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ABSTRACT 

Proteomics has become an essential component of systems biology in the quest for 

personalised medicine. Each of us has a unique biology and can respond in different 

ways to medical treatments. By analysing the complete set of proteins present in 

humans the field of life sciences is moving closer to the goal of being able to 

recommend specific drugs to specific individuals thus greatly enhancing the 

probability of a cure.  

Extensive pre-processing of the complex files created by mass spectrometers during 

proteomics experiments is required before it is possible to gain any insight from them. 

A typical mass spectrometer run may produce forty thousand scans of data each 

containing around two thousand data points. If this data were to be laid out in a 

relational database schema, it would equate to eighty million rows of data per 

experiment. In a laboratory containing multiple machines running several times a day, 

this figure quickly reaches into the tens of billions of rows, which is a very significant 

amount of data to process. Many tools currently exist to carry out this processing but 

most focus on batch-based workloads where the mass spectrometer finishes its 

analysis, and then the data is processed on a file-by-file basis. The processing time 

can vary from hours to days leading to a substantial time lag before the results of the 

experiment can be examined. In addition, life science laboratories often carry out this 

work on the local storage of PC hardware creating a significant data management 

problem.  

This research investigates the potential for processing proteomics data in near 

real-time using a parallel system. The focus is on the feature detection part of the 

mass spectrometer processing pipeline and how this could become part of an 

architected cloud-based or on premise solution. The experimentation involves using 

the MapReduce framework to enable running the feature detection algorithm in 

parallel on a horizontally scalable cluster of servers. Systems tested include Hadoop, 

Flink and Spark in both a batch and real-time streaming mode. 



xii 

The work shows that it is possible to detect features in the mass spectrometer data 

using an “intra-file” parallelism. The term intra-file means that a data file is split into 

sections, which are then processed independently on the cluster and is a vital part of 

enabling feature detection in a streaming fashion. This is a major differentiation 

between this research and most current processing methods, which process 

complete files in a serial fashion. This work highlighted that it is highly relevant to 

consider the laboratory as an Internet of Things. This involves the data streaming 

from the mass-spectrometers in real-time to a central computing platform where the 

data processing is completed with contemporary open-source technology. 

Consequently, the research described in this thesis points towards the adoption of a 

distributed cluster-based architecture which will allow the processing of mass 

spectrometer output in real-time as it is generated. Making the results available as 

soon as the experiment has completed allows life scientists to iterate over a problem 

faster which will lead to quicker paths to insights.  
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1 INTRODUCTION 

1.1 PARALLEL COMPUTING 

The challenges of ever-increasing data volumes, the complexity of data types and 

high rates of data ingestion have led to horizontally scalable compute clusters 

achieving a high profile in academia and business; the whole field has recently been 

known simply as Big Data. Many data storage and processing challenges exist with 

scientific data, including proteomics [1], that are directly relevant to Big Data. Another 

term, the "Internet of Things" is used to describe connected devices and shares many 

challenges with Big Data, for example, large complex data sets generated in a short 

space of time [2]. As more machines and devices emitting sensor and other data are 

connected via networks, the challenge of processing and storage continues to 

increase year on year. 

 

The concepts of parallel distributed computing have had a long history [3]. Scaling in 

computer terms can be either “scaling vertically” also known as “scale up” or “scaling 

horizontally” also known as “scale out”. Vertical scaling involves adding faster CPUs 

with more cores, faster memory and larger storage to a single computer. Horizontal 

scaling involves adding more computers which are connected via a network. 

Connected clusters of computers require software specifically designed to support 

parallel computation and several key frameworks, for example Message Passing 

Interface (MPI) and Bulk Synchronous Parallel (BSP) [4], have been popular and 

used in supercomputers such as the Cray and general purpose High Performance 

Compute (HPC) environments. More recently, the focus on parallel computation 

using clusters can be traced to the Google file system (GFS) and the MapReduce 

processing model described in Dean and Ghemawat’s paper [5] published in 2004. 

This line of research led to the creation of Hadoop by Doug Cutting and the resulting 

eco-system that has built up around the core Hadoop engine. Hadoop has since 

become a major player in cluster computing in both business and academic 

environments. The MapReduce framework is distinguishable from parallel processing 

frameworks such as MPI and BSP in that it operates in a “shared nothing” 

environment. Shared nothing means that individual computation tasks operating in 
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parallel cannot communicate with other tasks and must operate in complete isolation. 

 

This thesis argues that a modern life sciences laboratory could benefit from an 

Internet of Things architecture where the instruments in the laboratory are connected 

to a central processing cluster, either locally hosted or cloud-based. The ability to see 

results from experiments in real-time as the measurements are taking place has 

many advantages including quality control and comparison to previous experiments. 

In addition, simply seeing results faster allows for more iterations and more time for 

experimental design.  

 

In many cases, it is far from simple to take an existing process that runs on a PC and 

attempt to create a parallel algorithm capable of running on a distributed cluster. 

Often new algorithms need to be designed to allow efficient parallel processing, a 

problem compounded by a shared nothing environment where only part of the data is 

visible to an individual task. Other issues that arise when exploiting systems such as 

Hadoop include the availability of skills to program and support them [6]. 
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1.2 PROTEOMICS 

Proteomics can be defined as the large-scale study of protein properties, such as 

expression levels (how much of the protein exists in the sample), modifications and 

interactions with other proteins. By studying proteins and their properties it is possible 

to gain a deeper understanding of how proteins should function in healthy cells 

compared with diseased cells. This knowledge is essential if better healthcare and 

personalised medicine are to become a reality. Personalised medicine allows for the 

best treatment to be administered to a patient with a far greater chance of success 

and fewer contraindications. Proteomics is a key part in providing this personalisation 

[7]. The goal of mapping out the entire human proteome is a more complex task than 

that of the mapping the human genome, which has already been achieved. The 

number of proteins is estimated at between one hundred thousand, and one million 

[8], many times more than the number of genes. The proteome is also dynamic, 

constantly changing in response to environmental factors. Identification and 

quantification of the proteome using techniques such as liquid chromatography-mass 

spectrometry (LC/MS) allows Life Scientists to investigate how different environments 

and compounds affect the protein expression in cells [57][9].  

 

The main instrument used to measure the type and quantity of proteins in cells during 

proteomics experiments is a mass spectrometer. Mass spectrometers work by 

ionizing molecules to induce a charge, which causes them to be attracted to a 

detector [66][10]. Complete protein molecules are too large to be processed by most 

mass spectrometers therefore the proteins are broken up by a chemical process into 

smaller pieces called peptides. It is these peptides that are detected by the machines 

and recorded in the output. The larger, heavier peptides travel more slowly than the 

smaller, lighter ones and thus the different types of molecule separate out and arrive 

at the detector at different times. 
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1.3 FEATURE DETECTION 

A typical experimental sample takes between two and four hours to process and on 

completion the mass spectrometer produces data in the form of spectra. These 

spectra require extensive processing before Life Scientists can interpret the results. 

Currently most spectra are processed using PC-based software and the time to 

produce the output can be measured in days. The processing itself involves several 

distinct steps; this thesis focuses on the first step, feature detection (also known as 

peak-picking). The reason for this focus is that the second step, peptide identification, 

has already been the subject of published research, described in Chapter 3, and 

several parallel solutions exists, for example the Hydra solution published by Lewis et 

al. [79]. Feature detection in mass spectrometer data is a smaller task than the later 

step of peptide identification, however the feature detection process still takes a 

significant amount of time to complete.  

 

Feature detection involves finding the peaks in spectra produced during the individual 

mass spectrometer scans (which are taken approximately five times a second) and 

then matching these peaks over time [11]. These features (or peaks) represent the 

peptide molecules; the goal of the feature detection step is to produce a list of the 

mass and abundance of all the peptides in the biological sample. This peptide list is 

then used as the input to the protein identification step of the data processing. 

 

The parallel feature detection algorithm developed during this research has been 

benchmarked for speed of processing and accuracy of output against MaxQuant. 

MaxQuant is a software package created and maintained by the Max Planck Institute 

[12]. It is a leader in the field of proteomics data processing and the MaxQuant 

package compares favourably with other processing software [13]. 
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1.4 PROBLEM STATEMENT 

Proteomics is an important branch of life sciences as mapping the human proteome 

and how it responds to environmental factors is at the forefront of medical advances 

[14]. 

 

Currently many researchers store and process data on personal desktop and laptop 

computers, which causes two significant problems. Firstly, they must wait for the 

results, this can mean hours or even days of delay before results are processed and 

available. Secondly, they become involved with complex data management tasks 

such as data movement, duplication, reprocessing, backup and recovery. 

 

Mass spectrometers produce data in a vendor proprietary format commonly known as 

a RAW file. Since these files typically utilise a complex binary format, the proteomics 

community has introduced several standard file-formats for mass spectrometer output 

to facilitate storage and data-exchange. The mass spectrometer RAW files include 

both mass-to-charge and abundance (known as intensity) data; this data is the basis 

of feature detection calculations and contains information about the molecular weight 

and quantity of the molecules detected by the mass spectrometer. The RAW files also 

contain a great deal of meta-data regarding the conditions of the experiment itself. A 

recent and widely accepted data-exchange format is called mzML [15]. mzML has 

proven very stable and useful, however, it is an XML based format, which makes it 

inefficient for parallel processing. This is because distributing XML files on a cluster 

either means keeping the file intact on a single node or providing some mechanism to 

ensure the file structure is not compromised when it is split into sections for 

distribution. This complication is not present when using simple file formats with one 

record per line. To address this, a new data format has been designed during this 

research, see Chapter 5, Section 5.3 for details. This new format does not contain the 

meta-data and presents the mass and intensity information in a simple row based tab 

delimited format which makes it ideal for processing on a distributed cluster.  

 

In a recent paper, major contributors to the MaxQuant software [16] discuss the 

relative benefits of a compute cluster over the use of fast “gaming-style” PCs where 

the unit of parallelism is at the RAW file level (the results from a single experiment are 
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contained in a single mass spectrometer RAW file). However, in this thesis it is 

argued in Chapter 7 that a real-time architecture engineered specifically for the task 

of feature detection has many benefits including a faster processing time. It is also 

argued in Chapter 6 that the unit of parallelism for processing should be at the scan 

level and not at the file level. This more detailed level of parallelism allows the 

exploitation of the resources available in larger clusters and near real-time 

processing. The proposed solution not only addresses speed issues but also 

architectural issues such as minimizing data movement and manual tasks. 
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1.5 MAJOR CONTRIBUTIONS 

In summary, the major contributions to knowledge of this thesis are as follows: 

 

1. A parallel implementation of the feature detection algorithm used in the 

MaxQuant software written using Java. 

2. Validation that intra-file processing in parallel is possible (as opposed to other 

research which uses the file as the unit of parallelism). This is important as 

intra-file processing makes real-time stream processing a possibility. In this 

context one file equates to one run of a mass spectrometer and one 

experiment. 

3. A proposed file format suitable for parallel processing of proteomics data. This 

is required as the current XML-based file format, mzML, is a poor solution for 

intra-file parallel processing. 

4. A thorough investigation of using a parallel algorithm for feature detection on a 

compute cluster. This includes a detailed understanding of the constraints on 

parallel tasks in a proteomics context, the limitations of batch processing and 

the implementation of a stream processing architecture.  

 

Additionally, the following resources have been made available to the research 

community 

 

• All the source code for the algorithm and implementations using HDFS, 

HBase, Cassandra, Spark and Flink. 
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1.6 THESIS STRUCTURE 

Chapter 2 reviews the concepts and history of parallel computing including 

shared-nothing processing and the development of MapReduce and Hadoop. The 

chapter concludes with a discussion on system performance benchmarking.  

 

Chapter 3 discusses the field of proteomics; it describes the process of 

experimentation using mass spectrometers and the resulting data sets. Also, 

algorithms for feature detection and current software in use are described. This 

chapter also includes a description of the challenges of processing proteomics data. 

 

Chapter 4 details the current application of clusters and parallel processing in 

proteomics and critically reviews other research in this area. This chapter discusses 

the use of Cloud and Big Data technologies for proteomics data processing and 

concludes with a summary of the background and related work and the main research 

question. 

 

Chapter 5 defines the proposed methodology for parallel feature detection. The 

environments used for development, testing and benchmarking are also explained. 

The method for validating results and testing for accuracy is specified along with the 

data sets used in the benchmarks.  

 

Chapter 6 describes the proposed parallel algorithm and its implementation in Java. 

This chapter introduces the limitations of batch processing proteomics data on a 

parallel cluster. The results from benchmarking the feature detection are presented. 

 

Chapter 7 proposes a real-time processing architecture using an adapted version of 

the parallel algorithm introduced in chapter 6. The changes required to move from a 

batch process to a stream process are detailed and results from experiments using 

stream processing engines are also presented. 

 

Chapter 8 summarises the contributions and findings of this thesis and lists 

recommendations for future work. 
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2 PARALLEL COMPUTING 

2.1 CHAPTER SUMMARY 

This chapter presents a brief history of parallel computing including the introduction of 

MapReduce and shared-nothing cluster-based processing. The focus is parallel, 

cluster-based processing as opposed to other types of parallel processing such as 

multi-core or GPU-based.  

 

Section 2 discusses parallel processing 

 

Section 3 Introduces MapReduce and the Hadoop eco-system 

 

Section 4 describes the process of benchmarking computing systems and includes a 

discussion specific to benchmarking parallel systems. 
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2.2 PARALLEL PROCESSING  

To understand the need for and the evolution of parallel computing techniques in 

computer science, it is necessary to briefly review the general history of computers 

and their architecture and how these have developed over time. John Von 

Neumann’s seminal report in 1945 defined the modern stored-program architecture 

for computers [17]. By making the only distinction between data and instructions that 

operate on data is the use to which each is put, this report formed the basis of how 

modern-day computers work. Note that there is some controversy over who first 

defined the architecture but this review does not cover this detail. The implementation 

of this design has led to a phenomenon known as the “von Neumann bottleneck” [18] 

which occurs when all of the data and the operations performed on the data must be 

moved between CPU and memory one byte at a time. In fact, the x86 family of 

processors use a modification of the von Neumann architecture called the Harvard 

Architecture, which allows a CPU to be both reading an instruction and accessing 

data in memory at the same time. This simultaneous activity is not possible with a 

strict von Neumann design since the instructions and the data share the same system 

bus. Along with the Harvard Architecture, changes to von Neumann’s original model 

to overcome the bottleneck include the introduction of cache memory (a quantity of 

high-speed memory very close to the CPU), which has led to increases in speed.  
 

Aside from the architecture, continuous improvements have been made to chip and 

component design, which led to Gordon Moore’s observation in his 1965 paper [19] 
that “the number of transistors on integrated circuits doubles approximately every two 

years” – now known as “Moore’s Law”. This prediction has proved remarkably 

accurate and until recently increasing amounts of faster memory and faster CPUs 

could be relied upon to provide significant increases in speed. This phenomenon is 

known as frequency scaling and was the dominant force in CPU speed increases up 

to the cancellation of Intel’s Tejas and Jayhawk processor projects in May 2004 [20]. 
The termination of these projects can be seen as the point at which frequency scaling 

reached a practical limit. However, currently Moore’s law still holds approximately true 

because manufactures have started including two or more CPUs on the same chip, 

known as multi-core CPUs. These allow multiple instructions to be run at the same 

time using a programming technique called multi-threading, a form of parallel 



11 

execution. However, program code needs to be written explicitly to take full 

advantage of the threads and hardware available.  

 

The concepts of parallel computing have a long history. In a Turing lecture in 1988, 

Cocke stated “The search for future scientific computing performance has to 

concentrate on gross parallelism” [3]. A definition of Parallel Processing is "the 

concurrent manipulation of data elements belonging to one or more processes 

solving a single problem" [21], the concept being that multiple CPUs can each 

process part of the data, with the resulting output combined into a single answer. A 

certain class of parallel computing is known as massively parallel processing (MPP); 

this involves multiple CPUs processing the workload simultaneously and 

communicating via a network. Early attempts at MPP computing include the ILLIAC 

IV [22] from 1971. With up to 256 processors the ILLIAC IV allowed a high degree of 

parallelism and was used by NASA for computational fluid dynamics problems. Other 

examples of early MPP machines include the cosmic cube designed and built at 

Caltech in the early 1980’s [23]. The cosmic cube research introduced the concept of 

nodes, which are computers networked together into a cluster. The method by which 

nodes communicated contributed to the design of the message passing interface 

(MPI) protocol, which has become a standard for parallel processing. Flynn describes 

four classifications of processing [24], [25] that have become known as Flynn’s 

taxonomy. The classes are based on the number of concurrent instructions and the 

number of available data streams. For instance, in a single instruction, multiple data 

set (SIMD) architecture a single instruction is applied to multiple sets of data in 

parallel. Whereas in a multiple instruction, single data set (MISD) architecture, 

multiple instructions run on a single set of data in parallel. The SIMD architecture is 

well suited to a set of problems know as “naturally”, “pleasingly” or “embarrassingly” 

parallel where a subset of the data can easily be processed independently of the rest 

of the dataset.  

 

In the book “Computer Architecture: a quantitative approach” [26] Paterson describes 

the performance growth in PC architecture based computers versus mainframes or 

supercomputers such as those built by Cray Research Inc. He details how CPU 

speed increases in line with Moore’s law allow cheaper commodity hardware to rival 
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the performance of the larger, far more expensive machines. Utilising such hardware 

in a network, the class of parallel computing known as cluster computing has become 

very popular. Cluster computing entered the mainstream with the introduction of the 

parallel virtual machine (PVM) software in 1989 [27]. NASA experimented with this 

technology in 1993 and this research led to the creation of the Beowulf cluster [28]. 

The Beowulf architecture is a set of requirements for high-performance clusters using 

Unix-style operating systems and PC-based architecture running libraries such as 

MPI and PVM. Beowulf allows a cluster of machines to operate as a single machine 

where the individual nodes typically have no screens, keyboards or input devices and 

are controlled from a central machine via remote logins. Beowulf clusters have been 

adopted in academia and commercial sectors as a way of providing enough 

computing power at a low price to process complex scientific problems [29].  
 
In contrast with cluster computing where the nodes in the cluster will reside in the 

same physical location, distributed computing is a class of parallel computing where 

the nodes are separated physically and connected by a wide area network such as 

the internet. An example of distributed computing is that performed by SETI where 

subscribers’ home PCs are used to process data when they are not in use for other 

purposes [30]. 

 

The computer architectures and programming techniques described require the 

processing components to be connected to each other so that messages can be 

passed between them. There are many ways to connect processors in an MPP 

system, for example Mesh, Binary Tree, Hypertree and software frameworks such as 

Message Passing Interface (MPI) and Bulk Synchronous Processing (BSP) can be 

used to manage the messaging. Interconnections between processing units and 

passing messages between them result in an overhead, which limits the total 

speedup possible. Many have studied the behaviour of parallel systems and several 

prominent theories exist that quantify the speed increase of a process running in a 

parallel rather than a serial fashion. One of the earliest is Amdahl’s law [31]; this 

states that the maximum speedup of a parallel process is limited by its sequential 

fraction. Amdahl’s law is based on the assumption that processes have some parts 

that cannot be run in parallel. Regardless of the number of processors working on the 
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problem, the total time taken to run the complete process is restricted by the total time 

taken to execute the serial part of the process. During a later re-evaluation of 

Amdahl’s work by Gustafson [32], known as Gustafson’s law, it is argued that rather 

than calculating speedup using a fixed data size, as Amdahl assumes, programmers 

tend to use all of the resources available in a system to process an amount of data in 

a fixed time. This means that larger and larger clusters are required to keep the 

processing time fixed as the amount of data increases. This research will evaluate the 

pre-processing steps for mass spectrometer output to identify parallel and sequential 

portions and calculate the maximum possible speedup. 

 

Another aspect of parallel computing is that of scheduling; once a task is split into 

pieces that can run on separate nodes, controlling the order and location of these 

pieces must be done by a scheduling system. One method is prescheduling which 

decides where each piece of the process is run before execution, depending on what 

data is where in the system: early parallel systems used this approach. In contrast, 

self-schedulers allocate the next piece of code to execute to the next available node, 

which results in a higher utilisation of a system.  

 

An important consideration for cluster architectures is how to manage the replication 

of data around the nodes. If a data read occurs before data is fully replicated then an 

inconsistency may occur as one node reports a different value to another node. Eric 

Brewer developed Brewer’s or CAP theorem [34] to describe parallel architectures in 

terms of three areas: 

 

• Consistency – Every data read should receive the most recent data or return 

an error 

• Availability – Every data request receives a response but there is no guarantee 

that the response is the latest data available. The response must be valid and 

not an error 

• Partition Tolerance – The system continues to operate in the event of a 

network failure or messages simply being dropped between several nodes 
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Brewer stated that where data partitions exist only one of consistency or availability 

can be guaranteed, leading to the common “any two from three” description of CAP 

theorem. Relational databases will choose consistency, opting for an error message 

rather than returning anything other than the most recent data. NoSQL systems such 

as Cassandra (described in Section 8 of Chapter 5) will choose availability, therefore 

returning the latest version of the data that is available rather than an error. 

Developments such as Google Spanner claim to be able to guarantee all three states 

because of the definition of “availability”. A system can be highly available without 

being one hundred percent available [141]. 
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2.3 MAPREDUCE AND HADOOP 

Dean and Ghemawat published a paper defining the MapReduce style of 

implementing a parallel processing framework in 2004 [5].  MapReduce is a 

general-purpose framework allowing large-scale computations to be run in parallel 

across a large cluster of computers. The framework is based on the simple notion that 

a process can be split into one of two basic operations map and reduce. A map task 

processes data one record at a time. The other type of operation is a reduce task 

which takes multiple rows of input and can perform aggregation type operations [35]. 

MapReduce was defined with some key concepts in mind: 

 

• Reliability when running on commodity hardware 

• Simplifying the task of taking a process and running it in parallel.  

• Scalability to handle exponential increases in website traffic 

  

The use of a map task to process data record by record has led to the term “schema 

on read” or "schema-last" [36], which describes the process of reading in data in a 

raw, unchanged format and using the map task to apply a relevant schema on the 

data at run time. This contrasts with a “schema on write” or “schema-first” style of 

data management that is very commonly found with relational databases. Schema on 

write describes the method of defining a fixed schema and transforming data to fit this 

schema as it is loaded. 

 

MapReduce code is generally executed on clusters run in a “shared nothing” 

environment where each node has its own CPU, memory and disk space and the 

connections between nodes are handled by a TCP/IP network. This configuration 

makes the task of adding more nodes to an existing cluster a simple exercise. Since 

no reconfiguration of existing nodes is required, the cluster can easily be scaled out to 

handle larger workloads or process a given workload in a shorter time. In this way, the 

programmer is abstracted from the details of scheduling and distributing parallel 

processes and dealing with node failures as these are handled entirely by the system. 

The basic unit of data in the MapReduce framework is a key-value pair; these simple 

structures consist of an identifier (the key) and some data (the value). An example of 

a key-value pair could be when processing a standard text file with end of line 
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characters, in this case, the key is the byte offset into the file, and the value is the 

actual text up until the next line break.  

 

The value part of the key-value pair can be a single piece of data or something much 

more complex such as a binary object. In the MapReduce framework, the passing of 

key-value pairs occurs between different stages of the pipeline, for example between 

a map task to a following reduce task. Note that the framework prohibits the passing 

of information between tasks at the same stage of the processing pipeline, for 

example between two map tasks. 

 

This may seem restrictive at first, but this simplicity is a factor, along with 

fault-tolerance, that has led to the success of the model. Removing the need to code 

for the interactions between tasks by message passing speeds up development and 

relieves some of the burden of understanding parallel systems for the programmer. 

Another key feature of MapReduce programming is the distribution of program code. 

In a conventional system, a processing unit receives data from the network and 

executes the code. In the MapReduce framework, the code is distributed to the node 

where the data resides to reduce data movement across the network. Processes are 

dynamically scheduled, and due to the data replication and distribution, each task has 

several options as to where it could run to ensure all data is processed. This 

self-scheduling allows some flexibility in case of a slow running machine or process. 

Note that MapReduce is a framework for executing program code in parallel, as are 

frameworks such as MPI, whereas Beowulf and PVM are systems for creating 

clusters of commodity hardware.  

 

Hadoop is a parallel processing system based on the MapReduce framework, 

created by Doug Cutting, an employee of Yahoo [37] and more recently, Cloudera. 

Hadoop was designed to be run on cheap commodity hardware. Since commodity 

hardware, particularly disk drives, can have high failure rates, it is necessary to 

replicate and distribute data across the cluster to achieve reliability. Therefore, when 

data is loaded it is split into blocks (typically large blocks in multiples of 64Mb). The 

default behaviour is to replicate these blocks three times with two copies held on the 

same rack and one on a separate rack. This operation means that two of the servers 



17 

in the cluster containing replicas of the same data block could fail completely, and all 

data would still be available. Hadoop very quickly gained popularity as a platform to 

process large data sets that do have a fixed schema. While it can be said that the use 

of Hadoop in a business setting is still in the early stages of adoption, its popularity 

continues to grow [38]. Since its original inception, Hadoop has undergone much 

development, and a considerable amount of effort has gone into overcoming some of 

the perceived shortcomings of security, accessibility and recovery. The next chapter 

reviews the current use of Hadoop, MapReduce and parallel computing in general for 

processing proteomics data.  

 

  



18 

2.4 BENCHMARKING 

Before any testing could be carried out to determine the best platform for the 

proposed parallel feature detection algorithm, a set of rules had to be defined. These 

rules specify what was measured and how the measurement should take place. In 

computing terms, these rules and the tests that are performed and measured are 

collectively called a benchmark. The intention was to provide a quantitative measure 

of relative performance between platforms along various dimensions to make a 

comparison between them. General computing benchmarks exist such as Whetstone 

and Dhrystone [39] which address specific computing performance areas such as 

Floating Point Operations per Second (FLOPS).  

 

More specific benchmarks exist for relational databases that are well established 

such as those detailed by the Transaction Processing Council (TPC) which cover 

various database operations such as Decision Support [40]. These are widely used 

and are accepted by many vendors and customers of relational database software 

[41]. Other notable database benchmarks include the Standard Performance 

Evaluation Corporation (SPEC) and the Storage Performance Council (SPC), each 

aimed at providing a measure of the performance of different aspects of database 

operations.  

 

Benchmarks seek to provide a level platform for testing the efficiency of different 

solutions and provide rules to cope with various areas. These include [42] : 

 

• Hardware specification such that different platforms can be evaluated fairly 

• Explicit instructions for implementing the benchmark. The benchmark should 

not test how well the code was written, or the data model designed, as this is 

not generally a factor of the platform being tested.  

• The input data for the benchmark 

• The data model and any relevant schema 

• Specific queries or workloads designed to test certain parts of a system 

• The number of runs for each workload and how results are obtained and 

reported 
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The benchmarks mentioned above provide many instructions for setting up the 

testing including architecture designs and data models for table definitions and 

artificial workloads with which to run the tests. These rules attempt to ensure that the 

benchmark is fair and measures the intended element of the system. Certain 

database vendors will release benchmarks of their own, but these are often regarded 

as more for marketing purposes than for serious testing as the tests carried out 

maybe biased towards the strengths of the platform in question. Questions have also 

been raised over the practice of vendors tuning their products and specifying systems 

well in excess of what would be needed in a real-life situation specifically to gain 

artificially high scores in benchmark tests; a practice known as Benchmark escalation 

[43]. Examples of the areas that are commonly included in database benchmark tests 

include: 

 

    •    Scalability (adding or reducing components) 

    •    Availability 

    •    Redundancy 

    •    Security 

    •    Disk I/O 

    •    Timings of certain tasks specified in the benchmark 

2.4.1 BIG DATA BENCHMARKS 

The benchmark situation is much less clear and well defined for cluster-based parallel 

systems, which can be labelled as big data processing systems. As these systems 

are recent innovations in data management and processing, existing database 

benchmarks which relate to transaction processing or business intelligence queries 

may not be relevant. Older benchmarks exist such as the NAS parallel benchmarks 

[44] aimed at supercomputers. There are also more recent benchmarks such as 

Rodinia designed for heterogeneous clusters and newer forms of hardware, for 

example, GPU processing [45].  

 

Attempts have been made to introduce benchmarks that are more relevant to the 

specific properties of big data processing. The TPC has produced a new benchmark 
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[42] that can be freely downloaded from the TPC website. This new benchmark is 

designed to test Hadoop systems and provide a measure for hardware, operating 

systems and Hadoop file systems. It provides performance and availability metrics. 

Other benchmarks are being designed to focus on specific use cases of big data 

technology, for example, the Linked Data Benchmark Council (LDBC) is producing a 

set of benchmark tests specifically to measure the performance of graph algorithms in 

Social Network processing. The state of big data Benchmarking and its future 

direction were discussed at a workshop in 2011 [47] organised by the Centre for 

Large Scale Data Systems from the San Diego Supercomputer Centre. An interesting 

point raised was that traditional relational databases are usually over specified when 

used to run benchmarks. In other words, the system is far more powerful than one 

that would be utilised in a real-life situation, whereas for a big data system the reverse 

is often true, i.e. the system used to benchmark can be smaller than a production 

system. Thus, an element of scalability is an important part of the benchmark results. 

One reason for this under-specification could be that it is hard to provide realistic 

workloads that cover the three elements of volume, velocity and variety [48], which 

are often used to identify big data, as noted by Ren et. al [49].  

 

The proposed BigBench big data benchmark [50] sets out a framework based on the 

TPC tests which includes a data model, specific queries and synthetic data. Yahoo 

has produced specifications for two benchmarks, YCSB [51] and YCSB++ [52]. 

These frameworks specify testing areas critical to parallel clusters such as the ability 

to scale-out, elasticity (scaling to more nodes in a cluster while the cluster is in use) 

and high availability. Recognising that certain trade-offs are made when designing a 

system, they also test read and write performance as separate measures. 

 

Most of the systems used in this research provide simple benchmark tests as part of 

their distribution. These include the dfsio and terasort benchmarks for Hadoop [142] 

and the Cassandra stress test. For many, the terasort benchmark is a standard way 

of testing the performance of a cluster [53]. This benchmark simply measures how 

fast a system can sort a terabyte of data and it is supported by most platforms. 

Terasort is also part of the BigBench big data benchmark discussed above and itself 

based on the work of Jim Gray [54]. 



21 

2.5 CONCLUSION 

Parallel computing is very important for processing large complex datasets and has 

had a long history. While some early methods of parallel computing involved complex 

programming, and required a low-level understanding of parallelism, MapReduce 

programming abstracts much of the detail away into two processing primitives called 

mappers and reducers, described fully in Chapter 4, Section 4. The MapReduce style 

of parallel processing was presented in a paper by two Google engineers in 2004 [5], 

which led to the creation of Hadoop by Doug Cutting [37]. Hadoop has been widely 

adopted by businesses and academia as a means to process complex workloads in 

parallel and has several benefits including: 

 

• Reliability when running on commodity hardware due to built-in redundancy 

• Simplifying the task of taking a process and running it in parallel.  

• Horizontal Scalability  

 

The whole field of parallel processing and complex data sets has recently been 

known simply as Big Data and this term has also been applied to compute clusters 

and software processing frameworks. In order to test and compare Big Data systems 

benchmarks are being developed to compare relative performance. These 

benchmarks differ from older tests used to benchmark relational database systems in 

that they are designed to test the three main elements of a Big Data system, the 

volume of data, the velocity with which the data arrives and the variety of data formats 

that can be processed. As explained in Chapter 3, the data created by mass 

spectrometers has characteristics matching all three of these elements.  
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3 PROTEOMICS 

3.1 CHAPTER SUMMARY 

This chapter presents a literature review regarding current methods for processing 

the data output from mass spectrometers during proteomics experiments.  

 

Sections 2 and 3 provide background information describing proteomics and the use 

of mass spectrometers.  

 

Section 4 describes the challenges related to data processing and feature detection 

from the spectra.  

 

Section 5 discusses the feature detection process and its place in a more general 

proteomics processing pipeline. 
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3.2 PROTEOMICS 

As with genomics, where the field of functional genomics evolved to investigate the 

function of genes following the mapping of their sequence in an organism’s DNA [55], 
proteomics can be thought of as an offshoot of functional genomics where the 

Proteome is the entire set of proteins expressed by the genome of an organism. The 

goal of proteomics is to map the proteome and explain the function of each of the 

proteins it contains [56]. Proteomics is, therefore, the study of protein properties 

within an organism. It has become an essential component in the field of systems 

biology, which aims to describe biological systems by integrating detailed data from 

diverse domains. Important properties of the proteins studied include quantities 

(expression levels), modifications and interactions with other proteins [57]. This work 

is important because proteins constitute the principal structures of an organism and 

play a pivotal role in the basic functional and structural framework of all cellular life. 

By studying proteins and their properties and by building up a view of the Proteome, it 

is possible to gain a deeper understanding of how proteins should function in a 

healthy organism. This knowledge is used in areas such as comparing healthy cells 

with diseased cells and exploring the effect of drug treatments.  

 

Mapping the human proteome is a vast and complex task. To put this into 

perspective, the human genome is estimated to contain around thirty thousand genes 

[58] and with the discovery of new information this number is under constant review. 

In contrast, the human proteome may contain over a million proteins and is also 

under constant review. Following their synthesis, proteins can also undergo 

post-translational modification (PTM) [59]. A PTM is a chemical change to the protein 

structure through the addition of, for example, phosphates. Importantly the current 

understanding of PTMs, of which there are over three hundred different types, is that 

they are not predicted or governed by the genome, which means that proteomics 

experiments are necessary to identify and quantify them. The addition of PTMs to the 

proteins greatly increases the number of identifications required. 

 

The human proteome project [60] is a global project designed to map the entire set of 

proteins found in humans protein set. Barriers to completing the mapping task include 

the lack of understanding of the underlying genes, the sheer number of proteins and 
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possible modifications, quality of experimental data and the sharing of information 

between organisations. Hood et al. [9] also make one of the first references to moving 

data resources to a cloud-based environment. The potential benefits indicated 

include managing large-scale data analysis and sustainable data repositories. 

Identifying the need for collaborative data repositories that can be accessed online in 

the early stages of proteomics led to the establishment of the open-access protein 

sequence database SWISS-PROT [8]. The goals of SWISS-PROT include the 

standardisation and sharing of the results of proteomic experiments, minimising the 

redundancy of information caused by submissions from many institutions and also 

simplifying the integration with other databases. 
 

Typical proteomics research involves taking cells from an organism and preparing a 

sample in such a way as to remove as many contaminants as possible while retaining 

as many of the proteins present as possible; contaminants include the materials used 

in the culture of cells and other laboratory contaminants [61]. A further complication is 

that the quantity of a protein expressed varies enormously. While some proteins 

occur in small amounts, others are more abundant and found in large quantities, 

which can make it difficult to detect low-abundance proteins [62]. Following the 

culture and purification of a sample, the most accurate method used for analysis is 

Mass Spectrometry, which is fast and allows a high throughput of samples. The 

discussion of standard instruments and experimental techniques is carried out in the 

next section of this review 
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3.3 MASS SPECTROMETRY 

In the context of proteomics, a mass spectrometer is an instrument used to measure 

the mass and abundance of molecules in cell samples. Physicist Joseph John 

Thomson conceived mass spectrometers in the late 19th century [63]. While 

researching the nature of cathode rays, Thomson noted that they mark the paths of 

charged particles, which could be deflected by a magnetic field towards a detector. 

Francis Aston continued this research and built the first machine, which at the time 

was called a mass spectrograph, winning the Nobel Prize for chemistry in 1922 [64]. 

Continuous improvements and modifications have occurred, resulting in the modern 

instruments we see today. Recent advances in mass spectrometry have led to 

“next-generation proteomics” where the resolution and accuracy of the device allow 

for the measurement of tens of thousands of molecules. Comparing this to the 

measurement of hundreds of molecules possible with machines built before the turn 

of the century demonstrates the extent of the technical advances [65] and the 

consequent increase in data processing required. 

 

Although there are several types of machine with different methods for processing 

and measuring samples, there is a common pattern to a proteomics experiment 

involving mass spectrometry. During an experiment, a mass spectrometer will 

perform different tasks to measure the abundance and mass of the molecules that it 

takes as input as depicted in Figure 1. 

 

 
FIGURE 1 HIGH LEVEL PROCESS OVERVIEW - THE STAGES OF PROTEIN 

IDENTIFICATION 

Separation is the process of simplifying a complex mixture of proteins by separating 

molecules from each other before introducing them into the mass spectrometer. A 

common method of separation used is liquid chromatography; when used in 

combination with mass spectrometry the technique is known as LC-MS. This 
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technique involves passing the sample through a column, which is a narrow tube 

containing a gel material that partially and differentially binds to molecules meaning 

that they migrate through the column at different speeds depending on their 

properties [66]. In this way, a liquid chromatography stack feeds a stream of output 

molecules into the mass spectrometer that are sorted according to their properties. 

