € [O7i]7 V[O,l—l])
IS(t1,0ut}) <=>I1S(ta, outy)
[R(t1,t2)1} = R(t1,t2) A ((¥p1,p2 €[0,i], Va1, 2 € [0,1-1])

IS(iy,outfr) A 1S (ig, out]) = R(outl, out]’))

(-2, = -[2T,
[®1 A @15, = [@111, A [P11,
[@1v 2], = [@11]5, v [221,
[(32) @1;, = (3p € [0,i], 3¢ € [0,1-1]) IS (x,outy) A[2]];,
[(vx) @]l = (Ype[0,i], Vg € [0,1-1]) IS (z, out}) A [@]],
[(Op™*(t1,.,tass)) @I}, := Op(mi) A [XE];,A

(Vpe[1,al, 3¢ € [0, k1)) IS(ty,in) A
(Vpela+tl,a+b],3q€[0,1-1]) IS(t,, out])

[GeL, = [2]), A[[GR],"" where [GD]];; = [®]]7

[FO];, = [®];, v [FOLl;" where [FO]I; := [®]];;

[[X‘b]]; = [[@]]“1 where [[X®]]; := false
(@10,]];, = [@2]];, v ([21]1);, A [2:1UD]1;

Base case:
[, = false

The translation rules are used to transform the user specification from SLTL* lan-
guage into propositional logic. The following example illustrates an SLTL” transfor-
mation.
Example 6. We extend Example 5 with the encoding of the SLTL” formula
¢ = G ~(grdview®°())true (“Do not use tool grdview in the solution.”). The translation
of ¢ to a propositional formula is as follows:

[G ~(grdview®®())true]] := ~grdview(m,) A [[G —(grdview®®())true])s, where
[G ~(grdview®®())true]]s = ~grdview(ms) A [[G ~{grdview’"())true]]3, where
[G ~(grdview°())true]]3 == [~(grdview®° ())true]]s = - false = true

56 | Chapter 4 — Workflow Synthesis as a SAT Problem

Apart from directly writing SLTL” constraints to specify a user intent, we allow for
usage of closed-text, i.e., natural language (NL), templates that correspond to SLTL”
formulas. For example, user can specify “Use data type Ty in the solution” instead of
writing F(3z)Ty(x) (see Table 4.2 for the full list of templates). The motivation for
such a feature is threefold:

1. Practice has shown that some types of constraints are used more frequently
than others, and thus, to simplify the interaction with the framework, we pro-
vide NL templates for such constraints.

2. By providing frequently used templates in natural language, users are not re-
quired to learn the SLTL” syntax to use the framework.

3. Having fixed templates allows us to optimise the implementation of the under-
lying SLTL* formulas as shown in our recent work [75]. Improving the perfor-
mance of the encoding when compared to the rules used in Definition 16.

By default, the templates encode the SLTL” formula according to the translation
presented in Definition 16. However, the encoding of commonly used formulas can
be unnecessarily complex. One such example is the SLTL” constraint that specifies
the last tool in the workflow (see T7 from Table 4.2). To express such a constraint
in SLTL?, e.g., “Use tool Op as the last tool in the solution”, we have to use differ-
ent modal operators. Some of the possible encoding approaches are presented as
follows.

[771 := IF((Op*°O))true AX false)]I, (4.12)

[T7] = [F(Op*°O))true A G(X Xtruev (Op”°()) true v -Xtrue)]|Y (4.13)
or

[T7])n = [[G F{Op™* O)true]Iy (4.14)

Each of the SLTL” formulas has a different structure that determines the complex-
ity of the propositional encoding. For example, the nesting of the modal operators
causes exponential blowup with respect to the size of the propositional encoding in
conjunctive normal form (CNF)”. Therefore, some encoding structures are preferred
over others. However, even the optimal CNF encoding generated from SLTL” struc-
ture using Definition 16 can often be further simplified. For example, the presented
type of constraints can be directly encoded in the workflow structure, as it has a
fixed bound, optimising the encoding. Thus, this framework rewrites the encoding
into a simpler formula, where n is the bound of the workflow:

([T7]]n = Op(my) (4.15)

Although the simplification in the encoding is not always as straightforward as the
previous example, encoding of other NL templates can be optimised. For example,
the constraint TX from Table 4.2 (“Use operation Op with an input of type Ty”)
can avoid the direct transformation from SLTL*, which introduces a recursive call
over all available data types at each step. The direct encoding of the template is as
follows:

7SAT solvers expect encoding to be provided in CNF.

Section 4.5 — Solving the Encoded Problem |57

(Txn = (Fi€ [1,n],3y € [0.p— 1])(Op(m;) A Ty(inl)) (4.16)

On the other hand, there can be templates that are not difficult to encode, but
difficult to specify. For example, the constraint TX from Table 4.2 (“Identical tools
should not be connected via output/input”, i.e., we should not have port binding
between tools/transducers of the same type) is difficult to specify manually in SLTL".
The user must specify the formula of the format:

~3z(F < Op*!(z) > (F < Op"° () > true)) 4.17)

for each annotated tool Op individually®. Therefore, there should be k such con-
straints, where k is the number of distinct transducers/tool annotations in the do-
main. In this scenario, the corresponding NL template improves the encoding, but
more importantly, it simplifies the specification step, even for the user that is familiar
with SLTL”.

The optimised encoding of the NL templates reflects in the improved translation
time (from the SLTL® the CNF encoding), as presented in Chapter 7. The run-
time improvement ultimately depends on the complexity of the underlying SLTL”
formula. For example, simple formulas that utilise a single modal operator, such
as “F < Op®1() > true” show between 10% and 20% runtime improvement. On the
other hand, complex constructs, that involve nesting of modal operators, show much
bigger improvements, e.g., encoding could take a few seconds instead of more than
an hour. The complete evaluation is presented in Section 7.1.

4.5 Solving the Encoded Problem

Once the complete encoding is provided, it is sent to the MiniSAT solver [38] to per-
form the synthesis. Based on the solutions provided by the solver, candidate work-
flows and their executable implementations are provided to the user. We perform
the search for possible workflows until the first depths where solutions are found
(the search depth is the same as the length of the solutions). Usually, the shortest
solutions are also the most relevant with respect to the workflow specification, as
they present the smallest number of steps necessary to satisfy it. To illustrate, if we
look at our running example (see Examples 1 - 6) and assume that there is no initial
input provided to the workflow, some of the proposed solutions would be®:

+ initGMT - gs

¢ initGMT — pscoast W

+ add_grd - makecpt
where the arrows denote the order in which the tools are being executed, i.e., the
first solution suggests using tools initGMT and gs in a sequence. For the current
specification, each solution is of length 2 and none of the solutions includes the tool

8The operation Op cannot be set to an abstract class, as it would be too restrictive. For example, if we
set Op to be a plotting operation, such as -3z (F < Plot creation®! (z) > (F < Plot creation°(z) > true)),
the constraints forbids using any two plotting operations in a sequence.

9We present simplified structure of the solutions, illustrating only the operations performed.

Chapter 4 — Workflow Synthesis as a SAT Problem

58 |

ID Constraints in Natural Language Constraints in SLTL
T1 If tool Op; is used, tool Opsy G(= < O0p%°() > true v
has to be used subsequently XF < O0p”0() > true)
If tool Op; is used, tool Ops G(= < O0p"°() > true v
cannot be used subsequently XG- < Op2”?() > true)
T3 If tool Op» is used, tool Op; must have G(-X Oﬁ%v?:m %
been its direct predecessor in the sequence AOﬁw,cv O@wbv?zmvv
T4 If tool Op; is used, tool Ops G(= < O0p"°() > true v
has to be used next in the sequence X < Op2"%() > true)
T5 | Use tool Op; in the solution F<0pY%,0() > true
T6 | Do not use tool Op; in the solution G- <0pY,0() > true
. . F <Op,%°() > true A
T7 | Use Op; as last tool in the solution. G(= < Op () > true v - X X true)
T8 | Use type Ty in the solution FIzTy(x)
T9 | Do not use type T'y in the solution -F3xTy(x)
Tool Op, should generate output used 0.1 1.0
T10 by operation Ops Fz(< Op” ' (x) > (F < Op-°(x) > true))
Tool Op; should never generate output 0.1 1.0
T11 used by operationOps -F3z(< Op>'(z) > (F < Op"°(x) > true))
T12 | Use tool Op with an input of type Ty F3x(Ty(x)A < Oph°(z) > true))
Use tool Op to generate output 01
T13 of type Ty FIz(< Op”'(x) > Ty(x)))
T14 Identical tools should not be J30(F < 0p%1(z) > (F < Op'O(2) > true))

connected via output/input

Table 4.2: User Intent: NL templates for SLTL” formulas.

Section 4.5 — Solving the Encoded Problem |59

grdview, due to the user intent constraint that excludes this tool (see Example 6).
Additionally, each tool that is suggested as first in the sequence does not require
any input, considering that we did not provide any initial workflow input. Similarly,
the second tool is limited to the tools that require no input or the input that was
provided as the output of the first tool. To illustrate, we will elaborate on the first
proposed solution. It represents a workflow that uses initGMT command to instan-
tiate a GMT program and to generate an empty map, while the second command
- gs, displays the generated map to the user. Although the workflow does not per-
form any notable computations, it is one of the smallest programs that satisfy the
constraints presented in Examples 1 - 6. That is why an accurate specification of the
program is as important as the program synthesis algorithm itself.

The example presents a trivial encoding of the problem, used to illustrate the
translation mechanism. The original geovisualisation case study [73] includes a
much larger set of constraints, such as “Use operation 2D_surfaces” (in SLTL* ex-
pressed as F < 2D_surfaces”’() > true), “Use o&)eration Draw_political_borders” (in
SLTL® expressed as F < Draw _political_borders ’O() > true), etc. The complete ex-
ample presented in the case study enforces the usage of nine specific operations and
results in workflows of length 16. The solutions accurately solve the given problem.
We present the full problem specification and the generated solutions in Chapter 6.

CHAPTER 5

APE (the Automated Pipeline
Explorer) v2

Abstract - The chapter introduces APE v2 (the Automated Pipeline
Explorer) as a command-line tool and Java API for the automated
composition of scientific workflows. In addition, it describes APE
Web, a web interface built on top of the APE API. The goal of the
APE framework is to provide a robust and lightweight solution to ex-
isting synthesis problems in scientific domains.

For a domain set-up, APE requires a domain ontology and semanti-
cally annotated tools. The domain can then be utilised to synthesise
scientific workflows based on an SLTL” specification. APE v2 imple-
ments the transformation algorithm presented in Chapter 4 to encode
the specification in propositional logic, and use the MiniSAT solver to
synthesise the corresponding solutions.

The chapter also presents a mechanism used to transform generated
APE workflows into the CWL (Common Workflow Language) format.
Furthermore, the mechanism can be adapted to suit other workflow
languages (e.g., NextFlow, SnakeMake).

This chapter is based on the following publications:

Kasalica, V. & Lamprecht, A.-L., “APE: A Command-Line Tool and API for Automated
Workflow Composition”, in: Computational Science — ICCS 2020, ed. by Krzhizhanovskaya,
V. V., Zavodszky, G., Lees, M. H., Dongarra, J. J., Sloot, P. M. A., Brissos, S., et al., Cham:
Springer International Publishing, 2020, pp. 464—476, 1SBN: 978-3-030-50436-6.

Kasalica, V., Alechina, N., Lamprecht, A.-L. & Logan, B., “Instance-Aware Synthesis of
Workflows Specified in Temporal Logic”, Journal of Artificial Intelligence Research (JAIR),
2023, Submitted and under review.

Section 5.1 — Architecture | 63

This chapter introduces APE v2 [74] as the software that implements SLTL”-based
workflow synthesis (described in Chapter 3). The APE v2 framework uses the trans-
formations presented in Chapter 4 to encode the SLTL”-based bounded synthesis
problem in propositional logic and use the MiniSAT [38] solver to synthesise the
solution.

Section 5.1 presents the architecture of the APE v2 framework. Section 5.2 illus-
trates how to set-up APE for use by providing a semantic domain model. Section 5.3
focuses on the interfaces for the automated composition of workflows based on the
domain model and custom workflow specifications. It presents the APE application
programming interface (API), the command line interface (CLI) and the graphical
browser-based interface (GUI) built on top of the APE API. Section 5.4 describes
how APE-composed workflows can be further transformed into standard workflow
formats. Finally, Section 5.5 presents some related tools that provide scientific work-
flow synthesis.

APE v2 is available as an open source project at https://github.com/sanctuu
ary/APE.

5.1 Architecture

The architecture of APE v2 is shown in Figure 5.1.

pa Workfiow specification .
model ! workflow constraint
i X ; :
[inputs/outputs] [templlates] [SLTL constralnts]é
P APE 2.0

tool_ /_Encoding \
annotations | ——»|
module
E SLTLX
structure

External
solvers

parser

MiniSAT

P Synthesis
———— i
textual |} ¢ CNF module (e
workflow encoding \

SR
workflow | i
structure [€—

Post-processing

(PNG) | module
oWl)| synthesis e
workflow |$ solution

Figure 5.1: APE v2 architecture

The input to APE v2 is a domain model that configures the framework to the ap-
plication domain, and a workflow specification describing the desired workflow, as

https://github.com/sanctuuary/APE
https://github.com/sanctuuary/APE

64 | Chapter 5— APE (the Automated Pipeline Explorer) v2

described in Chapter 4. The domain model, comprising taxonomies and semantic
tool annotations, is typically provided by a domain expert. The workflow specifica-
tion comes from an end user (e.g., a researcher) and consists of the available inputs,
desired outputs and additional constraints.

APE v2 provides an interface for users to specify arbitrary SLTL” formulas when
describing the problem. Furthermore, the framework provides a set of most com-
monly used SLTL” constraints in the form of natural language templates, elaborated
in Section 4.4. Examples of templates available in APE v2 include “Use operation X
in the workflow”, formally F({X%Y()) true), and “Tool Y must not take data processed
by tool X7, formally —F (3z(X%1(2))F(3y(Y'°(y)) R(z,y))).

In the encoding module, APE v2 combines the domain model and workflow spec-
ification and translates the resulting synthesis problem into a CNF (propositional
logic) format. The translation is presented in detail in Chapter 4.

The synthesis module takes the resulting propositional formula and passes it to a
SAT (MiniSAT [38]) solver. The APE v2 implementation retains the iterative deep-
ening approach used in APE [75], as it was demonstrated to be effective in practice.
This approach synthesises the workflows involving the smallest number of opera-
tions first, which usually corresponds to the user’s expectations.

Finally, the post-processing module parses and translates the solutions provided
by the SAT solver to actual workflows. These can be output in a plain text form,
as PNG images depicting the structure of the workflow, or in the Common Work-
flow Language format (CWL [8]), facilitating subsequent use in various scientific
workflow management systems.

5.2 Domain Model

As described in the previous chapters, the semantic domain model constitutes the
knowledge base on which APE relies for the automated composition of workflows.
It comprises a domain ontology and a collection of semantically annotated tools.
Additionally, the domain model might include SLTL* constraints to express further
domain knowledge or rules. These are referred to as domain constraints.

Name Operation Data input (type / format) | Data output (type / format)

Comet Peptide database Mass spectrum Peptide identification
search mzML or mzXML pepXML

msconvert Formatting Mass spectrum Mass spectrum
Filtering MGF or mzXML or mzML MGF or mzXML or mzML

Peptide Peptide identification | Peptide identification Peptide identification

Prophet Statistical modelling | pepXML or mzIdentML pepXML

rt4 Retention time Peptide property Amino acid index
prediction TSV or pepXML TSV or XML

xml2tsv Conversion Peptide identification Peptide identification

mzIdentML TSV

SSRCalc Retention time Peptide property Amino acid index

prediction Textual format or TSV Textual format

Table 5.1: Fragment of an annotated set of bioinformatics tools [66].

Section 5.3 — Automated Workflow Composition | 65

Data
format

Format (by
type of data)
Document
format

Mass
spectometry
data format

Operation

Peptide
indentification

database

Molecular
property

Amino acid
property
Amino acid
index

Experimental
mesurement

[PDF

Mass
spectometry
data

CompassXport

Retention time
prediction
rt rt4

Validation of
peptide-spectrum

mathces ' Amino acid " Mass
index spectometry
(hydropathy) spectra PNG

ProteinProphet

PeptideProphet SSRCalc

Figure 5.2: Fragment of a bioinformatics domain ontology.

For example, Figure 5.2 and Table 5.1 show fragments of a bioinformatics do-
main model from our recent case study on automated workflow composition in pro-
teomics [76, 111]. The domain ontology (see Figure 5.2) was directly derived from
the popular bioinformatics data and methods ontology EDAM [64]. Table 5.1 shows
a few tool annotations from the same case study. Each tool is semantically annotated
with the operation(s) it performs and its input and output data types and formats,
using terms from the respective taxonomies. These annotations were directly de-
rived from the bio.tools registry [65, 66], a large collection of EDAM-annotated
bioinformatics tools. Note that in this example, two dimensions (type and format)
are used for the annotation of the input and output data. Other applications need
only one (e.g., format [73]), and yet others have more than two required dimen-
sions [84]. Hence, APE supports the use of multiple disjoint taxonomy trees to
represent the required dimensions of data characterization.

Technically, we rely on existing and (de facto) standard formalisms for the rep-
resentation of the domain model. APE loads the domain ontology from a file in
Web Ontology Language (OWL) format!. The tool annotations are represented in
JavaScript Object Notation (JSON) format, following the schema that is used in the
bio.tools registry [18].

5.3 Automated Workflow Composition

Once the domain model has been configured, APE is ready to be used for automated
workflow composition. Therefore, the user specifies the workflow inputs, intended
outputs and additional constraints that the workflow has to fulfil. For example (as

IThe APE framework supports RDF/XML, OWL/XML, OWL Functional Syntax, Manchester OWL Syn-
tax, Turtle, KRSS and OBO Flat ontology file formats. The parsing is handled by OWL API v5.1.20
(https://github.com/owlcs/owlapi/wiki).

https://github.com/owlcs/owlapi/wiki

66| Chapter 5— APE (the Automated Pipeline Explorer) v2

INPUT OUTPUT Constraints:

™ RAW e 1. Use operation peptide identification
2. Use operat@on valida}ion 9f peptid§-§pectrum matches
3. Use operation retention time prediction

Solution 1:
msConvert ’ Comet PeptideProphets
Thermo RAW, szL pepoL perML iHOP vomat,
Mass spec(rum Mass speclrum Peptlde identif. Fep(lde identif. mino acid index
Solution 2:
msConvert ‘ Comet PeptideProphets xml2tsv SSRCalc]

Thermo RAW, szL perML perML TSV plain text format,
Mass spectrum Mass speclrum Pepllde identif. Fepllde identif. Peptlde identif. mino acid inde;

Figure 5.3: Automated composition of a proteomics workflow.

illustrated in Figure 5.3), one workflow specification from the proteomics case study
consists of “Mass spectrum” type in “Thermo RAW format” as input, “Amino acid in-
dex” (in any format) as output, and constraints specifying to use tools that perform
the operations “peptide identification”, “validation of peptide spectrum matches”
and “retention time prediction” (constraint template “Use operation X”). These op-
erations are abstract terms from the ontology, known to scientists from the domain.
This shows that formulating such constraints does not require knowledge of all avail-
able tools that fit the description. Based on the given specification, APE synthesises
workflows that fulfil the specification by construction. Figure 5.3 shows two of many
possible workflow solutions for the example specification.

Automated workflow composition with APE can be performed through its com-
mand line interface (CLI), its application programming interface (API) or the latest
graphical browser-based interface (GUI). While the CLI provides a simple means to
interact and experiment with the system, the API provides more flexibility and con-
trol over the synthesis process. It can also be used to integrate APE’s functionality
into other systems. The GUI on the other hand provides a more intuitive interface,
suitable for new users. On top of it, it features improvements in the visualisation of
the solutions.

5.3.1 Command Line Interface (CLI)

When running APE-2.0.0. jar from the command line, the program requires a con-
figuration file as a parameter to execute the complete automated workflow compo-
sition process accordingly. This JSON-based configuration file provides references to
all therefor required information:
1. the domain model (as described in Section 5.2), provided as a pair of well-
formatted OWL and JSON files,
2. the workflow specification provided as a list of workflow inputs/outputs and
template-based workflow constraints, and
3. parameters for the synthesis execution, such as the number of desired solu-
tions, output directory, system configurations, etc.
Synthesised solutions are provided by APE v2 in the output directory. Each solu-

Section 5.3 — Automated Workflow Composition | 67

tion can be provided as a text file that describes the steps of the workflow, as a PNG
figure that illustrates the workflow structure, and in the CWL (Common Workflow
Language) [8] format.

5.3.2 Application Programming Interface (API)

Like the CLI, the APE API relies on a configuration file that references the domain
ontology, tool annotations, workflow specification and execution parameters. How-
ever, the API allows the user to edit this file programmatically, e.g., to add constraints
or to change execution parameters dynamically. This is useful, for instance, for pro-
viding more interactive user interfaces or for systematically exploring and evaluating
workflow synthesis results for varying specifications and execution parameters.

JSONObject apeConfig = Utils.generateGeneralConfiguration();
apeConfig.put("ontology_path", "./EDAM.owl");
apeConfig.put("tool_annotations_path", "./biotools.json");
APE apeFramework = new APE(apeConfig);

APERunConfig runConfig = Utils.parseJson("./runConfig.json");
runCongif . setMaxNoSolutions(10) ;

SolutionsList solutions =

apeFramework.runSynthesis (runConfig) ;
apeFramework.writeSolutionToFile(solutions);
apeFramework.writeDataFlowGraphs(solutions);

Listing 5.1: APE v2 API calls used to synthesise workflows and save solution.

Listing 5.1 shows a small example of using the APE API for synthesising a set
of workflows similar to the example in Figure 5.3. First, the paths to the domain
ontology and tool annotation files are added to the APE configuration object. Then
a new instance of the APE framework is created based on the configuration, and the
workflow synthesis algorithm is executed with the provided run configuration. The
result of the synthesis run is a list of solutions obtained from the SAT solver, which
are written into the output directory in textual and graphical (data-flow) format.

The APE API provides further functionality, allowing for more fine-grained inter-
action with the APE framework. Figure 5.4 outlines the API, focusing for brevity on
the most relevant fields and functions. The ConstraintFactory and Constraint classes
allow for the retrieval of constraint templates and the addition of new or removal
of existing constraints, thus further constraining or loosening the specification, re-
spectively. As shown in the example code (Listing 5.1), the APE class constitutes the
main interface for interaction with the framework. It is used to define the execution
parameters as well as the output formats. Once the library has generated the solu-
tions, they are provided as a list of SolutionWorkflows. Each solution is represented
as a directed graph that comprises type and tool nodes (internally named modules).
The interface for working with the workflow solutions (further elaborated in the
next section) is provided by the classes SolutionWorkflow, TypeNode (representing
type instances) and ModuleNode (representing tool instances).

68| Chapter 5— APE (the Automated Pipeline Explorer) v2

APE
core configuration: APECoreConfig

ConstraintFactory APECoreConfig

domainOntologyPath: String

constraints:Map<ID, Constraint>

run configuration: APERunConfig # toolAnnotationsPath: String

+ getConstraint(ID): Constraint

constraintGenerator: ConstraintFactory # dataDimensions: List<String>

+ getConstraintTemplates(): Templ
1

+ addConstraint(Constraint): void

+ runSynthesis: SolutionsList APERunConfig

maxNumberOfSolutions: int

+ writeSolutionsToFile(SolutionsList)

+ writeDataFlowGraphs(SolutionsList) 1

Constraint

1

ID: String

params: List<TaxonomyLabel>

description: String

+ getEncoding(): String

Type
typelD: String

typelLabel: String
moreAbstractTypes: Set<Type>

SynthesisEngine

mappings: AtomMappings
solutionsFound: SolutionsList
CNF encoding: String ...

+ synthesisEncoding(): void
+ synthesisExecution(): SolutionsList

+ setWorkflowlnputs(DataType)
+ setWorkflowOutputs(DataType)

Module

SolutionsList

solutions: List<SolutionWorkflow>
runConfig: APERunConfig

modulelD: String
moduleLabel: String
moreAbstractModules: Set<Module>

+ getStream(): Stream<SolutionWorkflow>
+ solvingTime(): long

+ getRequiredinputs(): List<Type>
+ getRequiredOutputs(): List<Type>
+ getExecutableCommand(): String

1

1

TypeNode

+ getType(): Type
+ getCreatedByModule(): ModuleNode

SolutionWorkflow

ModuleNode

+ getModuleNodes(): List<ModuleNode>
+ getWorkflowlnputs(): List<TypeNode>
+ getWorkflowOutputs(): List<TypeNode>
+ getDataFlowFig(): Image

+ getControlFlowFigure(): Image

>

+ getUsedModule(): moduleObject

+ getNextModule(): ModuleNode

+ getPrevModule(): ModuleNode

+ getlnputTypes(): List<TypeNode>
+ getOutputTypes(): List<TypeNode>

+ getExecutableScript(): String

+ getUsedByModules(): List<ModuleNode>
| *

Figure 5.4: Fragment of the APE v2 API.

5.3.3 Graphical Browser-based Interface (GUI)

The APE CLI and API aim to be easy-to-use, but clearly target a tech-savvy audience
with a certain level of coding and/or scripting confidence. To reach a broader audi-
ence, an intuitive interface that can be used without technical experience or specific
training is required. I recently co-initiated a (Software) project? and co-supervised a
group of 10 students to develop APE Web [55], a graphical interface built on top of
APE API. APE Web is available as an open source project®, while a running instance
is hosted at https://ape.science.uu.nl/.

The platform provides the automated workflow composition functionality of APE
through a browser-based interface. The composition can be performed over any of
the available domains and allows as much freedom in parametrisation as when using
the CLI version while utilising benefits of the graphical interface (see Figure 5.5a).
APE Web goes even a step further, as it provides a “constraint sketcher” interface,

2As part of the Software Project at Utrecht University, students develop software in a professional
setting. They carry out an assignment for a client in teams. The project serves as a graduation assignment
for the Bachelor’s degree in Computer Science.

Shttps://github.com/sanctuuary/APE-Web

https://ape.science.uu.nl/
https://github.com/sanctuuary/APE-Web

Section 5.4 — Workflow Implementation | 69

& Upload L, Download L Load use case

a)
o O[T Ol T [T O

Clear Clear Show advanced constraints Clear .
Min steps: |

Max steps: 8

Image Image Constraint Type:
o p— Use operation in the solution. T e e s

1. Saturate

~ Format Number of solutions: 5

1 ImageFormat
v Lossless Sketches
+Add PNG

BMP

) oisort
Workflow 1 (Reference) Download v | Remove Reference Workflow2 Downlosd v Workflow 3
& Workflow 1
DR
et
Bt] BT
et == :

i - v - [g o N
) = =B Y : .
+ generae font | = e ~ I g o) & S ot l
—_ e * == E=
9 Workflow 3 o -

e,
ety = (=)
= v
e
p—

Figure 5.5: Workflow exploration interface within APE Web

which allows users to graphically sketch a workflow structure which is then trans-
lated into a set of constraints (see Figure 5.5b). Once the user performs the run, the
graphical interface is used to improve the visualisation of the solutions by highlight-
ing differences between the visualised candidate solutions (see Figure 5.5c).

Finally, the platform provides a user-based system for sharing semantic domain
annotations. Therefore, users can both, create new domains, as well as extend and
use existing domains to automatically compose new workflows.

5.4 Workflow Implementation

As mentioned above, APE provides functionality for exporting the synthesised work-
flows as textual representations, in the form of (data-flow and control-flow) graphs

70| Chapter 5 — APE (the Automated Pipeline Explorer) v2

and as executable shell scripts. In practice, it is often desirable to implement work-
flows in one of the languages used by popular workflow management systems (e.g.,
KNIME [16], Galaxy [2], Apache Taverna [147], Kepler [62]), to be able to exe-
cute them with the respective workflow engines. Given a large number of existing
workflow languages, it is however not feasible for APE to provide ready-to-use ex-
port functionality for all of them. Instead, the information contained in APE’s own
workflow representation is used to create workflows in other languages. In the fol-
lowing sections, we describe the APE workflow format and demonstrate how it is
used to create corresponding workflows in CWL. The mapping process described in
this paper can furthermore serve as a template for the translation of APE results to
other workflow formats, such as NextFlow [33], SnakeMake [82] or the Workflow
Description Language (WDL) [148].

5.4.1 APE workflow format

class: Workflow

Workflow INPUT cwlVersion: v1.2-devl
7 2., workflow_in i“P“t5=kfl o)
Thermo RAW, mzldentML, e ty::Tl'F‘Ilé
MaSSSpec‘\mm Eeptidelidenti format: http://edamontology.org/format 3712 (Thermo RAW)
1\ workflow_in_2:
A type: File
msConvert oty format:. "mzldentML.
msconvertl:
i 2 in:
mzML, MGF, msconvert_in: workflow_in
Mass spectrum Mass spectrul : [msconvert out]

N\

1\ class: Operation

A inputs:
msconvert_in_1:
type: File
format: http://edamontology.org/format 3712 (Thermo RAW)
msconvert_in_2:

1
type: File
pepXML, L "
Peptide identif. tool_info format: "mzldentML
|
1

hints:
SoftwareRequirement:
2
PeptideProphets [«
1 h outputs:
msconvert_out_1:
Peptide identif. format: http://edamontology.org/format 3244 (mzML)
1 msconvert_out_2:

packages:
\ 7 type: File

msconvert: [https://bio.tools/msconvert]
format: "MGF"
rt
.

intent: [http://edamontology.org/operation 3695,
.

http://edamontology.org/operation 0335]
1
.
iHOP fomat,
Amino acid inde;
1

workflow_out : outputs:
A4 workflow_out_1:
type: File

Workflow OUTPUT format: http://edamontology.org/format_1740 (iHOP)

Figure 5.6: Workflow in APE’s native format (left) and the corresponding workflow in CWL
(right).

