

University of Dundee

DOCTOR OF PHILOSOPHY

Real-time Feature Detection in Mass Spectrometer Data

Hillman, Chris

Award date:
2018

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. Jan. 2021

https://discovery.dundee.ac.uk/en/studentTheses/92873cb6-6e7a-4c24-a76c-60509590f2d4

i

Real-time Feature Detection in Mass

Spectrometer Data

Christopher Hillman

Doctor of Philosophy

University of Dundee

2018

Copyright of this work belongs to the author unless otherwise identified in the body of the thesis. It is
permitted to use and duplicate this work only for personal and non-commercial research, study or
criticism/review. You must obtain prior written consent from the author for any other use. Any quotation
from this thesis must be acknowledged using the normal academic conventions. It is not permitted to
supply the whole or part of this thesis to any other person or to post the same on any website or other
online location without the prior written consent of the author. Contact the University of Dundee with
any queries about the use or acknowledgement of this work.

ii

TABLE OF CONTENTS

Table of Contents ... ii
List of Figures ... v
List of Tables.. vi
Acknowledgements .. vii
Declarations ... viii

Candidate’s Declaration .. viii
Supervisor’s Declaration ... ix
Supervisor’s Declaration .. x

Abstract .. xi
List of Presentations Given ... xiii
Publications .. xv
Abbreviations ... xvi
1 Introduction .. 1

1.1 Parallel Computing ... 1
1.2 Proteomics .. 3
1.3 Feature Detection .. 4
1.4 Problem Statement ... 5
1.5 Major Contributions .. 7
1.6 Thesis Structure .. 8

2 Parallel Computing .. 9
2.1 Chapter Summary ... 9
2.2 Parallel Processing ... 10
2.3 MapReduce and Hadoop .. 15
2.4 Benchmarking ... 18

2.4.1 Big Data Benchmarks ... 19
2.5 Conclusion .. 21

3 Proteomics ... 22
3.1 Chapter Summary ... 22
3.2 Proteomics .. 23
3.3 Mass Spectrometry ... 25
3.4 Data Processing Challenges .. 31

3.4.1 Data File Format .. 32
3.4.2 Data Volume .. 34
3.4.3 Complexity ... 35
3.4.4 Feature Detection ... 36
3.4.5 Database Lookup ... 36
3.4.6 Sharing of Results .. 37

3.5 Overview of Feature Detection Algorithms ... 38
3.5.1 Detailed description of the Feature Detection Algorithm 41

3.6 Conclusion .. 57
4 Parallel Computing for Proteomics .. 58

4.1 Chapter Summary ... 58
4.2 Hadoop and MapReduce .. 59
4.3 Current Use of Parallel Computing for Proteomics .. 63
4.4 Use of GPUs for increasing performance.. 68

iii

4.5 Proteomics, Cloud and Big Data .. 69
4.6 Conclusion and Research Question .. 73

5. Methodology ... 74
5.1 Chapter Summary ... 74
5.2 Validity and Accuracy ... 75
5.3 Data Formats for Parallel Processing .. 76

5.3.1 JSON ... 78
5.3.2 Avro ... 80
5.3.3 Parquet .. 81
5.3.4 File Conversion .. 82

5.4 Coding ... 83
5.5 MapReduce Implementation of the Feature Detection Algorithm 85
5.6 Development Environment ... 93

5.6.1 Code Development... 93
5.6.2 Source Control ... 93

5.7 Test Environment .. 95
5.7.1 Hardware Specification .. 95
5.7.2 Operating System... 97
5.7.3 Environment ... 97
5.7.4 Creation ... 98
5.7.5 Scripting ... 98

5.8 Performance Testing Environment .. 100
5.9 Systems Tested ... 101

5.9.1 Types of System .. 101
5.9.2 Combinations of Systems ... 103
5.9.3 Other Possible Configurations .. 104

5.10 Test Data .. 105
5.11 Conclusion .. 109

6 Batch Processing... 110
6.1 Chapter Summary ... 110
6.2 Introduction ... 111

6.2.1 Real-Time .. 111
6.2.2 Data Formats ... 112
6.2.3 Batch Processing ... 114
6.2.4 System and Software ... 117

6.3 Implementation Details ... 118
6.3.1 Peak Distribution .. 118
6.3.2 Comparison with Multi-Threaded Software ... 122
6.3.3 Performance Tuning ... 123
6.3.4 Code Quality .. 127
6.3.5 Schemas .. 127

6.4 Experimentation .. 128
6.4.1 Overview of the Experimentation .. 128
6.4.2 What was Tested ... 128
6.4.3 How Results were Collected ... 128
6.4.4 Validation ... 129
6.4.5 Discussion on Partition Testing .. 130
6.4.6 Effect on Time to Process of Partitions and Reducers 132
6.4.7 Size of Partitions and the Effect On Accuracy of Results 132
6.4.8 Boundary Peaks and the Affect on Processing ... 133
6.4.9 Size of Overlaps ... 134

6.5 Results ... 137
6.5.1 Tables of Results ... 137

iv

6.5.2 Validation ... 143
6.6 Discussion ... 147

6.6.1 Partitioning ... 147
6.6.2 Choosing the Correct Number of Reducers .. 148
6.6.3 ISO Peak Thresholds vs Time to Complete and Accuracy 148
6.6.4 Enhancements ... 149

7 Stream Processing .. 150
7.1 Chapter Summary ... 150
7.2 Introduction ... 151

7.2.1 Stream Processing ... 151
7.2.2 Stream Processing platforms ... 151
7.2.3 Data Management .. 152
7.2.4 Stream Specific Issues ... 153
7.2.5 Streaming Data in Practice ... 154

7.3 Implementation Details ... 155
7.3.1 Code Changes from Batch ... 155
7.3.2 Batch Partitions vs Streaming Windows ... 156
7.3.2 De-duplication .. 159

7.4 Experimentation .. 159
7.4.1 Overview .. 159
7.4.2 Validation ... 161

7.5 Results ... 162
7.6 Discussion ... 169

7.6.1 Possible Improvements .. 169
8 Discussion ... 171

8.1 Chapter Summary ... 171
8.2 Research Question ... 172
8.3 Original Contributions .. 174
8.4 Batch vs Streaming Results ... 176
8.5 Design of an Ideal environment ... 179

8.5.1 Batch Processing ... 179
8.5.2 Stream Processing ... 180

8.6 Benefits And Future Work .. 182
8.7 Conclusions .. 185

References .. 186
Appendix A – Systems used in the research .. 196

1 Hadoop .. 196
2 Cassandra.. 199
3 Aster .. 201
4 HBase .. 202
5 Spark ... 204
6 Flink ... 205
7 Kafka .. 207

Appendix B – Feature Detection Process ... 209
Hardware and Software... 209
Executing the Process .. 210
Running the Batch code .. 211
Running the Stream Code ... 212
Output ... 212

Appendix C – SonarQube Code checking output example 213
Appendix D – Data Storage Schemas .. 216
Appendix E – System Consoles ... 219

v

LIST OF FIGURES

Figure 1 High level process overview - the stages of protein identification 25
Figure 2 Schematic of a Q Exactive mass spectrometer - source Thermo Scientific [139] .. 27
Figure 3 Mass Spectrometers in the Lamond Laboratory, University of Dundee 29
Figure 4 A Section of a single mass spectrometer spectrum ... 30
Figure 5 high level schematic of the XML-based mzML data file format 33
Figure 6 Centroid vs profile spectrum data .. 34
Figure 7 Illustration of the complete set of peaks (features) in a 3D view 40
Figure 8 A section of a single mass spectrometer scan .. 41
Figure 9 Example 2D peak ... 42
Figure 10 Example Overlapping 2D Peaks ... 43
Figure 11 Illustration of peak detection ... 44
Figure 12 Peaks within an isotopic envelope .. 47
Figure 13 2D peaks with an example chain of 2D peaks circled .. 49
Figure 14 Illustration of smoothing in 3D peak picking .. 51
Figure 15 Word Count example of a MapReduce job .. 61
Figure 16 2D peak picking as a map task ... 88
Figure 17 Skewed distribution of 2D peaks ... 89
Figure 18 Examples of peaks occuring at partition boundaries ... 90
Figure 19 3D peak picking as a reduce task, .. 92
Figure 20 Complete cluster environment... 104
Figure 21 Peak Distribution in file 371.RAW ... 119
Figure 22 Peak distribution in file PT2441S1FP1A1.RAW .. 120
Figure 23 Peak distribution in file 561L1AIL01.RAW ... 120
Figure 24 Peak distribution in file 561L1AIL07.RAW ... 121
Figure 21 Scan without partitions .. 130
Figure 22 Scan split into partitions for intra-scan processing... 131
Figure 23 Illustration of overlapped partitions .. 134
Figure 24 Five 2D isotopic envelopes arranged in processing partitions 135
Figure 25 Sliding processing windows and a 3D feature ... 158
Figure 26 Count of 2D peaks by scan for file 561AIL00 .. 162
Figure 27 Count of 2D peaks for file PT2441S1FP1A1 ... 163
Figure 28 Count of 2D peaks for file 371 ... 163
Figure 29 Count of 2D peaks for file 100312_EXP229_GFPIP_5...................................... 163
Figure 30 Histogram of count of 2D features for file PT2441S1FP1A1 166
Figure 31 Histogram of count of 2D features for file 100312_EXP229_GFPIP_5 166
Figure 32 Histogram of count of 2D features for file 371 ... 166
Figure 33 Histogram of count of 2D features for file 561AIL00 .. 167
Figure 34 Distribution of replicated data blocks in HDFS .. 197
Figure 35 Architecture of a Hadoop Cluster .. 198
Figure 36 Hadoop environment with Cassandra installed on the data nodes 200
Figure 37 Aster architecture .. 202
Figure 38 Hadoop cluster including the HBase services ... 203
Figure 39 Hadoop environment updated to include Apache Spark 205
Figure 40 Hadoop environment updated to include Apache Flink 206
Figure 41 Real-Time architecture using Kafka .. 208
Figure 42 SonarQube dashboard .. 214
Figure 43 SonarQube code detail ... 215
Figure 44 Hadoop web console .. 219
Figure 45 Detailed information on a MapReduce job .. 220
Figure 46 Aster management console .. 220
Figure 47 Aster job detail page ... 221
Figure 48 Example Ganglia report .. 222

vi

LIST OF TABLES

Table 1 Data points for example 2D peak ... 42
Table 2 Data points for example overlapping peaks .. 43
Table 3 Parameters used in the feature detection algorithm ... 46
Table 4 Mass shift by charge for isotopic envelope calculation ... 47
Table 5 Comparison of I/O data for SSD and spinning disks ... 96
Table 6 List of files used for testing and benchmarking ... 106
Table 7 List of file sizes conversion timings .. 107
Table 8 Maxquant timings for feature detection... 112
Table 9 Maxquant multi-threaded behaviour ... 122
Table 10 Dinosaur multi-threaded behaviour .. 123
Table 11 Timings for 2d feature detection ... 124
Table 12 Results of performance tuning the Java code ... 126
Table 13 Benchmark Hadoop / HDFS ... 137
Table 14 Benchmark Hadoop / HBase .. 138
Table 15 Benchmark Hadoop / Cassandra ... 138
Table 16 Benchmark Aster 3 node cluster .. 139
Table 17 Benchmark Aster 7 node cluster .. 139
Table 18 Benchmark Flink .. 140
Table 19 Benchmark Spark... 141
Table 20 Benchmark comparison.. 141
Table 21 Differences in timings between flink and Hbase, Flink and HDFS 142
Table 22 Example of a confusion matrix ... 144
Table 23 Validation of parallel algorithm output... 145
Table 24 Timings for stream window processing with Apache Flink 164
Table 25 Minimum, Maximum and Average number of 2D features per scan 165
Table 26 Stream processing results .. 168

vii

ACKNOWLEDGEMENTS

I am particularly grateful to Professor Mark Whitehorn who has been my mentor and

supervisor for the past eight years whilst I studied part-time for MSc and PhD

degrees. Mark has been a constant source of advice, support and encouragement

and has always made himself available whenever I needed him. Under Mark’s

supervision I have learned the true meaning of research and developed many skills.

Amongst these skills, being able to communicate complex ideas effectively in writing

and being able to think critically about others work have helped me in business and

academic life. Without Mark’s influence, I would never have embarked on the journey

that led me to write this thesis. Thanks also go to Andy Cobley who has been my

second supervisor through most of the PhD process. Andy’s knowledge of the

University of Dundee and the academic system in general have been invaluable.

Andy has also been a major source of inspiration and support concerning all things

technical. My thanks also go to Dr. Karen Petrie for stepping in as my supervisor at

the end of process and providing support and guidance to ensure that I could submit

this thesis.

The support and help from Professor Angus Lamond and his team in the life sciences

laboratory at the University of Dundee have made a major contribution to the success

of this research. Professor Lamond and his team have provided me with all the data

and domain expertise that I needed, they have always been available for help,

guidance and a cup of tea in the kitchen! I hope to continue to meet them on a regular

basis.

I must also thank all my family and friends who have put up with me being absent,

vacant and generally unavailable for the past six years while I was engrossed in the

research and particularly in the final eighteen months while I was writing up the

thesis. Finally, the biggest thanks go to my wife Heather, considering that we have

been married for twenty-five years and I’ve been a part-time student for eight of them

gives an idea of the sacrifices she has made so that I could reach this point. Without

her support, encouragement and drive I could never have reached the end and

completed this work.

viii

DECLARATIONS

CANDIDATE’S DECLARATION

I, Christopher Hillman, hereby declare that I am the author of this thesis; that I have

consulted all references cited; that I have done all the work recorded by this thesis;

and that it has not been previously accepted for a higher degree.

ix

SUPERVISOR’S DECLARATION

I, Mark Whitehorn, hereby declare that I am the supervisor of the candidate, and that

the conditions of the relevant Ordinance and Regulations have been fulfilled.

x

SUPERVISOR’S DECLARATION

I, Karen Petrie, hereby declare that I am the supervisor of the candidate, and that the

conditions of the relevant Ordinance and Regulations have been fulfilled.

xi

ABSTRACT

Proteomics has become an essential component of systems biology in the quest for

personalised medicine. Each of us has a unique biology and can respond in different

ways to medical treatments. By analysing the complete set of proteins present in

humans the field of life sciences is moving closer to the goal of being able to

recommend specific drugs to specific individuals thus greatly enhancing the

probability of a cure.

Extensive pre-processing of the complex files created by mass spectrometers during

proteomics experiments is required before it is possible to gain any insight from them.

A typical mass spectrometer run may produce forty thousand scans of data each

containing around two thousand data points. If this data were to be laid out in a

relational database schema, it would equate to eighty million rows of data per

experiment. In a laboratory containing multiple machines running several times a day,

this figure quickly reaches into the tens of billions of rows, which is a very significant

amount of data to process. Many tools currently exist to carry out this processing but

most focus on batch-based workloads where the mass spectrometer finishes its

analysis, and then the data is processed on a file-by-file basis. The processing time

can vary from hours to days leading to a substantial time lag before the results of the

experiment can be examined. In addition, life science laboratories often carry out this

work on the local storage of PC hardware creating a significant data management

problem.

This research investigates the potential for processing proteomics data in near

real-time using a parallel system. The focus is on the feature detection part of the

mass spectrometer processing pipeline and how this could become part of an

architected cloud-based or on premise solution. The experimentation involves using

the MapReduce framework to enable running the feature detection algorithm in

parallel on a horizontally scalable cluster of servers. Systems tested include Hadoop,

Flink and Spark in both a batch and real-time streaming mode.

xii

The work shows that it is possible to detect features in the mass spectrometer data

using an “intra-file” parallelism. The term intra-file means that a data file is split into

sections, which are then processed independently on the cluster and is a vital part of

enabling feature detection in a streaming fashion. This is a major differentiation

between this research and most current processing methods, which process

complete files in a serial fashion. This work highlighted that it is highly relevant to

consider the laboratory as an Internet of Things. This involves the data streaming

from the mass-spectrometers in real-time to a central computing platform where the

data processing is completed with contemporary open-source technology.

Consequently, the research described in this thesis points towards the adoption of a

distributed cluster-based architecture which will allow the processing of mass

spectrometer output in real-time as it is generated. Making the results available as

soon as the experiment has completed allows life scientists to iterate over a problem

faster which will lead to quicker paths to insights.

xiii

LIST OF PRESENTATIONS GIVEN

1. 25th April 2012: Co-presenting work on Proteomics processing with

Professor Mark Whitehorn at Teradata Universe conference in Dublin

2. 28th June 2012: Presented MapReduce methods for processing mass

spectrometer data to the Hadoop User group, London

3. 23rd August 2012: Big Data training for Teradata, used mass spectrometer

data processing as an example of the differences between SQL and

MapReduce code

4. 17th, 18th January 2013: Lectures on Hadoop, MapReduce and the

Hadoop Eco-system to Data Science MSc students

5. 21st February 2013: Presented Data Science Discovery with MapReduce

and SQL at the Data Science meetup, London

6. 5th March 2013: Presented general session on Data Science using mass

spectrometer processing as an example at the Hortonworks Hadoop

breakfast briefing, London

7. 20th March 2013: Presented general session on Data Science using Mass

spectrometer processing as an example at the Hadoop Summit,

Amsterdam

8. 17th April 2013: Presented processing mass spectrometer data processing

in Hadoop at Teradata Universe conference, Copenhagen

9. 25th April 2013: Presented work so far at the PhD Symposium, Dundee

10. 11th November 2013: Strata Conference London, Presentation on

MapReduce techniques, use Proteomics as an example of efficient

shuffling of data around a cluster

11. 13th December 2013: Birkbeck College, University of London guest lecture

to MSc in cloud computing students on MapReduce concepts and uses with

scientific data, using mass spectrometer data as an example.

xiv

12. 11th February 2014 – Teradata Universe Dubai

13. 12th December 2014: Birkbeck College, University of London guest lecture

to MSc in cloud computing students on MapReduce concepts and uses with

scientific data, using mass spectrometer data as an example

14. 15th, 16th January 2015: Lectures on Hadoop, MapReduce and the

Hadoop Eco-system to Data Science MSc students

15. 26th April 2015: Presented work in progress at the PhD Symposium,

Dundee

16. 13th October 2015: Presented real-time mass spectrometer data

processing with Apache Flink at Flink Forward conference, Berlin.

17. 13th, 14th January 2016: Lectures on Hadoop, MapReduce and the

Hadoop Eco-system to Data Science MSc students

18. 19th April 2016: Presented real-time processing of mass spectrometer data

at Teradata Universe conference, Hamburg.

19. 24th May 2016: Presented work in progress at the PhD Symposium,

Dundee

20. 19th April 2016: Presented real-time processing of mass spectrometer data

at Teradata Partners conference, Atlanta.

21. 5th December 2016: Presented real-time processing of mass spectrometer

data at IEEE Big Data conference, Washington

22. 17th, 18th January 2016: Lectures on Hadoop, MapReduce and the

Hadoop Eco-system to Data Science MSc students

23. 24th May 2017: Presented work in progress at the PhD Symposium,

Dundee

xv

 PUBLICATIONS

1. Hillman, Chris; Ahmad, Yasmeen; Cobley, Andrew; Whitehorn, Mark "Near

Real-Time Processing of Proteomics Data Using Hadoop." Big Data, vol. 2,

no. 1, pp. 44-49, 2014

Publication based on the research described in chapter 5 (algorithm) and

chapter 6 of this thesis

2. Hillman, Chris; Cobley, Andrew; Petrie, Karen; Whitehorn, Mark " Real-Time

processing of proteomics data. The internet of things and the connected

laboratory" 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, pp. 2392-2399, IEEE, 2016.

Publication based on the research described in chapters 6 and 7 of this thesis

xvi

ABBREVIATIONS

AMC Aster Management Console
API Application Programming Interface
BAR Backup and Recovery
BLOB Binary Large Object
BSP Bulk Synchronous Parallel
CPU Central Processing Unit
CQL Cassandra Query Language
DDL Data Definition Language
DLL Dynamic Link Library
EPD Enclyclopedia of Protein Dynamics
ESI Electo-Spray Ionisation
ETL Extract Transform Load
FIFO First in First out
FLOPS Floating Point Operations per Second
FT-MS Fourier Transform Mass Spectrometry
GFS Google File System
GPU Graphics Processing Unit
GUI Graphical User Interface
HDFS Hadoop File System
HPC High Performance Compute
IDE Integrated Development Environment
JIT Just in Time
JSON Javascript Object Notation
LC-MS Liquid Chromatography Mass Spectrometry
LDBC Linked Data Benchmark Council
MIAPE Minimum Information about a Proteomics Experiment
MISD Multiple Instruction, Single Dataset
MPI Message Passing Interface
MPP Massively Parallel Processing
MS/MS Tandem Mass Spectrometry
MS2 Tandem Mass Spectrometry
M/Z Mass to charge ratio
PaaS Platform as a Service
PTM Post Translational Modification
PVM Parallel Virtual Machine
RAM Random Access Memory
RDBMS Relational Database System
RDD Resilient Distributed Dataset
RT Retention Time
SaaS Software as a Service

xvii

SILAC Stable Isotope Labelling with Amino Acids in Cell Culture
SIMD Single Instruction, Multiple Dataset
SLA Service Level Agreement
SPC Storage Processing Council
SPEC Standard Performance Evaluation Corporation
SQL Structured Query Language
SSD Solid State Drive
TOF Time of Flight
TPC Transaction Processing Council
TPP Trans-Proteomic Pipeline
YARN Yet Another Resource Negotiator

 YCSB Yahoo Cloud Serving Benchmark

1

1 INTRODUCTION

1.1 PARALLEL COMPUTING

The challenges of ever-increasing data volumes, the complexity of data types and

high rates of data ingestion have led to horizontally scalable compute clusters

achieving a high profile in academia and business; the whole field has recently been

known simply as Big Data. Many data storage and processing challenges exist with

scientific data, including proteomics [1], that are directly relevant to Big Data. Another

term, the "Internet of Things" is used to describe connected devices and shares many

challenges with Big Data, for example, large complex data sets generated in a short

space of time [2]. As more machines and devices emitting sensor and other data are

connected via networks, the challenge of processing and storage continues to

increase year on year.

The concepts of parallel distributed computing have had a long history [3]. Scaling in

computer terms can be either “scaling vertically” also known as “scale up” or “scaling

horizontally” also known as “scale out”. Vertical scaling involves adding faster CPUs

with more cores, faster memory and larger storage to a single computer. Horizontal

scaling involves adding more computers which are connected via a network.

Connected clusters of computers require software specifically designed to support

parallel computation and several key frameworks, for example Message Passing

Interface (MPI) and Bulk Synchronous Parallel (BSP) [4], have been popular and

used in supercomputers such as the Cray and general purpose High Performance

Compute (HPC) environments. More recently, the focus on parallel computation

using clusters can be traced to the Google file system (GFS) and the MapReduce

processing model described in Dean and Ghemawat’s paper [5] published in 2004.

This line of research led to the creation of Hadoop by Doug Cutting and the resulting

eco-system that has built up around the core Hadoop engine. Hadoop has since

become a major player in cluster computing in both business and academic

environments. The MapReduce framework is distinguishable from parallel processing

frameworks such as MPI and BSP in that it operates in a “shared nothing”

environment. Shared nothing means that individual computation tasks operating in

2

parallel cannot communicate with other tasks and must operate in complete isolation.

This thesis argues that a modern life sciences laboratory could benefit from an

Internet of Things architecture where the instruments in the laboratory are connected

to a central processing cluster, either locally hosted or cloud-based. The ability to see

results from experiments in real-time as the measurements are taking place has

many advantages including quality control and comparison to previous experiments.

In addition, simply seeing results faster allows for more iterations and more time for

experimental design.

In many cases, it is far from simple to take an existing process that runs on a PC and

attempt to create a parallel algorithm capable of running on a distributed cluster.

Often new algorithms need to be designed to allow efficient parallel processing, a

problem compounded by a shared nothing environment where only part of the data is

visible to an individual task. Other issues that arise when exploiting systems such as

Hadoop include the availability of skills to program and support them [6].

3

1.2 PROTEOMICS

Proteomics can be defined as the large-scale study of protein properties, such as

expression levels (how much of the protein exists in the sample), modifications and

interactions with other proteins. By studying proteins and their properties it is possible

to gain a deeper understanding of how proteins should function in healthy cells

compared with diseased cells. This knowledge is essential if better healthcare and

personalised medicine are to become a reality. Personalised medicine allows for the

best treatment to be administered to a patient with a far greater chance of success

and fewer contraindications. Proteomics is a key part in providing this personalisation

[7]. The goal of mapping out the entire human proteome is a more complex task than

that of the mapping the human genome, which has already been achieved. The

number of proteins is estimated at between one hundred thousand, and one million

[8], many times more than the number of genes. The proteome is also dynamic,

constantly changing in response to environmental factors. Identification and

quantification of the proteome using techniques such as liquid chromatography-mass

spectrometry (LC/MS) allows Life Scientists to investigate how different environments

and compounds affect the protein expression in cells [57][9].

The main instrument used to measure the type and quantity of proteins in cells during

proteomics experiments is a mass spectrometer. Mass spectrometers work by

ionizing molecules to induce a charge, which causes them to be attracted to a

detector [66][10]. Complete protein molecules are too large to be processed by most

mass spectrometers therefore the proteins are broken up by a chemical process into

smaller pieces called peptides. It is these peptides that are detected by the machines

and recorded in the output. The larger, heavier peptides travel more slowly than the

smaller, lighter ones and thus the different types of molecule separate out and arrive

at the detector at different times.

4

1.3 FEATURE DETECTION

A typical experimental sample takes between two and four hours to process and on

completion the mass spectrometer produces data in the form of spectra. These

spectra require extensive processing before Life Scientists can interpret the results.

Currently most spectra are processed using PC-based software and the time to

produce the output can be measured in days. The processing itself involves several

distinct steps; this thesis focuses on the first step, feature detection (also known as

peak-picking). The reason for this focus is that the second step, peptide identification,

has already been the subject of published research, described in Chapter 3, and

several parallel solutions exists, for example the Hydra solution published by Lewis et

al. [79]. Feature detection in mass spectrometer data is a smaller task than the later

step of peptide identification, however the feature detection process still takes a

significant amount of time to complete.

Feature detection involves finding the peaks in spectra produced during the individual

mass spectrometer scans (which are taken approximately five times a second) and

then matching these peaks over time [11]. These features (or peaks) represent the

peptide molecules; the goal of the feature detection step is to produce a list of the

mass and abundance of all the peptides in the biological sample. This peptide list is

then used as the input to the protein identification step of the data processing.

The parallel feature detection algorithm developed during this research has been

benchmarked for speed of processing and accuracy of output against MaxQuant.

MaxQuant is a software package created and maintained by the Max Planck Institute

[12]. It is a leader in the field of proteomics data processing and the MaxQuant

package compares favourably with other processing software [13].

5

1.4 PROBLEM STATEMENT

Proteomics is an important branch of life sciences as mapping the human proteome

and how it responds to environmental factors is at the forefront of medical advances

[14].

Currently many researchers store and process data on personal desktop and laptop

computers, which causes two significant problems. Firstly, they must wait for the

results, this can mean hours or even days of delay before results are processed and

available. Secondly, they become involved with complex data management tasks

such as data movement, duplication, reprocessing, backup and recovery.

Mass spectrometers produce data in a vendor proprietary format commonly known as

a RAW file. Since these files typically utilise a complex binary format, the proteomics

community has introduced several standard file-formats for mass spectrometer output

to facilitate storage and data-exchange. The mass spectrometer RAW files include

both mass-to-charge and abundance (known as intensity) data; this data is the basis

of feature detection calculations and contains information about the molecular weight

and quantity of the molecules detected by the mass spectrometer. The RAW files also

contain a great deal of meta-data regarding the conditions of the experiment itself. A

recent and widely accepted data-exchange format is called mzML [15]. mzML has

proven very stable and useful, however, it is an XML based format, which makes it

inefficient for parallel processing. This is because distributing XML files on a cluster

either means keeping the file intact on a single node or providing some mechanism to

ensure the file structure is not compromised when it is split into sections for

distribution. This complication is not present when using simple file formats with one

record per line. To address this, a new data format has been designed during this

research, see Chapter 5, Section 5.3 for details. This new format does not contain the

meta-data and presents the mass and intensity information in a simple row based tab

delimited format which makes it ideal for processing on a distributed cluster.

In a recent paper, major contributors to the MaxQuant software [16] discuss the

relative benefits of a compute cluster over the use of fast “gaming-style” PCs where

the unit of parallelism is at the RAW file level (the results from a single experiment are

6

contained in a single mass spectrometer RAW file). However, in this thesis it is

argued in Chapter 7 that a real-time architecture engineered specifically for the task

of feature detection has many benefits including a faster processing time. It is also

argued in Chapter 6 that the unit of parallelism for processing should be at the scan

level and not at the file level. This more detailed level of parallelism allows the

exploitation of the resources available in larger clusters and near real-time

processing. The proposed solution not only addresses speed issues but also

architectural issues such as minimizing data movement and manual tasks.

7

1.5 MAJOR CONTRIBUTIONS

In summary, the major contributions to knowledge of this thesis are as follows:

1. A parallel implementation of the feature detection algorithm used in the

MaxQuant software written using Java.

2. Validation that intra-file processing in parallel is possible (as opposed to other

research which uses the file as the unit of parallelism). This is important as

intra-file processing makes real-time stream processing a possibility. In this

context one file equates to one run of a mass spectrometer and one

experiment.

3. A proposed file format suitable for parallel processing of proteomics data. This

is required as the current XML-based file format, mzML, is a poor solution for

intra-file parallel processing.

4. A thorough investigation of using a parallel algorithm for feature detection on a

compute cluster. This includes a detailed understanding of the constraints on

parallel tasks in a proteomics context, the limitations of batch processing and

the implementation of a stream processing architecture.

Additionally, the following resources have been made available to the research

community

• All the source code for the algorithm and implementations using HDFS,

HBase, Cassandra, Spark and Flink.

8

1.6 THESIS STRUCTURE

Chapter 2 reviews the concepts and history of parallel computing including

shared-nothing processing and the development of MapReduce and Hadoop. The

chapter concludes with a discussion on system performance benchmarking.

Chapter 3 discusses the field of proteomics; it describes the process of

experimentation using mass spectrometers and the resulting data sets. Also,

algorithms for feature detection and current software in use are described. This

chapter also includes a description of the challenges of processing proteomics data.

Chapter 4 details the current application of clusters and parallel processing in

proteomics and critically reviews other research in this area. This chapter discusses

the use of Cloud and Big Data technologies for proteomics data processing and

concludes with a summary of the background and related work and the main research

question.

Chapter 5 defines the proposed methodology for parallel feature detection. The

environments used for development, testing and benchmarking are also explained.

The method for validating results and testing for accuracy is specified along with the

data sets used in the benchmarks.

Chapter 6 describes the proposed parallel algorithm and its implementation in Java.

This chapter introduces the limitations of batch processing proteomics data on a

parallel cluster. The results from benchmarking the feature detection are presented.

Chapter 7 proposes a real-time processing architecture using an adapted version of

the parallel algorithm introduced in chapter 6. The changes required to move from a

batch process to a stream process are detailed and results from experiments using

stream processing engines are also presented.

Chapter 8 summarises the contributions and findings of this thesis and lists

recommendations for future work.

9

2 PARALLEL COMPUTING

2.1 CHAPTER SUMMARY

This chapter presents a brief history of parallel computing including the introduction of

MapReduce and shared-nothing cluster-based processing. The focus is parallel,

cluster-based processing as opposed to other types of parallel processing such as

multi-core or GPU-based.

Section 2 discusses parallel processing

Section 3 Introduces MapReduce and the Hadoop eco-system

Section 4 describes the process of benchmarking computing systems and includes a

discussion specific to benchmarking parallel systems.

10

2.2 PARALLEL PROCESSING

To understand the need for and the evolution of parallel computing techniques in

computer science, it is necessary to briefly review the general history of computers

and their architecture and how these have developed over time. John Von

Neumann’s seminal report in 1945 defined the modern stored-program architecture

for computers [17]. By making the only distinction between data and instructions that

operate on data is the use to which each is put, this report formed the basis of how

modern-day computers work. Note that there is some controversy over who first

defined the architecture but this review does not cover this detail. The implementation

of this design has led to a phenomenon known as the “von Neumann bottleneck” [18]

which occurs when all of the data and the operations performed on the data must be

moved between CPU and memory one byte at a time. In fact, the x86 family of

processors use a modification of the von Neumann architecture called the Harvard

Architecture, which allows a CPU to be both reading an instruction and accessing

data in memory at the same time. This simultaneous activity is not possible with a

strict von Neumann design since the instructions and the data share the same system

bus. Along with the Harvard Architecture, changes to von Neumann’s original model

to overcome the bottleneck include the introduction of cache memory (a quantity of

high-speed memory very close to the CPU), which has led to increases in speed.

Aside from the architecture, continuous improvements have been made to chip and

component design, which led to Gordon Moore’s observation in his 1965 paper [19]
that “the number of transistors on integrated circuits doubles approximately every two

years” – now known as “Moore’s Law”. This prediction has proved remarkably

accurate and until recently increasing amounts of faster memory and faster CPUs

could be relied upon to provide significant increases in speed. This phenomenon is

known as frequency scaling and was the dominant force in CPU speed increases up

to the cancellation of Intel’s Tejas and Jayhawk processor projects in May 2004 [20].
The termination of these projects can be seen as the point at which frequency scaling

reached a practical limit. However, currently Moore’s law still holds approximately true

because manufactures have started including two or more CPUs on the same chip,

known as multi-core CPUs. These allow multiple instructions to be run at the same

time using a programming technique called multi-threading, a form of parallel

11

execution. However, program code needs to be written explicitly to take full

advantage of the threads and hardware available.

The concepts of parallel computing have a long history. In a Turing lecture in 1988,

Cocke stated “The search for future scientific computing performance has to

concentrate on gross parallelism” [3]. A definition of Parallel Processing is "the

concurrent manipulation of data elements belonging to one or more processes

solving a single problem" [21], the concept being that multiple CPUs can each

process part of the data, with the resulting output combined into a single answer. A

certain class of parallel computing is known as massively parallel processing (MPP);

this involves multiple CPUs processing the workload simultaneously and

communicating via a network. Early attempts at MPP computing include the ILLIAC

IV [22] from 1971. With up to 256 processors the ILLIAC IV allowed a high degree of

parallelism and was used by NASA for computational fluid dynamics problems. Other

examples of early MPP machines include the cosmic cube designed and built at

Caltech in the early 1980’s [23]. The cosmic cube research introduced the concept of

nodes, which are computers networked together into a cluster. The method by which

nodes communicated contributed to the design of the message passing interface

(MPI) protocol, which has become a standard for parallel processing. Flynn describes

four classifications of processing [24], [25] that have become known as Flynn’s

taxonomy. The classes are based on the number of concurrent instructions and the

number of available data streams. For instance, in a single instruction, multiple data

set (SIMD) architecture a single instruction is applied to multiple sets of data in

parallel. Whereas in a multiple instruction, single data set (MISD) architecture,

multiple instructions run on a single set of data in parallel. The SIMD architecture is

well suited to a set of problems know as “naturally”, “pleasingly” or “embarrassingly”

parallel where a subset of the data can easily be processed independently of the rest

of the dataset.

In the book “Computer Architecture: a quantitative approach” [26] Paterson describes

the performance growth in PC architecture based computers versus mainframes or

supercomputers such as those built by Cray Research Inc. He details how CPU

speed increases in line with Moore’s law allow cheaper commodity hardware to rival

12

the performance of the larger, far more expensive machines. Utilising such hardware

in a network, the class of parallel computing known as cluster computing has become

very popular. Cluster computing entered the mainstream with the introduction of the

parallel virtual machine (PVM) software in 1989 [27]. NASA experimented with this

technology in 1993 and this research led to the creation of the Beowulf cluster [28].

The Beowulf architecture is a set of requirements for high-performance clusters using

Unix-style operating systems and PC-based architecture running libraries such as

MPI and PVM. Beowulf allows a cluster of machines to operate as a single machine

where the individual nodes typically have no screens, keyboards or input devices and

are controlled from a central machine via remote logins. Beowulf clusters have been

adopted in academia and commercial sectors as a way of providing enough

computing power at a low price to process complex scientific problems [29].

In contrast with cluster computing where the nodes in the cluster will reside in the

same physical location, distributed computing is a class of parallel computing where

the nodes are separated physically and connected by a wide area network such as

the internet. An example of distributed computing is that performed by SETI where

subscribers’ home PCs are used to process data when they are not in use for other

purposes [30].

The computer architectures and programming techniques described require the

processing components to be connected to each other so that messages can be

passed between them. There are many ways to connect processors in an MPP

system, for example Mesh, Binary Tree, Hypertree and software frameworks such as

Message Passing Interface (MPI) and Bulk Synchronous Processing (BSP) can be

used to manage the messaging. Interconnections between processing units and

passing messages between them result in an overhead, which limits the total

speedup possible. Many have studied the behaviour of parallel systems and several

prominent theories exist that quantify the speed increase of a process running in a

parallel rather than a serial fashion. One of the earliest is Amdahl’s law [31]; this

states that the maximum speedup of a parallel process is limited by its sequential

fraction. Amdahl’s law is based on the assumption that processes have some parts

that cannot be run in parallel. Regardless of the number of processors working on the

13

problem, the total time taken to run the complete process is restricted by the total time

taken to execute the serial part of the process. During a later re-evaluation of

Amdahl’s work by Gustafson [32], known as Gustafson’s law, it is argued that rather

than calculating speedup using a fixed data size, as Amdahl assumes, programmers

tend to use all of the resources available in a system to process an amount of data in

a fixed time. This means that larger and larger clusters are required to keep the

processing time fixed as the amount of data increases. This research will evaluate the

pre-processing steps for mass spectrometer output to identify parallel and sequential

portions and calculate the maximum possible speedup.

Another aspect of parallel computing is that of scheduling; once a task is split into

pieces that can run on separate nodes, controlling the order and location of these

pieces must be done by a scheduling system. One method is prescheduling which

decides where each piece of the process is run before execution, depending on what

data is where in the system: early parallel systems used this approach. In contrast,

self-schedulers allocate the next piece of code to execute to the next available node,

which results in a higher utilisation of a system.