 

The next step is ionisation, which is the process of charging the molecules so that an 

electromagnetic field can attract them. Electrospray ionisation (ESI) is a very common 

technique used in contemporary mass spectrometers due to its ability to ionise heavy 

molecules [67]. Note that all the data employed in this research has been output from 

mass spectrometers using ESI.  

 

Following ionisation, the machine takes a scan of the ions it contains at regular 

intervals. The scan is taken by applying an electromagnetic force to the ions, which 

pushes a selection of them into the instrument’s mass analyser. It is important to note 

here that each of the scans is a sample of the contents of the original input. It is 

inevitable that some of the molecules are not measured as they flow through the 

machine between scans. For this reason, there can be difficulties in reproducing 

experimental results exactly. The point at which the scan is taken is known as the 

retention time (rt).  

 

Analysis of the ions is carried out by measuring their quantity and mass to charge 

ratios. This analysis is done inside the mass analyser of which there of four main 

types in common use. These are the Quadrupole, which uses four charged rods to 

trap ions in an electromagnetic field, the oscillation of molecules between these rods 

allows the mass to charge ratio to be measured. The Orbitrap (or ion trap) captures 

ions in a similar way to the Quadrupole. It is a highly accurate detector that can detect 

ions at a very high resolution [68]. Other types of analyser are the time of flight (TOF) 

and Fourier Transform Ion Cyclotron (FT-MS) [66]. Figure 2 shows a schematic of a 

Q Exactive plus mass spectrometer, which uses an Orbitrap ion detector in 

conjunction with a quadrupole. 
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FIGURE 2 SCHEMATIC OF A Q EXACTIVE MASS SPECTROMETER - SOURCE THERMO 

SCIENTIFIC [139] 

Isotope “labelling” is a quantitation method of analysing ions from different samples in 

the same experiment. Using this method cells from, for example, a diseased and a 

treated cell could be analysed and measured under the same conditions and at the 

same time. One method for labelling Isotopes is called Stable Isotope Labelling by 

Amino Acids (SILAC) as described by Ong and Mann [69] and used extensively at the 

University of Dundee. SILAC experiments involve incorporating the amino acids 

arginine and lysine into samples before the liquid chromatography phase of the 

experiment, therefore, providing a mechanism for four different samples (no 

treatment, lysine, arginine and both lysine and arginine). The incorporation of the 

amino acids increases the mass of the ions by a known amount. In this way, the 

isotopes, otherwise called peptides, can be identified, which leads to the identification 

of the proteins themselves [70].  

 

The sample processing techniques and the equipment described above do not allow 

the determination of the volume of complete proteins required by most proteomics 

experiments. Complete proteins are large molecules which mass spectrometers have 

difficulty in measuring. The large complete protein molecules will need to be isolated 
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and measured one at a time, a process that is known as a protein-centric or “top 

down” approach. If the experiment requires the measurement of the existence and 

abundance of proteins on a large scale, then it is necessary to break proteins into 

smaller pieces before introducing them to the mass spectrometer. Cutting the large 

protein molecules into smaller pieces is accomplished by using a digestive enzyme 

that breaks the protein molecule chains in a predictable way. The resulting smaller 

molecules are called peptides. The process of deducing the parent protein by 

detecting these peptides is called “bottom-up” proteomics. The bottom-up approach 

allows the analysis of large proteins and very complex samples.  

  

Many experiments will combine the bottom-up approach with a process called 

tandem mass spectrometry, also known as MS/MS or MS2 [71]. The tandem mass 

spectrometry technique involves using two mass analysers in the same machine: 

effectively the machine contains two mass spectrometers acting in sequence. The 

first mass spectrometer operates as described previously; molecules enter the 

instrument from the liquid chromatography phase, are ionised through ESI and are 

measured by the ion detector in the mass analyser. At this point, the mass 

spectrometer selects specific ions for further analysis following the measurement 

phase. The usual criterion for selection is the abundance of particular ions, although 

the mass spectrometer can be set up to select specific mass to charge ratios if 

required. The selected ions (also known as precursors) are fragmented into smaller 

molecules by colliding them with a neutral gas in a process called collision-induced 

dissociation. The resultant fragments pass into the second mass analyser where the 

ion mass to charge ratios and abundances are again measured and reported; these 

scans are known as MS level two scans. The results from MS/MS are used in the 

later data processing stages to increase the confidence in the correct identification of 

proteins. 

 

The Lamond Laboratory, School of Life Sciences, Centre of Gene Regulation and 

Expression, University of Dundee uses mass spectrometers manufactured by 

Thermo Scientific. These include the LTQ Orbitrap XL, LTQ Orbitrap VELOS and Q 

Exactive (Detailed specifications of the Thermo Scientific machines can be found 

online 
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https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chrom

atography-mass-spectrometry-lc-ms/lc-ms-systems.html# last accessed 04/12/2017). 

The data utilised in this research has been provided by the Lamond laboratory and 

contains the results of actual proteomic experiments (further described in the 

methodology chapter). Figure 3 is a photograph of the laboratory showing the rows of 

mass spectrometers in use. 

 

 
FIGURE 3 MASS SPECTROMETERS IN THE LAMOND LABORATORY, UNIVERSITY OF 

DUNDEE 

 

The data that is output, when the mass spectrometer processing completes, is in the 

form of spectra. These can be plotted as shown in Figure 4 and consist of the mass to 

charge ratio (x-axis) and ion abundance (y-axis). At this stage in the process we do 

not know the charge of the ions, and therefore the measurement is the mass to 

charge ratio and not the actual mass. Mass to charge ratio is notated as m/z and is 

measured in a unit called a thomson.  
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FIGURE 4 A SECTION OF A SINGLE MASS SPECTROMETER SPECTRUM 

As mentioned, a scan is taken of the ions present in the mass spectrometer at regular 

intervals with each scan producing spectra as shown in Figure 4. Scans are recorded 

at a rate of around 5 per second producing up to 40,000 scans for a two-hour 

experiment. For the Thermo Scientific instruments, this data is output in a proprietary 

binary format called a RAW file. The binary RAW formats are efficient regarding data 

compression, however, they require specific software from the vendor to allow the 

data to be analysed. In fact, each of the instrument manufacturers uses a different 

proprietary format for their data output, which causes problems for sharing results 

and for any processing software, which needs to include parsers for specific formats. 

For this reason, amongst others that are discussed in Section 3.4.1, an XML-based 

format called mzML is commonly used to store the output from proteomics 

experiments [15]. Conversion software is available to create mzML files from the 

vendor specific format. Section 3.4.1 of this thesis contains a detailed described of 

the mzML format. 
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3.4 DATA PROCESSING CHALLENGES 

During a typical proteomics experiment, a mass spectrometer will produce a large 

volume of data. The binary RAW files generated by the Thermo Scientific instruments 

are typically greater than one gigabyte and in a highly-compressed vendor specific 

format. Extensive processing of the spectra is necessary to identify proteins and gain 

any insights from experiments. Processing the data consists of several stages as 

below, each of which presents a series of challenges to the typical life sciences 

researcher and laboratory. This series of processing steps is referred to as the data 

processing pipeline [72] 
 

    •    File parsing 

    •    Filtering 

    •    Feature Detection 

    •    Alignment 

    •    Normalisation 

    •    Protein identification (database lookup) 

    •    Results sharing  

 

This research focuses on the feature detection part of the processing pipeline. 

Section 3.5 describes the feature detection process and algorithms in detail, but in 

essence, the reason for feature detection is to identify the ions in the spectra by 

mass, charge and abundance while avoiding false positives [72]. 
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3.4.1 DATA FILE FORMAT 

As stated previously, a common output file format for mass spectrometers is required 

to provide a standard for the sharing of data. In response to this need, the proteomics 

community has produced specifications for several file formats. At the time of writing 

this thesis, the latest of these is called mzML. mzML is an XML format based on the 

consolidation of two previous formats (mzXML and MzData). The mzML format has 

been widely accepted and very stable with little revision since its inception in 2008  

[15]. The mzML specification document describes the objectives of the format, which 

include comprehensive support for instrument output and the sharing of results and 

best practice. The XML specification uses a dictionary of keywords, which are 

included in the XML tag as attributes when required. The full specification and  

dictionary are linked here (last accessed 24/11/2016) 

http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/psims/mzML/controlledVocabulary/psi-ms.obo.  

 

The specification is very comprehensive and attempts to accommodate any details 

that specify a proteomics experiment. These include metadata such as the instrument 

used and its operational parameters, the cell sample analysed and any software used 

in pre-processing the output. Adding some complexity is the use of 32 or 64bit 

base64 encoded strings to hold the data. Data held in base64 strings requires a 

decoding step before use, but it does allow a high degree of accuracy to be kept while 

maintaining a compressed format [15]. Figure 5 presents a high-level schematic of 

the mzML format, this includes a header containing the metadata and the body 

section containing the actual data from the mass spectrometer scans. The format 

also allows for the base64 strings of scan data to be compressed using the Zlib 

algorithm. Zlib compression of the binary spectra data results in a decrease in the 

size of the file by a factor of two. Zlib is a well-known compression algorithm that 

usually exists natively on UNIX or Linux-based systems and is available in standard 

Microsoft Windows-based compression and decompression programs.  
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FIGURE 5 HIGH LEVEL SCHEMATIC OF THE XML-BASED MZML DATA FILE FORMAT 

Even with this compression, the verbose nature of XML formats means that the size 

of the data file will increase significantly from that of the original binary format. The 

description of the files used in this research, the largest of which is 7.5 Gb, is in 

Chapter 5 Section 9. One final important point on the mzML format is that files 

formatted as XML are not well suited to parallel processing. For parallel processing to 

be effective, the data must be distributed evenly across the processing nodes, and It 

is a complex task to split an XML file into discrete units without breaking the format by 

splitting between XML tags. Note that the fast, efficient processing of data was never 

one of the prime target objectives for the mzML format. For this reason, the 

development of a new file format based on mzML was necessary. The successful 

design and testing of this new file format was an important step to enable the 

development and benchmarking of the parallel feature detection algorithm. Chapter 5 
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contains a detailed discussion of this format, which is designed to allow distribution of 

the scans around a cluster of computing nodes.   

 

3.4.2 DATA VOLUME 

The volume of data produced by proteomics experiments grows year on year for 

several reasons. Firstly, newer instruments have an increased level of sensitivity and 

can record more detailed data. For example, new devices can perform a further 

degree of fragmentation going beyond the MS/MS two-stage processing that is 

commonplace; this is done to increase the confidence in protein identification further. 

An increase in data volume also occurs at the second level of fragmentation. The 

machines that produced the data used in this research provide the level 1 scans as 

full profile spectra as opposed to the level 2 scans which were output as centroids. A 

centroid is a single point at the centre of a peak representing the mass to charge ratio 

in a spectrum (Figure 6) [12]. 
 

 
FIGURE 6 CENTROID VS PROFILE SPECTRUM DATA 

However, more recent machines produce the data for level 2 scans as profiled 

spectra data, this substantially increases the amount of data output. Also, as 

laboratories add more devices more experiments are run simultaneously with a 

corresponding growth in data. 
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A large volume of data causes issues that include the cost of storage; an effective 

platform will need to provide a low cost per terabyte for storage while still providing 

fast online access to data files. It can also be the cause of a data management issue, 

as data must transfer from the computer attached to the mass spectrometer to a 

separate processing environment, and then the results move to a shared area where 

they can be analysed. This potential data management problem is one of the issues 

that this research targets for mitigation. As previously noted the processing of RAW 

mass spectrometer output is a complex, time-consuming task. This processing time 

needs to be reduced so that the researchers can analyse results as quickly as 

possible and allow research to progress in an iterative fashion.  

 

A further issue is that of the workflow; life science researchers rely heavily on 

computer scientists or bioinformaticians to provide them with data that they can 

understand [73]. An ideal system would abstract the complexity of RAW file 

processing away from the Life Scientists.  

 

3.4.3 COMPLEXITY 

Producing a list of proteins and their abundance from a binary RAW file is a complex 

process, and importantly it is open to some interpretation and error. It is usual to find 

that different algorithms and software packages will produce different results from the 

same input file [74]. It is worth noting that on the discovery of new information or 

experimental techniques, it is entirely possible that reprocessing of the data files 

would be necessary. This requirement for reprocessing emphasises the need for a 

fast, simple solution to the issues of data management and processing. The potential 

need to reprocess data has raised the question of what should be stored on the 

completion of an experiment. Martens et al. [75] argue that the only acceptable data 

is the original output from the mass spectrometer in the vendor’s binary format. 

Certainly, given that reprocessing may well identify new centroids, simply storing the 

centroid data is insufficient.  

 

A further challenge is that by the very nature of the way a mass spectrometer 

processes data (in scans which are snapshots of the ions in the machine at that time) 
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the data will be incomplete. Furthermore, MS/MS scans are typically only from the 

largest, most abundant peptides as, currently, even the most advanced mass 

spectrometers cannot fragment every peptide [76].  

 

3.4.4 FEATURE DETECTION 

The purpose of the algorithm tested and benchmarked on parallel clusters in this 

research is to detect features in the mass spectrometer output spectra. This process 

is also called “Peak Picking” because the algorithm scans the spectrum and selects 

peaks in the data; these peaks represent the ions detected by the mass spectrometer 

during a scan. A feature in this context consists of a set of peaks aligned across time 

that correspond to a single eluting peptide [77]. Features and how they are made up 

of peaks are described fully in the next section of this chapter. The feature detection 

process results in a list of peptides and includes their mass, charge, abundance 

(known as intensity in this context), the retention time at the highest point of the peak 

and can also include the start and end retention times. A recent review [16] of the 

performance of computational analysis of mass spectrometer data describes feature 

detection as the second most time-consuming part of the process, with the most time 

consuming being the database search, which is also outlined in the next section. The 

review [16] also states that the feature detection phase benefited the most from 

parallelization. A detailed description of the steps required for feature detection can 

be found in Section 3.5 of this chapter. 

 

3.4.5 DATABASE LOOKUP 

The final stage of the data processing pipeline is to look up the identified peptides in a 

database of known protein to peptide relationships. This search is a complex process 

and involves some degree of probability, as a certain peptide is likely to be an integral 

part of many different proteins [78]. Several attempts at creating a parallel process to 

complete this stage of the pipeline have already been successful. These include 

parallel tandem, a parallel implementation of the X! Tandem search engine using the 

message passing interface (MPI) style of programming and parallel virtual machines 

(PVM) both of which are described in Section 5.2 of this thesis. A more recent 
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example of parallelization is Hydra [79], which uses Hadoop and the MapReduce 

programming framework to create a parallel proteomics search engine. The research 

presented in this thesis does not attempt to recreate the database lookup but instead 

suggests ways in which the output from the parallel feature selection can be provided 

as the input to a parallel database lookup system. 

 

3.4.6 SHARING OF RESULTS 

Once the proteins in the sample have been identified it is usual practice to share the 

results in an online repository such as SWISS-PROT [8]. There are several reasons 

for this including reproducibility and to aid collaboration between facilities working 

towards a common aim. If other researchers want to recreate parts of workflows that 

have already been completed then having data accessible in a standard format 

means that research can be repeated and checked in a controlled manner. Other 

proteomics data repositories such as PRIDE provide an archive for data used to 

support scientific publications [80]. 
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3.5 OVERVIEW OF FEATURE DETECTION ALGORITHMS 

There have been several comparative studies on the proposed algorithms for feature 

detection. For example, Katajamaa and Oresic [72] reviewed the filtering and feature 

detection algorithms available at the time (2007) and the different software packages 

using them. They conclude that as new algorithms are designed it is necessary to test 

them as part of the whole processing pipeline and that open source is a way to 

address this.  

 

Note that early attempts to produce peak lists had to contend with more complexity 

than is needed with the data that is output from mass spectrometers today. These 

include steps such as baseline correction [81] which is not required now as the mass 

spectrometer performs this processing on the data before it is output. Also due to the 

availability of high-resolution data, peak picking based on profiles such as the wavelet 

technique [82] used in the TOPP open-source software [83] have given way to 

feature detection techniques. Profile-based approaches are more accurate on 

low-resolution data where feature detection is relatively more error prone resulting in 

missing values in the output [77]. Due to the inherent data reduction in the process, 

feature detection is less computationally expensive than profile-based approaches 

and leads to a correspondingly faster processing time [77].  

 

An early algorithm design that describes the steps for feature detection sets out three 

stages, 1) identify peaks within a single scan 2) smooth peaks over time and identify 

peaks that appear over multiple scans 3) assemble peaks into isotope groups [84]. 

An isotope in this context is a variant of a particular chemical element, which has a 

different mass due to the incorporation of a different form of carbon. For example, a 

peptide that incorporates carbon-12 will have a different mass from the same peptide 

incorporating carbon-13 or carbon-14. These mass changes are predictable and are 

used to distinguish actual peptides from contaminants and noise in the data. A recent 

study into the software tools and algorithms available [85] contains a similar 

description of feature detection and also describes the software MaxQuant as a 

well-established program for the analysis of quantitative data.  

 



39 

This research focuses on the feature detection algorithm as employed in the 

MaxQuant software, which in outline follows similar steps to those described by 

Bellew et al. [84] as mentioned above. MaxQuant is described as "A quantitive 

proteomics software package designed for analysing large-scale mass-spectrometric 

data sets" http://www.biochem.mpg.de/5111795/maxquant (accessed 1st March 2017) and is 

freely available to download and use. Professor Juergen Cox at the Max Planck 

Institute of Biochemistry, Germany, created MaxQuant and his team of researchers 

continues to maintain and add features to it. The on-going collaboration between Cox 

and Matthias Mann has ensured that MaxQuant is widely used in the proteomics 

community and the original paper [12] has several thousand citations. Mann has been 

a leading researcher in this field, pioneering the SILAC method of protein quantitation 

[69] and together with Ruedi Aebersold wrote one of the first papers detailing a 

workflow using mass spectrometers for proteomics experiments [66]. Researchers in 

the Lamond Laboratory use MaxQuant extensively to analyse the results of their 

experiments. The RAW data used for benchmarking purposes in this research was 

obtained from The Lamond Laboratory, School of Life Sciences, Centre of Gene 

Regulation and Expression, University of Dundee and has also been previously 

processed using MaxQuant. 

 

Cox and Mann published extensive supplementary material alongside the original 

MaxQuant paper [12]. This supplement outlines the main parts of the algorithm used 

to process mass spectrometer spectra without giving all the details of the exact 

implementation. The information in the supplement has been used to design the 

parallel algorithm in this research. In 2011, The Lamond Laboratory at the University 

of Dundee undertook a collaborative project with Teradata Ltd. to recreate the 

MaxQuant workflow using a relational database and the SQL scripting language in a 

project called Spectracus. Following the movement of the Spectracus project into a 

testing phase, the focus in the Lamond Laboratory has changed to an open-source 

strategy. Although this work has not reached a production stage and no papers have 

been published regarding it, reference was made by the author to the project 

documentation and laboratory notes when researching ways to run a feature 

detection algorithm in a parallel fashion.  
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Figure 7 presents a view of a 3D view of all the peaks in a complete experiment, it is 

possible to see the intensity of the features as well as their distribution. Note how the 

distribution of the peaks is highly skewed towards certain ranges of m/z and retention 

time. The scale of Figure 7 is such that the entire dataset is shown in a single figure. 

The remainder of this section describes the algorithm used to identify these peaks as 

described in the MaxQuant supplement [135] 

 
FIGURE 7 ILLUSTRATION OF THE COMPLETE SET OF PEAKS (FEATURES) IN A 3D 

VIEW 
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3.5.1 DETAILED DESCRIPTION OF THE FEATURE DETECTION ALGORITHM  

The steps required by the feature detection algorithm are as follows:  

 

1) 2D peak picking 
The two-dimensional (2D) name of this process comes from the fact that peaks are 

detected in the mass to charge ratio and intensity dimensions. The algorithm works 

on a single mass spectrometer scan at a time. Figure 8 shows a section of a 

spectrum with the mass to charge (m/z) values on the x-axis and the intensity (which 

equates to the abundance of the ions detected) on the y-axis. By convention the scan 

is represented as a continuous line rather than individual data points. As mentioned, 

the unit of measurement for the m/z ratio is a thomson; at this stage in the process the 

value of the electrical charge held by the ions in the spectra is not known and 

therefore their actual mass cannot be calculated 

 

 
FIGURE 8 A SECTION OF A SINGLE MASS SPECTROMETER SCAN 

 

Figure 9 Shows an example of a single peak taken from a scan, the data points that 

make up the peak are shown in Table 1. 
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FIGURE 9 EXAMPLE 2D PEAK 

m/z  intensity difference between current m/z and previous m/z 
415.98547 0.000  

415.98750 25057.193 0.00203 
415.98950 47017.250 0.00200 

415.99152 66487.530 0.00202 

415.99353 74497.980 0.00201 
415.99554 68222.600 0.00201 

415.99756 51487.445 0.00202 

415.99957 32179.443 0.00201 
416.00160 0.000 0.00203 

 

TABLE 1 DATA POINTS FOR EXAMPLE 2D PEAK 

The difference between the current and previous m/z values in Table 1 shows the 

sampling rate of the mass spectrometer. Note that while theoretically each scan will 

contain the same number of data points, in practice the mass spectrometer performs 

a data reduction step and does not report all zero values between peaks. A 

complication in the peak detection process is that peaks can overlap. 



43 

shows overlapping peaks where the intensity does not return to zero after reaching 
the apex of the peak but instead rises to another apex with the relevant data in Table 
2. 

 

 
FIGURE 10 EXAMPLE OVERLAPPING 2D PEAKS 

m/z  intensity 
difference between current m/z 
and previous m/z 

452.84390 0.000 
 452.84620 45549.650 0.00230 

452.84848 204779.620 0.00228 
452.85077 629295.300 0.00229 
452.85303 1150425.400 0.00226 
452.85532 1630558.100 0.00229 
452.85760 1452616.100 0.00228 
452.85990 915715.560 0.00230 
452.86218 404217.440 0.00228 
452.86447 125762.070 0.00229 
452.86676 77428.920 0.00229 
452.86862 124085.400 0.00186 
452.87090 151868.830 0.00228 
452.87320 116575.590 0.00230 
452.87550 54405.645 0.00230 
452.87778 22953.500 0.00228 
452.88040 0.000 0.00262 

 

TABLE 2 DATA POINTS FOR EXAMPLE OVERLAPPING PEAKS 
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Figure 11 shows an illustration of the peak detection process (without the complication 

of the overlapping peaks), using a simple slope detection algorithm to identify all the 

data points that constitute a single peak. 

 

 
 
FIGURE 11 ILLUSTRATION OF PEAK DETECTION 

The pseudocode below details the first part of the 2D peak picking process as defined 

by MaxQuant. This step iterates through the array of mz and intensity values from a 

single scan and groups together data points that belong to the same peak. Any 

overlapping peaks are flagged and assigned separate peak identifiers. The groups of 

date points making up a peak are then processed to calculate intermediate metrics to 

be passed to the next part of the process. The result of this step is a peak identifier, 

Weighted Peak m/z (defined in the pseudocode), the sum of the intensity values and 

the maximum intensity for each 2D peak in the scan. The weighted peak m/z value 

corresponds to the centroid of the peak as discussed in Chapter 3, section 4.2 
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Description: Identify peaks and calculate peak metrics 
Input: array of mz values, array of intensity values, scan number 
Output: for each peak; peak identifier, weighted peak mass, sum of intensities, 
maximum intensity, retention time 
Parameters Used: (See table 3) 
nf: 2D noise filter, used to remove low intensity data points from a peak = 10% 
of maximum peak intensity 
 
1  SET position counter to 0 
2  SET peak index to 0 
3  WHILE position counter < length of mz and intensity arrays 
4    //Find the start of a peak 
5    IF (current intensity is > 0 AND previous intensity = 0) OR overlap flag 
is set 
6      WHILE current intensity is > 0   
7        SET the 2D peak ID for this postion to the peak index                                         
8        IF current intensity > previous intensity   
9           AND previous intensity 2 steps back > previous intensity 
10         //Overlapping Peak found, store Intensity  
11         //and start new Curve for next Iteration 
12         SET the overlap flag 
13         BREAK out of this loop 
14       ELSE 
15         INCREMENT the position counter 
16       ENDIF 
17     END WHILE 
18  END IF 
19  //end of peak found 
20 INCREMENT the peak index  
21 INCREMENT the position counter 
22 END WHILE 
23 //Reiterate over mz and intensity arrays to create intermediate metrics 
24 FOREACH peak index 
25   FOREACH mz, intensity  
26     IF current intensity > nf 
27       SET maximum intensity 
28       SET minimum intensity   
29       SET sum of intensities for this peak 
30       SET sum MZ by intensity = SUM(mz*intensity) 
31       SET weighted peak mass = sum MZ by intensity / sum of intensities 
32     ENDIF 
33   END FOREACH 
34 END FOREACH 
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Parameters  
Several parameters are defined in the feature detection process. Table 3 lists the 

parameters and the reasons for choosing the default values. The values have been 

chosen either from best practice outlined in the literature, or from experimental 

observation. The following details the parameters, their settings, symbols as used in 

the pseudocode and the reference for the value of the setting 

 
TABLE 3 PARAMETERS USED IN THE FEATURE DETECTION ALGORITHM 

 
 
The next step in the 2D peak picking process is to identify peaks that fall within an 

Isotopic envelope. The envelopes are created when the incorporation of carbon 

atoms of different molecular mass into the ions causes a predictable pattern. An 

example of an Isotopic envelope is shown in Figure 12. The envelopes are identified 

once an initial pass of the spectra picks out the individual weighted peaks. The m/z 

shift between the isotopes in the envelope depends on the electrical charge of the ion 

and through the measurement of this change in m/z and a lookup table such as that in 

Table 4, the charge of the ion is calculated and therefore its true mass can also be 

calculated by multiplying the m/z value by the charge. 

Symbol Description Setting Reference 

nf 2D noise filter, used to remove low intensity data points 

from a peak. Setting is a percentage of the maximum 

intensity of a peak 

10% MaxQuant 

pht Minimum ratio of intensities between two 3D peaks in a 
isotopic envelope 

60% MaxQuant 

sm Mass of a sodium molecule, used to modify the range of 

masses that qualify as a match 

+/- 0.0109135 MaxQuant 

cc Correlation coefficient for matching 3D isotopic peaks 0.6 MaxQuant 

Mmt Mass matching tolerance, used in conjunction with sm 
to calculate the range of masses that qualify as a match  

7ppm MaxQuant 
and Thermo 
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FIGURE 12 PEAKS WITHIN AN ISOTOPIC ENVELOPE 

The values in Table 4 are created using an “averagine” model [77]. Here the term 

averagine refers to a theoretical peptide the properties of which are calculated 

from the average composition of peptides at a given mass. The m/z shifts are 

reported by convention to eight decimal places.  
 

TABLE 4 MASS SHIFT BY CHARGE FOR ISOTOPIC ENVELOPE CALCULATION 

Charge 

 

Mass Shift 

(thomsons) 

2 0.50143432 

3 0.33428955 

4 0.25071716 

5 0.20057373 

6 0.16714477 

 

The following pseudocode details the 2D Isotopic envelope detection process as 

used by MaxQuant. The result of this step is a list of 2D Weighted Peak m/z, summed 

Intensity and charge values for each 2D peak that formed part of an isotopic 

envelope. To count as a valid envelope it must be formed of at least three 2D peaks. 

It is important to note at this point that the 2D isotopic envelope detection step is used 

to identify the charge of the ions and also as a filter to remove any of the peaks that 

are not included in an isotopic envelope. The individual 2D peaks are passed to the 

3D peak picking process and are not aggregated into a single mono-isotopic peak at 

this stage.  
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Description: Identify Isotopic envelopes of 2D peaks and calculate charge 
Input: peak identifier, weighted peak mass, sum of intensities, maximum 
intensity, retention time 
Output: peak identifier, weighted peak mass, sum of intensities, maximum 
intensity, charge, retention time 
Parameters used:  
pht: Minimum ratio of intensities between two 3D peaks in a isotopic envelope=60% 
sm : Mass of a sodium molecule=+/- 0.0109135 
 

1 FOREACH 2D peak identifier in input  
2   SET outer loop weighted peak mass 
3   SET outer loop sum of intensities 
4   SET outer loop maximum intensity 
5   FOREACH  2D peak identifier in input  
6     SET inner loop weighted peak mass 
7     SET inner loop sum of intensities 
8     SET inner loop maximum intensity 
9     IF the inner and outer loops are not at the same point 
10       AND outer loop weighted peak mass - inner loop weighted peak mass > 0 
11       AND outer loop weighted peak mass - inner loop weighted peak mass <= 
1 
12       AND inner loop maximum intensity > pht * outer loop maximum intensity 
13     SET wpm difference = outer loop weighted peak mass - inner loop 
weighted peak mass; 
14           IF wpm difference > 1-sm AND wpm difference < 1+sm SET charge to 1 
15 //the decimal values to calculate charge are from the "averagine" table 4 
16           ELSEIF wpm difference >= 0.50143432 - sm  
17             AND wpm difference <= 0.50143432 + sm SET charge to 2 
18           ELSEIF wpm difference >= 0.33428955 - sm  
19             AND wpm difference <= 0.33428955 + sm SET charge to 3 
20           ELSEIF wpm difference >= 0.25071716 - sm  
21             AND wpm difference <= 0.25071716 + sm SET charge to 4 
22           ELSEIF wpm difference >= 0.20057373 - sm  
23             AND wpm difference <= 0.20057373 + sm SET charge to 5 
24           ELSEIF wpm difference >= 0.16714477 - sm  
25             AND wpm difference <= 0.16714477 + sm SET charge to 6  
26           SET mass = charge * outer loop weighted peak mass 
27     OUTPUT 2D peak identifier, outer loop weighted peak mass,  
28            outer loop sum of intensities, mass, charge 
29  END FOREACH 
30 END FOREACH    
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2) 3D peak picking  

Following the 2D peak picking and isotope identification, the next step in the feature 

detection process is search for chains of 2D peaks that align in a narrow band of m/z 

in order of increasing retention time. The addition of the further dimension of retention 

time (rt) into the calculation is the reason for the three-dimensional (3D) naming. A 

peptide will present as ions in the scans over a period of time, starting off with a small 

amount rising to a peak and then tailing off. Figure 13 shows a selection of the 2D 

peaks that were output from the 2D peak picking process. When the 2D peaks are 

arranged in this way it is possible to see the 3D peaks as chains of 2D peaks. To be 

grouped into the same chain, 2D peaks must have the same charge and the m/z 

values lie within a +/- 7ppm window, this is known as “peak alignment”. Pseudocode 

for the 2D peak alignment step is shown below. 

 

FIGURE 13 2D PEAKS WITH AN EXAMPLE CHAIN OF 2D PEAKS CIRCLED 

(note there are several chains in this figure but only one is circled for illustrative 

purposes) 
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Description: Create chains of 2D peaks ordered by retention time. 
Input: 2D peak identifier, weighted peak mass, sum of intensities, maximum 
intensity, charge, retention time 
Output: 2D peak chain identifier, 2D peak identifier, weighted peak mass, sum 
of intensities, maximum intensity, charge, retention time 
Parameters used:  
mmt: Mass matching tolerance = 0.000007 
 
1 rt = retention time 
2 NESTED SORT list of input 2D peaks by retention time and then by weighted peak 
mass within Retention Time 
3 FOREACH 2D peak identifier  
4   FOREACH 2D peak identifier  
5     IF retention time for outer 2D peak is within 30 seconds of retention time 
for inner 2D peak 
6       //fast forward to next possible match in inner loop 
7       //performance enhancement to prevent excessive looping -  
8      WHILE outer loop mass < inner loop mass + 0.05 and inner loop rt = current 
rt  
9         IF outer loop charge != inner loop charge 
10         OR outer loop mass < inner loop mass * mmt 
11          INCREMENT inner loop 
12     END WHILE 
13     IF outer loop wpm < inner loop mass + (inner loop mass * mmt) 
14       SET match flag to found 
15       FOREACH of the next 4 2D Peaks check for another match 
16         IF other matches found choose closest mass to the outer loop 2D mass 
17       END FOREACH 
18       SET 2D peak chain identifier for the matched 2D peak 
19     END IF 
20   END IF 
21   IF matchflag is set to found break out of inner loop and move to next point 
in outer loop 
22  END FOREACH  
23  INCREMENT the 2D peak chain identifier if we had matches before but now don’t 
to start a new 3D peak. 
24 END FOREACH  
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Once the 2D peaks have been linked to form chains, they present as a time series as 

seen in Figure 14. The process from this point is similar to that followed in the 2D 

peak picking step; that is individual peak detection and isotopic envelope 

identification. An additional step is necessary at the start of the process and this is to 

smooth the intensity values to prevent splitting an eluting peptide into several 

sections due to noise in the data. Figure 14 shows an example of this effect, without 

smoothing many false peaks would be found. The method for smoothing, based on 

the MaxQuant algorithm, is to apply a window mean filter of +/- 1 scan width [135]. 

Many other ways of smoothing data exist such as Gaussian Filters, Continuous 

Wavelet Transformation and Discrete Wavelet Transformation [147]. However, as the 

moving average window mean filter is specified in the MaxQuant supplement, this 

was used in the algorithm developed here. 

 

 

FIGURE 14 ILLUSTRATION OF SMOOTHING IN 3D PEAK PICKING 
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The following pseudocode details the process for smoothing the intensity values of 

the 2D peaks making up to 2D peak chains. 

 
Description: Smooth intensities of 2D peaks that make up 3D peaks 
Input: 2D peak chain identifier, 2D peak identifier, weighted peak mass, sum 
of intensities, charge, retention time 
Output: 2D peak chain identifier, 2D peak identifier, weighted peak mass, 
smoothed intensity, sum of intensities, charge, retention time 
 
1  SORT 2D peaks in order of Retention Time  
2    FOREACH 2D peak chain  
3      FOR 2D peak in the current 2D peak chain 
4        IF this is the start of a new 2D peak chain 
5          SET smoothed intensity = (current intensity + next intensity) / 2 
6        ELSE IF this is the last 2D peak in a 2D peak chain 
7          SET smoothed intensity = (current intensity + last intensity) / 2 
8        ELSE this is the a 2D peak in the middle of a 2D peak chain 
9          SET smoothed intensity = (current intensity + next intensity + last 
intensity) / 3 
10     END FOREACH 
11     OUTPUT 2D peak chain identifier, 2D peak identifier, weighted peak mass, 
smoothed intensity, sum of intensities, charge, retention time 
12   END FOREACH 
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Following the smoothing process, the 3D peaks can be identified in a similar manner 

to that in which the 2D peaks and overlaps were identified in an earlier step. The 

major difference between the two procedures is that the smoothed intensity values do 

not fall to zero between 3D peaks, this means that in effect all peaks are treated in the 

same way as overlapping peaks in the 2D process. The following pseudocode details 

the process for identifying individual 3D in the 2D peak chains. 

 
Description: Identify the 3D peaks from the smoothed data 
Input: 2D chain identifier, 2D peak identifier, weighted peak mass, smoothed 
intensity, charge, retention time 
Output: 3D peak identifier, 2D peak identifier, weighted peak mass, smoothed 
intensity, charge, retention time 
 
 
1  FOREACH 2D point in the input             
2    IF previous 2D chain identifier <> current 2D chain identifier   
3      //start of new chain must be start of new peak 
4      INCREMENT 3D peak identifier 
5      IF current smoothed intensity < next previous intensity 
6         OR current smoothed intensity = next previous intensity 
7         SET slope indictor to positive 
8      //Due to the partition strategy it is possible to start a chain with a 
negative slope 
9      ELSE SET slope indictor to negative           
10     END IF 
11   ELSE 
12     IF previous smoothed intensity < next smoothed intensity 
13        OR next smoothed intensity = previous smoothed intensity 
14        SET slope indictor to positive 
15        IF current smoothed intensity < previous smoothed intensity 
16           INCREMENT 3D peak identifier 
17     ELSE IF next smoothed intensity < previous smoothed intensity 
18          SET slope indictor to negative           
19          IF current smoothed intensity < next smoothed intensity 
20            INCREMENT 3D peak identifier 
21     END IF 
22   END IF     
23 END FOREACH 
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Following the process described above, the individual 3D peaks and the 2D peaks of 

which they they are comprised have been identified. Now, isotopic envelopes can be 

detected in a similar way to the 2D peak picking step with the exception that a 

correlation coefficient is calculated to check that the candidate 3D peaks have a 

similar shape before they can be classed as matching in a 3D Isotopic envelope. This 

method of detecting the 3D Isotopic envelopes is taken from the MaxQuant 

description of the algorithm. The pseudocode below details the process for identifying 

3D isotopic envelops. 

