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ABSTRACT: Single amino acid substitutions within protein structures often manifest with clinical conditions in humans. The 
mutation of a single amino can significantly alter protein folding and stability, or change protein dynamics to influence func-
tion. The chemical engineering field has developed a large toolset for predicting the influence of point mutations with the aim 
of guiding the design of improved and more stable proteins. Here we reverse this general protocol, and adapt these tools for 
prediction of damaging mutations within proteins. Mutations to Fumarate Hydratase (FH), an enzyme of the citric acid cycle, 
can lead to human disease. Inactivation of FH by mutation causes leiomyomas and renal cell carcinoma by subsequent 
fumarate buildup and reduction in available malate. We present a scheme for accurately predicting the clinical effects of every 
possible mutation in FH by adaptation to a database of characterized damaging and benign mutations. Using energy predic-
tion tools Rosetta and FoldX coupled with molecular dynamics simulations, we accurately predict individual mutations as 
well as mutational hotspots with high disruptive capability in FH. Furthermore, through dynamic analysis we find that hinge 
regions of the protein can be stabilized or destabilized by mutations, with mechanistic implications for the functional ability 
of the enzyme. Finally we categorize all potential mutations in FH into functional groups, predicting which known mutations 
in the human population are Loss of Function (LOF), therefore having clinical implications, and validate our findings through 
metabolomics data of characterized human cell lines.

INTRODUCTION 

 The influences of individual point mutations on a protein 
structure are many and varied. Mutations may influence the 
structure in numerous ways – leading to unfolding of the 
protein, inactivation of enzymatic activity, and an alteration 
of the dynamics of the structure. Many mutations to pro-
teins in humans are associated with pathogenic disease, in-
cluding all cancers, many inherited syndromes, and prion 
diseases1. Understanding the potential effects of mutations 
is paramount to the diagnosis and treatment of disease, and 
as such, prediction of the effects of a mutation is of large im-
portance. Many mutations can be disruptive simply through 
alteration of a binding site, but for mutations that are not 
near to a binding site, the energic change to the structure, 
ΔΔG, is important as these mutations can lead to unfolding 
if the energy change is sufficiently high. 

Numerous methods for predicting the ΔΔG of mutations 
have been derived, based on chemical analysis of a protein 
structure. Tools such as FoldX2,3, which uses an empirical 
force field to predict the alterations in a protein induced by 
mutation, and methods included as part of the Rosetta 
suite4,5, which uses Monte-Carlo based dynamics to predict 
energetic effects of mutations are generally employed for 

the prediction of stabilizing mutations in enzymatic optimi-
zation and design. Here we reverse this workflow to predict 
mutations that destabilize protein structures from analysis 
of every potential mutation that can occur. We thus provide 
a prediction derived from the enzyme chemistry and bio-
physics on whether any possible mutation will result in 
damage to protein function, when coupled with other heu-
ristic knowledge such as binding site locations. 

We apply our approach to the tetrameric enzyme Fumarate 
Hydratase. Fumarate hydratase (FH) is a member of the tri-
carboxylic acid cycle occurring in the mitochondria. FH ac-
tivity in the cell is responsible for the reversible conversion 
of the metabolite fumarate into malate, and the knockout or 
mutational inactivation of FH in kidneys is linked to a path-
ogenic buildup of fumarate6,7. As a result FH is associated 
with numerous kidney pathologies – including cancer. 
Fumarate has been described as part of a novel classifica-
tion of molecules named “oncometabolites”, metabolites re-
sponsible for cancer transformation. Precisely how the 
buildup of fumarate can be oncogenic is unclear, but FH loss 
is associated with renal cell carcinoma, and recent work 
points towards suppression of DNA repair responses, epi-
thelial-to-mesenchymal transformation, and promotion of 
mitosis8–10. Understanding the effects of mutations on the 
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activity and assembly of FH is of importance for the under-
standing and stratification of germline mutations, which 
can predispose patients to hereditary leiomyomatosis and 
renal cell cancer (HLRCC), a dominant negative condition 
caused by single allelic mutation of FH11,12. Previous work 
has identified mutants linked with inherited and de-novo 
FH-related conditions, including cancer13 – most notably, 
the FH mutation database represents a comprehensive list 
of mutations and their effects, if known, on FH activity14. 