An important consideration for cluster architectures is how to manage the replication

of data around the nodes. If a data read occurs before data is fully replicated then an

inconsistency may occur as one node reports a different value to another node. Eric

Brewer developed Brewer’s or CAP theorem [34] to describe parallel architectures in

terms of three areas:

• Consistency – Every data read should receive the most recent data or return

an error

• Availability – Every data request receives a response but there is no guarantee

that the response is the latest data available. The response must be valid and

not an error

• Partition Tolerance – The system continues to operate in the event of a

network failure or messages simply being dropped between several nodes

14

Brewer stated that where data partitions exist only one of consistency or availability

can be guaranteed, leading to the common “any two from three” description of CAP

theorem. Relational databases will choose consistency, opting for an error message

rather than returning anything other than the most recent data. NoSQL systems such

as Cassandra (described in Section 8 of Chapter 5) will choose availability, therefore

returning the latest version of the data that is available rather than an error.

Developments such as Google Spanner claim to be able to guarantee all three states

because of the definition of “availability”. A system can be highly available without

being one hundred percent available [141].

15

2.3 MAPREDUCE AND HADOOP

Dean and Ghemawat published a paper defining the MapReduce style of

implementing a parallel processing framework in 2004 [5]. MapReduce is a

general-purpose framework allowing large-scale computations to be run in parallel

across a large cluster of computers. The framework is based on the simple notion that

a process can be split into one of two basic operations map and reduce. A map task

processes data one record at a time. The other type of operation is a reduce task

which takes multiple rows of input and can perform aggregation type operations [35].

MapReduce was defined with some key concepts in mind:

• Reliability when running on commodity hardware

• Simplifying the task of taking a process and running it in parallel.

• Scalability to handle exponential increases in website traffic

The use of a map task to process data record by record has led to the term “schema

on read” or "schema-last" [36], which describes the process of reading in data in a

raw, unchanged format and using the map task to apply a relevant schema on the

data at run time. This contrasts with a “schema on write” or “schema-first” style of

data management that is very commonly found with relational databases. Schema on

write describes the method of defining a fixed schema and transforming data to fit this

schema as it is loaded.

MapReduce code is generally executed on clusters run in a “shared nothing”

environment where each node has its own CPU, memory and disk space and the

connections between nodes are handled by a TCP/IP network. This configuration

makes the task of adding more nodes to an existing cluster a simple exercise. Since

no reconfiguration of existing nodes is required, the cluster can easily be scaled out to

handle larger workloads or process a given workload in a shorter time. In this way, the

programmer is abstracted from the details of scheduling and distributing parallel

processes and dealing with node failures as these are handled entirely by the system.

The basic unit of data in the MapReduce framework is a key-value pair; these simple

structures consist of an identifier (the key) and some data (the value). An example of

a key-value pair could be when processing a standard text file with end of line

16

characters, in this case, the key is the byte offset into the file, and the value is the

actual text up until the next line break.

The value part of the key-value pair can be a single piece of data or something much

more complex such as a binary object. In the MapReduce framework, the passing of

key-value pairs occurs between different stages of the pipeline, for example between

a map task to a following reduce task. Note that the framework prohibits the passing

of information between tasks at the same stage of the processing pipeline, for

example between two map tasks.

This may seem restrictive at first, but this simplicity is a factor, along with

fault-tolerance, that has led to the success of the model. Removing the need to code

for the interactions between tasks by message passing speeds up development and

relieves some of the burden of understanding parallel systems for the programmer.

Another key feature of MapReduce programming is the distribution of program code.

In a conventional system, a processing unit receives data from the network and

executes the code. In the MapReduce framework, the code is distributed to the node

where the data resides to reduce data movement across the network. Processes are

dynamically scheduled, and due to the data replication and distribution, each task has

several options as to where it could run to ensure all data is processed. This

self-scheduling allows some flexibility in case of a slow running machine or process.

Note that MapReduce is a framework for executing program code in parallel, as are

frameworks such as MPI, whereas Beowulf and PVM are systems for creating

clusters of commodity hardware.

Hadoop is a parallel processing system based on the MapReduce framework,

created by Doug Cutting, an employee of Yahoo [37] and more recently, Cloudera.

Hadoop was designed to be run on cheap commodity hardware. Since commodity

hardware, particularly disk drives, can have high failure rates, it is necessary to

replicate and distribute data across the cluster to achieve reliability. Therefore, when

data is loaded it is split into blocks (typically large blocks in multiples of 64Mb). The

default behaviour is to replicate these blocks three times with two copies held on the

same rack and one on a separate rack. This operation means that two of the servers

17

in the cluster containing replicas of the same data block could fail completely, and all

data would still be available. Hadoop very quickly gained popularity as a platform to

process large data sets that do have a fixed schema. While it can be said that the use

of Hadoop in a business setting is still in the early stages of adoption, its popularity

continues to grow [38]. Since its original inception, Hadoop has undergone much

development, and a considerable amount of effort has gone into overcoming some of

the perceived shortcomings of security, accessibility and recovery. The next chapter

reviews the current use of Hadoop, MapReduce and parallel computing in general for

processing proteomics data.

18

2.4 BENCHMARKING

Before any testing could be carried out to determine the best platform for the

proposed parallel feature detection algorithm, a set of rules had to be defined. These

rules specify what was measured and how the measurement should take place. In

computing terms, these rules and the tests that are performed and measured are

collectively called a benchmark. The intention was to provide a quantitative measure

of relative performance between platforms along various dimensions to make a

comparison between them. General computing benchmarks exist such as Whetstone

and Dhrystone [39] which address specific computing performance areas such as

Floating Point Operations per Second (FLOPS).

More specific benchmarks exist for relational databases that are well established

such as those detailed by the Transaction Processing Council (TPC) which cover

various database operations such as Decision Support [40]. These are widely used

and are accepted by many vendors and customers of relational database software

[41]. Other notable database benchmarks include the Standard Performance

Evaluation Corporation (SPEC) and the Storage Performance Council (SPC), each

aimed at providing a measure of the performance of different aspects of database

operations.

Benchmarks seek to provide a level platform for testing the efficiency of different

solutions and provide rules to cope with various areas. These include [42] :

• Hardware specification such that different platforms can be evaluated fairly

• Explicit instructions for implementing the benchmark. The benchmark should

not test how well the code was written, or the data model designed, as this is

not generally a factor of the platform being tested.

• The input data for the benchmark

• The data model and any relevant schema

• Specific queries or workloads designed to test certain parts of a system

• The number of runs for each workload and how results are obtained and

reported

19

The benchmarks mentioned above provide many instructions for setting up the

testing including architecture designs and data models for table definitions and

artificial workloads with which to run the tests. These rules attempt to ensure that the

benchmark is fair and measures the intended element of the system. Certain

database vendors will release benchmarks of their own, but these are often regarded

as more for marketing purposes than for serious testing as the tests carried out

maybe biased towards the strengths of the platform in question. Questions have also

been raised over the practice of vendors tuning their products and specifying systems

well in excess of what would be needed in a real-life situation specifically to gain

artificially high scores in benchmark tests; a practice known as Benchmark escalation

[43]. Examples of the areas that are commonly included in database benchmark tests

include:

 • Scalability (adding or reducing components)

 • Availability

 • Redundancy

 • Security

 • Disk I/O

 • Timings of certain tasks specified in the benchmark

2.4.1 BIG DATA BENCHMARKS

The benchmark situation is much less clear and well defined for cluster-based parallel

systems, which can be labelled as big data processing systems. As these systems

are recent innovations in data management and processing, existing database

benchmarks which relate to transaction processing or business intelligence queries

may not be relevant. Older benchmarks exist such as the NAS parallel benchmarks

[44] aimed at supercomputers. There are also more recent benchmarks such as

Rodinia designed for heterogeneous clusters and newer forms of hardware, for

example, GPU processing [45].

Attempts have been made to introduce benchmarks that are more relevant to the

specific properties of big data processing. The TPC has produced a new benchmark

20

[42] that can be freely downloaded from the TPC website. This new benchmark is

designed to test Hadoop systems and provide a measure for hardware, operating

systems and Hadoop file systems. It provides performance and availability metrics.

Other benchmarks are being designed to focus on specific use cases of big data

technology, for example, the Linked Data Benchmark Council (LDBC) is producing a

set of benchmark tests specifically to measure the performance of graph algorithms in

Social Network processing. The state of big data Benchmarking and its future

direction were discussed at a workshop in 2011 [47] organised by the Centre for

Large Scale Data Systems from the San Diego Supercomputer Centre. An interesting

point raised was that traditional relational databases are usually over specified when

used to run benchmarks. In other words, the system is far more powerful than one

that would be utilised in a real-life situation, whereas for a big data system the reverse

is often true, i.e. the system used to benchmark can be smaller than a production

system. Thus, an element of scalability is an important part of the benchmark results.

One reason for this under-specification could be that it is hard to provide realistic

workloads that cover the three elements of volume, velocity and variety [48], which

are often used to identify big data, as noted by Ren et. al [49].

The proposed BigBench big data benchmark [50] sets out a framework based on the

TPC tests which includes a data model, specific queries and synthetic data. Yahoo

has produced specifications for two benchmarks, YCSB [51] and YCSB++ [52].

These frameworks specify testing areas critical to parallel clusters such as the ability

to scale-out, elasticity (scaling to more nodes in a cluster while the cluster is in use)

and high availability. Recognising that certain trade-offs are made when designing a

system, they also test read and write performance as separate measures.

Most of the systems used in this research provide simple benchmark tests as part of

their distribution. These include the dfsio and terasort benchmarks for Hadoop [142]

and the Cassandra stress test. For many, the terasort benchmark is a standard way

of testing the performance of a cluster [53]. This benchmark simply measures how

fast a system can sort a terabyte of data and it is supported by most platforms.

Terasort is also part of the BigBench big data benchmark discussed above and itself

based on the work of Jim Gray [54].

21

2.5 CONCLUSION

Parallel computing is very important for processing large complex datasets and has

had a long history. While some early methods of parallel computing involved complex

programming, and required a low-level understanding of parallelism, MapReduce

programming abstracts much of the detail away into two processing primitives called

mappers and reducers, described fully in Chapter 4, Section 4. The MapReduce style

of parallel processing was presented in a paper by two Google engineers in 2004 [5],

which led to the creation of Hadoop by Doug Cutting [37]. Hadoop has been widely

adopted by businesses and academia as a means to process complex workloads in

parallel and has several benefits including:

• Reliability when running on commodity hardware due to built-in redundancy

• Simplifying the task of taking a process and running it in parallel.

• Horizontal Scalability

The whole field of parallel processing and complex data sets has recently been

known simply as Big Data and this term has also been applied to compute clusters

and software processing frameworks. In order to test and compare Big Data systems

benchmarks are being developed to compare relative performance. These

benchmarks differ from older tests used to benchmark relational database systems in

that they are designed to test the three main elements of a Big Data system, the

volume of data, the velocity with which the data arrives and the variety of data formats

that can be processed. As explained in Chapter 3, the data created by mass

spectrometers has characteristics matching all three of these elements.

22

3 PROTEOMICS

3.1 CHAPTER SUMMARY

This chapter presents a literature review regarding current methods for processing

the data output from mass spectrometers during proteomics experiments.

Sections 2 and 3 provide background information describing proteomics and the use

of mass spectrometers.

Section 4 describes the challenges related to data processing and feature detection

from the spectra.

Section 5 discusses the feature detection process and its place in a more general

proteomics processing pipeline.

23

3.2 PROTEOMICS

As with genomics, where the field of functional genomics evolved to investigate the

function of genes following the mapping of their sequence in an organism’s DNA [55],
proteomics can be thought of as an offshoot of functional genomics where the

Proteome is the entire set of proteins expressed by the genome of an organism. The

goal of proteomics is to map the proteome and explain the function of each of the

proteins it contains [56]. Proteomics is, therefore, the study of protein properties

within an organism. It has become an essential component in the field of systems

biology, which aims to describe biological systems by integrating detailed data from

diverse domains. Important properties of the proteins studied include quantities

(expression levels), modifications and interactions with other proteins [57]. This work

is important because proteins constitute the principal structures of an organism and

play a pivotal role in the basic functional and structural framework of all cellular life.

By studying proteins and their properties and by building up a view of the Proteome, it

is possible to gain a deeper understanding of how proteins should function in a

healthy organism. This knowledge is used in areas such as comparing healthy cells

with diseased cells and exploring the effect of drug treatments.

Mapping the human proteome is a vast and complex task. To put this into

perspective, the human genome is estimated to contain around thirty thousand genes

[58] and with the discovery of new information this number is under constant review.

In contrast, the human proteome may contain over a million proteins and is also

under constant review. Following their synthesis, proteins can also undergo

post-translational modification (PTM) [59]. A PTM is a chemical change to the protein

structure through the addition of, for example, phosphates. Importantly the current

understanding of PTMs, of which there are over three hundred different types, is that

they are not predicted or governed by the genome, which means that proteomics

experiments are necessary to identify and quantify them. The addition of PTMs to the

proteins greatly increases the number of identifications required.

The human proteome project [60] is a global project designed to map the entire set of

proteins found in humans protein set. Barriers to completing the mapping task include

the lack of understanding of the underlying genes, the sheer number of proteins and

24

possible modifications, quality of experimental data and the sharing of information

between organisations. Hood et al. [9] also make one of the first references to moving

data resources to a cloud-based environment. The potential benefits indicated

include managing large-scale data analysis and sustainable data repositories.

Identifying the need for collaborative data repositories that can be accessed online in

the early stages of proteomics led to the establishment of the open-access protein

sequence database SWISS-PROT [8]. The goals of SWISS-PROT include the

standardisation and sharing of the results of proteomic experiments, minimising the

redundancy of information caused by submissions from many institutions and also

simplifying the integration with other databases.

Typical proteomics research involves taking cells from an organism and preparing a

sample in such a way as to remove as many contaminants as possible while retaining

as many of the proteins present as possible; contaminants include the materials used

in the culture of cells and other laboratory contaminants [61]. A further complication is

that the quantity of a protein expressed varies enormously. While some proteins

occur in small amounts, others are more abundant and found in large quantities,

which can make it difficult to detect low-abundance proteins [62]. Following the

culture and purification of a sample, the most accurate method used for analysis is

Mass Spectrometry, which is fast and allows a high throughput of samples. The

discussion of standard instruments and experimental techniques is carried out in the

next section of this review

25

3.3 MASS SPECTROMETRY

In the context of proteomics, a mass spectrometer is an instrument used to measure

the mass and abundance of molecules in cell samples. Physicist Joseph John

Thomson conceived mass spectrometers in the late 19th century [63]. While

researching the nature of cathode rays, Thomson noted that they mark the paths of

charged particles, which could be deflected by a magnetic field towards a detector.

Francis Aston continued this research and built the first machine, which at the time

was called a mass spectrograph, winning the Nobel Prize for chemistry in 1922 [64].

Continuous improvements and modifications have occurred, resulting in the modern

instruments we see today. Recent advances in mass spectrometry have led to

“next-generation proteomics” where the resolution and accuracy of the device allow

for the measurement of tens of thousands of molecules. Comparing this to the

measurement of hundreds of molecules possible with machines built before the turn

of the century demonstrates the extent of the technical advances [65] and the

consequent increase in data processing required.

Although there are several types of machine with different methods for processing

and measuring samples, there is a common pattern to a proteomics experiment

involving mass spectrometry. During an experiment, a mass spectrometer will

perform different tasks to measure the abundance and mass of the molecules that it

takes as input as depicted in Figure 1.

FIGURE 1 HIGH LEVEL PROCESS OVERVIEW - THE STAGES OF PROTEIN

IDENTIFICATION

Separation is the process of simplifying a complex mixture of proteins by separating

molecules from each other before introducing them into the mass spectrometer. A

common method of separation used is liquid chromatography; when used in

combination with mass spectrometry the technique is known as LC-MS. This

26

technique involves passing the sample through a column, which is a narrow tube

containing a gel material that partially and differentially binds to molecules meaning

that they migrate through the column at different speeds depending on their

properties [66]. In this way, a liquid chromatography stack feeds a stream of output

molecules into the mass spectrometer that are sorted according to their properties.

The next step is ionisation, which is the process of charging the molecules so that an

electromagnetic field can attract them. Electrospray ionisation (ESI) is a very common

technique used in contemporary mass spectrometers due to its ability to ionise heavy

molecules [67]. Note that all the data employed in this research has been output from

mass spectrometers using ESI.

Following ionisation, the machine takes a scan of the ions it contains at regular

intervals. The scan is taken by applying an electromagnetic force to the ions, which

pushes a selection of them into the instrument’s mass analyser. It is important to note

here that each of the scans is a sample of the contents of the original input. It is

inevitable that some of the molecules are not measured as they flow through the

machine between scans. For this reason, there can be difficulties in reproducing

experimental results exactly. The point at which the scan is taken is known as the

retention time (rt).

Analysis of the ions is carried out by measuring their quantity and mass to charge

ratios. This analysis is done inside the mass analyser of which there of four main

types in common use. These are the Quadrupole, which uses four charged rods to

trap ions in an electromagnetic field, the oscillation of molecules between these rods

allows the mass to charge ratio to be measured. The Orbitrap (or ion trap) captures

ions in a similar way to the Quadrupole. It is a highly accurate detector that can detect

ions at a very high resolution [68]. Other types of analyser are the time of flight (TOF)

and Fourier Transform Ion Cyclotron (FT-MS) [66]. Figure 2 shows a schematic of a

Q Exactive plus mass spectrometer, which uses an Orbitrap ion detector in

conjunction with a quadrupole.

27

FIGURE 2 SCHEMATIC OF A Q EXACTIVE MASS SPECTROMETER - SOURCE THERMO

SCIENTIFIC [139]

Isotope “labelling” is a quantitation method of analysing ions from different samples in

the same experiment. Using this method cells from, for example, a diseased and a

treated cell could be analysed and measured under the same conditions and at the

same time. One method for labelling Isotopes is called Stable Isotope Labelling by

Amino Acids (SILAC) as described by Ong and Mann [69] and used extensively at the

University of Dundee. SILAC experiments involve incorporating the amino acids

arginine and lysine into samples before the liquid chromatography phase of the

experiment, therefore, providing a mechanism for four different samples (no

treatment, lysine, arginine and both lysine and arginine). The incorporation of the

amino acids increases the mass of the ions by a known amount. In this way, the

isotopes, otherwise called peptides, can be identified, which leads to the identification

of the proteins themselves [70].

The sample processing techniques and the equipment described above do not allow

the determination of the volume of complete proteins required by most proteomics

experiments. Complete proteins are large molecules which mass spectrometers have

difficulty in measuring. The large complete protein molecules will need to be isolated

28

and measured one at a time, a process that is known as a protein-centric or “top

down” approach. If the experiment requires the measurement of the existence and

abundance of proteins on a large scale, then it is necessary to break proteins into

smaller pieces before introducing them to the mass spectrometer. Cutting the large

protein molecules into smaller pieces is accomplished by using a digestive enzyme

that breaks the protein molecule chains in a predictable way. The resulting smaller

molecules are called peptides. The process of deducing the parent protein by

detecting these peptides is called “bottom-up” proteomics. The bottom-up approach

allows the analysis of large proteins and very complex samples.

Many experiments will combine the bottom-up approach with a process called

tandem mass spectrometry, also known as MS/MS or MS2 [71]. The tandem mass

spectrometry technique involves using two mass analysers in the same machine:

effectively the machine contains two mass spectrometers acting in sequence. The

first mass spectrometer operates as described previously; molecules enter the

instrument from the liquid chromatography phase, are ionised through ESI and are

measured by the ion detector in the mass analyser. At this point, the mass

spectrometer selects specific ions for further analysis following the measurement

phase. The usual criterion for selection is the abundance of particular ions, although

the mass spectrometer can be set up to select specific mass to charge ratios if

required. The selected ions (also known as precursors) are fragmented into smaller

molecules by colliding them with a neutral gas in a process called collision-induced

dissociation. The resultant fragments pass into the second mass analyser where the

ion mass to charge ratios and abundances are again measured and reported; these

scans are known as MS level two scans. The results from MS/MS are used in the

later data processing stages to increase the confidence in the correct identification of

proteins.

The Lamond Laboratory, School of Life Sciences, Centre of Gene Regulation and

Expression, University of Dundee uses mass spectrometers manufactured by

Thermo Scientific. These include the LTQ Orbitrap XL, LTQ Orbitrap VELOS and Q

Exactive (Detailed specifications of the Thermo Scientific machines can be found

online

29

https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/liquid-chrom

atography-mass-spectrometry-lc-ms/lc-ms-systems.html# last accessed 04/12/2017).

The data utilised in this research has been provided by the Lamond laboratory and

contains the results of actual proteomic experiments (further described in the

methodology chapter). Figure 3 is a photograph of the laboratory showing the rows of

mass spectrometers in use.

FIGURE 3 MASS SPECTROMETERS IN THE LAMOND LABORATORY, UNIVERSITY OF

DUNDEE

The data that is output, when the mass spectrometer processing completes, is in the

form of spectra. These can be plotted as shown in Figure 4 and consist of the mass to

charge ratio (x-axis) and ion abundance (y-axis). At this stage in the process we do

not know the charge of the ions, and therefore the measurement is the mass to

charge ratio and not the actual mass. Mass to charge ratio is notated as m/z and is

measured in a unit called a thomson.

30

FIGURE 4 A SECTION OF A SINGLE MASS SPECTROMETER SPECTRUM

As mentioned, a scan is taken of the ions present in the mass spectrometer at regular

intervals with each scan producing spectra as shown in Figure 4. Scans are recorded

at a rate of around 5 per second producing up to 40,000 scans for a two-hour

experiment. For the Thermo Scientific instruments, this data is output in a proprietary

binary format called a RAW file. The binary RAW formats are efficient regarding data

compression, however, they require specific software from the vendor to allow the

data to be analysed. In fact, each of the instrument manufacturers uses a different

proprietary format for their data output, which causes problems for sharing results

and for any processing software, which needs to include parsers for specific formats.

For this reason, amongst others that are discussed in Section 3.4.1, an XML-based

format called mzML is commonly used to store the output from proteomics

experiments [15]. Conversion software is available to create mzML files from the

vendor specific format. Section 3.4.1 of this thesis contains a detailed described of

the mzML format.

31

3.4 DATA PROCESSING CHALLENGES

During a typical proteomics experiment, a mass spectrometer will produce a large

volume of data. The binary RAW files generated by the Thermo Scientific instruments

are typically greater than one gigabyte and in a highly-compressed vendor specific

format. Extensive processing of the spectra is necessary to identify proteins and gain

any insights from experiments. Processing the data consists of several stages as

below, each of which presents a series of challenges to the typical life sciences

researcher and laboratory. This series of processing steps is referred to as the data

processing pipeline [72]

 • File parsing

 • Filtering

 • Feature Detection

 • Alignment

 • Normalisation

 • Protein identification (database lookup)

 • Results sharing

This research focuses on the feature detection part of the processing pipeline.

Section 3.5 describes the feature detection process and algorithms in detail, but in

essence, the reason for feature detection is to identify the ions in the spectra by

mass, charge and abundance while avoiding false positives [72].

32

3.4.1 DATA FILE FORMAT

As stated previously, a common output file format for mass spectrometers is required

to provide a standard for the sharing of data. In response to this need, the proteomics

community has produced specifications for several file formats. At the time of writing

this thesis, the latest of these is called mzML. mzML is an XML format based on the

consolidation of two previous formats (mzXML and MzData). The mzML format has

been widely accepted and very stable with little revision since its inception in 2008

[15]. The mzML specification document describes the objectives of the format, which

include comprehensive support for instrument output and the sharing of results and

best practice. The XML specification uses a dictionary of keywords, which are

included in the XML tag as attributes when required. The full specification and

dictionary are linked here (last accessed 24/11/2016)

http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/psims/mzML/controlledVocabulary/psi-ms.obo.

The specification is very comprehensive and attempts to accommodate any details

that specify a proteomics experiment. These include metadata such as the instrument

used and its operational parameters, the cell sample analysed and any software used

in pre-processing the output. Adding some complexity is the use of 32 or 64bit

base64 encoded strings to hold the data. Data held in base64 strings requires a

decoding step before use, but it does allow a high degree of accuracy to be kept while

maintaining a compressed format [15]. Figure 5 presents a high-level schematic of

the mzML format, this includes a header containing the metadata and the body

section containing the actual data from the mass spectrometer scans. The format

also allows for the base64 strings of scan data to be compressed using the Zlib

algorithm. Zlib compression of the binary spectra data results in a decrease in the

size of the file by a factor of two. Zlib is a well-known compression algorithm that

usually exists natively on UNIX or Linux-based systems and is available in standard

Microsoft Windows-based compression and decompression programs.

33

FIGURE 5 HIGH LEVEL SCHEMATIC OF THE XML-BASED MZML DATA FILE FORMAT

Even with this compression, the verbose nature of XML formats means that the size

of the data file will increase significantly from that of the original binary format. The

description of the files used in this research, the largest of which is 7.5 Gb, is in

Chapter 5 Section 9. One final important point on the mzML format is that files

formatted as XML are not well suited to parallel processing. For parallel processing to

be effective, the data must be distributed evenly across the processing nodes, and It

is a complex task to split an XML file into discrete units without breaking the format by

splitting between XML tags. Note that the fast, efficient processing of data was never

one of the prime target objectives for the mzML format. For this reason, the

development of a new file format based on mzML was necessary. The successful

design and testing of this new file format was an important step to enable the

development and benchmarking of the parallel feature detection algorithm. Chapter 5

34

contains a detailed discussion of this format, which is designed to allow distribution of

the scans around a cluster of computing nodes.

3.4.2 DATA VOLUME

The volume of data produced by proteomics experiments grows year on year for

several reasons. Firstly, newer instruments have an increased level of sensitivity and

can record more detailed data. For example, new devices can perform a further

degree of fragmentation going beyond the MS/MS two-stage processing that is

commonplace; this is done to increase the confidence in protein identification further.

An increase in data volume also occurs at the second level of fragmentation. The

machines that produced the data used in this research provide the level 1 scans as

full profile spectra as opposed to the level 2 scans which were output as centroids. A

centroid is a single point at the centre of a peak representing the mass to charge ratio

in a spectrum (Figure 6) [12].

FIGURE 6 CENTROID VS PROFILE SPECTRUM DATA

However, more recent machines produce the data for level 2 scans as profiled

spectra data, this substantially increases the amount of data output. Also, as

laboratories add more devices more experiments are run simultaneously with a

corresponding growth in data.

35

A large volume of data causes issues that include the cost of storage; an effective

platform will need to provide a low cost per terabyte for storage while still providing

fast online access to data files. It can also be the cause of a data management issue,

as data must transfer from the computer attached to the mass spectrometer to a

separate processing environment, and then the results move to a shared area where

they can be analysed. This potential data management problem is one of the issues

that this research targets for mitigation. As previously noted the processing of RAW

mass spectrometer output is a complex, time-consuming task. This processing time

needs to be reduced so that the researchers can analyse results as quickly as

possible and allow research to progress in an iterative fashion.

A further issue is that of the workflow; life science researchers rely heavily on

computer scientists or bioinformaticians to provide them with data that they can

understand [73]. An ideal system would abstract the complexity of RAW file

processing away from the Life Scientists.

3.4.3 COMPLEXITY

Producing a list of proteins and their abundance from a binary RAW file is a complex

process, and importantly it is open to some interpretation and error. It is usual to find

that different algorithms and software packages will produce different results from the

same input file [74]. It is worth noting that on the discovery of new information or

experimental techniques, it is entirely possible that reprocessing of the data files

would be necessary. This requirement for reprocessing emphasises the need for a

fast, simple solution to the issues of data management and processing. The potential

need to reprocess data has raised the question of what should be stored on the

completion of an experiment. Martens et al. [75] argue that the only acceptable data

is the original output from the mass spectrometer in the vendor’s binary format.

Certainly, given that reprocessing may well identify new centroids, simply storing the

centroid data is insufficient.

A further challenge is that by the very nature of the way a mass spectrometer

processes data (in scans which are snapshots of the ions in the machine at that time)

36

the data will be incomplete. Furthermore, MS/MS scans are typically only from the

largest, most abundant peptides as, currently, even the most advanced mass

spectrometers cannot fragment every peptide [76].

3.4.4 FEATURE DETECTION

The purpose of the algorithm tested and benchmarked on parallel clusters in this

research is to detect features in the mass spectrometer output spectra. This process

is also called “Peak Picking” because the algorithm scans the spectrum and selects

peaks in the data; these peaks represent the ions detected by the mass spectrometer

during a scan. A feature in this context consists of a set of peaks aligned across time

that correspond to a single eluting peptide [77]. Features and how they are made up

of peaks are described fully in the next section of this chapter. The feature detection

process results in a list of peptides and includes their mass, charge, abundance

(known as intensity in this context), the retention time at the highest point of the peak

and can also include the start and end retention times. A recent review [16] of the

performance of computational analysis of mass spectrometer data describes feature

detection as the second most time-consuming part of the process, with the most time

consuming being the database search, which is also outlined in the next section. The

review [16] also states that the feature detection phase benefited the most from

parallelization. A detailed description of the steps required for feature detection can

be found in Section 3.5 of this chapter.

3.4.5 DATABASE LOOKUP

The final stage of the data processing pipeline is to look up the identified peptides in a

database of known protein to peptide relationships. This search is a complex process

and involves some degree of probability, as a certain peptide is likely to be an integral

part of many different proteins [78]. Several attempts at creating a parallel process to

complete this stage of the pipeline have already been successful. These include

parallel tandem, a parallel implementation of the X! Tandem search engine using the

message passing interface (MPI) style of programming and parallel virtual machines

(PVM) both of which are described in Section 5.2 of this thesis. A more recent

37

example of parallelization is Hydra [79], which uses Hadoop and the MapReduce

programming framework to create a parallel proteomics search engine. The research

presented in this thesis does not attempt to recreate the database lookup but instead

suggests ways in which the output from the parallel feature selection can be provided

as the input to a parallel database lookup system.

3.4.6 SHARING OF RESULTS

Once the proteins in the sample have been identified it is usual practice to share the

results in an online repository such as SWISS-PROT [8]. There are several reasons

for this including reproducibility and to aid collaboration between facilities working

towards a common aim. If other researchers want to recreate parts of workflows that

have already been completed then having data accessible in a standard format

means that research can be repeated and checked in a controlled manner. Other

proteomics data repositories such as PRIDE provide an archive for data used to

support scientific publications [80].

38

3.5 OVERVIEW OF FEATURE DETECTION ALGORITHMS

There have been several comparative studies on the proposed algorithms for feature

detection. For example, Katajamaa and Oresic [72] reviewed the filtering and feature

detection algorithms available at the time (2007) and the different software packages

using them. They conclude that as new algorithms are designed it is necessary to test

them as part of the whole processing pipeline and that open source is a way to

address this.

Note that early attempts to produce peak lists had to contend with more complexity

than is needed with the data that is output from mass spectrometers today. These

include steps such as baseline correction [81] which is not required now as the mass

spectrometer performs this processing on the data before it is output. Also due to the

availability of high-resolution data, peak picking based on profiles such as the wavelet

technique [82] used in the TOPP open-source software [83] have given way to

feature detection techniques. Profile-based approaches are more accurate on

low-resolution data where feature detection is relatively more error prone resulting in

missing values in the output [77]. Due to the inherent data reduction in the process,

feature detection is less computationally expensive than profile-based approaches

and leads to a correspondingly faster processing time [77].

An early algorithm design that describes the steps for feature detection sets out three

stages, 1) identify peaks within a single scan 2) smooth peaks over time and identify

peaks that appear over multiple scans 3) assemble peaks into isotope groups [84].

An isotope in this context is a variant of a particular chemical element, which has a

different mass due to the incorporation of a different form of carbon. For example, a

peptide that incorporates carbon-12 will have a different mass from the same peptide

incorporating carbon-13 or carbon-14. These mass changes are predictable and are

used to distinguish actual peptides from contaminants and noise in the data. A recent

study into the software tools and algorithms available [85] contains a similar

description of feature detection and also describes the software MaxQuant as a

well-established program for the analysis of quantitative data.

39

This research focuses on the feature detection algorithm as employed in the

MaxQuant software, which in outline follows similar steps to those described by

Bellew et al. [84] as mentioned above. MaxQuant is described as "A quantitive

proteomics software package designed for analysing large-scale mass-spectrometric

data sets" http://www.biochem.mpg.de/5111795/maxquant (accessed 1st March 2017) and is

freely available to download and use. Professor Juergen Cox at the Max Planck

Institute of Biochemistry, Germany, created MaxQuant and his team of researchers

continues to maintain and add features to it. The on-going collaboration between Cox

and Matthias Mann has ensured that MaxQuant is widely used in the proteomics

community and the original paper [12] has several thousand citations. Mann has been

a leading researcher in this field, pioneering the SILAC method of protein quantitation

[69] and together with Ruedi Aebersold wrote one of the first papers detailing a

workflow using mass spectrometers for proteomics experiments [66]. Researchers in

the Lamond Laboratory use MaxQuant extensively to analyse the results of their

experiments. The RAW data used for benchmarking purposes in this research was

obtained from The Lamond Laboratory, School of Life Sciences, Centre of Gene

Regulation and Expression, University of Dundee and has also been previously

processed using MaxQuant.

Cox and Mann published extensive supplementary material alongside the original

MaxQuant paper [12]. This supplement outlines the main parts of the algorithm used

to process mass spectrometer spectra without giving all the details of the exact

implementation. The information in the supplement has been used to design the

parallel algorithm in this research. In 2011, The Lamond Laboratory at the University

of Dundee undertook a collaborative project with Teradata Ltd. to recreate the

MaxQuant workflow using a relational database and the SQL scripting language in a

project called Spectracus. Following the movement of the Spectracus project into a

testing phase, the focus in the Lamond Laboratory has changed to an open-source

strategy. Although this work has not reached a production stage and no papers have

been published regarding it, reference was made by the author to the project

documentation and laboratory notes when researching ways to run a feature

detection algorithm in a parallel fashion.

40

Figure 7 presents a view of a 3D view of all the peaks in a complete experiment, it is

possible to see the intensity of the features as well as their distribution. Note how the

distribution of the peaks is highly skewed towards certain ranges of m/z and retention

time. The scale of Figure 7 is such that the entire dataset is shown in a single figure.

The remainder of this section describes the algorithm used to identify these peaks as

described in the MaxQuant supplement [135]

FIGURE 7 ILLUSTRATION OF THE COMPLETE SET OF PEAKS (FEATURES) IN A 3D

VIEW

41

3.5.1 DETAILED DESCRIPTION OF THE FEATURE DETECTION ALGORITHM

The steps required by the feature detection algorithm are as follows:

1) 2D peak picking
The two-dimensional (2D) name of this process comes from the fact that peaks are

detected in the mass to charge ratio and intensity dimensions. The algorithm works

on a single mass spectrometer scan at a time. Figure 8 shows a section of a

spectrum with the mass to charge (m/z) values on the x-axis and the intensity (which

equates to the abundance of the ions detected) on the y-axis. By convention the scan

is represented as a continuous line rather than individual data points. As mentioned,

the unit of measurement for the m/z ratio is a thomson; at this stage in the process the

value of the electrical charge held by the ions in the spectra is not known and

therefore their actual mass cannot be calculated

FIGURE 8 A SECTION OF A SINGLE MASS SPECTROMETER SCAN

Figure 9 Shows an example of a single peak taken from a scan, the data points that

make up the peak are shown in Table 1.

42

FIGURE 9 EXAMPLE 2D PEAK

m/z intensity difference between current m/z and previous m/z
415.98547 0.000

415.98750 25057.193 0.00203
415.98950 47017.250 0.00200

415.99152 66487.530 0.00202

415.99353 74497.980 0.00201
415.99554 68222.600 0.00201

415.99756 51487.445 0.00202

415.99957 32179.443 0.00201
416.00160 0.000 0.00203

TABLE 1 DATA POINTS FOR EXAMPLE 2D PEAK

The difference between the current and previous m/z values in Table 1 shows the

sampling rate of the mass spectrometer. Note that while theoretically each scan will

contain the same number of data points, in practice the mass spectrometer performs

a data reduction step and does not report all zero values between peaks. A

complication in the peak detection process is that peaks can overlap.

43

shows overlapping peaks where the intensity does not return to zero after reaching
the apex of the peak but instead rises to another apex with the relevant data in Table
2.

FIGURE 10 EXAMPLE OVERLAPPING 2D PEAKS

m/z intensity
difference between current m/z
and previous m/z

452.84390 0.000
 452.84620 45549.650 0.00230

452.84848 204779.620 0.00228
452.85077 629295.300 0.00229
452.85303 1150425.400 0.00226
452.85532 1630558.100 0.00229
452.85760 1452616.100 0.00228
452.85990 915715.560 0.00230
452.86218 404217.440 0.00228
452.86447 125762.070 0.00229
452.86676 77428.920 0.00229
452.86862 124085.400 0.00186
452.87090 151868.830 0.00228
452.87320 116575.590 0.00230
452.87550 54405.645 0.00230
452.87778 22953.500 0.00228
452.88040 0.000 0.00262

TABLE 2 DATA POINTS FOR EXAMPLE OVERLAPPING PEAKS

44

Figure 11 shows an illustration of the peak detection process (without the complication

of the overlapping peaks), using a simple slope detection algorithm to identify all the

data points that constitute a single peak.