 
Description: Identify the 3D peaks from the smoothed data 
Input: 3D peak identifier, 2D peak identifier, weighted peak mass, smoothed 
intensity, charge, retention time 
Output: ISO envelope identifier, 3D peak identifier, 2D peak identifier, weighted 
peak mass, smoothed intensity, charge, retention time 
Parameters used: 
pht: Minimum ratio of intensities between two 3D peaks in a isotopic envelope=60% 
sm : Mass of a sodium molecule=+/- 0.0109135 
wpm = weighted peak mass 
rt = retention time 
 
1  FOREACH 3D peak identifier in input 
2    FOREACH 3D peak identifier in input 
3      IF position in outer loop <> position in inner loop  
4        //Match on wpm 
5        AND outer loop wpm - inner loop wpm >= 0  
6        AND outer loop wpm - inner loop wpm <= 1) 
7        //Match on rt window between first and last 2D peak in the 3D peak  
8        AND outer loop last rt >= inner loop rt  
9        AND outer loop first rt <= inner loop rt  
10       //Match on Charge 
11       AND outer loop charge = inner loop charge 
12       //Match on Intensity       
13       AND inner loop smoothed intensity > pht * outer loop smoothed intensity 
15         SET wpm difference = outer loop weighted peak mass-inner loop weighted 
peak mass; 
16         IF wpm difference > 1 - sm AND wpm difference < 1.0 + sm SET charge 
to 1 
17           ELSEIF wpm difference >= 0.5014343200 - sm AND wpm difference <= 
0.5014343200 + sm SET charge = 2 
18           ELSEIF wpm difference >= 0.3342895500 - sm AND wpm difference <= 
0.3342895500 + sm SET charge = 3 
19           ELSEIF wpm difference >= 0.2507171600 - sm AND wpm difference <= 
0.2507171600 + sm SET charge = 4 
20           ELSEIF wpm difference >= 0.2005737300 - sm AND wpm difference <= 
0.2005737300 + sm SET charge = 5 
21           ELSEIF wpm difference >= 0.1671447700 - sm AND wpm difference <= 
0.1671447700 + sm SET charge = 6  
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23         END IF 
24         IF wpm difference calculation found a match         
25           //calculate the correlation coefficient between current 3D peak  
26           //and the next 3D peak in the potential isotopic envelope 
27           FOREACH potential isotopic envelope 
28             FOREACH 3D peak in current potential isotopic envelope 
29             FOREACH 2D peak in current 3D peak 
30               SET normA = normalised intensity for current 2D peak in current 
3D peak 
31               SET normB = normalised intensity for current 2D peak in next 3D 
peak 
32               normAnormB = normAnormB + (normA * normB) 
33               normAnormA = normAnormA + (normA * normA) 
34               normBnormB = normBnormB + (normB * normB) 
35             END FOREACH 
36             corelation coefficent = normAnormB / square root of (normAnormA 
* normBnormB)            
37            //Write out matched points if correlation coefficient is greater 
threshold 
38           IF corelation coefficient >= pht 
39             true isotopic envelope found 
40             OUTPUT ISO envelope identifier, 3D peak identifier, 2D peak 
identifier, weighted peak mass, smoothed intensity, charge, retention time 
41           END IF 
42         END IF 
43     END IF 
44   END FOREACH 
45 END FOREACH 
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Finally, the individual 3D peaks making up the Isotopic envelopes are combined into 

a single mono-isotopic peak with a single value for the mass, intensity and retention 

time of the peptide. The mass and retention time are taken from the first 3D peak in 

the isotopic envelope and the intensity is the sum of the intensity values from all 3D 

peaks in the envelope. This information will feed into the later stages of the data 

processing pipeline, resulting in identified proteins. The following pseudocode details 

the process for creating the final mono-isotopic peaks 

 
Description: Aggregate component values into mono isotopic peaks within an 
istopic envelope 
Input: ISO envelope identifier, 3D peak identifier, 2D peak identifier, weighted 
peak mass, smoothed intensity, charge, retention time 
Output: mono-iso peak identifier, mass, intensity, charge, retention time 
 
1 FOREACH Isotopic Envelope 
2   FOREACH 3D peak in the current isotopic envelope 
3     FOREACH 2D peak in the current 3D peak 
4       sum weighted peak mz = weighted peak mz + (current weighted peak mz * 
current smoothed intensity) 
5       sum weighted peak rt = weighted peak rt + (current weighted peak rt * 
current smoothed intensity)           
6       sum intensity = sum intensity + current smoothed intensity 
7     END FOR EACH 
8       weighted 3D peak mz = sum weighted peak mz / sum intensity 
9       weighted 3D peak rt = sum weighted peak rt / sum intensity 
10    END FOR EACH 
12    weighted peak mass = weighted 3D peak mz for first 3D peak * charge 
13    weighted peak rt = weighted 3D peak rt for first 3D peak 
14    intensity = sum intensity for all 3D peaks in envelope 
15  END FOR EACH 
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3.6 CONCLUSION 

The aim of proteomics is to understand the full complement of proteins expressed by 

an organism and the interactions between them. Proteomics is an important field of 

study in life sciences and is an essential component of systems biology.  By 

integrating detailed data from different domains, it is possible to describe biological 

systems, the benefits of which include the development of personalised medicines. 

The study of proteins is a complex task involving many steps, the most common 

technique used to measure the presence and abundance of proteins in a sample is 

mass spectrometry.  

 

During a process known as “bottom-up proteomics”, the large protein molecules are 

cut into smaller pieces, called peptides, using an enzyme. The peptides are detected 

by the mass spectrometer and output in the form of spectra consisting of mass to 

charge ratios and intensities (abundance of peptide ions). In order to identify the 

original proteins, present in the experimental cell sample, complex processing is 

required. The first step in this processing pipeline is feature detection and the 

algorithm for feature detection described in this thesis is based on the algorithm as 

implemented by the MaxQuant software first described by Bellew [84]. Current 

methods of processing mass spectrometer data in serial can be slow, one potential 

way of speeding up the process is through parallel processing. The next chapter 

reviews related work in this area. 
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4 PARALLEL COMPUTING FOR PROTEOMICS 

4.1 CHAPTER SUMMARY 

This Chapter discusses the current state of parallel computing for processing 

proteomics data.  

Section 2 gives a detailed description of MapReduce and the capabilities of Hadoop. 

Section 3 describes current research into parallel solutions for feature detection and 

the proteomics pipeline.  

Section 4 discusses the use of cloud and big data solutions. 

Section 5 concludes the literature review chapters and presents the main research 

question of this thesis. 
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4.2 HADOOP AND MAPREDUCE 

As discussed in Chapter 2, Section 2.3, the paper “MapReduce: Simplified Data 

Processing on Large Clusters” [5] introduced a programming framework called 

MapReduce which has its roots in functional programming languages such as Lisp 

[35]. The framework consists of two main operations, a map and a reduce, and 

operates by the passing of key/value pairs. The process flow is as follows [5]: 

 

• Input data is divided into a series of “splits” that are distributed around the 

nodes of the cluster.  

• The map task takes an input split in the form of a key/value pair and emits a set 

of intermediate key/value pairs.  

• The intermediate key/value pairs are moved around the cluster so that all pairs 

with the same key are placed on the same node, this phase is called the 

shuffle.  

• Following the data movement in the shuffle phase, the reduce task takes an 

intermediate key and the set of values for that key as input and emits a set of 

key/values pairs consisting of the intermediate key and the final result values.  

 

The following notation is used to describe the map and reduce tasks [35] where k and 

v are in the input keys and values, k1, v1 are the intermediate keys and values and v2 

is the output values. 

 
 map (k, v) −> set(k1, v1)  
 reduce (k1, list (v1)) −> set (k1, v2) 

Note that a key and a value can take many forms, for instance, it is common for the 

value to be a dataset formed of delimited values that are parsed and operated on in 

the task itself. Two other operations exist, the custom partitioner and the combiner. 

The custom partitioner takes an intermediate key as an input and outputs a partition 

index which is used to distribute data to the reduce steps. A custom partitioner is used 

to override the standard hashing method of data distribution and provide a fine 

degree of control over which reduce task the intermediate key/value pairs from the 

map tasks are sent to. The combiner is a performance enhancement operation used 
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to reduce the amount of data moved around the cluster and is an aggregation 

operation, often called a “map-side reduce”. By combining values with the same key 

within a map task, fewer key/value pairs are emitted and therefore less data needs to 

be shuffled around the cluster. The custom partitioner and combiner are described as 

follows.  

 
 Partition(v1) -> (k1)  
 Combine set(k1,v1) -> (k1, combined_v1) 
 
One of the aims of MapReduce is to exploit the locality of data in a shared nothing 

system. The parallelism is aligned with the distributed storage of data sets over the 

cluster so that the use of the internal cluster network is limited, as much as possible, 

to the shuffle redistribution phase. The input data is partitioned into “splits” which are 

distributed around the cluster and these splits are processed in parallel [5]. The 

canonical example of a MapReduce program is the word count problem, in this use 

case the words in a number of documents are counted in parallel using the map and 

reduce tasks. The following pseudocode describing the word count problem is 

provided in the original Dean and Ghemawat paper [5]  

 
map(String key, String value): 
// value: document contents 
for each word w in value: 
EmitIntermediate(w, "1"); 
 
reduce(String key, Iterator values): // key: document name 
 // key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: result += ParseInt(v);  
Emit(AsString(result)); 

 
Figure 16 shows the map reduce process in operation for the word count problem. A 

MapReduce job follows the steps from left to right. The input documents are split into 

sections, here they are represented as individual records but could be complete 

documents. The sections are distributed around the cluster and the map task 

operates on the splits by parsing the them and emitting a single word and a 1. At this 
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point a combiner could be used to reduce the amount of data emitted. For example, 

the map task with the data “<it,1>, <it,1>, <of,1>” could emit “<it,2>, <of,1>” if a 

combiner was used but this extra step is not included in the diagram. The output from 

the map task is distributed during the shuffle phase so that all output records with the 

same key, in this case the word itself, are passed to the same reduce task. The 

reduce task then aggregates the count of the words and outputs the result.  

 

 
FIGURE 15 WORD COUNT EXAMPLE OF A MAPREDUCE JOB 

As mentioned above, in practice, values do have to be simply counts of the 

occurrence of a particular key, nor indeed do they have to be numeric at all. In 

addition, a key does not have to be useful as part of the operation performed by a 

map or reduce task. An example of this would be in the case of proteomics data 

where the key could be the scan number and the value could be a concatenated list 

of all of the values in the scan that are relevant. 

 

Subsequent to the publication of Dean and Ghemawat’s paper [5] an Apache 

Foundation project called Hadoop was developed to implement the concepts 

introduced. Hadoop includes the MapReduce framework and also a distributed file 

system, the Hadoop Distributed File System (HDFS), which is fault tolerant and 
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designed to run on commodity hardware to keep the costs low [86]. The architecture 

and implementation details of Hadoop are described in Appendix A. 

 

Hadoop has been adopted in the scientific community as a means of parallel 

processing for large, complex datasets in a large variety of domains. Some examples 

of its use are: 

 

• Parallelisation of the BLAST DNA sequence alignment algorithm [143] 

• “Smart City” operation, using Hadoop as a repository and processing platform 

for sensor data from water distribution systems [144] 

• Processing of astronomical images, in this case Hadoop is used to process 

data from astronomical surveys allowing them to be “stitched together” to turn 

multiple, partially overlapping images into a single image [145] 

• Analysing climate change data, large amounts of binary files are parsed and 

analysed using Hadoop [146] 
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4.3 CURRENT USE OF PARALLEL COMPUTING FOR PROTEOMICS  

The adoption of Hadoop and MapReduce by the business community has been rapid. 

Companies are evaluating Hadoop as an alternative to traditional relational 

databases for reasons of cost, the amount of data that can be stored and processed 

and also about the types of analysis that it can perform [38]. In reviewing the 

published literature, this adoption has not been widespread in the field of proteomics 

as very few articles that cite the original MapReduce paper refer to MapReduce as a 

method of processing the data from mass spectrometers. A wider search to find 

papers related to the parallel processing of proteomics data by any method reveals 

that parallelisation, in general, is not being widely adopted by the proteomics 

community. 

 

The papers related to parallel processing and proteomics fall into several groups. 

1) Directly mention the processing of mass spectrometer data using a parallel 

technique, of these most are concerned with the final protein identification 

stage of the pipeline. Some do use the MapReduce framework whereas others 

use MPI or other methods of parallelization for example, [79] [87].   

2) Mention proteomics in passing or in an introduction and no further reference is 

made to proteomics or mass spectrometers for example, Kasson et al. [88]. 

3) Focused on Cloud Computing rather than specifically on parallel algorithm 

implementations. These papers are concerned with the use of Cloud 

Computing to enable cost-effective ways of managing large volumes of data in 

a fault tolerant environment for example, [89] [90]. 

4) Focused on the implementation of an algorithm and mention proteomics as a 

possible use case. For example, “An effective and efficient parallel approach 

for random graphs generation over GPUs” mentions the use of a graph 

algorithm to process large-scale biological networks and references protein 

interactions as an example [91]. 

  

Following the 11th Annual Bioinformatics open source conference in 2010, a review 

published by Taylor lists the applications of MapReduce in Bioinformatics [92]. In this 

review, Taylor makes a single reference to proteomics stating that the author started 

a pilot project in August 2010 to build a data repository for transcriptomics and 
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proteomics for storing vast amounts of data from mass spectrometry-based 

proteomics experiments. This reference refers to storing data on the Hadoop 

distributed file system (HDFS) but there is no mention of processing the RAW file 

data using MapReduce in the Hadoop environment. It also notes that the sizes of the 

datasets that require processing are increasing to levels where traditional methods of 

analysis on non-parallel computing platforms cannot produce results in a reasonable 

time frame. Matsunaga et al. [93] make references to the use of MapReduce in 

genomic sequencing, and its capabilities in facilitating the parallel processing of 

distributed subsets of input data. However, there is nothing specifically related to 

proteomics. Dudley et al. [73] examined the programming skills required by today’s 

Bioinformatics practitioners along with statistical languages such as R and more 

conventional languages such as Java and Python. They note that many 

bioinformaticians are experimenting with MapReduce and use the work of Matsunaga 

et al. [93], referenced above, as an example.  

 

A relatively recent paper [79] reviewed the use of Hadoop and MapReduce as part of 

the proteomics workflow, but it is concerned with the searching of identified spectra 

against existing reference databases. This process is the protein identification or 

database lookup part of the workflow described in section 3.4.5. The paper discusses 

the implementation of an algorithm written specifically to run on Hadoop and the 

benefits of scalability, flexibility and reliability. This work is important as it focuses 

purely on the use of Hadoop to process mass spectrometer output, but it does not 

provide any detail on feature detection from the RAW data. The work of Lewis et al. 

[79] could be pipelined together with the parallel feature detection algorithm 

developed during this research to produce a complete parallel process as discussed 

in a later chapter. 

 

Another example of a parallel protein identification algorithm running on Hadoop uses 

previously identified peaks (as opposed to identifying the peaks itself) so that a 

search can commence, this time using a standard input format of MGF and DTA file 

types [94]. MGF and DTA file types are standard file types used to share proteomics 

data in a common format. Another review of the use of distributed computing in 

proteomics [95] contains many details of the types of system available, for example, 
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grid computing, cloud computing and GPU-based systems. However specific details 

are not given on the implementation of data processing on these systems. An early 

reference to parallelizing a proteomics data process is the conversion of the Tandem 

protein identification engine to a parallel version called X!Tandem [96]. This system is 

implemented using MPI and the Parallel Virtual Machine (PVM) architecture. The 

research concludes that there is a significant possible reduction in the time required 

to identify proteins by performing searches in parallel.  

 

Wang et al. [97] describe a process to identify peptides and proteins in parallel using 

cluster hardware and the MPI framework. They discuss the challenges of the 

ever-increasing size of the data sets involved and include detailed timings. An 

interesting observation is that the processing time is dependent on the number of 

peptides in the spectra; this means that although two spectra may contain the same 

amount of data, if one contains more features (which equate to peptides), it will take 

longer to process. This phenomenon is discussed in more detail in the results 

chapters of this thesis where there is a discussion on the difference between data 

skew and processing skew in the cluster.  

A significant paper [87] discusses a parallel protein identification method using 

MapReduce and Hadoop in a similar way to the Hydra system proposed by Lewis 

[79]. Importantly it uses mzML format files as the input to the system and discusses 

distributing files around a cluster by splitting them into "daughter files". mzML is an 

XML-based format developed by the Institute of Systems Biology [15] and is a 

popular standard file format. Vendor specific mass spectrometer RAW files are 

converted into mzML before processing. Mohammed et al. [87] describe one of their 

large mzML files as being 1.3 Gb. This is small in comparison with those produced by 

the Lamond Laboratory at the University of Dundee, where files regularly reach 15 

Gb. To be able to process the individual scans, this single file must be split into a 

series of “daughter files” as identified by Mohammed et al. A further reference to this 

method of splitting the input files across map tasks to exploit the “embarrassingly 

parallel” nature of processing individual scans is made by Kalyanaraman et al related 

to peptide identification via a search method [33]. This work also provides some 

information on timings compared with a non-parallel implementation and the 

reduction of total processing time from weeks to hours. Hillman et al. [98] discuss a 
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hybrid system using the HDFS system in the Hadoop framework to store the scan 

data from mzML files and a relational database to store the dimensional information in 

a standard third normal form schema. The work also includes the description of an 

example architecture, and some experimentation undertaken using MapReduce jobs 

to pick precursor ions from the mzML files and an example of data quality checking 

using PIG, a data manipulation language that is part of the Hadoop eco-system. 

 

As previously stated, the volume of data produced by mass spectrometers is 

increasing as the instruments are becoming more sophisticated. The increase in 

volume is creating a data management challenge for those involved in proteomic 

studies. This situation mirrors what is happening in many other areas of life sciences 

such as genome sequencing. Wandelt et al. [99] describe the issues of data 

management in sequencing and propose the use of a cloud-based MapReduce 

solution. Fusaro et al. [100] discuss the use of Amazon’s web services and conclude 

that there is a substantial up-front effort required to make an existing application 

suitable for parallel processing in a Hadoop system and that learning and using the 

MapReduce framework can be challenging. Neuhauser et al. [16]  argue that 

although a modified version of MaxQuant running on a cluster outperforms a desktop 

PC, the results show that a high specification PC with solid state disks, multiple cores 

and a large amount of RAM can perform more than adequately for most laboratories. 

They recommended that rather than invest in a cluster, the PC-based approach is 

optimal for laboratories with medium to large data volumes. However, this thesis 

asserts that speed is not the only reason for choosing a central cluster-based 

approach for data processing. In addition to speed there are other benefits discussed 

in later chapters including data management, quality control, removing the burden of 

processing tasks from researchers and governance over the algorithms and 

parameters used to process the data. The use of Amazon’s EC2 Cloud Computing 

platform is also documented with the Myrna project [92], an application used in 

genomics for calculating differential gene expression. Wu et al. [101] introduce a “Life 

Science Gateway” as a layer on top of cloud-based services where individual jobs are 

managed as part of a complete workflow process. The focus of this paper is 

managing Bioinformatics analysis running in Hadoop and does not mention the data 

from mass spectrometers. Hodgkinson et al. [102] also discuss the importance of 
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cloud-based services for Bioinformatics researchers. A message passing protocol is 

proposed which allows the creation of workflows using hardware clusters in the cloud; 

one of the workflows discussed is computing protein interactions. They also mention 

the need to rewrite code to take advantage of the MapReduce programming 

framework. A review of big data, Hadoop, cloud computing and their use in genomics 

[103] concludes that cloud computing and big data technologies have a significant 

role to play in the future of life sciences. The reasons for this are stated as increases 

in the amount of data and increases in the number of genes and proteins that have 

not yet been characterised. This review also points to challenges in implementing 

such solutions including the high-level of Java expertise required by software 

developers.  

 

Gunarathne et al. [90] present three Biomedical applications which are all related to 

genomics that can be easily run in parallel and therefore represent a good use case 

for MapReduce. They include a review of Cloud services such as Amazon EC2 and 

Microsoft Azure and detailed performance comparisons. Mao et al. [104] describe 

another workflow system called GreenPipe which is Hadoop-based and designed to 

be used in the cloud. They comment that although Hadoop has been proven to be 

successful in handling large datasets, to do this the researcher must become very 

skilful at MapReduce programming before they can run analyses. Prahalad et al. 
[105] propose a system called “Phoenix” which attempts to provide a cloud-based 

platform as a service layer for all ‘omic’ disciplines including proteomics although all 

the examples given are in the context of genomics. Wruck et al. [106] approach the 

issues of data management related to ‘omic studies from the point of view of open 

access and data sharing and also the open standard MIAPE (minimum information 

about a proteomics experiment) and its importance in proteomics experiments. 

Niemenmaa et al. [107] introduce a Java library for the processing of BAM files 

(Binary Alignment/Map), a format used in bioinformatics for such tasks as detecting 

differential gene expression. This library was written with the intention that it would be 

used in cloud-based Hadoop clusters acting as an integration layer between Hadoop 

and analytic applications.  
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From reviewing the published literature, it is clear there has been little research into 

the parallel processing of proteomics data and what there is has been focused on the 

protein identification part of the pipeline and not specifically on feature detection. 

Also, few studies involve the use of scalable clusters of commodity hardware, 

cloud-based infrastructure or MapReduce as a solution.  

 

4.4 USE OF GPUS FOR INCREASING PERFORMANCE.  

Other means of executing program code in parallel exist, such as using Graphic 

Processing Units (GPU). Although a GPU’s primary purpose is in processing the 

instructions necessary to provide complex graphical output, for instance in the 

gaming industry, the use of GPUs for general parallel processing is possible. The 

manufacturer Nvidia released the CUDA language for programming GPUs in 2007 

[149] and more recently the OpenCL cross-platform language has become the 

standard [150]. GPU clusters have enabled a machine learning technique based on 

neural networks known as “Deep Learning” to create accurate predictive models due 

to the very high levels of parallelism that can be achieved [151]. For instance, a single 

Nvidia Titan X GPU contains three-thousand five-hundred and eight-four cores [152]. 
Once combined into clusters, an extremely high level of parallelism can be achieved. 

However not all processing problems are a good use case for GPU processing, for 

instance problems that are not “embarrassingly parallel”, that is where the workload 

cannot be simply split into a large number of parallel tasks with no need for 

communication between the tasks [153] In addition GPUs run at a slower clock speed 

than CPUs, for example the Nvidia Titan X runs at 1.4GHz as opposed to the Intel 

core I7 CPU running at 4.2GhZ meaning that serial parts or parts of the process 

where the input data cannot be split into small enough sections will run more slowly. A 

further complication is the extra task of translating the feature detection algorithm into 

the OpenCL language. Given these considerations it was decided that GPU 

processing and indeed other forms of hardware acceleration represented a separate 

area of research that could be followed at a later stage. The purpose of this research 

is therefore to concentrate on proving that parallel feature detection is actually 

possible in the first instance and given that it is, can it be carried out in near real-time 

using an algorithm coded in a MapReduce style on a scalable cluster.  
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4.5 PROTEOMICS, CLOUD AND BIG DATA 

The term "Big Data" has gained popularity in recent years, it is used to describe data 

sets that create a storage or processing problem or both. The parameters of volume, 

velocity and variety have been used to define big data, that is where the size of a 

dataset (volume), the speed the data arrives for processing (velocity), and the 

complexity it contains and/or the variability of the format (variety) are the cause of 

problems with its storage or processing. Complexity can mean the quantity of 

processing required, the data format, the lack of structure (for example, free text) or 

all three. Hadoop is a key solution for processing and storing these big data datasets 

due to the use of commodity hardware (resulting in a low cost per terabyte for 

storage) and the flexibility of the MapReduce programming framework. While 

according to Gartner the hype around big data has begun to recede 

(https://www.gartner.com/doc/3115022/demise-big-data-lessons-state last accessed 

19th August 2017), the management of massive complex datasets is a growing 

problem for many organisations. Data from proteomics experiments fits into all three 

of the big data dimensions. There is a large volume of data, it arrives quickly in a large 

laboratory with multiple mass spectrometers, and it is in a complicated format that 

requires a lot of processing.  

 

In the commercial world, there is an increasing focus on cloud computing as a basis 

for the solutions to big data problems. Cloud computing is a name given to a broad 

set of scenarios where the underlying premise is that computing space and 

processors are rented rather than owned. There are various models to choose from, 

including the use of a platform as a service (PaaS) [108], where the cloud provider 

supplies a bare system, and the user has to setup everything else to software as a 

service (SaaS) [108] where the cloud provider provides a fully managed software 

package. Solutions such as salesforce.com, Google Apps and Cisco Webex are all 

examples of SaaS. Access to cloud-based systems is via the Internet or a private 

connection if security is a concern. There are several styles such as public and 

private cloud which determine whether servers are shared with others or not. Large 

cloud computing providers such as Amazon and Microsoft offer data centres around 

the world so that a user can comply with local data distribution and privacy laws. 
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Cloud computing has several advantages for companies wishing to use a distributed 

cluster of servers for parallel computing: 

 

• The task of maintaining a complex computing cluster is turned over to the 

cloud provider. 

• It is simple to expand or contract the number of nodes and therefore the 

storage and processing capacity of the cluster as loads dictate. 

• The cloud provider can handle security and the latest software patches, 

leaving the users to concentrate on their area of expertise.  

• Data management, including backup, disaster recovery and access are all part 

of the same service.  

 

An analysis of cloud use for analysis of proteomics data [109] investigates the 

advantages of using Amazon’s EC2 system and concludes that important factors in 

favour of a cloud-based solution are the costs, no need for maintenance and no need 

to physically house a large cluster. Cloud CPFP [89] is a cloud-based application for 

proteomics data processing, which is built on existing tools from a suite of software 

called the Trans-Proteomic Pipeline (TPP). It contains software applications to cover 

most areas of the workflow, although the authors concede that parallelisation of the 

tools is limited. A more recent application of cloud technology is from the Proteocloud 

application which uses several well-known protein identification solutions such as 

X!Tandem to create a cloud-based pipeline for protein identification [110]. Given the 

availability of open-source tools for proteomics data processing, parallel processing 

and the ease of access to cloud-based resources, this research investigates the use 

of a cloud-based central processing cluster as part of an architected solution to 

proteomics data processing. This is compared to current PC-based solutions where 

life scientists often must handle data movement and processing themselves and the 

processing itself is done in an offline batch-mode. A literature search shows that 

recent parallel processing frameworks such as MapReduce, Spark and Flink, and 

alternatives to Relational Databases such as Cassandra and HBase have not been 

widely researched or used for proteomics data processing. Therefore, this research 

will concentrate on this area of parallelism and not older style frameworks such as 

MPI and BSP. 
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Since the release of Hadoop, an eco-system of related software has grown up around 

it to address shortcomings of Hadoop itself and to add functionality. For example, 

Ambari is a management system used to simplify the maintenance and management 

of a Hadoop cluster without resorting to command line interaction. New processing 

frameworks have been developed to extend the limited number of operations allowed 

in MapReduce and to make it easier for developers to code. Starting with platforms 

such as Pig and Hive, developed by Yahoo and Facebook to provide a simpler 

abstraction layer sitting on top of the MapReduce framework, the eco-system now 

includes others such as Spark and Flink which extend the capabilities and facilitate 

parallel programming on a cluster. Clusters of connected commodity hardware are 

becoming increasingly common and are to be in found in many companies and 

university laboratories [111]. The cluster landscape is split between  

 

• Commodity clusters running using the Hadoop eco-system,  

• Traditional high-performance computing (HPC) clusters which operate older 

style parallelisation such as PVM and MPI,  

• Standalone, purpose-built appliances and cloud-based environments.  

 

Many of the big computer vendors such as IBM, Oracle and Teradata now produce 

Hadoop appliances, which are supplied as an optimised set of nodes and 

interconnects pre-installed with Hadoop and the tools necessary to operate it. This 

has been in response to the degree of expertise and maintenance required to build 

and maintain a commodity cluster. While this may be true in industry where skilled 

resource is scarce and expensive, it would be reasonable to assume that a University 

with an established computer science department would have access to many 

computing software and hardware resources. Vendors such as Hortonworks and 

Cloudera have been established, offering their own distributions of Hadoop and 

support packages for customers wishing to build their own clusters whilst still having 

access to support.  

 

With the increase in data volume and the rate at which it arrives, real-time processing 

is now a focus for many companies. Data sources coming in a continuous stream 

from social media feeds, such as Twitter, to data from sensors on machines have 
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brought about the need for systems that can process in real-time. Processing 

frameworks such as Spark and Flink that can operate on top of a Hadoop system 

include real-time processing capabilities. The Internet of Things is a current industry 

trend describing the ever-increasing number of devices connected directly to 

computing units. A survey of examples of the Internet of Things does not list scientific 

data as one of the uses [2]. This thesis argues that it should. One of the goals of this 

research is to understand whether it is possible to treat a life sciences laboratory as 

an Internet of Things with the mass spectrometers connected to a central 

cloud-based cluster that processes the output data in real-time. 

 

Some research on real-time acquisition has been completed using a branch of the 

MaxQuant code named MaxQuant Real-Time. This work uses a set of code libraries 

provided by Thermo Scientific, the manufacturer of the mass spectrometers that 

produced the data used in the research. The computer that is attached to the mass 

spectrometer itself carries out the processing in real-time, as opposed to a remote 

cluster [112]. The researchers made some modifications to the standard MaxQuant 

Feature Detection algorithm including relaxing the correlation values required for a 3D 

peak, and code to re-evaluate 3D peaks as the real-time data stream adds more data 

one scan at a time. The author of this thesis presented an original view of a real-time 

Internet of Things solution for proteomics processing at the IEEE conference on big 

data, 2016 [113]. The solution presented used Apache Flink running on a Hadoop 

cluster for the processing. This thesis expands on that research and provides more 

detail on a wider range of software packages and comparisons of processing time 

along with a comparison to batch-mode processing. 
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4.6 CONCLUSION AND RESEARCH QUESTION 

The adoption of Hadoop has been rapid in commercial and academic areas as a 

system for implementing parallel processing. Amongst the expected benefits of 

implementing Hadoop are reduction in cost, parallelisation of complex and large 

datasets and scale. Research into using a MapReduce-style of parallel programming 

on a Hadoop system for processing mass spectrometer data is scarce. Several key 

papers focus on the protein identification section of the proteomics pipeline leaving 

the initial feature detection as a serial process. in addition to the benefits listed above, 

the implementation of a parallel feature detection algorithm can lead to a near 

real-time system using a cloud architecture, which would bring the following additional 

benefits to a Life Sciences Laboratory: 

 

• The task of maintaining a complex computing cluster is handed over to the 

cloud provider. 

• It is simple to expand or contract the number of nodes and therefore the 

storage and processing capacity of the cluster as loads dictate. 

• The cloud provider can handle security and the latest software patches, 

leaving the users to concentrate on their area of expertise. 

• Data management, including backup, disaster recovery and access are all part 

of the same service. 

 

To realise these benefits, it is necessary to first show that feature detection can be 

carried out in parallel and therefore the main research question addressed in this 

thesis is “Can feature detection in proteomics data be performed in near real-time 

using a parallel algorithm on a horizontally scalable compute cluster?”. To answer the 

research question, the first step is to create a parallel version of the feature detection 

algorithm that is able to exploit the resources of a compute cluster. Given the scarcity 

of research in this area, the MapReduce style of parallel programming has been 

chosen and Chapter 5 provides the details of how this has been implemented as map 

and reduce tasks. Note that for the reasons stated in Section 4.4 of this chapter the 

research concentrates on creating and validating the parallel algorithm and does not 

involve hardware, for example GPU, acceleration. 
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5. METHODOLOGY 

5.1 CHAPTER SUMMARY 

To address the research question, “Can features in mass spectrometer be detected in 

near real-time?” this study evaluates various systems using a parallel feature 

detection algorithm. This chapter describes the tools employed during this research, 

the algorithm that was selected and coded to run using the MapReduce framework 

and the overall methodology for testing and benchmarking on selected platforms. 

Section 2 explains the validation of results against those produced by existing, widely 

used, processing software.  

Section 3 discusses the use of different input file formats and the effect that these 

have on the efficiency of the processing and storage of mass spectrometer data. 

Section 4 explains the reason for choosing the programming language Java for 

coding the parallel algorithm. This Section also includes a discussion of alternative 

programming languages.  

Section 5 details in full the development environment used, along with operating 

systems, software versions and the hardware and virtual environments used to test 

the accuracy of the code and the efficiency of the selected platforms. Following this, 

Sections 6 and 7 discuss the details of the test and performance benchmarking 

environments.  

Section 8 contains details of the various systems used in this research. It describes 

the different processing frameworks and several data storage mechanisms that are 

able to interface with MapReduce.  

Section 9 describes the data files used in the benchmarking process. 

Section 10 describes current benchmark methodologies for big data systems and the 

exact methods chosen to benchmark during this research. There is also a listing of 

the variables collected during the testing and validation phases along with ways of 

capturing and reporting benchmark metrics.  
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5.2 VALIDITY AND ACCURACY 

The data used in the development and testing phases of the research was created 

from real proteomics experiments carried out in the Lamond Laboratory. Section 5.9 

of this Chapter gives a detailed description of the data files and their sources. 

 

Several software packages (described in more detail in Section 3.5 of Chapter 3) 

were used to obtain the mass and intensity values of the 3D peaks (or features) in the 

data. 

 

• Maxquant 

• Proteowizard 

• The Spectracus project (Lamond Lab, Centre for Gene Regulation and 

Expression) 

 

The results from the algorithm created by this research were validated by comparing 

them to the outputs from the systems named above. In line with standard practices 

among proteomics researchers, the metrics used to verify the results were precision 

and recall [74], [77], [114]. Chapter 6 presents the results of the benchmark testing 

using a batch-based process and gives a more detailed explanation of the precision 

and recall metrics. Chapter 7 presents the results of a streaming process. 
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5.3 DATA FORMATS FOR PARALLEL PROCESSING 

As stated, to openly share results vendor RAW files are commonly converted to 

mzML files, and there are many software packages available to do this. A frequently 

used package is Proteowizard [115]. For Thermo Scientific instruments, the 

conversion software provided as part of this package is called msconvert and uses a 

Windows DLL library provided by the manufacturer to decode the RAW file. The 

decoded data is then written out to a new file in mzML format. Table 6 in Section 5.9 

of this chapter displays a list of the test files used in this research and the elapsed 

time taken to convert between RAW and mzML formats. 

 

The design of mzML incorporated certain principles including comprehensive 

support for instrument output, the sharing of results and best practice. XML is a 

good format for sharing data because it is self-describing and the mzML schema 

contains many metadata fields for detailing experimental conditions; however, there 

are downsides to using XML. One is the growth in file size caused by the space taken 

up by the XML tags which define the structure of the file. For the files used as test 

data in this research, the growth has been approximately five-fold. Note that much of 

this growth is due to the conversion from the binary RAW format to the text-based 

mzML format. This can be seen in Table 6, Section 5.9, that shows the size of the test 

files in various formats. For example, file PT2441S1FP1A1.RAW is 2,704Mb, the 

mzML file is 3.09 times larger, the SCMI format file that does not contain XML tags 

(defined in this later in this section) is 2.87 times larger and the Avro format file is 1.96 

times larger. 

 

A further downside is the difficulties XML causes when processing files in a parallel 

fashion. Files need to be split into pieces for distribution around a cluster of machines. 

This splitting is hard to do with XML as the files need to be split in the correct places 

or the XML start and end tags will not match and the file will be invalid. Complex 

parsers are required to allow XML to be used effectively on a distributed system 

[140]. For this reason, different file formats have been researched to assess their 

suitability for the parallel processing of mass spectrometer data.  
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The mzML file contains metadata detailing the experiment; it includes the parameter 

settings of the mass spectrometer and the type of machine used. This information is 

not needed when performing the feature detection and protein identification steps of 

the data processing pipeline. Therefore, a data format used for parallel processing 

can ignore this metadata and store just the scan data plus a small number of 

additional fields that provide context for the scan data. The scan data is held in two 

base64 encoded strings, one for the mass to charge values and one for the intensity 

values. The fields required for feature detection are as follows:  

 

• Scan identifier, an integer field numbering the mass spectrometer scans in 

order of retention time, starting at 0 

• msLevel, an integer field with 1 being the first level of scans and a 2 indicating 

a level 2 scan. Level 2 scans are created when a particular peptide is picked 

from a level 1 scan and further broken down into smaller molecules which are 

then measured in a second ion detector inside the mass spectrometer. 