APE represents the workflow solutions in the form of directed graphs. The left-
hand side of Figure 5.6 shows an example. Nodes in the graph represent instances
of data (depicted as ellipses) and executions of operations (rectangles), while the

Section 5.4 — Workflow Implementation | 71

edges represent inputs and outputs of these tools, shown as green and red arrows,
respectively. Labels on the edges represent the order in which they are given as
arguments to the tools. This graph provides the trace information that is needed to
create the workflow in another language.

The APE API provides a set of functions to aid the interaction with the graph struc-
ture (see class WorkflowSolution in Figure 5.4). The workflow inputs can simply be
retrieved using the corresponding function of the SolutionWorkflow class, which re-
turns it as a list of TypeNodes. Generally, each TypeNode comprises concrete data
Type that identifies it, a (possibly empty) tool node that generated it as an output,
and a (possibly empty) list of tools that used it as an input. Furthermore, the Solu-
tionWorkflow class provides a function for retrieving the tools used in the workflow
as a list of ModuleNodes (sorted according to their order of execution), making it
easy to iterate over all tools used in the workflow. Each ModuleNode provides infor-
mation about the next and the previous ModuleNode in the sequence, the TypeNodes
used as inputs and generated as outputs by the tool, as well as information about
the actual tool (executable script, see class Module) that provides the information
needed for its execution. Finally, the workflow outputs are provided in the same for-
mat as the initial inputs. Note that for this example the first proposed solution from
Figure 5.3 was artificially extended with additional inputs and outputs (depicted as
grey ellipses) for illustrative purposes.

5.4.2 Translation to CWL

CWL* [8] has recently emerged as an open standard for describing scientific work-
flows across platforms. It is increasingly adopted by the scientific community, with
CWL support being added to popular scientific workflow management systems like,
for example, Galaxy [47] and Toil [140]. CWL is a declarative language that fo-
cuses on workflows composed of command line tools. Basically, it describes a set
of steps and dependencies between those steps. CWL has its roots in “make” and
similar tools, and like them, it determines the order of execution based on these
dependencies between tasks, i.e. if there is a required order of the operations or
if they can even be executed concurrently. Conveniently, the main CWL structure
is quite similar to the APE workflow structure. A basic workflow (see right-hand
side of Figure 5.6) comprises a configuration header, a list of workflow inputs, steps
to be performed and workflow outputs. The input/output dependencies have to be
explicitly defined, again in line with our data-trace workflow representation. The
tools in CWL usually include a command field, explicitly defining the correspond-
ing command line operation. In addition, they can be configured to run tools from
Docker containers automatically, allowing for more flexible and scalable workflow
implementations.

However, as the fully automatic configuration for execution is not always feasible,
the CWL version 1.2 introduces abstract workflows. These workflows use descriptive
containers instead of directly executable operations, and require additional (man-
ual) configuration to become executable. The abstract containers are represented

“https://www.commonwl.org/
Shttps://www.gnu.org/sof tware/make/

https://www.commonwl.org/
https://www.gnu.org/software/make/

72| Chapter 5 — APE (the Automated Pipeline Explorer) v2

using the intent label (see Figure 5.6). Given that the functional description of tools
is sufficient for workflow discovery with APE, the abstract CWL workflows match
well with APE’s own workflow representation. Furthermore, the bio.tools registry
used as a source for the tool annotations in the aforementioned bioinformatics case
study is a typical example of such a set of tools. The repository contains the semantic
annotations of the tools but might still require some manual steps from the user to
execute the tool itself. Hence APE discovers workflows composed of tools that are
not necessarily available on the local system, potentially requiring the installation
and configuration of the tools on the execution system first.

We use the following steps to translate and APE workflow into CWL format. (1)
Describe the original inputs, (2) iterate through the tools in the workflow sequence
and specify the inputs used and outputs generated, and finally (3) specify the work-
flow output list. The right-hand side of Figure 5.6 shows the CWL representation of
the APE workflow on the left. To create it, first, the list of input objects is translated
into a list of inputs that are annotated using their formats (see label workflow_in
in Figure 5.6). This means that some information about the data gets lost in the
translation (specifically the type description). However, at runtime the format is suf-
ficient to perform the execution, and thus, this is not a problem. Second, each tool
in the sequence is described. The description involves a definition of the inputs, out-
puts and tool execution specification (mappings are annotated using labels tool_in,
tool_out and tool_info, respectively). The most important part of the step is to
keep track of the exact source of the tool inputs as well as to provide a sufficient tool
description that would allow for its execution. The input information is already part
of the formalism, as APE v2 keeps track of data flow traces for each data instance.
The only requirement is to properly use the identifiers provided when creating the
mappings to CWL. Regarding the tool descriptions, as long as the provided tool an-
notation file contains sufficient information, it can be translated into CWL. Third,
the final tool outputs need to be specified based on the given tool description (see
label workflow_out in Figure 5.6).

5.5 Related Work

This section presents an overview of software that tackle the synthesis of scientific
workflows, often specialised for a specific scientific domain. We present workflow
synthesis software used in geo- and life-sciences, as the domains correspond to case
studies that utilise APE, elaborated in Chapter 6.

The Workflow INstance Generation and Selection (WINGS) workflow system pro-
vides a scientific workflow planning approach which is not domain specific. The
approach takes an abstract/template workflow as the basis and uses it to automati-
cally instantiate a concrete and executable workflow. This is possible as the approach
provides a high-level semantic workflow representation, which can be automatically
configured into executable workflows. In addition, it allows the usage of abstract
steps in the workflow, which are implemented by suitable tools or sub-workflows.
The implementations can be manually set and exchanged, allowing for quick gener-
ation and comparison of workflow variants.

Section 5.5 — Related Work | 73

5.5.1 Geo-service Composition and Geo-ontologies

Automated program and workflow composition is a challenging and active field of
research in computer science [53], but it has not been intensively studied in the
geospatial domain so far. Though tool ontologies [4] and abstract GIS operations
[27] have been known for decades, they do not seem to have matured to the stage
of being used for automated workflow composition. Still, we can distinguish a few
different approaches aiming to simplify the creation of GIS workflows. Most of them
agree that an information ontology is a suitable formalism for structuring existing
data types and operations [10, 57, 94, 139, 149, 150]. This is justified by the
fact that different tasks may require different levels of constraints and explanations
[136], both being provided by an ontology. The existing approaches can be classified
according to their preferential focus on the workflow synthesis process.

Some approaches provide an intuitive interface for helping users discover GIS
tools and data sources for workflow composition [10, 68, 94, 143]. [107] recently
proposed hierarchical profiles for the service discovery. These approaches still rely
on a manual workflow composition, similar to workflow management approaches
[96, 139]. Their focus is on using formal semantics to simplify the transition process
between data sources. The same holds for Linked Data based workflow repositories
[117]. Some approaches propose task-centred ontologies for the service chaining and
data retrieval [143], and use it to retrieve and invoke workflows from a knowledge
base [133, 151].

Other works[10, 57, 150] aim at automating the process of GIS workflow com-
position itself. Most of these authors focus on the semantic discovery of individual
operations from a knowledge base, based on either formal input and output speci-
fications [10, 40, 98], or based on tool thesauri [21, 57, 58]. Although operation
discovery is a crucial step in workflow discovery, there is still a need for combining
the discovered operations in executable workflows. Yue et al. [150] address the type
chaining problem and provide automated discovery of chains of operations, based
on their input/output specifications. Farnaghi and Mansourian [39] use a planning
algorithm for automatically finding solutions to the sheltering problem in disaster
management. These latter approaches are comparable to the technical problem we
address. Yet, from an ontological viewpoint, they seem to lack a crucial distinction
between semantic (conceptual) and syntactic (format) data properties [85, 86]. This
distinction is seldom drawn, yet it is required to capture how concepts can be repre-
sented by different geodata formats.

5.5.2 Workflow Synthesis in Life Sciences

Life sciences show a high quality of semantic annotations when compared to other
scientific domains, as contemporary life scientists rely substantially on computa-
tional tools and processes [92]. For example, as of July 1, 2022 the EDAM ontol-
ogy [67] classifies 3,483 bioinformatics terms® and the bio.tools registry of software
in the life sciences [66] comprises 25,411 life science software annotations. In ad-
dition, the domain introduces the SADI (Semantic Automated Discovery and Inte-
gration) framework [144] as a standard for creating Semantic Web Services and a

Shttps://bioportal.bioontology.org/ontologies/EDAM

https://bioportal.bioontology.org/ontologies/EDAM

74| Chapter 5 — APE (the Automated Pipeline Explorer) v2

design pattern for the formal description of the service interfaces. The SADI registry,
a collection of the mentioned service descriptions, comprises thousands of services
(Data as a Service (DaaS)/Application as a Service (AaaS)).

The availability of these semantic annotations reflects the maturity of approaches
that provide automation in workflow creation in the field. An early example is
the ontology-driven assisted web service composition facilitated by BioMoby [34],
which was integrated into the Taverna workflow system to guide the construction
of workflows [145]. The goal of the approach is to simplify the interactive service
composition of BioMoby services. At each step of the workflow construction process,
only services which are compatible and likely to be useful are displayed. Similarly,
the tool recommender system in Galaxy [87] focuses on finding suitable tools to aid
the user while developing a workflow. Galaxy is a popular web-based platform for
high-throughput sequencing data and other big data analyses in bioinformatics. The
platform comprises more than 2,000 tools that can be hard to explore. The recom-
mender system suggests possible next tools in an incomplete workflow, to simplify
the workflow construction. The approach is based on a deep learning algorithm that
utilises existing workflows in the Galaxy platform.

Magallanes [116] is a Java library used to help researchers to discover bioinfor-
matics web services and associated data types. An important feature of Magallanes
is its ability to chain available and compatible web services into workflows, accord-
ing to the desired output. Magallanes provides an application programming (API)
and a graphic user interface (GUI).

Finally, SHARE [138] and HYDRA [13, 115] are specialised query engines used to
synthesise and execute workflows over the SADI registries. The engines use SPARQL
queries to reason over the registry. SADI query engine checks the input/output de-
scriptions to ensure compatibility between services. The process is used to discover
SADI web services that match the required data transformations. In addition to writ-
ing SPARQL queries directly, SHARE supports SPARQL Assist, a language-neutral
query composer, while HYDRA provides a keyword-based and graphical interface.
SHARE and HYDRA provide fully automated scientific workflow composition and
execution. A given query is used to compose required services into a workflow,
which is executed subsequently. Unlike the other approaches in the category, this
approach does not provide the workflows to the user. Instead, the result of the syn-
thesis is the computed output data itself. This level of automation is possible due
to well-annotated and curated semantic annotations of both, operations (AaaS) and
data sources (DaaS) provided by the SADI registry.

The presented approaches are often hard to compare as they focus on a different
part of the workflow life-cycle [92], as well as different domains. Some systems [34,
87] provide assistance while choosing concrete workflow steps, other [46, 74] aid
in setting up the “abstract” workflows, before they can be implemented, while a
few [13, 138] automate the whole process omitting the workflow altogether. Sim-
ilarly, the theoretical approaches (e.g., [15, 23, 61]), presented in Chapter 3, aim
to solve complex and universal synthesis problems, assuming that the required im-
plementations and/or domain annotations are available. While, the more practical
solutions (e.g., [39, 116, 150]) often tailor the implementation for a specific domain
and available resources. Therefore, the comparison of such formalisms is challeng-

Section 5.5 — Related Work | 75

ing, if not impossible.

Interestingly, to the best of our knowledge, the existing approaches do not cover
automated workflow benchmarking yet, which is however essential for bringing au-
tomatically created workflows to the production stage.

CHAPTER 6

Case Studies

Abstract - To assess the benefits of the proposed workflow synthe-
sis approach, we evaluate it in the current setting of computational
semantic domain annotations. We focus on life- and geo-science
domains as they show notable progress in semantic annotations of
the respective domain terminology, data types and operations (e.g.,
EDAM and bio.tools, and CCD ontology, respectively). This chapter
presents case studies we conducted in collaboration with scientists
from life- and geo-sciences.

The chapter presents four different case studies. While they all
demonstrate use cases for the presented synthesis approach, each of
them aims to assess a specific set of features of the APE v2 framework,
and the underlying SLTL”-based synthesis approach. (1) A geovisual-
isation case study, presents an illustrative use case that demonstrates
distinguishing data objects as a key feature of the workflow synthe-
sis approach. The study demonstrates a domain set-up process, as
it provides a new semantic domain model for a set of geovisuali-
sation tools, due to the lack of existing formal annotations. (2) A
Geo-Analytical Concept Question Answering case study, focuses on a
domain model that comprises multiple semantic data dimensions, as
well as utilises the data-tool dependency constraints to reduce the re-
dundancies within the synthesised workflows. We present a domain
model and problem specifications in collaboration with domain ex-
perts, and evaluate the quality of the solutions provided by the APE
framework. (3) The proteomics case study presents the performance
and synthesis quality of our synthesis framework as an “off-the-shelf”
tool when applied to existing large domain models in the proteomics
domain. This is possible due to the availability of the community-
curated semantic domain annotations, provided by the EDAM ontol-
ogy and the bio.tools registry. (4) The Geo-Event Question Answer-
ing preliminary case study demonstrates the potential usage of APE
within a larger geo-event question answering framework. In addi-
tion, it proposes two post-processing techniques for improving the
generated results.

The chapter concludes with a discussion of the assessed synthesis fea-
tures and their benefits.

|79

This chapter is partially based on the following publications:

Kasalica, V., Schwammle, V., Palmblad, M., Ison, J. & Lamprecht, A.-L., “APE in the Wild:
Automated Exploration of Proteomics Workflows in the bio.tools Registry”, Journal of
Proteome Research, vol. 20, no. 4, 2021, PMID: 33720735, pp. 2157-2165, pDoI: 10.1021/
acs. jproteome.0c00983, eprint: https://doi.org/10.1021/acs. jproteome . 0c00983,
URL: https://doi.org/10.1021/acs. jproteome.0c00983.

Kasalica, V. & Lamprecht, A.-L., “Workflow Discovery Through Semantic Constraints: A
Geovisualization Case Study”, in: Computational Science and Its Applications — ICCSA 2019,
Cham: Springer International Publishing, 2019, pp. 473-488, 1SBN: 978-3-030-24302-9.

Scheider, S., Meerlo, R., Kasalica, V. & Lamprecht, A.-L., “Ontology of Core Concept
Data Types for Answering Geo-Analytical Questions”, Journal of Spatial Information Sci-
ence, vol. 2020, no. 20, 2020, pp. 167-201, por: 10.5311/J0SIS. 2020 .20 . 555, URL:
https://digitalcommons . library . umaine . edu/ josis/v012020/iss20/2 (visited on
02/04/2022).

Kruiger, J. F., Kasalica, V., Meerlo, R., Lamprecht, A.-L., Nyamsuren, E. & Scheider, S.,
“Loose programming of GIS workflows with geo-analytical concepts”, Transactions in GIS,
vol. 25, no. 1, 2021, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12692,
pp. 424-449, DOI: 10.1111/tgis.12692, URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/tgis. 12692 (visited on 09/02/2021).

Kazemi Beydokhti, M., Duckham, M., Griffin, A. & Kasalica, V., “Geo-Event Question
Answering Systems: A Preliminary Research Study”, Sept. 2021, DOI: 10 .25436/E2KW2T,
URL: https://escholarship.org/uc/item/9cs309kd (visited on 11/01/2021).

https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.5311/JOSIS.2020.20.555
https://digitalcommons.library.umaine.edu/josis/vol2020/iss20/2
https://doi.org/10.1111/tgis.12692
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12692
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12692
https://doi.org/10.25436/E2KW2T
https://escholarship.org/uc/item/9cs309kd

80| Chapter 6 — Case Studies

This chapter aims to demonstrate the benefits of using APE v2 [74] and its SLTL”-
based workflow synthesis [72] in practice. We present case studies from geo-
and life-sciences that use APE v2 to automatically compose workflows and answer
domain-specific questions. Each of the case studies aims to evaluate a specific fea-
ture of the APE v2 framework (see Table 6.1). The case studies are summarised as
follows.

Geovisualisation The initial illustrative case study [73] aims to demonstrate the
ability of the SLTL*-based formalism to distinguish data objects, and define object
specific constraints. The study introduces a new purpose-made domain model. It
demonstrates setting-up domain taxonomies, tool annotations (including executable
shell commands) and specifying domain-specific constraints. The expected work-
flow comprises numerous data files of the same data type, and as such provides an
ideal setting to assess the benefits of the data object distinction. Furthermore, the
case study illustrates the iterative workflow synthesis approach, where the user tries
to narrow down the desired specification of the problem in a few iterative steps.
Instead of providing all the constraints at once, the user initially provides a simple
specification, that gets extended after each synthesis run, until the desired results
have been reached. This allows us to automatically compose fairly complex solu-
tions. See Section 6.1 for more information.

Geo-Analytical Concepts The case studies we did with collaborators from geo-
sciences [84, 120] aim to assess the benefits of multiple semantic data dimensions.
They focus on the automated composition of workflows over a new Core Concept
Data types (CCD) ontology of geo-analytical concepts [120]. Due to a large number
of similar semantic tool annotations and potential redundancies in the suggested
solutions, the case study provides an optimal setting for assessing the benefits of the
data-tool dependency constraints. Finally, the study demonstrates benefits of a well-
annotated domain vocabulary, compared to a benchmark classification generated
from common data types. See Section 6.2 for more information.

Life Sciences - Proteomics Data Analysis The case study in the proteomics® do-
main [76] assesses the quality the workflow synthesis approach as an “off-the-shelf”
synthesiser, i.e., in an existing semantically annotated and curated domain (EDAM
[67] ontology and bio.tools [66] registry of tools). It displays the quality of solutions
generated by the synthesis approach in the domain, without any modification of /
improvements to the semantic domain annotations. The results of the case study in-
dicate that the importance of the automated workflow composition will grow further
as scientific domains adopt or improve their semantic annotations. See Section 6.3
for more information.

Geo-Events The preliminary study concerning geo-events [79] aims to show the
potential of the workflow synthesis using the APE within a question answering frame-
work. The study goes a step further and proposes two post-processing steps. Their
aim is to improve the quality of the question answers, by grouping together the can-
didate solutions according to the corresponding specific criteria. See Section 6.4 for
more information.

IProteomics is a branch of life sciences that focuses on protein research.

| 81

BI[RISNY ‘QWINOG[RA AIISISATUN LIATY ©9UsDS [enedsoan Jo jusuntedad,

2ouRI XNAMWRID) ‘SYND ‘nbneurrojurorg ap sredue] IINSul,

SPUBLIDUISN ‘USPIST T21USY) [BIIPIN AISISAIUN USPIST ‘SIOTUIO[OQRIS]A PUR SIIUI03]01J 0] I9IUdD),
STewrua(] YIRWUI(WIYINOS Jo As1oatun X30[01g Te[NIION Pue AnsIuLiporg jo Jusunredaq,
spue[IayIaN 4KsIaarun) 1Yo ‘duruueld reneds pue Aydei8osn uewny jo jusunredad,

'S9IpNIS 9se) 9l JO MIIAIDAQ :T1°9 9[de],

YIomawesj 1931e] 430010 . m.< WHO
® UM TV - and pauLfap Jasn LN “urepng VO 1u2A7-09H
S papuaixq L, TN empiopAag ruazed]
Surewop 91y [ea1 231e| [“U0S]
Ian0 Airenb sisayjuAs - A3o103uQ Ansi3ax € m wre sisA[euy eleq
ISSISOUIUAS J[9Ys-9Y3-Jjo,, Wvaid s[oo1°01q o Mﬁ%&ﬁi ﬁum SOII09101d
ue se aduew1oy1ad - g A PIHWHEMDS
[9pow urewop
pa3lelouUE [[oM N —
D
B UIYIIM SISSUIUAS - A3o103UuQ powfp sosn r To8my vO
suorsuswIp Srdnnu and “g uo@& g [edn4Teuy-09H
Jjo urjopout - v P
sapuspuadop [003-BIEp -
SISOUIUAS
MOTP[IOM DATIRIDN -
ssooo1d
dn-jos urEwO - paulfop Jasn pauyap Jasn - UOTJeSI[BNSIA0YD
s109[qo eiep
Surysm3unsip -
saInjes suongjoute suonejouue
1e9) Adv Aurouoxe) e SI10)eI0qR[[0D Apnis asen
Passassy ST [001 dnUBUIDS

82| Chapter 6 — Case Studies

The chapter concludes with a discussion of the synthesis results evaluated in the
presented case studies.

6.1 Geovisualisation

This section presents the case study from the field of geovisualisation, that was used
as an illustrative example in Chapters 1 and 3. The study focuses on the automated
creation of a topographic map of the Netherlands that depicts waterbird movements
[73]. It presents the benefits of the SLTL”-based workflow synthesis in a domain
that comprises suitable technical vocabularies and tool annotations.

The specification refinement in this section goes a step further than our previous
work [73]. Since the initial case study, the APE framework has significantly changed.
Most notably, the underlying logic (SLTL*) now supports the data object-specific
constraints. This allows us to generate the workflows without splitting them into
smaller fragments?. This eliminates the manual post-processing steps included in
the original study.

The case study is structured as follows. Section 6.1.1 describes the application ex-
ample, i.e., the creation of a map that presents animal tracking data and topograph-
ical features of the area, which we address in this study. Section 6.1.2 describes
the domain model that we set up for the use case. Section 6.1.3 demonstrates the
incremental synthesis process. Finally, Section 6.1.4 summarises the case study.

All data used to run the case study and generate the results is available at https:
//github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT.

6.1.1 Problem Description

Cartographic workflows are implemented by sequences of tools that perform the
individual elementary operations of the map creation process. There are many dif-
ferent Geographic Information System (GIS) tools available that can be used for
map creation, such as the tools provided within ArcGIS [70], the Geospatial Data
Abstraction Library (GDAL) [45], the CSISS Geospatial Web Services® or the already
mentioned Generic Mapping Tools (GMT). For the purpose of this case study, we
focus on the GMT, but the same approach can in principle be applied to any other
of the aforementioned tools. The main reasons for choosing the GMT for this case
study are threefold. (1) It is a fairly generic tool-set, as it supports various data
input formats. (2) The concise and well-structured documentation of the tools, pro-
vides a rich source of information as a basis for semantic domain modelling. (3)
The modularity of the GMT makes it highly suitable for workflow composition, as
the individually accessible elementary operations allow firm control over the entire
plotting process.

Our workflow use case is about discovering a computational pipeline that creates
a topographic map depicting waterbird movement patterns in the Netherlands (Fig-

2In the original study, due to the expressive power of the SLTL formalism, each incremental (exten-
sion) step was synthesised as a separate workflow, and the workflows were post-processed and manually
merged together.

Shttp://geobrain.csiss.gmu.edu/grassweb/manuals/index.html

https://github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT
https://github.com/sanctuuary/APE_UseCases/tree/master/GeoGMT
http://geobrain.csiss.gmu.edu/grassweb/manuals/index.html

Section 6.1 — Geovisualisation | 83

ure 6.1). Wildlife tracking is an important process for biologists and environmental
scientists to improve their understanding of animal behaviour. Movement behaviour
gives insight into the ecology of animals, their interaction with other organisms, and
their effect on the ecosystem dynamics [36]. It can help to predict how environmen-
tal changes can affect their role in the ecosystem. The use case combines tools from
the GMT collection with data from the Movebank [83] online database of animal
tracking data. It is used to help animal tracking researchers to manage, share, pro-
tect, analyse, and archive their data. The database supports multiple sources of data,
including the integration with the Argos system (http://www.argos-system.org),
which is a leading source of wildlife tracking data worldwide [146]. This type of
source provides diverse, robust and high-quality data, which is however often dif-
ficult to exploit and plot on a map, especially for ornithologists and other field re-
searchers who are not very familiar with GIS tools [29, 37]. The data we focus on in
our example was used to find correspondences between movement patterns of a key-
stone waterbird species and the landscape configuration [80]. The data represents
mallard movement patterns in the Netherlands [80].

6.1.2 Semantic Domain Modelling

In this section, we describe the domain model that we set up for the use case sce-
nario. It comprises a tool and a type taxonomy for defining a controlled vocabulary
for the operations and data types in the domain. In addition, it incorporates tool def-
initions using the terms provided by the taxonomies and a set of so-called domain
constraints that express additional relevant knowledge. Overall, the GMT comprises
over 100 different tools that can be parameterised on an elementary level, resulting
in even more possible operations that would have to be defined as tools. For sim-
plicity and conciseness, we have hence limited the domain model to the GMT tools
that are relevant to the example scenario.

Figures 6.2 and 6.3 show the type and the tool taxonomy, respectively. The classi-
fication of tools and types in these taxonomies is essential for the effective usage of
the synthesis algorithm, as mentionedin Chapter 5. To the best of our knowledge,
there is no similarly structured classification model available for GMT, so we defined
new taxonomies for this purpose. The data types used by the GMT tools are well
documented [142] and at the same time not overly complex. Therefore, the type
taxonomy follows straightforwardly from the documentation and covers all of the
data types mentioned in the documentation. The documentation covers one dimen-
sion of data, which is sufficient to model the domain. Additional dimensions might
be needed in case the domain is to be extended to a more general geovisualisation
context. The tool taxonomy, on the other hand, focuses on classifying just a part
of the GMT in a detailed manner. The idea was to classify the tools occurring in
our scenario in a way that would allow a workflow developer a simplified workflow
specification, using the newly introduced abstract classes.

For example, the tool pscoast_s in the lower right corner of the tool taxonomy (Fig-
ure 6.2) is an implementation of the GMT command used to automatically colour
water surfaces on the map. The tool taxonomy allows us to abstract from the con-
crete tool and refers to it simply as a Draw water mass tool. Another abstract class
groups the tools that are used to Draw water. As we go up the taxonomy tree we

http://www.argos-system.org

84 | Chapter 6 — Case Studies

#1/bin/bash
unset noclobber

4 out_ps=$0'.ps'
5 input = 'movemen

7 #initGMT
§ gt pscoast -R2.81/50.52/7.84/53.75r -JM6i -P -WOp,white -K >
#add bourders

gnt pscoast - -R -J -W0.3p,black -Ba2f0.5gl -BWSne -0 -K >> §
read -p "Er ath e XvZ table file: " $in grd

read -p "Er £ e color file: " $cpt

3 #plot graph -underwater

4 gnt grdimage d -Cept -IETOPOL_Ice_g_gmtd.gradients -R -J
5 #add coast gradient

gnt pscoast -R -J -0 -K -Dh -Gc >> §out ps

7 #plot graph -coast

18 gmt grdimage $in_grd —R -J -O -K -IETOPO1 Ice_g_gmtd.gradients -
19 #plot color range

gnt psscale -D16.055c/12.3¢/8.5¢/.6c -K -O -CScpt -Baf+l"

gnt psscale -D18c/4.785¢/8.5¢/.6¢ -K -0 -C§cpt -A -Baf+l"s
#plot title

3 gmt pscoast -R2.81/50.52/7.54/53.75r -JM6i -BWSne+t"Netherlar

24 #draw borders

25 gmt pscoast -R -J -Nlp/thick,darkred -K -Df -0 >> §out_ps

Plot lines

gnt psxy -R -J -0 -K -V -Wthinnest §input >> §out ps

Plot points

gnt psxy -R -J -0 -5c0.05 -Gred -Wthinnest §input >> §out ps
#show map

gs -SDEVICE=x11 $out ps

Bathymetry

31

EO’

Draw Draw Draw boundary
EN water frame

Draw time-
stamp logo

Workflow
inputs
E3
Module with Module with
surface % color output % grid output
Module with Gradient 2D Draw
gradient color output % generation % surface % color range
E1
e ke poin
bourders lines points points
-Ps | & & & & &
Workflow
output

Figure 6.1: Incremental development of the workflow (extension steps E0-E4), the corre-
sponding generated GMT script, and the map created by its execution.

can see that our initial tool belongs to the class of tools used to create Basemaps,
eventually characterising all the tools used for Plot creation. Finally, every instance
of the tool taxonomy is, naturally, considered to be a Tool. Every tool and data type
in the taxonomies is classified in a similar manner.

Table 6.2 lists the tools defined for the domain model, each with its name, func-
tion description and its (possibly empty) sets of input and output types. The idea
is to use the tools as elemental components of our workflows, that can be easily
annotated and classified. In some cases, several tools refer to the same underlying
GMT operation (polymorphism). For example pscoast B, pscoast Bt, pscoast_ U and
pscoast_Td all call the pscoast operation, but with different parameters, causing it to
perform different functions.

In addition to the taxonomies and tool annotations, the domain model can com-
prise a set of SLTL* formulas to express general knowledge that the synthesis algo-
rithm also takes into account. These domain constraints are typically used to avoid
obtaining workflows that are ambiguous, redundant, or not relevant to the domain.