FIGURE 11 ILLUSTRATION OF PEAK DETECTION

The pseudocode below details the first part of the 2D peak picking process as defined

by MaxQuant. This step iterates through the array of mz and intensity values from a

single scan and groups together data points that belong to the same peak. Any

overlapping peaks are flagged and assigned separate peak identifiers. The groups of

date points making up a peak are then processed to calculate intermediate metrics to

be passed to the next part of the process. The result of this step is a peak identifier,

Weighted Peak m/z (defined in the pseudocode), the sum of the intensity values and

the maximum intensity for each 2D peak in the scan. The weighted peak m/z value

corresponds to the centroid of the peak as discussed in Chapter 3, section 4.2

45

Description: Identify peaks and calculate peak metrics
Input: array of mz values, array of intensity values, scan number
Output: for each peak; peak identifier, weighted peak mass, sum of intensities,
maximum intensity, retention time
Parameters Used: (See table 3)
nf: 2D noise filter, used to remove low intensity data points from a peak = 10%
of maximum peak intensity

1 SET position counter to 0
2 SET peak index to 0
3 WHILE position counter < length of mz and intensity arrays
4 //Find the start of a peak
5 IF (current intensity is > 0 AND previous intensity = 0) OR overlap flag
is set
6 WHILE current intensity is > 0
7 SET the 2D peak ID for this postion to the peak index
8 IF current intensity > previous intensity
9 AND previous intensity 2 steps back > previous intensity
10 //Overlapping Peak found, store Intensity
11 //and start new Curve for next Iteration
12 SET the overlap flag
13 BREAK out of this loop
14 ELSE
15 INCREMENT the position counter
16 ENDIF
17 END WHILE
18 END IF
19 //end of peak found
20 INCREMENT the peak index
21 INCREMENT the position counter
22 END WHILE
23 //Reiterate over mz and intensity arrays to create intermediate metrics
24 FOREACH peak index
25 FOREACH mz, intensity
26 IF current intensity > nf
27 SET maximum intensity
28 SET minimum intensity
29 SET sum of intensities for this peak
30 SET sum MZ by intensity = SUM(mz*intensity)
31 SET weighted peak mass = sum MZ by intensity / sum of intensities
32 ENDIF
33 END FOREACH
34 END FOREACH

46

Parameters
Several parameters are defined in the feature detection process. Table 3 lists the

parameters and the reasons for choosing the default values. The values have been

chosen either from best practice outlined in the literature, or from experimental

observation. The following details the parameters, their settings, symbols as used in

the pseudocode and the reference for the value of the setting

TABLE 3 PARAMETERS USED IN THE FEATURE DETECTION ALGORITHM

The next step in the 2D peak picking process is to identify peaks that fall within an

Isotopic envelope. The envelopes are created when the incorporation of carbon

atoms of different molecular mass into the ions causes a predictable pattern. An

example of an Isotopic envelope is shown in Figure 12. The envelopes are identified

once an initial pass of the spectra picks out the individual weighted peaks. The m/z

shift between the isotopes in the envelope depends on the electrical charge of the ion

and through the measurement of this change in m/z and a lookup table such as that in

Table 4, the charge of the ion is calculated and therefore its true mass can also be

calculated by multiplying the m/z value by the charge.

Symbol Description Setting Reference

nf 2D noise filter, used to remove low intensity data points

from a peak. Setting is a percentage of the maximum

intensity of a peak

10% MaxQuant

pht Minimum ratio of intensities between two 3D peaks in a
isotopic envelope

60% MaxQuant

sm Mass of a sodium molecule, used to modify the range of

masses that qualify as a match

+/- 0.0109135 MaxQuant

cc Correlation coefficient for matching 3D isotopic peaks 0.6 MaxQuant

Mmt Mass matching tolerance, used in conjunction with sm
to calculate the range of masses that qualify as a match

7ppm MaxQuant
and Thermo

47

FIGURE 12 PEAKS WITHIN AN ISOTOPIC ENVELOPE

The values in Table 4 are created using an “averagine” model [77]. Here the term

averagine refers to a theoretical peptide the properties of which are calculated

from the average composition of peptides at a given mass. The m/z shifts are

reported by convention to eight decimal places.

TABLE 4 MASS SHIFT BY CHARGE FOR ISOTOPIC ENVELOPE CALCULATION

Charge

Mass Shift

(thomsons)

2 0.50143432

3 0.33428955

4 0.25071716

5 0.20057373

6 0.16714477

The following pseudocode details the 2D Isotopic envelope detection process as

used by MaxQuant. The result of this step is a list of 2D Weighted Peak m/z, summed

Intensity and charge values for each 2D peak that formed part of an isotopic

envelope. To count as a valid envelope it must be formed of at least three 2D peaks.

It is important to note at this point that the 2D isotopic envelope detection step is used

to identify the charge of the ions and also as a filter to remove any of the peaks that

are not included in an isotopic envelope. The individual 2D peaks are passed to the

3D peak picking process and are not aggregated into a single mono-isotopic peak at

this stage.

48

Description: Identify Isotopic envelopes of 2D peaks and calculate charge
Input: peak identifier, weighted peak mass, sum of intensities, maximum
intensity, retention time
Output: peak identifier, weighted peak mass, sum of intensities, maximum
intensity, charge, retention time
Parameters used:
pht: Minimum ratio of intensities between two 3D peaks in a isotopic envelope=60%
sm : Mass of a sodium molecule=+/- 0.0109135

1 FOREACH 2D peak identifier in input
2 SET outer loop weighted peak mass
3 SET outer loop sum of intensities
4 SET outer loop maximum intensity
5 FOREACH 2D peak identifier in input
6 SET inner loop weighted peak mass
7 SET inner loop sum of intensities
8 SET inner loop maximum intensity
9 IF the inner and outer loops are not at the same point
10 AND outer loop weighted peak mass - inner loop weighted peak mass > 0
11 AND outer loop weighted peak mass - inner loop weighted peak mass <=
1
12 AND inner loop maximum intensity > pht * outer loop maximum intensity
13 SET wpm difference = outer loop weighted peak mass - inner loop
weighted peak mass;
14 IF wpm difference > 1-sm AND wpm difference < 1+sm SET charge to 1
15 //the decimal values to calculate charge are from the "averagine" table 4
16 ELSEIF wpm difference >= 0.50143432 - sm
17 AND wpm difference <= 0.50143432 + sm SET charge to 2
18 ELSEIF wpm difference >= 0.33428955 - sm
19 AND wpm difference <= 0.33428955 + sm SET charge to 3
20 ELSEIF wpm difference >= 0.25071716 - sm
21 AND wpm difference <= 0.25071716 + sm SET charge to 4
22 ELSEIF wpm difference >= 0.20057373 - sm
23 AND wpm difference <= 0.20057373 + sm SET charge to 5
24 ELSEIF wpm difference >= 0.16714477 - sm
25 AND wpm difference <= 0.16714477 + sm SET charge to 6
26 SET mass = charge * outer loop weighted peak mass
27 OUTPUT 2D peak identifier, outer loop weighted peak mass,
28 outer loop sum of intensities, mass, charge
29 END FOREACH
30 END FOREACH

49

2) 3D peak picking

Following the 2D peak picking and isotope identification, the next step in the feature

detection process is search for chains of 2D peaks that align in a narrow band of m/z

in order of increasing retention time. The addition of the further dimension of retention

time (rt) into the calculation is the reason for the three-dimensional (3D) naming. A

peptide will present as ions in the scans over a period of time, starting off with a small

amount rising to a peak and then tailing off. Figure 13 shows a selection of the 2D

peaks that were output from the 2D peak picking process. When the 2D peaks are

arranged in this way it is possible to see the 3D peaks as chains of 2D peaks. To be

grouped into the same chain, 2D peaks must have the same charge and the m/z

values lie within a +/- 7ppm window, this is known as “peak alignment”. Pseudocode

for the 2D peak alignment step is shown below.

FIGURE 13 2D PEAKS WITH AN EXAMPLE CHAIN OF 2D PEAKS CIRCLED

(note there are several chains in this figure but only one is circled for illustrative

purposes)

50

Description: Create chains of 2D peaks ordered by retention time.
Input: 2D peak identifier, weighted peak mass, sum of intensities, maximum
intensity, charge, retention time
Output: 2D peak chain identifier, 2D peak identifier, weighted peak mass, sum
of intensities, maximum intensity, charge, retention time
Parameters used:
mmt: Mass matching tolerance = 0.000007

1 rt = retention time
2 NESTED SORT list of input 2D peaks by retention time and then by weighted peak
mass within Retention Time
3 FOREACH 2D peak identifier
4 FOREACH 2D peak identifier
5 IF retention time for outer 2D peak is within 30 seconds of retention time
for inner 2D peak
6 //fast forward to next possible match in inner loop
7 //performance enhancement to prevent excessive looping -
8 WHILE outer loop mass < inner loop mass + 0.05 and inner loop rt = current
rt
9 IF outer loop charge != inner loop charge
10 OR outer loop mass < inner loop mass * mmt
11 INCREMENT inner loop
12 END WHILE
13 IF outer loop wpm < inner loop mass + (inner loop mass * mmt)
14 SET match flag to found
15 FOREACH of the next 4 2D Peaks check for another match
16 IF other matches found choose closest mass to the outer loop 2D mass
17 END FOREACH
18 SET 2D peak chain identifier for the matched 2D peak
19 END IF
20 END IF
21 IF matchflag is set to found break out of inner loop and move to next point
in outer loop
22 END FOREACH
23 INCREMENT the 2D peak chain identifier if we had matches before but now don’t
to start a new 3D peak.
24 END FOREACH

51

Once the 2D peaks have been linked to form chains, they present as a time series as

seen in Figure 14. The process from this point is similar to that followed in the 2D

peak picking step; that is individual peak detection and isotopic envelope

identification. An additional step is necessary at the start of the process and this is to

smooth the intensity values to prevent splitting an eluting peptide into several

sections due to noise in the data. Figure 14 shows an example of this effect, without

smoothing many false peaks would be found. The method for smoothing, based on

the MaxQuant algorithm, is to apply a window mean filter of +/- 1 scan width [135].

Many other ways of smoothing data exist such as Gaussian Filters, Continuous

Wavelet Transformation and Discrete Wavelet Transformation [147]. However, as the

moving average window mean filter is specified in the MaxQuant supplement, this

was used in the algorithm developed here.

FIGURE 14 ILLUSTRATION OF SMOOTHING IN 3D PEAK PICKING

52

The following pseudocode details the process for smoothing the intensity values of

the 2D peaks making up to 2D peak chains.

Description: Smooth intensities of 2D peaks that make up 3D peaks
Input: 2D peak chain identifier, 2D peak identifier, weighted peak mass, sum
of intensities, charge, retention time
Output: 2D peak chain identifier, 2D peak identifier, weighted peak mass,
smoothed intensity, sum of intensities, charge, retention time

1 SORT 2D peaks in order of Retention Time
2 FOREACH 2D peak chain
3 FOR 2D peak in the current 2D peak chain
4 IF this is the start of a new 2D peak chain
5 SET smoothed intensity = (current intensity + next intensity) / 2
6 ELSE IF this is the last 2D peak in a 2D peak chain
7 SET smoothed intensity = (current intensity + last intensity) / 2
8 ELSE this is the a 2D peak in the middle of a 2D peak chain
9 SET smoothed intensity = (current intensity + next intensity + last
intensity) / 3
10 END FOREACH
11 OUTPUT 2D peak chain identifier, 2D peak identifier, weighted peak mass,
smoothed intensity, sum of intensities, charge, retention time
12 END FOREACH

53

Following the smoothing process, the 3D peaks can be identified in a similar manner

to that in which the 2D peaks and overlaps were identified in an earlier step. The

major difference between the two procedures is that the smoothed intensity values do

not fall to zero between 3D peaks, this means that in effect all peaks are treated in the

same way as overlapping peaks in the 2D process. The following pseudocode details

the process for identifying individual 3D in the 2D peak chains.

Description: Identify the 3D peaks from the smoothed data
Input: 2D chain identifier, 2D peak identifier, weighted peak mass, smoothed
intensity, charge, retention time
Output: 3D peak identifier, 2D peak identifier, weighted peak mass, smoothed
intensity, charge, retention time

1 FOREACH 2D point in the input
2 IF previous 2D chain identifier <> current 2D chain identifier
3 //start of new chain must be start of new peak
4 INCREMENT 3D peak identifier
5 IF current smoothed intensity < next previous intensity
6 OR current smoothed intensity = next previous intensity
7 SET slope indictor to positive
8 //Due to the partition strategy it is possible to start a chain with a
negative slope
9 ELSE SET slope indictor to negative
10 END IF
11 ELSE
12 IF previous smoothed intensity < next smoothed intensity
13 OR next smoothed intensity = previous smoothed intensity
14 SET slope indictor to positive
15 IF current smoothed intensity < previous smoothed intensity
16 INCREMENT 3D peak identifier
17 ELSE IF next smoothed intensity < previous smoothed intensity
18 SET slope indictor to negative
19 IF current smoothed intensity < next smoothed intensity
20 INCREMENT 3D peak identifier
21 END IF
22 END IF
23 END FOREACH

54

Following the process described above, the individual 3D peaks and the 2D peaks of

which they they are comprised have been identified. Now, isotopic envelopes can be

detected in a similar way to the 2D peak picking step with the exception that a

correlation coefficient is calculated to check that the candidate 3D peaks have a

similar shape before they can be classed as matching in a 3D Isotopic envelope. This

method of detecting the 3D Isotopic envelopes is taken from the MaxQuant

description of the algorithm. The pseudocode below details the process for identifying

3D isotopic envelops.

Description: Identify the 3D peaks from the smoothed data
Input: 3D peak identifier, 2D peak identifier, weighted peak mass, smoothed
intensity, charge, retention time
Output: ISO envelope identifier, 3D peak identifier, 2D peak identifier, weighted
peak mass, smoothed intensity, charge, retention time
Parameters used:
pht: Minimum ratio of intensities between two 3D peaks in a isotopic envelope=60%
sm : Mass of a sodium molecule=+/- 0.0109135
wpm = weighted peak mass
rt = retention time

1 FOREACH 3D peak identifier in input
2 FOREACH 3D peak identifier in input
3 IF position in outer loop <> position in inner loop
4 //Match on wpm
5 AND outer loop wpm - inner loop wpm >= 0
6 AND outer loop wpm - inner loop wpm <= 1)
7 //Match on rt window between first and last 2D peak in the 3D peak
8 AND outer loop last rt >= inner loop rt
9 AND outer loop first rt <= inner loop rt
10 //Match on Charge
11 AND outer loop charge = inner loop charge
12 //Match on Intensity
13 AND inner loop smoothed intensity > pht * outer loop smoothed intensity
15 SET wpm difference = outer loop weighted peak mass-inner loop weighted
peak mass;
16 IF wpm difference > 1 - sm AND wpm difference < 1.0 + sm SET charge
to 1
17 ELSEIF wpm difference >= 0.5014343200 - sm AND wpm difference <=
0.5014343200 + sm SET charge = 2
18 ELSEIF wpm difference >= 0.3342895500 - sm AND wpm difference <=
0.3342895500 + sm SET charge = 3
19 ELSEIF wpm difference >= 0.2507171600 - sm AND wpm difference <=
0.2507171600 + sm SET charge = 4
20 ELSEIF wpm difference >= 0.2005737300 - sm AND wpm difference <=
0.2005737300 + sm SET charge = 5
21 ELSEIF wpm difference >= 0.1671447700 - sm AND wpm difference <=
0.1671447700 + sm SET charge = 6

55

23 END IF
24 IF wpm difference calculation found a match
25 //calculate the correlation coefficient between current 3D peak
26 //and the next 3D peak in the potential isotopic envelope
27 FOREACH potential isotopic envelope
28 FOREACH 3D peak in current potential isotopic envelope
29 FOREACH 2D peak in current 3D peak
30 SET normA = normalised intensity for current 2D peak in current
3D peak
31 SET normB = normalised intensity for current 2D peak in next 3D
peak
32 normAnormB = normAnormB + (normA * normB)
33 normAnormA = normAnormA + (normA * normA)
34 normBnormB = normBnormB + (normB * normB)
35 END FOREACH
36 corelation coefficent = normAnormB / square root of (normAnormA
* normBnormB)
37 //Write out matched points if correlation coefficient is greater
threshold
38 IF corelation coefficient >= pht
39 true isotopic envelope found
40 OUTPUT ISO envelope identifier, 3D peak identifier, 2D peak
identifier, weighted peak mass, smoothed intensity, charge, retention time
41 END IF
42 END IF
43 END IF
44 END FOREACH
45 END FOREACH

56

Finally, the individual 3D peaks making up the Isotopic envelopes are combined into

a single mono-isotopic peak with a single value for the mass, intensity and retention

time of the peptide. The mass and retention time are taken from the first 3D peak in

the isotopic envelope and the intensity is the sum of the intensity values from all 3D

peaks in the envelope. This information will feed into the later stages of the data

processing pipeline, resulting in identified proteins. The following pseudocode details

the process for creating the final mono-isotopic peaks

Description: Aggregate component values into mono isotopic peaks within an
istopic envelope
Input: ISO envelope identifier, 3D peak identifier, 2D peak identifier, weighted
peak mass, smoothed intensity, charge, retention time
Output: mono-iso peak identifier, mass, intensity, charge, retention time

1 FOREACH Isotopic Envelope
2 FOREACH 3D peak in the current isotopic envelope
3 FOREACH 2D peak in the current 3D peak
4 sum weighted peak mz = weighted peak mz + (current weighted peak mz *
current smoothed intensity)
5 sum weighted peak rt = weighted peak rt + (current weighted peak rt *
current smoothed intensity)
6 sum intensity = sum intensity + current smoothed intensity
7 END FOR EACH
8 weighted 3D peak mz = sum weighted peak mz / sum intensity
9 weighted 3D peak rt = sum weighted peak rt / sum intensity
10 END FOR EACH
12 weighted peak mass = weighted 3D peak mz for first 3D peak * charge
13 weighted peak rt = weighted 3D peak rt for first 3D peak
14 intensity = sum intensity for all 3D peaks in envelope
15 END FOR EACH

57

3.6 CONCLUSION

The aim of proteomics is to understand the full complement of proteins expressed by

an organism and the interactions between them. Proteomics is an important field of

study in life sciences and is an essential component of systems biology. By

integrating detailed data from different domains, it is possible to describe biological

systems, the benefits of which include the development of personalised medicines.

The study of proteins is a complex task involving many steps, the most common

technique used to measure the presence and abundance of proteins in a sample is

mass spectrometry.

During a process known as “bottom-up proteomics”, the large protein molecules are

cut into smaller pieces, called peptides, using an enzyme. The peptides are detected

by the mass spectrometer and output in the form of spectra consisting of mass to

charge ratios and intensities (abundance of peptide ions). In order to identify the

original proteins, present in the experimental cell sample, complex processing is

required. The first step in this processing pipeline is feature detection and the

algorithm for feature detection described in this thesis is based on the algorithm as

implemented by the MaxQuant software first described by Bellew [84]. Current

methods of processing mass spectrometer data in serial can be slow, one potential

way of speeding up the process is through parallel processing. The next chapter

reviews related work in this area.

58

4 PARALLEL COMPUTING FOR PROTEOMICS

4.1 CHAPTER SUMMARY

This Chapter discusses the current state of parallel computing for processing

proteomics data.

Section 2 gives a detailed description of MapReduce and the capabilities of Hadoop.

Section 3 describes current research into parallel solutions for feature detection and

the proteomics pipeline.

Section 4 discusses the use of cloud and big data solutions.

Section 5 concludes the literature review chapters and presents the main research

question of this thesis.

59

4.2 HADOOP AND MAPREDUCE

As discussed in Chapter 2, Section 2.3, the paper “MapReduce: Simplified Data

Processing on Large Clusters” [5] introduced a programming framework called

MapReduce which has its roots in functional programming languages such as Lisp

[35]. The framework consists of two main operations, a map and a reduce, and

operates by the passing of key/value pairs. The process flow is as follows [5]:

• Input data is divided into a series of “splits” that are distributed around the

nodes of the cluster.

• The map task takes an input split in the form of a key/value pair and emits a set

of intermediate key/value pairs.

• The intermediate key/value pairs are moved around the cluster so that all pairs

with the same key are placed on the same node, this phase is called the

shuffle.

• Following the data movement in the shuffle phase, the reduce task takes an

intermediate key and the set of values for that key as input and emits a set of

key/values pairs consisting of the intermediate key and the final result values.

The following notation is used to describe the map and reduce tasks [35] where k and

v are in the input keys and values, k1, v1 are the intermediate keys and values and v2

is the output values.

 map (k, v) −> set(k1, v1)
 reduce (k1, list (v1)) −> set (k1, v2)

Note that a key and a value can take many forms, for instance, it is common for the

value to be a dataset formed of delimited values that are parsed and operated on in

the task itself. Two other operations exist, the custom partitioner and the combiner.

The custom partitioner takes an intermediate key as an input and outputs a partition

index which is used to distribute data to the reduce steps. A custom partitioner is used

to override the standard hashing method of data distribution and provide a fine

degree of control over which reduce task the intermediate key/value pairs from the

map tasks are sent to. The combiner is a performance enhancement operation used

60

to reduce the amount of data moved around the cluster and is an aggregation

operation, often called a “map-side reduce”. By combining values with the same key

within a map task, fewer key/value pairs are emitted and therefore less data needs to

be shuffled around the cluster. The custom partitioner and combiner are described as

follows.

 Partition(v1) -> (k1)
 Combine set(k1,v1) -> (k1, combined_v1)

One of the aims of MapReduce is to exploit the locality of data in a shared nothing

system. The parallelism is aligned with the distributed storage of data sets over the

cluster so that the use of the internal cluster network is limited, as much as possible,

to the shuffle redistribution phase. The input data is partitioned into “splits” which are

distributed around the cluster and these splits are processed in parallel [5]. The

canonical example of a MapReduce program is the word count problem, in this use

case the words in a number of documents are counted in parallel using the map and

reduce tasks. The following pseudocode describing the word count problem is

provided in the original Dean and Ghemawat paper [5]

map(String key, String value):
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values): // key: document name
 // key: a word
// values: a list of counts
int result = 0;
for each v in values: result += ParseInt(v);
Emit(AsString(result));

Figure 16 shows the map reduce process in operation for the word count problem. A

MapReduce job follows the steps from left to right. The input documents are split into

sections, here they are represented as individual records but could be complete

documents. The sections are distributed around the cluster and the map task

operates on the splits by parsing the them and emitting a single word and a 1. At this

61

point a combiner could be used to reduce the amount of data emitted. For example,

the map task with the data “<it,1>, <it,1>, <of,1>” could emit “<it,2>, <of,1>” if a

combiner was used but this extra step is not included in the diagram. The output from

the map task is distributed during the shuffle phase so that all output records with the

same key, in this case the word itself, are passed to the same reduce task. The

reduce task then aggregates the count of the words and outputs the result.

FIGURE 15 WORD COUNT EXAMPLE OF A MAPREDUCE JOB

As mentioned above, in practice, values do have to be simply counts of the

occurrence of a particular key, nor indeed do they have to be numeric at all. In

addition, a key does not have to be useful as part of the operation performed by a

map or reduce task. An example of this would be in the case of proteomics data

where the key could be the scan number and the value could be a concatenated list

of all of the values in the scan that are relevant.

Subsequent to the publication of Dean and Ghemawat’s paper [5] an Apache

Foundation project called Hadoop was developed to implement the concepts

introduced. Hadoop includes the MapReduce framework and also a distributed file

system, the Hadoop Distributed File System (HDFS), which is fault tolerant and

62

designed to run on commodity hardware to keep the costs low [86]. The architecture

and implementation details of Hadoop are described in Appendix A.

Hadoop has been adopted in the scientific community as a means of parallel

processing for large, complex datasets in a large variety of domains. Some examples

of its use are:

• Parallelisation of the BLAST DNA sequence alignment algorithm [143]

• “Smart City” operation, using Hadoop as a repository and processing platform

for sensor data from water distribution systems [144]

• Processing of astronomical images, in this case Hadoop is used to process

data from astronomical surveys allowing them to be “stitched together” to turn

multiple, partially overlapping images into a single image [145]

• Analysing climate change data, large amounts of binary files are parsed and

analysed using Hadoop [146]

63

4.3 CURRENT USE OF PARALLEL COMPUTING FOR PROTEOMICS

The adoption of Hadoop and MapReduce by the business community has been rapid.

Companies are evaluating Hadoop as an alternative to traditional relational

databases for reasons of cost, the amount of data that can be stored and processed

and also about the types of analysis that it can perform [38]. In reviewing the

published literature, this adoption has not been widespread in the field of proteomics

as very few articles that cite the original MapReduce paper refer to MapReduce as a

method of processing the data from mass spectrometers. A wider search to find

papers related to the parallel processing of proteomics data by any method reveals

that parallelisation, in general, is not being widely adopted by the proteomics

community.

The papers related to parallel processing and proteomics fall into several groups.

1) Directly mention the processing of mass spectrometer data using a parallel

technique, of these most are concerned with the final protein identification

stage of the pipeline. Some do use the MapReduce framework whereas others

use MPI or other methods of parallelization for example, [79] [87].

2) Mention proteomics in passing or in an introduction and no further reference is

made to proteomics or mass spectrometers for example, Kasson et al. [88].

3) Focused on Cloud Computing rather than specifically on parallel algorithm

implementations. These papers are concerned with the use of Cloud

Computing to enable cost-effective ways of managing large volumes of data in

a fault tolerant environment for example, [89] [90].

4) Focused on the implementation of an algorithm and mention proteomics as a

possible use case. For example, “An effective and efficient parallel approach

for random graphs generation over GPUs” mentions the use of a graph

algorithm to process large-scale biological networks and references protein

interactions as an example [91].

Following the 11th Annual Bioinformatics open source conference in 2010, a review

published by Taylor lists the applications of MapReduce in Bioinformatics [92]. In this

review, Taylor makes a single reference to proteomics stating that the author started

a pilot project in August 2010 to build a data repository for transcriptomics and

64

proteomics for storing vast amounts of data from mass spectrometry-based

proteomics experiments. This reference refers to storing data on the Hadoop

distributed file system (HDFS) but there is no mention of processing the RAW file

data using MapReduce in the Hadoop environment. It also notes that the sizes of the

datasets that require processing are increasing to levels where traditional methods of

analysis on non-parallel computing platforms cannot produce results in a reasonable

time frame. Matsunaga et al. [93] make references to the use of MapReduce in

genomic sequencing, and its capabilities in facilitating the parallel processing of

distributed subsets of input data. However, there is nothing specifically related to

proteomics. Dudley et al. [73] examined the programming skills required by today’s

Bioinformatics practitioners along with statistical languages such as R and more

conventional languages such as Java and Python. They note that many

bioinformaticians are experimenting with MapReduce and use the work of Matsunaga

et al. [93], referenced above, as an example.

A relatively recent paper [79] reviewed the use of Hadoop and MapReduce as part of

the proteomics workflow, but it is concerned with the searching of identified spectra

against existing reference databases. This process is the protein identification or

database lookup part of the workflow described in section 3.4.5. The paper discusses

the implementation of an algorithm written specifically to run on Hadoop and the

benefits of scalability, flexibility and reliability. This work is important as it focuses

purely on the use of Hadoop to process mass spectrometer output, but it does not

provide any detail on feature detection from the RAW data. The work of Lewis et al.

[79] could be pipelined together with the parallel feature detection algorithm

developed during this research to produce a complete parallel process as discussed

in a later chapter.

Another example of a parallel protein identification algorithm running on Hadoop uses

previously identified peaks (as opposed to identifying the peaks itself) so that a

search can commence, this time using a standard input format of MGF and DTA file

types [94]. MGF and DTA file types are standard file types used to share proteomics

data in a common format. Another review of the use of distributed computing in

proteomics [95] contains many details of the types of system available, for example,

65

grid computing, cloud computing and GPU-based systems. However specific details

are not given on the implementation of data processing on these systems. An early

reference to parallelizing a proteomics data process is the conversion of the Tandem

protein identification engine to a parallel version called X!Tandem [96]. This system is

implemented using MPI and the Parallel Virtual Machine (PVM) architecture. The

research concludes that there is a significant possible reduction in the time required

to identify proteins by performing searches in parallel.

Wang et al. [97] describe a process to identify peptides and proteins in parallel using

cluster hardware and the MPI framework. They discuss the challenges of the

ever-increasing size of the data sets involved and include detailed timings. An

interesting observation is that the processing time is dependent on the number of

peptides in the spectra; this means that although two spectra may contain the same

amount of data, if one contains more features (which equate to peptides), it will take

longer to process. This phenomenon is discussed in more detail in the results

chapters of this thesis where there is a discussion on the difference between data

skew and processing skew in the cluster.

A significant paper [87] discusses a parallel protein identification method using

MapReduce and Hadoop in a similar way to the Hydra system proposed by Lewis

[79]. Importantly it uses mzML format files as the input to the system and discusses

distributing files around a cluster by splitting them into "daughter files". mzML is an

XML-based format developed by the Institute of Systems Biology [15] and is a

popular standard file format. Vendor specific mass spectrometer RAW files are

converted into mzML before processing. Mohammed et al. [87] describe one of their

large mzML files as being 1.3 Gb. This is small in comparison with those produced by

the Lamond Laboratory at the University of Dundee, where files regularly reach 15

Gb. To be able to process the individual scans, this single file must be split into a

series of “daughter files” as identified by Mohammed et al. A further reference to this

method of splitting the input files across map tasks to exploit the “embarrassingly

parallel” nature of processing individual scans is made by Kalyanaraman et al related

to peptide identification via a search method [33]. This work also provides some

information on timings compared with a non-parallel implementation and the

reduction of total processing time from weeks to hours. Hillman et al. [98] discuss a

66

hybrid system using the HDFS system in the Hadoop framework to store the scan

data from mzML files and a relational database to store the dimensional information in

a standard third normal form schema. The work also includes the description of an

example architecture, and some experimentation undertaken using MapReduce jobs

to pick precursor ions from the mzML files and an example of data quality checking

using PIG, a data manipulation language that is part of the Hadoop eco-system.

As previously stated, the volume of data produced by mass spectrometers is

increasing as the instruments are becoming more sophisticated. The increase in

volume is creating a data management challenge for those involved in proteomic

studies. This situation mirrors what is happening in many other areas of life sciences

such as genome sequencing. Wandelt et al. [99] describe the issues of data

management in sequencing and propose the use of a cloud-based MapReduce

solution. Fusaro et al. [100] discuss the use of Amazon’s web services and conclude

that there is a substantial up-front effort required to make an existing application

suitable for parallel processing in a Hadoop system and that learning and using the

MapReduce framework can be challenging. Neuhauser et al. [16] argue that

although a modified version of MaxQuant running on a cluster outperforms a desktop

PC, the results show that a high specification PC with solid state disks, multiple cores

and a large amount of RAM can perform more than adequately for most laboratories.

They recommended that rather than invest in a cluster, the PC-based approach is

optimal for laboratories with medium to large data volumes. However, this thesis

asserts that speed is not the only reason for choosing a central cluster-based

approach for data processing. In addition to speed there are other benefits discussed

in later chapters including data management, quality control, removing the burden of

processing tasks from researchers and governance over the algorithms and

parameters used to process the data. The use of Amazon’s EC2 Cloud Computing

platform is also documented with the Myrna project [92], an application used in

genomics for calculating differential gene expression. Wu et al. [101] introduce a “Life

Science Gateway” as a layer on top of cloud-based services where individual jobs are

managed as part of a complete workflow process. The focus of this paper is

managing Bioinformatics analysis running in Hadoop and does not mention the data

from mass spectrometers. Hodgkinson et al. [102] also discuss the importance of

67

cloud-based services for Bioinformatics researchers. A message passing protocol is

proposed which allows the creation of workflows using hardware clusters in the cloud;

one of the workflows discussed is computing protein interactions. They also mention

the need to rewrite code to take advantage of the MapReduce programming

framework. A review of big data, Hadoop, cloud computing and their use in genomics

[103] concludes that cloud computing and big data technologies have a significant

role to play in the future of life sciences. The reasons for this are stated as increases

in the amount of data and increases in the number of genes and proteins that have

not yet been characterised. This review also points to challenges in implementing

such solutions including the high-level of Java expertise required by software

developers.

Gunarathne et al. [90] present three Biomedical applications which are all related to

genomics that can be easily run in parallel and therefore represent a good use case

for MapReduce. They include a review of Cloud services such as Amazon EC2 and

Microsoft Azure and detailed performance comparisons. Mao et al. [104] describe

another workflow system called GreenPipe which is Hadoop-based and designed to

be used in the cloud. They comment that although Hadoop has been proven to be

successful in handling large datasets, to do this the researcher must become very

skilful at MapReduce programming before they can run analyses. Prahalad et al.
[105] propose a system called “Phoenix” which attempts to provide a cloud-based

platform as a service layer for all ‘omic’ disciplines including proteomics although all

the examples given are in the context of genomics. Wruck et al. [106] approach the

issues of data management related to ‘omic studies from the point of view of open

access and data sharing and also the open standard MIAPE (minimum information

about a proteomics experiment) and its importance in proteomics experiments.

Niemenmaa et al. [107] introduce a Java library for the processing of BAM files

(Binary Alignment/Map), a format used in bioinformatics for such tasks as detecting

differential gene expression. This library was written with the intention that it would be

used in cloud-based Hadoop clusters acting as an integration layer between Hadoop

and analytic applications.

68

From reviewing the published literature, it is clear there has been little research into

the parallel processing of proteomics data and what there is has been focused on the

protein identification part of the pipeline and not specifically on feature detection.

Also, few studies involve the use of scalable clusters of commodity hardware,

cloud-based infrastructure or MapReduce as a solution.

4.4 USE OF GPUS FOR INCREASING PERFORMANCE.

Other means of executing program code in parallel exist, such as using Graphic

Processing Units (GPU). Although a GPU’s primary purpose is in processing the

instructions necessary to provide complex graphical output, for instance in the

gaming industry, the use of GPUs for general parallel processing is possible. The

manufacturer Nvidia released the CUDA language for programming GPUs in 2007

[149] and more recently the OpenCL cross-platform language has become the

standard [150]. GPU clusters have enabled a machine learning technique based on

neural networks known as “Deep Learning” to create accurate predictive models due

to the very high levels of parallelism that can be achieved [151]. For instance, a single

Nvidia Titan X GPU contains three-thousand five-hundred and eight-four cores [152].
Once combined into clusters, an extremely high level of parallelism can be achieved.

However not all processing problems are a good use case for GPU processing, for

instance problems that are not “embarrassingly parallel”, that is where the workload

cannot be simply split into a large number of parallel tasks with no need for

communication between the tasks [153] In addition GPUs run at a slower clock speed

than CPUs, for example the Nvidia Titan X runs at 1.4GHz as opposed to the Intel

core I7 CPU running at 4.2GhZ meaning that serial parts or parts of the process

where the input data cannot be split into small enough sections will run more slowly. A

further complication is the extra task of translating the feature detection algorithm into

the OpenCL language. Given these considerations it was decided that GPU

processing and indeed other forms of hardware acceleration represented a separate

area of research that could be followed at a later stage. The purpose of this research

is therefore to concentrate on proving that parallel feature detection is actually

possible in the first instance and given that it is, can it be carried out in near real-time

using an algorithm coded in a MapReduce style on a scalable cluster.

69

4.5 PROTEOMICS, CLOUD AND BIG DATA

The term "Big Data" has gained popularity in recent years, it is used to describe data

sets that create a storage or processing problem or both. The parameters of volume,

velocity and variety have been used to define big data, that is where the size of a

dataset (volume), the speed the data arrives for processing (velocity), and the

complexity it contains and/or the variability of the format (variety) are the cause of

problems with its storage or processing. Complexity can mean the quantity of

processing required, the data format, the lack of structure (for example, free text) or

all three. Hadoop is a key solution for processing and storing these big data datasets

due to the use of commodity hardware (resulting in a low cost per terabyte for

storage) and the flexibility of the MapReduce programming framework. While

according to Gartner the hype around big data has begun to recede

(https://www.gartner.com/doc/3115022/demise-big-data-lessons-state last accessed

19th August 2017), the management of massive complex datasets is a growing

problem for many organisations. Data from proteomics experiments fits into all three

of the big data dimensions. There is a large volume of data, it arrives quickly in a large

laboratory with multiple mass spectrometers, and it is in a complicated format that

requires a lot of processing.

In the commercial world, there is an increasing focus on cloud computing as a basis

for the solutions to big data problems. Cloud computing is a name given to a broad

set of scenarios where the underlying premise is that computing space and

processors are rented rather than owned. There are various models to choose from,

including the use of a platform as a service (PaaS) [108], where the cloud provider

supplies a bare system, and the user has to setup everything else to software as a

service (SaaS) [108] where the cloud provider provides a fully managed software

package. Solutions such as salesforce.com, Google Apps and Cisco Webex are all

examples of SaaS. Access to cloud-based systems is via the Internet or a private

connection if security is a concern. There are several styles such as public and

private cloud which determine whether servers are shared with others or not. Large

cloud computing providers such as Amazon and Microsoft offer data centres around

the world so that a user can comply with local data distribution and privacy laws.

70

Cloud computing has several advantages for companies wishing to use a distributed

cluster of servers for parallel computing:

• The task of maintaining a complex computing cluster is turned over to the

cloud provider.

• It is simple to expand or contract the number of nodes and therefore the

storage and processing capacity of the cluster as loads dictate.

• The cloud provider can handle security and the latest software patches,

leaving the users to concentrate on their area of expertise.

• Data management, including backup, disaster recovery and access are all part

of the same service.

An analysis of cloud use for analysis of proteomics data [109] investigates the

advantages of using Amazon’s EC2 system and concludes that important factors in

favour of a cloud-based solution are the costs, no need for maintenance and no need

to physically house a large cluster. Cloud CPFP [89] is a cloud-based application for

proteomics data processing, which is built on existing tools from a suite of software

called the Trans-Proteomic Pipeline (TPP). It contains software applications to cover

most areas of the workflow, although the authors concede that parallelisation of the

tools is limited. A more recent application of cloud technology is from the Proteocloud

application which uses several well-known protein identification solutions such as

X!Tandem to create a cloud-based pipeline for protein identification [110]. Given the

availability of open-source tools for proteomics data processing, parallel processing

and the ease of access to cloud-based resources, this research investigates the use

of a cloud-based central processing cluster as part of an architected solution to

proteomics data processing. This is compared to current PC-based solutions where

life scientists often must handle data movement and processing themselves and the

processing itself is done in an offline batch-mode. A literature search shows that

recent parallel processing frameworks such as MapReduce, Spark and Flink, and

alternatives to Relational Databases such as Cassandra and HBase have not been

widely researched or used for proteomics data processing. Therefore, this research

will concentrate on this area of parallelism and not older style frameworks such as

MPI and BSP.

71

Since the release of Hadoop, an eco-system of related software has grown up around

it to address shortcomings of Hadoop itself and to add functionality. For example,

Ambari is a management system used to simplify the maintenance and management

of a Hadoop cluster without resorting to command line interaction. New processing

frameworks have been developed to extend the limited number of operations allowed

in MapReduce and to make it easier for developers to code. Starting with platforms

such as Pig and Hive, developed by Yahoo and Facebook to provide a simpler

abstraction layer sitting on top of the MapReduce framework, the eco-system now

includes others such as Spark and Flink which extend the capabilities and facilitate

parallel programming on a cluster. Clusters of connected commodity hardware are

becoming increasingly common and are to be in found in many companies and

university laboratories [111]. The cluster landscape is split between

• Commodity clusters running using the Hadoop eco-system,

• Traditional high-performance computing (HPC) clusters which operate older

style parallelisation such as PVM and MPI,

• Standalone, purpose-built appliances and cloud-based environments.