• Retention Time, a decimal field, the time since the start of the experiment at 

which the scan was taken. 

• precursorIonMz, a decimal field for level 2 scans only, this field contains the 

mass to charge value of the peptide picked to be broken down further from the 

level 1 scan 

• precursorIonIntensity, a decimal field for level 2 scans only, this field 

contains the intensity of the peptide picked to be broken down further from the 

level 1 scan. Intensity in this context means the number of ions detected 

• precursorIonCharge, an integer field for level 2 scans only, this field contains 

the value of the electric charge of the peptide picked to be broken down further 

from the level 1 scan 

• MZAarray, a text field containing the base64 encoded mass to charge values 

• intensityArray, a text field containing the base64 encoded intensity values 

 

Initial investigations used a simple text format named the SCMI format (SCan, Mass, 

Intensity) with one record per scan and the various fields separated by tab characters. 

This format is extremely easy to split and distribute around a cluster, and the HDFS 

file system in Hadoop can natively do this. A file copied into HDFS will be split into 
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chunks (64Mb chunks by default), which are then distributed to the nodes in the 

cluster; this process and HDFS itself are explained in more detail in Appendix A. This 

text-based file format proved to be very efficient as described in detail in the results 

chapter. However, with a file format such as this, the benefits of a self-describing 

format are lost because the text format requires a definition document so that 

programmers will know what data is in each of the columns. Apart from XML, other 

self-describing formats include JSON, Parquet and Avro. These formats are popular 

as ways to store complex data and are also suitable for parallel processing. The 

following sections give a brief description of these file formats. 

 

In response to the complexity of accessing data stored in XML-based formats such as 

mzML, Rost et. al researched a method for random access to mzML data using the 

existing OpenMS libraries as a base [148]. Rost et. al benchmarked their tool against 

the ProteoWizard libraries and noted a significant performance increase. In relation to 

the research presented in this thesis, the tool developed by Rost et. al could be used 

to decode the mzML files into the proposed SCMI format, however following 

continued research into this area it was decided to not use mzML as an intermediate 

format and decode the RAW binary files directly into the SCMI format as the data was 

copied onto the processing cluster. This means that the issues of XML complexity 

and difficulties with file distribution are avoided. 

5.3.1 JSON 

JavaScript Object Notation (JSON) is a self-describing lightweight data-interchange 

format. It is deemed lightweight as it adds less to the overall files size as would a 

format such as XML. The general JavaScript Programming Language specification 

[116] gives a detailed description of the format. The basic structure of a JSON file is 

plain text. This means that it is a simple task to sample and investigate a file’s 

contents without complex parsers. A JSON file comprises key-value pairs where the 

key is the description of the field and the value contains the contents of the field. The 

JSON specification allows for two principal structures 

 

    •    Objects - an unordered collection of key/value pairs 

    •    Array - an ordered list of values  
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The following extract shows the simple flat file version of the mzML file (note the 

mzarray and intensity array fields have been shortened for display purposes). 

 
scan mslevel rt precursormz precursorintensity precursorcharge mzarray  intensityarray 
0 1 0.00680 0  0  0  oXXPWVmodUCh ro1lqHVAUV6i0W 

1 1 0.01223 0  0  0  2dX6h1QKJ9ruF xWiJWyodUB5s7b 
2 1 0.01669 0  0  0  PAfQBVmodUDsF 6h1QJ3ero1lqHV 
3 1 0.02115 0  0  0  Q1Un41iodUDrW hUnX6h1QJQYt 

4 1 0.02561 0  0  0  2T3V3liodUBHQ sMiX6h1QLX+s2Z 
5 2 0.03952 362.22271  26164.71875 2  irEWTEvASEC+ EDWJ59ngoRMQI 

 

This next extract shows the same data formatted as a JSON file. 
[ 
  { 

    "scan": 0, 
    "mslevel": 1, 

    "rt": 0.0068095369, 
    "precursormz": 0, 
    "precursorintensity": 0, 

    "precursorcharge": 0, 
    "mzarray": "oXXPWVmodUCh", 
    "intensityarray": "ro1lqHVAUV6i0W" 

  }, 
  { 

    "scan": 1, 
    "mslevel": 1, 
    "rt": 0.01223972, 

    "precursormz": 0, 
    "precursorintensity": 0, 
    "precursorcharge": 0, 

    "mzarray": "2dX6h1QKJ9ruF", 
    "intensityarray": "xWiJWyodUB5s7b" 

  }, 
  { 
    "scan": 2, 

    "mslevel": 1, 
    "rt": 0.01669872, 
    "precursormz": 0, 

    "precursorintensity": 0, 
    "precursorcharge": 0, 

    "mzarray": "PAfQBVmodUDsF", 
    "intensityarray": "6h1QJ3ero1lqHV" 
  }, 

  { 
    "scan": 3, 
    "mslevel": 1, 
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    "rt": 0.02115777, 
    "precursormz": 0, 

    "precursorintensity": 0, 
    "precursorcharge": 0, 
    "mzarray": "Q1Un41iodUDrW", 

    "intensityarray": "hUnX6h1QJQYBmt" 
  }, 

  { 
    "scan": 4, 
    "mslevel": 1, 

    "rt": 0.02561677, 
    "precursormz": 0, 
    "precursorintensity": 0, 

    "precursorcharge": 0, 
    "mzarray": "2T3V3liodUBHQ", 

    "intensityarray": "sMiX6h1QLX+s2Z" 
  }, 
  { 

    "scan": 5, 
    "mslevel": 2, 
    "rt": 0.039521102, 

    "precursormz": 362.222717285156, 
    "precursorintensity": 26164.71875, 

    "precursorcharge": 2, 
    "mzarray": "irEWTEvASEC+AG", 
    "intensityarray": "EDWJ59ngoRMQI+3+cq" 

  } 
] 

Note that JSON files are record-based and therefore suitable for distribution on a 

compute cluster. JSON files are more lightweight than XML but still verbose 

compared with a plain record-based text file or Avro due to the key/value tag 

structure. 

5.3.2 AVRO 

Apache Avro was designed by Doug Cutting, the original developer of Hadoop. Avro 

files have a schema which is only stored once at the start of the file. Storing the 

schema once in this way achieves some level of compression over a JSON or XML 

formatted file. The data itself is stored in a binary format for further compression. Avro 

was designed so that files could be easily split into chunks for distribution on a cluster. 

To convert data into Avro format, a schema must first be created, following this, 

standard code libraries can be used for the conversion process. An Avro schema is 
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represented as a JSON file detailing the fields in the file. The following JSON string 

shows the Avro schema for the mass spectrometer output data used in this research 

{ 

 "type": "record",  
 "namespace": "scmitest.avro",  
 "name": "massspecdata",  
 "fields":[ {"type": "int", "name": "scan"},  
   {"type": "int", "name": "mslevel"},  
   {"type": "long", "name": "rt"},  
   {"type": "long", "name": "precursormz"},  
   {"type": "long", "name": "precursorintensity"},  
   {"type": "int", "name": "precursorcharge"},  
   {"type": "string", "name": "mzarray"},  
   {"type": "string", "name": "intensityarray"} ]} 
 

It should be noted at this point that the choice of file format for parallel processing is 

between XML, SCMI, JSON and Avro files. The original vendor specific binary RAW 

files were dismissed as a poor choice due to several factors including the complicated 

method of extracting the scan data, the reliance on the use of a proprietary .DLL file 

for decoding the binary date (windows based operating systems only) and the 

difficulty in distributing a RAW file on a cluster. Of the remaining choices, XML and 

JSON are discarded for reasons of verbosity and difficulty in data distribution for XML. 

This leaves the Avro and SCMI files as candidates both of these file formats store the 

data arrays for m/z and intensity values as Base64. Of the systems being 

benchmarked only HDFS stores data as files, Cassandra, HBase and Aster 

(described further in Chapter 5, Section 8) all have the concept of tables, although the 

implementation and definition of a table differs between them. Using the text base 

SCMI file in HDFS means that all of the systems have a similarly structured data 

source and makes the task of debugging far simpler as opposed to needing to use an 

Avro decoder to extract the specific scan data Base64. Note that this does not affect 

performance but does result in an increase in disk space usage.  

5.3.3 PARQUET 

Parquet is a relatively new format introduced in 2013. Being similar to Avro it uses a 

schema to self-describe its contents. However, whereas Avro stores data in rows, 
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Parquet is a columnar file format. This can lead to high level of compression and can 

be a very efficient way to store data. Columnar formats are typically effective when 

files contain many columns and when processing tasks involve selecting subsets of 

columns. In the case of feature detection from mass spectrometer scans, the 

opposite is true. The files contain only the eight columns listed above and each scan 

is read completely with no sub-selection. For this reason, Parquet was not considered 

as a suitable format for the experimentation. However, it should be noted that Parquet 

is becoming a standard format for data when using the Spark processing framework 

(described in detail in Appendix A ). This is partly due to its adoption by Databricks 

one of the chief supporters and contributors to the Spark codebase. Databricks has 

included enhancements to the Spark code that make Parquet file handling very 

simple and fast. 

 

5.3.4 FILE CONVERSION 

The creation of a custom conversion program written in Java allowed the conversion 

of a mzML file to a simple text-based format. One potential issue was the extra time 

taken to convert the data. However, any process using a cluster needs the data to be 

copied onto the cluster first. To exploit this, the custom conversion process was 

extended to copy the data to the cluster and convert it to the text-based format as part 

of the copy. This custom copy program minimised the amount of time that was added 

to the whole process. Chapter 5 Section 3 details the timings for converting the text 

files from RAW format and copying them to cluster in one step. 

 

Initial experiments were carried out by converting RAW files to mzML using the 

proteowizard msconvert program and then custom code used to convert from mzML 

to the text-based format. However, since the mzML format is not actually a 

requirement for the data processing pipeline, the conversion from RAW format to 

mzML is also not required. This means that it is possible to further refine the process 

and remove the RAW to mzML conversion step. Therefore, a time saving was 

achieved by modifying the custom conversion and copy program to produce the 

required text format file directly from the vendor-specific RAW file. 
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5.4 CODING 

The MapReduce style of parallel programming is used extensively in this research 

and all but one of the systems tested operate within the Hadoop eco-system. The 

Hadoop and the MapReduce frameworks are themselves written using the Java 

programming language. It is possible to code MapReduce jobs in other languages 

using the stream interface which receives input from the Linux stdin and outputs to 

stdout. However, for this research it was decided to use Java, partly to align with the 

researcher’s knowledge of computer languages and partly to use the native libraries 

which include a variety of input and output readers as opposed to the stream interface 

which can only read and write text-based formats via stdin and stdout. There are 

many benefits to using Java including the operating system independence of the final 

code and the significant number of pre-written third-party code libraries that exist to 

speed up development. Note that early versions of Java were notoriously slow 

compared to pre-compiled languages. However, since the introduction of “Just in 

Time Compilation” (JIT) in versions 1.2 and 1.3, Java performance has significantly 

improved. 

 

Python is a popular scripting language widely used in the analytics industry. Another 

scripting language is R, which is very popular amongst statisticians and in the Data 

Science community. There are libraries available for proteomics data processing 

written using a variety of programming languages, the list below is an example of 

some of the frequently used packages. 

• OpenMS 2.0 [117] implements a proteomics processing pipeline using C++ 

and integrates with the open-source workflow tool, Knime. The Knime 

integration allows a researcher to build a graphical flow of the processing and 

schedule it to run. The graphical flow is a beneficial tool for helping to 

overcome some of the data management challenges.  

• PyOpenMS [118] is a Python-based version of the original OpenMS library 

[119]  

• Bioconductor [120] is a set of proteomics data analysis functions available in 

an R library.  

• Dinosaur [121] is a recent development of a processing pipeline using the 

programming language Scala.  
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Scala is the main language for the processing framework Spark, explained in detail in 

Section 5.8.6 of this Chapter. Based on Java, Scala is gaining popularity as a 

language for scalable parallel programming. All the systems and libraries mentioned 

above are open source with freely available code.  

 

Proteomics data processing packages are available with open source code in various 

languages. However, none of those explicitly addressed the task of developing a 

parallel feature detection algorithm. Therefore, the decision was made to code this 

algorithm in Java as part of this research. The third-party libraries incorporated into 

the code are the Apache commons libraries for base64 decoding and the Hadoop 

libraries themselves; all other code is original and written during this research. Java 

version 1_8.0_77SE was used for the development and testing. Note that the use of a 

pre-compiled language, such as C++ can result in faster run times than Java, where 

the code is compiled at the time of execution. Therefore, it may be possible to further 

speed up the feature detection process by implementing the parallel algorithm in such 

a compiled language. 

  



85 

5.5 MAPREDUCE IMPLEMENTATION OF THE FEATURE DETECTION 
ALGORITHM 

The parallel algorithm for feature detection used in this research has been designed 

based on previous work by Bellew [84] and the additional material supplied as 

support to the original MaxQuant paper [12]. The serial implementation of the 

algorithm is described in Chapter 3, Section 3.5.1. The following describes the 

implementation of the algorithm using the MapReduce framework.  

 

The serial algorithm is comprised of two major parts, 2D peak picking and 3D peak 

picking. In essence the 2D peak picking algorithm takes a single scan of mass 

spectrometer data, processes it and outputs a set of 2D peaks. The 3D peak picking 

algorithm, takes groups of 2D peaks, processes them and outputs a single 3D peak 

for each group of 2D peaks. This section describes how the 2D peak picking 

algorithm can be represented as a map task that transforms a single scan into a set of 

2D peaks and the 3D peak picking algorithm can be represented as a reduce task 

that takes a set of 2D peaks and “aggregates” them into a 3D peak. The 

implementation is complex as there are many steps to the 2D and 3D peak picking 

algorithms. However, the whole process can be represented as a simple pattern of a 

map transformation followed by a reduce aggregation.  
 
map (k, v) −> set(k1, v1)  
reduce (k1, list (v1)) −> set (k1, v2) 
 
k = scan identifier 
v = data from mass spectrometer scan 
k1 = partition number used to redistribute 2D peaks to reduce task 
v1 = 2D peak values 
v2 = 3D peak values 
 
an additional custom partitioner step is used to calculate which 
partition a particular 2D peak belongs to can be represented as 
 
partition(v1) -> k1 
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In Chapter 4, the MapReduce framework was explained in terms of the canonical 

word count problem. For reference, the pseudocode for the map and reduce tasks is 

reproduced below. 

 
map(String key, String value): 
// value: document contents 
for each word w in value: 
EmitIntermediate(w, "1"); 
 
reduce(String key, Iterator values): // key: document name 
 // key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: result += ParseInt(v);  
Emit(AsString(result)); 
 

2D peak picking 
To represent 2D peak picking as a map task, the input value becomes a delimited 

string of the data in a single record of the SCMI file format described in section 5.3 of 

this chapter with the key being the byte offset of the record in the file. The SCMI file 

format contains the following columns of data: scan, mslevel, rt, precursormz, 

precursorintensity, precursorcharge, mzarray, intensityarray. This delimited string of 

values represents a complete mass spectrometer scan taken at a particular retention 

time. 

 

The 2D peak picking process represented as a map task is as follows. 
 

map(String key, String value): 
// key: byte offset of the record in the input file 
// value: “scan, mslevel, rt, precursormz, precursorintensity, 
precursorcharge, mzarray, intensityarray” 
for data in mzarray, intensityarray: 
 detect the 2D peaks 
EmitIntermediate(partition number, "weightedPeakMass, 
charge,retentionTime,sumIntensity, minimumMZ, maximumMZ"); 
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The term “detect the 2D peaks” refers to the 2D peak picking process as 

described in Chapter 3. As this is an embarrassingly parallel task, it can be run as a 

map task without any changes to the algorithm as it already works on an individual 

scan basis. The map task outputs a list of 2D peaks found in the scan, with the key 

being the reduce partition number and the value being a concatenated string of the 

2D peak metrics.  The reduce partition number is calculated using a custom 

partitioner function based on the weightedPeakMass value and the number of 

partitions required. This calculation is described in Chapter 6, Section 6.4 where there 

is a full discussion on data distribution and partitions.  

 

In operation, the map task reads scans of data from the text-based SCMI-format 

file using the standard Hadoop text file reader, which passes the byte offset of the 

start of the record as the key and the rest of the scan data in a text string datatype 

as the value. The value part of the key-value pair contains the components of the 

scan data as tab delimited values, these are parsed and read into local variables 

for processing. The mass to charge ratios and intensity values are decoded from 

the base64 format using the Apache commons library and stored in float arrays, 

The Java Double type is a floating point datatype represented in 64 bits, giving 

approximately fifteen precise digits. This is sufficient to accurately store the 

values required which range between zero and one thousand with up to eight 

decimal places. The method of reading in a complete record from a data source 

and using the program code to apply a schema to it is called schema-last or 

schema on read. In this case, the definition of the fields within a record are in the 

Map task programming code and applied to the data at run time. Modifications are 

made to this method when using a data source other than text files stored in 

HDFS, for example HBase or Cassandra. For data sources which already store 

the data with a defined schema, the input and output interfaces are modified to 

use the data types and definitions from that schema. This is described in more 

detail in Section 6.5 of this chapter where results are presented and discussed. As 

stated, all the information necessary to calculate the 2D peaks in a scan is 

contained within the scan itself. No communication of values between nodes is 

required at this stage and each scan can be processed completely independently. 
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This results in a process of intra-file parallelism, which has not been widely 

researched or applied. 

 

Figure 16 shows the 2D peak picking process arranged as a map task, the input 

scans are split into sections, in the example shown the twelve input scans are split 

into four instances of the map task each with three scans. In practice each map 

will receive thousands of scans. The map task then process each scan in turn and 

outputs the intermediate keys, which equate to the partition number and 2D peak 

metrics, for distribution to the reduce tasks. 

 

 
FIGURE 16 2D PEAK PICKING AS A MAP TASK 
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Shuffle 
Skew for the reduce tasks occurs when one or more nodes receives a 

disproportionately high amount of data to process from the output of the map 

tasks. Depending on the processing task, the node or nodes with the extra data 

may continue processing after the other nodes have finished. This delays the 

completion of the whole job and results in inefficient use of the cluster. By default, 

the MapReduce framework redistributes data from the map tasks to the reduce 

tasks by applying the standard Java hash algorithm to the keys in the key-value 

pairs output from the mapper. In general this produces an acceptable data 

distribution and does not result in skew. However, during testing, it became 

apparent that this was not the case for proteomics data. To overcome this the 

MapReduce framework provides a task called a custom partitioner that allows the 

programmer a fine degree of control over how data is redistributed from the 

mappers to the reducers avoiding the problems with data skew. The proteomics 

data is highly skewed towards a certain range of mz values, as can be seen in 

Figure 17 which shows the distribution of the 2D peaks in file 561L1AIL00.RAW as 

an example. In addition to this the processing required to detect features in a 

certain range of data also depends on the ratio of information to noise.  

 

 
FIGURE 17 SKEWED DISTRIBUTION OF 2D PEAKS 
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The set of 2D peak values output from the map tasks must now be distributed to 

the reduce tasks so that processing can continue in a parallel fashion. To achieve 

this, the 2D peaks are grouped into partitions. The 2D peaks belonging to a 

particular partition will all be distributed to the same reduce task. In MapReduce 

terms this process is known as the shuffle. The partitions are made by grouping 

the 2D peaks by ranges of m/z values. Enough overlap of data must be provided 

at the split points so that if a partition split occurs in the middle of a feature, as 

shown in Figure 18, that the complete peak can be found either side of the split.  

 
FIGURE 18 EXAMPLES OF PEAKS OCCURING AT PARTITION BOUNDARIES 

This overlap strategy necessitates a de-duplication phase as a final step. A more 

complete description of the partition and overlap strategy can be found in Chapter 

6, Section 6.4. A custom partitioner must be coded to provide an output key to 

each input value; this key is used to decide to which reducer the value is sent for 

processing. Initially this has been done by assuming a fixed number of reduce 

steps. The 2D peaks from the Map tasks are grouped into clusters with the aim 

that each cluster contains an equal number of peaks. It is acknowledged that this 

hardcoded partitioner while adequate is far from an optimum solution for this 
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problem and this is discussed later in section 6.3.1 of Chapter 6. The following 

pseudocode describes the custom partitioner 

 
Partition(String value): 
// value: weightedPeakMass 
calculate partition p 
Emit (p); 

 

3D Peak Picking 

With the list of 2D peaks split into approximately even portions by weighted peak 

mass and an appropriate overlap added, the 3D peak picking process can now be 

completed in parallel. 3D peak picking adds the dimension of retention time to the 

mass and intensity dimension utilised in the 2D peak picking stage. The 3D peak 

picking step is comprised of several stages that are wrapped into a Reduce task in 

the MapReduce framework as shown in pseudocode below. 

 
reduce(String key, Iterator values): // key: document name 
 // key: a partition value 
// values: concatenated string of "weightedPeakMass, 
charge,retentionTime,sumIntensity, minimumMZ, maximumMZ" 
for values in value: 
 join 2D peaks in 3D chains 
 smoothIntensity 
 identify overlapping peaks 
 identify isotopic envelopes 
 calculate mono-isotopic peak values 
Emit(finalKey, finalValue); 
//finalKey: partition number (not required) 
//finalValue: concatenated string of “charge, mass, intensity, 
retention time” 

 

The reduce tasks receive data from the map tasks as key-value pairs dictated by 

the custom partitioner. The input data consists of an integer key and a text value. 

The text value is a tab-separated list of the variables calculated during the 2D 

peak picking with each input record representing a single 2D peak. The input 

records are loaded into an arraylist of Java objects that enables them to be easily 

sorted using a custom compare class inside the object. The 2D peaks are first 
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sorted in order of retention time (which equates to scan number) and then sorted 

by mass to charge ratio within each retention time before starting to loop through 

the 2D peaks checking to see if they are part of a 3D peak chain. From this point 

the operation within the reduce task follows the same flow as described for the 3D 

peak picking process in Chapter 3, Section 5. That is joining 2D peaks into 3D 

chains of peaks, intensity smoothing, overlapping peak detection, isotopic 

envelope detection and mono-isotopic peak calculation. 

 

Figure 19 shows the 3D peak picking process arranged as a reduce task, the 

output from the map tasks is distributed to the reduce tasks in the shuffle phase. 

The reducers then detect the 3D peaks and output them as a list per reducer that 

needs to be joined to create the final output. In the diagram n = the number of 

reduce tasks.   

 

 
FIGURE 19 3D PEAK PICKING AS A REDUCE TASK 
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5.6 DEVELOPMENT ENVIRONMENT 

5.6.1 CODE DEVELOPMENT 

The Java code has been developed, tested and debugged using the Kepler release 

of Eclipse on a Macbook Pro laptop. Eclipse is an Integrated Development 

Environment (IDE) used for programming in a variety of languages. Eclipse provides 

a range of tools to aid the process of program code development, such as syntax 

checking and compiling and deploying Java packages as Java archive or "jar files" 

(so named because by convention the file extension is always “.jar”). As the Apple 

Macintosh operating system is based on BSD Unix, it is possible to run the Hadoop 

MapReduce framework on the local file system natively. A setup like this does not 

create a parallel processing environment as there is effectively only a single worker 

node, but it is very efficient for testing and debugging program code during 

development. 

 

A plug-in exists that allows Aster SQL-MR packages (see Section 5.8.4 for the 

definition of SQL-MR and Aster) to be developed in Eclipse and easily deployed to a 

cluster from within the IDE by running an SQL-MR script. The plug-in makes iterative 

testing and deployment simple and efficient and means that a single IDE was used for 

development across all the systems included in the research. 

 

5.6.2 SOURCE CONTROL 

During the lifetime of this research, version control of the Java source code has been 

crucial. During the initial development phase of the MapReduce algorithm, testing the 

results against existing correct peak outputs involved many iterations over the 

development, testing and release cycle. The version control required a detailed 

version history of changes and to enable rollbacks to previous code releases. The 

version control system chosen was Git, originally developed by Linus Torvalds, the 

architect of the Linux operating system. Git is a distributed system where a master of 

the code resides in a repository on a remote server and developers have a copy of 

the repository on their local workstation. A pull request is made to receive the latest 
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version of the code repository and to commit changes a push command is made. 

Other standard version control features such as branching, merging and cloning are 

available. 

 

The GitHub hosting service was used to provide a remote repository. GitHub provides 

an online hosted service that allows the master repository to be accessed by anyone 

with correct access rights and an Internet connection. All the code written during this 

research is available at the URL https://github.com/chillman99/phd 
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5.7 TEST ENVIRONMENT 

5.7.1 HARDWARE SPECIFICATION 

Research into the performance of the parallel algorithm utilised several iterations of 

test hardware with the setup being refined on each iteration. The aim was to provide 

enough capacity to be able to process complete mass spectrometer output files and 

provide consistent running times to benchmark the results. Initial stages of the 

research utilised a test cluster built with re-purposed desktop personal computers 

from an office environment. A previous Master’s degree project by the author of this 

thesis used the same test cluster as part of a discussion on the use of Hadoop in the 

context of a hybrid ETL process for proteomics data [122]. 
 

However, the eight personal computers used as the data nodes had single core 1.8  

Ghz processors with one gigabyte of RAM and a single 80 gigabyte spinning disk 

drive. While good as a learning environment, this configuration did not have sufficient 

disk capacity or processing power to process the large files produced during a 

proteomics experiment, which as previously stated can reach more than seven 

gigabytes. Therefore, a new virtual cluster was constructed on a custom-built server 

using an eight-core AMD processor with 32 gigabytes of RAM and five individual 

drives. A single virtual machine was assigned to each of the drives to avoid access 

bottlenecks.  

 

The results of initial benchmark tests using virtual machines showed a high degree of 

variation in run times. An investigation into the performance of the virtual cluster using 

spinning disk drives showed that there is a high degree of correlation between 

runtimes of code and how much data the drive contained before copying a virtual 

machine image onto it. One reason for this variation, is that on a traditional spinning 

disk hard drive, the data is stored starting at the outside of the platter and progressing 

inwards towards the centre. The data on the outside of the platter can be read more 

quickly as the rotational velocity is faster under the read-head at the outside than it is 

on the inside. As the disk fills, the later data is stored towards the centre of the disk 

where read times are slower. Another significant factor is that of fragmentation. Files 

on an empty drive can be written as contiguous blocks. In contrast, on a disk that 
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already contains data it is likely that files will be fragmented. Fragmentation describes 

the situation where the data blocks are interspersed with blocks from other files that 

already existed on the disk and results in slower file read times. As stated, the results 

showed a significant variation between timings for running the process as recorded 

using the Linux “time” command, Hadoop dfsio and teradsort performance tests and 

I/O benchmarking software. Therefore, the host machine was upgraded to replace the 

original spinning disks with solid-state drives (SSD). The random-access times for 

SSDs are consistent across all parts of the drive and independent of how much data 

they contain. Changing to SSD drives resulted in far more consistent runtime across 

independent tests.  

 

Table 1 shows a summary of the results obtained using three different disk drives: a 

Sandisk SDSSDP-128Gbm, a Seagate ST31000528AS and a Western Digital 

WD20EARX. The tests were carried out by copying a virtual machine on to freshly 

formatted blank drive for the “empty” readings and then copying the same virtual 

machine on to a drive having only 30Gb remaining space for the “full” readings. Two 

things of note here are firstly the virtual machine severely restricts the I/O of the 

drives, the SSD write speed is only about 20% of the speed when using the native 

operating system. Secondly the read, write and terasort measurements are much 

more stable on the SSD than the spinning drives and not dependent on how much 

data is currently on the disk. Each test was run three times and the results here are 

averages of the three readings. The results show that the 128Gb SSD drive was the 

fastest regardless of whether it was empty or full at the time of the test. 

 
TABLE 5 COMPARISON OF I/O DATA FOR SSD AND SPINNING DISKS  

Model Type Capacity State 

Native 
OS 
Read 
(MB/s) 

Hadoop 
on VM 
Read 
(MB/s) 

Native 
OS 
Write 
(MB/s) 

Hadoop 
on VM 
write 
(MB/s) 

Hadoop 
Terasort 
Write 
(hh:mm:ss) 

Hadoop 
Terasort 
Process 
(hh:mm:ss) 

Sandisk 128Gb SDSSDP-128G SSD 128Gb Empty 315.51 83.21 240.87 52.82 00:03:18 00:27:42 
Sandisk 128Gb SDSSDP-128G Full 316.01 83.13 240.63 52.43 00:03:15 00:27:25 
Seagate Barracuda ST31000528AS Disk 1Tb Empty 114.55 46.53 99.84 40.28 00:03:56 00:33:49 
Seagate Barracuda ST31000528AS Full 109.01 37.98 65.21 37.38 00:04:02 00:54:16 
Western Digital WD20EARX Disk 2Tb Empty 108.09 36.57 101.97 44.25 00:03:31 01:44:43 
Western Digital WD20EARX Full 106.78 23.06 100.84 32.27 00:04:05 03:25:33 
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5.7.2 OPERATING SYSTEM 

The operating system installed on the host server running the test system was 

Windows 10. Thermo Scientific, the manufacturer of the mass spectrometers used at 

the University of Dundee, provides a single mechanism for reading the binary data in 

their RAW data formats. This implementation of this mechanism is a Microsoft 

Windows DLL file. It is necessary to call the routines in this DLL file in order to convert 

the RAW format into any other required format. This dependency on a DLL file is, 

therefore, the main reason for choosing a Microsoft Windows host. Without it, it would 

not be possible to read the RAW data, convert it into a suitable file format and test the 

algorithm.  

 

To produce consistent run-times for replicates of experiments, non-essential services 

on the host machine were shut down. During the testing phases, the processes that 

automatically search for and install software updates were switched off. This 

precaution was taken both for Windows itself and other software packages such as 

Microsoft Office. As a further precaution, the host machine did not have access to the 

Internet. 

 

5.7.3 ENVIRONMENT 

The different cluster environments tested were installed as groups of individual 

virtual machines that together created a virtual cluster on the host. This virtual 

setup proved to be an efficient method of researching multiple systems and 

combinations thereof in a single test environment. The virtual machines were 

created using the VMware platform, specifically the free VMware Player software 

version 12.5. The allocation of a virtual hard drive fixed at 40 gigabytes in size, 

two CPU cores and four gigabytes of memory to each of the virtual machines gave 

a consistent base for each type of cluster. Here the aim was to prevent the timings 

of the experiments being affected by virtual machine maintenance activity, such 

as growing a virtual hard drive file behind the scenes. The virtual cluster created 

for use as a development proved to be an essential part of the process of 

changing the serial algorithm detailed in Chapter 3 into the MapReduce-based 
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parallel algorithm detailed in Chapter 5. The laptop environment contained a 

single node “pseudo cluster” this means that all services and data run in the same 

place. So, although the code runs as MapReduce, in practice there is no 

parallelism. The virtual cluster allowed development and testing to be run on an 

actual parallel system without having to negotiate extended periods of access to a 

physical cluster. Issues such as data distribution, processing skew and limitations 

of processing large datasets where detected and tested on the virtual cluster 

where the nature of the single-node pseudo cluster means this wouldn’t have 

been possible. Using the virtual cluster also showed that two parts of the process 

were considerably slower than the rest when the size of the data increased. This 

was due to the way the algorithm was initially coded and would have had the 

same effect on the physical cluster, this is discussed further in Chapter 6, Section 

6.3.3. 

5.7.4 CREATION 

Installing Ubuntu Linux 16.04.02 LTS as the operating system on a new virtual 

machine with the specifications given above created a template system for a virtual 

node. Cloning this template node ensured that all the nodes in the clusters had an 

identical setup. As with the Windows host, the disabling of automatic software 

updates along with non-essential services removed some possible causes of 

inconsistent run times. It was necessary to build and test systems with various 

configuration options. New clusters were formed during this investigation phase, by 

cloning the template node as many times as was needed (for example usually four 

worker nodes and a master node) and manually installing the cluster environment on 

them.  

5.7.5 SCRIPTING 

As the configuration of each of the systems was mastered, the creation of the virtual 

clusters was scripted using a software system called Vagrant. Following the 

development of a script, Vagrant allows the creation and deployment of virtual 

machines directly from a command line interface. The intention was to reduce the 

amount of effort needed in cluster maintenance between experiments and to make 

the experiments more reproducible. Using the scripting software ensured that the 
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virtual machine was in the same state for each run of a feature detection process on a 

data file. However, following further research into benchmarking process 

methodology, it was clear that the system under test should not be tampered with 

between test runs. The only change allowed is the deletion of the data created from 

the previous test. This methodology meant that there was no need for scripted virtual 

machines. In fact, it was sufficient to have a template virtual machine with just a Linux 

operating system setup. This template virtual machine could be copied multiple times 

to create a new cluster that was then stored before being copied onto the test system 

for benchmarking. Further tests just required the clean cluster to be copied over, 

replacing the already tested virtual cluster. 

 

Note that during this research a technology called “containers” and a software 

package called Docker have become increasingly popular [123]. Virtual machines are 

an abstraction of the physical hardware that allows a single machine to operate as 

many servers. Each virtual machine contains a complete copy of the operating 

system and any applications that are needed; these all need to be installed and 

maintained separately. A virtual machine is essentially a complete system and needs 

to be booted up at the start of a processing run, although it is possible to suspend the 

virtual machine to a disk file enabling a faster start up time. In contrast, containers are 

an abstraction at the application layer, which is one layer up from the operating 

system. Multiple containers can run on the same machine and share the same 

operating system; containers, therefore, take up much less space on disk than a 

virtual machine, start up almost instantly and do not need the same level of 

maintenance. Docker makes the whole task of creating and distributing complete 

environments simple and efficient. For this reason, it has begun to be used for the 

purposes of reproducible research [124] allowing researchers to distribute a complete 

environment for re-evaluation and further experimentation. Further reference to the 

use of containers and Docker to create an architected, automated, production system 

is made in the conclusion of this thesis. 
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5.8 PERFORMANCE TESTING ENVIRONMENT 

Further environments were used to simulate the feature detection process running on 

full production hardware. These environments were used to produce the final timings 

reported in Chapter 6 and Chapter 7. Teradata Ltd. provided this hardware for the 

duration of the benchmarking phase of the research (note that the author of this 

thesis is employed by Teradata UK Ltd). The three systems consisted of: 

 

• a three-node Hadoop cluster (running the Apache Hadoop distribution) 

• a three-node Aster cluster 

• a seven-node Aster cluster 

 

Each cluster consists of two types of node, the accepted terminology for these types 

is “master” and “slave” nodes. The master node is the controller and distributes tasks 

and data to the workers, which are the nodes where the processing takes place. The 

terms “three-node” and “seven-node” refer to the number of slaves; each cluster also 

has a single master node. For performance testing, the Aster benchmarks were 

carried out on the three-node and seven-node Aster clusters. The benchmark tests 

on all other systems discussed below were completed on the three-node Hadoop 

cluster, with the relevant services being enabled as necessary. 

 

The nodes in the performance testing systems were all identical, each containing dual 

eight-core Intel Xeon processors running at 2.6Ghz, with 512 Gb RAM for master 

nodes and 6-core Intel Xeon processors running at 2Ghz, with 256 Gb RAM and 

twelve 4Tb disk drives for the slave nodes.  
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5.9 SYSTEMS TESTED 

5.9.1 TYPES OF SYSTEM 

To address the main research question outlined in Chapter 1, a parallel feature 

detection algorithm, has been benchmarked using a cluster of connected compute 

nodes. A broad spectrum of technologies has been tested on the cluster, the 

technologies include a Distributed File System, a NoSQL database, a relational 

database, columnar storage, in-memory storage and stream processing. This is not 

an exhaustive list and does not, for example, include any form of hardware 

acceleration such as Graphics Processing Units (GPU) or Field Programmable Gate 

Arrays (FPGA). GPU-based acceleration is currently a major topic of research, partly 

due to the attention being given to Artificial Intelligence and Deep Learning [125]. 

However, the focus of this research remains on the implementation of the feature 

detection algorithm. Performance enhancement using hardware could be the subject 

of a different research project. Appendix A contains a detailed description of the 

systems benchmarked in this research. The following contains a brief overview of 

each system and explains its relevance to the research.  

 

Hadoop 
The base Hadoop distribution consists of a distributed file system called HDFS and 

the MapReduce processing engine. A large eco-system of open source technology 

has been built up around Hadoop including scheduling and resource allocation 

engines as well as other processing engines that replace MapReduce. The most 

recent allocation engine in Hadoop is called YARN, which has been adopted by many 

open source technologies as the default scheduling engine. Hadoop forms the basis 

of the parallel architecture used for most of the feature detection algorithm 

benchmarking in this research.  