Section 6.1 — Geovisualisation |85

Name Description Data type in Data type out
add_cpt Provide a colour palette (.cpt) file cpt_file
add_XYZ_ table | Provide an xyz table file XYZ _table file
add_grd Provide a grid file NetCDF
grdgradient Compute directional gradient NetCDF Intensfile
makecpt Make colour palette tables cpt_file cpt_file
xyz2grd Convert an xyz table file to a 2-D grid file XYZ_table_file NetCDF
psconvert Crop and convert PostScript files to PDF PostScript PDF
psconvert Crop and convert PostScript files to PNG PostScript PNG
psconvert Crop and convert PostScript files to JPEG PostScript JPEG
grdcontour Contouring of 2-D gridded data sets NetCDF PostScript
grdview 3-D perspective imaging of 2-D gridded data | NetCDF, cpt_file | PostScript
grdview 3-D perspective imaging of 2-D gridded data ?rllifei]s)flisl’ecp t_file, PostScript
grdimage Produce colour images from 2-D gridded data | NetCDF, cpt_file | PostScript
grdimage Produce colour images from 2-D gridded data i\rll‘izi?flfl,ecpt_ﬁle, PostScript
psxy_L Plot lines XYZ_table_file PostScript
psxy_P Plot location points XYZ_table_file PostScript
pstext Plot text strings on maps XYZ table file PostScript
psscale Plot grayscale or colour scale on maps cpt_file PostScript
pscoast_B Drawing the map boundaries and grid PostScript
psbasemap B Drawing the map boundaries and grid PostScript
pscoast_Bt Write the title of the map PostScript
psbasemap Bt | Write the title of the map PostScript
pscoast_U Draw the GMT logo and the time stamp PostScript
psbasemap U | Draw the GMT logo and the time stamp PostScript
pscoast_Td Draw the windrose PostScript
psbasemap _Td | Draw the windrose PostScript
pscoast_G colouring land surfaces PostScript
pscoast_S colouring water mass PostScript
pscoast_I Draw rivers PostScript
pscoast N Draw political borders PostScript
pscoast W Draw water borders PostScript

colouring countries for which the country .
pscoast_F . PostScript

codes were provided
initGMT Setup the GMT map environment
gs Tool used to display PostScript files PostScript

Table 6.2: Tool annotations introduced for the Geovisualisation case study.

ID Constraints in natural-language Constraints in SLTL”
At least one of the outputs per tool should 0.1 1.0
G1 be used subsequently (as tool inputs) G (3 (<Tool™(x)> F<Tool " (x)> true))
G2 If Data processing is used, tool G(~<Data processing”’()> true |
Data generation cannot be used subsequently | X G —<Data generation’°()> true
Gl4 If Data presentation is used, tool G(-~<Data presentation®’() > true |
Plot creation cannot be used subsequently X G —=<Plot creation®’() > true
G15 | Do not use tool 3D surfaces G - <3D surfaces”’() > true
G16 | Use the data type Plots F 3 x (Plots(x))
G17 | Use tool Map environment set-up F <Map environment set-up®?()> true

Table 6.3: Domain constraints for the Geovisualisation case study, where “Tool” is the most
abstract concept in the Tool Taxonomy.

86| Chapter 6 — Case Studies

Convert to Convert to

image files pdf files

Convertion of
PostScript files,

add_XYZ_table

Adding
table

lodules with
color palette
output

Modules with
xyz file output

Display
PostScript files,

Kdding colo
palette

Data
presentation

psscale

Modules with -
grid file output Modules having

certain output
Data

processing

| pstext
Adding data
Adding
grid file

Y

psxy

Environment

setup

Data Modules having
generation certain input

Modules with
grid file input
Modules witl
color palette
input

sph2grd | [xyz2grd | [makecpt | [grdgradient| | grdview |

psbasemap_B

pscoast_Bt |

psbasemap_Bt

Draw

pscoast_Bt
windrose

Modules with

xyz file input psbasemap_Bt

pscoas&_U

psbasemap_U

Draw water
mass
Draw watel

borders

Gradient
generation

Draw time
tamp logo

Convertion to
grid files

Color palette
generation

Draw political

borders
Draw countries
colors

J
[pscoast_F] [

[grdimage | | grdcontour |

Draw rivers

pscoast_N

pscoast_|

Figure 6.2: Tool Taxonomy in the Geovisualisation domain.

SLTL” allows us to use concrete as well as abstract tools from the tool taxonomy to
constrain the allowed transitions. For example, < t0ol’°() > ¢ requires ¢ to hold
in a state reachable by the tool tool.. Similarly, concrete, as well as abstract types
from the type taxonomy, can be used to describe the data types used by the tools. A
detailed description of the formalism is presented in Chapter 3.

For the formulation of the constraints, knowledge of the SLTL* syntax is not re-
quired. The APE framework provides natural-language templates for the most com-
monly used SLTL” constraints. Table 6.3 (G1-G17) lists the original SLTL” and the
natural-language representations of the domain constraints defined in this study.
The constraints define the basic restrictions in map generation, and thus, simplify
the specification for the user. For example, constraint G1 guarantees that creating a
certain file within a workflow requires a subsequent usage of that particular file. In
other words, it makes sure that the synthesis does not construct a program that loads
or generates files that are not being used in the process. Similarly, using constraints
G2 - G14 we ensure a correct ordering of the tools, to avoid overriding important
annotation data and to prevent unnecessary permutations in the solutions. Further-
more, we target 2D and not 3D map representations and use the constraint G15 to
exclude the tools used for 3D plotting, which are represented by an abstract class
3D _surfaces in the tool taxonomy. Finally, we want to use GMT tools and have a map
as a product of each of our programs. This requirement can be fulfilled by using an
abstract class from the type taxonomy, more specifically, by enforcing the usage of a

Section 6.1 — Geovisualisation | 87

[xvz_tabie e | ([xY_table_ie | NelCDF tables

Blnary [color palette ‘
| table
(Data tables)

ya \
[Plots)

Sun raster
files
Grid-line

registration
Pixel A .

[opiton | Gria e

-/\ format

ative binal
formats

Printable
formats

iscellaneous’
grid formats

ID Constraints
EO.1 Use tool Draw_water
'~ | F <Draw_water®?()> true
£0.2 Use tool Draw_land
“ | F <Draw_land°()> true
£0.3 Use tool Draw_political_bourders
*” | F <Draw_political bourders®’()> true
Table 6.4: Initial workflow constraints. Figure 6.4: Initial workflow output.

data type Plots and the tool setup initGMT, as displayed in G16 and G17. These 17
general constraints are used in all synthesis runs.

6.1.3 Synthesis Results

In this section, we focus on the workflow specification and synthesis phase and show
how our framework can be applied to discover and compose a complex workflow
without having to identify and connect the individual tools manually. The following
sections discuss incremental synthesis steps that lead to the intended geovisualisa-
tion workflow.

Initial Workflow

Synthesis in our framework starts with two sets of data types (possibly empty), that
correspond to the input and output of the workflow. In addition, SLTL” constraints
can be added to express further intents of the user. In our scenario, the initial data
types are the two table formats # provided by the use case (coordinates of bird mi-
gration and of larger cities in the area), while the output data type corresponds to
the common map representation format - PostScript. This would already provide

4The tables are provided in the XYZ table format. However, depending on the data source, table
formats may differ. They can be provided in the CSV format, as illustrated in Chapter 3.

88| Chapter 6 — Case Studies

enough specification to get a transition from our initial data into a PostScript file.
However, we would like to add some context to the plotted locations, such as dis-
tinguishing land from the water surface. Thus, we add constraints to express the
first, trivial requirements that need to be fulfilled (Table 6.4). Constraint E0.1 en-
sures that a tool for drawing the sea is used. Draw_water contains three subclasses
(Figure 6.2), where each of them contains a different tool that can be used to sat-
isfy the constraint. Moreover, constraints E0.2 and E0.3 follow the same logic for
the drawing of the land and the political borders, respectively. These constraints
are combined with the general constraints (G1-G19) to form the initial workflow
specification.

With this specification as input, we start the actual workflow synthesis. Note that
APE performs the search for possible workflows until the first depths where solutions
are found. For the initial loose specification, our synthesis tool finds 56 solutions of
length 6. That is, even though only four constraints (G19 and EO.1 - E0.3) were used
that enforce the use of certain tools, each solution contained at least two additional
steps. The reason for this lies in the general constraint in the domain model. The
existence of the input data types XYZ table requires subsequent usage of a tools that
would implement the XYZ table (G1 in Table 6.3). Thus, the domain model ensures
the usage of a tool that is required, but not explicitly requested by the user.

Although the number of suggested solutions is relatively large, after further inves-
tigation we notice that most of the workflows provide the same certain permutations
in the operational execution of the same solution. The main points of distinction are
the operations used to plot the provided two files, sometimes the coordinates would
be plotted as lines and sometimes as points on the map. From the possible suggested
workflows, we picked a workflow that used points to plot cities, shown in Figure 6.1
under labels EO and EQ’. The workflow uses suitable tools for colouring the land
and the sea, draws the political borders and uses point locations to depict the ani-
mal movement patterns and city locations. The framework provides the workflow
and its implementation as a shell script, which upon execution produces the map
presented in Figure 6.4.

The presented map is not yet the intended result. To add more information to the
map, more steps need to be included in the workflow. One possibility is to consider
synthesis solutions of lengths greater than 6. For example, we might want to use
both points and lines to depict mallard movement patterns. A workflow for that
case would be found at depth 7, additionally including the tool psxy L. If we expand
our search correspondingly, we find that there are 2300 possible workflows of this
length, and their evaluation is required to find the suitable one. The evaluation
of this amount of workflows is usually not feasible. An alternative approach is to
reduce the size of the search space and thus the number of possible solutions found.
This is accomplished by adding further constraints, describing the actually desired
workflow as precisely as possible, and restarting the exploration process.

Extension 1: Annotations

As mentioned, the first map clearly lacks some information, such as annotations
(frame, grid, title etc.). To properly annotate the map, we have to define corre-
sponding tool enforcement constraints. For example, we would like to have both

Section 6.1 — Geovisualisation | 89

ID Constraints \
E1.1 Use Draw_lines with birds data as input. | Netherlands
F 3x (birds(x) & <Draw_lines!:?(x) > true)
E1.2 Use Draw_points with birds data as input.
*“ | F 3x (birds(x) & <Draw_points'°(x) > true)
EL3 Use Draw_points with cities data as input.
| F 3x (cities(x) & <Draw_points™?(x)> true)
El4 Use tool Draw_boundary_frame
*" | F <Draw_boundary_frame’°()> true
EL5 Use tool Write_title
| F <Write_title”?()> true
EL6 Use tool Draw_time_stamp_logo
" | F <Draw_time_stamp_logo®°() > true o :
Table 6.5: Extension 1 constraints. Figure 6.5: Extension 1 map.

annotations of the mallard locations as well as annotations of the path taken, to
properly understand the movement patterns from the map (E1.1 and E1.2 in Ta-
ble 6.5). In addition, we would like to make sure that the cities are plotted as points
on the map (E1.3). We would like the map to include, the coordinates and border
frame of the map (E1.4), the name of the area of interest (E1.5), the time it was
created, as well as the name of the toolset used in the process (E1.6). Our goal
is to enrich the annotation of the previously generated map, hence, extending the
generated workflow with corresponding annotation tools.

Our new workflow specification consists of the constraints used before and the
new set of constraints. For this specification, the synthesis returns 6,912 (shortest)
solutions of length 10. Although the number of candidate solutions is too big to
evaluate, they were mostly different permutations of the tools, or they incorporated
different versions of the same tools (e.g. some tools have pscoast and psbasemap
versions of it)>. Evaluation of the first 5 candidate solutions has shown that the
optimal solution in this scenario corresponds to the workflow presented in Figure 6.1
under labels EO, EQ’ and E1, where the label E1 corresponds to the newly introduced
annotation tools. The execution of the workflow produces a properly annotated
version of the map (Figure 6.5).

Extension 2: Providing the elevation dataset

Even though the annotated map is self-explanatory and can be presented as such,
there is still room for improvement. The figure lacks information on the character-
istics of the area, as the land and the sea are depicted with simple plain colours.
The study [80], which motivated us to choose the corresponding waterbird tracking
data in our scenario, focuses on predicting animal movement based on the landscape
configuration. Therefore, it is natural to assume that the map should depict some of
the topographic and bathymetric features of the Netherlands and its surroundings.
One of the ways to solve this problem is to introduce a file that contains elevation
data of the region. The data would be used to plot the relief of the land and the sea.

5The following extension steps result in a similar number of shortest candidate solutions. Considering
that they mostly introduce permutations of the same few solutions, we omit the concrete numbers.

90| Chapter 6 — Case Studies

ID Constraints
Use tool Add_table

2l F <Add_table’’() > true
Tool Color_palette_generation should
E3.1 generate output used by 2D_surfaces

F (3 x (<Adding_color_palette®!(x)>
F<2D_surfaces!’(x)> true))

Table 6.6: Extension 2 and 3 constraints.

Netherlands Netherlands

—— _\?_‘ R
7*.] == ;
CEAA
e
Figure 6.6: Extension 2 Figure 6.7: Extension 3
map. map.

Our initial workflow uses two plotting tools that are not required in this scenario,
pscoast_S and pscoast_G (EQ’ labelled elements in Figure 6.1), as the plain colouring
is be overwritten by the elevation data. Therefore, we extend the workflow obtained
in the previous extension step without the two mentioned tools. The two tools can
be excluded by omitting the two corresponding constraints from the specification,
namely constraints EO.1 and EO0.2.

To accurately extend the workflow, we require the usage of the elevation data
table. This is accomplished by enforcing the usage of the appropriate abstraction
class from our taxonomy (E2.1 in Table 6.6). The synthesis finds the first valid
workflows at depth 10. The candidate solutions introduce the tool add_XYZ table
and a tool for plotting lines and points, while they exclude the operations for plotting
sea and land as single colours. Based on the generated output the workflows that
plot the file as lines or points did not differ, and thus, we have chosen an arbitrary
candidate. The new graph corresponds to the tools labelled with EO, E1, E2 and E2’
in Figure 6.1. The output of our workflow is presented in Figure 6.6.

Extension 3: Plotting the elevation dataset

We can observe that the current workflow does not properly utilise the provided
elevation data (Figure 6.6). The reason for this is the plotting tool (psxy_P) used in
the process. The idea of the specified workflow extension was to introduce detailed
elevation data and to use a tool that can depict that elevation on the map (i.e. using
a rich colouring scale). However, the extended workflow only distinguishes between
positive and negative elevations, plotting them as black and blue tiles, respectively.
To solve this issue and draw an appropriate relief map, the part of the workflow

Section 6.1 — Geovisualisation | 91

ID Constraints Netherlands
Tool Color_palette_generation should
E4.1 generate output used by 2D_surfaces
*~ | F (3 x (<Color_palette_generation”! (x)> .
F<2D_surfaces’(x)> true))
E4.2 Use tool Gradient_generation
*“ | F <Gradient_generation”°() > true
E4.3 Use tool Draw_color_range
= | F <Draw_color_range”’()> true _
Table 6.7: Final workflow constraints. Figure 6.8: Final map.

using the mentioned tool needs to be redefined. We expect the usage of a tool, tai-
lored for plotting surfaces based on elevation data, and thus, our synthesis requires
a constraint enforcing it (E3.1 in Table 6.6).

The synthesis over the two constraints (E2.1 and E3.1) combined with the existing
set of constraints results in solutions of length 12. Note that similarly to the initial
step, the synthesis in Extension steps 2 and 3 extended our workflow with two
new elements each time, even though we have introduced only one constraint per
extension. This time, however, the reason for it was the tool annotation part of the
domain model, more specifically the dependency between input and output types of
the workflow elements.

We chose to run one of the solutions which use the provided XYZ table to generate
the required grid file, rather than importing a new one. The generated workflow
comprises EO - E3 labelled tools in Figure 6.1). The generated map is presented in
Figure 6.7.

Final Extension: Topographical and bathymetrical features

The current map (Figure 6.7) has some inconsistencies with the actual coastline
of the Netherlands. We pinpointed Amsterdam’s airport (Schiphol) on the map to
illustrate the issue. The problem is the elevation of the country, as about one third
of the Netherlands lies below sea level and our basic elevation colour palette depicts
all negative heights as blue. To solve this issue, we have to separate the plotting of
the topographical and bathymetrical features, which requires a further extension of
our workflow.

To ensure the desired behaviour we have to specify the appropriate constraints.
The plotting tool usage was covered by using the constraint used in the previous
step (E3.1 in Table 6.6). However, this constraint does not guarantee that the tool
would be used twice, nor the usage of a different colour palette, which is crucial
to distinguish sea and land elevations below 0. As we need a new colour palette,
we can be more specific than in the constraint E3.1, and say that the initial surface
should use the imported colour palette (E4.0 in Table 6.7), while the second layer of
surface should use a new palette (E4.1 in Table 6.7). Additionally, we would like to
emphasise the topographical features of the Netherlands, by shading the generated
map (E4.2). Finally, we enforce drawing the elevation legend - colour scale (E4.3).
We combine the four constraints with the constraints used in the previous steps
(omitting E3.1, as it is captured by E4.0) to generate the final solutions.

92| Chapter 6 — Case Studies

The first solutions are found at depth 17. Similar to the previous case, the work-
flows use the appropriate plotting tools, but the solutions differ when it comes to
the colour palette data. Some solutions require the file to be imported from the sys-
tem, while the other generates the colour palette from a part of the already provided
colour palette file. As the second option seems more intuitive and does not require
us to manually generate another colour palette file, we have selected it (E4 labelled
sub-workflow in Figure 6.1). The new extended workflow is presented in Figure 6.1
with labels EO, E1, E2, E3 and E4. As an illustration, the concrete workflow solution
provided in by APE v2 is presented in Figure 6.9. The result of the final extension
step is the map in Figure 6.8.

6.1.4 Summary

The case study demonstrates how workflow synthesis technology simplifies the dis-
covery and creation of geographic data manipulation processes once an adequate
domain model is available. It proposes an iterative workflow synthesis approach,
where the users can obtain desired workflow solutions as a result of small incre-
mental problem specifications. This approach allows users to synthesise large and
complex workflows in a few intuitive specification steps.

We designed an illustrative workflow scenario along with the corresponding
domain-specific vocabularies and formalised domain knowledge. To the best of our
knowledge, no such taxonomies or ontologies and tool annotations are yet available
in the geovisualisation domain, thus we contribute an elemental example for the
classification of tools and data types. Although it copes well with our use case, it is
still not the ideal solution, in particular with regard to scalability to larger applica-
tion scenarios. Ideally, such domain models would be standardised and defined by
the corresponding scientific communities and provided in a structural way, analo-
gously to the CCD ontology of geo-analytical concepts (presented in Section 6.2), or
the EDAM ontology and bio.tools registry in the bioinformatics domain (discussed
in Section 6.3).

6.2 Geo-Analytical Question Answering

This study uses a scenario with typical geo-analytical questions that can be han-
dled by a GIS, to evaluate the SLTL*-based workflow synthesis quality over a well-
annotated domain. In addition, it evaluates the benefits of modelling geo-analytical
concepts as combinations of multiple (four) data dimensions. Finally, this section
provides a specification example that utilises the data-tool dependencies, to improve
further the synthesised solutions.

The study revolves around livability in Amsterdam, and it uses openly available®
data from the city of Amsterdam and comparable sources. The general task is to
derive livability indicators for elderly people for each postcode area on level 4 (PC4)
in Amsterdam, using different urban environmental factors which make the area
livable for the elderly. Coping with the diversity of these factors makes the scenario

Shttps://data.amsterdam.nl

https://data.amsterdam.nl

Section 6.2 — Geo-Analytical Question Answering | 93

in1

I add XYZ table | I ‘makecpt Il grdgradient | | InitGMT |
out 1 ut 1 w1 1 out 1

o] G

in2 in1 in2 in3 in4

Workflow INPUT

1

cities, XYZ_table_file

Workflow OUTPUT

Figure 6.9: A workflow solution generated by APE v2 for the final (E4) specification

94| Chapter 6 — Case Studies

challenging. For this study, we formulated five questions as detailed below”.

The case study introduces two semantic domain models. The first model com-
prises semantic tool annotations based on the proposed Core Concept Data types
(CCD) ontology [120]. CCD defines data types as intersections of OWL classes rep-
resenting combinations of geo-analytical concepts from the following four disjoint
semantic data dimensions: (1) geometric layer types, which generalize geometric
properties of layers, (2) core concepts of spatial information [85], which capture
what these layers represent. (3) measurement levels of attributes, as well as the no-
tion of (4) extensiveness. The second model is used as a benchmark and comprises
semantic tool annotations based on an existing benchmark ontology of terms (BDT).
The case study uses five geo-analytical questions to assess the relation between the
quality of workflow synthesis results and the utilised domain model.

All data used to run the case study and generate the results is available at https:
//github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73
df8759088ac06ffb6ae033. Furthermore, the scripts used to process the semantic
domain annotations are available at https://github.com/simonscheider/Seman
ticPipelines/tree/cf3cbaf3a0114cf502fceeel1e0578127e2e8cdf2.

6.2.1 Problem Description

This section introduces five geo-analytical models used for the evaluation. For each
of the questions, we give a short motivation and specify the geo-analytical tasks
that are used in the evaluation. Each task involves (1) extracting goal concepts,
i.e., workflow outputs, (2) choosing datasets for generating answers in terms of
start concepts, i.e., workflow inputs, and (3) identifying operation constraints, i.e.,
SLTL” constraints that enforce usage of specific tools of format “Use operation Op”
(“F < 0p"°() > true” in SLTL*), were used whenever the question included hints
to corresponding functions. Our specifications using the Core Concept Data types
(CCD) ontology are listed in Table 6.8. The BDT version of these specifications in
the same table corresponds to the benchmark ontology, a taxonomy of common GIS
types (elaborated in the following section).

1. What is the number of sports facilities in each PC4 area?
Motivation: Elderly people might prefer particular facilities, such as places for
playing Pétanque or Boule.
Given data (input): Sports facilities (Figure 6.10a) are interpreted as objects,
and represented by point vectors with a nominal attribute denoting the facility
type; PC4 areas® in Amsterdam form a Vector Lattice.
Goal specification (output): The goal is a Vector lattice on the PC 4 level with
extensive counts.

2. What is the proportion of elderly people living in each PC4 area in Ams-
terdam?
Motivation: Elderly people may prefer neighbourhoods where they can meet

7Note that practically assessing livability would require more indicators, such as walkability, crowding
and social security. For our purpose, the questions, however, cover a set of sufficiently different concepts.

8PC4 areas are administrative regions sharing the first * digits of their postal code. They are always
used as input data in the following and therefore are only mentioned once.

https://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df8759088ac06ffb6ae033
https://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df8759088ac06ffb6ae033
https://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df8759088ac06ffb6ae033
https://github.com/simonscheider/SemanticPipelines/tree/cf3c5af3a0114cf502fceee1e0578127e2e8cdf2
https://github.com/simonscheider/SemanticPipelines/tree/cf3c5af3a0114cf502fceee1e0578127e2e8cdf2

% fmmerdsn Sportvoorzieningen
x

Legenda

[Openbare sportplekken

Bron: Veldwerk
[Skate

O Tennis

[Basketbal

[Voetosl

Jeu de boules

O Beachvolley
[Tafeltennis
[] Overig

ceceesos oo

[Sportaccommodaties

Bron: Functiekaar:

= [Stadion - IJsbaan - Tribunegebouw bij sportbaan

[Fitness / Bootcamp

Section 6.2 — Geo-Analytical Question Answering

G;,ggleu &7

T

ouder- Buurten (2017)
[envekens,shem ot vt
[R
e

[aowonass

[aswnaos
[zomonass

W v

B oo

[—————

Inwoners die op 1 januari 65 jaar of

ouder zijn. Een percentage wordt

uitgedruktin gehele procenten van

hettotaal aantal inwoners in een

gebied.
Verberg legenda >

(b) CBS Buurt statistics, showing the percentage of persons over 65 in neighbour-

hoods. This answers Question 2.

TR
egend

B & 708 of meer
B @ és7008
[0 O soesas
E M 556048

O Wegverkeer en tram (Inight)

O Trein en metro (iden)

[iogens ——— F < Y

® Wegverkeer en tram (Iden)

O Train e metro (night)

O Industrie (etmaal)

> Read the explanation
> More Maps Amsterdam
> Nederlands

ogle

PN

S\ I

.
= g

, N
e Tk sy 0\
WEs: AN
7 Jlnme

Vam, .a‘ﬂ“f?

(c) Noise map of the Amsterdam Municipality, with intervals given in dB. This can
help answering Question 4.

195

Figure 6.10: Map data sources to assess liveability, taken from https://maps.amsterdam.n

1/open_geodata.

https://maps.amsterdam.nl/open_geodata
https://maps.amsterdam.nl/open_geodata

96 |

Chapter 6 — Case Studies

peers, or may conversely be happy to live in an area with many young people.
Given data (input): The CBS Buurt statistics (Figure 6.10b) contains percent-
ages of elderly in the population of a neighbourhood. It is interpreted as a
Vector Lattice with a ratio-scaled (intensive) attribute.

Goal specification (output): The goal is a ratio-scaled intensive attribute of a
Vector Lattice on the PC 4 level.

. What is the accessibility of parks for each PC4 area in Amsterdam?

Motivation: Elderly people might prefer living in neighbourhoods where parks
are within reach so they can easily take a walk.

Given data (input): The CBS land use dataset (BBG)? can be used to select ar-
eas with parks. It is interpreted as a Coverage with nominal attribute denoting
the land use type ("Park en Plantsoen”).

Goal specification (output): The goal is a ratio-scaled attribute of a Vector Lat-
tice on the PC 4 level.

Operation constraints: The term “accessibility” in the question implies an an-
swer which makes use of some distance measurement.

What is the amount of noise pollution in each PC4 area in Amsterdam?
Motivation: Elderly people might prefer living in neighbourhoods where there
is a low amount of noise.

Given data (input): The map of traffic noise levels (Figure 6.10c¢) is interpreted
as a Contour map with an ordinal attribute denoting the noise interval in dB.
Goal specification (output): The goal is an ordinal scaled attribute of a Vector
Lattice on the PC 4 level.

Operation constraints: The term “amount” implies aggregating the noise field
over the PC4 area. Therefore, we added the constraint that some aggregation
method, like zonal aggregation, should be used.

. What is the average temperature within each PC4 area in Amsterdam?

Motivation: Elderly people are especially sensitive to urban heat islands, so
they might prefer neighbourhoods with low average/maximum temperature
in the summer.

Given data (input): A map of pointwise meteorological measurements'® with
an interval scaled attribute denoting temperature.

Goal specification (output): The goal is an interval scaled attribute of a Vector
Lattice on the PC 4 level.

Operation constraints: As above, the term “average” implies aggregating the
temperature field over the PC4 area. Therefore, we added the constraint that
some aggregation method, like zonal aggregation, should be used.

As one can see in these examples, to specify the problem we rely on the informa-
tion given in the questions as well as the information about available data sources
to the largest possible extent. This includes specific semantic interpretations of the
sources. Though such interpretations might be done differently in some cases [120],
we believe the chosen ones represent a defendable expert view of the analytic tasks.

https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/natuur-e
n-milieu/bestand-bodemgebruik

10For example, as provided e.g. by the KNMI at http://www.klimaatscenarios.nl/toekomstig_w
eer/transformatie/index.html.

https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/natuur-en-milieu/bestand-bodemgebruik
https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/natuur-en-milieu/bestand-bodemgebruik
http://www.klimaatscenarios.nl/toekomstig_weer/transformatie/index.html
http://www.klimaatscenarios.nl/toekomstig_weer/transformatie/index.html

|97

Section 6.2 — Geo-Analytical Question Answering

A8o[03U0 (1) MTEWYDUSq 3y pue DD Y} Ul suonesymads jurensuod pue (seod) sindino ‘sindur a3 pue suonsanb oy, :8°9 9[qeL

SOTISIIBIS[BUOZ VUOIS9Y 101097
uonp.tado as/) VUOIBYIOIOI viulod Lad
SOTIS[IBIS[RUOZ VI0J09ALRIIIIR] ¢B9IE ¥Od
voriodo 2 9011 TUVI0109/ LIV[BAISIU] o INSESIN UL BATSI ann oea urynm a1njeradursl
H N NpEodUVT Wl o3eI9AR 91 SBM JBRUM
SOTISIIBIS[BUOZ VUOIS9Y 103109/
uonv.ado as) VUOIBR10309A VUOISIY 1031997 Lad
(WEPIdISWY Ul BaIG $Dd
mwwuow_wwwﬁﬂwwm 9011BTUVI0109A LIVTRUIPIO <H8uw>w_ﬂwwﬂwq ann yoea ur uonnyod asiou
H 1 100 JO Junowe 3y} st IBYM
douesIsig VUOISIY 101097
uonv.ado asn VUOIBRI0IN VUOI33Y 103199/ Lad
douesIsig WI0J09ALRIIIIR] cUIPPIOISWY UL E9IE
uonp.ado mwb PHETUVIONPALVOREY ﬁmEEoZEquo.\,ou aso ¥Dd yoea 10§ red jo
. : AIqrssadoe Y St IRYM
0139410329
VUOIBIYI0A ﬁowwomhoﬁo» Ldd
{BaIR $Dd yoed
VI0J09ALRIIIIR]
WVILVONRYLUVIOIDALRIMIRT : and ur 3urar] ojdoad Aj1ap[e
VHIUVOREYLVIOOALISIHET Jo uonzodoad a1 ST 1BYM
3
VUOIS9Y 101097 ol mmﬂmww lag
VI0109A LadnIe] ¢BIE ¥0d
VYHUOIIBTUVIONAUYIUNOD PUIIONLIIIO9(40 ann yoea ul sanioe;] 11ods
view : 4 JO Joquunu 9y3 SI IBYAM
S uonedywads uonedyads UOISIdA wonsenp)
ensuon ndinQ mduy 4£30101u0 :

98| Chapter 6 — Case Studies

Note that, though their specifics are given, solving these analytic tasks still involves
nontrivial expert knowledge. For example, based on reading Question 5, a layman
might believe one could simply “average” the given point-wise temperature mea-
surements, while the task actually requires estimating and summarising a field. The
former would result in a semantic error, rendering the workflow meaningless and
therefore useless for the purpose. We test whether semantic annotations provided
by CCD can add this level of expert knowledge to the synthesis process.