Many of the big computer vendors such as IBM, Oracle and Teradata now produce

Hadoop appliances, which are supplied as an optimised set of nodes and

interconnects pre-installed with Hadoop and the tools necessary to operate it. This

has been in response to the degree of expertise and maintenance required to build

and maintain a commodity cluster. While this may be true in industry where skilled

resource is scarce and expensive, it would be reasonable to assume that a University

with an established computer science department would have access to many

computing software and hardware resources. Vendors such as Hortonworks and

Cloudera have been established, offering their own distributions of Hadoop and

support packages for customers wishing to build their own clusters whilst still having

access to support.

With the increase in data volume and the rate at which it arrives, real-time processing

is now a focus for many companies. Data sources coming in a continuous stream

from social media feeds, such as Twitter, to data from sensors on machines have

72

brought about the need for systems that can process in real-time. Processing

frameworks such as Spark and Flink that can operate on top of a Hadoop system

include real-time processing capabilities. The Internet of Things is a current industry

trend describing the ever-increasing number of devices connected directly to

computing units. A survey of examples of the Internet of Things does not list scientific

data as one of the uses [2]. This thesis argues that it should. One of the goals of this

research is to understand whether it is possible to treat a life sciences laboratory as

an Internet of Things with the mass spectrometers connected to a central

cloud-based cluster that processes the output data in real-time.

Some research on real-time acquisition has been completed using a branch of the

MaxQuant code named MaxQuant Real-Time. This work uses a set of code libraries

provided by Thermo Scientific, the manufacturer of the mass spectrometers that

produced the data used in the research. The computer that is attached to the mass

spectrometer itself carries out the processing in real-time, as opposed to a remote

cluster [112]. The researchers made some modifications to the standard MaxQuant

Feature Detection algorithm including relaxing the correlation values required for a 3D

peak, and code to re-evaluate 3D peaks as the real-time data stream adds more data

one scan at a time. The author of this thesis presented an original view of a real-time

Internet of Things solution for proteomics processing at the IEEE conference on big

data, 2016 [113]. The solution presented used Apache Flink running on a Hadoop

cluster for the processing. This thesis expands on that research and provides more

detail on a wider range of software packages and comparisons of processing time

along with a comparison to batch-mode processing.

73

4.6 CONCLUSION AND RESEARCH QUESTION

The adoption of Hadoop has been rapid in commercial and academic areas as a

system for implementing parallel processing. Amongst the expected benefits of

implementing Hadoop are reduction in cost, parallelisation of complex and large

datasets and scale. Research into using a MapReduce-style of parallel programming

on a Hadoop system for processing mass spectrometer data is scarce. Several key

papers focus on the protein identification section of the proteomics pipeline leaving

the initial feature detection as a serial process. in addition to the benefits listed above,

the implementation of a parallel feature detection algorithm can lead to a near

real-time system using a cloud architecture, which would bring the following additional

benefits to a Life Sciences Laboratory:

• The task of maintaining a complex computing cluster is handed over to the

cloud provider.

• It is simple to expand or contract the number of nodes and therefore the

storage and processing capacity of the cluster as loads dictate.

• The cloud provider can handle security and the latest software patches,

leaving the users to concentrate on their area of expertise.

• Data management, including backup, disaster recovery and access are all part

of the same service.

To realise these benefits, it is necessary to first show that feature detection can be

carried out in parallel and therefore the main research question addressed in this

thesis is “Can feature detection in proteomics data be performed in near real-time

using a parallel algorithm on a horizontally scalable compute cluster?”. To answer the

research question, the first step is to create a parallel version of the feature detection

algorithm that is able to exploit the resources of a compute cluster. Given the scarcity

of research in this area, the MapReduce style of parallel programming has been

chosen and Chapter 5 provides the details of how this has been implemented as map

and reduce tasks. Note that for the reasons stated in Section 4.4 of this chapter the

research concentrates on creating and validating the parallel algorithm and does not

involve hardware, for example GPU, acceleration.

74

5. METHODOLOGY

5.1 CHAPTER SUMMARY

To address the research question, “Can features in mass spectrometer be detected in

near real-time?” this study evaluates various systems using a parallel feature

detection algorithm. This chapter describes the tools employed during this research,

the algorithm that was selected and coded to run using the MapReduce framework

and the overall methodology for testing and benchmarking on selected platforms.

Section 2 explains the validation of results against those produced by existing, widely

used, processing software.

Section 3 discusses the use of different input file formats and the effect that these

have on the efficiency of the processing and storage of mass spectrometer data.

Section 4 explains the reason for choosing the programming language Java for

coding the parallel algorithm. This Section also includes a discussion of alternative

programming languages.

Section 5 details in full the development environment used, along with operating

systems, software versions and the hardware and virtual environments used to test

the accuracy of the code and the efficiency of the selected platforms. Following this,

Sections 6 and 7 discuss the details of the test and performance benchmarking

environments.

Section 8 contains details of the various systems used in this research. It describes

the different processing frameworks and several data storage mechanisms that are

able to interface with MapReduce.

Section 9 describes the data files used in the benchmarking process.

Section 10 describes current benchmark methodologies for big data systems and the

exact methods chosen to benchmark during this research. There is also a listing of

the variables collected during the testing and validation phases along with ways of

capturing and reporting benchmark metrics.

75

5.2 VALIDITY AND ACCURACY

The data used in the development and testing phases of the research was created

from real proteomics experiments carried out in the Lamond Laboratory. Section 5.9

of this Chapter gives a detailed description of the data files and their sources.

Several software packages (described in more detail in Section 3.5 of Chapter 3)

were used to obtain the mass and intensity values of the 3D peaks (or features) in the

data.

• Maxquant

• Proteowizard

• The Spectracus project (Lamond Lab, Centre for Gene Regulation and

Expression)

The results from the algorithm created by this research were validated by comparing

them to the outputs from the systems named above. In line with standard practices

among proteomics researchers, the metrics used to verify the results were precision

and recall [74], [77], [114]. Chapter 6 presents the results of the benchmark testing

using a batch-based process and gives a more detailed explanation of the precision

and recall metrics. Chapter 7 presents the results of a streaming process.

76

5.3 DATA FORMATS FOR PARALLEL PROCESSING

As stated, to openly share results vendor RAW files are commonly converted to

mzML files, and there are many software packages available to do this. A frequently

used package is Proteowizard [115]. For Thermo Scientific instruments, the

conversion software provided as part of this package is called msconvert and uses a

Windows DLL library provided by the manufacturer to decode the RAW file. The

decoded data is then written out to a new file in mzML format. Table 6 in Section 5.9

of this chapter displays a list of the test files used in this research and the elapsed

time taken to convert between RAW and mzML formats.

The design of mzML incorporated certain principles including comprehensive

support for instrument output, the sharing of results and best practice. XML is a

good format for sharing data because it is self-describing and the mzML schema

contains many metadata fields for detailing experimental conditions; however, there

are downsides to using XML. One is the growth in file size caused by the space taken

up by the XML tags which define the structure of the file. For the files used as test

data in this research, the growth has been approximately five-fold. Note that much of

this growth is due to the conversion from the binary RAW format to the text-based

mzML format. This can be seen in Table 6, Section 5.9, that shows the size of the test

files in various formats. For example, file PT2441S1FP1A1.RAW is 2,704Mb, the

mzML file is 3.09 times larger, the SCMI format file that does not contain XML tags

(defined in this later in this section) is 2.87 times larger and the Avro format file is 1.96

times larger.

A further downside is the difficulties XML causes when processing files in a parallel

fashion. Files need to be split into pieces for distribution around a cluster of machines.

This splitting is hard to do with XML as the files need to be split in the correct places

or the XML start and end tags will not match and the file will be invalid. Complex

parsers are required to allow XML to be used effectively on a distributed system

[140]. For this reason, different file formats have been researched to assess their

suitability for the parallel processing of mass spectrometer data.

77

The mzML file contains metadata detailing the experiment; it includes the parameter

settings of the mass spectrometer and the type of machine used. This information is

not needed when performing the feature detection and protein identification steps of

the data processing pipeline. Therefore, a data format used for parallel processing

can ignore this metadata and store just the scan data plus a small number of

additional fields that provide context for the scan data. The scan data is held in two

base64 encoded strings, one for the mass to charge values and one for the intensity

values. The fields required for feature detection are as follows:

• Scan identifier, an integer field numbering the mass spectrometer scans in

order of retention time, starting at 0

• msLevel, an integer field with 1 being the first level of scans and a 2 indicating

a level 2 scan. Level 2 scans are created when a particular peptide is picked

from a level 1 scan and further broken down into smaller molecules which are

then measured in a second ion detector inside the mass spectrometer.

• Retention Time, a decimal field, the time since the start of the experiment at

which the scan was taken.

• precursorIonMz, a decimal field for level 2 scans only, this field contains the

mass to charge value of the peptide picked to be broken down further from the

level 1 scan

• precursorIonIntensity, a decimal field for level 2 scans only, this field

contains the intensity of the peptide picked to be broken down further from the

level 1 scan. Intensity in this context means the number of ions detected

• precursorIonCharge, an integer field for level 2 scans only, this field contains

the value of the electric charge of the peptide picked to be broken down further

from the level 1 scan

• MZAarray, a text field containing the base64 encoded mass to charge values

• intensityArray, a text field containing the base64 encoded intensity values

Initial investigations used a simple text format named the SCMI format (SCan, Mass,

Intensity) with one record per scan and the various fields separated by tab characters.

This format is extremely easy to split and distribute around a cluster, and the HDFS

file system in Hadoop can natively do this. A file copied into HDFS will be split into

78

chunks (64Mb chunks by default), which are then distributed to the nodes in the

cluster; this process and HDFS itself are explained in more detail in Appendix A. This

text-based file format proved to be very efficient as described in detail in the results

chapter. However, with a file format such as this, the benefits of a self-describing

format are lost because the text format requires a definition document so that

programmers will know what data is in each of the columns. Apart from XML, other

self-describing formats include JSON, Parquet and Avro. These formats are popular

as ways to store complex data and are also suitable for parallel processing. The

following sections give a brief description of these file formats.

In response to the complexity of accessing data stored in XML-based formats such as

mzML, Rost et. al researched a method for random access to mzML data using the

existing OpenMS libraries as a base [148]. Rost et. al benchmarked their tool against

the ProteoWizard libraries and noted a significant performance increase. In relation to

the research presented in this thesis, the tool developed by Rost et. al could be used

to decode the mzML files into the proposed SCMI format, however following

continued research into this area it was decided to not use mzML as an intermediate

format and decode the RAW binary files directly into the SCMI format as the data was

copied onto the processing cluster. This means that the issues of XML complexity

and difficulties with file distribution are avoided.

5.3.1 JSON

JavaScript Object Notation (JSON) is a self-describing lightweight data-interchange

format. It is deemed lightweight as it adds less to the overall files size as would a

format such as XML. The general JavaScript Programming Language specification

[116] gives a detailed description of the format. The basic structure of a JSON file is

plain text. This means that it is a simple task to sample and investigate a file’s

contents without complex parsers. A JSON file comprises key-value pairs where the

key is the description of the field and the value contains the contents of the field. The

JSON specification allows for two principal structures

 • Objects - an unordered collection of key/value pairs

 • Array - an ordered list of values

79

The following extract shows the simple flat file version of the mzML file (note the

mzarray and intensity array fields have been shortened for display purposes).

scan mslevel rt precursormz precursorintensity precursorcharge mzarray intensityarray
0 1 0.00680 0 0 0 oXXPWVmodUCh ro1lqHVAUV6i0W

1 1 0.01223 0 0 0 2dX6h1QKJ9ruF xWiJWyodUB5s7b
2 1 0.01669 0 0 0 PAfQBVmodUDsF 6h1QJ3ero1lqHV
3 1 0.02115 0 0 0 Q1Un41iodUDrW hUnX6h1QJQYt

4 1 0.02561 0 0 0 2T3V3liodUBHQ sMiX6h1QLX+s2Z
5 2 0.03952 362.22271 26164.71875 2 irEWTEvASEC+ EDWJ59ngoRMQI

This next extract shows the same data formatted as a JSON file.
[
 {

 "scan": 0,
 "mslevel": 1,

 "rt": 0.0068095369,
 "precursormz": 0,
 "precursorintensity": 0,

 "precursorcharge": 0,
 "mzarray": "oXXPWVmodUCh",
 "intensityarray": "ro1lqHVAUV6i0W"

 },
 {

 "scan": 1,
 "mslevel": 1,
 "rt": 0.01223972,

 "precursormz": 0,
 "precursorintensity": 0,
 "precursorcharge": 0,

 "mzarray": "2dX6h1QKJ9ruF",
 "intensityarray": "xWiJWyodUB5s7b"

 },
 {
 "scan": 2,

 "mslevel": 1,
 "rt": 0.01669872,
 "precursormz": 0,

 "precursorintensity": 0,
 "precursorcharge": 0,

 "mzarray": "PAfQBVmodUDsF",
 "intensityarray": "6h1QJ3ero1lqHV"
 },

 {
 "scan": 3,
 "mslevel": 1,

80

 "rt": 0.02115777,
 "precursormz": 0,

 "precursorintensity": 0,
 "precursorcharge": 0,
 "mzarray": "Q1Un41iodUDrW",

 "intensityarray": "hUnX6h1QJQYBmt"
 },

 {
 "scan": 4,
 "mslevel": 1,

 "rt": 0.02561677,
 "precursormz": 0,
 "precursorintensity": 0,

 "precursorcharge": 0,
 "mzarray": "2T3V3liodUBHQ",

 "intensityarray": "sMiX6h1QLX+s2Z"
 },
 {

 "scan": 5,
 "mslevel": 2,
 "rt": 0.039521102,

 "precursormz": 362.222717285156,
 "precursorintensity": 26164.71875,

 "precursorcharge": 2,
 "mzarray": "irEWTEvASEC+AG",
 "intensityarray": "EDWJ59ngoRMQI+3+cq"

 }
]

Note that JSON files are record-based and therefore suitable for distribution on a

compute cluster. JSON files are more lightweight than XML but still verbose

compared with a plain record-based text file or Avro due to the key/value tag

structure.

5.3.2 AVRO

Apache Avro was designed by Doug Cutting, the original developer of Hadoop. Avro

files have a schema which is only stored once at the start of the file. Storing the

schema once in this way achieves some level of compression over a JSON or XML

formatted file. The data itself is stored in a binary format for further compression. Avro

was designed so that files could be easily split into chunks for distribution on a cluster.

To convert data into Avro format, a schema must first be created, following this,

standard code libraries can be used for the conversion process. An Avro schema is

81

represented as a JSON file detailing the fields in the file. The following JSON string

shows the Avro schema for the mass spectrometer output data used in this research

{

 "type": "record",
 "namespace": "scmitest.avro",
 "name": "massspecdata",
 "fields":[{"type": "int", "name": "scan"},
 {"type": "int", "name": "mslevel"},
 {"type": "long", "name": "rt"},
 {"type": "long", "name": "precursormz"},
 {"type": "long", "name": "precursorintensity"},
 {"type": "int", "name": "precursorcharge"},
 {"type": "string", "name": "mzarray"},
 {"type": "string", "name": "intensityarray"}]}

It should be noted at this point that the choice of file format for parallel processing is

between XML, SCMI, JSON and Avro files. The original vendor specific binary RAW

files were dismissed as a poor choice due to several factors including the complicated

method of extracting the scan data, the reliance on the use of a proprietary .DLL file

for decoding the binary date (windows based operating systems only) and the

difficulty in distributing a RAW file on a cluster. Of the remaining choices, XML and

JSON are discarded for reasons of verbosity and difficulty in data distribution for XML.

This leaves the Avro and SCMI files as candidates both of these file formats store the

data arrays for m/z and intensity values as Base64. Of the systems being

benchmarked only HDFS stores data as files, Cassandra, HBase and Aster

(described further in Chapter 5, Section 8) all have the concept of tables, although the

implementation and definition of a table differs between them. Using the text base

SCMI file in HDFS means that all of the systems have a similarly structured data

source and makes the task of debugging far simpler as opposed to needing to use an

Avro decoder to extract the specific scan data Base64. Note that this does not affect

performance but does result in an increase in disk space usage.

5.3.3 PARQUET

Parquet is a relatively new format introduced in 2013. Being similar to Avro it uses a

schema to self-describe its contents. However, whereas Avro stores data in rows,

82

Parquet is a columnar file format. This can lead to high level of compression and can

be a very efficient way to store data. Columnar formats are typically effective when

files contain many columns and when processing tasks involve selecting subsets of

columns. In the case of feature detection from mass spectrometer scans, the

opposite is true. The files contain only the eight columns listed above and each scan

is read completely with no sub-selection. For this reason, Parquet was not considered

as a suitable format for the experimentation. However, it should be noted that Parquet

is becoming a standard format for data when using the Spark processing framework

(described in detail in Appendix A). This is partly due to its adoption by Databricks

one of the chief supporters and contributors to the Spark codebase. Databricks has

included enhancements to the Spark code that make Parquet file handling very

simple and fast.

5.3.4 FILE CONVERSION

The creation of a custom conversion program written in Java allowed the conversion

of a mzML file to a simple text-based format. One potential issue was the extra time

taken to convert the data. However, any process using a cluster needs the data to be

copied onto the cluster first. To exploit this, the custom conversion process was

extended to copy the data to the cluster and convert it to the text-based format as part

of the copy. This custom copy program minimised the amount of time that was added

to the whole process. Chapter 5 Section 3 details the timings for converting the text

files from RAW format and copying them to cluster in one step.

Initial experiments were carried out by converting RAW files to mzML using the

proteowizard msconvert program and then custom code used to convert from mzML

to the text-based format. However, since the mzML format is not actually a

requirement for the data processing pipeline, the conversion from RAW format to

mzML is also not required. This means that it is possible to further refine the process

and remove the RAW to mzML conversion step. Therefore, a time saving was

achieved by modifying the custom conversion and copy program to produce the

required text format file directly from the vendor-specific RAW file.

83

5.4 CODING

The MapReduce style of parallel programming is used extensively in this research

and all but one of the systems tested operate within the Hadoop eco-system. The

Hadoop and the MapReduce frameworks are themselves written using the Java

programming language. It is possible to code MapReduce jobs in other languages

using the stream interface which receives input from the Linux stdin and outputs to

stdout. However, for this research it was decided to use Java, partly to align with the

researcher’s knowledge of computer languages and partly to use the native libraries

which include a variety of input and output readers as opposed to the stream interface

which can only read and write text-based formats via stdin and stdout. There are

many benefits to using Java including the operating system independence of the final

code and the significant number of pre-written third-party code libraries that exist to

speed up development. Note that early versions of Java were notoriously slow

compared to pre-compiled languages. However, since the introduction of “Just in

Time Compilation” (JIT) in versions 1.2 and 1.3, Java performance has significantly

improved.

Python is a popular scripting language widely used in the analytics industry. Another

scripting language is R, which is very popular amongst statisticians and in the Data

Science community. There are libraries available for proteomics data processing

written using a variety of programming languages, the list below is an example of

some of the frequently used packages.

• OpenMS 2.0 [117] implements a proteomics processing pipeline using C++

and integrates with the open-source workflow tool, Knime. The Knime

integration allows a researcher to build a graphical flow of the processing and

schedule it to run. The graphical flow is a beneficial tool for helping to

overcome some of the data management challenges.

• PyOpenMS [118] is a Python-based version of the original OpenMS library

[119]

• Bioconductor [120] is a set of proteomics data analysis functions available in

an R library.

• Dinosaur [121] is a recent development of a processing pipeline using the

programming language Scala.

84

Scala is the main language for the processing framework Spark, explained in detail in

Section 5.8.6 of this Chapter. Based on Java, Scala is gaining popularity as a

language for scalable parallel programming. All the systems and libraries mentioned

above are open source with freely available code.

Proteomics data processing packages are available with open source code in various

languages. However, none of those explicitly addressed the task of developing a

parallel feature detection algorithm. Therefore, the decision was made to code this

algorithm in Java as part of this research. The third-party libraries incorporated into

the code are the Apache commons libraries for base64 decoding and the Hadoop

libraries themselves; all other code is original and written during this research. Java

version 1_8.0_77SE was used for the development and testing. Note that the use of a

pre-compiled language, such as C++ can result in faster run times than Java, where

the code is compiled at the time of execution. Therefore, it may be possible to further

speed up the feature detection process by implementing the parallel algorithm in such

a compiled language.

85

5.5 MAPREDUCE IMPLEMENTATION OF THE FEATURE DETECTION
ALGORITHM

The parallel algorithm for feature detection used in this research has been designed

based on previous work by Bellew [84] and the additional material supplied as

support to the original MaxQuant paper [12]. The serial implementation of the

algorithm is described in Chapter 3, Section 3.5.1. The following describes the

implementation of the algorithm using the MapReduce framework.

The serial algorithm is comprised of two major parts, 2D peak picking and 3D peak

picking. In essence the 2D peak picking algorithm takes a single scan of mass

spectrometer data, processes it and outputs a set of 2D peaks. The 3D peak picking

algorithm, takes groups of 2D peaks, processes them and outputs a single 3D peak

for each group of 2D peaks. This section describes how the 2D peak picking

algorithm can be represented as a map task that transforms a single scan into a set of

2D peaks and the 3D peak picking algorithm can be represented as a reduce task

that takes a set of 2D peaks and “aggregates” them into a 3D peak. The

implementation is complex as there are many steps to the 2D and 3D peak picking

algorithms. However, the whole process can be represented as a simple pattern of a

map transformation followed by a reduce aggregation.

map (k, v) −> set(k1, v1)
reduce (k1, list (v1)) −> set (k1, v2)

k = scan identifier
v = data from mass spectrometer scan
k1 = partition number used to redistribute 2D peaks to reduce task
v1 = 2D peak values
v2 = 3D peak values

an additional custom partitioner step is used to calculate which
partition a particular 2D peak belongs to can be represented as

partition(v1) -> k1

86

In Chapter 4, the MapReduce framework was explained in terms of the canonical

word count problem. For reference, the pseudocode for the map and reduce tasks is

reproduced below.

map(String key, String value):
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values): // key: document name
 // key: a word
// values: a list of counts
int result = 0;
for each v in values: result += ParseInt(v);
Emit(AsString(result));

2D peak picking
To represent 2D peak picking as a map task, the input value becomes a delimited

string of the data in a single record of the SCMI file format described in section 5.3 of

this chapter with the key being the byte offset of the record in the file. The SCMI file

format contains the following columns of data: scan, mslevel, rt, precursormz,

precursorintensity, precursorcharge, mzarray, intensityarray. This delimited string of

values represents a complete mass spectrometer scan taken at a particular retention

time.

The 2D peak picking process represented as a map task is as follows.

map(String key, String value):
// key: byte offset of the record in the input file
// value: “scan, mslevel, rt, precursormz, precursorintensity,
precursorcharge, mzarray, intensityarray”
for data in mzarray, intensityarray:
 detect the 2D peaks
EmitIntermediate(partition number, "weightedPeakMass,
charge,retentionTime,sumIntensity, minimumMZ, maximumMZ");

87

The term “detect the 2D peaks” refers to the 2D peak picking process as

described in Chapter 3. As this is an embarrassingly parallel task, it can be run as a

map task without any changes to the algorithm as it already works on an individual

scan basis. The map task outputs a list of 2D peaks found in the scan, with the key

being the reduce partition number and the value being a concatenated string of the

2D peak metrics. The reduce partition number is calculated using a custom

partitioner function based on the weightedPeakMass value and the number of

partitions required. This calculation is described in Chapter 6, Section 6.4 where there

is a full discussion on data distribution and partitions.

In operation, the map task reads scans of data from the text-based SCMI-format

file using the standard Hadoop text file reader, which passes the byte offset of the

start of the record as the key and the rest of the scan data in a text string datatype

as the value. The value part of the key-value pair contains the components of the

scan data as tab delimited values, these are parsed and read into local variables

for processing. The mass to charge ratios and intensity values are decoded from

the base64 format using the Apache commons library and stored in float arrays,

The Java Double type is a floating point datatype represented in 64 bits, giving

approximately fifteen precise digits. This is sufficient to accurately store the

values required which range between zero and one thousand with up to eight

decimal places. The method of reading in a complete record from a data source

and using the program code to apply a schema to it is called schema-last or

schema on read. In this case, the definition of the fields within a record are in the

Map task programming code and applied to the data at run time. Modifications are

made to this method when using a data source other than text files stored in

HDFS, for example HBase or Cassandra. For data sources which already store

the data with a defined schema, the input and output interfaces are modified to

use the data types and definitions from that schema. This is described in more

detail in Section 6.5 of this chapter where results are presented and discussed. As

stated, all the information necessary to calculate the 2D peaks in a scan is

contained within the scan itself. No communication of values between nodes is

required at this stage and each scan can be processed completely independently.

88

This results in a process of intra-file parallelism, which has not been widely

researched or applied.

Figure 16 shows the 2D peak picking process arranged as a map task, the input

scans are split into sections, in the example shown the twelve input scans are split

into four instances of the map task each with three scans. In practice each map

will receive thousands of scans. The map task then process each scan in turn and

outputs the intermediate keys, which equate to the partition number and 2D peak

metrics, for distribution to the reduce tasks.

FIGURE 16 2D PEAK PICKING AS A MAP TASK

89

Shuffle
Skew for the reduce tasks occurs when one or more nodes receives a

disproportionately high amount of data to process from the output of the map

tasks. Depending on the processing task, the node or nodes with the extra data

may continue processing after the other nodes have finished. This delays the

completion of the whole job and results in inefficient use of the cluster. By default,

the MapReduce framework redistributes data from the map tasks to the reduce

tasks by applying the standard Java hash algorithm to the keys in the key-value

pairs output from the mapper. In general this produces an acceptable data

distribution and does not result in skew. However, during testing, it became

apparent that this was not the case for proteomics data. To overcome this the

MapReduce framework provides a task called a custom partitioner that allows the

programmer a fine degree of control over how data is redistributed from the

mappers to the reducers avoiding the problems with data skew. The proteomics

data is highly skewed towards a certain range of mz values, as can be seen in

Figure 17 which shows the distribution of the 2D peaks in file 561L1AIL00.RAW as

an example. In addition to this the processing required to detect features in a

certain range of data also depends on the ratio of information to noise.

FIGURE 17 SKEWED DISTRIBUTION OF 2D PEAKS

90

The set of 2D peak values output from the map tasks must now be distributed to

the reduce tasks so that processing can continue in a parallel fashion. To achieve

this, the 2D peaks are grouped into partitions. The 2D peaks belonging to a

particular partition will all be distributed to the same reduce task. In MapReduce

terms this process is known as the shuffle. The partitions are made by grouping

the 2D peaks by ranges of m/z values. Enough overlap of data must be provided

at the split points so that if a partition split occurs in the middle of a feature, as

shown in Figure 18, that the complete peak can be found either side of the split.

FIGURE 18 EXAMPLES OF PEAKS OCCURING AT PARTITION BOUNDARIES

This overlap strategy necessitates a de-duplication phase as a final step. A more

complete description of the partition and overlap strategy can be found in Chapter

6, Section 6.4. A custom partitioner must be coded to provide an output key to

each input value; this key is used to decide to which reducer the value is sent for

processing. Initially this has been done by assuming a fixed number of reduce

steps. The 2D peaks from the Map tasks are grouped into clusters with the aim

that each cluster contains an equal number of peaks. It is acknowledged that this

hardcoded partitioner while adequate is far from an optimum solution for this

91

problem and this is discussed later in section 6.3.1 of Chapter 6. The following

pseudocode describes the custom partitioner

Partition(String value):
// value: weightedPeakMass
calculate partition p
Emit (p);

3D Peak Picking

With the list of 2D peaks split into approximately even portions by weighted peak

mass and an appropriate overlap added, the 3D peak picking process can now be

completed in parallel. 3D peak picking adds the dimension of retention time to the

mass and intensity dimension utilised in the 2D peak picking stage. The 3D peak

picking step is comprised of several stages that are wrapped into a Reduce task in

the MapReduce framework as shown in pseudocode below.

reduce(String key, Iterator values): // key: document name
 // key: a partition value
// values: concatenated string of "weightedPeakMass,
charge,retentionTime,sumIntensity, minimumMZ, maximumMZ"
for values in value:
 join 2D peaks in 3D chains
 smoothIntensity
 identify overlapping peaks
 identify isotopic envelopes
 calculate mono-isotopic peak values
Emit(finalKey, finalValue);
//finalKey: partition number (not required)
//finalValue: concatenated string of “charge, mass, intensity,
retention time”

The reduce tasks receive data from the map tasks as key-value pairs dictated by

the custom partitioner. The input data consists of an integer key and a text value.

The text value is a tab-separated list of the variables calculated during the 2D

peak picking with each input record representing a single 2D peak. The input

records are loaded into an arraylist of Java objects that enables them to be easily

sorted using a custom compare class inside the object. The 2D peaks are first

92

sorted in order of retention time (which equates to scan number) and then sorted

by mass to charge ratio within each retention time before starting to loop through

the 2D peaks checking to see if they are part of a 3D peak chain. From this point

the operation within the reduce task follows the same flow as described for the 3D

peak picking process in Chapter 3, Section 5. That is joining 2D peaks into 3D

chains of peaks, intensity smoothing, overlapping peak detection, isotopic

envelope detection and mono-isotopic peak calculation.

Figure 19 shows the 3D peak picking process arranged as a reduce task, the

output from the map tasks is distributed to the reduce tasks in the shuffle phase.

The reducers then detect the 3D peaks and output them as a list per reducer that

needs to be joined to create the final output. In the diagram n = the number of

reduce tasks.

FIGURE 19 3D PEAK PICKING AS A REDUCE TASK

93

5.6 DEVELOPMENT ENVIRONMENT

5.6.1 CODE DEVELOPMENT

The Java code has been developed, tested and debugged using the Kepler release

of Eclipse on a Macbook Pro laptop. Eclipse is an Integrated Development

Environment (IDE) used for programming in a variety of languages. Eclipse provides

a range of tools to aid the process of program code development, such as syntax

checking and compiling and deploying Java packages as Java archive or "jar files"

(so named because by convention the file extension is always “.jar”). As the Apple

Macintosh operating system is based on BSD Unix, it is possible to run the Hadoop

MapReduce framework on the local file system natively. A setup like this does not

create a parallel processing environment as there is effectively only a single worker

node, but it is very efficient for testing and debugging program code during

development.

A plug-in exists that allows Aster SQL-MR packages (see Section 5.8.4 for the

definition of SQL-MR and Aster) to be developed in Eclipse and easily deployed to a

cluster from within the IDE by running an SQL-MR script. The plug-in makes iterative

testing and deployment simple and efficient and means that a single IDE was used for

development across all the systems included in the research.

5.6.2 SOURCE CONTROL

During the lifetime of this research, version control of the Java source code has been

crucial. During the initial development phase of the MapReduce algorithm, testing the

results against existing correct peak outputs involved many iterations over the

development, testing and release cycle. The version control required a detailed

version history of changes and to enable rollbacks to previous code releases. The

version control system chosen was Git, originally developed by Linus Torvalds, the

architect of the Linux operating system. Git is a distributed system where a master of

the code resides in a repository on a remote server and developers have a copy of

the repository on their local workstation. A pull request is made to receive the latest

94

version of the code repository and to commit changes a push command is made.

Other standard version control features such as branching, merging and cloning are

available.

The GitHub hosting service was used to provide a remote repository. GitHub provides

an online hosted service that allows the master repository to be accessed by anyone

with correct access rights and an Internet connection. All the code written during this

research is available at the URL https://github.com/chillman99/phd

95

5.7 TEST ENVIRONMENT

5.7.1 HARDWARE SPECIFICATION

Research into the performance of the parallel algorithm utilised several iterations of

test hardware with the setup being refined on each iteration. The aim was to provide

enough capacity to be able to process complete mass spectrometer output files and

provide consistent running times to benchmark the results. Initial stages of the

research utilised a test cluster built with re-purposed desktop personal computers

from an office environment. A previous Master’s degree project by the author of this

thesis used the same test cluster as part of a discussion on the use of Hadoop in the

context of a hybrid ETL process for proteomics data [122].

However, the eight personal computers used as the data nodes had single core 1.8

Ghz processors with one gigabyte of RAM and a single 80 gigabyte spinning disk

drive. While good as a learning environment, this configuration did not have sufficient

disk capacity or processing power to process the large files produced during a

proteomics experiment, which as previously stated can reach more than seven

gigabytes. Therefore, a new virtual cluster was constructed on a custom-built server

using an eight-core AMD processor with 32 gigabytes of RAM and five individual

drives. A single virtual machine was assigned to each of the drives to avoid access

bottlenecks.

The results of initial benchmark tests using virtual machines showed a high degree of

variation in run times. An investigation into the performance of the virtual cluster using

spinning disk drives showed that there is a high degree of correlation between

runtimes of code and how much data the drive contained before copying a virtual

machine image onto it. One reason for this variation, is that on a traditional spinning

disk hard drive, the data is stored starting at the outside of the platter and progressing

inwards towards the centre. The data on the outside of the platter can be read more

quickly as the rotational velocity is faster under the read-head at the outside than it is

on the inside. As the disk fills, the later data is stored towards the centre of the disk

where read times are slower. Another significant factor is that of fragmentation. Files

on an empty drive can be written as contiguous blocks. In contrast, on a disk that

96

already contains data it is likely that files will be fragmented. Fragmentation describes

the situation where the data blocks are interspersed with blocks from other files that

already existed on the disk and results in slower file read times. As stated, the results

showed a significant variation between timings for running the process as recorded

using the Linux “time” command, Hadoop dfsio and teradsort performance tests and

I/O benchmarking software. Therefore, the host machine was upgraded to replace the

original spinning disks with solid-state drives (SSD). The random-access times for

SSDs are consistent across all parts of the drive and independent of how much data

they contain. Changing to SSD drives resulted in far more consistent runtime across

independent tests.

Table 1 shows a summary of the results obtained using three different disk drives: a

Sandisk SDSSDP-128Gbm, a Seagate ST31000528AS and a Western Digital

WD20EARX. The tests were carried out by copying a virtual machine on to freshly

formatted blank drive for the “empty” readings and then copying the same virtual

machine on to a drive having only 30Gb remaining space for the “full” readings. Two

things of note here are firstly the virtual machine severely restricts the I/O of the

drives, the SSD write speed is only about 20% of the speed when using the native

operating system. Secondly the read, write and terasort measurements are much

more stable on the SSD than the spinning drives and not dependent on how much

data is currently on the disk. Each test was run three times and the results here are

averages of the three readings. The results show that the 128Gb SSD drive was the

fastest regardless of whether it was empty or full at the time of the test.

TABLE 5 COMPARISON OF I/O DATA FOR SSD AND SPINNING DISKS

Model Type Capacity State

Native
OS
Read
(MB/s)

Hadoop
on VM
Read
(MB/s)

Native
OS
Write
(MB/s)

Hadoop
on VM
write
(MB/s)

Hadoop
Terasort
Write
(hh:mm:ss)

Hadoop
Terasort
Process
(hh:mm:ss)

Sandisk 128Gb SDSSDP-128G SSD 128Gb Empty 315.51 83.21 240.87 52.82 00:03:18 00:27:42
Sandisk 128Gb SDSSDP-128G Full 316.01 83.13 240.63 52.43 00:03:15 00:27:25
Seagate Barracuda ST31000528AS Disk 1Tb Empty 114.55 46.53 99.84 40.28 00:03:56 00:33:49
Seagate Barracuda ST31000528AS Full 109.01 37.98 65.21 37.38 00:04:02 00:54:16
Western Digital WD20EARX Disk 2Tb Empty 108.09 36.57 101.97 44.25 00:03:31 01:44:43
Western Digital WD20EARX Full 106.78 23.06 100.84 32.27 00:04:05 03:25:33

97

5.7.2 OPERATING SYSTEM

The operating system installed on the host server running the test system was

Windows 10. Thermo Scientific, the manufacturer of the mass spectrometers used at

the University of Dundee, provides a single mechanism for reading the binary data in

their RAW data formats. This implementation of this mechanism is a Microsoft

Windows DLL file. It is necessary to call the routines in this DLL file in order to convert

the RAW format into any other required format. This dependency on a DLL file is,

therefore, the main reason for choosing a Microsoft Windows host. Without it, it would

not be possible to read the RAW data, convert it into a suitable file format and test the

algorithm.

To produce consistent run-times for replicates of experiments, non-essential services

on the host machine were shut down. During the testing phases, the processes that

automatically search for and install software updates were switched off. This

precaution was taken both for Windows itself and other software packages such as

Microsoft Office. As a further precaution, the host machine did not have access to the

Internet.

5.7.3 ENVIRONMENT

The different cluster environments tested were installed as groups of individual

virtual machines that together created a virtual cluster on the host. This virtual

setup proved to be an efficient method of researching multiple systems and

combinations thereof in a single test environment. The virtual machines were

created using the VMware platform, specifically the free VMware Player software

version 12.5. The allocation of a virtual hard drive fixed at 40 gigabytes in size,

two CPU cores and four gigabytes of memory to each of the virtual machines gave

a consistent base for each type of cluster. Here the aim was to prevent the timings

of the experiments being affected by virtual machine maintenance activity, such

as growing a virtual hard drive file behind the scenes. The virtual cluster created

for use as a development proved to be an essential part of the process of

changing the serial algorithm detailed in Chapter 3 into the MapReduce-based

98

parallel algorithm detailed in Chapter 5. The laptop environment contained a

single node “pseudo cluster” this means that all services and data run in the same

place. So, although the code runs as MapReduce, in practice there is no

parallelism. The virtual cluster allowed development and testing to be run on an

actual parallel system without having to negotiate extended periods of access to a

physical cluster. Issues such as data distribution, processing skew and limitations

of processing large datasets where detected and tested on the virtual cluster

where the nature of the single-node pseudo cluster means this wouldn’t have

been possible. Using the virtual cluster also showed that two parts of the process

were considerably slower than the rest when the size of the data increased. This

was due to the way the algorithm was initially coded and would have had the

same effect on the physical cluster, this is discussed further in Chapter 6, Section

6.3.3.

5.7.4 CREATION

Installing Ubuntu Linux 16.04.02 LTS as the operating system on a new virtual

machine with the specifications given above created a template system for a virtual

node. Cloning this template node ensured that all the nodes in the clusters had an

identical setup. As with the Windows host, the disabling of automatic software

updates along with non-essential services removed some possible causes of

inconsistent run times. It was necessary to build and test systems with various

configuration options. New clusters were formed during this investigation phase, by

cloning the template node as many times as was needed (for example usually four

worker nodes and a master node) and manually installing the cluster environment on

them.