 

Cassandra 
A class of database systems has emerged known collectively as “NoSQL” (an 

abbreviation of Not only SQL). These systems are used as alternatives to relational 

database systems and have been produced in response to the Big Data challenges 

outlined in Chapter 1, Section 1, such as scalability and the requirement to ingest 
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data at high speed. As such NoSQL database capabilities could be directly relevant 

to the challenges presented by processing mass spectrometer data. Cassandra 

stores data in “column families”, which have columns and rows but in contrast to a 

relational database each row may have a different number of columns. 

 

Aster 
Aster is included in the research as an example of a relational database, it is based 

on the widely used open source Postgres database and uses ANSI standard SQL for 

querying data. What makes Aster particularly relevant to this research is the patented 

SQL-MapReduce engine, which allows MapReduce code written in Java to execute in 

parallel on the database nodes and access data directly from the database. The 

SQL-MapReduce engine allowed the Java code running on Hadoop to be compiled to 

run on the Aster platform with very few changes. 

 

HBase 
HBase is part of the Apache Hadoop ecosystem and is usually found ready 

configured on most Hadoop clusters as it is part of the base install. It runs on top of 

Hadoop’s HDFS file system and provides a column store in a non-relational format 

that is similar to the column families implemented by Cassandra. In contrast to HDFS, 

HBase allows fast, random access to data. Hadoop’s MapReduce framework can 

read and write directly from and to HBase tables. 

 

Spark 
Spark is a general-purpose parallel execution engine, initially developed at the 

University of Berkeley, that can run on a cluster using YARN to manage resources 

and scheduling. Spark operates in-memory with objects called Resilient Distributed 

Datasets (RDD). Spark has gained a large following in the business and academic 

world in recent years and has rapidly become a standard for parallel processing. 

 

Flink 
Flink is a relatively new software package, developed at the University of Berlin and is 

presented as an alternative execution engine to Spark. Superficially Spark and Flink 

are similar but when comparing them as Stream engines, used to capture and 
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process data as it is produced, there are some pronounced differences that are 

explained in Chapter 7 where the results of the stream experiments are detailed. 

 
Kafka 
Unlike Flink and Spark, Kafka is not an execution engine. It does not process data 

and perform complex transformations on it. Instead, Kafka is a distributed 

publish-subscribe messaging system. Kafka is included here as it is used in the 

stream-processing experiments to simulate the behaviour of a mass spectrometer 

which instead of writing out its results to a file for processing, streams them out in 

real-time as they are produced.  

5.9.2 COMBINATIONS OF SYSTEMS 

The systems described above, or elements thereof, fall into three categories: 

1. Data Storage 

2. Processing Frameworks 

3. Message Publishing 

 

HDFS, HBase, Cloudera and Aster have data storage capabilities. In this category, 

data is loaded into the system’s data store and persisted there. MapReduce, Spark, 

Flink and Aster’s SQL-MR are data processing frameworks; here the code is 

executed to process the data in parallel reading from data stores. Kafka is in the third 

category of message publishing; it pushes data out for subscribers to consume in a 

streaming fashion. It is possible to combine the systems to evaluate how they work 

together and if there are benefits of doing so. Combinations explored are as follows: 

 

• MapReduce with HBase 

• MapReduce with Cassandra 

• MapReduce with HDFS 

• Aster as a standalone system 

• Spark with HDFS 

• Spark streaming with Kafka 

• Flink with HDFS 

• Flink streaming with Kafka 
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Figure 20 shows a complete cluster environment as used in this research to 

benchmark the performance of the algorithm. Each worker and the master node are 

running the services required for Hadoop, Flink, Spark, HBase and Cassandra. These 

systems and their components, for example “zookeeper” are described fully in 

Appendix A 

 

 
FIGURE 20 COMPLETE CLUSTER ENVIRONMENT 

Note that performance testing with Aster was carried out on a separate cluster with 

the same physical configuration as the Hadoop-based systems 

5.9.3 OTHER POSSIBLE CONFIGURATIONS 

During this research, the Hadoop ecosystem has been constantly evolving with new 

software frameworks and distributions being developed. It has not been possible to 

test and benchmark the parallel algorithm with every new processing framework as it 

appears. However, consideration has been given to some of the major alternatives to 

those researched here. Notably Storm, Flume and Splunk as streaming frameworks, 

MongoDB, Redis and Redshift as database and NoSQL alternatives. However, the 

frameworks chosen for the complete test and benchmark research were chosen to be 

representative of the type of system required to design a complete architecture.  
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5.10 TEST DATA 

Dr. Tony Ly from the Lamond Laboratory supplied the datasets used in validating the 

parallel algorithm. This data consisted of raw output files from mass spectrometers 

manufactured by Thermo Scientific. Specific models used were the LTQ Orbitrap XL, 

LTQ Orbitrap VELOS and Q Exactive. The data was created as result of proteomics 

experiments researching myeloid-specific gene expression, variations in protein 

abundance, isoform expression and phosphorylation at different cell cycle stages 

[131]. The complete set consists of eight files each related to different cell stages, 

with each file having two technical and three biological replicates, a total of forty-eight 

files. Note that not all the data files were processed during the benchmarking process 

as similar files (such as replicates) have a very similar processing time.  

 

Standard practice for proteomics researchers is to run replicates of the experiments 

as a validation process. There are two types of replicate: 

 

• A biological replicate involves rerunning the same cell sample but using a 

different mass spectrometer.  

• A technical replicate involves running a different cell sample using the same 

mass spectrometer with the same parameters as the original sample. 

 

This process of running replicates generates a significant amount of data that needs 

to be validated, adding to the complexity and length of time required for an 

experiment. 

 

As mentioned in Section 5.2 of this chapter, the data had already been processed 

using the MaxQuant software. The results from MaxQuant were used to validate the 

output from the new parallel algorithm.  
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The files listed in Table 6 were used in the testing and benchmarking process. 

 
TABLE 6 LIST OF FILES USED FOR TESTING AND BENCHMARKING 

File Name Size in Mb number of scans 

561L1AIL00.RAW 1,709 36245 

561L1AIL01.RAW 1,743 36969 

561L1AIL02.RAW 1,753 37180 

561L1AIL03.RAW 1,750 37111 

561L1AIL04.RAW 1,748 36329 
561L1AIL05.RAW 1,732 36162 

561L1AIL06.RAW 1,727 36181 

561L1AIL07.RAW 1,718 36445 

PT2441S1FP1A1.RAW 2,703 125550 

371.RAW 1,404 37369 

100312_EXP229_GFPIP_5.RAW 883 27381 

 

 

As part of the process of benchmarking, each of the RAW files was converted into a 

mzML format using the msconvert software that forms part of the proteowizard tools. 

These files represent the types of output that is commonly processed in the Lamond 

Laboratory at the University of Dundee with the smallest RAW file creating a mzML of 

approximately 2.6Gb and the largest an mzML of approximately 8.4Gb. Following the 

conversion step, the files were loaded into the various cluster environments. Table 7 

displays a list of file sizes in RAW, mzML, flat file and Avro formats and timings for 

conversions between them. The test set comprises files from four types of 

experiment, note that all the files with names beginning “561L1AIL” are from different 

stages of similar experiments. This set of test files represents a broad range of the 

type of experiments on the Human Proteome performed in the Lamond Laboratory. It 

is acknowledged that further research will be required to understand how the parallel 

system will perform on non-human experimental results. 
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TABLE 7 LIST OF FILE SIZES CONVERSION TIMINGS 

File Name 
RAW File 

Size Mb 

mzML File 

Size Mb 

Flat File Size 

Mb 

Avro File Size 

Mb 

561L1AIL00.RAW 1,709 5,128 4,962 3,388 
561L1AIL01.RAW 1,743 4,704 4,541 3,101 

561L1AIL02.RAW 1,753 4,614 4,454 3,042 

561L1AIL03.RAW 1,750 4,821 4,658 3,180 

561L1AIL04.RAW 1,748 5,490 5,318 3,632 

561L1AIL05.RAW 1,732 5,426 5,255 3,589 

561L1AIL06.RAW 1,727 5,409 5,237 3,577 

561L1AIL07.RAW 1,718 5,393 5,221 2,565 

PT2441S1FP1A1.RAW 2,703 8,376 7,766 5,305 
371.RAW 1,404 3,873 3,743 2,028 

100312_EXP229_GFPIP_5.RAW 883 2,604 2,499 1,707 

 

File Name 
Time to Convert 

RAW to mzML 

Time to Convert 

mzML to Flat File 

Time to Convert 

Flat File to Avro 

561L1AIL00.RAW 00:09:52.49 00:02:28.22 00:00:57.00 
561L1AIL01.RAW 00:10:31.73 00:02:34.70 00:00:52.57 

561L1AIL02.RAW 00:10:15.38 00:02:43.87 00:00:52.19 

561L1AIL03.RAW 00:10:13.27 00:02:27.66 00:00:53.99 

561L1AIL04.RAW 00:10:09.75 00:02:28.05 00:01:02.35 

561L1AIL05.RAW 00:10:19.17 00:02:29.81 00:01:01.05 

561L1AIL06.RAW 00:08:43.51 00:02:23.83 00:01:00.41 

561L1AIL07.RAW 00:08:43.38 00:02:21.89 00:00:59.65 

PT2441S1FP1A1.RAW 00:09:38.00 00:03:13.04 00:01:42.76 
371.RAW 00:07:32.11 00:01:33.09 00:01:01.78 

100312_EXP229_GFPIP_5.RAW 00:03:23.00 00:01:03.15 00:00:27.84 

 

 

This data shows that the Avro file format, which is easily distributed on a cluster for 

parallel processing, offers the potential to save disk space. In addition to the 

MaxQuant processing, some of the data had also been processed using a Teradata 

appliance hosting a relational database. The Teradata appliance processed the data 

using an algorithm created using the SQL query language. This SQL-based process 

had already undergone an extensive period of validation, although at the time of 

writing this thesis no publications have been produced from this work. The output 
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from the Teradata system proved to be an excellent way of validating the results of 

the MapReduce algorithm as the relational database holds intermediate results for 

parts of the SQL process. Comparing the output of the MapReduce algorithm with 

these intermediate results allowed testing for accuracy and correctness at many 

points along the process. Inserting the results from the MapReduce system into the 

appropriate relational table and continuing the SQL process from that point meant 

that the final results could be checked accurately against the existing process. As the 

algorithm implemented by the Teradata system and the parallel algorithm 

implemented with MapReduce are both based on the algorithm used by MaxQuant, 

the results should all match to those obtained with MaxQuant. 
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5.11 CONCLUSION 

The benchmarks carried out during this research were specifically for testing the 

performance of processing mass spectrometer data and not general-purpose 

processing. Therefore, to be relevant to mass spectrometer data it has been decided 

not to use synthetic data to benchmark the systems but rather to use specific 

workloads in the form of data files produced from actual proteomics experiments. This 

use of specific data sets means that the terasort test discussed in Chapter 2, Section 

4 has not been utilised. 

 

The benchmarks were initially run on the test environment using virtual clusters set up 

on a Windows 8 host machine. Once the process was tested and working as 

expected, the benchmarking was conducted on the performance testing 

environments described in Section 7 of this Chapter. The following items have been 

measured, with the results described in depth in Chapters 6 and 7: 

 

Overall process timings 
In keeping with standards from well-established benchmarks such as the TPC, 

timings were recorded by running the desired workload three times in succession and 

taking the slowest of the runs [42]. The only maintenance allowed between runs was 

the deletion of previous test data output. The time for each workload to run was 

measured using the Linux time command, which returns the elapsed, system CPU 

and User CPU time that the process takes to complete. Elapsed time is the metric 

used to report the results, which is also known as “wall time". Hadoop and the Aster 

system both include software called Ganglia; this is used to provide some metrics on 

the performance of the cluster while it is being used. During the benchmark phase of 

this research it was discovered that the elapsed time to complete the feature 

detection was all that was needed to compare the performance of the parallel 

algorithm, therefore results from Ganglia are not included. Appendix B presents 

details on the environment and scripts used to produce the results presented in this 

thesis so that they are reproducible. 
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6 BATCH PROCESSING 

6.1 CHAPTER SUMMARY  

This Chapter presents the results of experimentation using a parallel feature 

detection algorithm and a batch process with the test files listed in Table 6 (Chapter 5, 

Section 9).  

 

Section 2 starts with an introduction to the problem from a technical point of view and 

reiterates the research questions. The data formats used for the experiments are 

described and timings given for loading data to the experimental systems. This 

section also includes a description of batch processing and its advantages and 

drawbacks.  

 

Section 3 More detail is also presented on data and processing skew, performance 

tuning and any thresholds used. Finally, the various data models and schemas used 

are described.  

 

Section 4 describes the experimentation and validation against other feature 

detection software is described. The effects of partitions in the reduce step are 

illustrated.  

 

Section 5 presents the results of the experiments.  

 

Section 6 contains a discussion on the findings and possible enhancements  
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6.2 INTRODUCTION 

6.2.1 REAL-TIME 

The meaning of the term real-time is unclear and needs qualification. True real-time 

processing is not realistic as there will always be a delay between data creation and 

data processing. Before experimentation takes place, the researcher must decide 

and specify the amount of delay that is acceptable for a process. This delay will be 

the constraint used to decide whether the system qualifies as real-time or not after 

benchmarking results have been obtained. 

 

This chapter presents the results of running a parallel feature detection algorithm in a 

batch processing mode. Batch mode systems are not commonly considered to be 

capable of real-time processing; instead specialized streaming platforms such as 

those described in Chapter 7 are deployed. However, in the case of mass 

spectrometer data processing, it could be possible to obtain a sufficiently significant 

speed-up in processing time as to render a real-time system unnecessary. For 

instance, the speed-up is sufficient that further data processing and analysis is not 

delayed. This statement is based on the current time taken to process data which can 

range from hours to days for a full process. (Note that the complete process includes 

all stages of the data processing pipeline including the protein lookup stage that 

matches identified peptides to known sequences).  

 

Currently laboratories process proteomics data on dedicated PC hardware. The data 

from the mass spectrometers is copied onto the processing PC, the processing is 

completed and then the data is copied to a shared network drive where it can be 

accessed by the researcher. If this process could be automated and the processing 

time reduced to several minutes by combining a parallel feature detection algorithm 

followed by a protein lookup system such as Hydra [79] on a cluster, then the 

speed-up and reduction in data management tasks would be beneficial to life 

scientists. The current time for feature detection using MaxQuant on a high 

specification PC (32Gb RAM, 8-core 3.6 Ghz SSD storage) is seventeen minutes for 

smallest file and more than fifty minutes for the largest of test files benchmarked, see 

Table 8 for the time to run only the feature detection process for each of the test files. 
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Setting a goal of reducing the elapsed time for feature detection by 95% results in a 

time of between fifty seconds to approximately two minutes forty seconds for the 

chosen test files. Conversations with proteomics researchers have confirmed that 

these timings would be acceptable because the processing time is reduced to the 

equivalent of the time taken to retrieve the results from the processing PC. Therefore, 

in the context of feature detection using batch processing, “real-time” is defined to 

mean completing the processing of the data in a short enough time so as not to hold 

up further operations on the dataset.   

 

 
TABLE 8 MAXQUANT TIMINGS FOR FEATURE DETECTION 

File Name 

MaxQuant Feature 

Detection Time 

(HH:MM:SS) 

95% Reduction in 

processing Time 

(HH:MM:SS) 

561L1AIL00.RAW 00:31:05 00:01:31 

561L1AIL01.RAW 00:32:23 00:01:37 

561L1AIL02.RAW 00:29:56 00:01:30 

561L1AIL03.RAW 00:31:05 00:01:33 
561L1AIL04.RAW 00:32:32 00:01:38 

561L1AIL05.RAW 00:32:33 00:01:38 

561L1AIL06.RAW 00:32:02 00:01:36 

561L1AIL07.RAW 00:31:30 00:01:35 

PT2441S1FP1A1.RAW 00:53:24 00:02:40 

371.RAW 00:19:54 00:01:00 

100312_EXP229_GFPIP_5.RAW 00:17:05 00:00:51 

 

 

6.2.2 DATA FORMATS 

The widespread use of the mzML format for storing and transferring data and 

issues with using XML-based file for parallel processing necessitated the design 

of a new file format during the course of this research. The plain text SCMI format 

was used for the experimentation, it is created by parsing out the following fields 

from the RAW data file for each scan: 
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• Scan identifier 

• msLevel 

• Retention Time 

• Precursor Ion mz 

• Precursor Ion Intensity 

• Precursor Ion Charge 

• Mz array (a Base64 encoded float array) 

• Intensity Array (a Base64 encoded float array) 

 

The simplicity of a text-based file format for benchmarking and testing was 

preferred over a binary format such as Avro. In the text file, each record contains 

a complete set of data for a single mass spectrometer scan. The scan is the most 

granular level of data suitable for parallel processing and constitutes the “unit of 

parallelism”. A complete scan contains features or peaks that represent the 

peptide molecules detected by the mass spectrometer. As explained in Section 

6.3 of this chapter there are complications in the feature detection process that 

mean it is not possible to qualify a feature on its own as surrounding peaks need 

to be taken into consideration. These complications include overlapping peaks 

and isotopic envelopes. In an appraisal of parallel processing Gunther [132] 

describes how the efficiency of a parallel process degrades if an attempt is made 

to increase parallelism by splitting the data into chunks smaller than the optimum 

for a particular case. In the case of feature detection, this would happen if the data 

within scans was to be split across parallel tasks. Splitting a complete scan into 

chunks and distributing these around a cluster would necessitate decoding the 

base64 encoded mz and intensity arrays first. Following this, the data processing 

would need to include a new step where the features detected on each node are 

checked against each other to look for incomplete peaks that occurred where the 

data split occurred. (Section 6.3 of this chapter contains more details on this 

subject but in a different context of 3D feature detection). It would also be 

necessary to match all the detected peaks together along the mz dimension to 

detect Isotopic envelopes and ascertain the charge of the peptide ions. The 

example of splitting the data within scans does not increase the complexity of the 

algorithm to any great extent, it just introduces an extra step that requires data 



114 

movement between nodes on the cluster, hence the decrease in efficiency and 

subsequent increase in processing time.  

 

6.2.3 BATCH PROCESSING 

The term “Batch Processing” in a computing context refers to a mode of executing 

programs in an automated and non-interactive way. Batch processing has a long 

history, the name originating from the days when computer programs were 

created using punched cards. To execute program code, an operator fed cards 

into the computer in batches. The absence of any interaction with the process as it 

is executing is a key component, any parameters, inputs, and outputs must be 

predefined before a batch process starts.  

 

If a life sciences laboratory contains one or two mass spectrometers, then 

processing data in an interactive mode is still a possibility. Researchers can be 

responsible for monitoring their mass spectrometer experiment and moving the 

output RAW data file to a processing machine. The next steps could then be to 

commence a job using software such as MaxQuant, waiting for completion, then 

moving the result files to the researcher’s own personal computer for analysis. As 

laboratories become more complex with more mass spectrometers, the interactive 

mode of working becomes less desirable. Fenyo and Beavis [133] describe data 

management challenges in proteomics and categorize experiments into three 

sizes, small, medium and grande. Noting the need for automated systems to 

acquire and analyze data large-scale (grande) experiments. As an example of an 

experiment where automated batch-processing becomes a necessity, Fenyo and 

Beavis cite a large-scale experiment identifying protein content in the yeast 

Saccharomyces cerevisiae. This experiment analysed a total of 15,683 samples, 

identifying over 35,000 proteins. This would be extremely time-consuming and 

difficult to do using the manual method described at the start of this paragraph.  

 

A common use of batch processing is to complete work in a defined “batch 

window”. A batch window is a period of downtime in computer processing cycles 

where the computers are being underused for interactive processing. An example 
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is in an information management cycle where transactional systems are used 

throughout the day to record and process transactions. During the nightly window, 

batch processes extract data from the transactional systems, transform it and load 

the results into a data warehouse system for analysis the next day. This process is 

known as Extract, Transform, Load (ETL). Another example would be the monthly 

billing cycle for a credit card company, here data is stored during the active month 

and then a batch window, perhaps over a weekend, is used to process the 

monthly customer bills. The processing requirements for proteomics experiments 

loosely fit this pattern, and it could be possible to set up a nightly batch processing 

cycle to process that day’s experimental output overnight and have results ready 

for the next morning. This method could certainly address some of the data 

management challenges such as data movement and availability of processing 

machines. However, the intention of this research is to provide results in as close 

to real-time as possible. This means that there is a requirement for a dedicated 

batch processing system. 

 

Batch processing environments will include a scheduling system to ensure 

efficient running. Scheduling has been studied extensively both for 

computer-based batch processing and for manufacturing processes [134]. A 

major concern is balancing a system to ensure the full utilization of all resources, 

therefore obtaining maximum throughput. This balancing is of particular 

importance in non-heterogeneous environments, which may contain a mix of 

newer and older compute nodes with different processing speeds or where tasks 

have different processing requirements. For example, in a general batch 

processing system, some computing processes are many times smaller than 

others. Large resource-intensive jobs can monopolise the system, effectively 

blocking smaller jobs from running. A job queue holds the stream of jobs and 

frameworks such as Spring Batch exist for this purpose. For Hadoop-based 

systems, the original option was a simple first in first out (FIFO) scheduler which 

processed the jobs in the order in which they were submitted. Current versions of 

Hadoop include two scheduling methods: 
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• A fair scheduler which seeks to assign resources to jobs such that, on 

average over time, each request gets an equal share of the available 

resources. 

• A capacity scheduler, which instead of using resource pools, as the fair 

scheduler does, uses a queue-based system. Here each queue is configured 

with a guaranteed quota of resources and jobs are assigned to queues 

based on submission parameters. 

 

Note that other external frameworks exist such as Airflow and Oozie, but these 

have not been investigated in this research. 

 

The proteomics processing pipeline consists of several steps with varying 

resource requirements. Differences in the complexity of the sample processed by 

a mass spectrometer and the length of processing time result in varying file sizes 

with varying processing times, this can be seen in Section 6.5 of this Chapter 

where the batch processing results are presented. On a large cluster dedicated to 

processing proteomics data, a capacity-based scheduler could be used to ensure 

that larger, more complex files could be consistently allocated more resources 

than smaller, simpler ones.  

 

The increasing complexity of proteomics experiments and the increasing number 

of mass spectrometers has the potential to create a data management problem. 

The implication is that researchers need to spend a disproportionate amount of 

time on processing and handling data instead of experimenting and analyzing of 

results. A dedicated batch processing cluster automatically fed by the mass 

spectrometers could be used to completely disconnect researchers from the data 

management and processing tasks involved in turning output spectra into data 

that be analyzed. A capacity scheduler would ensure that large jobs do not affect 

smaller jobs while still ensuring that large jobs get the resources they need to 

complete as quickly as possible. As previously noted it is important to decide what 

is an acceptable time for process completion, firstly to be acceptable to 

researchers and secondly to conclude whether the terms real-time or near 

real-time are appropriate. 
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6.2.4 SYSTEM AND SOFTWARE 

The hardware and software environments used for the experiments detailed in 

this chapter are described in detail in Chapter 5 and Appendix A. The 

performance testing environment has been used for all the experimentation 

except where noted. For example, performance tuning was mostly carried out 

using the development environment. As the development environment was far 

slower than the performance testing environment, the exaggerated differences 

between tests helped to identify slow parts of the process that required tuning.   
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6.3 IMPLEMENTATION DETAILS 

6.3.1 PEAK DISTRIBUTION 

Different experiments produce files with different peak distributions. The type of cell 

used in the experiment will determine which proteins are present for detection by the 

mass spectrometer. The distribution of the detectable features affects the way in 

which the data must be distributed between the map and reduce phases of the code 

execution, known as the shuffle phase. As mentioned in the previous section, the 

MapReduce framework allows the use of a custom partitioner function to direct the 

mapper output to the right reducer. In the current code, the rules for the custom 

partitioner have been tuned manually for each of the test files to produce a 

distribution of an equal number of 2D features in each partition. It is recognised that 

this is not ideal and not an acceptable solution for a production system. The correct 

way to tackle this task is to use an approach similar to that of Hadoop’s total order 

sort function (further explained in Chapter 6, Section 6.6.1), which runs the map task 

then takes a sample of the output to create an efficient shuffle strategy on the fly. 

However, the manual tuning method is manageable for the number of files used in the 

benchmark experiments and is a constant factor across all the systems tested. 

Taking this into account and the fact that this thesis is about research into whether 

the feature detection algorithm can be run in parallel and near real-time, the 

combination of a working algorithm suitable for benchmarking and theoretical 

investigation into the effects of parallelism have provided answers without the need 

for a one hundred percent production-ready system.  

 

The figures on the following pages (Figure 21, Figure 22, Figure 23, Figure 24) 

were created using MaxQuant and illustrate the different distribution of peaks in 

the test files. Files 371.RAW and PT2441S1FP1A1.RAW show very different peak 

distributions. 371.RAW is a manufactured sample with a small number of known 

molecules used to test the setup and accuracy of mass spectrometers. 
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FIGURE 21 PEAK DISTRIBUTION IN FILE PT2441S1FP1A1.RAW 

 

Files 561L1AIL001.RAW and 561L1AIL07.RAW show similar distributions as they are 

derived from the same cell, however differences do exist as they are taken from the 

cell at different stages in the cell lifecycle. 

Note that in these figures showing the distribution of the data, the colours indicate the 

presence of the isotopic envelopes of 3D peaks that we detected as features in the 

data. At this level of zoom, that is the entire data set, the colours are not useful apart 

from to distinguish the overall pattern of feature distribution. If the images were to be 

zoomed in to show only a few isotopic envelopes then the colours could be used to 

distinguish which peaks belong to which envelopes. The darker colours represent 

high intensity isotopic envelopes of peaks with the light yellow coloured pixels being 

background noise in the data.  
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FIGURE 22 PEAK DISTRIBUTION IN FILE371.RAW 

 

 

FIGURE 23 PEAK DISTRIBUTION IN FILE 561L1AIL01.RAW 
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FIGURE 24 PEAK DISTRIBUTION IN FILE 561L1AIL07.RAW 

The distribution of the features in the data files create a problem with the skew on 

the cluster which differs from the usual data skew. Data skew is a common 

occurrence when attempting to process data on a massively parallel system; the 

solution is to ensure that each of the nodes in the system contains approximately 

the same quantity of data. This approach is used with a relational database where 

tasks such as aggregation will take the same time on different nodes if the data is 

distributed evenly.  

Evenly distributing the data is not sufficient to balance the workload across the 

cluster with the mass spectrometer files. The figures (Figure 21, Figure 22, Figure 

23, Figure 24) above show that individual mass spectrometer scans do not contain 

the same number of peaks. It is usual that scans at the start of the process with a 

low retention time contain fewer peaks than scans that occur in the middle of the 

process, with the number of peaks tailing off towards the highest retention times. 

As the algorithm can skip sections of data with no discernible features, there is an 

issue of processing skew. In other words, the volume of data is less important 

than the amount of information that the data contains. A scan with a low retention 

time contains more noise than features and is processed relatively quickly 

compared to a scan containing more features. In this case, the most efficient data 

shuffling can be achieved in the same way as described except that instead of 
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sampling the output for mass ranges, the output should be sampled for the total 

number of features contained. 

6.3.2 COMPARISON WITH MULTI-THREADED SOFTWARE 

MaxQuant is capable of multi-threaded processing and provides a parameter to 

control the number of threads used. To monitor the effect of altering the number of 

threads in use, just the feature detection part of the MaxQuant process was run on a 

test file repeatedly. On each execution, the number of threads was incremented from 

one to the maximum of eight. The maximum number of threads is eight because the 

PC used for tested had eight cores. As an additional test, the amount of RAM 

available on the test machine was changed while keeping the number of threads 

constant; this was done to investigate the effect of memory available. The results in 

Table 9 show that the feature detection part of the MaxQuant process does not speed 

up with the number of threads allocated. This implies that the feature detection 

process is not running in a parallel fashion and is not taking advantage of the number 

of threads available to it. The tests also show that the process does not speed up 

when adding more RAM and therefore that the process is not memory-bound. The 

fact that the processing was being distributed across the cores was verified by 

viewing Windows Task Manager which displays the percent usage of each core 

graphically.  

 

TABLE 9 MAXQUANT MULTI-THREADED BEHAVIOUR 

File Name Number of Threads Time to Complete 

561L1AIL01 1 00:32:13 

561L1AIL01 2 00:32:02 

561L1AIL01 3 00:32:13 

561L1AIL01 4 00:32:06 

561L1AIL01 5 00:32:13 

561L1AIL01 6 00:32:08 

561L1AIL01 7 00:32:06 

561L1AIL01 8 00:31:55 
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The same tests were then carried out using the open source software called Dinosaur 

[121]. Written in the Scala programming language, Dinosaur implements a similar 

feature detection algorithm as MaxQuant. The Dinosaur source code is freely 

available in a GitHub repository. The test results in Table 10 show that the Dinosaur 

feature detection process does speed up with an increase in the number of threads 

allocated to the process. Therefore, a degree of parallelism is being employed but the 

results in Table 10 show this parallelism does not produce a linear decrease in 

completion time as parallelism increases. 

 
TABLE 10 DINOSAUR MULTI-THREADED BEHAVIOUR 

File Name Number of Threads Time to Complete 

561L1AIL01 1 00:30:37 

561L1AIL01 2 00:29:32 

561L1AIL01 3 00:27:49 

561L1AIL01 4 00:26:59 

561L1AIL01 5 00:26:47 

561L1AIL01 6 00:26:18 

561L1AIL01 7 00:26:16 

561L1AIL01 8 00:26:09 

 

The documentation for Dinosaur [121] mentions this and describes a method of 

windowing being used to achieve the parallel processing. Despite this feature, 

Dinosaur is not engineered to run on a cluster. Instead, it is intended to be run as a 

PC-based process in a similar fashion to MaxQuant.  

6.3.3 PERFORMANCE TUNING 

While writing and testing the parallel feature detection algorithm in Java, several 

rounds of performance testing and enhancement were carried out. This 

performance tuning was done to identify bottlenecks in the process and produce 

as efficient an algorithm as possible given the technology employed. A 

development environment was used as described in Chapter 5, Section 5. All of 

the performance testing was carried out using a basic Hadoop system with the 
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data residing in HDFS. The performance testing involved using samples taken 

from the test files and timing each part of the process before making changes to 

the code and retesting the process to check for faster processing times. It was 

evident from the start that the 2D feature detection was very fast and needed little 

improvement. As a single scan can be processed in a very small amount of time, 

the metric used to test the process was the number of scans per second per map 

task. Table 11 shows the results for the test files and the 2D process.  

TABLE 11 TIMINGS FOR 2D FEATURE DETECTION 

File Elapsed 

Time 

(secs) 

Number 

of Map 

tasks 

Minimum 

Map Time 

Maximum 

Map Time 

Average 

Map 

Time 

Number 

of Scans 

Number of 

Scans per 

Mapper 

Number of 

Scans per 

Second per 

Map 

100312_EXP229 23 19 9 16 10 27381 1441 144.11 

371 12 29 6 10 9 37369 1289 143.18 

561L1AIL00 20 30 9 29 12 36245 1208 100.68 

561L1AIL01 20 30 9 29 12 36969 1232 102.69 

561L1AIL02 21 30 9 28 12 37180 1239 103.28 

561L1AIL03 21 30 8 29 12 37111 1237 103.09 

561L1AIL04 20 30 9 29 12 36329 1211 100.91 

561L1AIL05 20 30 8 27 12 36162 1205 100.45 

561L1AIL06 20 30 9 29 12 36181 1206 100.50 

561L1AIL07 20 30 9 29 12 36445 1215 101.24 

PT2441S1FP1A1 25 40 7 16 15 125550 3139 209.25 

 

YARN is responsible for providing the resources for each job based on the workload 

and allocates the number of map tasks to each job as it sees fit. This table shows that 

the difference between the minimum and maximum map time is small in terms of 

elapsed time but that in some cases the maximum time to complete a map task is 

three times that of the minimum time. This difference indicates that there is skew on 

the cluster as some of the map tasks take longer to process than others.  

 

As the process is embarrassingly parallel at the scan level, the theoretical minimum 

time to complete the 2D feature detection is the time needed to complete scan 

requiring the most processing plus the fixed overhead of the time needed to 



125 

instantiate the map tasks. Using the performance testing cluster as described in 

Chapter 5, Section 7, the time taken to instantiate a map task is in the order of several 

seconds, which equates to between ten percent and 30 percent of the overall map 

task timings. Note that other systems benchmarked in this research could further 

reduce this time as they do not have the same overheads as the MapReduce 

framework. Also note that to achieve this theoretical minimum time, a cluster with the 

same number of map task slots as there are scans in the file is required. Given that 

the largest file benchmarked here as 120,000 scans this would be a very large 

system indeed. 

 

3D feature detection presented more of a challenge than the 2D process. Several 

of the steps were initially very time consuming: these were the linking of the 2D 

peaks into chains occurring in a mz window over time and the final 3D Isotopic 

window calculation. The linking of the 2D peaks into chains was initially an O(N^2) 

process due to a nested loop used in the Java code to create the links (N=the 

number of 2D peaks). This was replaced by using a Java arraylist and a method of 

scoping down the area in which a match was possible using the biological 

properties of the molecules. The rules employed to make this matching process 

more efficient are as follows: 

• Flag points in the outer loop as they are checked, no need to recheck. 

• Maintain a list of all matched points and skip them in future iterations. 

• If the next point is in the same scan as the outer loop, fast forward to the 

start of the next scan. 

• Confine search for 3D peak to a window of thirty seconds [76]. 

 

The next slowest process was the final Isotopic envelope matching, this involved 

using a correlation coefficient to check that two curves were a similar shape before 

allowing a correct match to be declared. Here, as with the 3D chaining process, 

switching from Java arrays to ordered arraylists, along with implementing some 

targeted rules provided an increase in speed. Overall the performance tuning 

produced an increase of approximately 6.5 times over the initial implementation. 

Table 12 lists some examples of the timings before and after the tuning.  

 



126 

TABLE 12 RESULTS OF PERFORMANCE TUNING THE JAVA CODE 

Task 

 

Elapsed Time (HH:MM:SS) 

  

Round 1 Round 2 Round 3 Round 4 

Create chain of 3D peaks 

 

00:41:29 00:24:41 00:07:17 00:07:21 

Peak Smoothing  

 

00:00:19 00:00:19 00:00:17 00:00:19 

3D feature detection 

 

00:02:02 00:02:12 00:02:04 00:02:06 

Isotopic Envelopes 

 

00:10:50 00:05:33 00:04:20 00:01:02 

Complete Process 

 

00:54:40 00:32:45 00:13:58 00:10:48 

       

During the performance tuning, the 2D peak count and 3D peak count were checked 

to ensure that the accuracy of the algorithm remained constant. The performance 

tests were carried out on the test environment using a subset of 5000 scans from the 

test files. In Table 12, the columns Round 1 to Round 4 show the difference in timings 

of the individual parts of the process as various changes were made, some examples 

of the changes are as follows: 

 

• Round 1  

o The original implementation. 

• Round 2  

o Used Java arraylists of objects creating chains of peaks. 

• Round 3  

o Reduced the amount of looping needed to find the next 2D peak in a 

3D chain, as described above. 

• Round 4  

o Used a similar method as in Round 3 to reduce the amount of 

looping needed in the Isotopic envelope detection 

 

 

 

 

 



127 

6.3.4 CODE QUALITY 

It is acknowledged that further improvements to the efficiency of the algorithm 

could be made by a Java performance expert. 

To measure the general quality of the code written during this research, software 

called SonarQube was used. SonarQube produces a score called “Technical 

Debt” [136]. Technical debt is measured in the number of hours required to bring 

the code up to the correct standard. It involves for instance removing unused 

variables, identifying and removing code that is not executed, incorrect use of 

loops, incorrect use of datatypes and adherence to style guidelines such as those 

published by the Oracle Corporation, “The CERT Oracle Secure Coding Standard 

for Java” [137]. An initial analysis of the approximately six-thousand lines of Java 

code written during this research revealed a technical debt of four days, which 

could be reduced to zero by a Java expert aided by the SonarQube report in 

Appendix C 

6.3.5 SCHEMAS 

For benchmarking, files stored in the HDFS file system were formatted as plain 

columnar text format. This format was suitable for MapReduce, Spark and Flink 

when reading and writing the data to HDFS itself. For the other data storage 

systems tested, namely Aster, Hbase and Cassandra, it was necessary to design 

a schema into which to load the data. The design of these schemas varied by 

system but in all cases the result is a simple replication of the text file design with 

no need for multiple tables. Appendix D contains a description and sample code of 

the schemas that were implemented. 
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6.4 EXPERIMENTATION 

6.4.1 OVERVIEW OF THE EXPERIMENTATION 

The experimentation carried out during this research was split into several distinct 

parts: 

 

• Testing the feature detection algorithm for accuracy compared to the output 

from the Max Quant software. 