6.2.2 Evaluation Criteria

In general, workflows can be evaluated at design-time or run-time. Whether a work-
flow is actually executable can only be evaluated at run-time and involves automatic
deployment. However, even if a workflow is readily executable, it still might gen-
erate meaningless results that do not answer the question. For this reason, we are
more interested in assessing the meaningfulness of an answer [118], and this can
already be done at design-time using expert assessments. This section explains our
framework for doing this, and the results are discussed in Sect. 6.2.3.

The evaluation of an ontology for workflow synthesis consists of multiple steps
(Figure 6.11b) [84]: (1) The tools are annotated with data classes from the on-
tology. For example, the fact that Kriging interpolation transforms a PointMeasure
dataset into a FieldRaster dataset is annotated here. (2) In a taxonomy prepara-
tion phase, the ontology and the annotated tools are used to create a taxonomy of
types. This taxonomy is an RDFS hierarchy (consisting of rdfs:subClassOf triples)
of data and tool classes. (3) Analytical questions are coded into problem specifi-
cations, consisting of the provided data types (inputs), goal (desired output type),
and constraints over operations. (4) The taxonomy, tool annotations, and problem
specifications are fed into APE, which generates a set of up to n distinct workflow so-
lutions up to length k for each specification. In this study, n was set to 20 and k to 8,
a longer workflows. (5) The quality of the solutions is evaluated by a GIS expert us-
ing the error classification scheme explained in Sect. 6.2.2 and a solid understanding
of the questions.

Synthesis Evaluation Criteira

To evaluate SLTL”-based synthesis using the CCD ontology, we compared the syn-
thesised workflows against workflows obtained when using a benchmarking ontol-
ogy. The goal is to measure the improvement that conceptual/semantic types add
to workflow synthesis. The benchmark should reflect the types provided by current
geodata structures. More precisely, we generated a subset of CCD where all concep-
tual dimensions (including core concepts and measurement levels) were removed
and which only includes one semantic dimension related to geometry types, namely
the distinction between raster and vector attributes, as well as between point, line
and region attributes (see Figure 6.11a). Note that the class Tessellation was also
removed since it does not occur in current data structures. We call this ontology the
benchmark data types (BDT) ontology. Using this simple ontology, we manually cre-
ated corresponding tool annotations by substituting every type with the least upper
bound (supremum) concept that is still in BDT. In the same way, we generated BDT
versions of the problem specifications, as listed in Table 6.8.

Section 6.2 — Geo-Analytical Question Answering | 99

VectorRegionA

(a) The benchmark data types (BDT) ontology only
consists of the well-known raster and vector data
types, and a further specification of the different vec-
tor types. It is a subset of the CCD ontology defined
on the attribute level.

Questions

Error types

Workflows

(5) Evaluation

Workflow evaluations

(b) A summary of our ontology evaluation framework for workflow synthesis.
For an ontology, five steps are performed (see text for explanations). All steps
are done both for the CCD ontology and the benchmark ontology as a bench-
mark to measure improvements.

Figure 6.11: Elements of our evaluation framework.

100 | Chapter 6 — Case Studies

Error Types and Precision Measures

We use a quality assessment approach from information retrieval [19] to evaluate
the GIS workflow quality. The idea is that workflow synthesis is treated like a re-
trieval process, and its precision is measured by the extent to which the synthesised
workflows answer the given question. In principle, one could measure both precision
(the proportion of retrieved answers that are correct given all retrieved answers) as
well as recall (the proportion of retrieved answers that are correct given all correct
answers), however, the latter is difficult since it requires a complete and correct
answer set generated by experts. Another problem is the definition of correctness
in terms of error types. The quality of GIS workflows is evaluated using a schema
of four error types on two different severity levels, which are explained below, and
summarised and illustrated in Table 6.9.

Error severity Error type Example workflows
Hard Signature Figure 6.12¢
Semantic imprecision Figures 6.12a, 6.12b
Soft Redundancy Figure 6.13b
Data quality Figure 6.13c

Table 6.9: An overview of the different error types.

Hard errors are critical errors which result either in a wrong or non-meaningful
answer, or in a workflow that is non-executable due to wrong data formats. Corre-
spondingly, we distinguish two kinds of hard errors: signature errors, which have a
part of the workflow that can not be executed because a tool is incorrectly applied,
and semantic imprecision errors, which produce a meaningless or invalid answer for
the given question, because the ontology misses some required semantic constraint
of applicability of data, tools or some information contained in the question.

Soft errors are non-critical errors where workflows do entail a correct answer,
but which are in some sense of lesser quality. We distinguish two kinds of soft er-
rors: redundancy errors, where workflows make use of tool applications which are
unnecessary for giving a valid answer, and data quality errors, where workflows
contain transformations that diminish the geodata quality of the result in a way
which is unnecessary, but which still render the workflow useful for the task. Geo-
data quality has many dimensions, among others, positional and attributes accuracy,
granularity/precision (~ resolution) and completeness [54]. Geodata quality comes
in degrees, so geodata is never perfectly accurate, precise, and complete. Further-
more, data transformations never increase the quality and GIS workflows usually
entail some quality loss. In our case, quality errors mostly included unnecessary
reductions of the spatial resolution, e.g., based on applying unnecessary focal statis-
tics which tends to blur a raster. For example, the workflow in Figure 6.13c shows
how an interpolated raster is blurred in this way before being aggregated with zonal
statistics.

Figure 6.12 illustrates three hard errors. For all of these, the answer either is
not meaningful for the given question, or the workflow is not even executable. The
workflow in Figure 6.12a is supposed to answer Question 3 about the accessibility of

Section 6.2 — Geo-Analytical Question Answering | 101

parks, and it was generated based on CCD. It converts landuse polygons to a landuse
raster, and subsequently counts the variety of landuse types in a neighbourhood
around each raster cell. This ‘landuse diversity’ is subsequently reclassified to an
existence raster (e.g. by selecting a certain range; this is unspecified in our tools).
The next operation calculates the Euclidean distance to this filtered landuse diversity.
Finally, the average distance to the filtered landuse diversity is computed in each
PC4 area. Clearly, this workflow is not meaningful for our question, and it is hard to
imagine a scenario where it would be. For this reason, it is classified as a semantic
imprecision error.

The workflow in Figure 6.12b is also supposed to answer Question 3 and was gen-
erated based on BDT. It uses the landuse dataset directly for distance measurement,
and therefore the resulting raster represents the distance to any landuse polygon.
Because the landuse polygons cover the entire extent, this will always be 0, and is
therefore not meaningful, and thus classified as a semantic imprecision error. A sig-
nature error occurs in Figure 6.12c, which is supposed to answer Question 1 about
the number of sports facilities. Here, the points with sports facilities, which have
a nominal attribute that indicates the facility type, are summed in every PC4 area.
Nominal attributes are usually encoded with strings, but numbers are expected. For
this reason, the workflow is not executable, and it is classified as a signature error.

6.2.3 Results

To assess the value of the CCD ontology relative to the benchmark, we evaluated
synthesised workflows in the manner described in the last section. In this section,
we report on the results and discuss their implications.

Synthesis Evaluation

We counted errors for workflows that were synthesised with both ontologies in the
study (Table 6.10). In this table, we report soft errors only for those workflows
that did not have any hard errors. Thus, the sum of hard and soft errors can be at
most equal to the number of workflows. The column “correct” shows the number of
workflows without any hard errors.

Table 6.10 shows the evaluation results of the study, including 172 workflows
in total'!. These are less than 200 due to more restrictive ontological constraints,
which often prevented APE from reaching the maximum of 20 workflows. We can
see that the hard error rate falls from 86% down to below 1% for CCD. Vice versa,
this means that while only 14% of all BDT workflows were correct and answered the
questions, almost 99% of all CCD workflows were meaningful answers to the posed
questions. This gap can be directly attributed to the missing semantics in BDT. It is
also interesting to see that BDT provoked 17% signature errors, because common
geodata types do not include information about certain attribute value types that
are important for syntax errors. It is also apparent that redundancy errors in the
main study are very frequent for CCD, at 70% of all correct workflows.

Upttps://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df875908
8ac06ffb6ae033/evaluation

https://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df8759088ac06ffb6ae033/evaluation
https://github.com/quangis/gis_workflow_generation/tree/61452627c50bb89e73df8759088ac06ffb6ae033/evaluation

102 | Chapter 6 — Case Studies

Workflow INPUT

Workflow INPUT

Workflow INPUT

Workflow OUTPUT Workflow OUTPUT
Workflow OUTPUT

(b) Semantic imprecision (c) Signature error in
(a) Semantic imprecision error error in workflow for workflow for Question 1
in workflow for Question 3 (CCD). Question 3 (BDT). (BDT).

Figure 6.12: Examples of hard errors for workflows synthesised for questions 3 and 1. Erro-
neous function applications are highlighted in red.

Section 6.2 — Geo-Analytical Question Answering | 103

Workflow INPUT

Workflow INPUT

in in
in in

ZonalStatisticsMeanInterval

Workflow OUTPUT Workflow OUTPUT Workflow OUTPUT

(a) Correct and no soft errors. (b) Correct, but redundancy error. (c) Correct, but data quality error.

Figure 6.13: Examples of different soft error types for workflows synthesised for Question 5
(“What is the average temperature within each PC4 area in Amsterdam?”) using the CCD

ontology.

Chapter 6 — Case Studies

104 |

Hard errors Soft errors
Question Ontology || Workflows Correct | Signature . mmEm:wﬁn Redundancy Data quality
imprecision
1 BDT 20 2 13 18 3 0
1 CCD 20 20 0 0 19 3
2 BDT 20 2 4 18 0 0
2 CCD 8 8 0 0 7 0
3 BDT 20 2 0 18 0 2
3 CCD 20 19 0 1 7 6
4 BDT 20 3 0 17 0 2
4 CCD 4 4 0 0 3 0
5 BDT 20 5 0 15 0 3
5 CCD 20 20 0 0 14 12
1-5 BDT 100 | 14 (14%) 17 86 3 (21%) 7 (50%)
1-5 CCD 72 | 71 (99%) 0 1 50 (70%) 21 (30%)

Table 6.10: Table shows a breakdown of the errors for the main study with questions and ontologies. It also includes tool constraints.

Section 6.2 — Geo-Analytical Question Answering | 105

We suggest that CCD causes more redundant workflows compared to BDT, pre-
cisely because it enforces more restrictive conditions on workflow synthesis. In con-
sequence, the only way to produce longer workflows is to concatenate redundant
tools. This explanation is also consistent with another observation, namely that the
number of workflows CCD produced is often lower than the upper limit - 20 (see
questions 2 and 4), showing that the space of possibilities of reaching the goal is very
limited. In other words, lower amounts of hard errors and higher redundancy/lim-
ited workflow diversity turn out to be two sides of the same coin. This becomes
more clear when looking at example workflows.

Furthermore, it is also interesting that the data quality error, though reduced by
CCD, is still rather high in all cases, showing that a sufficient constraint on geodata
quality is not captured by our ontology. This is not surprising since a data quality
specific constraint was not included in the synthesis specifications. For example,
though two workflows both may aggregate data, the one producing a dataset of
higher resolution might be preferable because positional uncertainty is reduced. Yet,
such measures and corresponding constraints require a different approach and are
considered future work.

To better understand these results, we illustrate the workflows created by APE
and their quality for Question 5: “What is the average temperature within each PC4
area in Amsterdam?”. Figure 6.13a shows a workflow which is a near perfect an-
swer to the question: It takes the temperature measurements and performs inverse
distance weighted interpolation to produce an interpolated temperature field raster.
Subsequently, with zonal statistics, it uses the temperature field and the PC4 areas
to compute the mean temperature in every PC4 area.

Figure 6.13b shows a different workflow with exactly the same result. The re-
dundant part of this workflow starts when the temperature field raster is converted
to temperature point measurements. The resulting IntervalAPointMeasures data ob-
ject is (for all intents and purposes) exactly the same as the IntervalAPointMeasures
object that was provided as input. This is because the interpolated field is equal to
the interpolated points’ values at the points’ locations, and exactly those locations
are extracted from the field. After this redundant part, the workflow proceeds to
calculate the correct answer as in Figure 6.13a.

A more serious quality error occurs in Figure 6.13c. Here, the temperature field is
blurred, because the application of FocalStatisticMeanInterval computes the mean
of the temperatures within a radius of each raster cell. After this operation, the
workflow calculates the answer in the same way as Figure 6.13a, but the resolution
of the answer is decreased. Apart from these soft errors, concatenations and com-
binations of redundant and data quality errors also occur, and are also classified as
soft errors.

Extending the Operation Constraints

The original case study [84] relied on a simple SLTL specification, derived from the
user questions. Out of the 5 questions, 2 did not specify any semantic constraints,
apart from the specified inputs and outputs. The remaining 3 scenarios specified a
constraint each, of the form “Use operation X”. Based on the limited specification and
the observation presented in Section 6.3, it is expected that some of the solutions

106 | Chapter 6 — Case Studies

include redundant steps.

We identify a rule that geo-analytical workflows should follow, to omit the re-
dundant transformations detected so far. Namely, data objects should not be trans-
formed more than once, as consecutive transformations include redundant steps in
a workflow. At the time of the writing of the case study, SLTL, the underlying for-
malism behind the APE v1 framework did not support such a constraint format. The
expressive power of SLTL”, i.e., the formalism behind APE v2, however, allows us
to introduce the rule as an additional constraint on the domain model level, i.e., a
constraint that should be satisfied by each workflow within the domain. We specify
the rule in the SLTL” logic as follows:

Oy ==(F3z1(< Transform® (z1) > F < Transform"°(z1) > true))a

~(F3z1(< Transform"°(zy) > F < Transform"°(zy) > true)) (6.1)

As presented in the evaluation section of Chapter 3, using the additional constraint
allows the APE framework to exclude approximately 70% of the detected soft errors,
labelled as redundancy errors. The constraint demonstrates the importance of data-
tool dependency constraints. Using data-tool dependency to accurately specify the
problem, provides substantially improved synthesis results.

6.2.4 Discussion

Our results demonstrate that workflow synthesis with core concept data types as
semantic constraints enables us to automate the design of GIS workflows for a di-
verse set of geo-analytical tasks on a high-quality level. This means that hard errors
which would render the workflow useless for the purpose seem to be almost entirely
prevented, given that input data of the right purpose and quality is available. Fur-
thermore, the four semantic dimensions used to describe geo-analytical concepts,
and accurate domain descriptions that utilise the SLTL* formalism, e.g., specifying
data-tool dependencies, can be used to further improve the solutions and omit the
majority of sub-optimal solutions.

The presented results have several important implications:

1. It indicates that common geo-analytical questions and tasks might translate
well to loose specifications using SLTL* and the CCD ontology. Tasks including
accessibility assessment, spatial interpolation and summary statistics can be
specified using core concepts, measurement levels, as well as constraints over
a semantic hierarchy of tool concepts.

2. It indicates that the CCD ontology might provide a solid semantic basis for
annotating GIS functions and data, and for constraining their application to
ones that are meaningful under the given task. This issue is not obvious, as
it is still unknown which semantic level would be needed for geo-analytical
purposes.

3. It indicates that our way of benchmarking and evaluation based on informa-
tion retrieval might be used as a general method for quantifying the impact of
semantic information on geo-analytical task solving. Though semantic back-
ground knowledge is known to be important for data analytics [121], it is com-

Section 6.3 — Proteomics Data Analysis | 107

monly hard to measure its impact on information products. For this reason,
ontology engineering often suffers from not being able to show its benefits.
Workflow quality benchmarking provides a way to account for this.

4. It indicates that workflow synthesis with CCD could be a way to approach the
problem of indirect question-answering (indirect QA) [121]. In indirect QA,
questions cannot be answered directly, by retrieval or inference from knowl-
edge bases, but they require adequate transformations. GIS workflows are a
very good example of the relevance of such a system since geographic ques-
tions are seldom answerable without data transformations.

6.3 Proteomics Data Analysis

This case study uses four proteomics use cases introduced by Palmblad et al. [111]
that describe typical scenarios for the analysis of proteomics data. Since the initial
case study the domain model, as well as the synthesis framework, have evolved.
The bio.tools registry [66] has grown and matured substantially [67], as well as the
EDAM ontology of bioinformatics terms [64]. Finally, the PROPHETS framework
[108] used for automated workflow exploration in the previous study has been dis-
continued, with APE v2 taking its place.

We use APE v2 for the workflow exploration and move “into the wild” [76]: In-
stead of using a small, handcrafted set of tools and annotations, we work with tools
and annotations directly from the bio.tools registry. This opens up an unprecedented
wealth of tools and accordingly a huge number of possible alternative workflows.
With APE we systematically explore the space of possibilities. However, as the qual-
ity of semantic annotations in bio.tools varies, deviations in the quality of the auto-
matically explored workflows are to be expected. Therefore, we focus on evaluating
the quality of the suggested workflows.Our goal is to evaluate the synthesis qual-
ity over large real-life domains, and ultimately, to assess APE as an “off-the-shelf”
synthesiser.

The remainder of this section is structured as follows. First, we describe the ex-
perimental setup. Then we present and discuss the results from the workflow explo-
ration experiments, before concluding the section with a short summary.

The data resources and code for running this study, along with the workflow ex-
ploration results and evaluation data, are available online at https://github.com
/sanctuuary/Proteomics_domain_setup and in the Supporting Information'? for
[76].

6.3.1 Problem Description and the Setup

Here we describe the setup of the study, summarised in Figure 6.14, where APE is
the workflow exploration tool used. This includes (1) the process of fetching and
filtering the semantic tool annotations from the bio.tools registry, (2) the workflow
use cases and corresponding workflow specifications, (3) the parameters and config-
urations of the different workflow exploration runs, and (4) the workflow evaluation
process.

https://pubs.acs.org/doi/10.1021/acs. jproteome.0c00983

https://github.com/sanctuuary/Proteomics_domain_setup
https://github.com/sanctuuary/Proteomics_domain_setup
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00983

108 | Chapter 6 — Case Studies

Use Cases
Domain Models
tearasest Problem specification
Original -
bio.tools | — l ‘|: Extended
Full bio.tools

Use case #2 Input & Output (/0)

Use case #3 = Input & Output + Constraints (/O + C)
Use case #4
Domain User
knowledge knowledge
=T =]
b et (o —-mm
F =]
o) Ny _) |
] —u| ¥ =
i P T
Synthesis Solution quality
solutions evaluation

Figure 6.14: Experimental setup of the study.

As discussed in the earlier chapters, APE uses input/output-annotated tools in
combination with type and operation taxonomies as a domain model. This approach
fully aligns with the information that is available through bio.tools and EDAM.

Concretely, the semantic domain model we provided to APE consists of opera-
tion, type and format taxonomies as controlled vocabularies for the description of
computational tools (directly derived from EDAM) and functional tool annotations
(inputs, outputs, operations performed) using terms from these taxonomies (directly
derived from bio.tools). The domain setup process is described in further detail be-
low. The workflow specifications we provide to APE comprise the available inputs
and intended outputs (data type and format, again in EDAM terms) and in some
cases, additional constraints, provided as SLTL” NL templates. APE is then used to
synthesise the shortest workflows that satisfy the specification.

Domain Models

In the previous study [111], the domain model comprised 26 tools (mostly but not
exclusively from the ms-utils.org collection of mass spectrometry data analysis
tools). The tools were annotated in a CSV file with input and output data types and
formats, as well as operations using terms from the EDAM ontology. In this study, we
fetched the corresponding tool annotations directly from the bio.tools registry via its
REST API. The bio.tools annotation schema also uses the EDAM ontology as refer-
ence vocabulary, but in contrast to the previous tabular annotation format, it allows
for the annotation of multiple inputs and outputs per tool. Thus we now work with

ms-utils.org

Section 6.3 — Proteomics Data Analysis | 109

significantly more comprehensive descriptions of the available tools’ functionality.

For this study, we worked with three different domain models (the mentioned
number of tools per domain includes only the well-annotated tools from the reposi-
tory, as described later in the sections):

1. The original set of 21 (out of 24) tools (comet, enrichnet, genetrail, gene-
trail2, gprofile_r, idconvert, isobar; libra, msconvert, mzXMLplot, Pep3D, Peptide-
Prophet, peptideshaker, proteinprophet, protk, PTMProphet, ssrcalc, searchgui,
Tandem2XML, rt, xml2tsv, xtandem, extract protein_names), comprising the
tools from the previous study that are available in bio.tools.

2. An extended set of 271 (out of 751) proteomics tools, corresponding to the
labelled proteomics domain in bio.tools (https://proteomics.bio.tools),
which extends the original set of tools.

3. The full bio.tools set of 1,642 (out of 17,369) tools, containing all the well-
annotated tools available in the registry.

To create the three domain models, we (1) used the bio.tools REST API to fetch
the JSON files containing the respective bio.tools native annotations (which can con-
tain multiple function annotations per tool), (2) cleaned the set of annotations, by
keeping only well-annotated functions (details follow below), and (3) transformed
the annotations to the APE annotation format. The quality of the domain model
determines the quality of the workflows obtained through automated exploration.
The bio.tools repository contains thousands of tools, annotated by a diverse group
of contributors. Not surprisingly, this leads to mixed levels of annotation quality. In
particular, many of the tool annotations lack input and/or output definitions, spec-
ify them vaguely or incompletely, or use outdated EDAM references. Therefore, we
discarded annotations that:

+ do not specify an input, as these tools can be used at any step of the workflow
and typically introduce unnecessary new data,

+ do not specify an output (typically these are interactive tools), as they do not
contribute to solving a data analysis problem,

+ miss a data type or format specification, as these are incomplete annotations,
or

+ reference deprecated EDAM data type or format terms, as they are not part of
the domain taxonomy anymore.

Note that there are also many tool annotations that reference deprecated EDAM
operation terms. However, we classify those as non-critical annotation errors and
allow such tools. The only way that such a domain model could produce wrong
results is by restricting usage of the missing tool types through explicit constraints,
which we rarely do in the studied use cases.

Table 6.11 summarises the effects of cleaning the annotation sets while creating
the three domain models. The annotation quality of the small, original tool set
is again good, only three tools were discarded. In the larger, community-curated
domain of proteomics we find around a third of the tools to be in a well-annotated
format, while on the global level, less than 10% of bio.tools are directly suitable for
automated exploration. Still, these new domain models with 271 and 1,642 tools,
respectively, provide a next-level challenge for automated workflow exploration and
resemble the variety of tools in a real-world setting better than the original set and

https://proteomics.bio.tools

110| Chapter 6 — Case Studies

Number of Original | Extended | Full bio.tools
..tools in bio.tools 24 751 17,369
..functions annotated in the tool set | 24 858 18,408
..discarded functions 3 587 16,778
..resulting APE annotations 21 271 1,642

Table 6.11: Effects of cleaning the tool annotation sets.

those of the other case studies.

Workflow Specification Use Cases

We reuse the four proteomics data analysis use cases from the previous study [111],
which require workflows of increasing complexity:

1. Extraction of the Amino acid index (hydropathy) from peptides in biological

sample measured by liquid chromatography MS.

2. Protein identification and pathway enrichment analysis of MS spectra.

3. The identification and localization of post-translational modifications in a

phosphoproteomic study.

4. Protein quantitation of multiple biological samples labelled by iTRAQ.

Table 6.12 summarises the corresponding workflow specifications, which are the
input for APE. As EDAM and bio.tools evolved since the previous case study, we
revised the workflow specifications to match the now available terms. Concretely,
we generalised the output specifications in the first and the fourth use case from
the expected data types to their parent classes, as none of the annotated tools used
the originally specified types as input/output anymore. In the first use case we
substituted Amino acid index (hydropathy) with Amino acid property, while in the
fourth use case we replaced Gene expression profile by Expression data. Similarly, we
updated some of the workflow constraints. The term validation of peptide-spectrum
matches became obsolete with EDAM 1.19, so instead we opted for the similar Target-
Decoy term. Further, we updated the term gene-set enrichment analysis to enrichment
analysis. Although it is not deprecated, it is not used in any of the tool annotations.

Workflow Exploration Runs

As illustrated in Figure 6.14 (top), this study comprises 24 different workflow explo-
ration runs in total: For each of the three domain models (Original, Extended and
Full bio.tools), we let APE explore possible workflows for all the four use cases. Fur-
thermore, we apply two different versions of the workflow specifications: desired
input/output only (I/0) and I/0O with additional constraints (I/O+C). This distinc-
tion allows us to evaluate the effects of these additional constraints in comparison
to only I/0 specifications when exploring workflows in large collections of tools. In
the previous case study, even with a small set of tools, constraints were crucial to
guide the exploration towards the intended workflows, as an I/O specification alone
did not provide sufficient information. We expected this to be even more needed
with the increased size of the domain model.

We limit the exploration runs to the first 20 (shortest) workflows. This choice is
motivated by two observations: First, as workflow candidates get longer, they tend to

Section 6.3 — Proteomics Data Analysis

| Use Case |

Inputs

| Outputs

| Constraints

#1

Mass spectra in
Thermo RAW
format

Amino acid prop-
erty in any for-
mat

(i) Use operation peptide
identification (ii) Use op-
eration Target-Decoy (iii)
Use operation retention
time prediction (iv) Do
not use operation Protein
identification

#2

Mass spectra in
Thermo RAW
format

Pathway or net-
work in any for-
mat

(i) Use operation pep-
tide identification oper-
ation (ii) Use opera-
tion enrichment analysis
(iii) Use operation en-
richment analysis only af-
ter peptide identification
operation (iv) Use tool
ProteinProphet only after
PeptideProphet

#3

Mass spectra in
Thermo RAW
format

Protein identifi-
cation in any for-
mat

(i) Use operation PTM
identification (ii) Use op-
eration PTM identifica-
tion only after operation
Target-Decoy (iii) Use op-
eration Target-Decoy only
after operation peptide
database search (iv) Do
not use operation Target-
Decoy more than once.

#4

Mass spectra in
Thermo RAW
format

Expression data
in any format

(i) Use operation iTRAQ
(ii) Use operation iTRAQ
only after operation
Target-Decoy

Table 6.12: Workflow specification for the four use cases.

| 111

112| Chapter 6 — Case Studies

extend already considered shorter solutions and introduce redundant steps. Second,
users of automated workflow exploration tools are able to process and compare a
limited number of workflows, and, in our experience, 20 is a reasonable bound in
practice. Finally, due to a resource limitation, we terminate the search if no solutions
are found until length 20 (workflows with 20 operation steps).

The experiments are run using bio.tools annotations as of November 25, 2020,
EDAM version 1.24, and APE version 2.0.1'% on an i7-6500U CPU at 2.50GHz and
16GB RAM machine running on Ubuntu 20.04. The runtime behaviour of the work-
flow exploration algorithm is discussed in detail in Chapter 7. For the smallest
domain model, the runtime was a few seconds, and exploration using the largest
domain model was averaging around 10 minutes, the longest almost an hour. Gen-
erally, runtime performance increases with the size of the domain model and the
length of the solutions.

Workflow Evaluation

To evaluate the quality of the suggested workflows, two domain experts (proteomics
researchers with extensive tool and workflow experience) scored the first 20 work-
flow candidates of each exploration run on a scale from 0-3 according to the follow-
ing criteria:

3: good workflow, have seen it or similar before, I know it will work

2: interesting suggestion, seems viable, could work, worth trying

1: might work, but does not seem very useful, or has unnecessary steps

0: I know that it will not work

The two experts scored the workflows independently. We calculated the averages
of their scores for subsequent analysis. Further evaluation through implementation,
execution and benchmarking, like performed in the previous study [111] was out of
scope for this study and is left for future work.

6.3.2 Synthesis Results

In the following, we summarise and discuss the workflows found in all exploration
settings described above. We use the number of obtained workflows and the scores
they received from the domain experts (see Figure 6.15) as indicators of workflow
exploration comprehensiveness and quality in the different setups.

As general observations, the workflow-evaluating domain experts remarked that
they found this an interesting and insightful exercise. On the one hand, they came
across several interesting, sometimes even surprising, workflow suggestions that
they would not have thought about themselves, but that seem worth trying. On
the other hand, for faulty or insensible workflow suggestions they could usually see
how the (flawed) annotations of the involved tools set the automated composer on
a wrong track.

Use Case #1

The workflows we obtained for the first use case with the original tool set closely
resemble the corresponding results from the previous study. First workflows for the

13The evaluation that this section is based on [76] is performed using an earlier APE version - 1.1.2.
However, as the version already included prototypes of the new (SLTL*) formalism, the results using APE
version 2.0.0 remain unchanged.

Number of workflows Number of workflows Number of workflows

Number of workflows

Section 6.3 — Proteomics Data Analysis | 113

Use Case 1
20
. =
10
5
Original Original + Constr. Extended Extended + Constr. Full
Use Case 2
20
15
10
5
0 Extended Full
Use Case 3
20 _ |
15
10
51
Original Original + Constr. Extended Extended + Constr. Full
Use Case 4
20
15
10
5
g Original Original + Constr. Extended Extended + Constr. Full

Run specification

Figure 6.15: Workflow quality evaluation.

Full + Constr.

Scores
m 3
25

2
1.5
1
0.5
0

Full + Constr.

Full + Constr.

114 | Chapter 6 — Case Studies

Listing 6.1: Selected workflow candidates: Use Case #1

Original (I/0)

msConvert->Comet->rt
msConvert->Comet->xml2tsv->rt
msConvert->msConvert->Comet->rt
msConvert->Comet->PeptideProphet->rt

Original (I/0 + C)
msConvert->Comet->PeptideProphet->rt
msConvert->Comet->PeptideProphet->idconvert->rt
msConvert->Comet->PeptideProphet->xml2tsv->rt

Extended/Full (I/0)
DeconTools->Mascot Server->rt
PEAKS De Novo->PeptideProphet->rt
ReAdW->Comet->rt
msConvert->MassWiz->rt

Extended (I/0 + C)
msConvert->MassWiz->rt

MZmine -> Mascot Server -> rt
msConvert->collect_mgf->MassWiz->rt
mzBruker->mzXML2Search->MassWiz->rt
CompassXPort->Comet->PeptideProphet->rt

Full (I/0 + C)

msConvert->MassWiz->rt

MZmine -> Mascot Server -> rt
ThermoRawFileParser—->MassWiz->rt
ThermoRawFileParser->Comet->PeptideProphet->rt

CompassXPort->DTA to MGF File Converter->MassWiz->rt

Section 6.3 — Proteomics Data Analysis | 115

specification are found at a length of three, which corresponds to workflows of three
successive tools. As the examples in Listing 6.1 indicate, the main difference from
the results of the previous study is that some tools that were previously used (e.g.,
X!Tandem, SSRCalc) are not included anymore. This is due to different annotations
of the tools, which are both now annotated to expect two inputs instead of one.