Here we present a workflow for understanding how current 
pathogenic mutations in FH inactivate the enzyme,  and pre-
dicting novel loss of function (LOF) mutations. We find LOF 
mutations fall into three categories – those that disrupt the 
binding site, those that influence the assembly/folding of 
the protein, and those that alter the dynamics of hinge do-
mains in the protein. Guided by the previously categorized 
mutations, we assess and classify every potential mutation 
in the available fumarate hydratase structure to study the 
landscape of potential mutations. We consider the struc-
tural and biological implications of each mutation, and thus 
can predict mechanistic effects of every potential mutant. 
We validate our workflow on historic mutational screens of 
bacterial T4 lysozyme15. Overall we predict that 66% of all 
mutations to FH influence activity or assembly. We further 
validate our predictions through studying the Cancer Cell 
Line Encyclopaedia (CCLE)16,17 and show that previously 
unstudied mutations that we predict to be damaging to the 
function of FH result in altered metabolite levels expected 
from disruption to the activity of FH.  We define a workflow 
for the chemical analysis of every potential single amino 
acid substitution in any soluble protein for which structural 
data is available. 

MATERIALS AND METHODS 

All data used in this study, including the code used in gener-
ating all figures from raw data, and the raw data to generate 
them is available publicly at: https://github.com/short-
house-mrc/Fumarate_Hydratase 

    FH mutation database. The FH mutation database was 
downloaded from the Leiden Open Variation Database14. 
Missense mutations were manually curated into categories 
(Loss of Function, Benign, and Unknown) based on their im-
plied clinical classification, and variant remarks, which con-
tained information regarding FH enzymatic activity. 

    Mutational Clustering. Mutational clustering was per-
formed with the non-random mutational clustering (NMC) 
algorithm, which attempts to discern the likelihood of a mu-
tation spectrum occurring by random chance. NMC returns 
clusters of mutations that are statistically significant. We 
chose to run the NMC algorithm using the R library iPAC18, 
using an alpha cutoff value of 0.05, and the Bonferroni mul-
tiple test correction method. 

    Gaussian Network Modelling (GNM). GNM was imple-
mented using the Prody package in python19. A Kirchhoff 
matrix was constructed using the gnm.buildKirchhoff 

command with the parameters cutoff = 10.0 and gamma = 
1.0. Normal modes were then calculated using the 
gnm.calcModes() command. Predicted hinges were as-
sessed using the gnm.getHinges() command.  

    Molecular Dynamics Simulations. Molecular dynamics 
was performed using Gromacs version 2018.120. We chose 
to simulate proteins using the GROMOS 54a7 forcefield21. 
The protein structures were first repaired using FoldX2 “Re-
pairPDB” with the following command: 

$foldx --command=RepairPDB --pdb=5upp.pdb --ionStrength=0.05         

--pH=7 --vdwDesign=2 

The protein was then placed in a cubic box size 15 x 15 x 15 
nm and solvated with roughly 90,000 spc water molecules. 
Counterions were introduced to a neutral charge, and to a 
concentration of 0.05 mol/litre. The system was energy 
minimized using the steepest descents algorithm until the 
maximum force, Fmax, of the system reached below 1000 
kJ/mol/nm. Equilibration was performed using the NVT, 
followed by the NPT ensembles for 100 ps each. We chose 
to use the verlet cutoff scheme and PME electrostatics, and 
utilized periodic boundary conditions in the x, y, and z 
planes. Molecular dynamics was performed for 200 ns re-
taining velocities from the NPT equilibration. We used the 
V-rescale temperature coupling scheme, and Parrinello-
Rahman isotropic pressure coupling. 

    FoldX ΔΔG Calculations. FoldX predicted ΔΔG was calcu-
lated using the PositionScan command within FoldX4. Posi-
tionscan was run on each residue in the protein structure 
sequentially using the following command: 

$foldx --command=PositionScan --pdb=5upp_repaired.pdb                      

--ionStrength=0.05 --pH=7 --vdwDesign=2 --pdbHydrogens=false            

--positions=49 

for positionscan on the 49th residue. This command was re-
peated for each residue in the protein to generate an energy 
for every possible mutation. In the case of FH, we mutated a 
single subunit within the full tetrametric complex. 