5.7.5 SCRIPTING

As the configuration of each of the systems was mastered, the creation of the virtual

clusters was scripted using a software system called Vagrant. Following the

development of a script, Vagrant allows the creation and deployment of virtual

machines directly from a command line interface. The intention was to reduce the

amount of effort needed in cluster maintenance between experiments and to make

the experiments more reproducible. Using the scripting software ensured that the

99

virtual machine was in the same state for each run of a feature detection process on a

data file. However, following further research into benchmarking process

methodology, it was clear that the system under test should not be tampered with

between test runs. The only change allowed is the deletion of the data created from

the previous test. This methodology meant that there was no need for scripted virtual

machines. In fact, it was sufficient to have a template virtual machine with just a Linux

operating system setup. This template virtual machine could be copied multiple times

to create a new cluster that was then stored before being copied onto the test system

for benchmarking. Further tests just required the clean cluster to be copied over,

replacing the already tested virtual cluster.

Note that during this research a technology called “containers” and a software

package called Docker have become increasingly popular [123]. Virtual machines are

an abstraction of the physical hardware that allows a single machine to operate as

many servers. Each virtual machine contains a complete copy of the operating

system and any applications that are needed; these all need to be installed and

maintained separately. A virtual machine is essentially a complete system and needs

to be booted up at the start of a processing run, although it is possible to suspend the

virtual machine to a disk file enabling a faster start up time. In contrast, containers are

an abstraction at the application layer, which is one layer up from the operating

system. Multiple containers can run on the same machine and share the same

operating system; containers, therefore, take up much less space on disk than a

virtual machine, start up almost instantly and do not need the same level of

maintenance. Docker makes the whole task of creating and distributing complete

environments simple and efficient. For this reason, it has begun to be used for the

purposes of reproducible research [124] allowing researchers to distribute a complete

environment for re-evaluation and further experimentation. Further reference to the

use of containers and Docker to create an architected, automated, production system

is made in the conclusion of this thesis.

100

5.8 PERFORMANCE TESTING ENVIRONMENT

Further environments were used to simulate the feature detection process running on

full production hardware. These environments were used to produce the final timings

reported in Chapter 6 and Chapter 7. Teradata Ltd. provided this hardware for the

duration of the benchmarking phase of the research (note that the author of this

thesis is employed by Teradata UK Ltd). The three systems consisted of:

• a three-node Hadoop cluster (running the Apache Hadoop distribution)

• a three-node Aster cluster

• a seven-node Aster cluster

Each cluster consists of two types of node, the accepted terminology for these types

is “master” and “slave” nodes. The master node is the controller and distributes tasks

and data to the workers, which are the nodes where the processing takes place. The

terms “three-node” and “seven-node” refer to the number of slaves; each cluster also

has a single master node. For performance testing, the Aster benchmarks were

carried out on the three-node and seven-node Aster clusters. The benchmark tests

on all other systems discussed below were completed on the three-node Hadoop

cluster, with the relevant services being enabled as necessary.

The nodes in the performance testing systems were all identical, each containing dual

eight-core Intel Xeon processors running at 2.6Ghz, with 512 Gb RAM for master

nodes and 6-core Intel Xeon processors running at 2Ghz, with 256 Gb RAM and

twelve 4Tb disk drives for the slave nodes.

101

5.9 SYSTEMS TESTED

5.9.1 TYPES OF SYSTEM

To address the main research question outlined in Chapter 1, a parallel feature

detection algorithm, has been benchmarked using a cluster of connected compute

nodes. A broad spectrum of technologies has been tested on the cluster, the

technologies include a Distributed File System, a NoSQL database, a relational

database, columnar storage, in-memory storage and stream processing. This is not

an exhaustive list and does not, for example, include any form of hardware

acceleration such as Graphics Processing Units (GPU) or Field Programmable Gate

Arrays (FPGA). GPU-based acceleration is currently a major topic of research, partly

due to the attention being given to Artificial Intelligence and Deep Learning [125].

However, the focus of this research remains on the implementation of the feature

detection algorithm. Performance enhancement using hardware could be the subject

of a different research project. Appendix A contains a detailed description of the

systems benchmarked in this research. The following contains a brief overview of

each system and explains its relevance to the research.

Hadoop
The base Hadoop distribution consists of a distributed file system called HDFS and

the MapReduce processing engine. A large eco-system of open source technology

has been built up around Hadoop including scheduling and resource allocation

engines as well as other processing engines that replace MapReduce. The most

recent allocation engine in Hadoop is called YARN, which has been adopted by many

open source technologies as the default scheduling engine. Hadoop forms the basis

of the parallel architecture used for most of the feature detection algorithm

benchmarking in this research.

Cassandra
A class of database systems has emerged known collectively as “NoSQL” (an

abbreviation of Not only SQL). These systems are used as alternatives to relational

database systems and have been produced in response to the Big Data challenges

outlined in Chapter 1, Section 1, such as scalability and the requirement to ingest

102

data at high speed. As such NoSQL database capabilities could be directly relevant

to the challenges presented by processing mass spectrometer data. Cassandra

stores data in “column families”, which have columns and rows but in contrast to a

relational database each row may have a different number of columns.

Aster
Aster is included in the research as an example of a relational database, it is based

on the widely used open source Postgres database and uses ANSI standard SQL for

querying data. What makes Aster particularly relevant to this research is the patented

SQL-MapReduce engine, which allows MapReduce code written in Java to execute in

parallel on the database nodes and access data directly from the database. The

SQL-MapReduce engine allowed the Java code running on Hadoop to be compiled to

run on the Aster platform with very few changes.

HBase
HBase is part of the Apache Hadoop ecosystem and is usually found ready

configured on most Hadoop clusters as it is part of the base install. It runs on top of

Hadoop’s HDFS file system and provides a column store in a non-relational format

that is similar to the column families implemented by Cassandra. In contrast to HDFS,

HBase allows fast, random access to data. Hadoop’s MapReduce framework can

read and write directly from and to HBase tables.

Spark
Spark is a general-purpose parallel execution engine, initially developed at the

University of Berkeley, that can run on a cluster using YARN to manage resources

and scheduling. Spark operates in-memory with objects called Resilient Distributed

Datasets (RDD). Spark has gained a large following in the business and academic

world in recent years and has rapidly become a standard for parallel processing.

Flink
Flink is a relatively new software package, developed at the University of Berlin and is

presented as an alternative execution engine to Spark. Superficially Spark and Flink

are similar but when comparing them as Stream engines, used to capture and

103

process data as it is produced, there are some pronounced differences that are

explained in Chapter 7 where the results of the stream experiments are detailed.

Kafka
Unlike Flink and Spark, Kafka is not an execution engine. It does not process data

and perform complex transformations on it. Instead, Kafka is a distributed

publish-subscribe messaging system. Kafka is included here as it is used in the

stream-processing experiments to simulate the behaviour of a mass spectrometer

which instead of writing out its results to a file for processing, streams them out in

real-time as they are produced.

5.9.2 COMBINATIONS OF SYSTEMS

The systems described above, or elements thereof, fall into three categories:

1. Data Storage

2. Processing Frameworks

3. Message Publishing

HDFS, HBase, Cloudera and Aster have data storage capabilities. In this category,

data is loaded into the system’s data store and persisted there. MapReduce, Spark,

Flink and Aster’s SQL-MR are data processing frameworks; here the code is

executed to process the data in parallel reading from data stores. Kafka is in the third

category of message publishing; it pushes data out for subscribers to consume in a

streaming fashion. It is possible to combine the systems to evaluate how they work

together and if there are benefits of doing so. Combinations explored are as follows:

• MapReduce with HBase

• MapReduce with Cassandra

• MapReduce with HDFS

• Aster as a standalone system

• Spark with HDFS

• Spark streaming with Kafka

• Flink with HDFS

• Flink streaming with Kafka

104

Figure 20 shows a complete cluster environment as used in this research to

benchmark the performance of the algorithm. Each worker and the master node are

running the services required for Hadoop, Flink, Spark, HBase and Cassandra. These

systems and their components, for example “zookeeper” are described fully in

Appendix A

FIGURE 20 COMPLETE CLUSTER ENVIRONMENT

Note that performance testing with Aster was carried out on a separate cluster with

the same physical configuration as the Hadoop-based systems

5.9.3 OTHER POSSIBLE CONFIGURATIONS

During this research, the Hadoop ecosystem has been constantly evolving with new

software frameworks and distributions being developed. It has not been possible to

test and benchmark the parallel algorithm with every new processing framework as it

appears. However, consideration has been given to some of the major alternatives to

those researched here. Notably Storm, Flume and Splunk as streaming frameworks,

MongoDB, Redis and Redshift as database and NoSQL alternatives. However, the

frameworks chosen for the complete test and benchmark research were chosen to be

representative of the type of system required to design a complete architecture.

105

5.10 TEST DATA

Dr. Tony Ly from the Lamond Laboratory supplied the datasets used in validating the

parallel algorithm. This data consisted of raw output files from mass spectrometers

manufactured by Thermo Scientific. Specific models used were the LTQ Orbitrap XL,

LTQ Orbitrap VELOS and Q Exactive. The data was created as result of proteomics

experiments researching myeloid-specific gene expression, variations in protein

abundance, isoform expression and phosphorylation at different cell cycle stages

[131]. The complete set consists of eight files each related to different cell stages,

with each file having two technical and three biological replicates, a total of forty-eight

files. Note that not all the data files were processed during the benchmarking process

as similar files (such as replicates) have a very similar processing time.

Standard practice for proteomics researchers is to run replicates of the experiments

as a validation process. There are two types of replicate:

• A biological replicate involves rerunning the same cell sample but using a

different mass spectrometer.

• A technical replicate involves running a different cell sample using the same

mass spectrometer with the same parameters as the original sample.

This process of running replicates generates a significant amount of data that needs

to be validated, adding to the complexity and length of time required for an

experiment.

As mentioned in Section 5.2 of this chapter, the data had already been processed

using the MaxQuant software. The results from MaxQuant were used to validate the

output from the new parallel algorithm.

106

The files listed in Table 6 were used in the testing and benchmarking process.

TABLE 6 LIST OF FILES USED FOR TESTING AND BENCHMARKING

File Name Size in Mb number of scans

561L1AIL00.RAW 1,709 36245

561L1AIL01.RAW 1,743 36969

561L1AIL02.RAW 1,753 37180

561L1AIL03.RAW 1,750 37111

561L1AIL04.RAW 1,748 36329
561L1AIL05.RAW 1,732 36162

561L1AIL06.RAW 1,727 36181

561L1AIL07.RAW 1,718 36445

PT2441S1FP1A1.RAW 2,703 125550

371.RAW 1,404 37369

100312_EXP229_GFPIP_5.RAW 883 27381

As part of the process of benchmarking, each of the RAW files was converted into a

mzML format using the msconvert software that forms part of the proteowizard tools.

These files represent the types of output that is commonly processed in the Lamond

Laboratory at the University of Dundee with the smallest RAW file creating a mzML of

approximately 2.6Gb and the largest an mzML of approximately 8.4Gb. Following the

conversion step, the files were loaded into the various cluster environments. Table 7

displays a list of file sizes in RAW, mzML, flat file and Avro formats and timings for

conversions between them. The test set comprises files from four types of

experiment, note that all the files with names beginning “561L1AIL” are from different

stages of similar experiments. This set of test files represents a broad range of the

type of experiments on the Human Proteome performed in the Lamond Laboratory. It

is acknowledged that further research will be required to understand how the parallel

system will perform on non-human experimental results.

107

TABLE 7 LIST OF FILE SIZES CONVERSION TIMINGS

File Name
RAW File

Size Mb

mzML File

Size Mb

Flat File Size

Mb

Avro File Size

Mb

561L1AIL00.RAW 1,709 5,128 4,962 3,388
561L1AIL01.RAW 1,743 4,704 4,541 3,101

561L1AIL02.RAW 1,753 4,614 4,454 3,042

561L1AIL03.RAW 1,750 4,821 4,658 3,180

561L1AIL04.RAW 1,748 5,490 5,318 3,632

561L1AIL05.RAW 1,732 5,426 5,255 3,589

561L1AIL06.RAW 1,727 5,409 5,237 3,577

561L1AIL07.RAW 1,718 5,393 5,221 2,565

PT2441S1FP1A1.RAW 2,703 8,376 7,766 5,305
371.RAW 1,404 3,873 3,743 2,028

100312_EXP229_GFPIP_5.RAW 883 2,604 2,499 1,707

File Name
Time to Convert

RAW to mzML

Time to Convert

mzML to Flat File

Time to Convert

Flat File to Avro

561L1AIL00.RAW 00:09:52.49 00:02:28.22 00:00:57.00
561L1AIL01.RAW 00:10:31.73 00:02:34.70 00:00:52.57

561L1AIL02.RAW 00:10:15.38 00:02:43.87 00:00:52.19

561L1AIL03.RAW 00:10:13.27 00:02:27.66 00:00:53.99

561L1AIL04.RAW 00:10:09.75 00:02:28.05 00:01:02.35

561L1AIL05.RAW 00:10:19.17 00:02:29.81 00:01:01.05

561L1AIL06.RAW 00:08:43.51 00:02:23.83 00:01:00.41

561L1AIL07.RAW 00:08:43.38 00:02:21.89 00:00:59.65

PT2441S1FP1A1.RAW 00:09:38.00 00:03:13.04 00:01:42.76
371.RAW 00:07:32.11 00:01:33.09 00:01:01.78

100312_EXP229_GFPIP_5.RAW 00:03:23.00 00:01:03.15 00:00:27.84

This data shows that the Avro file format, which is easily distributed on a cluster for

parallel processing, offers the potential to save disk space. In addition to the

MaxQuant processing, some of the data had also been processed using a Teradata

appliance hosting a relational database. The Teradata appliance processed the data

using an algorithm created using the SQL query language. This SQL-based process

had already undergone an extensive period of validation, although at the time of

writing this thesis no publications have been produced from this work. The output

108

from the Teradata system proved to be an excellent way of validating the results of

the MapReduce algorithm as the relational database holds intermediate results for

parts of the SQL process. Comparing the output of the MapReduce algorithm with

these intermediate results allowed testing for accuracy and correctness at many

points along the process. Inserting the results from the MapReduce system into the

appropriate relational table and continuing the SQL process from that point meant

that the final results could be checked accurately against the existing process. As the

algorithm implemented by the Teradata system and the parallel algorithm

implemented with MapReduce are both based on the algorithm used by MaxQuant,

the results should all match to those obtained with MaxQuant.

109

5.11 CONCLUSION

The benchmarks carried out during this research were specifically for testing the

performance of processing mass spectrometer data and not general-purpose

processing. Therefore, to be relevant to mass spectrometer data it has been decided

not to use synthetic data to benchmark the systems but rather to use specific

workloads in the form of data files produced from actual proteomics experiments. This

use of specific data sets means that the terasort test discussed in Chapter 2, Section

4 has not been utilised.

The benchmarks were initially run on the test environment using virtual clusters set up

on a Windows 8 host machine. Once the process was tested and working as

expected, the benchmarking was conducted on the performance testing

environments described in Section 7 of this Chapter. The following items have been

measured, with the results described in depth in Chapters 6 and 7:

Overall process timings
In keeping with standards from well-established benchmarks such as the TPC,

timings were recorded by running the desired workload three times in succession and

taking the slowest of the runs [42]. The only maintenance allowed between runs was

the deletion of previous test data output. The time for each workload to run was

measured using the Linux time command, which returns the elapsed, system CPU

and User CPU time that the process takes to complete. Elapsed time is the metric

used to report the results, which is also known as “wall time". Hadoop and the Aster

system both include software called Ganglia; this is used to provide some metrics on

the performance of the cluster while it is being used. During the benchmark phase of

this research it was discovered that the elapsed time to complete the feature

detection was all that was needed to compare the performance of the parallel

algorithm, therefore results from Ganglia are not included. Appendix B presents

details on the environment and scripts used to produce the results presented in this

thesis so that they are reproducible.

110

6 BATCH PROCESSING

6.1 CHAPTER SUMMARY

This Chapter presents the results of experimentation using a parallel feature

detection algorithm and a batch process with the test files listed in Table 6 (Chapter 5,

Section 9).

Section 2 starts with an introduction to the problem from a technical point of view and

reiterates the research questions. The data formats used for the experiments are

described and timings given for loading data to the experimental systems. This

section also includes a description of batch processing and its advantages and

drawbacks.

Section 3 More detail is also presented on data and processing skew, performance

tuning and any thresholds used. Finally, the various data models and schemas used

are described.

Section 4 describes the experimentation and validation against other feature

detection software is described. The effects of partitions in the reduce step are

illustrated.

Section 5 presents the results of the experiments.

Section 6 contains a discussion on the findings and possible enhancements

111

6.2 INTRODUCTION

6.2.1 REAL-TIME

The meaning of the term real-time is unclear and needs qualification. True real-time

processing is not realistic as there will always be a delay between data creation and

data processing. Before experimentation takes place, the researcher must decide

and specify the amount of delay that is acceptable for a process. This delay will be

the constraint used to decide whether the system qualifies as real-time or not after

benchmarking results have been obtained.

This chapter presents the results of running a parallel feature detection algorithm in a

batch processing mode. Batch mode systems are not commonly considered to be

capable of real-time processing; instead specialized streaming platforms such as

those described in Chapter 7 are deployed. However, in the case of mass

spectrometer data processing, it could be possible to obtain a sufficiently significant

speed-up in processing time as to render a real-time system unnecessary. For

instance, the speed-up is sufficient that further data processing and analysis is not

delayed. This statement is based on the current time taken to process data which can

range from hours to days for a full process. (Note that the complete process includes

all stages of the data processing pipeline including the protein lookup stage that

matches identified peptides to known sequences).

Currently laboratories process proteomics data on dedicated PC hardware. The data

from the mass spectrometers is copied onto the processing PC, the processing is

completed and then the data is copied to a shared network drive where it can be

accessed by the researcher. If this process could be automated and the processing

time reduced to several minutes by combining a parallel feature detection algorithm

followed by a protein lookup system such as Hydra [79] on a cluster, then the

speed-up and reduction in data management tasks would be beneficial to life

scientists. The current time for feature detection using MaxQuant on a high

specification PC (32Gb RAM, 8-core 3.6 Ghz SSD storage) is seventeen minutes for

smallest file and more than fifty minutes for the largest of test files benchmarked, see

Table 8 for the time to run only the feature detection process for each of the test files.

112

Setting a goal of reducing the elapsed time for feature detection by 95% results in a

time of between fifty seconds to approximately two minutes forty seconds for the

chosen test files. Conversations with proteomics researchers have confirmed that

these timings would be acceptable because the processing time is reduced to the

equivalent of the time taken to retrieve the results from the processing PC. Therefore,

in the context of feature detection using batch processing, “real-time” is defined to

mean completing the processing of the data in a short enough time so as not to hold

up further operations on the dataset.

TABLE 8 MAXQUANT TIMINGS FOR FEATURE DETECTION

File Name

MaxQuant Feature

Detection Time

(HH:MM:SS)

95% Reduction in

processing Time

(HH:MM:SS)

561L1AIL00.RAW 00:31:05 00:01:31

561L1AIL01.RAW 00:32:23 00:01:37

561L1AIL02.RAW 00:29:56 00:01:30

561L1AIL03.RAW 00:31:05 00:01:33
561L1AIL04.RAW 00:32:32 00:01:38

561L1AIL05.RAW 00:32:33 00:01:38

561L1AIL06.RAW 00:32:02 00:01:36

561L1AIL07.RAW 00:31:30 00:01:35

PT2441S1FP1A1.RAW 00:53:24 00:02:40

371.RAW 00:19:54 00:01:00

100312_EXP229_GFPIP_5.RAW 00:17:05 00:00:51

6.2.2 DATA FORMATS

The widespread use of the mzML format for storing and transferring data and

issues with using XML-based file for parallel processing necessitated the design

of a new file format during the course of this research. The plain text SCMI format

was used for the experimentation, it is created by parsing out the following fields

from the RAW data file for each scan:

113

• Scan identifier

• msLevel

• Retention Time

• Precursor Ion mz

• Precursor Ion Intensity

• Precursor Ion Charge

• Mz array (a Base64 encoded float array)

• Intensity Array (a Base64 encoded float array)

The simplicity of a text-based file format for benchmarking and testing was

preferred over a binary format such as Avro. In the text file, each record contains

a complete set of data for a single mass spectrometer scan. The scan is the most

granular level of data suitable for parallel processing and constitutes the “unit of

parallelism”. A complete scan contains features or peaks that represent the

peptide molecules detected by the mass spectrometer. As explained in Section

6.3 of this chapter there are complications in the feature detection process that

mean it is not possible to qualify a feature on its own as surrounding peaks need

to be taken into consideration. These complications include overlapping peaks

and isotopic envelopes. In an appraisal of parallel processing Gunther [132]

describes how the efficiency of a parallel process degrades if an attempt is made

to increase parallelism by splitting the data into chunks smaller than the optimum

for a particular case. In the case of feature detection, this would happen if the data

within scans was to be split across parallel tasks. Splitting a complete scan into

chunks and distributing these around a cluster would necessitate decoding the

base64 encoded mz and intensity arrays first. Following this, the data processing

would need to include a new step where the features detected on each node are

checked against each other to look for incomplete peaks that occurred where the

data split occurred. (Section 6.3 of this chapter contains more details on this

subject but in a different context of 3D feature detection). It would also be

necessary to match all the detected peaks together along the mz dimension to

detect Isotopic envelopes and ascertain the charge of the peptide ions. The

example of splitting the data within scans does not increase the complexity of the

algorithm to any great extent, it just introduces an extra step that requires data

114

movement between nodes on the cluster, hence the decrease in efficiency and

subsequent increase in processing time.

6.2.3 BATCH PROCESSING

The term “Batch Processing” in a computing context refers to a mode of executing

programs in an automated and non-interactive way. Batch processing has a long

history, the name originating from the days when computer programs were

created using punched cards. To execute program code, an operator fed cards

into the computer in batches. The absence of any interaction with the process as it

is executing is a key component, any parameters, inputs, and outputs must be

predefined before a batch process starts.

If a life sciences laboratory contains one or two mass spectrometers, then

processing data in an interactive mode is still a possibility. Researchers can be

responsible for monitoring their mass spectrometer experiment and moving the

output RAW data file to a processing machine. The next steps could then be to

commence a job using software such as MaxQuant, waiting for completion, then

moving the result files to the researcher’s own personal computer for analysis. As

laboratories become more complex with more mass spectrometers, the interactive

mode of working becomes less desirable. Fenyo and Beavis [133] describe data

management challenges in proteomics and categorize experiments into three

sizes, small, medium and grande. Noting the need for automated systems to

acquire and analyze data large-scale (grande) experiments. As an example of an

experiment where automated batch-processing becomes a necessity, Fenyo and

Beavis cite a large-scale experiment identifying protein content in the yeast

Saccharomyces cerevisiae. This experiment analysed a total of 15,683 samples,

identifying over 35,000 proteins. This would be extremely time-consuming and

difficult to do using the manual method described at the start of this paragraph.

A common use of batch processing is to complete work in a defined “batch

window”. A batch window is a period of downtime in computer processing cycles

where the computers are being underused for interactive processing. An example

115

is in an information management cycle where transactional systems are used

throughout the day to record and process transactions. During the nightly window,

batch processes extract data from the transactional systems, transform it and load

the results into a data warehouse system for analysis the next day. This process is

known as Extract, Transform, Load (ETL). Another example would be the monthly

billing cycle for a credit card company, here data is stored during the active month

and then a batch window, perhaps over a weekend, is used to process the

monthly customer bills. The processing requirements for proteomics experiments

loosely fit this pattern, and it could be possible to set up a nightly batch processing

cycle to process that day’s experimental output overnight and have results ready

for the next morning. This method could certainly address some of the data

management challenges such as data movement and availability of processing

machines. However, the intention of this research is to provide results in as close

to real-time as possible. This means that there is a requirement for a dedicated

batch processing system.

Batch processing environments will include a scheduling system to ensure

efficient running. Scheduling has been studied extensively both for

computer-based batch processing and for manufacturing processes [134]. A

major concern is balancing a system to ensure the full utilization of all resources,

therefore obtaining maximum throughput. This balancing is of particular

importance in non-heterogeneous environments, which may contain a mix of

newer and older compute nodes with different processing speeds or where tasks

have different processing requirements. For example, in a general batch

processing system, some computing processes are many times smaller than

others. Large resource-intensive jobs can monopolise the system, effectively

blocking smaller jobs from running. A job queue holds the stream of jobs and

frameworks such as Spring Batch exist for this purpose. For Hadoop-based

systems, the original option was a simple first in first out (FIFO) scheduler which

processed the jobs in the order in which they were submitted. Current versions of

Hadoop include two scheduling methods:

116

• A fair scheduler which seeks to assign resources to jobs such that, on

average over time, each request gets an equal share of the available

resources.

• A capacity scheduler, which instead of using resource pools, as the fair

scheduler does, uses a queue-based system. Here each queue is configured

with a guaranteed quota of resources and jobs are assigned to queues

based on submission parameters.

Note that other external frameworks exist such as Airflow and Oozie, but these

have not been investigated in this research.

The proteomics processing pipeline consists of several steps with varying

resource requirements. Differences in the complexity of the sample processed by

a mass spectrometer and the length of processing time result in varying file sizes

with varying processing times, this can be seen in Section 6.5 of this Chapter

where the batch processing results are presented. On a large cluster dedicated to

processing proteomics data, a capacity-based scheduler could be used to ensure

that larger, more complex files could be consistently allocated more resources

than smaller, simpler ones.

The increasing complexity of proteomics experiments and the increasing number

of mass spectrometers has the potential to create a data management problem.

The implication is that researchers need to spend a disproportionate amount of

time on processing and handling data instead of experimenting and analyzing of

results. A dedicated batch processing cluster automatically fed by the mass

spectrometers could be used to completely disconnect researchers from the data

management and processing tasks involved in turning output spectra into data

that be analyzed. A capacity scheduler would ensure that large jobs do not affect

smaller jobs while still ensuring that large jobs get the resources they need to

complete as quickly as possible. As previously noted it is important to decide what

is an acceptable time for process completion, firstly to be acceptable to

researchers and secondly to conclude whether the terms real-time or near

real-time are appropriate.

117

6.2.4 SYSTEM AND SOFTWARE

The hardware and software environments used for the experiments detailed in

this chapter are described in detail in Chapter 5 and Appendix A. The

performance testing environment has been used for all the experimentation

except where noted. For example, performance tuning was mostly carried out

using the development environment. As the development environment was far

slower than the performance testing environment, the exaggerated differences

between tests helped to identify slow parts of the process that required tuning.

118

6.3 IMPLEMENTATION DETAILS

6.3.1 PEAK DISTRIBUTION

Different experiments produce files with different peak distributions. The type of cell

used in the experiment will determine which proteins are present for detection by the

mass spectrometer. The distribution of the detectable features affects the way in

which the data must be distributed between the map and reduce phases of the code

execution, known as the shuffle phase. As mentioned in the previous section, the

MapReduce framework allows the use of a custom partitioner function to direct the

mapper output to the right reducer. In the current code, the rules for the custom

partitioner have been tuned manually for each of the test files to produce a

distribution of an equal number of 2D features in each partition. It is recognised that

this is not ideal and not an acceptable solution for a production system. The correct

way to tackle this task is to use an approach similar to that of Hadoop’s total order

sort function (further explained in Chapter 6, Section 6.6.1), which runs the map task

then takes a sample of the output to create an efficient shuffle strategy on the fly.

However, the manual tuning method is manageable for the number of files used in the

benchmark experiments and is a constant factor across all the systems tested.

Taking this into account and the fact that this thesis is about research into whether

the feature detection algorithm can be run in parallel and near real-time, the

combination of a working algorithm suitable for benchmarking and theoretical

investigation into the effects of parallelism have provided answers without the need

for a one hundred percent production-ready system.

The figures on the following pages (Figure 21, Figure 22, Figure 23, Figure 24)

were created using MaxQuant and illustrate the different distribution of peaks in

the test files. Files 371.RAW and PT2441S1FP1A1.RAW show very different peak

distributions. 371.RAW is a manufactured sample with a small number of known

molecules used to test the setup and accuracy of mass spectrometers.

119

FIGURE 21 PEAK DISTRIBUTION IN FILE PT2441S1FP1A1.RAW

Files 561L1AIL001.RAW and 561L1AIL07.RAW show similar distributions as they are

derived from the same cell, however differences do exist as they are taken from the

cell at different stages in the cell lifecycle.

Note that in these figures showing the distribution of the data, the colours indicate the

presence of the isotopic envelopes of 3D peaks that we detected as features in the

data. At this level of zoom, that is the entire data set, the colours are not useful apart

from to distinguish the overall pattern of feature distribution. If the images were to be

zoomed in to show only a few isotopic envelopes then the colours could be used to

distinguish which peaks belong to which envelopes. The darker colours represent

high intensity isotopic envelopes of peaks with the light yellow coloured pixels being

background noise in the data.

120

FIGURE 22 PEAK DISTRIBUTION IN FILE371.RAW

FIGURE 23 PEAK DISTRIBUTION IN FILE 561L1AIL01.RAW

121

FIGURE 24 PEAK DISTRIBUTION IN FILE 561L1AIL07.RAW

The distribution of the features in the data files create a problem with the skew on

the cluster which differs from the usual data skew. Data skew is a common

occurrence when attempting to process data on a massively parallel system; the

solution is to ensure that each of the nodes in the system contains approximately

the same quantity of data. This approach is used with a relational database where

tasks such as aggregation will take the same time on different nodes if the data is

distributed evenly.

Evenly distributing the data is not sufficient to balance the workload across the

cluster with the mass spectrometer files. The figures (Figure 21, Figure 22, Figure

23, Figure 24) above show that individual mass spectrometer scans do not contain

the same number of peaks. It is usual that scans at the start of the process with a

low retention time contain fewer peaks than scans that occur in the middle of the

process, with the number of peaks tailing off towards the highest retention times.

As the algorithm can skip sections of data with no discernible features, there is an

issue of processing skew. In other words, the volume of data is less important

than the amount of information that the data contains. A scan with a low retention

time contains more noise than features and is processed relatively quickly

compared to a scan containing more features. In this case, the most efficient data

shuffling can be achieved in the same way as described except that instead of

122

sampling the output for mass ranges, the output should be sampled for the total

number of features contained.

6.3.2 COMPARISON WITH MULTI-THREADED SOFTWARE

MaxQuant is capable of multi-threaded processing and provides a parameter to

control the number of threads used. To monitor the effect of altering the number of

threads in use, just the feature detection part of the MaxQuant process was run on a

test file repeatedly. On each execution, the number of threads was incremented from

one to the maximum of eight. The maximum number of threads is eight because the

PC used for tested had eight cores. As an additional test, the amount of RAM

available on the test machine was changed while keeping the number of threads

constant; this was done to investigate the effect of memory available. The results in

Table 9 show that the feature detection part of the MaxQuant process does not speed

up with the number of threads allocated. This implies that the feature detection

process is not running in a parallel fashion and is not taking advantage of the number

of threads available to it. The tests also show that the process does not speed up

when adding more RAM and therefore that the process is not memory-bound. The

fact that the processing was being distributed across the cores was verified by

viewing Windows Task Manager which displays the percent usage of each core

graphically.

TABLE 9 MAXQUANT MULTI-THREADED BEHAVIOUR

File Name Number of Threads Time to Complete

561L1AIL01 1 00:32:13

561L1AIL01 2 00:32:02

561L1AIL01 3 00:32:13

561L1AIL01 4 00:32:06

561L1AIL01 5 00:32:13

561L1AIL01 6 00:32:08

561L1AIL01 7 00:32:06

561L1AIL01 8 00:31:55

123

The same tests were then carried out using the open source software called Dinosaur

[121]. Written in the Scala programming language, Dinosaur implements a similar

feature detection algorithm as MaxQuant. The Dinosaur source code is freely

available in a GitHub repository. The test results in Table 10 show that the Dinosaur

feature detection process does speed up with an increase in the number of threads

allocated to the process. Therefore, a degree of parallelism is being employed but the

results in Table 10 show this parallelism does not produce a linear decrease in

completion time as parallelism increases.

TABLE 10 DINOSAUR MULTI-THREADED BEHAVIOUR

File Name Number of Threads Time to Complete

561L1AIL01 1 00:30:37

561L1AIL01 2 00:29:32

561L1AIL01 3 00:27:49

561L1AIL01 4 00:26:59

561L1AIL01 5 00:26:47

561L1AIL01 6 00:26:18

561L1AIL01 7 00:26:16

561L1AIL01 8 00:26:09

The documentation for Dinosaur [121] mentions this and describes a method of

windowing being used to achieve the parallel processing. Despite this feature,

Dinosaur is not engineered to run on a cluster. Instead, it is intended to be run as a

PC-based process in a similar fashion to MaxQuant.

6.3.3 PERFORMANCE TUNING

While writing and testing the parallel feature detection algorithm in Java, several

rounds of performance testing and enhancement were carried out. This

performance tuning was done to identify bottlenecks in the process and produce

as efficient an algorithm as possible given the technology employed. A

development environment was used as described in Chapter 5, Section 5. All of

the performance testing was carried out using a basic Hadoop system with the

124

data residing in HDFS. The performance testing involved using samples taken

from the test files and timing each part of the process before making changes to

the code and retesting the process to check for faster processing times. It was

evident from the start that the 2D feature detection was very fast and needed little

improvement. As a single scan can be processed in a very small amount of time,

the metric used to test the process was the number of scans per second per map

task. Table 11 shows the results for the test files and the 2D process.

TABLE 11 TIMINGS FOR 2D FEATURE DETECTION

File Elapsed

Time

(secs)

Number

of Map

tasks

Minimum

Map Time

Maximum

Map Time

Average

Map

Time

Number

of Scans

Number of

Scans per

Mapper

Number of

Scans per

Second per

Map

100312_EXP229 23 19 9 16 10 27381 1441 144.11

371 12 29 6 10 9 37369 1289 143.18

561L1AIL00 20 30 9 29 12 36245 1208 100.68

561L1AIL01 20 30 9 29 12 36969 1232 102.69

561L1AIL02 21 30 9 28 12 37180 1239 103.28

561L1AIL03 21 30 8 29 12 37111 1237 103.09

561L1AIL04 20 30 9 29 12 36329 1211 100.91

561L1AIL05 20 30 8 27 12 36162 1205 100.45

561L1AIL06 20 30 9 29 12 36181 1206 100.50

561L1AIL07 20 30 9 29 12 36445 1215 101.24

PT2441S1FP1A1 25 40 7 16 15 125550 3139 209.25

YARN is responsible for providing the resources for each job based on the workload

and allocates the number of map tasks to each job as it sees fit. This table shows that

the difference between the minimum and maximum map time is small in terms of

elapsed time but that in some cases the maximum time to complete a map task is

three times that of the minimum time. This difference indicates that there is skew on

the cluster as some of the map tasks take longer to process than others.

As the process is embarrassingly parallel at the scan level, the theoretical minimum

time to complete the 2D feature detection is the time needed to complete scan

requiring the most processing plus the fixed overhead of the time needed to

125

instantiate the map tasks. Using the performance testing cluster as described in

Chapter 5, Section 7, the time taken to instantiate a map task is in the order of several

seconds, which equates to between ten percent and 30 percent of the overall map

task timings. Note that other systems benchmarked in this research could further

reduce this time as they do not have the same overheads as the MapReduce

framework. Also note that to achieve this theoretical minimum time, a cluster with the

same number of map task slots as there are scans in the file is required. Given that

the largest file benchmarked here as 120,000 scans this would be a very large

system indeed.

3D feature detection presented more of a challenge than the 2D process. Several

of the steps were initially very time consuming: these were the linking of the 2D

peaks into chains occurring in a mz window over time and the final 3D Isotopic

window calculation. The linking of the 2D peaks into chains was initially an O(N^2)

process due to a nested loop used in the Java code to create the links (N=the

number of 2D peaks). This was replaced by using a Java arraylist and a method of

scoping down the area in which a match was possible using the biological

properties of the molecules. The rules employed to make this matching process

more efficient are as follows:

• Flag points in the outer loop as they are checked, no need to recheck.

• Maintain a list of all matched points and skip them in future iterations.

• If the next point is in the same scan as the outer loop, fast forward to the

start of the next scan.

• Confine search for 3D peak to a window of thirty seconds [76].

The next slowest process was the final Isotopic envelope matching, this involved

using a correlation coefficient to check that two curves were a similar shape before

allowing a correct match to be declared. Here, as with the 3D chaining process,

switching from Java arrays to ordered arraylists, along with implementing some

targeted rules provided an increase in speed. Overall the performance tuning

produced an increase of approximately 6.5 times over the initial implementation.

Table 12 lists some examples of the timings before and after the tuning.

126

TABLE 12 RESULTS OF PERFORMANCE TUNING THE JAVA CODE

Task

Elapsed Time (HH:MM:SS)

Round 1 Round 2 Round 3 Round 4

Create chain of 3D peaks

00:41:29 00:24:41 00:07:17 00:07:21

Peak Smoothing

00:00:19 00:00:19 00:00:17 00:00:19

3D feature detection

00:02:02 00:02:12 00:02:04 00:02:06

Isotopic Envelopes

00:10:50 00:05:33 00:04:20 00:01:02

Complete Process

00:54:40 00:32:45 00:13:58 00:10:48

During the performance tuning, the 2D peak count and 3D peak count were checked

to ensure that the accuracy of the algorithm remained constant. The performance

tests were carried out on the test environment using a subset of 5000 scans from the

test files. In Table 12, the columns Round 1 to Round 4 show the difference in timings

of the individual parts of the process as various changes were made, some examples

of the changes are as follows:

• Round 1

o The original implementation.

• Round 2

o Used Java arraylists of objects creating chains of peaks.

• Round 3

o Reduced the amount of looping needed to find the next 2D peak in a

3D chain, as described above.

• Round 4

o Used a similar method as in Round 3 to reduce the amount of

looping needed in the Isotopic envelope detection

127

6.3.4 CODE QUALITY

It is acknowledged that further improvements to the efficiency of the algorithm

could be made by a Java performance expert.