The example workflows for the original tool set also show another frequently ob-
served pattern: Short workflows with a conversion step (such as msConvert) are
often contained within longer workflows which extend it by repeating the conver-
sion step. These redundant steps can be avoided by introducing constraints that
prevent multiple conversion operations over the same data. Currently, this requires
to formulate such constraints per individual tool, so we are considering ways of
adding it as a more convenient configuration option to APE.

When we explore workflows that satisfy the exact specification but comprising
the extended and full sets of tools, the number of results increases significantly.
As Listing 6.1 indicates, the additional results include several new and sometimes
surprising workflow suggestions, such as the combination of using MZmine before
Mascot Server. However, there are also workflows suggestions that are less sensible.
For example, some workflows start with the tool CompassXPort, although it cannot
read Thermo RAW files. The reason is that CompassXPort is annotated in bio.tools to
read files Mass spectrometry data format, which is the parent term for 30 specific file
formats including Thermo RAW. CompassXPort cannot read Thermo RAW, but this
can not be inferred when using general annotations including parent terms. Ideally,
CompassXPort would be annotated in bio.tools with a precise list of accepted input
formats and not their parent term. To work around this with the current version of
APE, a constraint can be added that, for example, excludes CompassXPort from the
exploration. Alternatively, one could restrict the domain model to include only tools
described by sufficiently specific file formats. However, given the current state of tool
annotations, such a restriction is likely to strongly decrease the domain model size.
To solve such problems more generally, we are currently investigating possibilities
for extending APE with new configuration options and/or heuristics for data format
handling.

Interestingly, we obtained almost the same results for the extended and full do-
main model. The only notable difference is the occurrence of a rather new parsing
tool ThermoRawFileParser in the workflow solutions with the full domain model.
ThermoRawFileParser is not yet included in the proteomics domain as it has been
added recently. With the exception of this tool, extending the domain model with
tools from outside the bio.tools proteomics domain does not create new possibilities
for this use case. This can be interpreted as evidence that the coverage of proteomics
tools in the respective bio.tools domain is comprehensive.

A general observation from the evaluation is that the constraints do indeed have
a considerable effect on the number and quality of workflows obtained. As Figure
6.15 shows, for all domain models the domain experts gave higher scores to the
workflows explored with constraints. This is especially important with the extended
and full domain models. There the number of solutions exceeds the threshold of 20
already at length 4 in the unconstrained case. To a large extent, these are workflows
that are (presumably) implementable based on their input/output annotations, but

116 | Chapter 6 — Case Studies

Listing 6.2: Selected workflow candidates: Use Case #2

Extended/Full bio.tools (I/0)
ProCoNA

unfinnigan->ProCoNA
msConvert->ProCoNA
OpenSWATH->ProCoNA

that do not perform the operations actually intended by the workflow developer.
Constraints that specify these intentions better thus help to drastically decrease the
number of unfeasible workflows. Furthermore, they allow for the exploration of
longer and at the same time more meaningful workflows. For this use case the
hand-curated domain model appears to be more restrictive and effective for finding
appropriate solutions than the constrained case over a larger domain model. We at-
tribute this to the specific tailoring of the original domain model to this use case, an
approach that does however hardly scale in practice. This reemphasises the impor-
tance of using appropriate constraints when dealing with larger collections of tools
and annotations from community repositories.

Use Case #2

When exploring workflows for the second use case with the original tool set, some-
what surprisingly we did not find any. The reason is that the enrichment analysis
tools (gProfiler, EnrichNet, etc.), which are needed to generate the specified work-
flow output, are annotated to expect a Gene ID type as one of the two obligatory
inputs. However, there is no tool in the domain model that would generate a Gene
ID as output, hence there is a missing link that prevents the exploration from find-
ing corresponding workflows. A “shim” tool that converts IDs into each other (e.g.
UniProt protein accession into Gene IDs) could provide this missing link. It is an on-
going discussion, however, if such shims should be documented in bio.tools, or if
that would lead to an overload of tools with insignificant functionality. Many shims
are in fact included in larger software suites or libraries, though not annotated as
individual functions of these, and thus missed by automated exploration. Related
issues are incomplete annotations due to large numbers of functions performed or
formats supported. For example, some enrichment tools accept tens of different ID
types but only list a few in their tool annotation. Thus some possible matches are
missed. However, using a more abstract parent term in the annotation can cause
erroneous matches, as described for CompassXPort above.

Such missing links are typical risks of using small domain models. Interestingly,
here the use of the larger sets of tools does not resolve the issue. The exploration
with the extended domain model does return possible workflows, but these are ques-
tionable. As Listing 6.2 shows, the first suggestion is a single tool (ProCoNa) that
matches the input/output specification. Like CompassXPort, it is annotated as using
the general Mass spectrometry data format as input, while it actually only accepts
some of these formats (a table containing peptide identifications), so the problem is

Section 6.3 — Proteomics Data Analysis | 117

Listing 6.3: Selected workflow candidates: Use Case #3

Original (I/0)
msConvert->Comet
msConvert->Comet->idconvert
msConvert->msConvert->Comet
msConvert->Comet->PTMProphet

Original (I/0 + C)
msConvert->Comet->PeptideProphet->PTMProphet
msConvert->msConvert->Comet->PeptideProphet->PTMProphet
msConvert->Comet->PeptideProphet->PTMProphet->ProteinProphet
msConvert->Comet->PeptideProphet->PTMProphet->idconvert

Extended/Full bio.tools (I/0)

PEAKS De Novo

msConvert->ProMEX protein mass spectral library
mzBruker->Comet

ProSight PTM->ProSight PTM

Extended/Full bio.tools (I/0 + C)
msConvert->Comet->PeptideProphet->PTMProphet
unfinnigan->Comet->PeptideProphet->PTMProphet
T2D converter->Comet->PeptideProphet->PTMProphet
CompassXPort->Comet->PeptideProphet->PTMProphet

similar to the one described above. The other suggestions are then actually mean-
ingless extensions of this first workflow. In the constrained case, no workflows are
returned, as the constraints try to enforce the aforementioned enrichment analysis
tools, which cannot be used due to the missing shims.

The unconstrained exploration with the full domain model yields the same results
as with the extended model, with the exception of the ThermoRawFileParser tool for
the initial file conversion. As in the previous constrained cases, the constrained ex-
ploration with the full domain model resulted in no solutions. Unfortunately, in the
case of the full model, we could not explore solutions up to length 20. Due to the
exponential runtime complexity and memory requirements of the exploration algo-
rithm, composition at lengths longer than 8 exceeded the available memory, so the
exploration process stopped there. However, based on the results from the extended
model, we assumed that no solutions would have been found among workflows
longer than 8, either.

Use Case #3
For this use case, the workflows obtained with the original tool set largely cor-

118 | Chapter 6 — Case Studies

respond to the results from the previous study, similar to Use Case #2. As Figure
6.15 shows, there is a notable difference between the runs with and without con-
straints. In fact, for this use case, the constraints are crucial, as the input/output
specification is quite general and does not provide sufficient information to solve
the problem as intended. As Listing 6.3 shows, the workflows obtained with the
unconstrained specification are in principle valid but lack the validation part of the
reference workflow scenarios. Only the use of constraints ensures that Target-Decoy
tools like PeptideProhphet and PTMProphet are included.

This observation also holds for the extended and full tool sets. Looking at the
workflow candidates, we see that the slight difference in results between the ex-
tended and the full domain model is in fact again caused by the additional tool
ThermoRawFileParser in the full domain. This aligns with our findings from Use
Case #1.

Note that for this use case we again observe the spurious use of CompassXPort,
T2D converter and similar tools, for the same reasons as discussed above.

Use Case #4

Similar to Use Cases #1 and #3, the workflows obtained for the fourth use case
(see Listing 6.4) highly correspond to those from the previous study when exploring
workflows for the original tool set. Furthermore, this scenario affirms again that
the usage of additional constraints to specify the problem decreases the number and
increases the quality of the workflows (see Figure 6.15). Interestingly, while the
constrained solutions over the extended and the full domain differ in the usage of
the aforementioned ThermoRawFileParser tool, the unconstrained solutions differ in
two more tools, namely TDimpute and pyQms. These two tools, similarly to Ther-
moRawFileParser, have not yet been added to the proteomics domain, but in fact
contain the EDAM topic Proteomics.

Listing 6.4: Selected workflow candidates: Use Case #4

Original (I/0)
msConvert->mzXMLplot
msConvert->msConvert->mzXMLplot
msConvert->Comet->Libra
msConvert->msConvert->Comet->Libra

Original (I/0 + C)
msConvert->Comet->PeptideProphet->Libra
msConvert->msConvert->Comet->PeptideProphet->Libra
msConvert->Comet->PeptideProphet->PeptideProphet->Libra
msConvert->Comet->ProteinProphet->PeptideProphet->Libra

Extended (I/0)
MapQuant
msConvert->MapQuant
MassWolf->mzXMLplot

Section 6.4 — Geo-Event Question Answering | 119

Extended (I/0 + C)

PEAKS De Novo->PeptideProphet->Libra
msConvert->MassWiz->PEAKS Q
unfinnigan->Comet->PeptideProphet->Multi-Q

PEAKS De Novo->CompassXPort->PeptideProphet->Multi-Q

Full bio.tools (I/0)
MapQuant
msConvert->MapQuant
MassWolf->mzXMLplot
msConvert->pyQms
MZmine->TDimpute

Full bio.tools (I/0 + C)

PEAKS De Novo->PeptideProphet->Libra
ThermoRawFileParser->MassWiz->PEAKS Q
msConvert->MassWiz->PEAKS Q

PEAKS De Novo->CompassXPort->PeptideProphet->Multi-Q

6.3.3 Summary

Annotating computational tools with ontologically defined terms describing their
operations, data types and formats enables their automated composition into ten-
tatively viable workflows. Providing such annotations (using terms from the EDAM
ontology) is one of the main goals of the bio.tools registry, which has become the
principal catalogue of computational tools in the life sciences. We applied the Auto-
mated Pipeline Explorer (APE) to the bio.tools registry, revisiting workflow use cases
from an earlier proof-of-concept study in proteomics.

Our results show that APE can be successfully used as an “off-the-shelf” synthe-
siser in such a domain, as the required semantic annotations fully align with the
information that is available through bio.tools and EDAM. Furthermore, we demon-
strate that this approach can compose purpose-specific workflows of high quality in
extensive collections of semantically annotated tools.

6.4 Geo-Event Question Answering

In this case study [79], we focus on a specific type of geo-analytical question that
has not been a focus of previous studies: geo-event questions. As it is an ongoing
study in its preliminary stages, this section presents only its preliminary findings.
Geo-events are most succinctly defined as “something that happens” [43]. This
study presents a prototype process for generating workflows to answer geo-event
questions. First, we provide annotations of the domain, comprising a tool taxon-
omy we created from descriptions of geo-operations, a data type ontology obtained

120 | Chapter 6 — Case Studies

1 2
in2

in1 3

| Intersect line_line_point_nominal |

FieldQ, VectorTessellationA, BooleanA
in1

| v.select region_point region_nominal |

out 1

ObjectQ, PointA, BooleanA
in 2

in

out 1
FieldQ, VectorTessellationA, PlainIntervalA)
SO it e o O

Y
Workflow OUTPUT

Figure 6.16: A correct workflow solution provided by APE v2

from the Core Concept Data types (CCD) ontology [84], and the annotations of the
mentioned geo-operations with respect to the input/output pairs. We created our
taxonomy of tools based on Brauners geo-operator categories [21] to include more
information about the tools than just data type. In addition, we utilise the CCD on-
tology for creating the data type taxonomy and for describing data types. Second,
we utilise the process of automated composition of workflows (using APE) for the
specific geo-event question. Finally, the generated workflows are post-processed to
restrict the solution space and provide more structured solutions.

All the resources required for running the APE framework (including the tax-
onomies and tool annotations) and the post-processing steps can be found at
https://github.com/MohammadUT/Geo_event-QA.

The preliminary problem specifications comprise solely the input and output spec-
ifications, i.e., it does not include any additional temporal constraints. We investi-
gate the first 50 solutions in our runs which domain experts individually evaluate.
APE generated 35 workflows (70%) that return the correct answer (e.g., the work-
flow presented in Figure 6.16). Six answers (12%) are invalid, while nine solutions
(18%) are close to the actual answer but do not entirely match it (e.g., they provide
a fragment of the correct answer presented in Figure 6.16). This diversity in the
quality of the solutions is caused by the similarity of the operation signatures, i.e.,
similarities between the input and output types.

In the current study we present two different post-processing approaches for
grouping equivalent workflows: intensional and extensional. Their goal is to re-
duce the solution space and provide more structured solutions. The intensional
approach groups equivalent workflows whose tool steps are semantically equivalent
(i.e., equivalent in query intentions). The extensional approach refers to group-

https://github.com/MohammadUT/Geo_event-QA

Section 6.5 — Discussion | 121

ing equivalent workflows that return the same outputs (i.e., query extensions) by
running the input data through the workflows and comparing their output results.
The main difference between the extensional and intensional approaches is that we
might have workflows with different tools that are not semantically equivalent but
return the same outputs.

For the 50 generated solutions obtained from APE, the proposed intentional ap-
proach restricts the number of solutions to 24 groups. Therefore, 41% of the work-
flows are subsumed by the corresponding equivalence groups. In addition, the re-
sults show that the extensional approach could restrict the 50 APE-generated solu-
tions to only five groups.

Although the preliminary specification shows promising results, we could further
improve the quality of the solutions generated by APE by providing appropriate
SLTL” constraints. However, automation of such constraints for any given geo-event
question is not trivial and is left for future consideration. Finally, the two post-
processing steps could support the exploration of a much higher number of solutions,
as the grouping could allow their manual evaluation (e.g., the extensional method
restricted the number of solutions to about 90%).

6.5 Discussion

The chapter introduces four case studies from geo- and life-sciences used to evaluate
the APE v2 framework, as well as the underlying SLTL*-based synthesis approach.
The following sections provide our observations from those case studies.

6.5.1 Geo-science Domain

While the vision of an entirely automated GIS still appears far-fetched, we believe
our geo-science studies show that automatic recommendations of geo-analytical
workflows for properly specified goals are within reach. In particular, they can sup-
port geoinformaticians and GIS analysts who develop workflows by systematically
exploring the space of possibilities with the available tools. Though specifications
often need to be formulated and answer workflows still need to be checked (and
implemented) by human experts, our approach scales up the geo-analytical process
by automatically assessing the potential of a given tool resource for a task, which
does not seem possible to date. Our preliminary Geo-Event Study [79] shows a way
toward geocomputational code generation and question-answering. A parallel op-
portunity is implied by the fact that CCD types describe geodata sources. Though the
geodata retrieval problem admittedly involves more specific information about geo-
graphic phenomena than what is captured by CCD, it might add to the effectiveness
of current geographic information retrieval strategies [71].

Another question concerns the completeness of the CCD ontology concepts con-
cerning geo-analytical tasks. Which concepts are we lacking and which are rele-
vant for modelling some form of geospatial analysis? Are the current four semantic
dimensions sufficient? This is probably not the case, as our workflow evaluation
shows. For example, to capture certain functional constraints, such as “Distance”,
we need to be able to generalise over corresponding GIS tools. For this purpose,

122 | Chapter 6 — Case Studies

our collaborators are currently working on a transformation language for geospatial
information.

6.5.2 Life Sciences Domain

Naturally, the overall quality of the automatically obtained workflows highly de-
pends on the quality of the semantic domain model, in our case the domain ontol-
ogy (EDAM), and the tool annotations (bio.tools). Despite the volume and maturity
of the domain model, many tools in the community-driven bio.tools registry are not
accurately annotated. Presumably due to a lack of awareness and understanding
among curators of what constitutes good annotations for the purpose of automated
tool composition and workflow exploration. Even partly inadequate annotations can
lead to wrong compositions or exclusion of tools that suit a requested combination
of input, output and operation. Hence, to use bio.tools with APE, the relevant tool
sets have to be pre-processed and filtered to sort out poorly annotated annotations.
Conversely, small curated domains can yield high-quality results, but they tend to
overfit. They do not enable the exploration of new, possibly better-performing tools
and workflows and furthermore hardly scale, so they are not an ideal solution in the
long term.

Domain models and problem specifications are never expected to be perfect.
Therefore, APE’s ability to adjust the workflow exploration according to new in-
cremental constraints gains importance. Such constraints are crucial for filtering
out nonsensical and undesirable alternatives, and for guiding the search towards
actually desirable tool combinations in a still huge space of possibilities, as shown
in the geovisualisation case study. The resulting workflows also contain valuable
information that can be employed to improve tool annotations. A knowledgeable
researcher can adapt the annotations of neglected tools and correct erroneous anno-
tations in tools that were assigned to a workflow despite their inability to fulfil that
particular task.

CHAPTER 7

Evaluation

Abstract - This chapter provides a usability assessment of the contri-
butions provided in the dissertation. The usability is assessed based
on (1) the runtime performance of the implementation, (2) results
from existing applications of APE, and (3) user experiences of the
framework. First, the chapter evaluates the runtime performance of
APE v2 within the case studies presented in Chapter 6. It identifies
the NL templates provided by APE v2 as an important factor that
improved the overall encoding runtime. In addition, the chapter pro-
poses a caching function which would further improve the encoding
runtime. Second, the three existing case studies are used to demon-
strate the applicability of APE v2. Finally, the results from the survey
of APE users help us assess concrete features of the framework.

Section 7.1 — Runtime Performance of APEv2 | 125

This chapter evaluated the usability of the introducedSLTL*-based approach and
the APE v2 framework. Section 7.1 assesses the runtime performance of APE v2
within the case studies presented in Chapter 6. It presents the encoding and the
(SAT) solving runtime within the framework. In addition, the section identifies im-
provements in the encoding size and runtime when using the predefined SLTL”
natural language (NL) templates. As described in Chapter 4, these templates are
commonly used SLTL* constraints provided in a natural language. They provide
an abstraction over the SLTL” language as well as optimisation steps within the
propositional problem encoding. Section 7.2 presents three additional applications
of APE, used to illustrate the applicability of the SLTL*-based synthesis approach.
Section 7.3 presents the results from a survey of researchers and students that used
APE in their research. The goal of the survey is to assess the usability of the APE
framework from the perspective of the users.

7.1 Runtime Performance of APE v2

APE v2 relies on the SAT-based encoding and the significant progress in the develop-
ment of SAT-solving heuristics. The heuristics have evolved to yield highly efficient
SAT solving, e.g., unit propagation, clause learning, back jumping, etc. [99]. Fur-
thermore, SAT solving continues to improve at an impressive pace, driven by an
annual competition [42].

The satisfactory runtime benefits of the SAT solving technique are noticeable when
executing the case studies presented in this chapter (The runtime results for each
case study introduced in Chapter 6 are presented in Table 7.1 (rows 1-9). The
experiments were performed on a PC with a 2.50GHz i7-6500U CPU with 16GB RAM
running on Ubuntu 20.04. The recorded times were recorded as average runtimes
out of 10 individual runs. We have used APE v2.0.2 over the semantically annotated
domain models provided at https://github.com/sanctuuary/APE_UseCases.

The APE runtime in the presented case studies can vary substantially depending
on the size of the domain as well as the size of the solutions. Relatively smaller to
medium workflows (up to length 10), as well as domains up to 100 tools, in practice
result in an average runtime of few seconds (see rows 1-3, 6 and 7 in Table 7.1).
Long workflows (over length 13), as well as medium-sized domains (comprising a
few hundred tools), result in runtime between 20 and 60 seconds (see rows 4,5 and
8 in Table 7.1). Large domain models (comprising a few thousand tools) result in a
runtime of up to an hour (see row 9 in Table 7.1).

The efficiency of SAT solving runtime is reflected in the APE v2’s solving runtime.
In practice, the solving time takes approximately between 6% and 20% of the total
APE v2 runtime. The encoding runtime, however, presents a bottleneck in our al-
gorithm. It takes approximately 60% to 80% of the presented APE execution times.
The main reason is the exponential blowup of space with respect to the length of the
solutions/size of the domain!. Therefore, we distinguish two main challenges in our
approach, (1) problem encoding, i.e., parsing and encoding complex SLTL* formu-

1Size of the domain is reflected in the size of the domain taxonomies, tool annotations as well as
domain constraints

https://github.com/sanctuuary/APE_UseCases

126 | Chapter 7 — Evaluation

las, and (2) domain encoding, i.e., encoding large workflows and/or large domain
models. Although the state explosion cannot be avoided, we try to mitigate it. This
section discusses the two challenges, and proposes approaches that aim to improve
the corresponding encoding runtime and/or size.

Problem Encoding

Problem encoding refers to a propositional encoding of a specific problem, i.e., input,
output and used constraints. APE v2 supports the specification of arbitrary SLTL*
formulas when defining a synthesis problem. Chapter 4 introduces the transforma-
tion of an arbitrary SLTL” formula into a propositional encoding. The transforma-
tion uses recursive methods to encode the G, F and U modal operators. As such, the
complexity of a formula, i.e., nesting of modal operators and variable quantifiers, is
directly related to the size of the propositional encoding. Table 7.2 illustrates the
dependency between the encoding runtime/size and the problem specifications. It
presents examples from Geovisualisation [73] (GMT, rows 1-9) and Geo-Analytical
Concepts [84] (G-A, rows 9-11) case studies.

A natural language SLTL” template? (listed in Chapter 4), on the other hand, has
a predefined structure which allows for optimisations of the corresponding proposi-
tional encoding. Utilising optimisation techniques presented in Chapter 4) NL tem-
plates reduce the encoding runtime and size when compared to the equivalent con-
straints specified directly in SLTL".

The optimisation depends on the complexity of the formulas. Table 7.2 compares
the runtime of problem encoding within the presented scenarios. It compares the
runtime of problems specified using closed-text templates, and problems that spec-
ify some (or all) of the constraints in SLTL®. Rows 3 - 6 show the encoding size
and runtime when solving E1 (1st extended workflow) from the Geovisualisation
case study. Rows 3 and 4 compare the runtime when 3 of the problem constraints
(E1.4-E1.6) are specified in SLTL*, while row 5 and 6 show the synthesis results
when 6 of the constrains (E1.1-E1.3 and E1.4-E1.6) are specified in SLTL”. All of
the mentioned constraints are of the form “F < Op®!() > true” that corresponds to
“Use operation Op in the solution” template. We see that when using simple con-
straints (that do not nest modal operators) the encoding size and runtime do not
differ between the two types of constraint specifications (e.g., row 5) even when
we are exploring longer workflows (e.g., row 6). For example, when searching for
workflows of length 15, the difference between the size of the encodings, i.e., num-
ber of clauses, is around 20%, while the runtime is approximately 10% longer. We
have similar results when looking at the examples from the Geo-Analytical Concepts
study, disregarding the workflow length. However, complex SLTL* formulas, i.e.,
formulas that include nested modal operators and existential quantifiers, drastically
increase the encoding size/runtime. When we express E1.1-E1.3 formulas in SLTL”
(in form “F(3z(< OpY'(z) > F(< Opy°(x) > true))”), that enforces port binding
between operations Op; and Op-, the encoding runtime doubles for workflows of
length 10 (see row 1 of Table 7.2). When we extend the search to workflows of
length 15, the encoding using APE v2 stops due to a timeout (set to one hour).

2APE framework provides a set of frequently used SLTL® formulas as natural-language templates, to
simplify the usage of the system.

| 127

Section 7.1 — Runtime Performance of APE v2

*S9IpNIS 9sed pajudsaid ur swnuni ga g4y jo uostredwo) :1°/ 9[qel

(%I9°IT) s IE'€E (%92°69) S 961 S €'8¢C 14 0]
(%98°'8) s Z¥'T (%L¥'TL) S 6T 61 S 66°9¢C 14 ¢ | O+ ION Soruo9o3o.id
(%TS'L) sT0'T (%8€°14) S8T'61 S £8'9¢C 14 I papuaixy
(%ZE'8)STII'T (%£2°SL) S 80°61 S G¢'S¢ 14 I LON
. . (urag ze)) (sfo01°01q [INJ)
(%91°89) S ¥/°628 S 084121 71 0C | D + ION $OTW09101d
. } (pPopua1xa)
(%109) s LEL'€ (%98°¢/L) S 68°S¥ S€EL'C9 71 0C | D + ION $OTUI09101d
.)) .) . (Teur3rio)
(%ET°0T) S L670 (%04°€L) 90°L S 856 o-1 0C | D + ION $OTUI09101d
.) sydaouo)
(%86°9) sT9°0 (%90°18) s v+~ S8L°6 81 0¢ 10 [eonA[euy-0on
(%S€92) S9S°0T | (%9¥°6S) S €8°€T S 80°0% L1-ST 02 v
(%E9¥1) S+9°C (%96°89) S ¥+¥'C1 S10°'81 ¢I-01 0c €d
(%Z0°61) S 6E'T (%£0°99) s €8¢ SIE€L 0T-9 0¢ CH | uonesIensianoah
(%€E9T) STS'T (%88°%9) s +0°9 SIE6 01-9 0¢ IH
(%91°61) S 6S°0 (%14°09) S L8'T S80°¢ 91 0c 0d
(99S) swpun (99S) swrpun (99s) swpuni | pasofdxa suonnjos
ase) asn urewo(q
duiajos Ivs Surpoouy 4dV [e10L sya3ua | Jo JoquInN :

€l
¢l
11
0]}

— NN T !N O

Chapter 7 — Evaluation

128 |

\SLTLx constraints Natural Language Templates
DrEmein e Length (Sl et i Encoding | Encoding | SAT m.znom_bm Encoding | SAT
Use Case evaluated . . . size . .
size runtime | runtime runtime | runtime
1 10 E1.1 E1.3 538 805 4.73 s 0.37 s 360 674 2.48 s 0.45 s
2 15 E1.1 E1.3 - timeout timeout 1029878 | 7.01s 1.09 s
3 E1 10 E1.4-E1.6 363 744 2.77 s 0.52s 360 674 2.48 s 0.45 s
4 | gMT 15 E1.4-E1.6 1128171 | 7.97 s 1.4s 1029878 | 7.01s 1.09s
E0.1-E0.3,
5 10 F1.4-E1.6 367 839 3.01s 0.53 s 360 674 2.48 s 0.45 s
E0.1-E0.3,
6 15 E1.4-E1.6 1259 250 | 8.33 s 1.43s 1029878 | 7.01s 1.09s
7 E3 13 E3.1 - timeout timeout 706 207 4.71s 0.69 s
8 15) - timeout timeout 1030187 | 7.10s 1.14s
9 4 81 198 1.92s 0.36s 77 430 1.21s 0.3s
10 | G-A | Q3 10 all 407 562 3.17 s 1.12s 350 434 2.58s 0.95s
11 15 1082385 | 6.925 5.84s 836 459 6.19 s 4.34s

Table 7.2: Comparison of APE v2 runtime over user specifications that utilise constraint templates, and those that specify them directly in
SLTL®. Each run was stopped once the first solution was found (timeout was set to one hour). GMT and GA labels are used to represent
Geovisualisation and Geo-Analytical Concepts domains, respectively. (* - Size of the encoding is measured in number of clauses used in the
CNF form).

Section 7.1 — Runtime Performance of APEv2 | 129

Therefore, using the natural language (NL) templates in this scenario is crucial to
finding solutions in the set time frame.

The NL templates provide an intuitive interface for the user that is not familiar
with the underlying SLTL” logic. In addition, their usage results in a better overall
runtime of the framework. For that reason, our case studies, as well as the results
presented in Table 7.1, use the NL templates to define the problem specifications
(constraints). Our aim is to further evaluate the usage of constraints in the ongoing
(and potentially new) case studies and improve the list of supported templates ac-
cordingly. In addition, we actively introduce new constraints based on the feedback
from the community, either by directly contacting us or by creating issues at our
GitHub repository®.

Domain Encoding

Domain encoding refers to the propositional encoding of the workflow, as well as
the domain model (taxonomies and tool annotations).

The exponential blowup in the search space is inherent to the temporal logic-based
synthesis problems. As we consider larger workflows we have to encode exponen-
tially more possible combinations of operations and the corresponding data types.
The ratio between the size of a workflow and the corresponding propositional en-
coding is presented in Table 7.2. We can see that the encoding size, i.e., number of
clauses in CNF format, grows with the size of the workflow (e.g., compare rows 1
and 2, or 3 and 4).

We notice, however, that the encoding time does not increase much when we
look for more than one solution at a specific length (see rows 11-13 in Table 7.1).
The encoding time remains approximately the same regardless of whether we are
looking for 1, 2 or 10 solutions*. The main reason is that APE v2 generates the
encoding to find the first solution and reuses it in the following steps, i.e., when
searching for alternative solutions.

Based on the deterministic method used to create the propositional encoding (pre-
sented in Chapter 4) we know that the domain encoding remains the same for each
problem, as long as the domain model and the workflow length are constant. There-
fore, we propose to implement a cache function, that initially (the first time the
domain is used) stores the domain encoding and reuses it each time the domain
model is reused. This would drastically reduce the APE runtime, as the new en-
coding step would only propositionalise the problem-specific constraints, while the
rest would be retrieved from the cached encodings. To estimate the benefits of the
approach, we need to assess the ratio between the domain and problem encoding”
runtime in our examples.