    Rosetta ΔΔG Calculations. Rosetta predicted ΔΔG was 
calculated using the cartesian_ddg method as described in 
Kellogg et al22: 

$path/to/source/bin/cartesian_ddg.static.linuxgccrelease -in:file:s 

5upp_repaired.pdb -in::file::fullatom -database /path/to/database/ -

ignore_unrecognized_res true -ignore_zero_occupancy false -

fa_max_dis 9.0 -ddgccartesian -ddg::mut_file mutfile.txt -ddg::iterations 

3 -ddg::dump_pdbs true -ddg::suppress_checkpointing true -ddg::mean 

true -ddg::min true -ddg:output_silent true -bbnbr 1 -beta_nov16_cart > 

logfile.log 

ΔΔG was calculated by averaging the energy of 3 models of 
each mutation and comparing it to the WT calculation. In the 
case of FH we mutated a single subunit with the tetrameric 
protein complex. 

Umap. We used Umap23 based on the github repository at 
www.github.com/lmcinnes/unmap - using default parame-
ters.  
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Cancer Cell Line Encyclopedia Data. Cancer Cell Line En-
cylopedia (CCLE) mutation data was downloaded from the 
Broad Institute at: https://portals.broadinsti-
tute.org/ccle/data . Metabolomics data was obtained from 
the supplementary data of Li et al17.  

    Data Analysis. MDanalysis24 and Biopython25 were used 
for analysis of structural data. Data analysis workflows, and 
code for generation of all figures from primary data is avail-
able in jupyter notebooks available at 
https://github.com/shorthouse-mrc/Fumarate_Hydratase.  

RESULTS AND DISCUSSION 

    Evidence of mutational clustering in FH. To start our 
study of mutations within FH we looked to pre-existing, 
characterized mutations associated with human disease. 
Human FH is formed as a homotetramer of subunits gener-
ated from the FH gene. Each subunit contains 3 domains, 
Domain 1, Domain 2, and Domain 3 (D1, D2, and D3 respec-
tively) (Figure 1a). D1 is formed from residues in the range 
49-188, D2 is formed from residues in the range 189-439, 
and D3 from residues in the range 440-510. The full func-
tional protein is an assembly of 4 subunits and contains 4 
identical binding pockets made of interactions between 3 
subunits (Figure 1b). There are two proposed regions of im-
portance for catalysis of the fumarate/malate conversion; 
Site A, the known active site (hereafter referred to as the 
binding site), and Site B, a region of proposed but unknown 
functional importance26,27. For this study we chose to only 
include the known catalytic site, Site A, defined as residues 
HIS176, ASN182, SER186, SER187, ASN188, THR234, 
HIS235, LYS371, VAL372, ASN373, and GLU378 (Figure 1c). 
We do not consider Site B due to the unknown and conflict-
ing evidence surrounding its importance. For this study we 
chose to focus on the crystal structure 5upp28, which covers 
residues 49-510 of the 510 residue protein assembled into 
a homotetramer.  

To study mutations known or suspected to have roles in hu-
man disease, we investigated the Fumarate Hydratase Mu-
tation Database14, which contains 378 mutations, including 
113 that are distinct missense, at the time of this study. The 
Fumarate Hydratase Mutation Database attempts to pool all 
observed mutations in FH, including those that are benign, 
and a large number of mutations have no clinical or func-
tional annotation. Mutations that are not known to be be-
nign (i.e those either labelled as loss-of-function, or those 
which are uncharacterised) are shown in Figure 1d. 

We calculated 1D clusters of mutations across the entire FH 
sequence. We chose to include the top 5 predicted clusters, 
ranked by significance, and with a size less than 50 residues 
long (all calculated clusters are available in Table S1). We 
find the most significant clusters are all within the region of 
the more prevalent mutations in residues 230 and 233, in-
dicating that this region is statistically highly over mutated, 
and potentially a mutationally vulnerable site.  