To measure the general quality of the code written during this research, software

called SonarQube was used. SonarQube produces a score called “Technical

Debt” [136]. Technical debt is measured in the number of hours required to bring

the code up to the correct standard. It involves for instance removing unused

variables, identifying and removing code that is not executed, incorrect use of

loops, incorrect use of datatypes and adherence to style guidelines such as those

published by the Oracle Corporation, “The CERT Oracle Secure Coding Standard

for Java” [137]. An initial analysis of the approximately six-thousand lines of Java

code written during this research revealed a technical debt of four days, which

could be reduced to zero by a Java expert aided by the SonarQube report in

Appendix C

6.3.5 SCHEMAS

For benchmarking, files stored in the HDFS file system were formatted as plain

columnar text format. This format was suitable for MapReduce, Spark and Flink

when reading and writing the data to HDFS itself. For the other data storage

systems tested, namely Aster, Hbase and Cassandra, it was necessary to design

a schema into which to load the data. The design of these schemas varied by

system but in all cases the result is a simple replication of the text file design with

no need for multiple tables. Appendix D contains a description and sample code of

the schemas that were implemented.

128

6.4 EXPERIMENTATION

6.4.1 OVERVIEW OF THE EXPERIMENTATION

The experimentation carried out during this research was split into several distinct

parts:

• Testing the feature detection algorithm for accuracy compared to the output

from the Max Quant software.

• Testing the feature detection algorithm execution on the various

environments already described.

• Testing the feature detection algorithm for compatibility between the

execution engines and the different storage layers.

• Performance testing using the different frameworks and storage layers

already described.

6.4.2 WHAT WAS TESTED

The most important metric collected during performance testing was simply the

total execution time. Intermediate measures were also collected including total

map time, total reduce time, map tasks per second, average reduce time, max

and min reduce times, Total shuffle time and the number of bytes processed.

During the tests to validate the algorithm output the mass, intensity and charge of

the 2D and 3D peaks were collected for comparison with MaxQuant. The full data

set resulting from all of the testing activities can be downloaded from the github

site associated with this thesis https://github.com/chillman99

6.4.3 HOW RESULTS WERE COLLECTED

The principal method of capturing the performance data during the benchmarking

was the Linux time command. When placed in front of any other command it will

return the total execution time when the command finishes. For the benchmarks

129

carried out in this research the total time returned was recorded. This is also

referred to as the wall-clock time or total run time. The Aster system timings were

gathered from the Aster Management Console (AMC), which is a web based tool

for administering the Aster system. The time tests were run with the verbose

option on. Amongst other data, this option reports “context switches” which gives

an indication of whether the process was interrupted during execution.

For the Hadoop based system, the Hadoop web console was used to find the total

time for all Map tasks, the total time for all reduce tasks along with the average

timings of the individual map and reduce tasks. The various processing platforms

benchmarked in this research also provide web based consoles, these are shown in

Appendix E.

6.4.4 VALIDATION

The results from the batch run benchmarks were validated against output

obtained from MaxQuant. The list of test files were processed using MaxQuant on

a high specification “gaming” personal computer consisting of an eight-core CPU,

six solid-state drives and thirty-two GB of 133Ghz memory. The timings for these

tests are reported in Table 8 (Section 6.2.1). The output from these tests included

a list of detected peptide masses, charge states and intensities, and it is this data

that was used to validate the output of the parallel algorithm.

To make a comparison with the results from the parallel algorithm, the outputs

from MaxQuant and the parallel algorithm were loaded into a relational database.

The relational table structure made it a simple task to compare the masses,

charge states and intensities detected using the SQL language. An accuracy

score compared to MaxQuant was derived using the precision and recall metrics

explained in Chapter 5, Section 10.

130

6.4.5 DISCUSSION ON PARTITION TESTING

Partitions were briefly introduced in section 6.3.2 of this chapter, this section

includes a more detailed description of partitioning and its effect on performance

and accuracy and also how the need to partition the data for distribution around

the cluster limits the speedup possible from parallelism.

In the map step of the algorithm, a scan is the smallest unit of parallelism that

allows shared nothing processing. In other words, to produce the 2d peaks each

scan can be processed completely independently of any other scan. If a smaller

unit of parallelism was chosen (that is intra-scan processing), then some

communication between tasks would be needed to find complete peaks and

isotopic envelopes. Figure 25 shows a scan, keeping the scan as the unit of

parallelism means that a single map task will read in all the data in the scan and

detect any 2D peaks and isotopic envelopes contained in it.

FIGURE 25 SCAN WITHOUT PARTITIONS

Figure 26 shows the same scan but here the dotted lines represent partitions of

data. Partition A would be processed by a different map task than Partition B; if an

isotopic envelope of 2D peaks started in Partition A and continued in Partition B

the map task would need to communicate results between them to detect this.

131

FIGURE 26 SCAN SPLIT INTO PARTITIONS FOR INTRA-SCAN PROCESSING

As there are between 30,000 and 125,000 scans in the test files used in this

research, processing at the scan level allows a high degree of parallelism. The

results displayed in Table 11 in Section 6.3.7 show that individual scans can be

processed very rapidly, this coupled with a parallel cluster architecture allows the

2D peak maps to be completed in between nineteen and forty seconds for the

benchmarked files.

The individual 2D peaks need to be arranged by retention time and iterated over

to find 3D peaks and isotopic envelopes. This arrangement of 2D peaks ordered

by retention time forms a continuous chain of peaks with no natural breaks. To

process this peak chain in parallel, it must be broken into smaller pieces each of

which can be processed by a separate reduce task. In this way running the 3D

processing in parallel is a similar problem to that of processing the 2D peaks in an

intra-scan fashion.

The construction of partitions creates a natural limitation on the amount of

parallelism that can achieved and therefore limits the increase in speed that is

possible.

Partition A Partition B

132

6.4.6 EFFECT ON TIME TO PROCESS OF PARTITIONS AND REDUCERS

The size of the partitions and the number of reducers chosen for the 3D peak

processing step directly affects the time taken to complete the process. Smaller

partitions allow more reducers, which implies a higher degree of parallelism and

therefore a faster processing time. However, the situation is more complicated

and is not linearly scalable. The first complication occurs because of the size of

the cluster and the number of reduce slots available. The number of nodes, the

number of CPUs per node and the configuration of the cluster in the YARN

framework all affect how many process slots are available for running reduce

tasks. As an example, the three-node cluster used for performance testing during

this research has forty-two slots available, having forty-two partitions would allow

one partition to run in each slot. Moving to eighty-four partitions means that

forty-two reducers run in parallel and another forty-two reducers are queued up

waiting for slots to be available. This allows the cluster to process partitions which

take less time to complete serially as slots free up due to processes completing,

which potentially leads to a faster overall processing time.

A further complication occurs because the parallel algorithm contains a section of

code with a nested loop giving a potential O(N^2) processing time where N equals

the number of 2D peaks. The code has been enhanced with performance

improvements to mitigate this but it still not a linear process. This means that

smaller partitions are beneficial to reducing the time to process the data. The next

section details the limitations on partition size brought about by the accuracy

required.

6.4.7 SIZE OF PARTITIONS AND THE EFFECT ON ACCURACY OF RESULTS

As noted in the previous section, smaller partitions produce the best speed-up.

This is partly due to the way that the parallel algorithm searches for 3D peaks in

the reduce step. However, there are limitations to how small a partition can be due

to the nature of isotopic envelopes, which is explained in Section 6.4.9. The way

in which peaks and isotopic envelopes are constructed can be explained by

133

researching the way that molecules are ionized and detected in a mass

spectrometer. A 3D peak is made up of previously identified 2D peaks. The

algorithm chains 2D peaks together into a 3D peak based on several rules:

• Increase in Retention Time
• One or two scans between 2D peaks
• A tolerance between the weighted mass of 2D peaks

Due to the different charge states of 2D peaks, the tolerance in weighted mass

changes. That is the higher the charge state the higher the tolerance that is

allowed when matching 2D peaks across time. As we do not know the charge

states when setting the partition size, we need to account for the highest charge

state to be detected. In this research this is set to +6 to align with the threshold

used in the MaxQuant software.

To further complicate matters, we need to account for the presence of Isotopic

envelopes amongst the 3D peaks for a further discussion on isotopic envelopes see

Section 6.3.2 The partition must be of sufficient size for a complete isotopic envelope

of 3D peaks to be included or the algorithm will not correctly detect them.

6.4.8 BOUNDARY PEAKS AND THE AFFECT ON PROCESSING

As the data is split into partitions it is inevitable that some peaks and isotopic

envelopes will fall at the boundary between partitions. This leads to incorrect

results as the isotopic envelopes will be incomplete.

To overcome the issue of peaks occurring at the boundary of partitions and the

potential for incorrect identification of peaks and isotopic envelopes, an overlap of

data between partitions was introduced. This means that there is some

duplication of data processing but ensures that all the peaks are correctly

identified. The algorithm was adapted to discard chains of 3D peaks where the

intensity did not fall to zero before reaching the boundary as this indicated an

incomplete peak and a post-processing de-duplication step introduced in case

peaks were completely detected in adjacent partitions.

134

6.4.9 SIZE OF OVERLAPS

As with calculating the size of the initial partitions, the required size of the overlap

between partitions can be calculated. The overlap of data needs to be sufficient to

contain a complete isotopic envelope of 3D peaks. This overlap will ensure that all

features are detected correctly. A solution to this is for the partition and the

partition overlap at the boundary to be the same size. This is achieved by finding

the mid-point of each partition and add the data either side of this midpoint to the

preceding and following partitions, illustrated in Figure 27

FIGURE 27 ILLUSTRATION OF OVERLAPPED PARTITIONS

The width of the partitions has been calculated by considering three factors:

1. The biological constraints, which impose a lower bound on the size of the

partition as measured in thomsons. This can be calculated from the width of an

isotopic envelope of 2D peaks. The entire envelope must fit into half of the full

partition width for the overlap partition strategy to work correctly. See Figure 28

below for more detail.

2. The requirement to have small partitions to increase the speed of processing

3. The setup and available resources on the cluster

Partition A Partition C Partition E Partition F

Partition B Partition D Partition E Partition G

Partitioned data set without an overlap

Second set of partitions that overlap the first

135

Creating the overlaps in the way described means that all the 2D peak data is

processed twice in the reduce step. Although this is an overhead, it does ensure

that the 3D peaks are correctly detected and allows the use of small partition

sizes to make the most of the parallelism of the cluster and efficient use of the

parallel algorithm. Figure 28 shows five isotopic envelopes of 2D peaks arranged

in six overlapping processing partitions, in this case each partition equates to a

single reduce task on the cluster. It can be seen that the isotoptic envelopes will

be processed twice due to the overlapping partition strategy. A partition that is

smaller than twice the width of a 2D isotopic envelope will result in envelopes

being partially detected or not detected at all, as they will cross a partition

boundary and not be picked up in the overlapping partitions.

FIGURE 28 FIVE 2D ISOTOPIC ENVELOPES ARRANGED IN PROCESSING PARTITIONS

Partition A Partition B

Partition D Partition E

Partition C

This symbol represents a 2D isotopic envelope

Partition F

1

1

2

2

3

3

4

4
5

5

136

In the figure the two processing streams are arranged one above the other. The

figure also shows that if a complete Istopic envelope fits within half of the partition

window it will always be processed completely in at least one of the partitions in which

it appears. The following explains this for each of the five isotopic envelopes

displayed.

1) Envelope one fits entirely within the Partition A and Partition B and will be

completely processed twice.

2) Envelope two occurs at the boundary of Partition B and Partition C and will be

discarded by both. It fits entirely in Partition E and will be processed there.

3) Envelope three fits entirely in Partition B and will be processed there. It also

occurs at the boundary of Partition D and Partition E and will be discarded by

both.

4) Envelope four also fits entirely in Partition B and will be processed there. It also

occurs at the boundary of Partition D and Partition E and will be discarded by

both.

5) Envelope five fits entirely into Partition C and will be process there, it occurs at

the boundary of Partition E and Partition F and will be discarded by both.

The theoretical maximum width of an 2D Istopic Envelope is calculated by taking the

distance between subsequent peaks in the envelope and the number of peaks. The

mass shift values in Table 4 show that for an ion with charge +2 the shift in mass

between each peak in an Isotopic envelope is 0.50143432. At the point where the

partition widths are calculated, the ion charge is unknown so the highest mass shift

value is taken to ensure no features are missed.

137

6.5 RESULTS

6.5.1 TABLES OF RESULTS

The following tables present the results of the benchmarks. Firstly, the results are

compared to MaxQuant, the overall timings are displayed plus the minimum and

maximum times taken by the reduce tasks. The minimum and maximum times for the

map tasks are not shown as they all completed in seconds and, due to the

embarrassingly parallel nature of the 2D feature detection, do not constrain the

overall completion time. For this reason, the majority of the discussion and analysis

focuses on the 3D feature detection performed by the reduce tasks.

Table 13, Table 14 and Table 15 show the results from the benchmarks where the

processing is carried out by Hadoop MapReduce. The results show that the batch

process runs the fastest when data is stored in HDFS, followed by Cassandra and

then HBase being the slowest. This is because the batch process simply reads all the

data in and writes all the data out in a linear fashion. There are no queries of the data

that would necessitate random access. This means that the storage mechanisms and

indexing provided by HBase and Cassandra are an unrequired overhead compared

to the simple file storage of HDFS. This is further discussed in Chapter 8.

TABLE 13 BENCHMARK HADOOP / HDFS

File MaxQuant
(HH:MM:SS)

Hadoop/HDFS
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:05:13 00:00:47 00:04:39

100312 00:17:05 00:04:58 00:00:32 00:04:21
561L1AIL00.RAW 00:31:05 00:11:40 00:02:10 00:09:57

561L1AIL01.RAW 00:32:23 00:12:18 00:02:02 00:10:18

561L1AIL02.RAW 00:29:56 00:12:16 00:01:59 00:09:34
561L1AIL03.RAW 00:31:05 00:11:11 00:02:12 00:09:25

561L1AIL04.RAW 00:32:32 00:12:02 00:02:23 00:10:12

561L1AIL05.RAW 00:32:33 00:12:03 00:02:43 00:10:19
561L1AIL06.RAW 00:32:02 00:12:30 00:02:26 00:09:53

561L1AIL07.RAW 00:31:30 00:11:30 00:02:11 00:10:20

PT2441S1FP1A1.RAW 00:53:24 00:15:49 00:02:22 00:15:02

138

The minimum and maximum reduce columns show the slowest and the fastest

processing time for the reduce tasks. The difference between these times occurring

with all files and systems indicates the presence of processing skew on the cluster,

which is discussed in detail later in this chapter.

TABLE 14 BENCHMARK HADOOP / HBASE

File MaxQuant
(HH:MM:SS)

Hadoop/HBase
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:06:25 00:00:48 00:05:51

100312 00:17:05 00:06:08 00:00:34 00:05:31

561L1AIL00.RAW 00:31:05 00:13:03 00:02:19 00:12:20
561L1AIL01.RAW 00:32:23 00:13:35 00:02:13 00:12:50

561L1AIL02.RAW 00:29:56 00:13:20 00:02:23 00:12:35

561L1AIL03.RAW 00:31:05 00:12:46 00:02:25 00:12:00
561L1AIL04.RAW 00:32:32 00:13:58 00:02:40 00:13:14

561L1AIL05.RAW 00:32:33 00:13:52 00:03:12 00:13:09

561L1AIL06.RAW 00:32:02 00:13:39 00:02:27 00:12:52
561L1AIL07.RAW 00:31:30 00:13:58 00:02:14 00:13:12

PT2441S1FP1A1.RAW 00:53:24 00:19:20 00:02:28 00:18:33

TABLE 15 BENCHMARK HADOOP / CASSANDRA

File MaxQuant
(HH:MM:SS)

Hadoop/Cassandra
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:06:01 00:00:44 00:05:26

100312 00:17:05 00:05:44 00:00:31 00:05:06

561L1AIL00.RAW 00:31:05 00:11:54 00:02:04 00:11:08

561L1AIL01.RAW 00:32:23 00:12:23 00:02:03 00:11:34
561L1AIL02.RAW 00:29:56 00:12:00 00:02:03 00:11:06

561L1AIL03.RAW 00:31:05 00:11:35 00:02:12 00:10:44

561L1AIL04.RAW 00:32:32 00:12:37 00:02:27 00:11:47
561L1AIL05.RAW 00:32:33 00:12:34 00:02:50 00:11:43

561L1AIL06.RAW 00:32:02 00:12:19 00:02:25 00:11:31

561L1AIL07.RAW 00:31:30 00:12:39 00:02:06 00:11:52
PT2441S1FP1A1.RAW 00:53:24 00:17:23 00:02:12 00:16:35

139

Table 16 and Table 17 show the results from the Aster benchmarks on a three-node

and a seven-node cluster respectively.

TABLE 16 BENCHMARK ASTER 3 NODE CLUSTER

File MaxQuant
(HH:MM:SS)

Aster 3 node
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:11:01 00:00:30 00:03:45
100312 00:17:05 00:10:50 00:00:27 00:03:39

561L1AIL00.RAW 00:31:05 00:26:40 00:01:45 00:09:24

561L1AIL01.RAW 00:32:23 00:24:38 00:01:36 00:08:49
561L1AIL02.RAW 00:29:56 00:20:26 00:01:30 00:07:24

561L1AIL03.RAW 00:31:05 00:21:35 00:01:35 00:07:18

561L1AIL04.RAW 00:32:32 00:25:36 00:02:04 00:09:02

561L1AIL05.RAW 00:32:33 00:23:16 00:02:17 00:08:09
561L1AIL06.RAW 00:32:02 00:21:14 00:01:42 00:07:20

561L1AIL07.RAW 00:31:30 00:22:46 00:01:40 00:07:55

PT2441S1FP1A1.RAW 00:53:24 00:33:50 00:01:39 00:12:07

TABLE 17 BENCHMARK ASTER 7 NODE CLUSTER

File MaxQuant
(HH:MM:SS)

Aster 7 Node
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:04:07 00:00:33 00:03:43
100312 00:17:05 00:04:02 00:00:25 00:03:35

561L1AIL00.RAW 00:31:05 00:10:00 00:01:46 00:09:21

561L1AIL01.RAW 00:32:23 00:09:20 00:01:38 00:08:43
561L1AIL02.RAW 00:29:56 00:07:57 00:01:31 00:07:21

561L1AIL03.RAW 00:31:05 00:07:57 00:01:37 00:07:22

561L1AIL04.RAW 00:32:32 00:09:46 00:02:03 00:09:07
561L1AIL05.RAW 00:32:33 00:08:49 00:02:14 00:08:14

561L1AIL06.RAW 00:32:02 00:07:59 00:01:41 00:07:29

561L1AIL07.RAW 00:31:30 00:08:31 00:01:38 00:08:00
PT2441S1FP1A1.RAW 00:53:24 00:12:39 00:01:46 00:12:03

140

The reason for the extra benchmark on the seven-node cluster is to illustrate a point

regarding parallelism. The results from the three-node cluster show that Aster takes

around twice the time to process the same file as the Hadoop/HDFS configuration.

Whereas the seven-node cluster produces similar results, although slightly faster.

This is because the Aster system has a fixed set of six virtual workers per node,

which gives an overall eighteen-way parallelism on the cluster. In comparison, the

three-node Hadoop cluster governed by YARN is configurable at runtime up to

forty-eight processing slots. The Aster seven-node provides forty-two virtual workers

and therefore a similar degree of parallelism as the Hadoop three-node cluster. The

results show that given a similar degree of parallelism Aster performs faster on the

larger files than the Hadoop-based systems.

Table 18 and Table 19 display the results from running the benchmarks on the

in-memory execution engines, Flink and Spark, with the data stored in HDFS. Flink

outperforms Spark for all the test files by a small amount. Both Flink and Spark

outperform Hadoop MapReduce.

TABLE 18 BENCHMARK FLINK

File MaxQuant
(HH:MM:SS)

Flink
(HH:MM:SS)

Minimum Reduce

Time (HH:MM:SS)

Maximum Reduce

Time (HH:MM:SS)

371 00:19:54 00:03:33 00:00:26 00:03:13

100312 00:17:05 00:02:03 00:00:19 00:01:46

561L1AIL00.RAW 00:31:05 00:10:40 00:02:02 00:10:55
561L1AIL01.RAW 00:32:23 00:11:03 00:02:02 00:11:30

561L1AIL02.RAW 00:29:56 00:10:19 00:02:06 00:11:21

561L1AIL03.RAW 00:31:05 00:10:11 00:02:07 00:10:22

561L1AIL04.RAW 00:32:32 00:10:56 00:02:20 00:11:15
561L1AIL05.RAW 00:32:33 00:11:02 00:02:43 00:11:14

561L1AIL06.RAW 00:32:02 00:10:40 00:02:27 00:11:41

561L1AIL07.RAW 00:31:30 00:11:06 00:01:55 00:10:47
PT2441S1FP1A1.RAW 00:53:24 00:14:03 00:02:02 00:13:41

141

TABLE 19 BENCHMARK SPARK

File MaxQuant
(HH:MM:SS)

Spark
(HH:MM:SS)

Minimum Reduce
Time (HH:MM:SS)

Maximum Reduce
Time (HH:MM:SS)

371 00:19:54 00:03:51 00:00:34 00:03:31

100312 00:17:05 00:02:33 00:00:29 00:02:06
561L1AIL00.RAW 00:31:05 00:11:53 00:02:13 00:11:26

561L1AIL01.RAW 00:32:23 00:12:36 00:02:13 00:11:53

561L1AIL02.RAW 00:29:56 00:12:28 00:02:18 00:11:49
561L1AIL03.RAW 00:31:05 00:11:43 00:02:18 00:10:58

561L1AIL04.RAW 00:32:32 00:12:21 00:02:32 00:11:47

561L1AIL05.RAW 00:32:33 00:12:28 00:02:57 00:11:54

561L1AIL06.RAW 00:32:02 00:12:47 00:02:40 00:12:02
561L1AIL07.RAW 00:31:30 00:11:48 00:02:08 00:11:04

PT2441S1FP1A1.RAW 00:53:24 00:14:22 00:02:17 00:13:58

Table 20 presents the benchmarks side by side with the fastest times highlighted.

TABLE 20 BENCHMARK COMPARISON

File Hadoop

HDFS
(HH:MM:SS)

Hadoop

Hbase
(HH:MM:SS)

Hadoop

Cassandra
(HH:MM:SS)

Aster 3

Node
(HH:MM:SS)

Aster 7

Node
(HH:MM:SS)

Flink
(HH:MM:SS)

Spark
(HH:MM:SS)

371 00:05:13 00:06:25 00:06:01 00:11:01 00:04:07 00:03:33 00:03:51

100312 00:04:58 00:06:08 00:05:44 00:10:50 00:04:02 00:02:03 00:02:33

561L1AIL00.RAW 00:11:40 00:13:03 00:11:54 00:26:40 00:10:00 00:10:40 00:11:53

561L1AIL01.RAW 00:12:18 00:13:35 00:12:23 00:24:38 00:09:20 00:11:03 00:12:36

561L1AIL02.RAW 00:12:16 00:13:20 00:12:00 00:20:26 00:07:57 00:10:19 00:12:28

561L1AIL03.RAW 00:11:11 00:12:46 00:11:35 00:21:35 00:07:57 00:10:11 00:11:43

561L1AIL04.RAW 00:12:02 00:13:58 00:12:37 00:25:36 00:09:46 00:10:56 00:12:21

561L1AIL05.RAW 00:12:03 00:13:52 00:12:34 00:23:16 00:08:49 00:11:02 00:12:28

561L1AIL06.RAW 00:12:30 00:13:39 00:12:19 00:21:14 00:07:59 00:10:40 00:12:47

561L1AIL07.RAW 00:11:30 00:13:58 00:12:39 00:22:46 00:08:31 00:11:06 00:11:48

PT2441S1FP1A1.RAW 00:15:49 00:19:20 00:17:23 00:33:50 00:12:39 00:14:03 00:14:22

Note that if the seven-node Aster system is excluded then Flink is the fastest for

all the files. This table shows that the parallel algorithm does indeed provide a

speed-up over the single-threaded algorithm. Although the execution times are

faster than those obtained using MaxQuant, the timings do not show the 95%

improvement that was outlined in the methodology chapter. The minimum and

maximum timings for the reduce tasks show that there is still some skew in the

processing that could be optimized and also that the reduce task timings are the

142

constraint that prevent the process approaching a speed that could be classed as

real-time.

The results in Table 20 show that, apart from the previously described issue with

number of parallel slots available with Aster, the timings for all the runs with different

processing frameworks and data storage layers are similar. The processing is carried

using the algorithm coded in Java and the same set of libraries are used for all the

systems. The differences in run-time are due to the differences in data access

between file and non-file based systems, the way that the difference frameworks

instantiate and control the parallel tasks and also the way they handle input and

output data. Table 21 shows the fastest of the benchmark runs compared with the

slowest non-file-based systems, which was Hadoop HBase and then compared to the

slowest of the file-based systems, which was Hadoop HDFS.

TABLE 21 DIFFERENCES IN TIMINGS BETWEEN FLINK AND HBASE, FLINK AND HDFS

Flink Hadoop
HBase

Difference
between
Flink and

Hbase

Ratio
Flink time
to HBase

time

Hadoop
HDFS

Difference
between
Flink and

HDFS

Ratio Flink
time to

HDFS time

00:03:33 00:06:25 00:02:52 80.75 00:05:13 00:01:40 31.95

00:02:03 00:06:08 00:04:05 199.19 00:04:58 00:02:55 58.72

00:10:40 00:13:03 00:01:23 12.97 00:11:40 00:01:00 8.57

00:11:03 00:13:35 00:01:17 11.61 00:12:18 00:01:15 10.16

00:10:19 00:13:20 00:01:04 10.34 00:12:16 00:01:57 15.90

00:10:11 00:12:46 00:01:35 15.55 00:11:11 00:01:00 8.94

00:10:56 00:13:58 00:01:56 17.68 00:12:02 00:01:06 9.14

00:11:02 00:13:52 00:01:49 16.47 00:12:03 00:01:01 8.44

00:10:40 00:13:39 00:01:09 10.78 00:12:30 00:01:50 14.67

00:11:06 00:13:58 00:02:28 22.22 00:11:30 00:00:24 3.48

00:14:03 00:19:20 00:05:17 37.60 00:15:49 00:01:46 11.17

Average
Ratio 39.56

Average
Ratio 16.47

The results in Table 21 show that for the smaller files where processing is already

fast, the overhead caused by using a non-file-based data repository is large. The

ratio of this overhead to the overall processing time falls as the processing time

increases for different types of file. The same is true for using Hadoop with HDFS

as a file-based data repository, the overhead is less than for HBase but still

143

substantial for small files and decreasing for larger files. The reason the overhead

decreases is that the map and reduce tasks have a fixed instantiation time of

several seconds which does not change as data volumes increase. Also, HBase

introduces a higher cost for accessing data row by row when compared to the

simple file-based data repositories. Note this data access cost only holds true

where sequential access is required. If the requirement changes to include

random access to data then HBase, Cassandra and Aster would show improved

performance over HDFS. The difference in times between Flink and Spark vs

Hadoop HDFS show that Flink and Spark are faster when instantiating tasks

compared to Hadoop and have less processing overheads.

The maximum reduce time as reported in Tables 11 to 17 is the constraining factor for

all the systems tested here. The difference between the overall completion time and

the maximum reduce time is under one minute (except for the three-node Aster

system). This time difference is made up of several components including

initialisation of the job, execution of map tasks, job completion and housekeeping

tasks. Without further optimization of the processing skew and the algorithm code it

would not be possible to reduce the execution time below that of the maximum

reduce time regardless of the number of processing slots on the cluster. As discussed

in section 6.4 it is not possible to parallelize the batch process beyond a certain point

due the nature of the features that are being detected. This factor has led to

researching processing the data in a streaming fashion as described in Chapter 7 and

is discussed further in the final chapter.

6.5.2 VALIDATION

The results from the experiments were loaded into a relational database table and

compared to the results from MaxQuant using the SQL language. Note that the

output from all the systems benchmarked was identical in all respects, that is the

number of features detected, mass, intensity and charge values all matched exactly.

This was to be expected as the core algorithm code was used without any changes

on each system. For this reason, the validation table only shows data for MaxQuant

versus the parallel algorithm. The data for the parallel algorithm was obtained from

the benchmarks using Aster, this was convenient because the output from Aster is a

144

relational database table. To perform the validation, it was only necessary to load the

MaxQuant data into a similar relational table. The two sets of results could then be

compared with simple SQL queries.

Accuracy of results, judged by precision and recall metrics
To measure the accuracy of the parallel algorithm against the MaxQuant output, the

precision and recall metrics were used. Recall is a measure of how many of the total

number of true features were detected. Precision is a measure of how many of the

detected features were true features.

Table 20 Shows a “confusion matrix” with fabricated data as an example to explain the

metrics. A confusion matrix is a common device used to evaluate the performance of

a binary classifier. There are four possible outcomes:

Predicted = true, Actual = true, result = True Positive

Predicted = true, Actual = false, result = False Positive

Predicted = false, Actual = false, result = True Negative

Predicted = false, Actual = true, result = False Negative

TABLE 22 EXAMPLE OF A CONFUSION MATRIX

 Predicted True Predicted False

Actual True 100 10

Actual False 20 200

For the purposes of this thesis, the True Positives are the features that have been

correctly identified by MaxQuant and also by the parallel algorithm being tested. The

False Positives are features detected by the parallel algorithm that were not detected

by MaxQuant. The False Negative area are features detected by MaxQuant that the

parallel algorithm did not find. True Negatives would be features that MaxQuant

145

detected that were not in fact actual features but as we are not testing the accuracy of

MaxQuant here, this section will be null. All counts of features are at the complete file

level. The definitions of Precision and Recall are given below.

Recall = (True Positive / (True Positive + False Negative))

Precision = (True Positive / (True Positive + False Positive))

Results of validation
Table 21 shows the results of the validation, the total number of features detected by

MaxQuant and the parallel algorithm appear in the first two columns. True positives

equal the number of features matching between MaxQuant and the parallel algorithm.

False negatives equal the number of features found by MaxQuant but not by the

parallel algorithm. False positives are the features found by the parallel algorithm and

not by MaxQuant.

TABLE 23 VALIDATION OF PARALLEL ALGORITHM OUTPUT

File MaxQuant Parallel

Algorithm

True

Positive

False

Negative

False

Positive

Precision Recall

371 17777 40887 16621 1156 23110 0.41 0.93
561L1AIL00.RAW 159201 330727 145191 14010 171526 0.44 0.91
561L1AIL01.RAW 159295 366379 148144 11151 207084 0.40 0.93
561L1AIL02.RAW 161481 339110 143718 17763 177629 0.42 0.89
561L1AIL03.RAW 158820 336698 146114 12706 177878 0.43 0.92
561L1AIL04.RAW 159201 342282 147738 11463 183081 0.43 0.93
561L1AIL05.RAW 158411 351672 148272 10139 193261 0.42 0.94
561L1AIL06.RAW 158054 319269 147306 10748 161215 0.46 0.93
561L1AIL07.RAW 154335 339537 143222 11113 185202 0.42 0.93
PT2441S1FP1A1.RAW 123016 270086 116250 6766 147070 0.43 0.94

In all cases the recall shows that the parallel algorithm is picking over 90% of the

features found by MaxQuant. The MaxQuant supplement paper that describes the

algorithm forming the basis of the parallel algorithm tested here does not provide

sufficient detail to replicate the exact implementation of the algorithm as used by

MaxQuant. The results, however are within the limits accepted by other feature

detection software as defined by Chawade et. al [74]. In their review of proteomics

data processing packages Chawade et. al also noted that each software solution has

advantages and disadvantages, for example in their ability to detect features,

146

distinguish between charge states and effectively filter out noise in the signal. As

such the parallel algorithm is an approximation of the algorithm implemented by

MaxQuant and certain complications will not be handled in the same way. An

example of this is peaks with ambiguous charge states as described by Xiao et. al

[154]. This situation occurs where isotopic envelopes overlap leaving a state where

there could be, for example two peptides with a charge of +2 or a single peptide with

a charge of +4.

The precision shows that the parallel algorithm is finding more features than

MaxQuant; these are classed as false positives. In a complete system many of the

false positives would be filtered out during the next step of the process [138]. This

further filtering occurs because the detected features are compared to a known

list of peptide molecules in the protein identification stage, those not matching are

discarded at this stage but this has not been implemented as part of this research.

147

6.6 DISCUSSION

6.6.1 PARTITIONING

As stated in Section 6.4.6, the maximum time taken to process the reduce tasks is the

major constraint on the overall processing time. One way to reduce this maximum

time is a better partitioning strategy to minimize the processing skew on the cluster.

Currently, the partitions are pre-calculated and hard-coded for each of the data files,

the size and number of partitions have been calculated by sampling the data output

from the map step and using a function to produce the minimum and maximum mass

of the peaks in the partition. This process could be automated and carried out just

after the map step or as a separate MapReduce process using a sample of scans

from the input file. An automated process would also allow greater flexibility in

adapting the number of reduce steps to suit the cluster setup. The sampling and

calculating of max and min weights would be carried out in the same way as an

algorithm called “Total Order Sort” which is used by Hadoop to sort data in a parallel

fashion on a cluster. Hadoop uses the Total Order Sort algorithm to produce a

system-wide sorted list as opposed to a standard sort that returns a list sorted at the

node level. As the Hadoop is a shared-nothing system a system-wide sorting

operation is complex and involves sampling the data on the nodes, reviewing the

distribution of data by the required sort key and re-distributing the data by the sort key

to provide approximately equal partitions of data on the nodes, which when sorted

can be joined together to provide a correctly sorted dataset.

A further enhancement could be to calculate the partitions based on the level of

processing required as opposed to the current method of basing the size on the

number of peaks within them. The distribution of the 3D peaks within the sample is

very uneven and unique to the sample that is being processed. Examples of these

feature distributions can be seen in the figures in Section 6.3.4. When the algorithm

detects a chain of 2D peaks that form a 3D peak it needs to iterate over the adjacent

2D peaks to check for others that may also be part of the 3D peak. However, if no

chain is detected within two scans then no further action is needed, and the algorithm

moves on without iteration. Therefore, it is not just the total number of 2D peaks in a

partition that is significant but also the processing required to detect the 3D peaks that

148

they constitute. This means that sampling the output of the reduce step to discover

where the 3D peaks are forming can produce a more efficient use of cluster

resources.

6.6.2 CHOOSING THE CORRECT NUMBER OF REDUCERS

As the number of reduce steps needs to be predetermined in the Hadoop

MapReduce framework, several calculations need to be taken into consideration. As

shown in Section 6.4.9 it is possible to calculate the minimum width of a partition plus

the overlap required using the theoretical maximum width of a 2D isotopic envelope.

This calculation is required to ensure that boundary peaks are fully accounted for. In

an ideal situation, each reduce step would require the same amount of time to

complete, and the number of reducers would equal some multiplication of the number

of processing slots on the cluster. For example, if the cluster has three worker nodes,

each with sixteen processing slots, then forty-eight slots are available, and the

number of reduce tasks would equal forty-eight or ninety-six or one hundred and

forty-four etc. If each reduce task completed in the same time then the cluster would

be fully utilised during the entire process. However, the results show there is

processing skew, which can be seen by the spread between minimum and maximum

time to completion. The YARN framework does mitigate this to some extent by

allocating tasks to the next available processing slot, meaning that some processing

slots can process several faster tasks serially in the time taken to process the slower

task.

More work is required to even out the processing done by each reduce task but for

this research, the number of reduce tasks was fixed at eighty-four which provided two

tasks per slot on the three node clusters and one task per slot on the seven node

cluster.

6.6.3 ISO PEAK THRESHOLDS VS TIME TO COMPLETE AND ACCURACY

A simple way to reduce the time taken to process the data is to reduce the amount

of data that needs to be processed. The parallel algorithm takes a large volume of

input data points and in various stages reduces them to a much smaller data set.

149

During the process, various thresholds are used that affect the amount of data that is

processed. The recall and precision metrics introduced in Chapter 5, Section 5.10 are

a way of assessing how changing these thresholds affects the accuracy of the final

output.

One threshold is the size of the ISO peaks used when creating 3D peaks. For each

scan the maximum peak intensity is calculated, and peaks under a threshold

percentage of this peak intensity are discarded. It was discovered during

experimentation that this particular threshold value had a significant impact on the

number of peaks detected and therefore the total processing time and also the

accuracy of the algorithm.

More work is necessary to understand the exact value that this threshold should be

set but for this research, it was set to 66% which equated to the value where the

accuracy of the algorithm was not significantly affected. Values below this produced

much faster run times but with a corresponding significant drop in accuracy compared

to the MaxQuant output.

6.6.4 ENHANCEMENTS

The benchmark results show that the parallel algorithm does indeed speed up the

process of feature detection as compared to a single-threaded pc-based process.

It also proves to be accurate in relation to the results obtained by MaxQuant.

Following on the process could be enhanced to produce a more complete protein

identification pipeline. As referenced in previous chapters, other research has

produced code such as that used in the Hydra [79] project, which comprises the

protein lookup or database search. It would be a relatively simple matter to

connect the output of detected features (peptides) to the input of the Hydra project

resulting in a complete solution. A more thorough investigation into the slower

parts of the process could be made namely 3D peak identification and 3D isotopic

envelopes and performance enhancements made to the code.

150

7 STREAM PROCESSING

7.1 CHAPTER SUMMARY

This Chapter presents the experimentation and the results from running the parallel

feature detection process in a streaming fashion. The stream process simulates data

being made available while the mass spectrometer is in operation.

Section 1 describes the meaning of a stream processing approach, how it works in

practice and contrasts this approach with processing data in a batch-mode.

Section 2 details the implementation of the parallel feature detection algorithm and

describes the changes that were made to enable the batch algorithm described in

Chapter 6 to operate on streaming data. This section also describes the differences in

the processing approaches between Apache Spark and Flink.

Section 3 describes the benchmark experiments carried out and the method for

obtaining and validating the results.

Section 4 details the results from the benchmarks.

Section 5 Describes the results obtained and indicates potential future research.

151

7.2 INTRODUCTION

7.2.1 STREAM PROCESSING

The previous chapter defines batch processing as processing a fixed amount of data

(the batch) in a certain amount of time (the batch window). In contrast to the batch

model where data is first stored and then subsequently processed, stream processing

takes place as the data is created and pushed out from the producer to be

subsequently captured by a consumer. The consumer will perform any necessary

processing either on single data points as they arrive or, more usually, on windows of

data. Different metrics are available to determine the size of the processing windows

in a streaming system. These metrics include the number of incoming data points or

the elapsed time between windows. The windows can be distinct, where each data

point belongs to a unique window and is processed only once or sliding, where data

points belong to multiple-windows that overlap meaning that the data is processed

multiple times.