Row 10 in Table 7.1 shows the runtime of APE v2 when finding a single solution
for scenario Nol in the Extended Proteomics domain [76] (see Section 6.3) with
no constraints specified. We see that the encoding of the domain (as there were no
additional constraints specified) takes 19.09 seconds on average, which is 75% of
APE runtime. Row 11 shows the runtime of APE v2 for the same problem, which

Shttps://github.com/sanctuuary/APE
4As expected, the solving time increases slightly as each solution requires a separate solving step.
5Time needed to encode problem-specific constraints, specified using NL templates.

https://github.com/sanctuuary/APE

130 | Chapter 7 — Evaluation

includes temporal constraints (specified as NL templates). We notice that APE v2
takes an additional fraction of a second to encode the domain constraints, and an
additional second, in total to solve the problem. The domain encoding still takes
70% of runtime. Similarly, rows 2 and 8 in Table 7.2 show the runtime, as well as
the size of the encoding, when solving the first and third extended workflow from
the Geovisualisation study [73] (see Section 6.1), respectively. In both examples,
we generate workflows of length 15. We notice again that the additional constraints
do not increase the runtime drastically when encoding a specific workflow length.

In the presented case studies the domain encoding accounts for approximately
60% — 80% of the APE v2 runtime. Additionally, reusing an existing encoding (e.g.,
when used by APE to explore multiple solutions, see row 2 in Table 7.1) does not
bring a runtime overhead within the current implementation. Therefore, by keeping
the domain encoding, we could omit the domain encoding step within the frame-
work and drastically improve the APE runtime.

APE v2 currently keeps internal mapping functions for different encoding steps to
shorten the runtime, however, it does not implement caching of the whole encoding
files yet. We plan to implement the function in one of the next APE releases.

Performance Summary

The runtime evaluation demonstrates a good average APE runtime in the existing
case studies. As APE v2 relies on the SAT-based encoding, it yields highly efficient
SAT solving (usually within a few seconds). Encoding of such a problem, however,
suffers from the state explosion problem. As such a problem cannot be solved, we
propose approaches to mitigate the problem.

The SLTL®-based approach provides high flexibility of problem specifications,
however, complex SLTL” constructs might drastically increase the runtime. We iden-
tify the usage of NL templates, which implement certain encoding optimisations, as
crucial for a good runtime performance. To further improve the average runtime
in practice, we aim to extend the number of available templates and potentially
improve their structure.

The encoding of the domain, i.e., semantic domain annotations and the workflow
structure, is another critical aspect of encoding, as it takes on average 60% — 80% of
the APE v2 runtime. The domain encoding, however, does not change as long as the
domain model is unchanged. Therefore, we plan to implement a caching function,
that would store the encoding after the first run of the domain, and reuse it in all
the subsequent runs. This approach could improve the runtime performance by the
extent of the domain encoding, therefore, up to 60% — 80%.

We hope that the two optimisation techniques will be sufficient to keep the APE
v2 runtime low even in new upcoming domains. In addition, improvements to the
mechanism that translates SLTL* formulas into propositional logic (e.g., by imple-
menting parallel computing), could reduce the runtime gap between the NL tem-
plate specifications and those specified directly in SLTL”.

Section 7.2 — Third-Party Applications of APEv2 | 131

7.2 Third-Party Applications of APE v2

This section presents an overview of three recent studies in geo- and life-sciences,
which utilise the synthesis approach behind the APE framework. The studies are
used to illustrate the usefulness of the SLTL*-based synthesis approach.

7.2.1 Spatial Network Analysis

In their recent work, Scheider and Jong [119] tackle domain modelling and auto-
mated workflow composition (using APE) in the spatial network analysis domain.
The domain comprises methods for measuring accessibility potentials and analysing
flows over transport networks. The study focuses on the analysis of football clubs
and their fans in the Netherlands. They try to automatically compose solutions to
12 different network analysis tasks, such as “What is the potential number of fans
within a travel distance for municipalities?”. They propose semantic domain annota-
tions in the spatial network analysis domain, and use them to evaluate the synthesis
results.

The domain experts evaluated within the study the quality of 181 workflows. Us-
ing the APE framework over the proposed semantic domain annotations showed
high accuracy of generated solutions. The study demonstrates that when using an
accurate domain model, APE can have a recall of 100% of the optimal solutions.
Finally, manual evaluation of the synthesised solutions showed that 59% of all the
solutions provided by APE over the proposed model were correct (without any se-
mantic or syntactic errors) and could be used.

7.2.2 NL queries for GIS analyses

Recent prototype [122] for natural language (NL) queries for GIS analyses devel-
oped at “Disy”® (original, “Disy Informationssysteme GmbH?”) utilised APE for GIS-
workflow composition. The goal of the study was to develop a platform that users
(non-GIS experts), can use to answer GIS questions, such as, “Where is the clos-
est green area from my location?” or “Where can I go sledging in my city?”. To
accomplish that, the initial prototype aims to answer a set of example queries.

The approach covers four steps, (1) query analysis, where a natural language
processing is used to parse the given question, (2) data selection, where the system
extracts relevant data types (corresponding to the CCD ontology concepts [84]) to
form the specification, (3) generating GIS-workflows using the APE framework and
(4) visualisation of results, by executing the workflows. To accomplish the third step
of the analysis, i.e., to generate the GIS workflows, the system integrates APE using
the provided APE API, described in Chapter 5. The resulting prototype demonstrates
the usability of the APE API, as well as the high quality of the generated solutions.
The study is a promising step towards using APE as a plug-in for larger platforms,
something we envisioned while designing the APE interface.

®Disy is a company that develops software and provides consulting in Data Analytics, Reporting and
GIS (https://www.disy.net).

https://www.disy.net

132 | Chapter 7 — Evaluation

7.2.3 Amplicon Sequence Data Analysis

Marker gene sequencing is a well-known and widely used approach, affordable to
nearly any laboratory, due to a low number of necessary reads per sample. However,
the complexity of the analysis process of the obtained results requires computational
skills that are often beyond the scope of a current molecular biologist/ecologist.
Cascabel Pipeline [1] was developed to address this issue and provide an easy-to-
use amplicon sequence data analysis pipeline. The pipeline uses Snakemake [82] to
integrate the computational steps. It provides a highly versatile software that allows
users customisation at several steps of the pipeline.

We have recently started a collaboration with the authors of the Cascabel Pipeline,
aiming to explore potentially new execution paths for the analysis. The main goal
is to find alternative steps within the pipeline, by exploring the relevant fragment
of bio.tools. Such steps can be used either to verify the existing steps or to be used
as alternatives when needed, e.g., when the user has case-specific restrictions that
prevent the usage of the original pipeline step.

The efforts so far were focused on identifying relevant fragments of bio.tools and
curating the corresponding tool annotations. The preliminary exploration of ampli-
con sequence data analysis workflows using APE v2 shows promising results. The
study generates workflows up to length 20 within the explored solutions that repli-
cate the original pipeline. The goal of the study is to fully replicate the Cascabel
Pipeline and in the process detect equally useful pipeline alternatives.

All the data used to run the case study so far and generate the results is available
at https://github.com/sanctuuary/Automated_Cascabel_Pipeline.

7.3 APE v2 User Experiences

Result/Domain Dependency

Average
Speed Domain annotations Life science
—— Geo-science
Computer and Geo-science
Geo-science
— Geo-science

Outputs Results)
3 5 — Computer science

APE CLI APE Web

APE API
Figure 7.1: Results from the survey of APE users

This section presents results from a survey of six users of the APE framework.
The participants were researchers and students from computer-, life-, geo-science
domains that used APE in their research. They evaluated the usability of the frame-

https://github.com/sanctuuary/Automated_Cascabel_Pipeline

Section 7.3 — APE v2 User Experiences | 133

work, as well as the quality of the results. Figure 7.1 illustrates accumulative results
for the following questions. The average score is highlighted in red, while unan-
swered/skipped questions are traced as 0 and not included in the average score.
+ Results
How would you rate the APE synthesis results in your scientific domain?
+ Domain annotations
How would you rate the quality of your domain annotations?
+ Result/Domain Dependency
According to you, how much does the quality of the solutions depend on the
quality of your domain annotations?
+ Speed
How would you rate the speed of the APE synthesis in your scientific domain?
+ Output
How would you rate the format of outputs that APE provides (text files and fig-
ures)?
+ APE CLI
How would you rate the APE command line interface?
+ APE API
How would you rate the APE API?
+ APE Web
How would you rate APE Web?

The survey included additional open-ended questions’, as well as 30 minutes
follow-up discussion with each of the participants.

The participants agreed that the overall quality of the solutions is of a high level.
They discussed flaws in semantic annotations of their respective domains, and iden-
tified clear effects they have on the quality of the synthesised solutions. The newly
created geo-science domains were rated lower than the more mature life science
domain model, comprising the EDAM ontology [67] and the bio.tools registry [66].

The users identified the following features as important. (1) An approach such
as the one provided by APE API is crucial for automating question-answering frame-
works. Question answering (QA) in GIS is an open problem that requires many com-
ponents to be fully automated. One of the components requires a synthesis approach
that can utilise the existing domain annotations and be easily integrated within a
larger QA framework. (2) Setting up a new domain based on the documentation®
is a straightforward task. In addition, the users acknowledged that APE provides
easy integration with existing domain models (in bio- and life-sciences), as well as
a repository of existing annotations, that can be used as templates. (3) APE API was
well documented and easy to set up. (4) The synthesis process runtime works well
in practice. (5) Figures as output give a nice overview of the workflow structure.
(6) APE Web can be used to explore new workflows, as well as to test whether the
existing domain annotations are suitable for a new case study. For example, when
developing the natural language query answering for GIS analyses [122] the scien-

7Results of the survey are available at https://forms.office.com/Pages/AnalysisPage.aspx?Ana
lyzerToken=MJz6yySn6kQQGhRC67Z0sHG1iVk5E2bH&id=0Fgn10akD06gqkvbWkoQ5zaY_Ew9ftJBinjp4
IZm_YBUQOZGVkxGODBSRDADT jFUMk41RERQUVQyTi4u.

8https://ape-framework.readthedocs.io/

https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=MJz6yySn6kQQGhRC67Z0sHGliVk5E2bH&id=oFgn10akD06gqkv5WkoQ5zaY_Ew9ftJBinjp4IZm_YBUQ0ZGVkxGODBSRDdDTjFUMk41RERQUVQyTi4u
https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=MJz6yySn6kQQGhRC67Z0sHGliVk5E2bH&id=oFgn10akD06gqkv5WkoQ5zaY_Ew9ftJBinjp4IZm_YBUQ0ZGVkxGODBSRDdDTjFUMk41RERQUVQyTi4u
https://forms.office.com/Pages/AnalysisPage.aspx?AnalyzerToken=MJz6yySn6kQQGhRC67Z0sHGliVk5E2bH&id=oFgn10akD06gqkv5WkoQ5zaY_Ew9ftJBinjp4IZm_YBUQ0ZGVkxGODBSRDdDTjFUMk41RERQUVQyTi4u
https://ape-framework.readthedocs.io/

134 | Chapter 7 — Evaluation

tists used APE Web to evaluate the suitability of the existing Geo-Analytical Concepts
domain annotations [84] for their purpose.

Based on the survey results, we identified various points of improvement, some
validated our existing plans, and some established new future steps. The most no-
table suggestions are as follows. (1) APE could be integrated with a tool repository
such as bio.tools, and provide a quality benchmark, i.e., an evaluation of how well-
suited an annotation is for the workflow synthesis. The benchmark would be used
to guide the semantic tool annotation process. In addition, it could provide a metric
that illustrates how often the tool is utilised in synthesised solutions. (2) Semantic
annotations of tools and data types within APE Web could include external refer-
ences that would be displayed as part of solutions. For example, the user might be
interested in a description of a data type, or an external reference to the official web-
site of a tool. (3) Workflow figures could alternatively be provided as RDF graphs.
(4) APE API could allow domain annotations to be provided as data objects, and pro-
vide outputs directly in the json format. (5) Users requested additional constraint
templates that are currently in process of being implemented.

The current semantic tool annotations (e.g., bio.tools) usually do not account for
shims, i.e., scripts used to transform data formats to make two tools compatible. For
example, in the proteomics domain, it is often the case that scripting the shims takes
as long as setting up a workflow. Therefore, having a repository of available shims
would be quite beneficial. The issue with the current repositories is that the shims as
such do not qualify as independent tools, and their place within the semantic anno-
tations is not defined. However, even a repository of possible transformations within
the domain (e.g., a CSV format can be transformed to TSV format), without the con-
crete implementation (scripts) being provided, would be beneficial. It would allow
the synthesis framework to discover new workflows that are not possible without
the needed format transformations.

Finally, the synthesis approach accepts only parameterised tools as a part of the
semantic tool annotations, i.e., the parameters of a tool are always preset for a spe-
cific domain. However, in question answering, tool parameters, such as the radius
of a map overlay are part of the user-specified question. For example, the question
“Which parks are within a 2km radius from a school?” specifies the radius of 2km as
a tool parameter. Therefore, if we are to automatically answer such questions, the
APE framework has to facilitate such tool parameter specifications. Unfortunately,
due to the variety of semantic tool annotations (e.g., APIs, command line tools,
web services, etc.), this is not an easy task. One approach would be to restrict the
domain, before addressing the issue.

CHAPTER 8

Conclusion

136 | Chapter 8 — Conclusion

The goal of this dissertation is to provide a solution to scientific workflow syn-
thesis problems that occur in practice. To provide such a solution, this dissertation
introduces a temporal logic framework which captures the structure of some of the
existing scientific annotations and uses it to synthesise correct-by-construction so-
lutions. Chapter 3 introduces the logical formalism - SLTL*-based workflow syn-
thesis [72], while Chapters 4 and 5 present the implementation of the synthesis
approach - the APE framework [74]. Chapter 6 presents several case studies in geo-
[73, 79, 84] and life-sciences [76] that utilise APE v2 and its SLTL*-based workflow
synthesis. The studies illustrate how a new semantic domain annotation can be set
up and how existing ones can be used. Each of the case studies shows the benefits
of specific features of the SLTL*-based synthesis approach. Finally, Chapter 7 as-
sesses the usability of the synthesis approach. It demonstrates a promising runtime
performance of APE v2, provides three relevant applications of the framework, and
presents user experiences obtained as a result of a survey of APE users.

8.1 Outlook

The dissertation demonstrates the usability and versatility of the APE framework and
the underlying SLTL*-based synthesis approach. This section presents an outlook on
future developments of the approach. The future directions can be categorised as
follows, (1) extending further SLTL* synthesis problem, (2) improvements of the
propositional encoding and runtime, (3) improvements of the APE framework, and
(4) improvements of the existing semantic domain annotations.

The presented case studies have not identified substantial limitations in the SLTL*
syntax which reflects on the quality of problem specifications, and in turn on the
generated solutions. However, there are some concepts that should be captured ac-
curately. The results of the survey confirmed the need for a repository of shims (i.e.,
for format conversion tools that change the data format but maintain the data type),
therefore it would be beneficial if the formalism can distinguish between shims and
regular operations on a conceptual level. In addition, it would be useful if the for-
malism could quantify the taxonomy terms (such as constraints that should hold for
all tools in a set individually, e.g. when using constraints to avoid repetition of the
same tools).

Due to the low complexity of the bounded approach and its suitability for the
existing use cases, we opted for the SLTL*-based bounded workflow synthesis ap-
proach (see Chapter 3). On the other hand, the SLTL*-based dynamic workflow
synthesis supports the synthesis of workflows of arbitrary lengths, at the expense of
solving complexity. Such a synthesis approach would be suitable for a framework
that compares automatically the composed solutions, and thus the workflow length
does not play a role in the evaluation. The automated evaluation and benchmarking
are, however, difficult to achieve within the framework, as they require resources
that go beyond the domain annotations, such as annotated benchmarking datasets,
executable files that correspond to the annotated operations, an execution platform,
etc. Developing such a platform is part of an upcoming project, as discussed be-
low. The dynamic synthesis approach could, therefore, be incorporated with such a
platform.

Section 8.1 — Outlook | 137

Section 7.1 discusses the limitations of the existing transformation from SLTL®
formulas into a propositional encoding. As previously mentioned a caching function
would provide a substantial runtime improvement as it would omit the domain en-
coding. The improvement would be crucial when it comes to larger domains (e.g.,
proteomics domain). When it comes to problem specification encoding, providing
more diverse NL templates, and/or allowing their composition, would decrease the
need for constraints specified directly in SLTL?, and improve the overall runtime per-
formance. However, if we want to have a more substantial specification encoding
improvement, the translation algorithm itself should be optimised. As an exam-
ple, an optimisation could remove unnecessary recursion calls in the case of nested
modal operators, or employ parallel computing when transforming multiple simi-
lar fragments of the specification. Finally, the solving runtime could potentially be
improved by using a different SAT solver. Another option would be to change the
reasoning engine to an SMT solver (e.g., Z3), however, our preliminary implemen-
tation' resulted in a higher runtime. In addition, due to the fact that the implemen-
tation of Z3 is not available as a Java library, and has to be installed separately, the
resulting APE library lost its “portability”.

A web-based graphical interface has a lot of potential for improving the overall
automated workflow composition process. At the moment the visual comparison of
generated workflows is based on pairwise differences in the structure. The platform
could cluster together similar solutions and visualise them. This way, the user would
be able to explore more solutions and focus on structures that they find interesting.

Section 5.5 points out that none of the mentioned synthesis approaches provides
automated benchmarking of the solutions. Such an approach is, however, crucial for
providing production-ready workflows in an automated fashion. This motivated an
upcoming collaborative project of international life and computer researchers [92].
The project is supported by the Netherlands eScience Center? and will begin in
September 2022. It aims to provide a platform that supports automated exploration,
implementation, execution and benchmarking in one coherent framework. The re-
sulting platform should assist the workflow developer in systematically exploring
and evaluating possible workflows for a specific research question in bioinformatics.
The platform aims to combine the APE synthesis approach, used for generating the
candidate solutions, with a benchmarking platform based on the OpenEBench [25]
platform for community-based benchmarking of bioinformatics resources.

Finally, the heuristic of searching for the shortest solutions provides a workable
approach in most cases, however, it is not ideal. The synthesis research community
regards particular domain-specific search heuristics (exploiting e.g. non-functional
properties or additional knowledge about, for example, the preferred ordering of
tools) as crucial towards efficient workflow synthesis in practice [20, 123]. The
framework could use the WorkflowHub?® platform, which has been recently released
to host semantically annotated workflows, to assess the non-functional tool prop-
erties (e.g., the frequency of tool occurrences) and rank the solutions according to

!SMT-based implementation of APE is available at https://github.com/sanctuuary/APE/tree/E
xtendedBitVecImplementation.

’https://www.esciencecenter.nl/

Shttps://workflowhub.eu/

https://github.com/sanctuuary/APE/tree/ExtendedBitVecImplementation
https://github.com/sanctuuary/APE/tree/ExtendedBitVecImplementation
https://www.esciencecenter.nl/
https://workflowhub.eu/

138 | Chapter 8 — Conclusion

derived criteria. The approach could later be extended to workflow repositories,
such as a GIS repository of expert workflows. The repository is currently being
developed as part of the Question-based analysis of Geographic Information with
Semantic Queries (QUANGIS) project* and aims to collect workflows of high quality
made by domain experts.

8.2 Concluding Remarks

This dissertation tackles the scientific workflow synthesis problem. It introduces
the SLTL”-based synthesis approach to overcome the limitations of the existing
SLTL-based formalism. The dissertation introduces a transformation algorithm that
translates the SLTL” specifications into propositional logic. Furthermore, the trans-
formation is implemented as part of the APE framework, which uses the MiniSAT
solver [38] to synthesise a solution for the given propositional encoding.

The availability of APE as a concrete scientific workflow synthesis tool allowed
for collaborations and its applications in life- and geo-science domains. The APE
framework was successfully used to automate workflow composition in those do-
mains, while the experiences from these applications provided valuable feedback
which motivated APE development, including many of the existing features.

The APE framework demonstrates a favourable runtime performance. In addition,
results from the survey of APE users show positive user experiences. Although the
framework is still being actively developed and improved, the research presented
answers the goals set by this dissertation. The provided SLTL”-based formalism (1)
supports direct integration with existing semantic domain annotations in life- and
geo-sciences, (2) provides an intuitive problem specification format, (3) generates
well-formatted and suitable candidate solutions, and finally, (4) it is distributed as a
lightweight and portable library.

“https://github.com/simonscheider/QuAnGIS/tree/master/WorkflowRepository

https://github.com/simonscheider/QuAnGIS/tree/master/WorkflowRepository

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Abdala Asbun, A., Besseling, M. A., Balzano, S., Bleijswijk, J. D. L. van,
Witte, H. J., Villanueva, L. & Engelmann, J. C., “Cascabel: A Scalable and
Versatile Amplicon Sequence Data Analysis Pipeline Delivering Reproducible
and Documented Results”, Frontiers in Genetics, vol. 11, 2020, URL: https:
//www.frontiersin.org/article/10.3389/fgene.2020.489357 (visited
on 06/03/2022).

Afgan, E., Baker, D., Batut, B., dendBeek, M. van, Bouvier, D., ¢ech, M.,
Chilton, J., Clements, D., Coraor, N., Griining, B. A., Guerler, A., Hillman-
Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J.,
Taylor, J., Nekrutenko, A. & Blankenberg, D., “The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2018 update”,
Nucleic Acids Research, vol. 46, no. W1, July 2018, W537-W544, DOI: 10.
1093/nar/gky379, URL: https://academic.oup.com/nar/article/46/
W1/W537/5001157 (visited on 09/27/2018).

Al-Areqi, S., Lamprecht, A.-L. & Margaria, T., “Constraints-driven automatic
geospatial service composition: workflows for the analysis of sea-level rise
impacts”, in: Computational Science and Its Applications — ICCSA 2016, ed. by
Gervasi, O. et al., Cham: Springer International Publishing, 2016, pp. 134-
150, 1SBN: 978-3-319-42111-7.

Albrecht, J., “Universal analytical GIS operations: A task-oriented system-
atization of data structure-independent GIS functionality”, Geographic infor-
mation research: Transatlantic perspectives, 1998, pp. 577-591.

Alechina, N., Brazdil, T., De Giacomo, G., Felli, P., Logan, B. & Vardi, M. Y.,
“Unbounded orchestrations of transducers for manufacturing”, in: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 2646—
2653.

Altintas, 1., Crawl, D., Crosby, C. J. & Cornillon, P., “Scientific workflows for
the geosciences: an emerging approach to building integrated data analy-
sis systems”, in: Geoinformatics: Cyberinfrastructure for the Solid Earth Sci-
ences, ed. by Keller, G. R. & Baru, C., Cambridge University Press, 2011,
pp- 237250, DOI: 10.1017/CB09780511976308.016.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K., Raghothaman, M., Seshia,
S. A,, Singh, R., Solar-Lezama, A., Torlak, E. & Udupa, A., “Syntax-guided

https://www.frontiersin.org/article/10.3389/fgene.2020.489357
https://www.frontiersin.org/article/10.3389/fgene.2020.489357
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
https://academic.oup.com/nar/article/46/W1/W537/5001157
https://academic.oup.com/nar/article/46/W1/W537/5001157
https://doi.org/10.1017/CBO9780511976308.016

140 |

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography

synthesis”, in: 2013 Formal Methods in Computer-Aided Design, Oct. 2013,
pp- 1-8.

Amstutz, P., Crusoe, M. R., Tijani¢, N., et al., “Common Workflow Language,
v1.0”, July 2016, DOI: 10.6084/m9 . figshare.3115156.v2, URL: https:
//www.research.manchester.ac.uk/portal/en/publications/common-
workflow - language - v10(741919£f5-d0ab-4557-9763-b811e911423b)
/publications.html (visited on 02/04/2020).

Antoniou, G. & Harmelen, F. van, “Web Ontology Language: OWL”, en, in:
Handbook on Ontologies, ed. by Staab, S. & Studer, R., International Hand-
books on Information Systems, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 67-92, (visited on 02/26/2019).

Athanasis, N., Kalabokidis, K., Vaitis, M. & Soulakellis, N., “Towards a
semantics-based approach in the development of geographic portals”, Com-
puters & Geosciences, vol. 35, no. 2, 2009, pp. 301-308.

Atkinson, M., Gesing, S., Montagnat, J. & Taylor, 1., “Scientific workflows:
Past, present and future”, Future Generation Computer Systems, vol. 75, Oct.
2017, pp. 216-227, pol: 10.1016/j . future.2017.05.041, URL: http:
//www.sciencedirect.com/science/article/pii/S0167739X17311202
(visited on 08/02/2018).

Atkinson, M., Gesing, S., Montagnat, J. & Taylor, I., “Scientific workflows:
Past, present and future”, Future Generation Computer Systems, vol. 75,
2017, pp. 216 -227, DOI: https://doi.org/10.1016/j.future.2017.
05.041.

Baker, C. J. O., Manir, M. S. A., Brenas, J. H., Zinszer, K. & Shaban-Nejad, A.,
Applied Ontologies for Global Health Surveillance and Pandemic Intelligence,
en, Pages: 2020.10.17.20214460, Oct. 2020, DOI: 10.1101/2020.10.17.
20214460, URL: https://www.medrxiv.org/content/10.1101/2020.10.
17.20214460v1 (visited on 06/24/2022).

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-
ick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J. & Thomas,
D., Manifesto for Agile Software Development, 2001, URL: http : / / www .
agilemanifesto.org/.

Belardinelli, F., Lomuscio, A. & Patrizi, F., “Verification of agent-based arti-
fact systems”, J. Artif. Intell. Res., vol. 51, 2014, pp. 333-376, DOI: 10.1613/
jair.4424, URL: https://doi.org/10.1613/jair.4424.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kotter, T., Meinl, T., Ohl,
P., Thiel, K. & Wiswedel, B., “Knime-the konstanz information miner: version
2.0 and beyond”, AcM SIGKDD explorations Newsletter, vol. 11, no. 1, 2009,
pp. 26-31.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O. & Zhu, Y., “Bounded
model checking”, Advances in Computers, vol. 58, 2003, pp. 117-148.
bio-tools/biotoolsSchema, original-date: 2015-05-05T15:52:46Z, Dec. 2019,
URL: https ://github . com/bio - tools/biotoolsSchema (visited on
02/04/2020).

https://doi.org/10.6084/m9.figshare.3115156.v2
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b)/publications.html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b)/publications.html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b)/publications.html
https://www.research.manchester.ac.uk/portal/en/publications/common-workflow-language-v10(741919f5-d0ab-4557-9763-b811e911423b)/publications.html
https://doi.org/10.1016/j.future.2017.05.041
http://www.sciencedirect.com/science/article/pii/S0167739X17311202
http://www.sciencedirect.com/science/article/pii/S0167739X17311202
https://doi.org/https://doi.org/10.1016/j.future.2017.05.041
https://doi.org/https://doi.org/10.1016/j.future.2017.05.041
https://doi.org/10.1101/2020.10.17.20214460
https://doi.org/10.1101/2020.10.17.20214460
https://www.medrxiv.org/content/10.1101/2020.10.17.20214460v1
https://www.medrxiv.org/content/10.1101/2020.10.17.20214460v1
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1613/jair.4424
https://doi.org/10.1613/jair.4424
https://doi.org/10.1613/jair.4424
https://github.com/bio-tools/biotoolsSchema

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Bibliography | 141

Blair, D. C., “Information retrieval, 2nd ed. c.j. van rijsbergen. london: but-
terworths; 1979: 208 pp. price: $32.50”, Journal of the American Society for
Information Science, vol. 30, no. 6, 1979, pp. 374-375, DOI: 10.1002/as1i.
4630300621, eprint: https://asistdl.onlinelibrary.wiley.com/doi/
pdf/10.1002/asi.4630300621, URL: https://asistdl.onlinelibrary.
wiley.com/doi/abs/10.1002/asi.4630300621.

Bodik, R. & Jobstmann, B., “Algorithmic Program Synthesis: Introduction”,
International Journal on Software Tools for Technology Transfer, vol. 15, no. 5,
Oct. 2013, pp. 397-411, (visited on 09/12/2018).

Brauner, J., “Formalizations for geooperators-geoprocessing in Spatial Data
Infrastructures”, PhD thesis, Technische Universitit Dresden, 2015.
Bylander, T., “The computational complexity of propositional STRIPS plan-
ning”, Artificial Intelligence, vol. 69, no. 1-2, 1994, pp. 165-204.

Calvanese, D., De Giacomo, G., Montali, M. & Patrizi, F., “Verification and
synthesis in description logic based dynamic systems”, in: Web Reasoning
and Rule Systems - 7th International Conference, RR 2013, Proceedings, ed.
by Faber, W. & Lembo, D., vol. 7994, Lecture Notes in Computer Science,
Springer, 2013, pp. 50-64, 1SBN: 978-3-642-39665-6, DOI: 10.1007/978~
3-642-39666-3, URL: https://doi.org/10.1007/978-3-642-39666-3.
Calvanese, D., De Giacomo, G., Montali, M. & Patrizi, F., “First-order u-
calculus over generic transition systems and applications to the situation
calculus”, Inf. Comput., vol. 259, no. 3, 2018, pp. 328-347, poI: 10.1016/
j.1c.2017.08.007, URL: https://doi.org/10.1016/j.1c.2017.08.007.
Capella-Gutierrez, S., Iglesia, D. d. 1., Haas, J., Lourenco, A., Fernandez,
J. M., Repchevsky, D., Dessimoz, C., Schwede, T., Notredame, C., Gelpi,
J. L. & Valencia, A., “Lessons learned: recommendations for establishing crit-
ical periodic scientific benchmarking”, bioRxiv, 2017, DOI: 10.1101/181677,
eprint: https://www.biorxiv.org/content/early/2017/08/31/181677.
full.pdf, URL: https://www.biorxiv.org/content/early/2017/08/31/
181677.