• Testing the feature detection algorithm execution on the various 

environments already described. 

• Testing the feature detection algorithm for compatibility between the 

execution engines and the different storage layers. 

• Performance testing using the different frameworks and storage layers 

already described. 

 

6.4.2 WHAT WAS TESTED 

The most important metric collected during performance testing was simply the 

total execution time. Intermediate measures were also collected including total 

map time, total reduce time, map tasks per second, average reduce time, max 

and min reduce times, Total shuffle time and the number of bytes processed.  

 

During the tests to validate the algorithm output the mass, intensity and charge of 

the 2D and 3D peaks were collected for comparison with MaxQuant. The full data 

set resulting from all of the testing activities can be downloaded from the github 

site associated with this thesis https://github.com/chillman99  

 

6.4.3 HOW RESULTS WERE COLLECTED 

The principal method of capturing the performance data during the benchmarking 

was the Linux time command. When placed in front of any other command it will 

return the total execution time when the command finishes. For the benchmarks 
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carried out in this research the total time returned was recorded. This is also 

referred to as the wall-clock time or total run time. The Aster system timings were 

gathered from the Aster Management Console (AMC), which is a web based tool 

for administering the Aster system. The time tests were run with the verbose 

option on. Amongst other data, this option reports “context switches” which gives 

an indication of whether the process was interrupted during execution. 

 

For the Hadoop based system, the Hadoop web console was used to find the total 

time for all Map tasks, the total time for all reduce tasks along with the average 

timings of the individual map and reduce tasks. The various processing platforms 

benchmarked in this research also provide web based consoles, these are shown in 

Appendix E. 

 

6.4.4 VALIDATION 

The results from the batch run benchmarks were validated against output 

obtained from MaxQuant. The list of test files were processed using MaxQuant on 

a high specification “gaming” personal computer consisting of an eight-core CPU, 

six solid-state drives and thirty-two GB of 133Ghz memory. The timings for these 

tests are reported in Table 8 (Section 6.2.1). The output from these tests included 

a list of detected peptide masses, charge states and intensities, and it is this data 

that was used to validate the output of the parallel algorithm. 

 

To make a comparison with the results from the parallel algorithm, the outputs 

from MaxQuant and the parallel algorithm were loaded into a relational database. 

The relational table structure made it a simple task to compare the masses, 

charge states and intensities detected using the SQL language. An accuracy 

score compared to MaxQuant was derived using the precision and recall metrics  

explained in Chapter 5, Section 10. 

 

 

 

 



130 

6.4.5 DISCUSSION ON PARTITION TESTING 

Partitions were briefly introduced in section 6.3.2 of this chapter, this section 

includes a more detailed description of partitioning and its effect on performance 

and accuracy and also how the need to partition the data for distribution around 

the cluster limits the speedup possible from parallelism. 

 

In the map step of the algorithm, a scan is the smallest unit of parallelism that 

allows shared nothing processing. In other words, to produce the 2d peaks each 

scan can be processed completely independently of any other scan. If a smaller 

unit of parallelism was chosen (that is intra-scan processing), then some 

communication between tasks would be needed to find complete peaks and 

isotopic envelopes. Figure 25 shows a scan, keeping the scan as the unit of 

parallelism means that a single map task will read in all the data in the scan and 

detect any 2D peaks and isotopic envelopes contained in it. 

 

 

 
FIGURE 25 SCAN WITHOUT PARTITIONS 

 

Figure 26 shows the same scan but here the dotted lines represent partitions of 

data. Partition A would be processed by a different map task than Partition B; if an 

isotopic envelope of 2D peaks started in Partition A and continued in Partition B 

the map task would need to communicate results between them to detect this. 
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FIGURE 26 SCAN SPLIT INTO PARTITIONS FOR INTRA-SCAN PROCESSING 

 

As there are between 30,000 and 125,000 scans in the test files used in this 

research, processing at the scan level allows a high degree of parallelism. The 

results displayed in Table 11 in Section 6.3.7 show that individual scans can be 

processed very rapidly, this coupled with a parallel cluster architecture allows the 

2D peak maps to be completed in between nineteen and forty seconds for the 

benchmarked files.  

 

The individual 2D peaks need to be arranged by retention time and iterated over 

to find 3D peaks and isotopic envelopes. This arrangement of 2D peaks ordered 

by retention time forms a continuous chain of peaks with no natural breaks. To 

process this peak chain in parallel, it must be broken into smaller pieces each of 

which can be processed by a separate reduce task. In this way running the 3D 

processing in parallel is a similar problem to that of processing the 2D peaks in an 

intra-scan fashion. 

 

The construction of partitions creates a natural limitation on the amount of 

parallelism that can achieved and therefore limits the increase in speed that is 

possible. 

 

Partition A Partition B 
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6.4.6 EFFECT ON TIME TO PROCESS OF PARTITIONS AND REDUCERS 

The size of the partitions and the number of reducers chosen for the 3D peak 

processing step directly affects the time taken to complete the process. Smaller 

partitions allow more reducers, which implies a higher degree of parallelism and 

therefore a faster processing time. However, the situation is more complicated 

and is not linearly scalable. The first complication occurs because of the size of 

the cluster and the number of reduce slots available. The number of nodes, the 

number of CPUs per node and the configuration of the cluster in the YARN 

framework all affect how many process slots are available for running reduce 

tasks. As an example, the three-node cluster used for performance testing during 

this research has forty-two slots available, having forty-two partitions would allow 

one partition to run in each slot. Moving to eighty-four partitions means that 

forty-two reducers run in parallel and another forty-two reducers are queued up 

waiting for slots to be available. This allows the cluster to process partitions which 

take less time to complete serially as slots free up due to processes completing, 

which potentially leads to a faster overall processing time.  

 

A further complication occurs because the parallel algorithm contains a section of 

code with a nested loop giving a potential O(N^2) processing time where N equals 

the number of 2D peaks. The code has been enhanced with performance 

improvements to mitigate this but it still not a linear process. This means that 

smaller partitions are beneficial to reducing the time to process the data. The next 

section details the limitations on partition size brought about by the accuracy 

required. 

 

6.4.7 SIZE OF PARTITIONS AND THE EFFECT ON ACCURACY OF RESULTS 

As noted in the previous section, smaller partitions produce the best speed-up. 

This is partly due to the way that the parallel algorithm searches for 3D peaks in 

the reduce step. However, there are limitations to how small a partition can be due 

to the nature of isotopic envelopes, which is explained in Section 6.4.9. The way 

in which peaks and isotopic envelopes are constructed can be explained by 
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researching the way that molecules are ionized and detected in a mass 

spectrometer. A 3D peak is made up of previously identified 2D peaks. The 

algorithm chains 2D peaks together into a 3D peak based on several rules: 

 
• Increase in Retention Time 
• One or two scans between 2D peaks 
• A tolerance between the weighted mass of 2D peaks 

 

Due to the different charge states of 2D peaks, the tolerance in weighted mass 

changes. That is the higher the charge state the higher the tolerance that is 

allowed when matching 2D peaks across time. As we do not know the charge 

states when setting the partition size, we need to account for the highest charge 

state to be detected. In this research this is set to +6 to align with the threshold 

used in the MaxQuant software. 

 

To further complicate matters, we need to account for the presence of Isotopic 

envelopes amongst the 3D peaks for a further discussion on isotopic envelopes see 

Section 6.3.2 The partition must be of sufficient size for a complete isotopic envelope 

of 3D peaks to be included or the algorithm will not correctly detect them. 

 

6.4.8 BOUNDARY PEAKS AND THE AFFECT ON PROCESSING 

As the data is split into partitions it is inevitable that some peaks and isotopic 

envelopes will fall at the boundary between partitions. This leads to incorrect 

results as the isotopic envelopes will be incomplete. 

 

To overcome the issue of peaks occurring at the boundary of partitions and the 

potential for incorrect identification of peaks and isotopic envelopes, an overlap of 

data between partitions was introduced. This means that there is some 

duplication of data processing but ensures that all the peaks are correctly 

identified. The algorithm was adapted to discard chains of 3D peaks where the 

intensity did not fall to zero before reaching the boundary as this indicated an 

incomplete peak and a post-processing de-duplication step introduced in case 

peaks were completely detected in adjacent partitions. 
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6.4.9 SIZE OF OVERLAPS 

As with calculating the size of the initial partitions, the required size of the overlap 

between partitions can be calculated. The overlap of data needs to be sufficient to 

contain a complete isotopic envelope of 3D peaks. This overlap will ensure that all 

features are detected correctly. A solution to this is for the partition and the 

partition overlap at the boundary to be the same size. This is achieved by finding 

the mid-point of each partition and add the data either side of this midpoint to the 

preceding and following partitions, illustrated in Figure 27 

 

 

FIGURE 27 ILLUSTRATION OF OVERLAPPED PARTITIONS 

The width of the partitions has been calculated by considering three factors: 

1. The biological constraints, which impose a lower bound on the size of the 

partition as measured in thomsons. This can be calculated from the width of an 

isotopic envelope of 2D peaks. The entire envelope must fit into half of the full 

partition width for the overlap partition strategy to work correctly. See Figure 28 

below for more detail. 

2. The requirement to have small partitions to increase the speed of processing 

3. The setup and available resources on the cluster 

 

Partition A Partition C Partition E Partition F 

Partition B Partition D Partition E Partition G 

Partitioned data set without an overlap 

Second set of partitions that overlap the first 
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Creating the overlaps in the way described means that all the 2D peak data is 

processed twice in the reduce step. Although this is an overhead, it does ensure 

that the 3D peaks are correctly detected and allows the use of small partition 

sizes to make the most of the parallelism of the cluster and efficient use of the 

parallel algorithm. Figure 28 shows five isotopic envelopes of 2D peaks arranged 

in six overlapping processing partitions, in this case each partition equates to a 

single reduce task on the cluster. It can be seen that the isotoptic envelopes will 

be processed twice due to the overlapping partition strategy. A partition that is 

smaller than twice the width of a 2D isotopic envelope will result in envelopes 

being partially detected or not detected at all, as they will cross a partition 

boundary and not be picked up in the overlapping partitions.  

 

 

 

FIGURE 28 FIVE 2D ISOTOPIC ENVELOPES ARRANGED IN PROCESSING PARTITIONS 

 

Partition A Partition B 

Partition D Partition E 

Partition C 

This symbol represents a 2D isotopic envelope 

Partition F 

1 

1 

2 

2 

3 

3 

4 

4 
5 

5 
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In the figure the two processing streams are arranged one above the other. The 

figure also shows that if a complete Istopic envelope fits within half of the partition 

window it will always be processed completely in at least one of the partitions in which 

it appears. The following explains this for each of the five isotopic envelopes 

displayed. 

 

1) Envelope one fits entirely within the Partition A and Partition B and will be 

completely processed twice. 

2) Envelope two occurs at the boundary of Partition B and Partition C and will be 

discarded by both. It fits entirely in Partition E and will be processed there. 

3) Envelope three fits entirely in Partition B and will be processed there. It also 

occurs at the boundary of Partition D and Partition E and will be discarded by 

both. 

4) Envelope four also fits entirely in Partition B and will be processed there. It also 

occurs at the boundary of Partition D and Partition E and will be discarded by 

both. 

5) Envelope five fits entirely into Partition C and will be process there, it occurs at 

the boundary of Partition E and Partition F and will be discarded by both.  

 

The theoretical maximum width of an 2D Istopic Envelope is calculated by taking the 

distance between subsequent peaks in the envelope and the number of peaks. The 

mass shift values in Table 4 show that for an ion with charge +2 the shift in mass 

between each peak in an Isotopic envelope is 0.50143432. At the point where the 

partition widths are calculated, the ion charge is unknown so the highest mass shift 

value is taken to ensure no features are missed.  
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6.5 RESULTS  

6.5.1 TABLES OF RESULTS 

The following tables present the results of the benchmarks. Firstly, the results are 

compared to MaxQuant, the overall timings are displayed plus the minimum and 

maximum times taken by the reduce tasks. The minimum and maximum times for the 

map tasks are not shown as they all completed in seconds and, due to the 

embarrassingly parallel nature of the 2D feature detection, do not constrain the 

overall completion time. For this reason, the majority of the discussion and analysis 

focuses on the 3D feature detection performed by the reduce tasks. 

Table 13, Table 14 and Table 15 show the results from the benchmarks where the 

processing is carried out by Hadoop MapReduce. The results show that the batch 

process runs the fastest when data is stored in HDFS, followed by Cassandra and 

then HBase being the slowest. This is because the batch process simply reads all the 

data in and writes all the data out in a linear fashion. There are no queries of the data 

that would necessitate random access. This means that the storage mechanisms and 

indexing provided by HBase and Cassandra are an unrequired overhead compared 

to the simple file storage of HDFS. This is further discussed in Chapter 8. 

 
TABLE 13 BENCHMARK HADOOP / HDFS 

File MaxQuant 
(HH:MM:SS) 

Hadoop/HDFS 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:05:13 00:00:47 00:04:39 

100312 00:17:05 00:04:58 00:00:32 00:04:21 
561L1AIL00.RAW 00:31:05 00:11:40 00:02:10 00:09:57 

561L1AIL01.RAW 00:32:23 00:12:18 00:02:02 00:10:18 

561L1AIL02.RAW 00:29:56 00:12:16 00:01:59 00:09:34 
561L1AIL03.RAW 00:31:05 00:11:11 00:02:12 00:09:25 

561L1AIL04.RAW 00:32:32 00:12:02 00:02:23 00:10:12 

561L1AIL05.RAW 00:32:33 00:12:03 00:02:43 00:10:19 
561L1AIL06.RAW 00:32:02 00:12:30 00:02:26 00:09:53 

561L1AIL07.RAW 00:31:30 00:11:30 00:02:11 00:10:20 

PT2441S1FP1A1.RAW 00:53:24 00:15:49 00:02:22 00:15:02 
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The minimum and maximum reduce columns show the slowest and the fastest 

processing time for the reduce tasks. The difference between these times occurring 

with all files and systems indicates the presence of processing skew on the cluster, 

which is discussed in detail later in this chapter. 

 
TABLE 14 BENCHMARK HADOOP / HBASE 

File MaxQuant 
(HH:MM:SS) 

Hadoop/HBase 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:06:25 00:00:48 00:05:51 

100312 00:17:05 00:06:08 00:00:34 00:05:31 

561L1AIL00.RAW 00:31:05 00:13:03 00:02:19 00:12:20 
561L1AIL01.RAW 00:32:23 00:13:35 00:02:13 00:12:50 

561L1AIL02.RAW 00:29:56 00:13:20 00:02:23 00:12:35 

561L1AIL03.RAW 00:31:05 00:12:46 00:02:25 00:12:00 
561L1AIL04.RAW 00:32:32 00:13:58 00:02:40 00:13:14 

561L1AIL05.RAW 00:32:33 00:13:52 00:03:12 00:13:09 

561L1AIL06.RAW 00:32:02 00:13:39 00:02:27 00:12:52 
561L1AIL07.RAW 00:31:30 00:13:58 00:02:14 00:13:12 

PT2441S1FP1A1.RAW 00:53:24 00:19:20 00:02:28 00:18:33 

 

 

TABLE 15 BENCHMARK HADOOP / CASSANDRA 

File MaxQuant 
(HH:MM:SS) 

Hadoop/Cassandra 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:06:01 00:00:44 00:05:26 

100312 00:17:05 00:05:44 00:00:31 00:05:06 

561L1AIL00.RAW 00:31:05 00:11:54 00:02:04 00:11:08 

561L1AIL01.RAW 00:32:23 00:12:23 00:02:03 00:11:34 
561L1AIL02.RAW 00:29:56 00:12:00 00:02:03 00:11:06 

561L1AIL03.RAW 00:31:05 00:11:35 00:02:12 00:10:44 

561L1AIL04.RAW 00:32:32 00:12:37 00:02:27 00:11:47 
561L1AIL05.RAW 00:32:33 00:12:34 00:02:50 00:11:43 

561L1AIL06.RAW 00:32:02 00:12:19 00:02:25 00:11:31 

561L1AIL07.RAW 00:31:30 00:12:39 00:02:06 00:11:52 
PT2441S1FP1A1.RAW 00:53:24 00:17:23 00:02:12 00:16:35 
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Table 16 and Table 17 show the results from the Aster benchmarks on a three-node 

and a seven-node cluster respectively. 
 

 

TABLE 16 BENCHMARK ASTER 3 NODE CLUSTER 

File MaxQuant 
(HH:MM:SS) 

Aster 3 node 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:11:01 00:00:30 00:03:45 
100312 00:17:05 00:10:50 00:00:27 00:03:39 

561L1AIL00.RAW 00:31:05 00:26:40 00:01:45 00:09:24 

561L1AIL01.RAW 00:32:23 00:24:38 00:01:36 00:08:49 
561L1AIL02.RAW 00:29:56 00:20:26 00:01:30 00:07:24 

561L1AIL03.RAW 00:31:05 00:21:35 00:01:35 00:07:18 

561L1AIL04.RAW 00:32:32 00:25:36 00:02:04 00:09:02 

561L1AIL05.RAW 00:32:33 00:23:16 00:02:17 00:08:09 
561L1AIL06.RAW 00:32:02 00:21:14 00:01:42 00:07:20 

561L1AIL07.RAW 00:31:30 00:22:46 00:01:40 00:07:55 

PT2441S1FP1A1.RAW 00:53:24 00:33:50 00:01:39 00:12:07 

 

 

TABLE 17 BENCHMARK ASTER 7 NODE CLUSTER 

File MaxQuant 
(HH:MM:SS) 

Aster 7 Node 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:04:07 00:00:33 00:03:43 
100312 00:17:05 00:04:02 00:00:25 00:03:35 

561L1AIL00.RAW 00:31:05 00:10:00 00:01:46 00:09:21 

561L1AIL01.RAW 00:32:23 00:09:20 00:01:38 00:08:43 
561L1AIL02.RAW 00:29:56 00:07:57 00:01:31 00:07:21 

561L1AIL03.RAW 00:31:05 00:07:57 00:01:37 00:07:22 

561L1AIL04.RAW 00:32:32 00:09:46 00:02:03 00:09:07 
561L1AIL05.RAW 00:32:33 00:08:49 00:02:14 00:08:14 

561L1AIL06.RAW 00:32:02 00:07:59 00:01:41 00:07:29 

561L1AIL07.RAW 00:31:30 00:08:31 00:01:38 00:08:00 
PT2441S1FP1A1.RAW 00:53:24 00:12:39 00:01:46 00:12:03 
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The reason for the extra benchmark on the seven-node cluster is to illustrate a point 

regarding parallelism. The results from the three-node cluster show that Aster takes 

around twice the time to process the same file as the Hadoop/HDFS configuration. 

Whereas the seven-node cluster produces similar results, although slightly faster. 

This is because the Aster system has a fixed set of six virtual workers per node, 

which gives an overall eighteen-way parallelism on the cluster. In comparison, the 

three-node Hadoop cluster governed by YARN is configurable at runtime up to 

forty-eight processing slots. The Aster seven-node provides forty-two virtual workers 

and therefore a similar degree of parallelism as the Hadoop three-node cluster. The 

results show that given a similar degree of parallelism Aster performs faster on the 

larger files than the Hadoop-based systems. 

 

Table 18 and Table 19 display the results from running the benchmarks on the 

in-memory execution engines, Flink and Spark, with the data stored in HDFS. Flink 

outperforms Spark for all the test files by a small amount. Both Flink and Spark 

outperform Hadoop MapReduce. 

 

 
TABLE 18 BENCHMARK FLINK 

File MaxQuant 
(HH:MM:SS) 

Flink 
(HH:MM:SS) 

Minimum Reduce 

Time (HH:MM:SS) 

Maximum Reduce 

Time (HH:MM:SS) 

371 00:19:54 00:03:33 00:00:26 00:03:13 

100312 00:17:05 00:02:03 00:00:19 00:01:46 

561L1AIL00.RAW 00:31:05 00:10:40 00:02:02 00:10:55 
561L1AIL01.RAW 00:32:23 00:11:03 00:02:02 00:11:30 

561L1AIL02.RAW 00:29:56 00:10:19 00:02:06 00:11:21 

561L1AIL03.RAW 00:31:05 00:10:11 00:02:07 00:10:22 

561L1AIL04.RAW 00:32:32 00:10:56 00:02:20 00:11:15 
561L1AIL05.RAW 00:32:33 00:11:02 00:02:43 00:11:14 

561L1AIL06.RAW 00:32:02 00:10:40 00:02:27 00:11:41 

561L1AIL07.RAW 00:31:30 00:11:06 00:01:55 00:10:47 
PT2441S1FP1A1.RAW 00:53:24 00:14:03 00:02:02 00:13:41 
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TABLE 19 BENCHMARK SPARK 

File MaxQuant 
(HH:MM:SS) 

Spark 
(HH:MM:SS) 

Minimum Reduce 
Time (HH:MM:SS) 

Maximum Reduce 
Time (HH:MM:SS) 

371 00:19:54 00:03:51 00:00:34 00:03:31 

100312 00:17:05 00:02:33 00:00:29 00:02:06 
561L1AIL00.RAW 00:31:05 00:11:53 00:02:13 00:11:26 

561L1AIL01.RAW 00:32:23 00:12:36 00:02:13 00:11:53 

561L1AIL02.RAW 00:29:56 00:12:28 00:02:18 00:11:49 
561L1AIL03.RAW 00:31:05 00:11:43 00:02:18 00:10:58 

561L1AIL04.RAW 00:32:32 00:12:21 00:02:32 00:11:47 

561L1AIL05.RAW 00:32:33 00:12:28 00:02:57 00:11:54 

561L1AIL06.RAW 00:32:02 00:12:47 00:02:40 00:12:02 
561L1AIL07.RAW 00:31:30 00:11:48 00:02:08 00:11:04 

PT2441S1FP1A1.RAW 00:53:24 00:14:22 00:02:17 00:13:58 

 

Table 20 presents the benchmarks side by side with the fastest times highlighted. 

 
TABLE 20 BENCHMARK COMPARISON 

File Hadoop 

HDFS 
(HH:MM:SS) 

Hadoop 

Hbase 
(HH:MM:SS) 

Hadoop 

Cassandra 
(HH:MM:SS) 

Aster 3 

Node 
(HH:MM:SS) 

Aster 7 

Node 
(HH:MM:SS) 

Flink 
(HH:MM:SS) 

Spark 
(HH:MM:SS) 

371 00:05:13 00:06:25 00:06:01 00:11:01 00:04:07 00:03:33 00:03:51 

100312 00:04:58 00:06:08 00:05:44 00:10:50 00:04:02 00:02:03 00:02:33 

561L1AIL00.RAW 00:11:40 00:13:03 00:11:54 00:26:40 00:10:00 00:10:40 00:11:53 

561L1AIL01.RAW 00:12:18 00:13:35 00:12:23 00:24:38 00:09:20 00:11:03 00:12:36 

561L1AIL02.RAW 00:12:16 00:13:20 00:12:00 00:20:26 00:07:57 00:10:19 00:12:28 

561L1AIL03.RAW 00:11:11 00:12:46 00:11:35 00:21:35 00:07:57 00:10:11 00:11:43 

561L1AIL04.RAW 00:12:02 00:13:58 00:12:37 00:25:36 00:09:46 00:10:56 00:12:21 

561L1AIL05.RAW 00:12:03 00:13:52 00:12:34 00:23:16 00:08:49 00:11:02 00:12:28 

561L1AIL06.RAW 00:12:30 00:13:39 00:12:19 00:21:14 00:07:59 00:10:40 00:12:47 

561L1AIL07.RAW 00:11:30 00:13:58 00:12:39 00:22:46 00:08:31 00:11:06 00:11:48 

PT2441S1FP1A1.RAW 00:15:49 00:19:20 00:17:23 00:33:50 00:12:39 00:14:03 00:14:22 

 

Note that if the seven-node Aster system is excluded then Flink is the fastest for 

all the files. This table shows that the parallel algorithm does indeed provide a 

speed-up over the single-threaded algorithm. Although the execution times are 

faster than those obtained using MaxQuant, the timings do not show the 95% 

improvement that was outlined in the methodology chapter. The minimum and 

maximum timings for the reduce tasks show that there is still some skew in the 

processing that could be optimized and also that the reduce task timings are the 
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constraint that prevent the process approaching a speed that could be classed as 

real-time.  

The results in Table 20 show that, apart from the previously described issue with 

number of parallel slots available with Aster, the timings for all the runs with different 

processing frameworks and data storage layers are similar. The processing is carried 

using the algorithm coded in Java and the same set of libraries are used for all the 

systems. The differences in run-time are due to the differences in data access 

between file and non-file based systems, the way that the difference frameworks 

instantiate and control the parallel tasks and also the way they handle input and 

output data. Table 21 shows the fastest of the benchmark runs compared with the 

slowest non-file-based systems, which was Hadoop HBase and then compared to the 

slowest of the file-based systems, which was Hadoop HDFS. 

 
TABLE 21 DIFFERENCES IN TIMINGS BETWEEN FLINK AND HBASE, FLINK AND HDFS 

Flink Hadoop 
HBase 

Difference 
between 
Flink and 

Hbase 

Ratio 
Flink time 
to HBase 

time 

Hadoop 
HDFS 

Difference 
between 
Flink and 

HDFS 

Ratio Flink 
time to 

HDFS time 

00:03:33 00:06:25 00:02:52 80.75 00:05:13 00:01:40 31.95 

00:02:03 00:06:08 00:04:05 199.19 00:04:58 00:02:55 58.72 

00:10:40 00:13:03 00:01:23 12.97 00:11:40 00:01:00 8.57 

00:11:03 00:13:35 00:01:17 11.61 00:12:18 00:01:15 10.16 

00:10:19 00:13:20 00:01:04 10.34 00:12:16 00:01:57 15.90 

00:10:11 00:12:46 00:01:35 15.55 00:11:11 00:01:00 8.94 

00:10:56 00:13:58 00:01:56 17.68 00:12:02 00:01:06 9.14 

00:11:02 00:13:52 00:01:49 16.47 00:12:03 00:01:01 8.44 

00:10:40 00:13:39 00:01:09 10.78 00:12:30 00:01:50 14.67 

00:11:06 00:13:58 00:02:28 22.22 00:11:30 00:00:24 3.48 

00:14:03 00:19:20 00:05:17 37.60 00:15:49 00:01:46 11.17 

  

Average 
Ratio 39.56 

 

Average 
Ratio 16.47 

 

The results in Table 21 show that for the smaller files where processing is already 

fast, the overhead caused by using a non-file-based data repository is large. The 

ratio of this overhead to the overall processing time falls as the processing time 

increases for different types of file. The same is true for using Hadoop with HDFS 

as a file-based data repository, the overhead is less than for HBase but still 
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substantial for small files and decreasing for larger files. The reason the overhead 

decreases is that the map and reduce tasks have a fixed instantiation time of 

several seconds which does not change as data volumes increase. Also, HBase 

introduces a higher cost for accessing data row by row when compared to the 

simple file-based data repositories. Note this data access cost only holds true 

where sequential access is required. If the requirement changes to include 

random access to data then HBase, Cassandra and Aster would show improved 

performance over HDFS. The difference in times between Flink and Spark vs 

Hadoop HDFS show that Flink and Spark are faster when instantiating tasks 

compared to Hadoop and have less processing overheads.  

The maximum reduce time as reported in Tables 11 to 17 is the constraining factor for 

all the systems tested here. The difference between the overall completion time and 

the maximum reduce time is under one minute (except for the three-node Aster 

system). This time difference is made up of several components including 

initialisation of the job, execution of map tasks, job completion and housekeeping 

tasks. Without further optimization of the processing skew and the algorithm code it 

would not be possible to reduce the execution time below that of the maximum 

reduce time regardless of the number of processing slots on the cluster. As discussed 

in section 6.4 it is not possible to parallelize the batch process beyond a certain point 

due the nature of the features that are being detected. This factor has led to 

researching processing the data in a streaming fashion as described in Chapter 7 and 

is discussed further in the final chapter. 

6.5.2 VALIDATION 

The results from the experiments were loaded into a relational database table and 

compared to the results from MaxQuant using the SQL language. Note that the 

output from all the systems benchmarked was identical in all respects, that is the 

number of features detected, mass, intensity and charge values all matched exactly. 

This was to be expected as the core algorithm code was used without any changes 

on each system. For this reason, the validation table only shows data for MaxQuant 

versus the parallel algorithm. The data for the parallel algorithm was obtained from 

the benchmarks using Aster, this was convenient because the output from Aster is a 
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relational database table. To perform the validation, it was only necessary to load the 

MaxQuant data into a similar relational table. The two sets of results could then be 

compared with simple SQL queries.  

 

Accuracy of results, judged by precision and recall metrics 
To measure the accuracy of the parallel algorithm against the MaxQuant output, the 

precision and recall metrics were used. Recall is a measure of how many of the total 

number of true features were detected. Precision is a measure of how many of the 

detected features were true features.  

 

 

 

Table 20 Shows a “confusion matrix” with fabricated data as an example to explain the 

metrics. A confusion matrix is a common device used to evaluate the performance of 

a binary classifier. There are four possible outcomes: 

 

Predicted = true, Actual = true, result = True Positive 

Predicted = true, Actual = false, result = False Positive 

Predicted = false, Actual = false, result = True Negative 

Predicted = false, Actual = true, result = False Negative 
 

TABLE 22 EXAMPLE OF A CONFUSION MATRIX 

 Predicted True Predicted False 

Actual True 100 10 

Actual False 20 200 

 

 

For the purposes of this thesis, the True Positives are the features that have been 

correctly identified by MaxQuant and also by the parallel algorithm being tested. The 

False Positives are features detected by the parallel algorithm that were not detected 

by MaxQuant. The False Negative area are features detected by MaxQuant that the 

parallel algorithm did not find. True Negatives would be features that MaxQuant 
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detected that were not in fact actual features but as we are not testing the accuracy of 

MaxQuant here, this section will be null. All counts of features are at the complete file 

level. The definitions of Precision and Recall are given below. 

 

Recall = (True Positive / (True Positive + False Negative))  

Precision = (True Positive / (True Positive + False Positive)) 

Results of validation 
Table 21 shows the results of the validation, the total number of features detected by 

MaxQuant and the parallel algorithm appear in the first two columns. True positives 

equal the number of features matching between MaxQuant and the parallel algorithm. 

False negatives equal the number of features found by MaxQuant but not by the 

parallel algorithm. False positives are the features found by the parallel algorithm and 

not by MaxQuant.  

 
TABLE 23 VALIDATION OF PARALLEL ALGORITHM OUTPUT 

File MaxQuant Parallel 

Algorithm 

True 

Positive 

False 

Negative 

False 

Positive 

Precision Recall 

371 17777 40887 16621 1156 23110 0.41 0.93 
561L1AIL00.RAW 159201 330727 145191 14010 171526 0.44 0.91 
561L1AIL01.RAW 159295 366379 148144 11151 207084 0.40 0.93 
561L1AIL02.RAW 161481 339110 143718 17763 177629 0.42 0.89 
561L1AIL03.RAW 158820 336698 146114 12706 177878 0.43 0.92 
561L1AIL04.RAW 159201 342282 147738 11463 183081 0.43 0.93 
561L1AIL05.RAW 158411 351672 148272 10139 193261 0.42 0.94 
561L1AIL06.RAW 158054 319269 147306 10748 161215 0.46 0.93 
561L1AIL07.RAW 154335 339537 143222 11113 185202 0.42 0.93 
PT2441S1FP1A1.RAW 123016 270086 116250 6766 147070 0.43 0.94 

 

In all cases the recall shows that the parallel algorithm is picking over 90% of the 

features found by MaxQuant. The MaxQuant supplement paper that describes the 

algorithm forming the basis of the parallel algorithm tested here does not provide 

sufficient detail to replicate the exact implementation of the algorithm as used by 

MaxQuant. The results, however are within the limits accepted by other feature 

detection software as defined by Chawade et. al [74]. In their review of proteomics 

data processing packages Chawade et. al also noted that each software solution has 

advantages and disadvantages, for example in their ability to detect features, 
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distinguish between charge states and effectively filter out noise in the signal. As 

such the parallel algorithm is an approximation of the algorithm implemented by 

MaxQuant and certain complications will not be handled in the same way. An 

example of this is peaks with ambiguous charge states as described by Xiao et. al 

[154]. This situation occurs where isotopic envelopes overlap leaving a state where 

there could be, for example two peptides with a charge of +2 or a single peptide with 

a charge of +4. 

 

The precision shows that the parallel algorithm is finding more features than 

MaxQuant; these are classed as false positives. In a complete system many of the 

false positives would be filtered out during the next step of the process [138]. This 

further filtering occurs because the detected features are compared to a known 

list of peptide molecules in the protein identification stage, those not matching are 

discarded at this stage but this has not been implemented as part of this research.  

  



147 

6.6 DISCUSSION 

6.6.1 PARTITIONING 

As stated in Section 6.4.6, the maximum time taken to process the reduce tasks is the 

major constraint on the overall processing time. One way to reduce this maximum 

time is a better partitioning strategy to minimize the processing skew on the cluster. 

Currently, the partitions are pre-calculated and hard-coded for each of the data files, 

the size and number of partitions have been calculated by sampling the data output 

from the map step and using a function to produce the minimum and maximum mass 

of the peaks in the partition. This process could be automated and carried out just 

after the map step or as a separate MapReduce process using a sample of scans 

from the input file. An automated process would also allow greater flexibility in 

adapting the number of reduce steps to suit the cluster setup. The sampling and 

calculating of max and min weights would be carried out in the same way as an 

algorithm called “Total Order Sort” which is used by Hadoop to sort data in a parallel 

fashion on a cluster. Hadoop uses the Total Order Sort algorithm to produce a 

system-wide sorted list as opposed to a standard sort that returns a list sorted at the 

node level. As the Hadoop is a shared-nothing system a system-wide sorting 

operation is complex and involves sampling the data on the nodes, reviewing the 

distribution of data by the required sort key and re-distributing the data by the sort key 

to provide approximately equal partitions of data on the nodes, which when sorted 

can be joined together to provide a correctly sorted dataset.   

 

A further enhancement could be to calculate the partitions based on the level of 

processing required as opposed to the current method of basing the size on the 

number of peaks within them. The distribution of the 3D peaks within the sample is 

very uneven and unique to the sample that is being processed. Examples of these 

feature distributions can be seen in the figures in Section 6.3.4. When the algorithm 

detects a chain of 2D peaks that form a 3D peak it needs to iterate over the adjacent 

2D peaks to check for others that may also be part of the 3D peak. However, if no 

chain is detected within two scans then no further action is needed, and the algorithm 

moves on without iteration. Therefore, it is not just the total number of 2D peaks in a 

partition that is significant but also the processing required to detect the 3D peaks that 
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they constitute. This means that sampling the output of the reduce step to discover 

where the 3D peaks are forming can produce a more efficient use of cluster 

resources.  

6.6.2 CHOOSING THE CORRECT NUMBER OF REDUCERS 

As the number of reduce steps needs to be predetermined in the Hadoop 

MapReduce framework, several calculations need to be taken into consideration. As 

shown in Section 6.4.9 it is possible to calculate the minimum width of a partition plus 

the overlap required using the theoretical maximum width of a 2D isotopic envelope. 

This calculation is required to ensure that boundary peaks are fully accounted for. In 

an ideal situation, each reduce step would require the same amount of time to 

complete, and the number of reducers would equal some multiplication of the number 

of processing slots on the cluster. For example, if the cluster has three worker nodes, 

each with sixteen processing slots, then forty-eight slots are available, and the 

number of reduce tasks would equal forty-eight or ninety-six or one hundred and 

forty-four etc. If each reduce task completed in the same time then the cluster would 

be fully utilised during the entire process. However, the results show there is 

processing skew, which can be seen by the spread between minimum and maximum 

time to completion. The YARN framework does mitigate this to some extent by 

allocating tasks to the next available processing slot, meaning that some processing 

slots can process several faster tasks serially in the time taken to process the slower 

task.  

 

More work is required to even out the processing done by each reduce task but for 

this research, the number of reduce tasks was fixed at eighty-four which provided two 

tasks per slot on the three node clusters and one task per slot on the seven node 

cluster. 

6.6.3 ISO PEAK THRESHOLDS VS TIME TO COMPLETE AND ACCURACY 

A simple way to reduce the time taken to process the data is to reduce the amount 

of data that needs to be processed. The parallel algorithm takes a large volume of 

input data points and in various stages reduces them to a much smaller data set.  
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During the process, various thresholds are used that affect the amount of data that is 

processed. The recall and precision metrics introduced in Chapter 5, Section 5.10 are 

a way of assessing how changing these thresholds affects the accuracy of the final 

output.  