The stream of data is conceptually unbounded, the data flows continually from the

source, and the consumer processes it as it arrives with no specific start or end point.

In this way, streaming data is processed as it is generated and computation is done in

memory before it is saved to disk. In the case of proteomics, the start and end of the

mass spectrometer run are the actual boundaries of the stream, which is the same as

with the batch process. However, when processing in a streaming fashion, feature

detection is carried out while the mass spectrometer is still running, which can

typically last between two and four hours.

7.2.2 STREAM PROCESSING PLATFORMS

Many open source and proprietary streaming solutions exist. To provide a

comparison with the batch implementation, detailed in the previous chapter, this

research concentrates on Apache Spark and Flink. Kafka is also used in the

experimentation; Kafka’s role is to simulate the data streaming directly from the mass

spectrometer. Kafka reads in a data file and streams it out as a topic (described in

152

Chapter 5 section 5.8.8). The data in the topic is then consumed by the Spark or Flink

engines. Spark and Flink also have the capability of reading data directly from files on

disk to simulate streaming, but the addition of Kafka provides a more realistic

simulation. In a real-life situation, a framework such as Kafka would be used to

ensure a robust environment that protects against any data loss in the event of

system failure.

Other streaming solutions of note include infosphere streams from IBM and Tibco

Streambase both of which are proprietary commercial systems. Open source

distributions which allow stream processing to various degrees include Rabbit MQ,

Storm, Samza, Esper, and Beam, although none of these has been evaluated during

this research.

7.2.3 DATA MANAGEMENT

One potential benefit of stream processing is in the area of data management. As

mentioned previously, a standard workflow for proteomics experiments involves

moving data around between different environments and manual processing steps. If

data can be streamed directly from a mass spectrometer into a central cluster, then

some of these manual steps are not required. In an ideal system, the data would flow

from the mass spectrometer into the processing cluster via a streaming framework

such as Kafka; here it would be processed in parallel and the results stored in a

central location where they can be accessed by the life scientists. This would all

happen in close to real-time with the scientists being able to access the results of their

experiments almost immediately after they finish and without having to move or copy

any data.

The streaming architecture also allows partial results to be viewed before the mass

spectrometer has completed its work. The in-stream results could be used for

validating an experiment before it finishes, which could result in an experiment being

halted early if issues were found. Stopping an experiment before it completes will free

up the mass spectrometer for further work and save wasting time on processing

results that will only be discarded.

153

7.2.4 STREAM SPECIFIC ISSUES

Logging, back pressure, and resilience need to be considered when using stream

processing.

Streaming systems implement various forms of logging to ensure that all the data is

made available to the target systems. The data will be tagged so that, for instance,

the system will know whether data has arrived in a different order from which it was

created or if it hasn’t been processed yet.

Back pressure describes the balance between the velocity that data arrives compared

to the speed at which it can be processed. Ideally, all the data will be processed as

soon as it arrives at the consumer or as soon as the relevant size process window is

available. If the consumer cannot process the incoming data fast enough, then the

incoming data will queue up in memory and eventually spill to disk causing delays. In

a typical streaming use case such as real-time fraud detection, this can mean that the

data is not processed within the specified service level agreement (SLA). For

proteomics data, back pressure and delays in the process would not have such a

detrimental effect as say a missed fraudulent banking transaction but it will still affect

the overall runtime of the processing and is therefore not desirable. One way of

mitigating back pressure is providing more compute nodes on a parallel cluster.

Another way is using the logging mechanism in a stream framework mentioned

above. All data is logged as it arrives in the stream, meaning that it is not lost if it

cannot be processed at the time of arrival but will be made available to the data

consumer as and when it is able to process it.

A streaming framework should provide resilience in the event of failure of either the

system handling the streams or the target system that is processing the data. Kafka

provides resilience using its logging system and its cluster-based architecture.

154

7.2.5 STREAMING DATA IN PRACTICE

A previous section mentions the fact that Kafka is being used to simulate the mass

spectrometer streaming out data in real-time. For the mass spectrometer to stream

the data in practice requires collaboration with the mass spectrometer manufacturers.

In the case of the University of Dundee, the manufacturer Thermo Scientific would

need to provide a mechanism by which the data could be streamed as well as

simultaneously writing the RAW file to disk. As mentioned in Chapter 3, Section 3.4.3

it is highly desirable to keep the original RAW file as a source in case the data needs

reprocessing at some point in the future. Previous work by Graumann et al. [112] has

used a beta set of API libraries, provided by Thermo Scientific, that enabled them to

test a version of MaxQuant using a streamed data set on the PC that is attached to

the mass spectrometer itself. This work could be extended in a future research project

to enable a system such as Kafka to ingest the data and provide it as a stream for

cluster-based processing in real-time.

155

7.3 IMPLEMENTATION DETAILS

7.3.1 CODE CHANGES FROM BATCH

Both the Flink and Spark batch processing code required significant changes to run in

a streaming fashion. Firstly, the input interfaces needed changing to access the data

from the Kafka topic as opposed to a file in HDFS. Flink provides a Kafka consumer

that is simple to use and requires the name of the Kafka topic, the server address and

port numbers of the Kafka and Zookeeper servers to access the stream data.

In addition to the changes required to connect to Kafka, the code needs to be

restructured to make use of Flink operators. The main function used is the “flatmap”

function, this coupled with the window operator replaces the MapReduce structure of

the batch process and provides the means to split the incoming stream into windows

of a certain period. To ensure that all the 3D peaks were detected the processing

window was set to collect thirty seconds of input data. A window of thirty seconds, in

this case, will mean that thirty seconds worth of mass spectrometer scans will be

processed as one unit. Thirty seconds has been validated in other research as the

maximum time taken for a peptide to elute in normal circumstances [76]. Note that in

some rare cases it is possible for the 3D peak elution time to be longer than this, in

this case a post-process is needed to join the pieces of the 3D peak together to form

a complete feature. Some examples of where this situation occurs are with

contaminants in the sample or with “manufactured” samples such as the files used to

check the accuracy of a mass spectrometer. Note that the test file 371.RAW used in

this research is such a manufactured file.

With the window of data defined, the core map and reduce code can be used to

process it, this part of the code is unchanged apart from the input data format

changing from key-value pairs to tuples. A tuple is the same construct as a row in a

relational database, each of its fields is defined in advance and can be accessed

directly without the need for additional parsing. The first part of the flatmap task

equates exactly to the map task used in the batch processing testing. This means that

each thirty second processing window receives all of the scan data to process and

consequently the 2D peak processing is carried out in duplicate for every processing

156

window that receives a particular scan. In practice this is not a constraint because the

2D peak picking algorithm is so fast that it does not affect the overall timings by a

significant amount. If this were to be an issue then the stream processing could be set

up in such a way as to receive the individual scans, process them and emit a second

data stream consisting of detected 2D peaks. This second stream would then be

consumed in thirty second windows as described in this section. Processing the data

in time-bounded windows represents a change in the partitioning strategy discussed

in Chapter 6. Instead of partitioning vertically and providing all the scans in a narrow

band of mz, the windowed streaming approach partitions the data horizontally in

small bands of retention time (scans) and includes the complete mz range of the

scans. The implications and mechanics of this are discussed in more detail in the

following section.

The Spark code required similar changes, namely the interface to read from the Kafka

stream, the data types from key-value pairs to tuples and the partitioned window

logic. In version 1.6 of Apache Spark, the streaming architecture is quite different to

Flink’s. Spark processes streams in “micro-batches”; each window of data needs to

be complete before processing will start, this means that the map code cannot start

processing the scan data row by row until a full thirty seconds of scans

(approximately 150 records of data to process) are available. The Spark streaming

code works differently to the Flink code in that the reduce step is actually carried by a

flatmap function instead of a window function. This is because instead of taking in a

partition of a number of rows and outputting a partition of a different number of rows,

the Spark process takes in a key-value pair and outputs a key-value pair. In this

instance, the key for input and output is the window identifier, the value for the input is

an iterable type containing the 2D features, and the value for the output is an iterable

type containing the 3D features.

7.3.2 BATCH PARTITIONS VS STREAMING WINDOWS

As noted above the move from a batch process to processing the data in a streaming

fashion allowed a change in partitioning strategy. The need for partitioning still exists

because it is the partitions that allow the process to run in parallel with each partition

157

of data being processed independently. For the batch process, the partitions were

defined along the mz dimension, each partition had to be above a minimum size to

allow a complete isotopic envelope to fit inside one half of the partition. Then

overlapping partitions were used to avoid counting incomplete peaks or envelopes

occurring near to a boundary.

Overlapping time windows were chosen as the optimum solution for stream

processing during this research. As noted, previous research shows that a window of

thirty seconds is sufficient to reliably find 3D peaks in the dataset [76], and an overlap

of one second was used to create the parallelism. Features that do not entirely fit

inside the time window, that is they start before the first scan in the window or are not

complete when the last scan in the window is reached need to be identified. Figure 29

shows an example of this, the arrowed line in the figure represents a 3D feature and

the numbered bars represent sliding data processing windows. The 3D feature fits

entirely into windows one, two and three but only partially into windows four and five.

In this case it will be discarded from windows four and five. Note that in the 3d peak

batch processing an overlap strategy was used; that is, processing windows that

were double the minimum size and overlap the previous and following windows by

half. Doing so in this case would result in sixty-second windows that would potentially

take an inordinate time to complete. It is faster to use the thirty-second minimum size

windows and to exploit the resources of a larger cluster.

158

FIGURE 29 SLIDING PROCESSING WINDOWS AND A 3D FEATURE

A process similar to that used to find the peaks that occurred at the boundaries of

partitions in the batch process (Chapter 6, Section 6.4.8) is used for the stream

process, the rule being that features must start and complete with intensity levels at

zero. Note that the same data is processed multiple times because of the overlapping

windows. This reprocessing adds extra time to the total time to process the data, but it

is possible because there is more time to complete the task than with the batch

processing method. As the stream processing method is working to detect features

while the mass spectrometer is in operation, there is a significant window of two to

four hours in which to complete the feature detection task. Once the mass

spectrometer finishes processing the cell sample, the stream processing method will

only need to complete the final few windows of data. Whereas, the batch processing

method must process the entire data set following the completion of the mass

spectrometer run.

Note that the change to using partitions based on retention time as opposed to mz

(which was used in the batch implementation) has solved some of the issues related

to deciding where to create the partition boundaries. In the batch implementation it

was necessary to tailor the partitions to a specific data file in order to reduce the

amount of processing skew and use the cluster resources efficiently. When using

retention time, the partition size of thirty seconds can be applied across the entire

data file to all files. This does still result in processing skew (this can be seen in Table

1
2

3
4

5

159

24 presented later in this chapter) as some scans contain many more 2D features

than others. However, this skew is mitigated by several factors:

• The amount of time available for processing while the mass spectrometer is in

operation

• The thirty second partitions with the highest number of 2D peaks were

processed in an acceptable time on the test cluster

7.3.2 DE-DUPLICATION

The overlapping window approach to stream processing naturally creates duplicate

results. Duplicates need to be handled by a separate de-duplication step once the

stream processing has completed. This de-duplication could be carried out in-stream,

but in fact the number of output peaks, including duplicates was less than a million for

even the largest of the test files. At this order of magnitude, a relational database, or

equivalent such as Apache Hive, can efficiently de-duplicate the output very rapidly

within several seconds. In a complete system where the protein identification part of

the process is also completed in-stream then this process would be even faster

because the step that identifies the proteins acts as another filter on the dataset

resulting in even fewer results to de-duplicate.

7.4 EXPERIMENTATION

7.4.1 OVERVIEW

In contrast to the experimentation in batch processing where various processing and

storage platforms were benchmarked, the stream processing experiments were only

concerned with the Spark and Flink processing engines. All the data was consumed

from a Kafka stream and written to files stored in HDFS. Separate tests were run on

the output files to investigate the effect of de-duplication, but this was a distinct step

outside of the timings given for stream-processing. The streaming benchmarks were

run as a continuous block over a short period of several weeks and no re-runs were

needed due to system or code changes. This process was possible as the work on

160

creating and validating the parallel algorithm had already been completed and it was

only necessary to engineer the streaming code for Spark and Flink and set up the

environment with Kafka before running the benchmarks on the existing Hadoop

environment. Most of the benchmark work for this chapter was completed using Flink;

the Spark code was validated to ensure that it worked and produced correct results.

However, as mentioned the release of a significant update to Spark during the final

stages of this research means that it is no longer relevant to benchmark the code

written using the previous release. Following version 2 of Spark the streaming

architecture is now very similar to the native stream architecture that Flink uses.

Given more time it would be far more beneficial to re-factor the Spark code to version

2.2 and benchmark this against Flink.

A reduced set of data files used for the batch-processing benchmarks was used for

the streaming experiments. The following four data files were tested 371.RAW,

PT2441S1FP1A1.RAW, 100312_EXP229_GFPIP_5.RAW and 561L1AIL00.RAW

These four were chosen to be representative of the range of types of files produced

by the Lamond Laboratory in the University of Dundee. The complete set of data

benchmarked in the previous chapter included eight files forming a full set of

experimental results, these all had a very similar distribution of features and produced

very similar timings in the batch-mode benchmarks. Therefore, only one of these files

was used in the streaming benchmarks detailed in this chapter.

The same methodology for collecting timings for the batch-mode benchmarks was

used for the streaming-mode. That is, each file was run through the system three

times. No significant outliers were recorded during this process, and the complete set

of data is available online from the GitHub repository for this research. The results are

reported as the minimum, maximum and average times taken to process each

window of data. These timings indicate how long it will take to complete the feature

detection process after the mass spectrometer has finished processing a cell sample.

The distribution of the number of 2D peaks detected in each scan is also detailed as

this is the primary driver behind the amount of time each window of data takes to

process. The more 2D peaks exist, the more time is required to iterate through them

to detect any 3D peaks and isotopic envelopes.

161

The data window processing times and the distribution of the 2D peaks can then be

used to estimate the required number of processing slots needed on the cluster to

ensure the back pressure is kept to a minimum and the process completes as soon

as possible after the mass spectrometer run completes. Post-processing steps such

as de-duplication and writing the finished files to a central database are not included

as these are trivial compared with the data processing steps.

7.4.2 VALIDATION

Validation of the output from the streaming benchmarks was an essential step in this

research. As there are few examples of feature detection in a streaming fashion and

little evidence that it is a credible way to process mass spectrometer data it was

critical to show that the results matched those from the single-threaded and parallel

batch processes. The results were written to text files stored in HDFS during the

benchmarks, and these were then loaded into a relational database where the

de-duplication step was tested and timed. Using SQL queries the de-duplicated

results were compared to the output from the batch process described in chapter 4.

The results were found to be an exact match with those from the batch process. This

is to be expected because the core algorithm is the same code as long as the batch

partition and stream window strategies are correct.

The fact that the detected 3D peaks are the same between batch and stream

processes is a strong validation that the streaming approach is valid for feature

detection, as the batch process output has already been validated against the output

from MaxQuant in Chapter 6.

162

7.5 RESULTS

The same cluster hardware was used for stream processing as was used to run the

benchmarks for the batch-mode processing, namely a three-node cluster with

Hadoop and Flink installed. Note that the Kafka instance was installed on an “edge

node”. The term edge node is used to describe a compute node that is separate from

the cluster and attached via a network. An edge node does not participate in any of

the processing tasks assigned to the cluster. Edge nodes are commonly used as

interfaces to clusters and are often used for loading data and for making interactive

connections to the cluster. In this case, the edge node was physically located in the

same cabinet as the cluster itself and connected via an internal network. For this

research, the edge node was used so that the Kafka operations did not affect the

CPU utilisation of the processing cluster. Kafka was set up to read the SCMI files

generated from the test data and then stream it out at a rate of five scans per second

to simulate what would happen if a mass spectrometer were performing this task.

At the rate of five scans per second, each of the Flink stream processing windows

contained one hundred and fifty scans. The figures below (Figure 30, Figure 31,

Figure 32 and Figure 33) show the distribution of 2D peaks within the test files. These

show that in three of the test files, the 2D peaks are more densely concentrated in

certain scans. Note that for the manufactured test file 371.RAW (Figure 32) this is not

the case, and the 2D peaks are approximately evenly spread throughout the scans

compared to the other files.

FIGURE 30 COUNT OF 2D PEAKS BY SCAN FOR FILE 561AIL00

163

FIGURE 31 COUNT OF 2D PEAKS FOR FILE PT2441S1FP1A1

FIGURE 32 COUNT OF 2D PEAKS FOR FILE 371

FIGURE 33 COUNT OF 2D PEAKS FOR FILE 100312_EXP229_GFPIP_5

164

To test the performance of the streaming process, four different samples were taken

from each of the test files:

1) near to the beginning of the file where the early scans with a low retention time will

have few peaks

2) in the middle of the file where there are relatively more peaks

3) towards the end of the file where the scans with high retention times can have

more or fewer peaks dependent on the peak distribution in that particular file.

4) A sample taken around the scan which has the maximum number of peaks.

The results in Table 24 show the timings from the benchmark runs processing

individual thirty second windows using Kafka to serve up the stream data and Flink to

consume and process the one hundred and fifty scans in each of the windows that

have been sampled from the test files.

TABLE 24 TIMINGS FOR STREAM WINDOW PROCESSING WITH APACHE FLINK

File
Window Position
in File

2D Feature
Detection
(HH:MM:SS)

3D Feature
Detection
(HH:MM:SS)

Number
of 2D

Features

Number of
3D

Features
100312 Beginning 00:02.8 00:01.9 27770 120
100312 Middle 00:06.3 00:20.9 214732 4130
100312 End 00:02.5 00:02.6 28288 102
100312 Max 2D Features 00:10.8 00:31.1 611544 3010
371 Beginning 00:03.7 00:03.1 27233 414
371 Middle 00:03.7 00:03.9 27890 609
371 End 00:03.8 00:03.8 29136 695
371 Max 2D Features 00:03.8 00:04.0 29989 697
PT2441S1FP1A1 Beginning 00:03.0 00:03.0 17937 356
PT2441S1FP1A1 Middle 00:05.8 00:22.0 174930 3705
PT2441S1FP1A1 End 00:04.6 00:10.7 103045 2093
PT2441S1FP1A1 Max 2D Features 00:05.9 00:25.2 189572 5313
561AIL000 Beginning 00:05.9 00:04.4 49198 831
561AIL000 Middle 00:03.6 00:21.0 212579 3012
561AIL000 End 00:13.2 01:14.0 434971 6408
561AIL000 Max 2D Features 00:48.0 03:52.0 1035220 35265

165

The timings to note are the ones that take longer than thirty seconds to process the

3D peaks. If the cluster is configured with thirty processing slots, then tasks taking

longer than thirty seconds will cause back pressure on the system. The back pressure

occurs as stream processing windows queue up behind a slow running window

waiting for it to finish. Where there are scans with a high density of 2D peaks that

require more processing time, the overlapping nature of the processing windows

means that each of these high-density scans will appear in thirty consecutive

windows. This has the potential to cause a high degree of back pressure in the

system. As an example, the window taken around the scan with the highest density

for the file 561AIL00 required approximately four and half minutes of processing time

(adding the 2D and 3D processing times to get a total processing time). If each of the

thirty processing windows containing this scan required a similar amount of time, then

each window would cause nine subsequent processing windows to queue up in the

system. One way to mitigate this is to add more processing slots; the cluster used in

the benchmark tests here was configured with forty-two processing slots. The extra

parallelism allows the processing of subsequent windows to continue without waiting

for the slower ones. It should also be noted where the high-density scans occur in the

data. For the case of file 100312_EXP229_GFPIP_5.RAW the high-density scans are

near to the start of the file, see Figure 33. Therefore, windows will begin to queue up

for processing causing back presseure. Using a framework such as Kafka, which

manages the system back pressure automatically, the system could have time to

“catch up” on processing the queuing windows for this file once the high-density ones

are complete. Table 25 shows the minimum, maximum and average number of 2D

features for each file; Figure 34, Figure 35, Figure 36 and Figure 37 are histograms

showing the distribution of 2D feature counts across the scans for each of the files.

TABLE 25 MINIMUM, MAXIMUM AND AVERAGE NUMBER OF 2D FEATURES PER SCAN

File Minimum Number of
2D Features per scan

Maximum Number of
2D Features per scan

Average Number of
2D Features per scan

561AIL000 30 52350 2624
PT2441S1FP1A1 38 6178 1225
371 4 6196 199
100312 12 15936 609

166

FIGURE 34 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE PT2441S1FP1A1

FIGURE 35 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 100312_EXP229_GFPIP_5

FIGURE 36 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 371

167

FIGURE 37 HISTOGRAM OF COUNT OF 2D FEATURES FOR FILE 561AIL00

Note the x-axis scale change in Figure 33 from 6100 to 11100 compared to Figures 30,31 and 32

The Histograms above show that while each of the test files has a different

distribution for the count of 2D features, all the distributions are skewed towards the

lower values. This skew means that for the files included in the benchmark testing

most scans have counts of 2D features below the averages shown in Table 25. As

noted in Chapter 5, the files used in the benchmarks were chosen to be

representative of the range of experiments carried out in the Lamond Laboratory,

University of Dundee. Therefore, the maximum counts shown in Table 24 can be

classified as outliers and not common occurrences. Table 26 shows for each file, how

long the feature detection process continues running once Kafka finishes streaming

all the data. This measurement represents the time that a life scientist would have to

wait for the feature detection results after the mass spectrometer completes an

experiment. Due to the high number of 2D features present in the scans at the end of

file 561AIL00, back pressure on the system resulted in a completion time of

approximately twenty-eight seconds. However, this is a significant improvement over

the batch process, which took approximately fourteen minutes to complete using

Apache Flink. The number of 3D features detected match exactly with the results

from the batch process.

168

TABLE 26 STREAM PROCESSING RESULTS

File Time for processing to
complete following the
end of the data stream
(HH:MM:SS)

Number of 3D
Features
Detected

561AIL00 00:00:27.6 159201

PT2441S1FP1A1 00:00:08.2 123016

371 00:00:03.8 17777

100312 00:00:03.2 45613

169

7.6 DISCUSSION

7.6.1 POSSIBLE IMPROVEMENTS

As previously noted there is the possibility of making improvements to the general

efficiency of the parallel algorithm. These improvements would reduce the overall

execution time for the batch process, whereas for the stream process it would reduce

back pressure and enable the process to run on fewer nodes as each node could

finish its tasks faster and therefore be available to process other data windows.

To provide a complete proteomics data processing pipeline requires several more

steps to be included. These include:

• A process to "stitch together" 3D peaks that are larger than the stream

processing windows.

• Deduplication of the complete list of 3D peaks detected during the stream

process.

• Integrating the protein identification step into the stream process.

One possible scenario is that the data is processed in-stream using the

method described in this chapter and then the output is passed onto another

application such as MaxQuant for the protein identification step. Another

scenario is to pipeline the data to another cluster-based solution such as that

described by Lewis et al. [79], which is designed to run on a Hadoop cluster.

An ideal situation would be for the protein identification to be completed

in-stream as well, this would mean that the complete results could be made

available within a short time after the experiment ends. To adapt an algorithm

such as that developed by Lewis et al. would require a great deal validation

and research to ensure correctness. The protein identification step would need

to be adapted to work with a set of results from a number of the stream

processing windows as they complete.

• A console to monitor jobs and perform administrative tasks.

The primary concern of this research is the feature detection process.

However, it is acknowledged that a non-technical user of such a system would

170

need a graphical user interface (GUI). This interface is not within the scope of

this research but a system as described in this chapter would require such an

interface for life scientists to monitor their experiments and see the results as

they are processed in real-time. The interface should perform several

functions; it must include reports that make it simple to see when processing

has been completed and to download and view results without getting involved

with any technical details of the cluster or data management. It should also be

possible to start a job to re-process data with different parameters and to abort

processing for an experiment that isn’t producing the expected results.

• Data Validation

There is the possibility to include some data validation steps into the process.

These could be used to flag up experiments that should be aborted before

completion. It would also be possible to perform validation of replicates in the

streaming process; this would involve processing a cell as a reference sample

and then comparing the results from the replicate to the reference during the

stream processing. Validating replicates in this way could result in significant

time savings for the life science researchers as currently. This validation is

often a manual process performed once the proteins in each experiment have

been identified.

Overall the experiments detailed in this chapter using a three cluster show that

in-stream processing of mass spectrometer is possible and can be completed in near

real-time. The results have been validated against those obtained from MaxQuant

and the batch-process described in the previous chapter and found to be accurate.

171

8 DISCUSSION

8.1 CHAPTER SUMMARY

This Chapter presents a summary of the research conducted, the results presented

and discusses potential future research stemming from the findings.

Section 2 details the main research question and how it was answered

Section 3 presents the novel contributions to knowledge made during the research

Section 4 describes and compares the results from the batch and stream mode

experimentation.

Section 5 discusses the architectural design considerations for batch and real-time

feature detection using a horizontally scalable cluster.

Section 6 details potential future work

Section 7 concludes the thesis

172

8.2 RESEARCH QUESTION

This research addresses the following research question.

Can feature detection in proteomics data be performed in near real-time using a

parallel algorithm on a horizontally scalable compute cluster?”

The first step is to define the term “real-time”. Real-time in practice can mean many

things, from a sub-second response to fraudulent activity in a banking transaction

scenario at one end of the spectrum to processing multi-second windows of data in a

streaming fashion where response times are not so critical. The processing of mass

spectrometer data fits into the latter example. Real-time here meaning that the results

of experiments are available to the life scientist with a perceivable delay measured in

seconds or even several minutes.

The results given in Chapter 6 show that when using a batch mode of processing and

the parallel algorithm developed as part of this research, the aim of reaching a

benchmark time for feature detection of less than five percent of the time taken by

MaxQuant is sometimes possible but not in all cases. The experiments used a feature

detection algorithm written in Java, designed to run in parallel on a cluster in a

shared-nothing environment. The algorithm was benchmarked using several different

processing frameworks in conjunction with several different distributed storage layers.

Some of the larger, more complex files took longer than required by the benchmark

and the degree of parallelism possible was constrained by the nature of the features

that need to be detected in the data. This constraint limits the number of tasks that

can be employed in the 3D peak detection part of the feature-detection process and

therefore restricts the speed-up possible from using larger clusters. This constraint

means that just adding more nodes to a cluster and increasing the level of parallelism

does not speed up the process beyond a certain point.

During the research, it was also shown that intra-file processing of mass

spectrometer data is possible. Intra-file processing splits the data file into pieces and

processes each part in parallel, as opposed to processing a complete file on each

node in a cluster. This knowledge led to the development of a streaming processing

173

pipeline which used Apache Kafka to simulate a mass spectrometer streaming out

data as it is produced. Apache Flink consumed the stream and detected the features

using a sliding window processing technique and the same parallel algorithm used in

the batch processing benchmarks. The results from the streaming experiments show

that near real-time processing is possible using this streaming technique. This

discovery is significant because receiving results from proteomics experiments in a

matter of seconds instead of hours or days means that life scientists can iterate much

faster over a problem and act on insights immediately and therefore increase the

number of experiments and amount of research that they can carry out.

174

8.3 ORIGINAL CONTRIBUTIONS

As outlined in the introduction chapter this thesis makes several original contributions,

which are closely related to the research question addressed in the previous section.

It is expected that these contributions will have a positive impact on the proteomics

research community by allowing faster access to results and by reducing the data

management burden.

1) A feature detection algorithm designed for use on a parallel cluster environment

has been implemented and tested using several processing platforms and data

storage layers. The algorithm is written in Java using a MapReduce-style where the

2D peak picking is carried out using a Map step and the 3D peak picking using a

Reduce step. The research and experimentation have highlighted the benefits and

constraints of using such an algorithm and indicated the speed improvement which is

possible. The complete source code, including variants designed to work with

Hadoop, Spark, Flink, Aster, HDFS, HBase and Cassandra is available on Github for

further research and development. The algorithm has also been successfully adapted

to execute in a streaming fashion using either Spark or Flink and a stream of data

which, for experimentation was simulated using Kafka.

2) This research also showed that intra-file processing of mass spectrometer data

can produce accurate results. This is vital if stream processing is to become

mainstream. Intra-file processing contrasts with other research into the parallel

processing of mass spectrometer data which propose processing a complete file on

each node of a cluster to achieve parallelism.

3) A new file format, specifically intended for parallel processing, has been designed

and tested. The format (called SCMI abbreviated from Scan, Mass and Intensity) is

row-based containing one mass spectrometer scan per row and is a limited subset of

the metadata provided in the complete mzML or RAW file. Only the data required for

feature-detection and the later protein identification step are included and stored as

tab-separated values. The experiments carried out show that the new format is

emminently suitable for parallel processing and is ideal for distribution around the

nodes of a compute cluster. As well as the text-based format used in this research,

175

other formats were investigated. During this investigation, the binary Avro format was

also found to be a suitable candidate for the SCMI files and provided a data

compression advantage over plain text. Note that the metadata included in the mzML

file that is not included in the SCMI format is still required and a different mechanism

should be used to store and retrieve that data. The metadata does not require

processing and can be stored in a database where it can be referenced alongside the

results from the feature detection process.

4) Investigating the use of a central processing cluster, whether in-house or

cloud-based, has shown that it can significantly reduce the data management

overhead and manual steps that proteomics researchers are involved in when using a

PC-based architecture. The automation of data management tasks reduces delays

and the chance of errors and allows life scientists to spend more time on their

research. A central processing cluster and the introduction of technologies used in an

internet of things architecture brings many other benefits including scalability, better

governance, simplifying backup and restore activities and security.

176

8.4 BATCH VS STREAMING RESULTS

Chapter 6 details the implementation of the feature detection algorithm and its use in

batch-mode on a parallel cluster. The results of the benchmarks from the systems

tested show that a substantial speed-up in processing times over a PC-based

process is possible. Some notable discoveries are listed below:

Of all the systems used in this research Apache Flink was the fastest with Apache

Spark a close second. It is possible that this order could change if the newest

distribution of Spark had been used. However, this was not tested due to version 2.2

of Spark being made available in the summer of 2017, which was too late to be

included in this research.

The Aster system requires more nodes to reach the same level of performance as the

Hadoop system because the degree of parallelism is fixed at six virtual workers per

Aster node, whereas on Hadoop this is configurable using YARN. Given the same

degree of parallelism then the Aster system was faster than Flink for the larger, more

complex files.

Using HDFS as the storage layer was faster than either Cassandra or HBase. The

feature detection algorithm reads the entire data set record by record in a sequential

manner without requiring any random access. More complex data storage layers, with

higher processing overheads, such as Cassandra and HBase were not needed. For a

sequential full file scan, the distributed file structure of HDFS was all that was needed

to serve the data up to the processing frameworks. If random access to the data

becomes a requirement in the future, then data stores such as Cassandra and HBase

will need further investigation.

The timings of individual reduce tasks show that there is still a significant amount of

processing skew taking place in the cluster. For example, when processing file

561L1AIL00.RAW, the fastest reduce tasks completed in approximately 30 seconds

whereas the slowest took around 12 mins. When distributing data on a cluster for

processing, the usual method is to ensure that each node receives an equal amount

of data. A skewed distribution of data around the nodes of a cluster means that some

177

nodes will have to do more work than others when performing simple operations such

as aggregation. However, in a highly complex task such as feature detection in

proteomics data, the skew can occur in the amount of processing required for equal

size sets of data. Mass spectrometer data consists of a significant amount of noise

with relatively few features. As these features (peaks) are not distributed evenly,

some sections of data will be processed very quickly as there is no work for the

algorithm to do. In contrast, sections of data that contain many peaks will be

processed more slowly as the algorithm must iterate over the section several times

while detecting the peaks. To produce an optimum solution for batch-processing,

further work is required to sample the 2D feature output before it is distributed for 3D

feature detection.

Chapter 7 describes the research into adapting the algorithm developed for use in a

batch-mode so that it can process data in a streaming fashion. A system was

designed using Apache Kafka to simulate the mass spectrometer streaming its

results out in real-time as it produces data. In practice, this would require

collaboration with the mass spectrometer manufacturer. However, some work has

already been done in this area with Thermo Scientific using an API provided to

Graumann et al. [112].

The major change required for stream processing was to implement time-based

window processing to replace the map and reduce steps of the batch-mode process.

The individual mass spectrometer scans are still processed in the same way as in the

map tasks to produce 2D peaks. However, the reduce tasks are replaced with

overlapping windows that collects thirty seconds of scans at a time (approximately

one hundred and fifty scans). To avoid missing features that occur at window

boundaries the thirty-second windows overlap, with a new window being created

every second. This overlap means that data is processed multiple times and

necessitates a de-duplication step on completion. De-duplication is required as many

of the 3D peaks will be detected in multiple windows. Landing the results of the

stream processing into a database means that the final de-duplication step is fast and

straightforward.

178

The core of the feature detection algorithm is unchanged between the batch and

stream mode processing, the implementation of the 3D peak detection is different in

that during the batch process, a reduce step takes a partition of 2D peaks falling in a

narrow partition of mass values for all retention times. This partitioning strategy also

requires an overlap of data to handle peaks that occur at the boundaries of the

partition. Whereas, the stream processing takes a limited band of thirty seconds of

retention times for the complete scan containing all mass values in the band. Of the

two approaches, the stream processing window method is much more straightforward

and does not require any pre-calculation or sampling of the data to produce the

window. For the batch-mode processing, the distribution of data and the definition of

the boundaries of the partition is complicated, requiring either manual pre-calculation

or in-process sampling of the output from the 2D map tasks to produce optimum

partitions.

The stream processing method also provides a better chance of achieving near

real-time processing given that a cluster can be made large enough to process the

data without back pressure. Back pressure occurs when the compute nodes cannot

process the incoming data quickly enough, and the data from the stream builds up in

a queue waiting for processing. Finally, the stream processing method allows specific

checks and validations to be carried out during the processing rather than waiting

until the process has completed.

179

8.5 DESIGN OF AN IDEAL ENVIRONMENT

8.5.1 BATCH PROCESSING

The batch processing method of feature detection has been thoroughly tested using a

variety of software frameworks both for data processing and data storage. It is

possible to design a reference architecture that could be built into a production

environment running in a life sciences laboratory by considering the results and

experience gained during this research. The data processing challenges start once

the mass spectrometer has completed the experiment and a binary RAW output file

has been deposited on the PC attached to it. An automated process needs to be

running that can detect the completed file creation. This process will then need to

copy the RAW file on to the central cluster. An edge node should be used as a

gateway to the cluster to avoid security and other governance issues. An edge node

is a name given to a compute node that is connected to a cluster but does not have

any of the cluster software running on it and is not used as part of the processing

system. The RAW file can be transformed into a format designed for parallel

processing during the copy process using the method developed during this research

and described in Chapter 5 Section 5.3.4. Once copied to the cluster, the data file in

either plain text or Avro format, is then ready to be processed. A file containing the

information necessary to start the batch can be transferred to the cluster immediately

after the data file to act as a flag for the processing system to start and to show that

the data file transformation and the copy have completed successfully. A process

running on the cluster will scan for the flag files and start the batch process running.

Once the batch feature detection process completes, the output can be saved to the

cluster while a second process is initiated to complete other parts of the proteomics

processing pipeline (such as the previously mentioned protein lookup process,

implemented by the Hydra project). The final results are then stored on a network

share where the life sciences researcher can access them from a personal computer.

In this way, the process will be completely automated; the researcher need only start

the experiment at the mass spectrometer and then wait for notification that results are

available. If any reprocessing is required, perhaps due to different processing

parameters, then a simple web-based graphical user interface could be used to

restart jobs and also used to monitor the progress of the job on the cluster.

180

8.5.2 STREAM PROCESSING

Using a streaming approach to data processing results in a more straightforward

architecture than using a batch-mode of operation. Using the API provided by the

mass spectrometer manufacturer, a stream of data is created that flows out

continuously while the mass spectrometer is in operation. A streaming tool such as

Kafka can be used to make the stream available to consumers in a robust way. Kafka

logs streams as they are produced and provides the ability to reprocess data in the

event of failure; it also ensures that data is not lost in the event of back pressure on

the system. Back pressure occurs when the compute nodes can not process data

from the stream fast enough and a backlog of data to process builds up. Apache

Spark and Apache Flink have been benchmarked processing the stream data during

this research. Both of these tools provide a stream processing capability, in the

versions tested here they work in different ways with Spark employing a micro-batch

mode and Flink employing a true streaming capability where each piece of data is

handled as it arrives. As mentioned in Chapter 7, following the release of Spark

version 2.2 in the summer of 2017 Spark now works in a streaming fashion in the

same way as Flink. Because of this, most of the research and benchmarking has

been carried out using Flink. The code for processing the data using Spark has been

produced, but this is less relevant now since Spark streaming has undergone such a

significant change in underlying architecture.

In a large laboratory with many mass spectrometers operating simultaneously, using

Kafka and a processing framework such as Flink in conjunction with a large central

cluster would provide a robust, efficient environment. The stream processing would

be carried out in parallel on the cluster, with each window of data being processed

independently of the others. Also, a cloud-based architecture could be employed to

allow the environment to be scaled up or down in response to demand. The mass

spectrometers do produce a large volume of data which would need to be transferred

via an internet connection to a cloud system provider. However, the streaming model

means that the data volume would be four or five mass spectrometer scans per

second for each machine, which amounts to approximately 70Kb/sec of data. The

results from the streaming process need to be passed to a post-process. This

post-process will “stitch together” any 3D peaks which have occurred across more

181

than one processing window, in a process described in Chapter 7. Finally, the data

needs to be de-duplicated as the overlapping window style of processing means that

the same data is processed several times. Both of these steps could be run efficiently

in a relational database; this would require the streaming process to land the data into

a database and then trigger the post-processing once the stream is complete.

182

8.6 BENEFITS AND FUTURE WORK

The research described in this thesis and the cluster-based processing solution that

stems from it provide many benefits to the proteomics researcher. These include:

• Faster access to the results of experiments, the algorithm developed here is

capable of running in parallel on a cluster. Therefore, data can be processed in

near real-time and made available to the researchers within minutes of the

completion of an experiment.

• In-stream monitoring of experiments. Using the streaming method of

processing described in Chapter 7, the in-stream processing means that some

of the data validation and checks that are currently carried out manually after

the experiment has completed are possible while the mass spectrometer is

working. It is usual to run the experiment multiple times and create what is

known as biological and technical replicates of the data. Biological replicates

are created by processing the same cell sample multiple times, and technical

replicates are created by using precisely the same machine setup and

parameters on a different cell sample. The results from these replicates are

then compared to check that they are consistent. Stream processing would

allow this validation to be done in real-time while the mass spectrometer is

running.