Chen, L., Shadbolt, N., Goble, C., et al., “Towards a Knowledge-Based Ap-
proach to Semantic Service Composition”, in: The SemanticWeb - ISWC 2003,
2003, pp. 319334.

Chrisman, N., “Exploring geographic information systems, 2nd edition”, in:
Wiley, 2002, chap. Transformations and operations, pp. 103-242.

Clarke, E., Grumberg, O., Jha, S., Lu, Y. & Veith, H., “Counterexample-guided
abstraction refinement”, in: Computer Aided Verification, ed. by Emerson,
E. A. & Sistla, A. P., Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 154-169, 1SBN: 978-3-540-45047-4.

Coyne, M. S. & Godley, B. J., “Satellite Tracking and Analysis Tool (STAT):
an integrated system for archiving, analyzing and mapping animal tracking
data”, Marine Ecology Progress Series, vol. 301, Oct. 2005, pp. 1-7, (visited
on 01/22/2019).

De Giacomo, G., Lespérance, Y. & Patrizi, F., “Bounded situation calculus
action theories”, Artif. Intell., vol. 237, 2016, pp. 172-203, DOI: 10.1016/j.

https://doi.org/10.1002/asi.4630300621
https://doi.org/10.1002/asi.4630300621
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.4630300621
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.4630300621
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.4630300621
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.4630300621
https://doi.org/10.1007/978-3-642-39666-3
https://doi.org/10.1007/978-3-642-39666-3
https://doi.org/10.1007/978-3-642-39666-3
https://doi.org/10.1016/j.ic.2017.08.007
https://doi.org/10.1016/j.ic.2017.08.007
https://doi.org/10.1016/j.ic.2017.08.007
https://doi.org/10.1101/181677
https://www.biorxiv.org/content/early/2017/08/31/181677.full.pdf
https://www.biorxiv.org/content/early/2017/08/31/181677.full.pdf
https://www.biorxiv.org/content/early/2017/08/31/181677
https://www.biorxiv.org/content/early/2017/08/31/181677
https://doi.org/10.1016/j.artint.2016.04.006

142 |

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Bibliography

artint.2016.04.006, URL: https://doi.org/10.1016/j.artint.2016.
04.006.

De Giacomo, G. & Vardi, M. Y., “Synthesis for LTL and LDL on finite traces”,
in: Proceedings of the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, ed. by Yang, Q. & Wooldridge, M. J., AAAI Press,
2015, pp. 1558-1564, URL: http://ijcai.org/proceedings/2015.

De Giacomo, G., Vardi, M. Y., Felli, P., Alechina, N. & Logan, B., “Synthesis
of orchestrations of transducers for manufacturing”, in: Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Di Tommaso, P., Chatzou, M., Floden, E. W. & others, “Nextflow enables
reproducible computational workflows”, Nature Biotechnology, vol. 35, Apr.
2017, pp. 316-319, pOI: 10.1038/nbt . 3820.

DiBernardo, M., Pottinger, R. & Wilkinson, M., “Semi-automatic web service
composition for the life sciences using the biomoby semantic web frame-
work”, Journal of Biomedical Informatics, vol. 41, no. 5, 2008, Semantic
Mashup of Biomedical Data, pp. 837-847, DOI: https://doi.org/10.
1016/ j . jbi.2008.02. 005, URL: https://www.sciencedirect . com/
science/article/pii/S1532046408000269.

Dijkstra, E. W., “Program Inversion”, in: Program Construction, International
Summer School, London, UK, UK: Springer-Verlag, 1979, pp. 54-57, ISBN:
978-3-540-09251-3, (visited on 03/25/2019).

Dingle, H., Migration: the biology of life on the move, Oxford University Press,
USA, 2014.

Dodge, K. L., Galuardi, B., Miller, T. J. & others, “Leatherback Turtle Move-
ments, Dive Behavior, and Habitat Characteristics in Ecoregions of the
Northwest Atlantic Ocean”, PLoS ONE, vol. 9, no. 3, Mar. 2014, (visited on
01/22/2019).

EEN, N., “MiniSat : A SAT solver with conflict-clause minimization”, Proc.
SAT-05: 8th Int. Conf on Theory and Applications of Satisfiability Testing,
2005, pp. 502-518, (visited on 09/23/2018).

Farnaghi, M. & Mansourian, A., “Disaster planning using automated compo-
sition of semantic ogc web services: a case study in sheltering”, Computers,
Environment and Urban Systems, vol. 41, 2013, pp. 204-218.

Fitzner, D., Hoffmann, J. & Klien, E., “Functional description of geoprocess-
ing services as conjunctive datalog queries”, Geolnformatica, vol. 15, no. 1,
2011, pp. 191-221.

Freitag, B., Steffen, B., Margaria, T. & Zukowski, U., “An Approach to In-
telligent Software Library Management”, in: Proceedings of the 4th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA),
World Scientific Press, 1995, pp. 7178, 1SBN: 981-02-2220-3, URL: http:
//portal.acm.org/citation.cfm?id=646710.702986.

Froleyks, N., Heule, M., Iser, M., Jarvisalo, M. & Suda, M., “Sat competi-
tion 20207, Artificial Intelligence, vol. 301, 2021, p. 103572, DOI: https:
//doi.org/10.1016/ j .artint . 2021 . 103572, URL: https ://www .
sciencedirect.com/science/article/pii/S0004370221001235.

https://doi.org/10.1016/j.artint.2016.04.006
https://doi.org/10.1016/j.artint.2016.04.006
https://doi.org/10.1016/j.artint.2016.04.006
https://doi.org/10.1016/j.artint.2016.04.006
http://ijcai.org/proceedings/2015
https://doi.org/10.1038/nbt.3820
https://doi.org/https://doi.org/10.1016/j.jbi.2008.02.005
https://doi.org/https://doi.org/10.1016/j.jbi.2008.02.005
https://www.sciencedirect.com/science/article/pii/S1532046408000269
https://www.sciencedirect.com/science/article/pii/S1532046408000269
http://portal.acm.org/citation.cfm?id=646710.702986
http://portal.acm.org/citation.cfm?id=646710.702986
https://doi.org/https://doi.org/10.1016/j.artint.2021.103572
https://doi.org/https://doi.org/10.1016/j.artint.2021.103572
https://www.sciencedirect.com/science/article/pii/S0004370221001235
https://www.sciencedirect.com/science/article/pii/S0004370221001235

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Bibliography | 143

Galton, A., “States, processes and events, and the ontology of causal re-
lations”, Frontiers in Artificial Intelligence and Applications, vol. 239, Jan.
2012, pp. 279-292, DOI: 10.3233/978-1-61499-084-0-279.

Garijo, D., “Al Buzzwords Explained: Scientific Workflows”, AI Matters,
vol. 3, no. 1, May 2017, pp. 4-8, DOI: 10 . 1145 / 3054837 . 3054839,
URL: http://doi . acm.org/10. 1145 /3054837 . 3054839 (visited on
10/24/2018).

GDAL/OGR contributors, GDAL/OGR Geospatial Data Abstraction software
Library, Open Source Geospatial Foundation, 2022, DOI: 10.5281/zenodo.
5884351, URL: https://gdal.org.

Gil, Y., Ratnakar, V., Kim, J. & others, “Wings: Intelligent Workflow-Based
Design of Computational Experiments”, IEEE Intelligent Systems, vol. 26,
no. 1, Jan. 2011, pp. 62-72.

Goecks, J., Nekrutenko, A., Taylor, J. & others, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences”, Genome Biology, vol. 11, no. 8, Aug.
2010, R86, DOI: 10.1186/gb-2010-11-8-r86, URL: https://doi.org/10.
1186/gb-2010-11-8-r86 (visited on 02/04/2020).

Green, C., “Application of Theorem Proving to Problem Solving”, in: Pro-
ceedings of the 1st International Joint Conference on Artificial Intelligence,
LJCAI'69, event-place: Washington, DC, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1969, pp. 219-239, (visited on 03/25/2019).
Gulwani, S, “Programming by examples (and its applications in data wran-
gling)”, in: Apr. 2016, pp. 137-158.

Gulwani, S., “Dimensions in Program Synthesis”, in: Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declar-
ative Programming, PPDP 10, event-place: Hagenberg, Austria, New York,
NY, USA: ACM, 2010, pp. 13-24, 1SBN: 978-1-4503-0132-9, (visited on
03/21/2019).

Gulwani, S., “Automating String Processing in Spreadsheets Using Input-
output Examples”, in: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, event-place:
Austin, Texas, USA, New York, NY, USA: ACM, 2011, pp. 317-330, ISBN:
978-1-4503-0490-0, (visited on 03/25/2019).

Gulwani, S., Jha, S., Tiwari, A. & Venkatesan, R., “Synthesis of Loop-free
Programs”, in: Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI "11, event-place: San
Jose, California, USA, New York, NY, USA: ACM, 2011, pp. 62-73, ISBN:
978-1-4503-0663-8, (visited on 03/21/2019).

Gulwani, S., Polozov, O. & Singh, R., Program Synthesis, English, vol. 4,
Foundations and Trends in Programming Languages 1-2, now, July 2017,
URL: https://www.nowpublishers.com/article/Details/PGL-010 (vis-
ited on 08/02/2018).

Guptill, S. C. & Morrison, J. L., Elements of spatial data quality, Elsevier,
2013.

https://doi.org/10.3233/978-1-61499-084-0-279
https://doi.org/10.1145/3054837.3054839
http://doi.acm.org/10.1145/3054837.3054839
https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.5884351
https://gdal.org
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1186/gb-2010-11-8-r86
https://www.nowpublishers.com/article/Details/PGL-010

144 |

[55]

[56]

[57]

[58]

[591]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Bibliography

Haverkort, K., Kasalica, V., Eelman, S., Janse, A., Rademaker, M., Tjoeng,
M., Dam, I. van, Wal, J. van der, Nieuwenhuizen, S. van, Wolters, R., Wouts,
S. & Lamprecht, A.-L., sanctuuary/APE-Web: APE Web 1.3.3, version v1.3.3,
Nov. 2021, poI: 10.5281/zenodo . 5638953, URL: https://doi.org/10.
5281/zenodo.5638953.

Henriksen, J. G., Jensen, J., Jgrgensen, M., Klarlund, N., Paige, R., Rauhe,
T. & Sandholm, A., “Mona: monadic second-order logic in practice”, in: In-
ternational Workshop on Tools and Algorithms for the Construction and Anal-
ysis of Systems, Springer, 1995, pp. 89-110.

Hofer, B., Mas, S., Brauner, J. & Bernard, L., “Towards a knowledge base
to support geoprocessing workflow development”, International Journal of
Geographical Information Science, vol. 31, no. 4, 2017, pp. 694-716.

Hofer, B., Papadakis, E. & Mis, S., “Coupling knowledge with gis operations:
the benefits of extended operation descriptions”, ISPRS International Journal
of Geo-Information, vol. 6, no. 2, 2017, p. 40.

Hopcroft, J. E., Motwani, R. & Ullman, J. D., “Introduction to automata the-
ory, languages, and computation, 2nd edition”, ACM SIGACT News, vol. 32,
no. 1, Mar. 2001, pp. 60-65, DOI: 10.1145/568438 . 568455, URL: https :
//doi.org/10.1145/568438.568455 (visited on 07/23/2020).

Tannopollo, A., ianno/pyco: SCP2018, version SCP2018, Nov. 2017, DOI: 10.
5281/zenodo.1066685, URL: https://doi.org/10.5281/zenodo.1066685.
Iannopollo, A., Tripakis, S. & Sangiovanni-Vincentelli, A., “Constrained Syn-
thesis from Component Libraries”, en, in: Formal Aspects of Component Soft-
ware, ed. by Kouchnarenko, O. & Khosravi, R., Lecture Notes in Computer
Science, Cham: Springer International Publishing, 2017, pp. 92-110, 1SBN:
978-3-319-57666-4, DOI: 10.1007/978-3-319-57666-4_7.

Ilkay Altintas Chad Berkley, E. J. et al., “Kepler: An Extensible System for
Design and Execution of Scientific Workflows”, in: Proceedings of SSDBM
2004, IEEE Computer Society, 2004, pp. 2123, DOI: 10.1.1.5.9905.

Ison, J., Ioan, H., Rydza, E., Chmura, P., Rapacki, K., Gaignard, A.,
Schwémmle, V., Helden, J. van, Kalas, M. & Ménager, H., “Biotoolsschema:
a formalized schema for bioinformatics software description”, GigaScience,
vol. 10, Jan. 2021, DOI: 10.1093/gigascience/giaalb7.

Ison, J., Kalas, M., Jonassen, I., et al., “EDAM: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats”, Bioinformatics,
2013.

Ison, J., Ménager, H., Brancotte, B., Jaaniso, E., Salumets, A., Racek, T.,
Lamprecht, A.-L., Palmblad, M., Kalas, M., Chmura, P., Hancock, J. M.,
Schwimmle, V. & Ienasescu, H.-I., “Community curation of bioinformatics
software and data resources”, Briefings in Bioinformatics, Oct. 2019, bbz075,
DOI: 10.1093/bib/bbz075, eprint: https://academic . oup. com/bib/
article-pdf/doi/10.1093/bib/bbz075/30157114/bbz075 . pdf, URL:
https://doi.org/10.1093/bib/bbz075.

Ison, J., Rapacki, K., Ménager, H. & others, “Tools and data services registry:
a community effort to document bioinformatics resources”, Nucleic Acids Re-
search, vol. 44, no. D1, Jan. 2016, pp. D38-47.

https://doi.org/10.5281/zenodo.5638953
https://doi.org/10.5281/zenodo.5638953
https://doi.org/10.5281/zenodo.5638953
https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://doi.org/10.5281/zenodo.1066685
https://doi.org/10.5281/zenodo.1066685
https://doi.org/10.5281/zenodo.1066685
https://doi.org/10.1007/978-3-319-57666-4_7
https://doi.org/10.1.1.5.9905
https://doi.org/10.1093/gigascience/giaa157
https://doi.org/10.1093/bib/bbz075
https://academic.oup.com/bib/article-pdf/doi/10.1093/bib/bbz075/30157114/bbz075.pdf
https://academic.oup.com/bib/article-pdf/doi/10.1093/bib/bbz075/30157114/bbz075.pdf
https://doi.org/10.1093/bib/bbz075

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Bibliography | 145

Ison, J. C., Ménager, H., Brancotte, B., Jaaniso, E., Salumets, A., Racek,
T., Lamprecht, A., Palmblad, M., Kalas, M., Chmura, P., Hancock, J. M.,
Schwémmle, V. & Ienasescu, H., “Community curation of bioinformatics
software and data resources”, Briefings Bioinform., vol. 21, no. 5, 2020,
pp. 1697-1705, DOI: 10.1093/bib/bbz075, URL: https://doi.org/10.
1093/bib/bbz075.

Jesus, J. de, Walker, P., Grant, M. & Groom, S., “Wps orchestration using
the taverna workbench: the escience approach”, Computers & Geosciences,
vol. 47, 2012, pp. 75-86.

Jha, S., Gulwani, S., Seshia, S. A. & Tiwari, A., “Oracle-guided Component-
based Program Synthesis”, in: Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ICSE 10, event-place:
Cape Town, South Africa, New York, NY, USA: ACM, 2010, pp. 215-224,
ISBN: 978-1-60558-719-6, DOI: 10. 1145/ 1806799 . 1806833, URL: http:
//doi.acm.org/10.1145/1806799.1806833 (visited on 03/22/2019).
Johnston, K., Ver Hoef, J. M., Krivoruchko, K. & Lucas, N., Using ArcGIS
geostatistical analyst, vol. 380, Esri Redlands, 2001.

Jones, C. B. & Purves, R. S., “Geographical information retrieval”, Inter-
national Journal of Geographical Information Science, vol. 22, no. 3, 2008,
pp. 219-228.

Kasalica, V., Alechina, N., Lamprecht, A.-L. & Logan, B., “Instance-Aware
Synthesis of Workflows Specified in Temporal Logic”, Journal of Artificial
Intelligence Research (JAIR), 2023, Submitted and under review.

Kasalica, V. & Lamprecht, A.-L., “Workflow Discovery Through Semantic
Constraints: A Geovisualization Case Study”, in: Computational Science and
Its Applications — ICCSA 2019, Cham: Springer International Publishing,
2019, pp. 473-488, 1SBN: 978-3-030-24302-9.

Kasalica, V. & Lamprecht, A.-L., “APE: A Command-Line Tool and API for
Automated Workflow Composition”, in: Computational Science — ICCS 2020,
ed. by Krzhizhanovskaya, V. V., Zavodszky, G., Lees, M. H., Dongarra, J. J.,
Sloot, P. M. A., Brissos, S. & Teixeira, J., Cham: Springer International Pub-
lishing, 2020, pp. 464-476, 1SBN: 978-3-030-50436-6.

Kasalica, V. & Lamprecht, A.-L., “Workflow Discovery with Semantic Con-
straints: The SAT-Based Implementation of APE”, Electronic Communications
of the EASST, vol. 78, May 2020, DOI: 10.14279/tuj . eceasst.78.1092,
URL: https://journal.ub.tu-berlin.de/eceasst/article/view/1092
(visited on 05/17/2020).

Kasalica, V., Schwammle, V., Palmblad, M., Ison, J. & Lamprecht, A.-L.,
“APE in the Wild: Automated Exploration of Proteomics Workflows in the
bio.tools Registry”, Journal of Proteome Research, vol. 20, no. 4, 2021, PMID:
33720735, pp. 2157-2165, DOI: 10.1021/acs. jproteome.0c00983, eprint:
https://doi.org/10.1021/acs. jproteome.0c00983, URL: https://doi.
org/10.1021/acs. jproteome.0c00983.

Kautz, H. & Selman, B., “Planning as satisfiability”, in: Proceedings of the
10th European conference on Artificial intelligence, ECAI 92, Vienna, Austria:

https://doi.org/10.1093/bib/bbz075
https://doi.org/10.1093/bib/bbz075
https://doi.org/10.1093/bib/bbz075
https://doi.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
https://doi.org/10.14279/tuj.eceasst.78.1092
https://journal.ub.tu-berlin.de/eceasst/article/view/1092
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983
https://doi.org/10.1021/acs.jproteome.0c00983

146 |

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Bibliography

John Wiley & Sons, Inc., Aug. 1992, pp. 359-363, 1SBN: 978-0-471-93608-4,
(visited on 02/01/2020).

Kautz, H. & Selman, B., “Pushing the envelope: planning, propositional
logic, and stochastic search”, in: Proceedings of the thirteenth national con-
ference on Artificial intelligence - Volume 2, AAAT'96, Portland, Oregon: AAAI
Press, Aug. 1996, pp. 1194-1201, 1SBN: 978-0-262-51091-2, (visited on
02/01/2020).

Kazemi Beydokhti, M., Duckham, M., Griffin, A. & Kasalica, V., “Geo-Event
Question Answering Systems: A Preliminary Research Study”, Sept. 2021,
DOI: 10 . 25436 /E2KW2T, URL: https : //escholarship . org/uc/item/
9¢s309kd (visited on 11/01/2021).

Kleyheeg, E., Dijk, J. G. B. van, Tsopoglou-Gkina, D. & others, “Movement
patterns of a keystone waterbird species are highly predictable from land-
scape configuration”, Movement Ecology, vol. 5, no. 1, Feb. 2017, p. 2, (vis-
ited on 02/05/2019).

Kona, S., Bansal, A., Blake, M. & Gupta, G., “Generalized Semantics-Based
Service Composition”, in: ICWS 2008, IEEE Computer Society, Sept. 2008,
pp. 219-227.

Koster, J. & Rahmann, S., “Snakemakea scalable bioinformatics workflow
engine”, Bioinformatics, vol. 28, no. 19, Oct. 2012, pp. 2520-2522, por:
10.1093/bioinformatics/bts480, URL: https://academic. oup. com/
bioinformatics/article/28/19/2520/290322 (visited on 02/04/2020).
Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski,
M. & Kays, R., “The Movebank data model for animal tracking”, Environmen-
tal Modelling & Software, vol. 26, no. 6, June 2011, pp. 834-835, (visited on
02/15/2019).

Kruiger, J. F., Kasalica, V., Meerlo, R., Lamprecht, A.-L., Nyamsuren,
E. & Scheider, S., “Loose programming of GIS workflows with geo-
analytical concepts”, Transactions in GIS, vol. 25, no. 1, 2021, eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.12692, pp. 424-449,
DOI: 10.1111/tgis. 12692, URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/tgis. 12692 (visited on 09/02/2021).

Kuhn, W., “Core concepts of spatial information for transdisciplinary re-
search”, International Journal of Geographical Information Science, vol. 26,
no. 12, 2012, pp. 2267-2276.

Kuhn, W. & Ballatore, A., “Designing a language for spatial computing”, in:
AGILE 2015, Springer, 2015, pp. 309-326.

Kumar, A., Rasche, H., Griining, B. & Backofen, R., “Tool recommender sys-
tem in Galaxy using deep learning”, GigaScience, vol. 10, no. 1, Jan. 2021,
giaal52, DOI: 10.1093/gigascience/giaalb2, eprint: https://academic.
oup.com/gigascience/article-pdf/10/1/giaal52/35531829/giaalb2\
_reviewer\ _4\ _report\ _original_submission.pdf, URL: https://
doi.org/10.1093/gigascience/giaalb2.

Kuncak, V., Mayer, M., Piskac, R., Suter, P., Kuncak, V., Mayer, M., Piskac,
R. & Suter, P.,, “Complete functional synthesis”, ACM SIGPLAN Notices,
vol. 45, no. 6, June 2010, pp. 316-329, (visited on 03/22/2019).

https://doi.org/10.25436/E2KW2T
https://escholarship.org/uc/item/9cs309kd
https://escholarship.org/uc/item/9cs309kd
https://doi.org/10.1093/bioinformatics/bts480
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://doi.org/10.1111/tgis.12692
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12692
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12692
https://doi.org/10.1093/gigascience/giaa152
https://doi.org/10.1093/gigascience/giaa152
https://doi.org/10.1093/gigascience/giaa152

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Bibliography | 147

Lamprecht, A.-L., User-Level Workflow Design - A Bioinformatics Perspective,
vol. 8311, Lecture Notes in Computer Science, Springer, 2013, pp. 1-202,
ISBN: 978-3-642-45388-5, 978-3-642-45389-2, DOI: 10.1007/978-3-642-
45389-2.

Lamprecht, A.-L., Margaria, T. & Steffen, B., “Bio-jETI: a framework for
semantics-based service composition”, BMC Bioinformatics, vol. 10 Suppl 10,
2009, S8.

Lamprecht, A.-L., Naujokat, S., Margaria, T. & Steffen, B., “Synthesis-Based
Loose Programming”, in: Proc. of the 7th Int. Conf. on the Quality of Informa-
tion and Communications Technology (QUATIC 2010), Porto, Portugal, IEEE,
Sept. 2010, pp. 262-267.

Lamprecht, A.-L., Palmblad, M., Ison, J., Schwidmmle, V., Manir, M. S. A., Alt-
intas, I., Baker, C. J. O., Amor, A. B. H., Capella-Gutierrez, S., Charonyktakis,
P., Crusoe, M. R., Gil, Y., Goble, C., Griffin, T. J., Groth, P., Ienasescu, H., Jag-
tap, P., Kalas, M., Kasalica, V., Khanteymoori, A., Kuhn, T., Mei, H., Ménager,
H., Moller, S., Richardson, R. A., Robert, V., Soiland-Reyes, S., Stevens, R.,
Szaniszlo, S., Verberne, S., Verhoeven, A. & Wolstencroft, K., Perspectives on
automated composition of workflows in the life sciences, en, tech. rep. 10:897,
Type: article, F1000Research, Sept. 2021, DOI: 10.12688/£1000research.
54159.1, URL: https://£1000research.com/articles/10-897 (visited on
01/19/2022).

Lau, T. A., Domingos, P. & Weld, D. S., “Version Space Algebra and Its Appli-
cation to Programming by Demonstration”, in: Proceedings of the Seventeenth
International Conference on Machine Learning, ICML 00, San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 527-534, 1SBN: 978-1-
55860-707-1, (visited on 03/22/2019).

Lemmens, R., Wytzisk, A., By, R., Granell, C., Gould, M. & Oosterom, P.
van, “Integrating semantic and syntactic descriptions to chain geographic
services”, IEEE Internet Computing, vol. 10, no. 5, 2006, pp. 42-52.

Liu, J., Pacitti, E., Valduriez, P., et al., “A Survey of Data-Intensive Scientific
Workflow Management”, Journal of Grid Computing, vol. 13, no. 4, 2015,
pp- 457-493, DOI: 10.1007/s10723-015-9329-8.

Ludéscher, B., Lin, K., Bowers, S., Jaeger-Frank, E., Brodaric, B. & Baru, C.,
“Managing scientific data: from data integration to scientific workflows”,
Geoinformatics: Data to knowledge, vol. 397, 2006, p. 109.

Lustig, Y. & Vardi, M. Y., “Synthesis from Component Libraries”, en, in: Foun-
dations of Software Science and Computational Structures, ed. by Alfaro, L.
de, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009,
pp. 395-409, 1SBN: 978-3-642-00596-1.

Lutz, M., “Ontology-based descriptions for semantic discovery and composi-
tion of geoprocessing services”, Geoinformatica, vol. 11, no. 1, 2007, pp. 1-
36.

Malik, S. & Zhang, L., “Boolean satisfiability from theoretical hardness to
practical success”, Commun. ACM, vol. 52, no. 8, Aug. 2009, pp. 7682, DOI:
10.1145/1536616 . 1536637, URL: https://doi.org/10.1145/1536616.
1536637.

https://doi.org/10.1007/978-3-642-45389-2
https://doi.org/10.1007/978-3-642-45389-2
https://doi.org/10.12688/f1000research.54159.1
https://doi.org/10.12688/f1000research.54159.1
https://f1000research.com/articles/10-897
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1145/1536616.1536637
https://doi.org/10.1145/1536616.1536637
https://doi.org/10.1145/1536616.1536637

148 |

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Bibliography

Mandelin, D., Xu, L., Bodik, R. & Kimelman, D., “Jungloid Mining: Help-
ing to Navigate the API Jungle”, in: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI '05,
event-place: Chicago, IL, USA, New York, NY, USA: ACM, 2005, pp. 48-61,
ISBN: 978-1-59593-056-9, (visited on 03/22/2019).

Manna, Z. & Waldinger, R., “Knowledge and reasoning in program synthe-
sis”, Artificial Intelligence, vol. 6, no. 2, June 1975, pp. 175-208, (visited on
03/25/2019).

Manna, Z. & Waldinger, R. J., “Toward Automatic Program Synthesis”, Com-
mun. ACM, vol. 14, no. 3, Mar. 1971, pp. 151-165, (visited on 03/25/2019).
Margaria, T. & Steffen, B., “LTL-Guided Planning: Revisiting Automatic Tool
Composition in ETI”, in: Proc. of the 31st Annual IEEE / NASA Software Engi-
neering Workshop (SEW 2007), Columbia, MD, USA, IEEE Computer Society,
2007, pp. 214-226, 1SBN: 0-7695-2862-7, URL: http://portal.acm.org/
citation.cfm?id=1338445.1338873&col1=GUIDE&d1=GUIDE.

Margaria, T. & Steffen, B., “Service-Orientation: Conquering Complex-
ity with XMDD”, English, in: Conquering Complexity, ed. by Hinchey,
M. & Coyle, L., Springer London, 2012, pp. 217-236, ISBN: 978-1-4471-
2296-8, DOI: 10.1007/978-1-4471-2297-5_10, URL: http://dx.doi.org/
10.1007/978-1-4471-2297-5_10.

Martin, D., Paolucci, M., Mcllraith, S., et al., “Bringing Semantics to Web
Services: The OWL-S Approach”, in: Semantic Web Services and Web Process
Composition, vol. 3387, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2005, pp. 26-42, DOI: 10.1007/b105145.

MO, D. H. & WITTEN, L. H., “Learning text editing tasks from examples: a
procedural approach”, Behaviour & Information Technology, vol. 11, no. 1,
Jan. 1992, pp. 32-45, (visited on 03/22/2019).

Miiller, M., “Hierarchical profiling of geoprocessing services”, Computers &
Geosciences, vol. 82, 2015, pp. 68-77.

Naujokat, S., Lamprecht, A.-L. & Steffen, B., “Loose Programming with
PROPHETS?”, in: Proc. of FASE 2012, Estonia, vol. 7212, LNCS, 2012, pp. 94—
98, DOI: 10.1007/978-3-642-28872-2_7.

Naujokat, S., Lybecait, M., Kopetzki, D. & Steffen, B., “CINCO: A Simplicity-
Driven Approach to Full Generation of Domain-Specific Graphical Modeling
Tools”, Software Tools for Technology Transfer, 2017, DOI: 10.1007/s10009-
017-0453-6.

Naujokat, S., Neubauer, J., Margaria, T. & Steffen, B., “Meta-Level Reuse for
Mastering Domain Specialization”, in: Proc. of the 7th Int. Symp. on Leverag-
ing Applications of Formal Methods, Verification and Validation, Part II (ISoLA
2016), vol. 9953, LNCS, Springer, 2016, pp. 218-237, DOI: 10.1007/978-
3-319-47169-3_16.