 

One threshold is the size of the ISO peaks used when creating 3D peaks. For each 

scan the maximum peak intensity is calculated, and peaks under a threshold 

percentage of this peak intensity are discarded. It was discovered during 

experimentation that this particular threshold value had a significant impact on the 

number of peaks detected and therefore the total processing time and also the 

accuracy of the algorithm. 

 

More work is necessary to understand the exact value that this threshold should be 

set but for this research, it was set to 66% which equated to the value where the 

accuracy of the algorithm was not significantly affected. Values below this produced 

much faster run times but with a corresponding significant drop in accuracy compared 

to the MaxQuant output. 

 

6.6.4 ENHANCEMENTS 

The benchmark results show that the parallel algorithm does indeed speed up the 

process of feature detection as compared to a single-threaded pc-based process. 

It also proves to be accurate in relation to the results obtained by MaxQuant. 

Following on the process could be enhanced to produce a more complete protein 

identification pipeline. As referenced in previous chapters, other research has 

produced code such as that used in the Hydra [79] project, which comprises the 

protein lookup or database search. It would be a relatively simple matter to 

connect the output of detected features (peptides) to the input of the Hydra project 

resulting in a complete solution. A more thorough investigation into the slower 

parts of the process could be made namely 3D peak identification and 3D isotopic 

envelopes and performance enhancements made to the code.  
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7 STREAM PROCESSING  

7.1 CHAPTER SUMMARY 

This Chapter presents the experimentation and the results from running the parallel 

feature detection process in a streaming fashion. The stream process simulates data 

being made available while the mass spectrometer is in operation. 

Section 1 describes the meaning of a stream processing approach, how it works in 

practice and contrasts this approach with processing data in a batch-mode.  

Section 2 details the implementation of the parallel feature detection algorithm and 

describes the changes that were made to enable the batch algorithm described in 

Chapter 6 to operate on streaming data. This section also describes the differences in 

the processing approaches between Apache Spark and Flink. 

Section 3 describes the benchmark experiments carried out and the method for 

obtaining and validating the results. 

Section 4 details the results from the benchmarks. 

Section 5 Describes the results obtained and indicates potential future research.  
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7.2 INTRODUCTION 

7.2.1 STREAM PROCESSING 

The previous chapter defines batch processing as processing a fixed amount of data 

(the batch) in a certain amount of time (the batch window). In contrast to the batch 

model where data is first stored and then subsequently processed, stream processing 

takes place as the data is created and pushed out from the producer to be 

subsequently captured by a consumer. The consumer will perform any necessary 

processing either on single data points as they arrive or, more usually, on windows of 

data. Different metrics are available to determine the size of the processing windows 

in a streaming system. These metrics include the number of incoming data points or 

the elapsed time between windows. The windows can be distinct, where each data 

point belongs to a unique window and is processed only once or sliding, where data 

points belong to multiple-windows that overlap meaning that the data is processed 

multiple times.  

 

The stream of data is conceptually unbounded, the data flows continually from the 

source, and the consumer processes it as it arrives with no specific start or end point. 

In this way, streaming data is processed as it is generated and computation is done in 

memory before it is saved to disk. In the case of proteomics, the start and end of the 

mass spectrometer run are the actual boundaries of the stream, which is the same as 

with the batch process. However, when processing in a streaming fashion, feature 

detection is carried out while the mass spectrometer is still running, which can 

typically last between two and four hours.  

 

7.2.2 STREAM PROCESSING PLATFORMS 

Many open source and proprietary streaming solutions exist. To provide a 

comparison with the batch implementation, detailed in the previous chapter, this 

research concentrates on Apache Spark and Flink. Kafka is also used in the 

experimentation; Kafka’s role is to simulate the data streaming directly from the mass 

spectrometer. Kafka reads in a data file and streams it out as a topic (described in 



152 

Chapter 5 section 5.8.8). The data in the topic is then consumed by the Spark or Flink 

engines. Spark and Flink also have the capability of reading data directly from files on 

disk to simulate streaming, but the addition of Kafka provides a more realistic 

simulation. In a real-life situation, a framework such as Kafka would be used to 

ensure a robust environment that protects against any data loss in the event of 

system failure.  

 

Other streaming solutions of note include infosphere streams from IBM and Tibco 

Streambase both of which are proprietary commercial systems. Open source 

distributions which allow stream processing to various degrees include Rabbit MQ, 

Storm, Samza, Esper, and Beam, although none of these has been evaluated during 

this research.   

 

7.2.3 DATA MANAGEMENT 

One potential benefit of stream processing is in the area of data management. As 

mentioned previously, a standard workflow for proteomics experiments involves 

moving data around between different environments and manual processing steps. If 

data can be streamed directly from a mass spectrometer into a central cluster, then 

some of these manual steps are not required. In an ideal system, the data would flow 

from the mass spectrometer into the processing cluster via a streaming framework 

such as Kafka; here it would be processed in parallel and the results stored in a 

central location where they can be accessed by the life scientists. This would all 

happen in close to real-time with the scientists being able to access the results of their 

experiments almost immediately after they finish and without having to move or copy 

any data.  

 

The streaming architecture also allows partial results to be viewed before the mass 

spectrometer has completed its work. The in-stream results could be used for 

validating an experiment before it finishes, which could result in an experiment being 

halted early if issues were found. Stopping an experiment before it completes will free 

up the mass spectrometer for further work and save wasting time on processing 

results that will only be discarded. 
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7.2.4 STREAM SPECIFIC ISSUES 

Logging, back pressure, and resilience need to be considered when using stream 

processing. 

 

Streaming systems implement various forms of logging to ensure that all the data is 

made available to the target systems. The data will be tagged so that, for instance, 

the system will know whether data has arrived in a different order from which it was 

created or if it hasn’t been processed yet. 

 

Back pressure describes the balance between the velocity that data arrives compared 

to the speed at which it can be processed. Ideally, all the data will be processed as 

soon as it arrives at the consumer or as soon as the relevant size process window is 

available. If the consumer cannot process the incoming data fast enough, then the 

incoming data will queue up in memory and eventually spill to disk causing delays. In 

a typical streaming use case such as real-time fraud detection, this can mean that the 

data is not processed within the specified service level agreement (SLA). For 

proteomics data, back pressure and delays in the process would not have such a 

detrimental effect as say a missed fraudulent banking transaction but it will still affect 

the overall runtime of the processing and is therefore not desirable. One way of 

mitigating back pressure is providing more compute nodes on a parallel cluster. 

Another way is using the logging mechanism in a stream framework mentioned 

above. All data is logged as it arrives in the stream, meaning that it is not lost if it 

cannot be processed at the time of arrival but will be made available to the data 

consumer as and when it is able to process it.  

 

A streaming framework should provide resilience in the event of failure of either the 

system handling the streams or the target system that is processing the data. Kafka 

provides resilience using its logging system and its cluster-based architecture.  
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7.2.5 STREAMING DATA IN PRACTICE 

A previous section mentions the fact that Kafka is being used to simulate the mass 

spectrometer streaming out data in real-time. For the mass spectrometer to stream 

the data in practice requires collaboration with the mass spectrometer manufacturers. 

In the case of the University of Dundee, the manufacturer Thermo Scientific would 

need to provide a mechanism by which the data could be streamed as well as 

simultaneously writing the RAW file to disk. As mentioned in Chapter 3, Section 3.4.3 

it is highly desirable to keep the original RAW file as a source in case the data needs 

reprocessing at some point in the future. Previous work by Graumann et al. [112] has 

used a beta set of API libraries, provided by Thermo Scientific, that enabled them to 

test a version of MaxQuant using a streamed data set on the PC that is attached to 

the mass spectrometer itself. This work could be extended in a future research project 

to enable a system such as Kafka to ingest the data and provide it as a stream for 

cluster-based processing in real-time. 

  



155 

7.3 IMPLEMENTATION DETAILS 

7.3.1 CODE CHANGES FROM BATCH 

Both the Flink and Spark batch processing code required significant changes to run in 

a streaming fashion. Firstly, the input interfaces needed changing to access the data 

from the Kafka topic as opposed to a file in HDFS. Flink provides a Kafka consumer 

that is simple to use and requires the name of the Kafka topic, the server address and 

port numbers of the Kafka and Zookeeper servers to access the stream data. 

 

In addition to the changes required to connect to Kafka, the code needs to be 

restructured to make use of Flink operators. The main function used is the “flatmap” 

function, this coupled with the window operator replaces the MapReduce structure of 

the batch process and provides the means to split the incoming stream into windows 

of a certain period. To ensure that all the 3D peaks were detected the processing 

window was set to collect thirty seconds of input data.  A window of thirty seconds, in 

this case, will mean that thirty seconds worth of mass spectrometer scans will be 

processed as one unit. Thirty seconds has been validated in other research as the 

maximum time taken for a peptide to elute in normal circumstances [76]. Note that in 

some rare cases it is possible for the 3D peak elution time to be longer than this, in 

this case a post-process is needed to join the pieces of the 3D peak together to form 

a complete feature. Some examples of where this situation occurs are with 

contaminants in the sample or with “manufactured” samples such as the files used to 

check the accuracy of a mass spectrometer. Note that the test file 371.RAW used in 

this research is such a manufactured file.  

 

With the window of data defined, the core map and reduce code can be used to 

process it, this part of the code is unchanged apart from the input data format 

changing from key-value pairs to tuples. A tuple is the same construct as a row in a 

relational database, each of its fields is defined in advance and can be accessed 

directly without the need for additional parsing. The first part of the flatmap task 

equates exactly to the map task used in the batch processing testing. This means that 

each thirty second processing window receives all of the scan data to process and 

consequently the 2D peak processing is carried out in duplicate for every processing 
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window that receives a particular scan. In practice this is not a constraint because the 

2D peak picking algorithm is so fast that it does not affect the overall timings by a 

significant amount. If this were to be an issue then the stream processing could be set 

up in such a way as to receive the individual scans, process them and emit a second 

data stream consisting of detected 2D peaks. This second stream would then be 

consumed in thirty second windows as described in this section. Processing the data 

in time-bounded windows represents a change in the partitioning strategy discussed 

in Chapter 6. Instead of partitioning vertically and providing all the scans in a narrow 

band of mz, the windowed streaming approach partitions the data horizontally in 

small bands of retention time (scans) and includes the complete mz range of the 

scans. The implications and mechanics of this are discussed in more detail in the 

following section.  

 

The Spark code required similar changes, namely the interface to read from the Kafka 

stream, the data types from key-value pairs to tuples and the partitioned window 

logic. In version 1.6 of Apache Spark, the streaming architecture is quite different to 

Flink’s. Spark processes streams in “micro-batches”; each window of data needs to 

be complete before processing will start, this means that the map code cannot start 

processing the scan data row by row until a full thirty seconds of scans 

(approximately 150 records of data to process) are available. The Spark streaming 

code works differently to the Flink code in that the reduce step is actually carried by a 

flatmap function instead of a window function. This is because instead of taking in a 

partition of a number of rows and outputting a partition of a different number of rows, 

the Spark process takes in a key-value pair and outputs a key-value pair. In this 

instance, the key for input and output is the window identifier, the value for the input is 

an iterable type containing the 2D features, and the value for the output is an iterable 

type containing the 3D features.  

 

7.3.2 BATCH PARTITIONS VS STREAMING WINDOWS 

As noted above the move from a batch process to processing the data in a streaming 

fashion allowed a change in partitioning strategy. The need for partitioning still exists 

because it is the partitions that allow the process to run in parallel with each partition 
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of data being processed independently. For the batch process, the partitions were 

defined along the mz dimension, each partition had to be above a minimum size to 

allow a complete isotopic envelope to fit inside one half of the partition. Then 

overlapping partitions were used to avoid counting incomplete peaks or envelopes 

occurring near to a boundary.  

 

Overlapping time windows were chosen as the optimum solution for stream 

processing during this research. As noted, previous research shows that a window of 

thirty seconds is sufficient to reliably find 3D peaks in the dataset [76], and an overlap 

of one second was used to create the parallelism. Features that do not entirely fit 

inside the time window, that is they start before the first scan in the window or are not 

complete when the last scan in the window is reached need to be identified. Figure 29 

shows an example of this, the arrowed line in the figure represents a 3D feature and 

the numbered bars represent sliding data processing windows. The 3D feature fits 

entirely into windows one, two and three but only partially into windows four and five. 

In this case it will be discarded from windows four and five. Note that in the 3d peak 

batch processing an overlap strategy was used; that is, processing windows that 

were double the minimum size and overlap the previous and following windows by 

half. Doing so in this case would result in sixty-second windows that would potentially 

take an inordinate time to complete. It is faster to use the thirty-second minimum size 

windows and to exploit the resources of a larger cluster.  
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FIGURE 29 SLIDING PROCESSING WINDOWS AND A 3D FEATURE 

A process similar to that used to find the peaks that occurred at the boundaries of 

partitions in the batch process (Chapter 6, Section 6.4.8) is used for the stream 

process, the rule being that features must start and complete with intensity levels at 

zero. Note that the same data is processed multiple times because of the overlapping 

windows. This reprocessing adds extra time to the total time to process the data, but it 

is possible because there is more time to complete the task than with the batch 

processing method. As the stream processing method is working to detect features 

while the mass spectrometer is in operation, there is a significant window of two to 

four hours in which to complete the feature detection task. Once the mass 

spectrometer finishes processing the cell sample, the stream processing method will 

only need to complete the final few windows of data. Whereas, the batch processing 

method must process the entire data set following the completion of the mass 

spectrometer run. 

 

Note that the change to using partitions based on retention time as opposed to mz 

(which was used in the batch implementation) has solved some of the issues related 

to deciding where to create the partition boundaries. In the batch implementation it 

was necessary to tailor the partitions to a specific data file in order to reduce the 

amount of processing skew and use the cluster resources efficiently. When using 

retention time, the partition size of thirty seconds can be applied across the entire 

data file to all files. This does still result in processing skew (this can be seen in Table 

1 
2 

3 
4 

5 
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24 presented later in this chapter) as some scans contain many more 2D features 

than others. However, this skew is mitigated by several factors: 

 

• The amount of time available for processing while the mass spectrometer is in 

operation 

• The thirty second partitions with the highest number of 2D peaks were 

processed in an acceptable time on the test cluster 

 

7.3.2 DE-DUPLICATION 

The overlapping window approach to stream processing naturally creates duplicate 

results. Duplicates need to be handled by a separate de-duplication step once the 

stream processing has completed. This de-duplication could be carried out in-stream, 

but in fact the number of output peaks, including duplicates was less than a million for 

even the largest of the test files. At this order of magnitude, a relational database, or 

equivalent such as Apache Hive, can efficiently de-duplicate the output very rapidly 

within several seconds. In a complete system where the protein identification part of 

the process is also completed in-stream then this process would be even faster 

because the step that identifies the proteins acts as another filter on the dataset 

resulting in even fewer results to de-duplicate. 

7.4 EXPERIMENTATION 

7.4.1 OVERVIEW 

In contrast to the experimentation in batch processing where various processing and 

storage platforms were benchmarked, the stream processing experiments were only 

concerned with the Spark and Flink processing engines. All the data was consumed 

from a Kafka stream and written to files stored in HDFS. Separate tests were run on 

the output files to investigate the effect of de-duplication, but this was a distinct step 

outside of the timings given for stream-processing. The streaming benchmarks were 

run as a continuous block over a short period of several weeks and no re-runs were 

needed due to system or code changes. This process was possible as the work on 
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creating and validating the parallel algorithm had already been completed and it was 

only necessary to engineer the streaming code for Spark and Flink and set up the 

environment with Kafka before running the benchmarks on the existing Hadoop 

environment. Most of the benchmark work for this chapter was completed using Flink; 

the Spark code was validated to ensure that it worked and produced correct results. 

However, as mentioned the release of a significant update to Spark during the final 

stages of this research means that it is no longer relevant to benchmark the code 

written using the previous release. Following version 2 of Spark the streaming 

architecture is now very similar to the native stream architecture that Flink uses. 

Given more time it would be far more beneficial to re-factor the Spark code to version 

2.2 and benchmark this against Flink. 

 

A reduced set of data files used for the batch-processing benchmarks was used for 

the streaming experiments. The following four data files were tested 371.RAW, 

PT2441S1FP1A1.RAW, 100312_EXP229_GFPIP_5.RAW and 561L1AIL00.RAW 

These four were chosen to be representative of the range of types of files produced 

by the Lamond Laboratory in the University of Dundee. The complete set of data 

benchmarked in the previous chapter included eight files forming a full set of 

experimental results, these all had a very similar distribution of features and produced 

very similar timings in the batch-mode benchmarks. Therefore, only one of these files 

was used in the streaming benchmarks detailed in this chapter.  

The same methodology for collecting timings for the batch-mode benchmarks was 

used for the streaming-mode. That is, each file was run through the system three 

times. No significant outliers were recorded during this process, and the complete set 

of data is available online from the GitHub repository for this research. The results are 

reported as the minimum, maximum and average times taken to process each 

window of data. These timings indicate how long it will take to complete the feature 

detection process after the mass spectrometer has finished processing a cell sample. 

The distribution of the number of 2D peaks detected in each scan is also detailed as 

this is the primary driver behind the amount of time each window of data takes to 

process. The more 2D peaks exist, the more time is required to iterate through them 

to detect any 3D peaks and isotopic envelopes.  
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The data window processing times and the distribution of the 2D peaks can then be 

used to estimate the required number of processing slots needed on the cluster to 

ensure the back pressure is kept to a minimum and the process completes as soon 

as possible after the mass spectrometer run completes. Post-processing steps such 

as de-duplication and writing the finished files to a central database are not included 

as these are trivial compared with the data processing steps. 

 

7.4.2 VALIDATION 

Validation of the output from the streaming benchmarks was an essential step in this 

research. As there are few examples of feature detection in a streaming fashion and 

little evidence that it is a credible way to process mass spectrometer data it was 

critical to show that the results matched those from the single-threaded and parallel 

batch processes. The results were written to text files stored in HDFS during the 

benchmarks, and these were then loaded into a relational database where the 

de-duplication step was tested and timed. Using SQL queries the de-duplicated 

results were compared to the output from the batch process described in chapter 4. 

The results were found to be an exact match with those from the batch process. This 

is to be expected because the core algorithm is the same code as long as the batch 

partition and stream window strategies are correct.  

The fact that the detected 3D peaks are the same between batch and stream 

processes is a strong validation that the streaming approach is valid for feature 

detection, as the batch process output has already been validated against the output 

from MaxQuant in Chapter 6.  
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7.5 RESULTS 

The same cluster hardware was used for stream processing as was used to run the 

benchmarks for the batch-mode processing, namely a three-node cluster with 

Hadoop and Flink installed. Note that the Kafka instance was installed on an “edge 

node”. The term edge node is used to describe a compute node that is separate from 

the cluster and attached via a network. An edge node does not participate in any of 

the processing tasks assigned to the cluster. Edge nodes are commonly used as 

interfaces to clusters and are often used for loading data and for making interactive 

connections to the cluster. In this case, the edge node was physically located in the 

same cabinet as the cluster itself and connected via an internal network. For this 

research, the edge node was used so that the Kafka operations did not affect the 

CPU utilisation of the processing cluster. Kafka was set up to read the SCMI files 

generated from the test data and then stream it out at a rate of five scans per second 

to simulate what would happen if a mass spectrometer were performing this task.  

 

At the rate of five scans per second, each of the Flink stream processing windows 

contained one hundred and fifty scans. The figures below (Figure 30, Figure 31, 

Figure 32 and Figure 33) show the distribution of 2D peaks within the test files. These 

show that in three of the test files, the 2D peaks are more densely concentrated in 

certain scans. Note that for the manufactured test file 371.RAW (Figure 32) this is not 

the case, and the 2D peaks are approximately evenly spread throughout the scans 

compared to the other files.  

 

 
FIGURE 30 COUNT OF 2D PEAKS BY SCAN FOR FILE 561AIL00 
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FIGURE 31 COUNT OF 2D PEAKS FOR FILE PT2441S1FP1A1 

  

 

FIGURE 32 COUNT OF 2D PEAKS FOR FILE 371 

 

 
FIGURE 33 COUNT OF 2D PEAKS FOR FILE 100312_EXP229_GFPIP_5 
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To test the performance of the streaming process, four different samples were taken 

from each of the test files: 

 

1) near to the beginning of the file where the early scans with a low retention time will 

have few peaks 

2) in the middle of the file where there are relatively more peaks 

3) towards the end of the file where the scans with high retention times can have 

more or fewer peaks dependent on the peak distribution in that particular file.  

4) A sample taken around the scan which has the maximum number of peaks. 

The results in Table 24 show the timings from the benchmark runs processing 

individual thirty second windows using Kafka to serve up the stream data and Flink to 

consume and process the one hundred and fifty scans in each of the windows that 

have been sampled from the test files. 

 
TABLE 24 TIMINGS FOR STREAM WINDOW PROCESSING WITH APACHE FLINK 

File 
Window Position 
in File 

2D Feature 
Detection 
(HH:MM:SS) 

3D Feature 
Detection 
(HH:MM:SS) 

Number 
of 2D 

Features 

Number of 
3D 

Features 
100312 Beginning 00:02.8 00:01.9 27770 120 
100312 Middle 00:06.3 00:20.9 214732 4130 
100312 End 00:02.5 00:02.6 28288 102 
100312 Max 2D Features 00:10.8 00:31.1 611544 3010 
371 Beginning 00:03.7 00:03.1 27233 414 
371 Middle 00:03.7 00:03.9 27890 609 
371 End 00:03.8 00:03.8 29136 695 
371 Max 2D Features 00:03.8 00:04.0 29989 697 
PT2441S1FP1A1 Beginning 00:03.0 00:03.0 17937 356 
PT2441S1FP1A1 Middle 00:05.8 00:22.0 174930 3705 
PT2441S1FP1A1 End 00:04.6 00:10.7 103045 2093 
PT2441S1FP1A1 Max 2D Features 00:05.9 00:25.2 189572 5313 
561AIL000 Beginning 00:05.9 00:04.4 49198 831 
561AIL000 Middle 00:03.6 00:21.0 212579 3012 
561AIL000 End 00:13.2 01:14.0 434971 6408 
561AIL000 Max 2D Features 00:48.0 03:52.0 1035220 35265 
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The timings to note are the ones that take longer than thirty seconds to process the 

3D peaks. If the cluster is configured with thirty processing slots, then tasks taking 

longer than thirty seconds will cause back pressure on the system. The back pressure 

occurs as stream processing windows queue up behind a slow running window 

waiting for it to finish. Where there are scans with a high density of 2D peaks that 

require more processing time, the overlapping nature of the processing windows 

means that each of these high-density scans will appear in thirty consecutive 

windows. This has the potential to cause a high degree of back pressure in the 

system. As an example, the window taken around the scan with the highest density 

for the file 561AIL00 required approximately four and half minutes of processing time 

(adding the 2D and 3D processing times to get a total processing time). If each of the 

thirty processing windows containing this scan required a similar amount of time, then 

each window would cause nine subsequent processing windows to queue up in the 

system. One way to mitigate this is to add more processing slots; the cluster used in 

the benchmark tests here was configured with forty-two processing slots. The extra 

parallelism allows the processing of subsequent windows to continue without waiting 

for the slower ones. It should also be noted where the high-density scans occur in the 

data. For the case of file 100312_EXP229_GFPIP_5.RAW the high-density scans are 

near to the start of the file, see Figure 33. Therefore, windows will begin to queue up 

for processing causing back presseure. Using a framework such as Kafka, which 

manages the system back pressure automatically, the system could have time to 

“catch up” on processing the queuing windows for this file once the high-density ones 

are complete. Table 25 shows the minimum, maximum and average number of 2D 

features for each file; Figure 34, Figure 35, Figure 36 and Figure 37 are histograms 

showing the distribution of 2D feature counts across the scans for each of the files. 

 
TABLE 25 MINIMUM, MAXIMUM AND AVERAGE NUMBER OF 2D FEATURES PER SCAN 

File Minimum Number of 
2D Features per scan 

Maximum Number of 
2D Features per scan 

Average Number of 
2D Features per scan 

561AIL000 30 52350 2624 
PT2441S1FP1A1 38 6178 1225 
371 4 6196 199 
100312 12 15936 609 
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FIGURE 34 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE PT2441S1FP1A1 

 

FIGURE 35 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 100312_EXP229_GFPIP_5 

 

FIGURE 36 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 371 
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FIGURE 37 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 561AIL00 

Note the x-axis scale change in Figure 33 from 6100 to 11100 compared to Figures 30,31 and 32 
 
The Histograms above show that while each of the test files has a different 

distribution for the count of 2D features, all the distributions are skewed towards the 

lower values. This skew means that for the files included in the benchmark testing 

most scans have counts of 2D features below the averages shown in Table 25. As 

noted in Chapter 5, the files used in the benchmarks were chosen to be 

representative of the range of experiments carried out in the Lamond Laboratory, 

University of Dundee. Therefore, the maximum counts shown in Table 24 can be 

classified as outliers and not common occurrences. Table 26 shows for each file, how 

long the feature detection process continues running once Kafka finishes streaming 

all the data. This measurement represents the time that a life scientist would have to 

wait for the feature detection results after the mass spectrometer completes an 

experiment. Due to the high number of 2D features present in the scans at the end of 

file 561AIL00, back pressure on the system resulted in a completion time of 

approximately twenty-eight seconds. However, this is a significant improvement over 

the batch process, which took approximately fourteen minutes to complete using 

Apache Flink. The number of 3D features detected match exactly with the results 

from the batch process.  
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TABLE 26 STREAM PROCESSING RESULTS  

File Time for processing to 
complete following the 
end of the data stream 
(HH:MM:SS) 

Number of 3D 
Features 
Detected 

561AIL00 00:00:27.6 159201 

PT2441S1FP1A1 00:00:08.2 123016 

371 00:00:03.8 17777 

100312 00:00:03.2 45613 
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7.6 DISCUSSION 

7.6.1 POSSIBLE IMPROVEMENTS 

As previously noted there is the possibility of making improvements to the general 

efficiency of the parallel algorithm. These improvements would reduce the overall 

execution time for the batch process, whereas for the stream process it would reduce 

back pressure and enable the process to run on fewer nodes as each node could 

finish its tasks faster and therefore be available to process other data windows.   

To provide a complete proteomics data processing pipeline requires several more 

steps to be included. These include: 

• A process to "stitch together" 3D peaks that are larger than the stream 

processing windows.  

• Deduplication of the complete list of 3D peaks detected during the stream 

process. 

• Integrating the protein identification step into the stream process. 

One possible scenario is that the data is processed in-stream using the 

method described in this chapter and then the output is passed onto another 

application such as MaxQuant for the protein identification step. Another 

scenario is to pipeline the data to another cluster-based solution such as that 

described by Lewis et al. [79], which is designed to run on a Hadoop cluster. 

An ideal situation would be for the protein identification to be completed 

in-stream as well, this would mean that the complete results could be made 

available within a short time after the experiment ends. To adapt an algorithm 

such as that developed by Lewis et al. would require a great deal validation 

and research to ensure correctness. The protein identification step would need 

to be adapted to work with a set of results from a number of the stream 

processing windows as they complete. 

 

• A console to monitor jobs and perform administrative tasks. 

The primary concern of this research is the feature detection process. 

However, it is acknowledged that a non-technical user of such a system would 
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need a graphical user interface (GUI). This interface is not within the scope of 

this research but a system as described in this chapter would require such an 

interface for life scientists to monitor their experiments and see the results as 

they are processed in real-time. The interface should perform several 

functions; it must include reports that make it simple to see when processing 

has been completed and to download and view results without getting involved 

with any technical details of the cluster or data management. It should also be 

possible to start a job to re-process data with different parameters and to abort 

processing for an experiment that isn’t producing the expected results.  

 

• Data Validation 

 

There is the possibility to include some data validation steps into the process. 

These could be used to flag up experiments that should be aborted before 

completion. It would also be possible to perform validation of replicates in the 

streaming process; this would involve processing a cell as a reference sample 

and then comparing the results from the replicate to the reference during the 

stream processing. Validating replicates in this way could result in significant 

time savings for the life science researchers as currently. This validation is 

often a manual process performed once the proteins in each experiment have 

been identified.  

 

Overall the experiments detailed in this chapter using a three cluster show that 

in-stream processing of mass spectrometer is possible and can be completed in near 

real-time. The results have been validated against those obtained from MaxQuant 

and the batch-process described in the previous chapter and found to be accurate.  
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8 DISCUSSION 

8.1 CHAPTER SUMMARY 

This Chapter presents a summary of the research conducted, the results presented 

and discusses potential future research stemming from the findings. 

Section 2 details the main research question and how it was answered 

 

Section 3 presents the novel contributions to knowledge made during the research 

 

Section 4 describes and compares the results from the batch and stream mode  

experimentation. 

 

Section 5 discusses the architectural design considerations for batch and real-time 

feature detection using a horizontally scalable cluster. 

 

Section 6 details potential future work 

 

Section 7 concludes the thesis 
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8.2 RESEARCH QUESTION 

This research addresses the following research question.  

 

Can feature detection in proteomics data be performed in near real-time using a 

parallel algorithm on a horizontally scalable compute cluster?” 

 

The first step is to define the term “real-time”. Real-time in practice can mean many 

things, from a sub-second response to fraudulent activity in a banking transaction 

scenario at one end of the spectrum to processing multi-second windows of data in a 

streaming fashion where response times are not so critical. The processing of mass 

spectrometer data fits into the latter example. Real-time here meaning that the results 

of experiments are available to the life scientist with a perceivable delay measured in 

seconds or even several minutes.  

 

The results given in Chapter 6 show that when using a batch mode of processing and 

the parallel algorithm developed as part of this research, the aim of reaching a 

benchmark time for feature detection of less than five percent of the time taken by 

MaxQuant is sometimes possible but not in all cases. The experiments used a feature 

detection algorithm written in Java, designed to run in parallel on a cluster in a 

shared-nothing environment. The algorithm was benchmarked using several different 

processing frameworks in conjunction with several different distributed storage layers. 

Some of the larger, more complex files took longer than required by the benchmark 

and the degree of parallelism possible was constrained by the nature of the features 

that need to be detected in the data. This constraint limits the number of tasks that 

can be employed in the 3D peak detection part of the feature-detection process and 

therefore restricts the speed-up possible from using larger clusters. This constraint 

means that just adding more nodes to a cluster and increasing the level of parallelism 

does not speed up the process beyond a certain point.  

 

During the research, it was also shown that intra-file processing of mass 

spectrometer data is possible. Intra-file processing splits the data file into pieces and 

processes each part in parallel, as opposed to processing a complete file on each 

node in a cluster. This knowledge led to the development of a streaming processing 
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pipeline which used Apache Kafka to simulate a mass spectrometer streaming out 

data as it is produced. Apache Flink consumed the stream and detected the features 

using a sliding window processing technique and the same parallel algorithm used in 

the batch processing benchmarks. The results from the streaming experiments show 

that near real-time processing is possible using this streaming technique. This 

discovery is significant because receiving results from proteomics experiments in a 

matter of seconds instead of hours or days means that life scientists can iterate much 

faster over a problem and act on insights immediately and therefore increase the 

number of experiments and amount of research that they can carry out. 
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8.3 ORIGINAL CONTRIBUTIONS 

As outlined in the introduction chapter this thesis makes several original contributions, 

which are closely related to the research question addressed in the previous section. 

It is expected that these contributions will have a positive impact on the proteomics 

research community by allowing faster access to results and by reducing the data 

management burden. 

 

1) A feature detection algorithm designed for use on a parallel cluster environment 

has been implemented and tested using several processing platforms and data 

storage layers. The algorithm is written in Java using a MapReduce-style where the 

2D peak picking is carried out using a Map step and the 3D peak picking using a 

Reduce step. The research and experimentation have highlighted the benefits and 

constraints of using such an algorithm and indicated the speed improvement which is 

possible. The complete source code, including variants designed to work with 

Hadoop, Spark, Flink, Aster, HDFS, HBase and Cassandra is available on Github for 

further research and development. The algorithm has also been successfully adapted 

to execute in a streaming fashion using either Spark or Flink and a stream of data 

which, for experimentation was simulated using Kafka.  

 

2) This research also showed that intra-file processing of mass spectrometer data 

can produce accurate results. This is vital if stream processing is to become 

mainstream. Intra-file processing contrasts with other research into the parallel 

processing of mass spectrometer data which propose processing a complete file on 

each node of a cluster to achieve parallelism.  

 

3) A new file format, specifically intended for parallel processing, has been designed 

and tested. The format (called SCMI abbreviated from Scan, Mass and Intensity) is 

row-based containing one mass spectrometer scan per row and is a limited subset of 

the metadata provided in the complete mzML or RAW file. Only the data required for 

feature-detection and the later protein identification step are included and stored as 

tab-separated values. The experiments carried out show that the new format is 

emminently suitable for parallel processing and is ideal for distribution around the 

nodes of a compute cluster. As well as the text-based format used in this research, 
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other formats were investigated. During this investigation, the binary Avro format was 

also found to be a suitable candidate for the SCMI files and provided a data 

compression advantage over plain text. Note that the metadata included in the mzML 

file that is not included in the SCMI format is still required and a different mechanism 

should be used to store and retrieve that data. The metadata does not require 

processing and can be stored in a database where it can be referenced alongside the 

results from the feature detection process. 

 

4) Investigating the use of a central processing cluster, whether in-house or 

cloud-based, has shown that it can significantly reduce the data management 

overhead and manual steps that proteomics researchers are involved in when using a 

PC-based architecture. The automation of data management tasks reduces delays 

and the chance of errors and allows life scientists to spend more time on their 

research. A central processing cluster and the introduction of technologies used in an 

internet of things architecture brings many other benefits including scalability, better 

governance, simplifying backup and restore activities and security.  
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8.4 BATCH VS STREAMING RESULTS 

Chapter 6 details the implementation of the feature detection algorithm and its use in 

batch-mode on a parallel cluster. The results of the benchmarks from the systems 

tested show that a substantial speed-up in processing times over a PC-based 

process is possible. Some notable discoveries are listed below: 

 

Of all the systems used in this research Apache Flink was the fastest with Apache 

Spark a close second. It is possible that this order could change if the newest 

distribution of Spark had been used. However, this was not tested due to version 2.2 

of Spark being made available in the summer of 2017, which was too late to be 

included in this research.  

 

The Aster system requires more nodes to reach the same level of performance as the 

Hadoop system because the degree of parallelism is fixed at six virtual workers per 

Aster node, whereas on Hadoop this is configurable using YARN. Given the same 

degree of parallelism then the Aster system was faster than Flink for the larger, more 

complex files. 

 

Using HDFS as the storage layer was faster than either Cassandra or HBase. The 

feature detection algorithm reads the entire data set record by record in a sequential 

manner without requiring any random access. More complex data storage layers, with 

higher processing overheads, such as Cassandra and HBase were not needed. For a 

sequential full file scan, the distributed file structure of HDFS was all that was needed 

to serve the data up to the processing frameworks. If random access to the data 

becomes a requirement in the future, then data stores such as Cassandra and HBase 

will need further investigation.  

 

The timings of individual reduce tasks show that there is still a significant amount of 

processing skew taking place in the cluster. For example, when processing file 

561L1AIL00.RAW, the fastest reduce tasks completed in approximately 30 seconds 

whereas the slowest took around 12 mins. When distributing data on a cluster for 

processing, the usual method is to ensure that each node receives an equal amount 

of data. A skewed distribution of data around the nodes of a cluster means that some 
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nodes will have to do more work than others when performing simple operations such 

as aggregation. However, in a highly complex task such as feature detection in 

proteomics data, the skew can occur in the amount of processing required for equal 

size sets of data. Mass spectrometer data consists of a significant amount of noise 

with relatively few features. As these features (peaks) are not distributed evenly, 

some sections of data will be processed very quickly as there is no work for the 

algorithm to do. In contrast, sections of data that contain many peaks will be 

processed more slowly as the algorithm must iterate over the section several times 

while detecting the peaks. To produce an optimum solution for batch-processing, 

further work is required to sample the 2D feature output before it is distributed for 3D 

feature detection.  

 

Chapter 7 describes the research into adapting the algorithm developed for use in a 

batch-mode so that it can process data in a streaming fashion. A system was 

designed using Apache Kafka to simulate the mass spectrometer streaming its 

results out in real-time as it produces data. In practice, this would require 

collaboration with the mass spectrometer manufacturer. However, some work has 

already been done in this area with Thermo Scientific using an API provided to 

Graumann et al. [112]. 

 

The major change required for stream processing was to implement time-based 

window processing to replace the map and reduce steps of the batch-mode process. 