 

Figure 1. Structure and observed mutations in Fumarate 
Hydratase. (a) Structure of a single subunit of FH showing 
the D1, D2, and D3 regions. (b) Structure of an assembled 
homotetramer of FH. Binding sites are highlighted and 
made up on an interface between 3 subunits. (c) Close up of 
the binding site of FH showing the residues involved in cat-
alytic activity. (d) Mutational spectrum of non-benign single 
amino acid substitutions in FH. D1, D2, and D3 regions are 
highlighted in blue, red, and yellow respectively. Stars (*) 
indicate residues involved in catalytic activity that make up 
the binding site of FH. Purple highlight and lines represent 
the top 5 mutational clusters as calculated by the NMC algo-
rithm. 

    Classification of mutations by proximity to the bind-
ing site and protein hinges. Residues of the catalytic site 
in FH have been previously identified as essential for the 
conversion of fumarate to malate. We define binding site-
associated residues as those with alpha-carbons (CA) 
within 6 Å of the CA of any binding site residue. Mutations 
this close to the binding site are likely to disrupt the assem-
bly of the binding site, and we predict them to be Loss of 
Function (LOF). A significant number of known mutations 
are binding-site adjacent (Figure 2a) and significantly mu-
tated.   
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We also surmised that regions involved in the “hinging” of 
FH domains may influence the binding site assembly due to 
the proximity and reliance of the quaternary structure of 
multiple domains to make up the binding pocket. We used 
Gaussian Network Modelling (GNM) within Prody19,29 to 
predict hinge residues between the subdomains of the pro-
tein (Figure 2b). We used the second normal mode for cal-
culation of hinge residues, as the first normal mode reflects 
a flexing of the quaternary structure (confirmed with aniso-
tropic network modelling - ANM). Calculating the hinge res-
idues results in residues 196, 198, 232, 242, 270, 317, 401, 
411, and 448 being the most likely “hinge points” in the 
structure, these residues are shown on a single subunit of 
FH, coloured by eigenvector direction in Figure 2c. To as-
sess how mutations to this region disrupt the quaternary 
structure of FH, we chose to simulate the known R233H mu-
tant, and the wild type (WT) tetrameric assemblies for 
200ns each using molecular dynamics simulations. Measur-
ing the angles between CA atoms of two residues in the cen-
tre of the D2 and D3 domains with respect to the hinge re-
veals that the R233H mutant reduces the angle of the do-
mains by an average of 8 degrees, and so leads to a partial 
occlusion of the catalytic site of FH (Figure 2d). From this 
evidence we conclude that disruption of these hinges are 
likely to alter the binding site and assembly of FH – and are 
likely loss-of-function. We chose to treat all mutations with 
CA atoms within 6 Å of any hinge residue as potentially LOF 
through disruption of the protein quaternary structure.  

Overall we infer that mutations near to a binding site, or a 
hinge region of the protein are likely loss-of-function. A sig-
nificant proportion of mutations from our database can be 
classed as either binding site-associated, or hinge-associ-
ated, including a number of known loss-of-function vari-
ants. Whilst 42 residues in the 462 amino acid protein struc-
ture (9%) are classified as being “binding site-associated”, 
we find that 11 of the 30 (36%) known LOF mutations are 
within these residues, showing a clear statistical enrich-
ment towards binding site-associated mutations vs muta-
tions occurring randomly across the structure (Chi squared 
p value < 0.001). Similarly, 55 of the 462 (12%) amino acids 
in the protein structure are classified as “hinge-associated”, 
and we find 7 of the 30 (23%) within the FH mutation data-
base fulfil this classification, showing a lesser, but still large 
occurrence bias and enrichment (Chi squared p value < 
0.001). Distance calculations for all potential mutations are 
included in Table S2.  