Palmblad, M., Lamprecht, A.-L., Ison, J. & Schwammle, V., “Automated
workflow composition in mass spectrometry-based proteomics”, 2018.
Phothilimthana, P. M., Thakur, A., Bodik, R. & others, “Scaling up Super-
optimization”, ACM SIGOPS Operating Systems Review, vol. 50, no. 2, June
2016, pp. 297-310, (visited on 03/21/2019).

http://portal.acm.org/citation.cfm?id=1338445.1338873&coll=GUIDE&dl=GUIDE
http://portal.acm.org/citation.cfm?id=1338445.1338873&coll=GUIDE&dl=GUIDE
https://doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
https://doi.org/10.1007/b105145
https://doi.org/10.1007/978-3-642-28872-2_7
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1007/978-3-319-47169-3_16
https://doi.org/10.1007/978-3-319-47169-3_16

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Bibliography | 149

Pnueli, A. & Rosner, R., “On the Synthesis of a Reactive Module”, in: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’89, New York, NY, USA: ACM, 1989, pp. 179-190,
ISBN: 978-0-89791-294-5, (visited on 09/12/2018).

Pnueli, A. & Rosner, R., “Distributed Reactive Systems Are Hard to Synthe-
size”, in: FOCS, 1990.

Riazanov, A., Klein, A., Shaban-Nejad, A., Rose, G. W., Forster, A. J., Buck-
eridge, D. L. & Baker, C. J., “Semantic querying of relational data for clinical
intelligence: a semantic web services-based approach”, Journal of Biomedical
Semantics, vol. 4, no. 1, Mar. 2013, p. 9, DOI: 10.1186/2041-1480-4-9.
Rios, J., Karlsson, J. & Trelles, O., “Magallanes: a web services discovery and
automatic workflow composition tool”, BMC Bioinformatics, vol. 10, no. 1,
Oct. 2009, p. 334, DOI: 10.1186/1471-2105-10-334, URL: https://doi.
org/10.1186/1471-2105-10-334 (visited on 06/26/2022).

Scheider, S. & Ballatore, A., “Semantic typing of linked geoprocessing work-
flows”, International Journal of Digital Earth, vol. 11, no. 1, 2018, pp. 113-
138.

Scheider, S., Griler, B., Pebesma, E. & Stasch, C., “Modeling spatiotemporal
information generation”, International Journal of Geographical Information
Science, vol. 30, no. 10, 2016, pp. 1980-2008.

Scheider, S. & Jong, T. de, “A conceptual model for automating spa-
tial network analysis”, Transactions in GIS, vol. 26, no. 1, 2022, eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis. 12855, pp. 421-458,
DOI: 10.1111/tgis. 12855, URL: http://onlinelibrary.wiley.com/doi/
abs/10.1111/tgis. 12855 (visited on 06/03/2022).

Scheider, S., Meerlo, R., Kasalica, V. & Lamprecht, A.-L., “Ontology of Core
Concept Data Types for Answering Geo-Analytical Questions”, Journal of
Spatial Information Science, vol. 2020, no. 20, 2020, pp. 167-201, DoOI:
10.5311/J0SIS.2020.20.555, URL: https://digitalcommons.library.
umaine.edu/josis/v012020/iss20/2 (visited on 02/04/2022).

Scheider, S., Ostermann, F. O. & Adams, B., “Why good data analysts need
to be critical synthesists. determining the role of semantics in data analysis”,
Future generation computer systems, vol. 72, 2017, pp. 11-22.

Schilling, S., “Prototype for natural language queries for GIS analyses”, MA
thesis, Ruprecht-Karls-University Heidelberg, Germany, 2021, p. 100.
Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H. & Stuckey, P. J., “An Intro-
duction to Search Combinators”, in: International Symposium on Logic-Based
Program Synthesis and Transformation, Springer, 2012, pp. 2-16.

Shapiro, E. Y., Algorithmic Program Debugging, en, Aug. 2004, DOI: 10 .
7551/mitpress/1192.001.0001, URL: https://direct.mit.edu/books/
book/4799/Algorithmic-Program-Debugging (visited on 06/30/2022).
Shaw, D. E., Swartout, W. R. & Green, C. C., Inferring LISP Programs from
Examples, en, tech. rep. CUCS-001-75, Department of Computer Science,
Columbia University, 1975.

https://doi.org/10.1186/2041-1480-4-9
https://doi.org/10.1186/1471-2105-10-334
https://doi.org/10.1186/1471-2105-10-334
https://doi.org/10.1186/1471-2105-10-334
https://doi.org/10.1111/tgis.12855
http://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12855
http://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12855
https://doi.org/10.5311/JOSIS.2020.20.555
https://digitalcommons.library.umaine.edu/josis/vol2020/iss20/2
https://digitalcommons.library.umaine.edu/josis/vol2020/iss20/2
https://doi.org/10.7551/mitpress/1192.001.0001
https://doi.org/10.7551/mitpress/1192.001.0001
https://direct.mit.edu/books/book/4799/Algorithmic-Program-Debugging
https://direct.mit.edu/books/book/4799/Algorithmic-Program-Debugging

150 |

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Bibliography

Smith, D. C., Pygmalion: A Creative Programming Environment, en, Google-
Books-ID: mihHAAAAIAAJ, Computer Science Department, Stanford Uni-
versity, 1975.

Solar-Lezama, A., “Program Synthesis by Sketching”, PhD Thesis, Berkeley,
CA, USA: University of California at Berkeley, 2008.

Srivastava, S., Gulwani, S. & Foster, J. S., “From program verification to pro-
gram synthesis”, in: Proceedings of the 37th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL 2010), Madrid, Spain:
ACM, 2010, pp. 313-326.

Steffen, B., Margaria, T. & Braun, V., “The Electronic Tool Integration plat-
form: concepts and design”, International Journal on Software Tools for Tech-
nology Transfer (STTT), vol. 1, no. 1-2, 1997, pp. 9-30, DOI: 10 . 1007/
5100090050003.

Steffen, B., Margaria, T. & Freitag, B., Module Configuration by Minimal
Model Construction, tech. rep., Fakultét fiir Mathematik und Informatik, Uni-
versitat Passau, 1993.

Steffen, B., Margaria, T., Nagel, R., Jorges, S. & Kubczak, C., “Model-Driven
Development with the jJABC”, in: Hardware and Software, Verification and
Testing, ed. by Bin, E., Ziv, A. & Ur, S., vol. 4383, Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2007, pp. 92-108, 1SBN: 978-3-540-
70888-9, DOI: 10.1007/978-3-540-70889-6_7.

Summers, P. D., “A Methodology for LISP Program Construction from Ex-
amples”, en, in: Readings in Artificial Intelligence and Software Engineering,
ed. by Rich, C. & Waters, R. C., Morgan Kaufmann, Jan. 1986, pp. 309-316,
ISBN: 978-0-934613-12-5.

Sun, Z., Yue, P., Lu, X., Zhai, X. & Hu, L., “A task ontology driven approach
for live geoprocessing in a service-oriented environment”, Transactions in
GIS, vol. 16, no. 6, 2012, pp. 867-884.

Taylor, I. J., Deelman, E., Gannon, D. B. & Shields, M., Workflows for E-
Science: Scientific Workflows for Grids, Springer Publishing Company, Incor-
porated, 2014, 1SBN: 1849966192.

Twidale, M. & Hansen, P., “Agile research”, First Monday, vol. 24, no. 1, Jan.
2019, pol: 10.5210/fm.v24i1.9424, URL: https://journals.uic.edu/
ojs/index.php/fm/article/view/9424.

Uschold, M. & Jasper, R., “A framework for understanding and classifying
ontology applications”, in: Proceedings 12th Int. Workshop on Knowledge Ac-
quisition, Modelling, and Management KAW, vol. 99, 1999, pp. 16-21.
Valmari, A., “The State Explosion Problem”, in: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, London, UK: Springer-Verlag, 1998, pp. 429-528, 1SBN: 3-540-
65306-6.

Vandervalk, B. P., McCarthy, E. L. & Wilkinson, M. D., “SHARE: A Seman-
tic Web Query Engine for Bioinformatics”, en, in: The Semantic Web, ed.
by Gomez-Pérez, A., Yu, Y. & Ding, Y., Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer, 2009, pp. 367-369, ISBN: 978-3-642-10871-6,
DOI: 10.1007/978-3-642-10871-6_27.

https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/s100090050003
https://doi.org/10.1007/978-3-540-70889-6_7
https://doi.org/10.5210/fm.v24i1.9424
https://journals.uic.edu/ojs/index.php/fm/article/view/9424
https://journals.uic.edu/ojs/index.php/fm/article/view/9424
https://doi.org/10.1007/978-3-642-10871-6_27

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Bibliography | 151

Visser, U., Stuckenschmidt, H., Schuster, G. & Vogele, T., “Ontologies for
geographic information processing”, Computers & Geosciences, vol. 28, 2002,
pp- 103-117, pot: 10.1016/S0098-3004 (01)00019-X.

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak,
A., Pfeil, J., Narkizian, J., Deran, A. D., Musselman-Brown, A., Schmidt, H.,
Amstutz, P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor,
B., Hanna, M., Birger, C., Kent, W. J., Patterson, D. A., Joseph, A. D., Zhu, J.,
Zaranek, S., Getz, G., Haussler, D. & Paten, B., “Toil enables reproducible,
open source, big biomedical data analyses”, Nature Biotechnology, vol. 35,
no. 4, Apr. 2017, pp. 314-316, DOI: 10.1038/nbt.3772, URL: http://wuw.
nature.com/articles/nbt.3772 (visited on 04/15/2020).

Wessel, P. & Smith, W. H. F., “Free software helps map and display data”,
EOS Trans. Amer. Geophys. U., vol. 72, no. 41, 1991.

Wessel, P., Smith, W. H., Scharroo, R. & others, “Generic mapping tools:
improved version released”, EOS Trans. Amer. Geophys. U., vol. 94, no. 45,
2013, pp. 409-410.

Wiegand, N. & Garcia, C., “A task-based ontology approach to automate
geospatial data retrieval”, Transactions in GIS, vol. 11, no. 3, 2007, pp. 355-
376.

Wilkinson, M. D., Vandervalk, B. & McCarthy, L., “The Semantic Automated
Discovery and Integration (SADI) Web service Design-Pattern, API and Ref-
erence Implementation”, Journal of Biomedical Semantics, vol. 2, no. 1, Oct.
2011, p. 8, DOI: 10.1186/2041-1480-2-8, URL: https://doi.org/10.
1186/2041-1480-2-8 (visited on 02/18/2019).

Withers, D., Kawas, E., McCarthy, L., Vandervalk, B. & Wilkinson, M.,
“Semantically-guided workflow construction in taverna: the sadi and
biomoby plug-ins”, in: Leveraging Applications of Formal Methods, Verifica-
tion, and Validation, ed. by Margaria, T. & Steffen, B., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 301-312, 1SBN: 978-3-642-16558-0.
Witt, M., Akesson, S., Broderick, A., Coyne, M., Ellick, J, Formia, A, Hays,
G., Luschi, P., Stroud, S., Godley, B., et al., “Assessing accuracy and utility
of satellite-tracking data using argos-linked fastloc-gps”, Animal Behaviour,
vol. 80, no. 3, 2010, p. 571.

Wolstencroft, K., Haines, R., Fellows, D., et al., “The Taverna workflow suite:
designing and executing workflows of Web Services on the desktop, web or
in the cloud”, Nucleic Acids Research, vol. 41, no. W1, 2013, W557-W561.
Workflow Description Language (WDL), original-date: 2012-08-
01T03:12:48Z, Apr. 2020, URL: https : / / github . com / openwdl / wdl
(visited on 04/15/2020).

Yue, P., Baumann, P., Bugbee, K. & Jiang, L., “Towards intelligent giservices”,
Earth Science Informatics, vol. 8, no. 3, 2015, pp. 463-481.

Yue, P., Di, L., Yang, W., Yu, G. & Zhao, P., “Semantics-based automatic com-
position of geospatial web service chains”, Computers & Geosciences, vol. 33,
no. 5, 2007, pp. 649-665.

https://doi.org/10.1016/S0098-3004(01)00019-X
https://doi.org/10.1038/nbt.3772
http://www.nature.com/articles/nbt.3772
http://www.nature.com/articles/nbt.3772
https://doi.org/10.1186/2041-1480-2-8
https://doi.org/10.1186/2041-1480-2-8
https://doi.org/10.1186/2041-1480-2-8
https://github.com/openwdl/wdl

152 | Bibliography

[151] Zhuang, C., Xie, Z., Ma, K., Guo, M. & Wu, L., “A task-oriented knowledge
base for geospatial problem-solving”, ISPRS International Journal of Geo-
Information, vol. 7, no. 11, 2018, p. 423.

Summary

The last two decades brought an explosion of computational tools and processes in
many scientific domains (e.g., life-, social- and geo-science). Scientific workflows,
i.e., computational pipelines, accompanied by workflow management systems, were
soon adopted as a de-facto standard among non-computer scientists for orchestrat-
ing such computational processes. The goal of this dissertation is to provide a frame-
work that would automate the orchestration of such computational pipelines in prac-
tice. We refer to such problems as scientific workflow synthesis problems.

This dissertation extends an existing temporal logic-based workflow synthesis ap-
proach. The original approach was not able to keep track of data instances within
the workflow and to describe data flow dependencies, i.e., to describe relations be-
tween tools and data. Such limitations can substantially hinder the applicability of a
synthesis approach. This dissertation introduces the extended, SLTL*-based synthe-
sis to overcome the known limitations of the original formalism. The new approach
uses transducers and temporal goals, which keep track of the data objects in the
synthesised workflow. The proposed SLTL*-based synthesis includes a bounded and
a dynamic variant, which are shown in Chapter 3 to be NP-complete and PSPACE-
complete, respectively.

Chapter 4 introduces a transformation algorithm that translates the bounded
SLTL*-based synthesis problem into propositional logic. The transformation is im-
plemented as part of the APE (Automated Pipeline Explorer) framework, presented
in Chapter 5. It relies on highly efficient SAT solving techniques, using an off-the-
shelf SAT solver to synthesise a solution for the given propositional encoding. The
framework provides an API (application programming interface), a CLI (command
line interface), and a web-based GUI (graphical user interface).

The development of APE was accompanied by four concrete application scenarios
as case studies for automated workflow composition. The studies were conducted
in collaboration with domain experts and presented in Chapter 6. Each of the case
studies is used to assess and illustrate specific features of the SLTL*-based synthesis
approach. (1) A case study on cartographic map generation demonstrates the abil-
ity to distinguish data objects as a key feature of the framework. It illustrates the
process of annotating a new domain, and presents the iterative workflow synthesis
approach, where the user tries to narrow down the desired specification of the prob-
lem in a few intuitive steps. (2) A case study on geo-analytical question answering
as part of the QuANGIS project shows the benefits of using data flow dependencies

154 | Summary

to describe a synthesis problem. In addition, the study shows good synthesis results
when used on a well-annotated domain. (3) A proteomics case study demonstrates
the usability of APE as an “off-the-shelf” synthesiser, providing direct integration
with existing semantic domain annotations. In addition, a manual evaluation of the
synthesised results shows promising results even on large real-life domains, such as
the EDAM ontology and the complete bio.tools registry. (4) A geo-event question an-
swering study demonstrates the usability of APE within a larger question answering
system.

The experiences from these applications, in particular the feedback from the in-
volved domain experts, influenced the design decisions during the development of
the APE framework. They motivated the development of existing features, such as
the possibility of using multiple disjoint semantic dimensions to model data, and pro-
viding workflow solutions in the CWL (Common Workflow Language) format. The
framework is still being actively developed and improved.

The APE framework demonstrates a favourable runtime performance, in all of the
presented case studies. In addition, the runtime was positively assessed as part of a
survey of APE users, presented in Chapter 7. The survey results further emphasise
the importance of a scientific workflow synthesis library for automated question
answering. In addition, they show positive user experiences with the framework
documentation, formats of the synthesised results, and the provided interfaces.

This dissertation answers the goals it sets to solve. It provides a formal framework,
accompanied by a lightweight library, which can solve real-life scientific workflow
synthesis problems. Finally, the development of the library motivated an upcoming
collaborative project in the life sciences domain. The aim of the project is to de-
velop a platform which would automatically compose (using APE) and benchmark
workflows in computational proteomics.

Samenvatting

De afgelopen twee decennia hebben een explosie teweeggebracht van computa-
tionele tools en processen in allerlei wetenschappelijke domeinen (zoals levens,
sociale en geowetenschappen). Wetenschappelijke workflows, d.w.z. computa-
tionele pijplijnen, tezamen met workflow managementsystemen, werden al snel
aangenomen als een de-facto standaard onder niet-computerwetenschappers voor
het orkestreren van zulke computationele processen. Het doel van dit proefschrift is
om een framework te bieden dat de orkestratie van zulke computationele pijplijnen
in de praktijk automatiseert. Dergelijke problemen noemen we wetenschappelijke
workflow-syntheseproblemen.

Dit proefschrift breidt een bestaande, op temporele logica gebaseerde, workflow-
synthesebenadering uit. De oorspronkelijke aanpak was niet in staat om data-
instanties binnen de workflow bij te houden en om de afhankelijkheden van datas-
tromen te beschrijven, oftewel, om relaties tussen tools en data te beschrijven.
Deze beperkingen kunnen de toepasbaarheid van een synthesebenadering aanzien-
lijk belemmeren. Dit proefschrift introduceert de uitgebreide op SLTL” gebaseerde
synthese, om de bekende beperkingen van het oorspronkelijke formalisme te boven
te komen. De nieuwe aanpak maakt gebruik van transducers en temporele doelen
die de data-objecten in de gesynthetiseerde workflow bijhouden. De voorgestelde op
SLTL* gebaseerde synthese omvat een begrensde en een dynamische variant, die in
Hoofdstuk 3 aangetoond worden respectievelijk NP-compleet en PSPACE-compleet
te zijn.

Hoofdstuk 4 introduceert een transformatie-algoritme dat het begrensde op SLTL*
gebaseerde syntheseprobleem vertaalt naar de propositielogica. De transformatie is
geimplementeerd als onderdeel van het APE (Automated Pipeline Explorer) frame-
work, gepresenteerd in Hoofdstuk 5. Het is gebaseerd op zeer efficiénte SAT-solving
technieken, waarbij gebruik wordt gemaakt van een kant-en-klare SAT-solver om een
oplossing voor de propositionele codering te synthetiseren. Het framework biedt een
API (application programming interface), een CLI (command line interface) en een
webgebaseerde GUI (graphical user interface).

De ontwikkeling van APE ging gepaard met vier concrete toepassingsscenario’s
als casestudies voor geautomatiseerde workflowsamenstelling. De casestudies zijn
uitgevoerd in samenwerking met domeinexperts en gepresenteerd in Hoofdstuk 6.
Elk van de casestudies wordt gebruikt om specifieke kenmerken van de op SLTL”
gebaseerde synthesebenadering te illustreren en beoordelen. (1) Een casestudy over

156 | Samenvatting

het genereren van cartografische kaarten toont het vermogen aan om dataobjecten
te onderscheiden als zijnde een belangrijk kenmerk van het framework. Het il-
lustreert het proces van het annoteren van een nieuw domein en presenteert de
iteratieve workflow-synthesebenadering, waarbij de gebruiker de gewenste specifi-
catie van het probleem in een aantal intuitieve stappen probeert te verfijnen. (2)
Een casestudy aangaande het beantwoorden van geo-analytische vragen, als on-
derdeel van het QuAnGIS-project, toont de voordelen van het gebruik van datas-
troom afhankelijkheden in het beschrijven van een syntheseprobleem. Bovendien
laat de studie goede syntheseresultaten zien bij het gebruik op een goed geanno-
teerd domein. (3) Een casestudy in proteomics demonstreert de bruikbaarheid van
APE als een kant-en-klare synthesizer, die directe integratie biedt met bestaande
semantische domeinannotaties. Bovendien laat een handmatige evaluatie van de
gesynthetiseerde resultaten veelbelovende resultaten zien, zelfs op uitgebreide real-
life domeinen, zoals de EDAM-ontologie en het volledige bio.tools-register. (4) Een
casestudy in het beantwoorden van vragen over geo-events toont de bruikbaarheid
van APE aan binnen een groter systeem aangaande het beantwoorden van vragen.

De ervaringen van deze toepassingen, in het bijzonder de feedback van de be-
trokken domeinexperts, hebben invloed gehad op de ontwerpbeslissingen tijdens de
ontwikkeling van het APE-framework. Zij hebben de ontwikkeling van aanwezige
features gemotiveerd, zoals de mogelijkheid om meerdere onsamenhangende se-
mantische dimensies te gebruiken om data te modelleren, en het bieden van work-
flowoplossingen in het CWL-format (Common Workflow Language). Het framework
wordt nog steeds actief ontwikkeld en verbeterd.

Het APE-framework laat gunstige runtime-prestaties zien in alle gepresen-
teerde casestudies. Bovendien werd de runtime positief beoordeeld als on-
derdeel van een onderzoek onder APE-gebruikers, gepresenteerd in Hoofdstuk 7.
Ook benadrukken de onderzoeksresultaten het belang van een wetenschappelijke
workflow-synthesebibliotheek voor het geautomatiseerd beantwoorden van vragen.
Daarnaast laten de resultaten positieve gebruikerservaringen zien met de documen-
tatie van het framework, formats van de gesynthetiseerde resultaten en de geleverde
interfaces.

Dit proefschrift beantwoordt de doelen die het tracht op te lossen. Het biedt een
formeel framework, samen met een lichtgewicht bibliotheek, dat real-life weten-
schappelijke workflow-syntheseproblemen kan oplossen. Ten slotte heeft de on-
twikkeling van de bibliotheek geleid tot een toekomstig samenwerkingsproject in het
domein van de levenswetenschappen. Het doel van het project is om een platform
te ontwikkelen om automatisch workflows in computationele proteomics samen te
stellen (met behulp van APE) en te benchmarken.

Curriculum Vitae

Vedran Kasalica
Born on April 2nd, 1992 in Kotor, Montenegro.

Education

2018 — 2022 Universiteit Utrecht, Netherlands
PhD in Computer Science
2015-2017 TU Dresden, Germany

Free University of Bozen-Bolzano, Italy
Universidade Nova de Lisboa, Portugal

Master in Computational Logic

2011 - 2015 University of Montenegro, Montenegro
Bachelor in Computer Science

Work Experience

2022 - Research Software Engineer
eScience Center, Netherlands
2017 - 2019 Co-founder, Software Architect
See Side Montenegro, Montenegro
2014 - 2015 Software Engineer
Logate d.o.0., Montenegro

Acknowledgments

This dissertation describes my scientific contributions in the past four years, but it
does not capture all my attempts, iterations and failures, all the discussions, advice
and coffee chats with my colleagues, and all the trips, games nights and drinks with
friends. These interactions allowed me to finalise this dissertation and successfully
close this chapter of my life. This section is dedicated to all of you.

First and foremost, I would like to thank my supervisor, Anna-Lena, who was
an instrumental part of my PhD journey. Thank you for giving me the opportunity
and enough freedom to explore this field according to my interests, and for having
patience for our countless discussions, both on and off the research topic. Apart from
sharing your expertise in the field, you thought me to always try to look at things
from more than one perspective. Thank you, it helped me in both, my professional
and my personal life.

I want to extend my gratitude to Gabriele Keller, for accepting to be my promotor
and for her crucial input that shaped this dissertation. I also want to thank my col-
laborators, Simon Scheider, Enkhbold Nyamsuren, Han Kruiger, Veit Schwammle,
Magnus Palmblad, Natasha Alechina, Brian Logan and Mohammad Kazemi Bey-
dokhti, for helping me find and solve exciting research problems, and motivating
me to push it further each day. In addition, I would like to thank Maurin Voshol,
Koen Haverkort and the SP team that worked on APE Web, for your contributions to
the APE framework. Finally, I want to thank Christian, Gianni and Elena for taking
the time to read and give me feedback on this manuscript, and Mariélle for trans-
lating the summary into Dutch, I know that it was not easy, and I really appreciate
it.

When I joined UU the ST group welcomed me with open arms. Thank you Gabi,
Johan, Wishnu, Jeroen, Jurriaan, Raja, Nico, Sergey, Anna-Lena, Victor, Alejandro,
Joao, Trevor, Matthijs, Ivo, Iris, Isaac, Samira, Saba, Jacco, Tom, David, Fernando (I
hope I didn’t miss anyone) for many passionate discussions during the Monday lunch
meetings. After such a meeting, Victor and Joao introduced me to the Wednesday
drinks and UU-ING (International Neighbours Group of UU). This ended up being
the place where I met most of my friends here in the Netherlands. I will be eternally
grateful for that to UU-ING. Thank you Nazmiye and Agnes for agreeing to take over
the torch with me and host the Jan Primus drinks! We could have been even better
than our predecessors, but unfortunately, a pandemic got in our way :)

To my paranymphs. Isaac, we started our PhDs practically at the same time and it

160 | Acknowledgments

was always a relief knowing that there is someone going through similar phases of
the PhD with me. Your numerous advice and suggestions, regarding Elena’s visa, our
apartment, Nasho and Ljova, to name a few, drastically shaped my life in Utrecht,
and I will always be grateful for that! Victor, you introduced me not only to the
ING, but to the beauties of craft beers, wines and many grachts of Utrecht. Thank
you for all the kayaking, gaming, and wine/beer drinking sessions. For all the chats,
discussions and advice about my research as well as my future/current jobs. Finally,
thank you for helping me to find my way in this confusing world of countless vaseline
and powder options, my feet are eternally grateful. Thank you both for being there
with me on this journey!

I would like to thank Filip for showing me the beauties of the Netherlands six
years ago and convincing me to consider moving here after defending my MSc the-
sis. Doing my PhD research was challenging, however, I enjoyed the whole process.
To be honest, coping with the pandemic felt like the biggest challenge in the pro-
cess. That is why I would like to thank all the friends that shared that experience
with me, which brought us even closer. Chris, Gianni, Milose, Najo and Ela (u stom-
aku), thank you for all those visits to Verdansk, I really needed those trips, while
the Dutch airports were closed. Isaac and Jose, you made the first waves of the
pandemic bearable. The game and movie nights were the social interaction we des-
perately needed in those times, and the avondklok loophole made those gatherings
even sweeter! Thank you for introducing us to Museo, Maxima and eventually to
the extended family, Max, Billie and Jeroen! Victor and Nadine, thank you for the
countless Pandemic and Gloomhaven nights! It all started with you bringing that
one game. If I had known, I would have bought it sooner! I hope we get that base-
ment setup one day. Lisa, Kristina thank you for being part of all the dinners and
weekend trips! Alvaro, I am glad that we stayed in touch after you moved and now
we got to extend the group with Masha and Azul as well. Sofia, Anto, Marina, I like
to think that the bitter taste of that last GoT season is what pushed us into all those
fantastic nights out, Eurovisions, and birthday parties. Marielle, Dave thank you for
playing with us all sorts of games, cycling to the beach and selflessly sharing your
fantastic stash of food and wine. Aco, I'm really glad you decided to move here.
It feels like there were no breaks between our time in Podgorica and now in the
Netherlands.

Working at the university has its perks, and 42 days of vacation was definitely one
of them. Naturally, that meant I had plenty of time to go on holiday. Gianni, Chris,
our yearly trips were definitely among the highlights! Great food and music, and
the unavoidable Harmonika would always ensure a well-deserved relaxing holiday
and something to always look forward to! Trips to Montenegro where I would see
my friends and family were naturally also a yearly tradition. Bracéa (i sestre koje su
realno braca) bi uvjek izdvojila vrijeme da se gledamo koliko god mozemo dok bih bio
dolje. Jeste da se nismo gledali koliko bi zeljeli, ali ste vazda doekali brata na gallu.
Ljubi brat braéu ludu!

None of this would be possible without my flatmates, Nasho and Ljova. They
kept me inspired and entertained, and crucially, they taught me that there is always
something more important than my problems - their problems. Finally, I would like
to thank my third flatmate, Elena. She was the one who found the advertisement

Acknowledgments | 161

for this PhD programme and helped me apply for it. So, Elena, it’s hard to imagine
where I would be without you right now. Walking Camino was an eye-opening
experience, but doing it with you made it extraordinary. We tested and pushed our
limits together, and in the process got closer than ever before. I cherish equally the
first steps in Porto as the last steps in Santiago, but unlike that 10 days walk, our
Camino has just begun. Buen Camino!

The last paragraph is posveéen mojim roditeljima i sestri. Znam da se ne gledamo
koliko bi Zeljeli, ali mislim na vas Cesée nego $to mislite. Hvala vam na svoj podrsci, ne
samo tokom doktorata, veé tokom svih mojih godina odrastanja. Mislim da je suvisno
govoriti o vasoj ulozi. Naucili ste me da nikada ne treba osudivati druge, da treba
vjerovati u sebe i ostvariti svoje snove! Iva, znam da su nase poznanstvo poelo sa puno
svada i suza, ali kako je vrijeme odmicalo toga je bilo sve manje, a mi smo postajali sve
blizi. Volim vas.

DOI https://doi.org/10.33540/160
Cover design based on illustrations by Greenwingstudio.

	Introduction
	Methods
	Contributions

	Background
	Program Synthesis
	Scientific Workflow Synthesis
	SLTL-based Workflow Synthesis

	From SLTL to SLTLx
	Challenges in SLTL Workflow Synthesis
	Transducers
	SLTLx
	Transducer Synthesis with Temporal Goals
	Evaluation and Discussion
	Related Work

	Workflow Synthesis as a SAT Problem
	Modelling User Intent
	Encoding Workflow Synthesis in Propositional Logic
	Encoding the Domain Model
	Encoding the Temporal Constraints
	Solving the Encoded Problem

	APE (the Automated Pipeline Explorer) v2
	Architecture
	Domain Model
	Automated Workflow Composition
	Workflow Implementation
	Related Work

	Case Studies
	Geovisualisation
	Geo-Analytical Question Answering
	Proteomics Data Analysis
	Geo-Event Question Answering
	Discussion

	Evaluation
	Runtime Performance of APE v2
	Third-Party Applications of APE v2
	APE v2 User Experiences

	Conclusion
	Outlook
	Concluding Remarks

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae
	Acknowledgments