The individual mass spectrometer scans are still processed in the same way as in the 

map tasks to produce 2D peaks. However, the reduce tasks are replaced with 

overlapping windows that collects thirty seconds of scans at a time (approximately 

one hundred and fifty scans). To avoid missing features that occur at window 

boundaries the thirty-second windows overlap, with a new window being created 

every second. This overlap means that data is processed multiple times and 

necessitates a de-duplication step on completion. De-duplication is required as many 

of the 3D peaks will be detected in multiple windows. Landing the results of the 

stream processing into a database means that the final de-duplication step is fast and 

straightforward.  
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The core of the feature detection algorithm is unchanged between the batch and 

stream mode processing, the implementation of the 3D peak detection is different in 

that during the batch process, a reduce step takes a partition of 2D peaks falling in a 

narrow partition of mass values for all retention times. This partitioning strategy also 

requires an overlap of data to handle peaks that occur at the boundaries of the 

partition. Whereas, the stream processing takes a limited band of thirty seconds of 

retention times for the complete scan containing all mass values in the band. Of the 

two approaches, the stream processing window method is much more straightforward 

and does not require any pre-calculation or sampling of the data to produce the 

window. For the batch-mode processing, the distribution of data and the definition of 

the boundaries of the partition is complicated, requiring either manual pre-calculation 

or in-process sampling of the output from the 2D map tasks to produce optimum 

partitions.  

 

The stream processing method also provides a better chance of achieving near 

real-time processing given that a cluster can be made large enough to process the 

data without back pressure. Back pressure occurs when the compute nodes cannot 

process the incoming data quickly enough, and the data from the stream builds up in 

a queue waiting for processing. Finally, the stream processing method allows specific 

checks and validations to be carried out during the processing rather than waiting 

until the process has completed. 
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8.5 DESIGN OF AN IDEAL ENVIRONMENT 

8.5.1 BATCH PROCESSING 

The batch processing method of feature detection has been thoroughly tested using a 

variety of software frameworks both for data processing and data storage. It is 

possible to design a reference architecture that could be built into a production 

environment running in a life sciences laboratory by considering the results and 

experience gained during this research. The data processing challenges start once 

the mass spectrometer has completed the experiment and a binary RAW output file 

has been deposited on the PC attached to it. An automated process needs to be 

running that can detect the completed file creation. This process will then need to 

copy the RAW file on to the central cluster. An edge node should be used as a 

gateway to the cluster to avoid security and other governance issues. An edge node 

is a name given to a compute node that is connected to a cluster but does not have 

any of the cluster software running on it and is not used as part of the processing 

system. The RAW file can be transformed into a format designed for parallel 

processing during the copy process using the method developed during this research 

and described in Chapter 5 Section 5.3.4. Once copied to the cluster, the data file in 

either plain text or Avro format, is then ready to be processed. A file containing the 

information necessary to start the batch can be transferred to the cluster immediately 

after the data file to act as a flag for the processing system to start and to show that 

the data file transformation and the copy have completed successfully. A process 

running on the cluster will scan for the flag files and start the batch process running. 

Once the batch feature detection process completes, the output can be saved to the 

cluster while a second process is initiated to complete other parts of the proteomics 

processing pipeline (such as the previously mentioned protein lookup process, 

implemented by the Hydra project). The final results are then stored on a network 

share where the life sciences researcher can access them from a personal computer. 

In this way, the process will be completely automated; the researcher need only start 

the experiment at the mass spectrometer and then wait for notification that results are 

available. If any reprocessing is required, perhaps due to different processing 

parameters, then a simple web-based graphical user interface could be used to 

restart jobs and also used to monitor the progress of the job on the cluster. 
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8.5.2 STREAM PROCESSING 

Using a streaming approach to data processing results in a more straightforward 

architecture than using a batch-mode of operation. Using the API provided by the 

mass spectrometer manufacturer, a stream of data is created that flows out 

continuously while the mass spectrometer is in operation. A streaming tool such as 

Kafka can be used to make the stream available to consumers in a robust way. Kafka 

logs streams as they are produced and provides the ability to reprocess data in the 

event of failure; it also ensures that data is not lost in the event of back pressure on 

the system. Back pressure occurs when the compute nodes can not process data 

from the stream fast enough and a backlog of data to process builds up. Apache 

Spark and Apache Flink have been benchmarked processing the stream data during 

this research. Both of these tools provide a stream processing capability, in the 

versions tested here they work in different ways with Spark employing a micro-batch 

mode and Flink employing a true streaming capability where each piece of data is 

handled as it arrives. As mentioned in Chapter 7, following the release of Spark 

version 2.2 in the summer of 2017 Spark now works in a streaming fashion in the 

same way as Flink. Because of this, most of the research and benchmarking has 

been carried out using Flink. The code for processing the data using Spark has been 

produced, but this is less relevant now since Spark streaming has undergone such a 

significant change in underlying architecture.  

 

In a large laboratory with many mass spectrometers operating simultaneously, using 

Kafka and a processing framework such as Flink in conjunction with a large central 

cluster would provide a robust, efficient environment. The stream processing would 

be carried out in parallel on the cluster, with each window of data being processed 

independently of the others. Also, a cloud-based architecture could be employed to 

allow the environment to be scaled up or down in response to demand. The mass 

spectrometers do produce a large volume of data which would need to be transferred 

via an internet connection to a cloud system provider. However, the streaming model 

means that the data volume would be four or five mass spectrometer scans per 

second for each machine, which amounts to approximately 70Kb/sec of data. The 

results from the streaming process need to be passed to a post-process. This 

post-process will “stitch together” any 3D peaks which have occurred across more 
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than one processing window, in a process described in Chapter 7. Finally, the data 

needs to be de-duplicated as the overlapping window style of processing means that 

the same data is processed several times. Both of these steps could be run efficiently 

in a relational database; this would require the streaming process to land the data into 

a database and then trigger the post-processing once the stream is complete. 
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8.6 BENEFITS AND FUTURE WORK 

The research described in this thesis and the cluster-based processing solution that 

stems from it provide many benefits to the proteomics researcher. These include: 

 

• Faster access to the results of experiments, the algorithm developed here is 

capable of running in parallel on a cluster. Therefore, data can be processed in 

near real-time and made available to the researchers within minutes of the 

completion of an experiment. 

• In-stream monitoring of experiments. Using the streaming method of 

processing described in Chapter 7, the in-stream processing means that some 

of the data validation and checks that are currently carried out manually after 

the experiment has completed are possible while the mass spectrometer is 

working. It is usual to run the experiment multiple times and create what is 

known as biological and technical replicates of the data. Biological replicates 

are created by processing the same cell sample multiple times, and technical 

replicates are created by using precisely the same machine setup and 

parameters on a different cell sample. The results from these replicates are 

then compared to check that they are consistent. Stream processing would 

allow this validation to be done in real-time while the mass spectrometer is 

running.  

• Less involvement in data management tasks. The central processing cluster 

architecture using stream processing provides a mechanism that allows data 

to flow from the mass spectrometer to the cluster for processing and then for 

the results to be deposited in a database ready for analysis. This mechanism 

frees the researcher from the tasks of copying files between systems and 

running a processing pipeline manually.  

• Access to a fully managed solution. The central processing cluster means that 

standard IT services such as backup, restore, disaster recovery, security and 

support can be provided in a far more comprehensive and straightforward 

manner than using a PC-based solution.  

• Robustness and efficiency. Many of the software and systems that currently 

exist for processing proteomics data have been produced by life science 
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researcher who is also skilled in the use of computers and software 

development. One of the aims of this research has been to contrast such a 

system with one that has been designed by a computer scientist who has 

proteomics domain knowledge.  

• The quantity of data produced by a life science laboratory varies over time so 

the processing power required also values. A central cloud-based cluster can 

be expanded quickly and efficiently for as long as extra processing power is 

needed and then scaled back during less busy periods. 

 

The research into parallel feature detection leads to the possibility of further research: 

 

• Parallel Feature detection provides only part of the solution for an architected 

proteomics pipeline, and further work will be required to integrate other 

research such as the protein detection work done by Lewis et al. for the Hydra 

project [79]. Providing a complete pipeline could be a relatively simple task 

using a batch-mode of execution; the results would only need to feed into the 

Hydra system in the correct format. However, to enable this in a streaming 

mode would be far more complex and require much more work in adapting and 

validating an algorithm. The protein identification step would need to be able to 

work with partial results sets from either single or groups of outputs from the 

processing windows rather than the complete set of features as is the case 

with the batch-mode output. However, this does offer the potential of an actual 

real-time system where the proteins in a sample are fully identified within a 

short time of the mass spectrometer completing the processing of a cell 

sample.  

• Updating the processing frameworks to the latest versions to take advantage 

of new features. This is particularly relevant to Spark where the changes made 

in version 2.2 released in the summer of 2017 mean that the stream 

processing in Spark behaves similarly now to the stream processing in Flink.  

• Further performance enhancements of the algorithm, either using Java or by 

investigating the use of Scala on Spark or compiling C libraries. 

• The method for creating the reduce task partitions in the batch-mode 

processing described in Chapter 6 is manual and requires a new calculation 
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for every new file. This manual effort has been acceptable to benchmark the 

algorithm during this research, however, in a production process, this manual 

process would not be suitable. Work is required to produce code to sample the 

map task output and produce the partitions for the reduce task automatically.  

• An investigation into the use of containers for virtualisation and reproducibility. 

Recent developments in software such as docker mentioned in chapter 5 allow 

complex systems to be built in a way that enables efficient scalability. The 

containers themselves are a lightweight virtual machine containing program 

code and application libraries. A major benefit of this technology is that it 

allows different versions of applications to run simultaneously. The 

co-existence of different versions of software can be very important when 

using open source frameworks as often there are frequent updates to test and 

install. The use of containers means that code that has been proven to work in 

older versions can continue to run using that version without needing to be 

changed and validated on a newer version.  

• Further research into different formats for the SCMI file could find an optimum 

solution. During this research, the Avro file format produced promising results. 

The Avro binary format results in smaller files than plain text, Avro also has the 

benefit of being self-describing thanks to its in-built schema mechanism. 

Another line of research could be to investigate the parquet file format which 

like Avro is binary and self-describing. The developers of the Spark processing 

framework have built Parquet read and write optimisation code into the Spark 

Framework itself. 
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8.7 CONCLUSIONS 

Proteomics is an essential area of research within life sciences and systems biology. 

The large-scale study of proteins and their interactions is one of the major 

components of producing personalised medicine, which is at the forefront of medical 

care. Personalised medicine means that drugs and other treatments are designed 

specifically for an individual patient's unique biology, significantly reducing adverse 

reactions and side-effects and increasing the efficacy of treatment. The advance of 

technology in mass spectrometers has led to an increase in the volume and 

complexity of data that needs to be processed before insights can be gained from it. 

The output data is, in many cases, currently processed using PC-based technology 

and requires the proteomics researcher to be involved in the details of data 

management. By employing a centralised processing cluster with connected 

instruments streaming data in real-time, researchers will benefit from the removal of 

much of the data management burden and faster access to results. A more robust 

and efficient process internet of things style architecture will also bring benefits for the 

life sciences laboratory. 

 

The research has shown that it is possible to detect features in proteomics data using 

a parallel cluster in less time than using a PC-based process. The previous section 

details these benefits, along with some ideas for future related research. Proteomics 

is still an evolving field of study, and as the technology used to process the cell, 

samples improve the amount of data will only continue to grow, meaning that a 

processing solution involving parallelism may become a necessity. The streaming 

study carried out here also points to a future where samples are processed and 

analysed in near real-time creating many new possibilities for proteomics research, 

such as immediate diagnosis of conditions and personalised medicine. 
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APPENDIX A – SYSTEMS USED IN THE RESEARCH 

1 HADOOP 

Hadoop consists of HDFS (Hadoop Distributed File System) and MapReduce.  

HDFS is a distributed fault tolerant file system based on Google’s GFS (Google File 

System).  MapReduce, first proposed by engineers working for Google [5], is a 

parallel processing framework used to distribute tasks across clusters of computers. 
Hadoop is designed to run on clusters of commodity hardware and has built-in 

features to cope with hardware failure. For example, by default all data is replicated 

across three nodes which ensures data consistency even if two nodes fail. Several 

commercial distributions of Hadoop exist but this research focused on the open 

source implementation, available from the Apache Foundation. 

 

Early Hadoop releases up to version number 2 had an architecture as described 

above, namely the HDFS file system, and the MapReduce programming framework. 

This environment runs on top of a system of slave nodes also called data nodes.  

Each data node runs Java daemon processes called the task tracker and job tracker 

that control data distribution and job execution. The master node (commonly called 

the name node) coordinates the data nodes and communicates with the daemon 

processes as data is loaded and accessed or as MapReduce jobs are run. 

  

As data is loaded into HDFS, it is split into blocks and distributed across the data 

nodes. The default block size is 64Mb, and the default replication factor is three, 

meaning that all data is stored three times in the cluster. These values are 

configurable, but for the purposes of this research, defaults were used except where 

indicated. Figure 34 shows the basic setup of HDFS across the name and data nodes 

of a cluster: the data blocks can be seen as numbered boxes with the three replicates 

of each block distributed across the cluster. 
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FIGURE 38 DISTRIBUTION OF REPLICATED DATA BLOCKS IN HDFS 

 

The main method for loading files and submitting jobs to the cluster is a command line 

interface. A Java Application Programmers Interface (API) exists, which allows 

front-end tools to be built on top of Hadoop to abstract the command line away from 

end users. However, one objective of this research is to remove the need for users to 

explicitly run processing jobs and as such none of these front-end tools are used in 

this study. Being a file system HDFS is format-agnostic and allows data of any 

internal structure to be loaded and stored.  

 

The earlier versions of Hadoop were dependent solely on the MapReduce framework 

for data processing. An eco-system has developed around the core Hadoop 

components to allow other programming languages to be used to process data.  

These include Hive, a SQL-like language developed by Facebook, and Pig, an 

abstracted high-level query language. These tools are interfaces to the MapReduce 

framework so when the abstracted language is used the code is converted into a 

MapReduce job which is submitted to the cluster in the background. This removes the 

complexity of writing MapReduce code in Java from the developer but can introduce a 
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time delay into the process. With the release of Hadoop version 2, Hadoop was 

re-engineered to include the YARN (Yet Another Resource Negotiator) framework. 

YARN consists of a resource manager and node managers which replace the job 

tracker and task managers of version 1. An overview of the Hadoop cluster 

architecture can be seen in Figure 35.  

 

 
FIGURE 39 ARCHITECTURE OF A HADOOP CLUSTER 

 

YARN is only concerned with resources such as CPU and memory and does not 

specify how tasks should be completed. The result of this is that MapReduce has 

become an application that can run on the YARN framework and Hadoop becomes a 

more general purpose parallel platform that can run other parallel processing jobs. 

For example, code written using older parallel frameworks such as MPI or BSP can 

now be run on an Hadoop cluster. The earlier versions of Hadoop that did not include 

the YARN framework are not used in practice now because they also lacked critical 

components necessary to recover the system in the event of a name node failure. 

Therefore, only version 2.4 of Hadoop is benchmarked here. Other changes were 

introduced in the version two release such as enhanced security and a backup name 
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node, which mitigates the effect of having the name node as the single point of failure 

in the system but none of these enhancements is benchmarked or used in the testing. 

 

2 CASSANDRA 

Apache Cassandra belongs to a class of cluster-based systems known as “NoSQL”. 

The name stands for Not only SQL and refers to a class of databases that do rely on 

the standard SQL language for querying and managing data. Cassandra stores data 

in a table-like structure called a Column Family. The column family does contain rows 

and columns, but individual rows do not need to include the same number of columns 

as other rows in the same object. This column family structure means that a 

Cassandra database can be used to store data that contains a different number of 

attributes for each row. This capability contrasts with a relational database table 

where each row of a table contains the same number of columns. NoSQL databases 

commonly provide a query language for retrieving data that differs from the ANSI SQL 

used by relational databases. In the case of Cassandra, querying data is 

accomplished with the CQL language that is similar in structure and syntax to the 

SQL language but with a limited number of operators. 

 

Cassandra provides high availability and partition tolerance in the event of a node 

and network failure. Blocks of data are written to nodes in the cluster using “eventual 

consistency”. Eventual consistency means that as data is written to nodes, it can be 

accessed before all the nodes report the successful update or write. This method can 

lead to a situation where queries return different results for the same data, depending 

on which node is queried. A level of tolerance for eventual consistency can be set in 

the configuration files to mitigate this behaviour.  

 

The architecture of Cassandra is described as a ring where all nodes in the cluster 

are peers with no head or coordinator node, which makes Cassandra a very robust 

and resilient option for data storage and processing as there is no single point of 

failure. Data is distributed across the cluster either at random or by ordering the data 

in a certain way according to a user-provided key for each row in a column family. 
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Cassandra clusters are considered scalable with high performance [126] and are 

used in production environments at major organisations such as Netflix, CERN and 

Twitter. The Hadoop MapReduce framework can be configured to retrieve data from 

Cassandra column families, replacing HDFS as the means of data storage. The 

configuration that is usually deployed is to install Cassandra on the Hadoop data 

nodes. In this configuration, each Cassandra node will run a separate version of the 

Hadoop task tracker daemon, which is an efficient configuration as it minimises 

network traffic at the Map task level while utilising Cassandra’s high-performance 

data store. See Figure 36 for how Cassandra fits into a Hadoop-based cluster. It is 

only necessary to change the input and output interfaces to allow MapReduce code 

to read from and write to Cassandra. Therefore, the actual feature detection algorithm 

code is unchanged from that used in Hadoop with HDFS for data storage. 

 

 

FIGURE 40 HADOOP ENVIRONMENT WITH CASSANDRA INSTALLED ON THE DATA 

NODES 
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3 ASTER 

Aster has been chosen as an example of a relational database. It is based on the 

widely used open source Postgres database [127] and shares a common SQL syntax 

with it. The Teradata Corporation acquired the technology in September 2011 and it 

is still known widely as Aster or Asterdata. Several aspects of the Aster database 

make it highly suitable for this research work. Firstly, it is an MPP system with an 

architecture comprising of worker nodes that carry out the processing and store data 

in a distributed fashion, plus a coordinator node. Conceptually the architecture is like 

the Hadoop architecture. As the coordinator node receives queries from clients it 

distributes the query out to the worker nodes which process the query where the data 

is located. Secondly, Aster contains the patented SQL-MapReduce framework that 

allows MapReduce code to execute in parallel using data stored in the relational 

database [128].  

 

This combination of access methods allows a programmer to use the relevant parts of 

the SQL set-based language or Java procedural code as required. The Aster 

MapReduce framework operates in a similar fashion to the Hadoop MapReduce 

framework, with the major differences being in the input and output interfaces. 

Whereas Hadoop reads in and writes out through the passing of key-value pairs, 

Aster achieves these operations by reading data directly from relational tables and 

ensuring that the output from any query is also in the form of a relational table. The 

code written and tested for Hadoop can be compiled ready to run in the Aster 

SQL-MapReduce framework with minimal changes.  

 

As Aster is based on an MPP version of the database software Postgres, it stores 

data in relational database tables. These tables can store data in standard formats 

such as, integers, strings and decimals. The tables are also able to store data in a 

Binary Large Object (BLOB) format; these BLOBs are stored as separate files outside 

the main database tables but are still accessible via standard SQL statements and 

the SQL-MR functions. To benchmark Aster, the mass spectrometer output was 

converted from Thermo Scientific RAW format to the SCMI format described in 

Section 5.3 of this chapter. The base64 strings holding the arrays of mass and 

intensity data could then be processed in a schema on read fashion using the 
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MapReduce algorithm. Figure 37 shows a basic view of the Aster Architecture, the 

queen node is the coordinator; it receives queries and directs them to the worker 

nodes, which are equivalent to Hadoop data nodes. Each worker node contains a mix 

of primary (P) and secondary (S) virtual workers. The virtual workers are a unit of 

CPU, memory and disk space. The secondary workers provide a backup in the event 

of failure, therefore by default all data is mirrored on an Aster system. Aster provides 

separate loader nodes dedicated for data loading tasks and backup nodes for use in 

the Backup and Recovery (BAR) process.  

 

 

FIGURE 41 ASTER ARCHITECTURE 

 

4 HBASE 

HBase is part of the Apache Hadoop ecosystem and as such is usually found ready 

configured on most Hadoop clusters as it is part of the base install. Figure 38 shows 

the Hadoop cluster with HBase services and Zookeeper installed, Zookeeper is a 

cluster coordination tool used by HBase for synchronisation and to provide failover 

support. Google’s Big Table system [129] first proposed in 2006 was the inspiration 

for developing HBase. It runs on top of Hadoop’s HDFS file system and provides a 
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column store in a non-relational format that is like the column families implemented by 

Cassandra. A fast, random access environment is achieved by the HBase 

implementation of table structures, as opposed to the simple file storage of HDFS. An 

HBase table has rows that are indexed by a row key and each row may contain a 

different number columns. Hadoop’s MapReduce framework can read and write 

directly from and to HBase tables. To enable this, the Java MapReduce code must be 

changed to use the HBase interface instead of the HDFS text based input and output 

format. 

 

 
FIGURE 42 HADOOP CLUSTER INCLUDING THE HBASE SERVICES 

 

HBase tables are automatically distributed across the cluster nodes (a process known 

as sharding) by grouping rows into clusters called regions. For this reason, in HBase 

terminology, the data nodes are called region servers. The default behaviour is to 

load all data into a single region on a single region server and then start to split it into 

multiple regions as the size of the table grows. It is possible to override this behaviour 

and supply information on how the data should be distributed. HBase provides a 

mechanism for this called pre-splitting using the RegionSplitter utility that takes the 

output from a plug-in algorithm. Several algorithms are available, and their 
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effectiveness at minimising data skew is dependent on the distribution of the keys in a 

specific data set. A Java API is supplied for loading and extracting data which allow 

data to be stored either as text or as binary sequence files as with HDFS.  

 

5 SPARK 

Spark was initially developed at the University of Berkeley and is now an Apache 

open source project. Unlike other systems reviewed in this research project, Spark 

does not supply a native data repository. Instead, it reads data from sources held on 

Hadoop or Cassandra clusters into memory ready for processing. Resilient 

Distributed Datasets (RDD) that allow efficient data sharing in memory across 

computations form the basis of the Spark environment. Spark can run as a YARN 

application on Hadoop version 2 and can read from many formats used in clusters 

including HDFS text and sequence files, HBase and Cassandra. Spark employs a 

native processing framework that is similar in principle to the Hadoop MapReduce 

framework.  

 

Spark jobs can be coded in a variety of programming languages including Java, 

Python and Scala. Spark also provides a SQL interface that allows a developer to 

query table-like data structures called data frames in the same program flow as Java 

and Scala. In this way, Spark is like the Aster platform allowing a mix of SQL and 

procedural code to be run on the data, although the implementation is very different. 

As the programming framework differs from MapReduce, there is some refactoring of 

code required before the mass spectrometer pre-processing code can run. The 

changes include altering the input and output interfaces and wrapping the map and 

reduce steps into Spark functions. More detail can be found in Chapter 6 where the 

batch-based process is described in detail. Spark also includes a stream processing 

interface; this allows data to be processed in real-time. Chapter 7 details the use of 

this stream processing interface and the results obtained from it. To run as a YARN 

application, the Spark slave services are installed on the data nodes of a Hadoop 

cluster with the master service installed on the name node. Figure 39 shows the 

Hadoop architecture updated to include the Spark services. This setup allows Spark 
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to run in parallel on the cluster and access data in HDFS, Cassandra and HBase (if it 

is installed). 

 

 

FIGURE 43 HADOOP ENVIRONMENT UPDATED TO INCLUDE APACHE SPARK 

 

6 FLINK 

Apache Flink is a relatively new software package, developed at the University of 

Berlin. Flink is gaining traction as an alternative to Spark and as a capable streaming 

data processing platform. Like Spark, Flink is an execution engine that can run as a 

YARN application on a Hadoop cluster. Although Flink can run as a standalone 

system, when operating on a Hadoop cluster YARN takes control of scheduling and 

resource allocation. The control from YARN is necessary if the cluster is a 

multi-tenanted environment with many users or systems accessing data and 

resources at the same time.  
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Superficially Flink and Spark are very similar; they are both capable of parallel 

processing, have Scala, Java and Python APIs and use in-memory processing for 

intermediate results. However, at the time of writing Flink has an advantage over 

Spark in stream processing. Whereas Spark processes streams of data in 

mini-batches, Flink uses a true streaming approach; this means that data is 

processed record by record as it arrives from the stream. This method of handling 

data streams is the reason for the inclusion of Flink as a platform to be researched 

during this work. The results of the streaming process testing and benchmarking can 

be found in Chapter 7 of this thesis. The differences in performance between Flink 

and Spark have been studied, and the results published [130]. A comprehensive set 

of results showed that in many cases for batch processing the elapsed times are 

similar between the two. However, some significant differences are noted in the 

method and efficiency of real-time stream processing, mainly due to Flink’s pipelined 

execution, which allows tasks to be executed concurrently where possible. Figure 40 

shows the Hadoop environment updated to include Flink; note the similarity with 

Figure 39 which shows the same environment but with Spark installed.  

 

FIGURE 44 HADOOP ENVIRONMENT UPDATED TO INCLUDE APACHE FLINK 
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7 KAFKA 

Unlike Flink and Spark, Kafka is not an execution engine. It does not process data 

and perform complex transformations on it. Instead, Kafka is a distributed 

publish-subscribe messaging system. During this research, Kafka is used to publish a 

stream of data to which the stream processing engines can subscribe. Once 

subscribed, data is received record by record in a constant flow. Using Kafka, it was 

possible to simulate the situation where mass spectrometers could stream out the 

results from an experiment as they were created instead of writing them to a file on 

disk that can only be accessed when the experiment is complete. Kafka was originally 

developed by the online social media company LinkedIn before being open-sourced 

and becoming an Apache Foundation project in 2011. In common with other 

publish-subscribe messaging systems, Kafka is organised by topics.  

 

A topic is a collection of data that is published as a stream; for example, the data from 

a single proteomics experiment could be a topic, or a group of mass spectrometers 

could all publish their data to the same topic. In the Kafka environment records of 

data are called messages and are stored in a log for a set amount of time. This 

logging allows for recovery of data in a distributed environment in case of 

communication or server failure. The important point is that Kafka can be configured 

so that the streamed data is not lost and processing of the complete dataset can be 

continued later. Kafka can support many consumers so that in a complex 

environment many topics can be published and many subscribers can be consuming 

and processing the messages simultaneously. As part of this research, Kafka was 

used to simulate mass spectrometers streaming their data out directly, as opposed to 

the current situation where the output data is saved to disk. Apache Flink was then 

used to process the data in real-time. The cluster architecture including the Kafka 

component is show in Figure 41. 
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FIGURE 45 REAL-TIME ARCHITECTURE USING KAFKA 
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APPENDIX B – FEATURE DETECTION PROCESS 

For the purposes of reproducibility, the setup and process for feature detection that 

was used in this research is presented in this appendix. 

HARDWARE AND SOFTWARE 

The cluster used for all the benchmarks was made up of one name node and three 

data nodes for all benchmarks except for Aster which used a similar cluster with one 

Queen and three worker nodes. Note that additional benchmarks were also run on a 

seven node Aster cluster. The specification for the types of node are as follows 

  

Name/Queen Nodes 

8-core Xeon E5-2670 @ 2.6GHz.  

512Gb Ram 

 

worker/Data Nodes 

6-core Xeon E5-2670 @ 2GHz.  

256Gb Ram 
 

Software 
Hadoop version  2.4 

Cassandra Version  2.1.2 

Aster Version  6.2 

HBase Version  0.98.9 

Spark Version  1.6.1 

Flink Version   1.0 

Kafka Version  2.10 

Java Version   1_8.0_77SE 
 

Code is available at the Github repository https://github.com/chillman99/phd 

Data Is available online at this URL http://bit.ly/2BhqLdx  

 

 



210 

EXECUTING THE PROCESS 

Loading and Parsing Files  
From Local File System to Local File System: 

java -jar parsemzML.jar local <file>.mzml 

<localdir>/<file>.scmi  

Example: 
java -jar parsemzML.jar local phd/data/myfile.mzml 

phd/data/myfile.scmi  

 

From Local File System to Hadoop 
java -jar parsemzML.jar hdfs <file>.mzml 

<remotedir>/<file>.scmi hdfs://<Hadoop master node IP> : <port> 

Example: 
java -jar parsemzML.jar hdfs phd/data/myfile.mzml 

/user/user1/scmifiles/myfile.scmi hdfs://192.168.100.10 9000 

 

From Local File System to Cassandra 
java -jar parsemzML.jar Cassandra <file>.mzml <Cassandra 

column family> <Cassandra IP address><Cassandra keyspace>  

Example 
java -jar parsemzML.jar cassandra myfile.mzml scandata 

192.168.100.10 phd 

 

From Local File System to HBase 
java -jar parsemzML.jar hbase <file>.mzml <HBase table> 

<HBase IP address> <port> 

Example 
java -jar parsemzML.jar hbase myfile.mzml scandata 

192.168.100.10 2181 
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RUNNING THE BATCH CODE 

Hadoop HDFS map tasks only (for testing) 
hadoop jar ../code/PeakPick.jar hdfsmap phd/flat1000 phd/flatout 
 
Hadoop HDFS 
hadoop jar ../code/PeakPick.jar hdfs phd/flat1000 phd/flatout 
 
Hadoop HBase 
hadoop jar ../code/PeakPick.jar hbase node0  
 
Hadoop HBase write results to HDFS (not used) 
hadoop jar ../code/PeakPick.jar hbasehdfs node0 phd/flattestout13 
 
Hadoop Cassandra 
hadoop jar ../code/PeakPick.jar cassandra node0 phd/flattestout42 
 
Flink 
./flink run ../code/PeakPickFlink.jar phd/flat phd/flinkmap -c 
PeakPickFlink -m node0 –p42 
 
Spark 
SPARK_JAR=/usr/local/spark/lib/spark-assembly-1.2.0-hadoop2.4.
0.jar HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop 
/usr/local/spark/bin/spark-submit --master yarn --deploy-mode 
cluster --class peaks.PeakPickSpark ../code/PeakPickSpark.jar 
"hdfs://node0:9000/user/user1/phd/flattest/100312_100.txt" 

Aster 
CREATE TABLE phd.peaks2d DISTRIBUTE BY HASH(pkey) 
AS SELECT * 
    FROM PeakPick2D( 
        ON  (SELECT scan, mslvl, rettime, mzarray, intensityarray 
              FROM scandata_100312 
              WHERE mslvl = 1)); 
 

CREATE TABLE phd.peaks3D DISTRIBUTE BY HASH(charge) AS 
SELECT charge, mass, intensity, rt 
FROM PeakPick3D( 
      ON PeakPick2D)  
      Partition by newindex 
      order by scan);   
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RUNNING THE STREAM CODE 

Run Kafka to simulate the stream 
java -cp  StreamScmiFile.jar StreamScmiFile 127.0.0.1:9092 

127.0.0.1:2181 PhD/data/100312_100.scmi scmiStream 500 

Run a console consumer to monitor output (optional for testing) 
/Users/localadmin/Documents/working/kafka/kafka_2.10-0.8.2.1/b

in/kafka-console-consumer.sh   --zookeeper localhost:2181   

--topic scmiStream 

Run Flink code to process stream and create output (note the topic name scmiStream 

is hardcoded in the source code) 
./flink run ../code/PeakPickFlink.jar -m node0 –p42 

OUTPUT 

Depending on the mode of operation, the output will either be file in HDFS at a 

specified location, a file on the local system of hadoop, a table in HBase or a column 

family in Cassandra. The output is tab delimited if in a text format with each row 

describing a detected 3D peak and consisting of the following columns. 

 

Column 1 charge 

Column 2 mass 

Column 3 intensity 

Column 4 retention time 
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APPENDIX C – SONARQUBE CODE CHECKING OUTPUT EXAMPLE 

The SonarQube software scans program code and produces a web-based output that 

lists the issues it finds in several categories: 

Bugs  issues with the code that can prevent correct functioning

 

In the above example an attempt to directly compare floating point values has been 

detected, which can lead to an incorrect result.  

Vulnerabilities code that can cause a security issue

 

This example shows a variable has been declared as public and static but not final, 

meaning that other code can modify its value. 

Code Smells This refers to bad practice that does not cause incorrect results 

but could mean that code is difficult to understand or inefficient 

 

Here, adding the @override annotation is standard practice and the 2nd example 

shows inefficient coding that introduces an unnecessary temporary variable. 

 

 

The web console displays the complete analysis including the “Debt” measured in 

days. This is the estimated amount of time needed to fix all of the issues detected. 
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FIGURE 46 SONARQUBE DASHBOARD 
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FIGURE 47 SONARQUBE CODE DETAIL 

Drilling into the issues allows the users to see the actual code and the issues that 

need to be fixed. The interface also displays a categorisation of each issues such as 

“convention”, “bad practice”, “brain-overload” which is a synonym for complexity in the 

code. 
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APPENDIX D – DATA STORAGE SCHEMAS 

This appendix details the Data Schemas used in the various storage systems that 

were used in this research 

Aster 
As Aster is a relational database based on the Postgres system, the Aster schema 

consisted of a relational table mirroring the format of the SCMI text file. The SQL 

Data Definition Language (DDL) is detailed below: 
 CREATE TABLE scandata( 

  fileName varchar, 

  scan int, 

  mslvl int, 

  retTime double, 

  precursorIonMz double, 

  precursorIonIntensity double, 

  precursorIonCharge int, 

  mzArray varchar, 

  intensityArray varchar) 

  DISTRIBUTE BY HASH(scan); 

The Aster DDL syntax is mostly ANSI standard SQL with the addition of the 

DISTRIBUTE BY clause. This clause specifies how data is distributed between 

the nodes of a cluster. In this case, the HASH(scan) clause specifies that a Java 

hash code generated from the scan number is used; in other words the scans are 

distributed evenly around the cluster. 

 

 

Cassandra 
The Cassandra syntax for creating a column family is similar to the SQL syntax. 

  
CREATE KEYSPACE phd WITH REPLICATION = { 'class' : 

'SimpleStrategy', 'replication_factor' :  3 }; 

 

USE phd; 
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CREATE TABLE scandata( 

  fileName varchar, 

  scan int, 

  mslvl int, 

  retTime double, 

  precursorIonMz double, 

  precursorIonIntensity double, 

  precursorIonCharge int, 

  mzArray varchar, 

  intensityArray varchar, 

  PRIMARY KEY (scan, fileName)); 

 

Here a Keyspace is like a Schema in a relational database in that it specifies an 

area of the system where related tables can be referenced. Cassandra handles 

the distribution of the data automatically as the data is loaded. 

 

 
HBase 
HBase uses a different syntax in that the column families are specified but not the 

individual columns: 

 
create 'scandata', 'meta', 'array', 'precursor' 

 

This statement means that a table called scandata is created with three sections 

or column families. The column names themselves are referenced in the load and 

query statements. The fields from the source file are arranged in the column 

families as follows: 
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⁃ Meta 
 Scan 

 Mslvl 

 rt 

⁃ Array 
 Mzarray 

 Intensityarray 

⁃ Precursor 
 PrecursorIonMz 

 PrecursorIonIntensity 

 PrecursorIonCharge  
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APPENDIX E – SYSTEM CONSOLES 

This appendix shows the browser-based consoles used to monitor and control the 

processing frameworks used in this research. 

 

Figure 48 shows the Hadoop web console, this view shows basic information on 

the jobs that have run, the job names are hyperlinks that lead to detailed 

information child pages. 

 
FIGURE 48 HADOOP WEB CONSOLE 

 

Figure 49 shows the detailed information of a job, listing the individual map tasks 

and their execution times, a similar view is available for the reduce tasks. 
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FIGURE 49 DETAILED INFORMATION ON A MAPREDUCE JOB 

 

Figure 50 shows the management console for an Aster system, the landing page 

displays general system information such as current load, disk space usage and the 

last processes that ran. Figure 51 shows a Job detail page which displays the 

execution time and the SQL statement that was executed.  

 

 
FIGURE 50 ASTER MANAGEMENT CONSOLE 
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FIGURE 51 ASTER JOB PAGE 

 

Both the Aster and the Hadoop systems include a tool called Ganglia which is an 

add-on system monitoring tool. Ganglia allows a finer degree of control than the 

total run time when investigating performance on a distributed system. Using 

Ganglia, it is possible to view individual nodes and CPUs within nodes to see task 

completion times, memory usage and disk access.  

 

Figure 52 is an example report generated from Ganglia, it is possible to select 

from many different system metrics and display them per node in the cluster in 

this format. This allows a fine degree of system monitoring and troubleshooting. 

 

Note that Spark and Flink also supply web based monitoring consoles, which 

show similar information to those of Hadoop and Aster: these are not shown here. 
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FIGURE 52 GANGLIA REPORT 

 

 

 