    High-Throughput mutational stability screen of FH in 
silico. To study how mutations that are not near the binding 
site or hinge regions may have effects on the structure of the 
protein, we sought to generate predicted mutational energy 
changes (ΔΔG) for every potential amino acid substitution 
in the FH structure. To validate our methods we chose to 
run a mutation saturation screen on the 1lyd structure of 
the bacterial T4 lysozyme30 (Figure S1), which has been ex-
perimentally screened previously31. We used two methods 
to calculate ΔΔG; the FoldX empirical forcefield method for 
saturation screening, and the Rosetta cartesian_ddg 
method, which utilizes monte-carlo dynamics to explore the 

mutant conformation and influence on the protein energet-
ics. Calculating ΔΔG for every potential substitution in T4 ly-
sozyme results in a high rank correlation between the Foldx 
and Rosetta methods (spearman rank = 0.68, p <0.001, 
pearson r = 0.58) (Figure S2, Table S3). The methods gener-
ally agree on overall destabilizing and stabilizing mutants 
with disagreements between the methods generally being 
the magnitude of extreme destabilizing (> 10 Kcal/mol) mu-
tations, and mutations with ΔΔG between 1 and -1 Kcal/mol. 

 

Figure 2. Mutations can be categorised on proximity to 
functional regions of FH. (a) Alpha carbon (CA) distance 
from a binding site residue. Shown is: Top: average rhap-
sody score for each residue, Middle: distance of each resi-
due from a binding site residue by CA distance, Bottom: mu-
tational frequency for each residue. Orange highlights show 
some regions have high rhapsody scores, low binding site 
distance, and high mutational frequency. (b) Second normal 
mode eigenvectors per residue for a single subunit of FH. 
Residues with an eigenvector above the line are moving 
generally opposed to those with an eigenvector below the 
line. Predicted hinge residues are shown in red. (c) Single 
subunit of FH coloured according to eigenvector direction 
(positive as orange and negative as purple). Hinge residues 
are highlighted as red. (d) Molecular Dynamics simulations 
of hinge mutations shows altered hinge flexibility. Left: 
Schematic of the angle measured in each simulation, Right: 
Angle of WT (red), and R233H mutant FH (blue) over a 200 
ns equilibrium molecular dynamics simulation.  
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In the historic study, mutations were classified according to 
the growth of plaques, with mutants classified into normal 
growth (mutations that have no effect on the protein), mu-
tations that induce small and large growth impairment, and 
mutations that result in no growth, and are therefore not 
tolerated. We averaged the ΔΔG from both applied methods, 
and binned each mutation into their respective category as 
determined by Rennell et al. Average ΔΔG correlates signif-
icantly with experimental growth rate (Figure 3a). Muta-
tions that don’t influence growth experimentally have a sig-
nificantly lower average ΔΔG (median value 1.65 Kcal/mol) 
compared to those that showed no growth at all (median 
value 9.99 Kcal/mol), confirming the validity of the ΔΔG cal-
culations. ROC analysis (Figure 3b) identifies the best cutoff 
for discriminating between small growth impairment and 
benign mutations is in the range of 2.5 – 3 Kcal/mol (lowest 
distance to corner for cutoff 2.65 Kcal/mol). We chose to ap-
ply a conservative 2.5 Kcal/mol definition for LOF, as for pa-
tient screening a larger number of false positives is favour-
able over false negatives, and this cutoff has been used pre-
viously in studies of mutational energy32,33. ROC analysis for 
all mutations identifies a slightly higher cutoff of 3 Kcal/mol 
as optimal, but agrees that 2.5 Kcal/mol is suitable for good 
discrimination between LOF and benign mutations (Figure 
S3). We further confirm the validity of the method by calcu-
lating the number of mutants of each residue that are pre-
dicted to be disruptive through both the experimental data, 
and the predicted ΔΔG – applying our cutoff of 2.5 Kcal/mol, 
Figure 3c. We find a strong correlation between the pre-
dicted and experimental disruption rate (pearson r = 0.68, 
p<0.001), in particular both reproducing peaks at residue 
25 and residue 100. Predicted ΔΔGs are included in Table 
S3. 

Having validated our workflow, we next applied the calcu-
lation to the human fumarate hydratase structure 5upp. Be-
cause HLRCC is caused by single allelic mutation of FH we 
chose to mutate a single subunit within a tetrameric struc-
ture, to represent cases where a single mutant allele com-
bines with 3 wild type (WT) copies of FH. We again find a 
good agreement between the FoldX and Rosetta methods 
(spearman r = 0.67, p <0.0001, pearson r = 0.56) for all mu-
tational energies (Figure 3d). This correlation is especially 
good given previous reports showing an overlap between 
Foldx and Rosetta-ddg of only 12%-25% when considering 
stabilizing mutations34. Notably however, both methods ap-
pear to agree on predictions of mutations with extremely 
high energy (though not necessarily on the magnitude), but 
there is a significant portion of the distribution that shows 
a reasonably poor correlation, particularly mutations that 
have a predicted ΔΔG between 1 and -1 Kcal/mol. As further 
validation that our cutoff of 2.5 Kcal/mol is appropriate for 
defining destabilizing mutations, we find a good separation 
between non-binding site adjacent mutations that are anno-
tated as benign or damaging (Figure 3e). Due to the exposed 
loops within the FH structure, we additionally chose to ap-
ply a surface area-based cutoff to exclude mutations that are 
of high energy but within the solvent exposed loops, as 
these mutations will not lead to structural unfolding. We 

count mutations as damaging only if they have a predicted 
average ΔΔG >= 2.5 Kcal/mol, and a relative solvent acces-
sibility (RSA) below 20%, in keeping with previous stud-
ies35,36, indicating that it is buried within the structure. 
Across all potential mutations we find that ~45% (3968 out 
of 8778) meet this criterion (Figure S4). This fits well with 
the mutational screen of, T4 lysozyme, which found that 
45% of mutational sites assessed lead to structural inacti-
vation of enzymatic function.  

We find that regions of higher overall mutational disruption 
are those packed within the centre of D1, and on the inter-
face of D1 and D2, suggesting disruption to the D1/D2 inter-
face that will alter the binding site conformation of the pro-
tein. (Figure 4) 

 

Figure 3. High-Throughput mutational stability screen of 
T4 lysozyme and FH in silico. a-c) T4 lysozyme. d-e) FH. (a) 
Average ΔΔG for each category of mutant in 1lyd. Categories 
derived from Rennel et al. * indicates student t-test p <0.05. 
(b) ROC curve for discrimination between mutations caus-
ing normal growth and small growth impairment as classi-
fied by Rennel et al. Inset: distance to corner. (c) Number of 
disruptive mutations per residue, red line represents exper-
imental findings from Rennel et al., blue represents in silico 
mutations with a ΔΔG > 2.5 Kcal/mol. (d) Correlation be-
tween Foldx and Rosetta methods for all mutations in Hu-
man Fumarate Hydratase. (e) Position of known loss-of-
function (red) and known benign (orange) mutations on the 
ΔΔG spectrum, from low to high. Black line represents 2.5 
Kcal/mol cutoff.
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Figure 4. Crystal structure of Human Fumarate Hydratase 
5upp, coloured by average residue ΔΔG.  

Existing mutations are accurately categorised based on 
known phenotypic effects. Overall, by combining the previ-
ously defined metrics, we define a scheme for classify muta-
tions as predicted LOF, or predicted benign, as well as sub-
categorising LOF mutations into binding-site associated, 
hinge-site associated, and destabilizing.  (Figure 5a). The in-
itial structure is relaxed using FoldX, before the binding site 
and hinge regions are calculated and classified, mutations 
that are potentially destabilizing are defined based on aver-
age energy from the Rosetta and FoldX mutation methods, 
plus filtered for buried mutations through calculating the 
RSA. This results in a categorisation for every mutation, 
where is it classified as predicted silent, binding site, hinge 
site, or destabilizing (including combinations of disruptive 
mutation types) (Table S2). We classify 5811 out of 8778 
(66%) mutations as predicted LOF, similar to a study of 

mutational effects on TP53, which found that roughly 50-
60% of all possible mutations were functionally disrup-
tive37. We compared our predictions with known mutations 
in the FH mutations database. We predicted a classification 
for all mutations within the database and compared this 
their known effects: loss of function (LOF), benign, or un-
known. In total 34 mutations had a known (or implied) 
functional effect, either LOF or benign, whilst 74 were clas-
sified as unknown (Table S4). We find that 24 out of 30 
(80%) mutations are correctly classified as LOF using our 
classification scheme, and 3 out of 4 (75%) are correctly 
classed as benign (Figure 5b). Of the mutations incorrectly 
classified as benign when they are known to be LOF, two 
mutations involve cysteine (C434Y, Y465C), which is known 
to be modelled poorly by Rosetta cartesian_ddg38, The sin-
gle mutation our methodology classified as LOF when it is 
listed as benign within the FH mutation database is R268G. 
We predict the R268G mutation to be both destabilizing 
(ΔΔG > 2.5 Kcal/mol, RSA < 0.2) and hinge-associated. 
Whilst the mutation is listed as benign, no experimental in-
formation is cited, and PolyPhen-239, and Rhapsody also 
classify this particular mutation as damaging, indicating 
that the benign classification for this mutation may be ques-
tionable. We ran a molecular dynamics simulation of the 
R268G mutant. Simulations predict that mutant R268G re-
duces the hinge angle of the D1/D2 domains by ~5 degrees 
(Figure S5), and supports previous evidence from analysis 
of the pathogenic R233H mutant, that hinges within he pro-
tein can affect binding site assembly. Of the 74 unknown 
mutations, we predict that 28 are functionally benign, and 
46 are potential LOF mutations. 

 

 

Figure 5. Classification of functionally characterized mutations. (a) schema for categorization of mutations in human 
fumarate hydratase. (b) Overlap between Hinge-associated (orange), destabilizing (red), and binding site associated muta-
tions (blue). 30 known Loss-of-function mutations are included (purple). 24 mutations are correctly identified as LoF, whilst 
6 are incorrectly classified as benign.
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Mutations with unknown properties can be accurately 
predicted to be functional or neutral. To visualise all po-
tential mutations in FH we chose to cluster all mutations us-
ing umap23. Umap clusters items by similarity, in a manner 
similar to principal component analysis, or TSNE40. We ran 
umap on all mutations using the 4 major axes involved in 
the classification – Minimum distance to a binding site resi-
due, minimum distance to a hinge residue, average ΔΔG of 
mutation, and RSA for each residue (Figure 6a). We find that 
distinct regions of the plot cluster into functionally different 
mutations when coloured by classification. There is a region 
specifically for hinge-associated mutations, binding site-as-
sociated, and unknown (not predicted damaging) muta-
tions. In particular, the region of “unknown” (not classified 
as damaging) mutations overlaps significantly with a num-
ber of predicted destabilizing mutations, indicating that dis-
crimination between these mutations is difficult, and per-
haps not accurate with currently available data. We find that 
most of the benign mutations, aside from R268G are found 
clearly within the regions of predicted benign mutations. 
R268G clusters with the hinge mutation region as expected 
from our previous classification. For the known LOF muta-
tions, we find they mostly cluster within the well defined re-
gions for binding site, hinge, and destabilizing mutations. 
There are some mutations, particularly those which were 
misclassified, that fall within ambiguous regions of state 
space in the mutational landscape, and so are hard to clas-
sify using our defined criterion.  

To test the predictive power of our classification scheme we 
used the Cancer Cell Line Encyclopedia to look for changes 
in metabolite levels associated with mutations in FH17,41. We 
find 42 mutations (35 unique) in FH within 34 individual 
cell lines (Table S5). Selecting only for missense mutations 
yielded 25 mutations (20 unique) within 23 unique cell 
lines. We classified the mutations according to our criterion 
as either predicted LOF, or predicted benign. We find that 
by analysis of metabolomics data included in the CCLE da-
tabase, mutations that we predict to be LOF have a higher 
average level of fumarate/mateate/alpha-ketoisovalerate 
detected in media than cells with predicted benign muta-
tions (p = 0.035) – indicating that these cell lines may have 
an accumulation of fumarate as a result of inactive levels of 
FH (Figure 6b, c).  

CONCLUSIONS 

We have shown, using a comprehensive combination of 
techniques, that we can categorise with a high degree of 
confidence the functional effects of any potential missense 
mutation in FH. Beyond FH, we present an integrated series 
of methods that can be adapted for mutationally screening 
any protein for functionally relevant mutations in a reason-
ably small amount of computational time. Our workflow 
predicts the functional effects of all mutations that can be 
compared to existing methods based on machine-learning 
principles such as rhapsody and polyphen, at significantly 
lower time and effort expenditure than experimental char-
acterization. Whilst some other methods incorporate some 
manner of structural analysis in their predictions, ours 

demonstrates a new perspective, as it explicitly models 
every potential mutation in a structure, allowing it to inter-
face directly with other computational techniques in the 
field such as molecular dynamics simulations to further 
study mutations of interest.  

Biologically we propose three ways in which mutations can 
potentially disrupt the catalytic activity of FH, in particular 
we find that addition of hinge altering mutations are neces-
sary for classification of many known LOF mutations, indi-
cating that there is a biological relevance, and hinting at a 
mechanism for mutations that change the flexibility and 
stiffness of protein hinges in this case. Additionally, we 
chose to exclude site B from our analysis of mutation dis-
ruption and find that we are able to classify almost all 
known mutations without its inclusion. This implies that 
mutations in site B may not have functional or disease-re-
lated relevance, despite some evidence that site B can alter 
catalytic activity of the enzyme42. This is reinforced by the 
fact that 27 of the 462 residues within the protein structure 
are classified as near site B (6%), and only 3 of 30 residues 
in the FH mutation database (10%) are near to site B, show-
ing a poor to negligible enrichment of mutations in site B 
(Chi squared p = 0.187). 

Fumarate hydratase represents a good first-use case for a 
high-throughput mutational screen due to the need to un-
derstand mutations in their functional context, but as muta-
tional detection techniques, and high-throughput muta-
tional studies increase the need to be able to classify muta-
tions confidently as benign and LOF is more important. Here 
we show that our method classifies known LOF and benign 
mutations with a high level of confidence, and predict which 
mutations discovered in the human population are likely to 
have functional relevance, and therefore predispose pa-
tients to particular metabolic diseases.  

Whilst the accuracy of our method with the current data is 
high, there are clear regions where the analysis is not able 
to discriminate between mutations on the borderline be-
tween destabilizing and benign, this results from the lack of 
accuracy in the mutational ΔΔG calculations, despite using a 
consensus of the best available methods at time of study5. 
As better methods become available it will be of interest to 
improve upon this work to attempt a more accurate classi-
fication. It should also be noted that whilst a ΔΔG cutoff of 
2.5 Kcal/mol to discriminate benign vs destabilizing mu-
tants is a good starting point for any given structure, ROC 
analysis should be performed if the number of “ground 
truth” mutational effects is high enough to confirm this is 
appropriate for any particular protein structure. 

Finally, whilst the work here focusses on a single molecule 
within the TCA cycle, FH, structural data has existed for a 
large number of enzymes within the cycle for some time43–

45 and it would be of great interest to look into mutations 
across entire metabolic pathways. With this study laying the 
groundwork, it will be of future interest to model all muta-
tions in all enzymes, and attempt to further link these with 
genomic and metabolomic data that is already available.
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Figure 6: Mutational Landscape of Fumarate Hydratase. A) Umap for all mutations in FH. Mutations are coloured by classifi-
cation. Hinge-associated (orange), Destabilizing (red), and Binding site-associated (blue) are shown clustered into groups. 
Predicted silent mutations (grey) are also shown. Overlayed are our predictions for characterized mutations in the FH muta-
tion database. Mutations that are known Loss-of-Function (LOF) are circular and coloured according to whether we predict 
them to be LOF (black) or silent (white). Known benign mutations are in triangles, and also coloured according to whether 
we predict them to be LOF (black) or silent (white). The questionable known benign mutation R268G is labelled B) Mutations 
in the Cancer Cell Line Encyclopedia (CCLE) metabolomics data. All cell lines are ranked according to their detected levels of 
Fumarate/Maleate/Alpha-Ketoisovalerate. Coloured are cell lines with mutations in FH that we predict to be LOF (orange), 
or silent (purple). C) Swarmplot for levels of Fumarate/Maleate/Alpha-Ketoisovalerate in mutant FH cell lines. Mutations 
predicted to be silent are significantly lower than mutations predicted to be LOF (p value represents independent T test). 
Error bars represent 1.5 * interquartile range (IQR).
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