• Less involvement in data management tasks. The central processing cluster

architecture using stream processing provides a mechanism that allows data

to flow from the mass spectrometer to the cluster for processing and then for

the results to be deposited in a database ready for analysis. This mechanism

frees the researcher from the tasks of copying files between systems and

running a processing pipeline manually.

• Access to a fully managed solution. The central processing cluster means that

standard IT services such as backup, restore, disaster recovery, security and

support can be provided in a far more comprehensive and straightforward

manner than using a PC-based solution.

• Robustness and efficiency. Many of the software and systems that currently

exist for processing proteomics data have been produced by life science

183

researcher who is also skilled in the use of computers and software

development. One of the aims of this research has been to contrast such a

system with one that has been designed by a computer scientist who has

proteomics domain knowledge.

• The quantity of data produced by a life science laboratory varies over time so

the processing power required also values. A central cloud-based cluster can

be expanded quickly and efficiently for as long as extra processing power is

needed and then scaled back during less busy periods.

The research into parallel feature detection leads to the possibility of further research:

• Parallel Feature detection provides only part of the solution for an architected

proteomics pipeline, and further work will be required to integrate other

research such as the protein detection work done by Lewis et al. for the Hydra

project [79]. Providing a complete pipeline could be a relatively simple task

using a batch-mode of execution; the results would only need to feed into the

Hydra system in the correct format. However, to enable this in a streaming

mode would be far more complex and require much more work in adapting and

validating an algorithm. The protein identification step would need to be able to

work with partial results sets from either single or groups of outputs from the

processing windows rather than the complete set of features as is the case

with the batch-mode output. However, this does offer the potential of an actual

real-time system where the proteins in a sample are fully identified within a

short time of the mass spectrometer completing the processing of a cell

sample.

• Updating the processing frameworks to the latest versions to take advantage

of new features. This is particularly relevant to Spark where the changes made

in version 2.2 released in the summer of 2017 mean that the stream

processing in Spark behaves similarly now to the stream processing in Flink.

• Further performance enhancements of the algorithm, either using Java or by

investigating the use of Scala on Spark or compiling C libraries.

• The method for creating the reduce task partitions in the batch-mode

processing described in Chapter 6 is manual and requires a new calculation

184

for every new file. This manual effort has been acceptable to benchmark the

algorithm during this research, however, in a production process, this manual

process would not be suitable. Work is required to produce code to sample the

map task output and produce the partitions for the reduce task automatically.

• An investigation into the use of containers for virtualisation and reproducibility.

Recent developments in software such as docker mentioned in chapter 5 allow

complex systems to be built in a way that enables efficient scalability. The

containers themselves are a lightweight virtual machine containing program

code and application libraries. A major benefit of this technology is that it

allows different versions of applications to run simultaneously. The

co-existence of different versions of software can be very important when

using open source frameworks as often there are frequent updates to test and

install. The use of containers means that code that has been proven to work in

older versions can continue to run using that version without needing to be

changed and validated on a newer version.

• Further research into different formats for the SCMI file could find an optimum

solution. During this research, the Avro file format produced promising results.

The Avro binary format results in smaller files than plain text, Avro also has the

benefit of being self-describing thanks to its in-built schema mechanism.

Another line of research could be to investigate the parquet file format which

like Avro is binary and self-describing. The developers of the Spark processing

framework have built Parquet read and write optimisation code into the Spark

Framework itself.

185

8.7 CONCLUSIONS

Proteomics is an essential area of research within life sciences and systems biology.

The large-scale study of proteins and their interactions is one of the major

components of producing personalised medicine, which is at the forefront of medical

care. Personalised medicine means that drugs and other treatments are designed

specifically for an individual patient's unique biology, significantly reducing adverse

reactions and side-effects and increasing the efficacy of treatment. The advance of

technology in mass spectrometers has led to an increase in the volume and

complexity of data that needs to be processed before insights can be gained from it.

The output data is, in many cases, currently processed using PC-based technology

and requires the proteomics researcher to be involved in the details of data

management. By employing a centralised processing cluster with connected

instruments streaming data in real-time, researchers will benefit from the removal of

much of the data management burden and faster access to results. A more robust

and efficient process internet of things style architecture will also bring benefits for the

life sciences laboratory.

The research has shown that it is possible to detect features in proteomics data using

a parallel cluster in less time than using a PC-based process. The previous section

details these benefits, along with some ideas for future related research. Proteomics

is still an evolving field of study, and as the technology used to process the cell,

samples improve the amount of data will only continue to grow, meaning that a

processing solution involving parallelism may become a necessity. The streaming

study carried out here also points to a future where samples are processed and

analysed in near real-time creating many new possibilities for proteomics research,

such as immediate diagnosis of conditions and personalised medicine.

186

REFERENCES

[1] S. Orchard, P. Binz, A.R. Jones, J.A. Vizcaino, E.W. Deutsch and H. Hermjakob,
“Preparing to work with Big Data in Protemomics - A report on the HUPO-PSI Spring
workshop,” Proteomics, vol. 13, no. 20, pp. 2931–2937, 2013.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput.
Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] J. Cocke, “The search for performance in scientific processors,” Commun. ACM, vol.
31, no. 3, pp. 250–253, 1988.

[4] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no.
8, pp. 103–111, 1990.

[5] J. Dean and S. Ghemawat, “MapReduce Simplified Data Processing on Large Clusters
2004.pdf,” in Sixth Symp. Oper. Syst. Des. Implement, 2004, pp. 137–149.

[6] S. Miller, “Collaborative Approaches Needed to Close the Big Data Skills Gap,” J.
Organ. Des., vol. 3, no. 1, pp. 26–30, 2014.

[7] V. Özdemir, E. S. Dove, U. K. Gürsoy, S. Şardaş, A. Yıldırım, S. G. Yılmaz, B. Ömer,
K. Güngör and A. S. Mete, “Personalized medicine beyond genomics: alternative
futures in big data—proteomics, environtome and the social proteome,” J. Neural
Transm., pp. 1–8, 2015.

[8] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence database and its

supplement TrEMBL in 2000,” Nucleic Acids Res., vol. 28, no. 1, pp. 45–48, 2000.

[9] L. E. Hood, G. S. Omenn, R. L. Moritz, R. Aebersold, K. R. Yamamoto, M. Amos, J.
Hunter-Cevera and L. Locascio, “New and improved proteomics technologies for
understanding complex biological systems: Addressing a grand challenge in the life
sciences,” Proteomics, vol. 12, no. 18, pp. 2773–2783, 2012.

[10] M. W. Senko, P. M. Remes, J. D. Canterbury, R. Mathur, Q. Song, M. Eliuk, C. Mullen,
L. Earley, M. Hardman, J. D. Blethrow, H. Bui, A. Specht, O. Lange, E. Denisov, A. A.
Makarov and S. Horning, “Novel Parallelized Quadrupole / Linear Ion Trap / Orbitrap
Tribrid Mass Spectrometer Improves Proteome Coverage and Peptide Identification
Rates,” Anal. Chem., vol. 85, no. 24, pp. 11710–11714, 2013.

[11] Q. Peter He, J. Wang, J. A. Mobley, J. Richman and W. E. Grizzle “Self-calibrated
warping for mass spectra alignment,” cancer inform., vol. 10, pp. 65–82, 2011.

[12] J. Cox and M. Mann, “MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein
quantification.,” Nat. Biotechnol., vol. 26, no. 12, pp. 1367–72, 2008.

[13] S. Nahnsen, C. Bielow, K. Reinert, and O. Kohlbacher, “Tools for label-free peptide
quantification.,” Mol. Cell. Proteomics, vol. 12, no. 3, pp. 549–556, 2013.

[14] A. D. Weston and L. Hood, “Systems Biology, Proteomics, and the Future of Health
Care : Toward Predictive, Preventative, and Personalized Medicine Introduction :
Paradigm Changes in Health Care,” J. Proteome Res., vol. 3, no. 2, pp. 179–96, 2004.

[15] L. Martens, M. Chambers, M. Sturm, D. Kessner, F. Levander, J. Shofstahl, W. H.
Tang, A. Römpp, S. Neumann, A. D. Pizarro, L. Montecchi-Palazzi, N. Tasman, M.

187

Coleman, F. Reisinger, P. Souda, H. Hermjakob, P. Binz and E. W. Deutsch, “mzML--a
community standard for mass spectrometry data.,” Mol. Cell. Proteomics, vol. 10, no.
1, p. R110.000133, Jan. 2011.

[16] N. Neuhauser, N. Nagaraj, P. McHardy, A. Zanivan, R. Scheltema, J. Cox and M.

Mann, “High Performance Computational Analysis of Large-scale Proteome Data Sets
to Assess Incremental Contribution to Coverage of the Human Genome,” J. Proteome
Res., vol. 12, no. 4, pp. 2858–2868, 2013.

[17] J. Von Neumann, “First Draft of a Report on the EDVAC,” IEEE Ann. Hist. Comput.,
vol. 15, no. 1, 1993.

[18] J. Backus, “Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs,” Commun. ACM, vol. 21, no. 8, pp. 613–641, Aug.
1978.

[19] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,
no. 8, pp. 33–35, 1965.

[20] L. J. Flynn, “Intel halts development of 2 new microprocessors,” New York Times, vol.
8, 2004.

[21] M. J. Quinn, Parallel Computing (2Nd Ed.): Theory and Practice. New York, NY, USA:
McGraw-Hill, Inc., p 6, 1994.

[22] W. J. Bouknight, A. Stewart, D. Denenberg, D. E. McIntyre, J. M. Randall, A. H.
Sameh, D. Slotnick, “The illiac iv system,” in IEEE, 1972, vol. 60, no. 4, pp. 369–388.

[23] J. S. Dietrich, “Cosmic Cubism,” Eng. Sci., vol. 47, no. 4, pp. 17–20, 1984.

[24] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Trans.
Comput., vol. C-21, no. 9, pp. 948–960, Sep. 1972.

[25] M. J. Flynn, “Very high-speed computing systems,” in Proceedings of the IEEE, 1966,
vol. 54, no. 12, pp. 1901–1909.

[26] D. J. Paterson, Computer Architecture: A Quantitative Approach. Waltham, MA:
Morgan Kaufmann, pp. 35-76, 1996.

[27] V. S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurr.
Pract. Exp., vol. 2, no. 4, pp. 315–339, Dec. 1990.

[28] D. Becker and T. Sterling, “BEOWULF: A parallel workstation for scientific
computation,” in International Conference on Parallel Processing, 1995, pp. 2–5.

[29] K. Hokamp, D. C. Shields, K. H. Wolfe, and D. R. Caffrey, “Wrapping up BLAST and
other applications for use on Unix clusters,” Bioinformatics, vol. 19, no. 3, pp. 441–442,
Feb. 2003.

[30] B. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky, “SETI @ HOME
— Massively distributed computing for SETI,” Sci. Program., no. 1, pp. 78–83, 2001.

[31] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer
conference on - AFIPS ’67 (Spring), 1967, pp. 483–485.

[32] J. L. Gustafson, “Reevaluating Amdahl’s law,” in Communications of the ACM, 1988,
vol. 31, no. 5, pp. 532–533.

188

[33] A. Kalyanaraman, W. Cannon, B. Latt, and D. Baxter, “MapReduce implementation of
a hybrid spectral library-database search method for large-scale peptide identification,”
Bioinformatics, vol. 27, no. 21, pp. 3072–3073, 2011.

[34] E. Brewer, “CAP twelve years later: How the ‘rules’ have changed,” Computer (Long.
Beach. Calif)., vol. 45, no. 2, pp. 23–29, 2012.

[35] R. Lämmel, “Google’s MapReduce programming model — Revisited,” Sci. Comput.
Program., vol. 70, no. 1, pp. 1–30, Jan. 2008.

[36] D. Srivastava and X. Dong, “Big data integration,” Int. Conf. Data Eng. (ICDE), 2013
IEEE 29th, pp. 1245–1248, 2013.

[37] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin,
“Improving MapReduce performance through data placement in heterogeneous
Hadoop clusters,” Parallel Distrib. Process. Work. Phd Forum (IPDPSW), 2010 IEEE
Int. Symp., vol. 9, pp. 29–42, 2010.

[38] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview of business intelligence
technology,” in Communications of the ACM, 2011, vol. 54, no. 8, pp. 88–98.

[39] R. P. Weicker, “An overview of common benchmarks,” Computer (Long. Beach. Calif).,
vol. 23, no. 12, pp. 65–75, Dec. 1990.

[40] M. Poess, B. Smith, L. Kollar, and P. Larson, “TPC-DS, taking decision support
benchmarking to the next level,” in SIGMOD’02, 2002, pp. 582–587.

[41] M. Poess, R. Nambiar, and D. Walrath, “Why you should run TPC-DS: a workload
analysis,” in VLDB 2007, 2007, pp. 1138–1149.

[42] TPC, “TPC-HS Specification,” http://www.tpc.org/tpcx-hs (2014), 2014. [Online].
Available: http://www.tpc.org/tpcx-hs/.(last accessed 08/02/2018)

[43] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl, “Benchmarking Big Data
Systems and the BigData Top100 List,” Big Data, vol. 1, no. 3, pp. 60–64, Mar. 2013.

[44] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, S. Fineberg, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan and S.
Weeratunga, “THE NAS PARALLEL BENCHMARKS,” Int. J. High Perform. Comput.
Appl., vol. 5, no. 3, pp. 63–73, 1991.

[45] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,” in 2009 IEEE International
Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

[46] N. Raghunath, “Towards an Industry Standard for Big Data Systems,” in Advancing
Big Data Benchmarks, vol. 8585, T. Rabl, N. Raghunath, M. Poess, M. Bhandarkar,
H.-A. Jacobsen, and C. Baru, Eds. Cham: Springer International Publishing, 2014, pp.
193–201.

[47] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl, “Setting the direction for
big data benchmark standards,” in Workshop on Big Data Benchmarking, 2011, pp. 1–
13.

[48] D. Laney, D. Management, and C. D. Volume, “Controlling Data Volume, Velocity and
Variety,” META Gr. Res. Note 6, no. February 2001, 2001.

189

[49] Z. Ren, W. Shi, and J. Wan, “Towards Realistic Benchmarking for Cloud File Systems:
Early Experiences,” in IEEE International Symposium on Workload Characterization,
2014.

[50] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte and H. Jacobsen,
“Bigbench: Towards an industry standard benchmark for big data analytics,” in
SIGMOD’13, 2013, pp. 1197–1208.

[51] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with YCSB,” in Proceedings of the 1st ACM symposium on
Cloud computing - SoCC ’10, 2010, pp. 143–154.

[52] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs and B.
Rinaldi, “YCSB ++ : Benchmarking and Performance Debugging Advanced Features in
Scalable Table Stores,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011.

[53] O. O’Malley and A. C. Murthy, “Winning a 60 Second Dash with a Yellow Elephant
Hadoop implementation,” in Proceedings of sort benchmark, 2009, pp. 1–9.

[54] J. Gray, “The cost of messages,” Proc. seventh Annu. ACM Symp. Princ. Distrib.
Comput., pp. 1–7, 1988.

[55] G. D. Bader, A. Heilbut, B. Andrews, M. Tyers, T. Hughes, and C. Boone, “Functional
genomics and proteomics: charting a multidimensional map of the yeast cell,” Trends
Cell Biol., vol. 13, no. 7, pp. 344–356, Jul. 2003.

[56] W. C. S. Cho, “Proteomics Technologies and Challenges From Genomics to
Proteomics,” Genomics. Proteomics Bioinformatics, vol. 5, no. 2, pp. 77–85, 2007.

[57] S. D. Patterson and R. Aebersold, “Proteomics: the first decade and beyond.,” Nat.
Genet., vol. 33 Suppl, no. 3, pp. 311–323, Mar. 2003.

[58] S. T. Kosak and M. Groudine, “Gene order and dynamic domains.,” Science, vol. 306,
no. 5696, pp. 644–7, Oct. 2004.

[59] V. Dhingra, M. Gupta, T. Andacht, and Z. F. Fu, “New frontiers in proteomics research:
a perspective.,” Int. J. Pharm., vol. 299, no. 1–2, pp. 1–18, Aug. 2005.

[60] P. Legrain, R. Aebersold, A. Archakov, A. Bairoch, K. Bala, L. Beretta, J. Bergeron, C.
Borchers, G. Corthals, C. Costello, E. Deutsch, B. Domon, W. Hancock, F. He, D.
Hochstrasser, G. Salekdeh, S. Sechi, M. Snyder, S. Srivastava, M. Uhle, C. Wu, T.
Yamamoto and Y. Paik, “The Human Proteome Project : Current State and Future
Direction,” Mol. Cell. Proteomics, vol. 10, pp. 1–5, 2011.

[61] P. Mallick and B. Kuster, “perspective Proteomics : a pragmatic perspective,” Nat.
Biotechnol., vol. 28, no. 7, pp. 695–709, 2010.

[62] B. Futcher, G. I. Latter, P. Monardo, C. S. Mclaughlin, I. Garrels, and C. S. M. C.
Laughlin, “A Sampling of the Yeast Proteome A Sampling of the Yeast Proteome,” Mol.
Cell. Proteomics, vol. 19, no. 11, pp. 7357–7368, 1999.

[63] J. J. Thomson, “Cathode Rays,” Philos. Mag., vol. 44, no. 269, pp. 25–29, Feb. 1897.

[64] G. Squires, “Francis Aston and the mass spectrograph Early life,” Dalt. Trans., no. 23,
pp. 3893–3899, 1998.

[65] A. F. M. Altelaar, J. Munoz, and A. J. R. Heck, “Next-generation proteomics : towards

190

an integrative view of proteome dynamics,” Nat. Rev. Genet., vol. 14, no. 1, pp. 35–48,
2012.

[66] R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422,
no. March, pp. 198–207, 2003.

[67] J. B. Fenn, M. Mann, C. K. A. I. Meng, S. F. Wong, and C. M. Whitehouse,
“Electrospray ionization for mass spectrometry of large biomolecules,” Science (80-.).,
vol. 246, no. 6, pp. 64–71, 1989.

[68] A. Michalski, E. Damoc, J. Hauschild, O. Lange, A. Wieghaus, A. Makarov, N. Nagaraj,
J. Cox, M. Mann and S. Horning, “Mass Spectrometry-based Proteomics Using Q
Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer,”
Mol. Cell. Proteomics, vol. 10, pp. 1–12, 2011.

[69] S.-E. Ong and M. Mann, “A practical recipe for stable isotope labeling by amino acids
in cell culture (SILAC).,” Nat. Protoc., vol. 1, no. 6, pp. 2650–2660, Jan. 2006.

[70] J. Rappsilber and M. Mann, “What does it mean to identify a protein in proteomics?,”
Trends Biochem. Sci., vol. 27, no. 2, pp. 74–78, Feb. 2002.

[71] C.-H. W. Chen, “Review of a current role of mass spectrometry for proteome
research.,” Anal. Chim. Acta, vol. 624, no. 1, pp. 16–36, Aug. 2008.

[72] M. Katajamaa and M. Orešič, “Data processing for mass spectrometry-based
metabolomics,” J. Chromatogr. A, vol. 1158, no. 1–2, pp. 318–328, 2007.

[73] J. Dudley and A. Butte, “A quick guide for developing effective bioinformatics
programming skills,” PLoS Comput. Biol., vol. 5, no. 12, pp. 1–7, 2009.

[74] A. Chawade, M. Sandin, J. Teleman, J. Malmstrom, and F. Levander, “Data
processing has major impact on the outcome of quantitative label-free LC-MS
analysis,” J. Proteome Res., vol. 14, no. 2, pp. 676–687, 2015.

[75] L. Martens, A. I. Nesvizhskii, H. Hermjakob, M. Adamski, G. S. Omenn, J.
Vandekerckhove and K. Gevaert, “Do we want our data raw? Including binary mass
spectrometry data in public proteomics data repositories,” Proteomics, vol. 5, no. 13,
pp. 3501–3505, 2005.

[76] W. X. Schulze and B. Usadel, “Quantitation in Mass Spectrometry based Proteomics,”
Annu. Rev. Plant Biol., vol. 61, pp. 491–516, 2010.

[77] M. Sandin, J. Teleman, J. Malmström, and F. Levander, “Data processing methods
and quality control strategies for label-free LC-MS protein quantification.,” Biochim.
Biophys. Acta, vol. 1844, no. 1 Pt A, pp. 29–41, Jan. 2014.

[78] R. Craig and R. C. Beavis, “TANDEM : matching proteins with tandem mass spectra,”
Bioinformatics, vol. 20, no. 9, pp. 1466–1467, 2004.

[79] S. Lewis, A. Csordas, S. Killcoyne, H. Hermjakob, M. R. Hoopmann, R. L. Moritz, E. W.
Deutsch and J. Boyle, “Hydra: a scalable proteomic search engine which utilizes the
Hadoop distributed computing framework,” BMC Bioinformatics, vol. 13, no. 1, p. 324,
2012.

[80] A. Csordas, D. Ovelleiro, R. Wang, J. M. Foster, D. Ríos, J. A. Vizcaíno and H.
Hermjakob, “PRIDE: quality control in a proteomics data repository.,” Database
(Oxford)., vol. 2012, p. bas004, Jan. 2012.

191

[81] K. R. Coombes, S. Tsavachidis, J. S. Morris, K. A. Baggerly, M. C. Hung, and H. M.
Kuerer, “Improved peak detection and quantification of mass spectrometry data
acquired from surface-enhanced laser desorption and ionization by denoising spectra
with the undecimated discrete wavelet transform,” Proteomics, vol. 5, no. 16, pp.
4107–4117, 2005.

[82] E. Lange, C. Gröpl, K. Reinert, O. Kohlbacher, and A. Hildebrandt, “High-accuracy
peak picking of proteomics data using wavelet techniques.,” Pac. Symp. Biocomput.,
vol. 254, pp. 243–254, 2006.

[83] O. Kohlbacher, K. Reinert, C. Gropl, E. Lange, N. Pfeifer, O. Schulz-trieglaff and M.
Sturm, “TOPP — the OpenMS proteomics pipeline,” Bioinformatics, vol. 23, pp. 191–
197, 2006.

[84] M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang, D. May, J. Eng,
R. Fang, C. Lin, J. Chen, D. Goodlett, J. Whiteaker, A. Paulovich and M. McIntosh, “A
suite of algorithms for the comprehensive analysis of complex protein mixtures using
high-resolution LC-MS,” Bioinformatics, vol. 22, no. 15, pp. 1902–1909, 2006.

[85] F.F. Gonzalez-Galarza, C. Lawless, S.J. Hubbard, J. Fan, C. Bessant, H. Hermjakob,
and A.R. Jones, “A critical appraisal of techniques, software packages, and standards
for quantitative proteomic analysis.,” OMICS, vol. 16, no. 9, pp. 431–442, Sep. 2012.

[86] R. Kouzes, G. Anderson, and S. Elbert, “The changing paradigm of data-intensive
computing,” Computer, pp. 26–34, 2009.

[87] Y. Mohammed, E. Mostovenko, A. Henneman, R. J. Marissen, A. M. Deelder, and M.
Plamblad, “Cloud Parallel Processing of Tandem Mass Spectrometry-based
Proteomics Data,” J. Proteome …, vol. 11, no. 8, pp. 5101–5108, 2012.

[88] P. Kasson, “Computational biology in the cloud: methods and new insights from
computing at scale,” in Pacicfic Symposium on Biocomputing., 2013, pp. 451–453.

[89] D. Trudgian and H. Mirzaei, “Cloud CPFP: a shotgun proteomics data analysis pipeline
using cloud and high performance computing,” J. Proteome Res., vol. 11, no. 10, pp.
6282–6290, 2012.

[90] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, “Cloud computing
paradigms for pleasingly parallel biomedical applications,” Concurr. Comput. Pract.
Exp., vol. 23, pp. 2338–2354, 2011.

[91] S. Bressan, A. Cuzzocrea, P. Karras, X. Lu, and S. H. Nobari, “An effective and
efficient parallel approach for random graphs generation over GPUs,” J. Parallel
Distrib. Comput., vol. 73, no. 3, pp. 303–316, 2012.

[92] R. Taylor, “An overview of the Hadoop/MapReduce/HBase framework and its current
applications in bioinformatics,” in 11th Annual Bioinformatics Open Source
Conference, 2010, pp. 1–6.

[93] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combining mapreduce and
virtualization on distributed resources for bioinformatics applications,” in Fourth IEEE
International Conference on eScience, 2008, pp. 222–229.

[94] M. Koehler, Y. Kaniovskyi, S. Benkner, V. Egelhofer, and W. Weckworth, “A cloud
framework for high throughput biological data processing,” in The International
Symposium on Grids and Clouds and the Open Grid Forum, 2011.

192

[95] K. Verheggen, H. Barsnes, and L. Martens, “Distributed computing and data storage in
proteomics : Many hands make light work, and a stronger memory,” Proteomics, vol.
14, pp. 367–377, 2014.

[96] D. T. Duncan, R. Craig, and A. J. Link, “Parallel tandem: a program for parallel
processing of tandem mass spectra using PVM or MPI and X!Tandem.,” J. Proteome
Res., vol. 4, no. 5, pp. 1842–7, 2005.

[97] L. Wang, W. Wang, H. Chi, and Y. Wu, “An efficient parallelization of phosphorylated
peptide and protein identification,” Rapid Commun. Mass Spectrom., vol. 24, pp.
1791–1798, 2010.

[98] C. Hillman, Y. Ahmad, M. Whitehorn, and A. Cobley, “Near Real-Time Processing of
Proteomics Data Using Hadoop,” Big Data, vol. 2, no. 1, pp. 44–49, 2014.

[99] S. Wandelt, A. Rheinländer, and M. Bux, “Data Management Challenges in Next
Generation Sequencing,” Datenbank Spektrum, vol. 12, pp. 161–171, 2012.

[100] V. A. Fusaro, P. Patil, E. Gafni, D. P. Wall, and P. J. Tonellato, “Biomedical cloud
computing with Amazon web services,” PLoS Comput. Biol., vol. 7, no. 8, pp. 1–6,
2011.

[101] W. Wu, H. Zhang, Z. Li, and Y. Mao, “Creating a Cloud-based Life Science Gateway,”
in Seventh IEEE International Conference on eScience, 2011, pp. 55–61.

[102] L. Hodgkinson, J. Rosa, and E. Brewer, “Parallel software architecture for
experimental workflows in computational biology on clouds,” in International
Conference on Parallel Processing and Applied Mathematics, 2012, pp. 281–291.

[103] A. O’Driscoll, J. Daugelaite, and R. D. Sleator, “‘Big data’, Hadoop and cloud
computing in genomics.,” J. Biomed. Inform., vol. 46, no. 5, pp. 774–81, Oct. 2013.

[104] Y. Mao, W. Wu, H. Zhang, and L. Luo, “GreenPipe: A Hadoop Based Workflow System
on Energy-efficient Clouds,” in IEEE 26th International Parallel and Distributed
Processing Symposium, 2012, pp. 2211–2219.

[105] H. A. Prahalad, A. Talukder, S. Pardeshi, S. Tamsekar, R. Hari Krishna, M. A.
Chandrashekar, B. Niket, and S. Gandham, “Phoenix: System for implementing private
and hybrid cloud for OMIC sciences applications,” in 2010 Seventh International
Conference on Wireless and Optical Communications Networks - (WOCN), 2010, pp.
1–5.

[106] W. Wruck, “Data management strategies for multinational large-scale systems biology
projects,” Brief. Bioinform., 2012.

[107] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E. Korpelainen, and K.
Heljanko, “Hadoop-BAM: directly manipulating next generation sequencing data in the
cloud.,” Bioinformatics, vol. 28, no. 6, pp. 876–7, Mar. 2012.

[108] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of
the National Institute of Standards and Technology,” 2011.

[109] B. D. Halligan, J. F. Geiger, A. K. Vallejos, A. S. Greene, and S. N. Twigger, “Low cost,
scalable proteomics data analysis using Amazon’s cloud computing services and open
source search algorithms.,” J. Proteome Res., vol. 8, no. 6, pp. 3148–3153, Jun. 2009.

[110] T. Muth, J. Peters, J. Blackburn, E. Rapp, and L. Martens, “ProteoCloud: a full-featured

193

open source proteomics cloud computing pipeline.,” J. Proteomics, vol. 88, pp. 104–8,
Aug. 2013.

[111] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network
architecture,” in SIGCOMM’08, 2008, pp. 63–74.

[112] J. Graumann, R. Scheltema, Y. Zhang, J. Cox, and M. Mann, “A framework for
intelligent data acquisition and real-time database searching for shotgun proteomics.,”
Mol. Cell. Proteomics, vol. 11, no. 3, p. M111.013185, Mar. 2012.

[113] C. Hillman, K. Petrie, A. Cobley, and M. Whitehorn, “Real-Time processing of
proteomics data. The internet of things and the connected laboratory,” in IEEE Big
Data, 2016.

[114] L. Gatto, K. D. Hansen, M. R. Hoopmann, H. Hermjakob, O. Kohlbacher, and A. Beyer,
“Testing and Validation of Computational Methods for Mass Spectrometry,” J.
Proteome Res., no. 15, pp. 809–814, 2016.

[115] M. Chambers, B. Maclean, R. Burke, D. Amide, D. Ruderman, S. Neumann, “A
cross-platform toolkit for mass spectrometry and proteomics,” Nat. Biotechnol., vol. 30,
no. 10, pp. 918–920, 2012.

[116] ECMA-404, “The JSON Data Interchange Format,” ECMA Int., vol. 1st Editio, no.
October, p. 8, 2013.

[117] H. Rost, T. Sachsenberg, S. Aiche, C. Bielow, H. Weisser, F. Aicheler, S. Andreotti, H.
Ehrlich, P. Gutenbrunner, E. Kenar, X. Liang, S. Nahnsen,L. Nilse, J. Pfeuffer, G.
Rosenberger, M. Rubrik,U. Schmitt, J.Veit, M.Walzer,D. Wojnar, W. Wolski, O.
Schilling, J. Choudhary, L. Malmstrom, R. Aebersold, K. Reinert, O. Kohlbacher,
“OpenMS: a flexible open-source software platform for mass spectrometry data
analysis,” Nat Meth, vol. 13, no. 9, pp. 741–748, 2016.

[118] H. L. Rost, U. Schmitt, R. Aebersold, and L. Malmström, “pyOpenMS: A Python-based
interface to the OpenMS mass-spectrometry algorithm library,” Proteomics, vol. 14, no.
1, pp. 74–77, 2014.

[119] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange,N.Pfeifer, O.
Schulz-Trieglaff, A, Zerck, K, Reinert, O. Kohlbach, “OpenMS - an open-source
software framework for mass spectrometry.,” BMC Bioinformatics, vol. 9, no. 1, p. 163,
2008.

[120] L. Gatto and A. Christoforou, “Using R and Bioconductor for proteomics data
analysis.,” Biochim. Biophys. Acta, vol. 1844, no. 1 Pt A, pp. 42–51, Jan. 2014.

[121] J. Teleman, A. Chawade, M. Sandin, F. Levander, and J. Malmstrom, “Dinosaur: A
Refined Open-Source Peptide MS Feature Detector,” J. Proteome Res., vol. 15, no. 7,
pp. 2143–2151, 2016.

[122] C. Hillman, “Investigation of the Extraction, Transformation and Loading of Mass
Spectrometer RAW files.,” University of Dundee, 2012.

[123] N. Kratzke, “Lightweight Virtualization Cluster How to Overcome Cloud Vendor
Lock-In,” J. Comput. Commun., vol. 2, no. 12, pp. 1–7, 2014.

[124] C. Boettiger, “An introduction to Docker for reproducible research,” ACM SIGOPS
Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, 2015.

194

[125] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

[126] P. Soni and N. S. Yadav, “Quantitative Analysis of Document Stored Databases,” Int.
J. Comput. Appl., vol. 118, no. 20, pp. 37–41, 2015.

[127] D. M. German, “A Study of the Contributors of PostgreSQL,” Proc. 2006 Int. Work. Min.
Softw. Repos., pp. 163–164, 2006.

[128] E. Friedman, P. Pawlowski, and J. Cieslewicz, “SQL/MapReduce: A Practical
Approach to Self-Describing, Polymorphic, and Parallelizable User-Defined
Functions,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1402–1413, 2009.

[129] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber, “Bigtable,” ACM Trans. Comput. Syst., vol. 26,
no. 2, pp. 1–26, 2008.

[130] O. Marcu, A. Costan, G. Antoniu, M. S. Perez. "Spark versus Flink: Understanding
Performance in Big Data Analytics Frameworks." Cluster 2016 - The IEEE 2016
International Conference on Cluster Computing, Sep 2016

[131] T. Ly, Y. Ahmad, A. Shlien, D. Soroka, A. Mills, M. J. Emanuele, M. R. Stratton and A.
I. Lamond, “A proteomic chronology of gene expression through the cell cycle in
human myeloid leukemia cells,” Elife, vol. 2014, no. 3, pp. 1–36, 2014.

[132] N. J. Gunther, “A New Interpretation of Amdahl’s Law and Geometric Scalability,”
Performance Dynamics Company eprint arXiv:cs/0210017, pp 1-19, 2002.

[133] D. Fenyö and R. C. Beavis, “Informatics and data management in proteomics.,” Trends
Biotechnol., vol. 20, no. 12, pp. S35–S38, 2002.

[134] Narwal, Abhikriti; Dhingra, Sunita. "A Systematic Review of Scheduling in Cloud
Computing Framework" International Journal of Advanced Studies in Computers,
Science and Engineering, Gothenburg Vol. 5, Iss. 7, pp 1-9, 2016

[135] A. Fallis, “MaxQuant paper supplement,” Nature, vol. 53, no. 9, pp. 1689–1699, 2013.

[136] M. R. Dale and C. Izurieta, “Impacts of design pattern decay on system quality,” Proc.
8th ACM/IEEE Int. Symp. Empir. Softw. Eng. Meas. - ESEM ’14, pp. 1–4, 2014.

[137] F. Long and Oracle, The CERT Oracle Secure Coding Standard for Java.
Addison-Wesley, 2012.

[138] H. Choi and A. I. Nesvizhskii, “False Discovery Rates and Related Statistical Concepts
in Mass Spectrometry-Based Proteomics,” J. Proteome Res., vol. 7, pp. 47–50, 2008.

[139] Thermo Scientific, http://planetorbitrap.com/q-exactive#tab:schematic, last accessed
12th February 2018.

[140] M. R.Head and M. Govindaraju "Parallel Processing of Large-Scale XMLBased
Application Documents on Multi-Core Architectures with PiXiMaL." in IEEE Fourth
International Conference on eScience, pp. 261–268, 2008.

[141] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J.
J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale

195

Woodford. "Spanner: Google’s Globally-Distributed Database". In Proceedings of the
10th USENIX conference on Operating Systems Design and Implementation
(OSDI’12). USENIX Association, Berkeley, CA, USA, 251-264, 2012.

[142] C. Zheng and L. Q. Zhou, "Principle Study and Usage of Hadoop Benchmark",
Advanced Materials Research, Vols. 926-930, pp. 1988-1992, 2014.

[143] A. O’Driscoll, V. Belogrudov, J. Carroll, K. Kropp, P. Walsh, P. Ghazal, R. D. Sleator
"HBLAST: Parallelised sequence similarity – A Hadoop MapReducable basic local
alignment search tool”, Journal of Biomedical Informatics, Vol. 54, pp 58-64, 2015.

[144] T. Jach, E. Magiera, W. Froelich, "Application of HADOOP to Store and Process Big
Data Gathered from an Urban Water Distribution System”, Procedia Engineering, Vol.
119, pp 1375-1380, 2015.

[145] K. Wiley, A. Connolly, S. Krughoff, J. Gardner, M. Balazinska, B. Howe, B,
"Astronomical Image Processing with Hadoop”, Astronomical Data Analysis Software
and Systems XX. ASP Conference Proceedings, Vol. 442, p.93, 2011.

[146] J. M. C. Loaiza, G. Giuliani and G. Fiameni, "Big-Data in Climate Change Models — A
Novel Approach with Hadoop MapReduce," 2017 International Conference on High
Performance Computing & Simulation (HPCS), Genoa, pp. 45-50, 2017

[147] C. Yang, Z. He, W. Weichuan, “Comparison of public peak detection algorithms for
MALDI mass spectrometry data analysis.” BMC Bioinformatics, Vol 10, issue 1, pp.
1471-2105, 2009

[148] Röst HL, Schmitt U, Aebersold R, Malmström L (2015) Fast and Efficient XML Data
Access for Next-Generation Mass Spectrometry. PLOS ONE 10(4): e0125108

[149] Compute Unified Device Architecture (CUDA) Programming Guide.
http://developer.nvidia.com/object/cuda.html: NVIDIA, 2007

[150] A. Munshi, "The OpenCL specification," 2009 IEEE Hot Chips 21 Symposium (HCS),
Stanford, CA, pp. 1-314. 2009

[151] R. Raina, A Madhavan, Anand, A. Y. Ng, "Large-scale Deep Unsupervised Learning
Using Graphics Processors”, Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, pp 873–880, 2009

[152] D-H Kim, “Evaluation Of The Performance Of GPU Global Memory Coalescing”,
Journal of Multidisciplinary Engineering Science and Technology (JMEST) Vol. 4 Issue
4, pp 7009-7013, April - 2017

[153] N. M. Amato and L. K. Dale, "Probabilistic roadmap methods are embarrassingly
parallel," Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), Detroit, MI, pp. 688-694 vol.1, 1999

[154] K. Xiao, F. Yu, H. Fang, B. Xue, Y. Liu, Z. Tian, “Accurate and Efficient Resolution
Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra.” Scientific
Reports 5 (2015), 2018

196

APPENDIX A – SYSTEMS USED IN THE RESEARCH

1 HADOOP

Hadoop consists of HDFS (Hadoop Distributed File System) and MapReduce.

HDFS is a distributed fault tolerant file system based on Google’s GFS (Google File

System). MapReduce, first proposed by engineers working for Google [5], is a

parallel processing framework used to distribute tasks across clusters of computers.
Hadoop is designed to run on clusters of commodity hardware and has built-in

features to cope with hardware failure. For example, by default all data is replicated

across three nodes which ensures data consistency even if two nodes fail. Several

commercial distributions of Hadoop exist but this research focused on the open

source implementation, available from the Apache Foundation.

Early Hadoop releases up to version number 2 had an architecture as described

above, namely the HDFS file system, and the MapReduce programming framework.

This environment runs on top of a system of slave nodes also called data nodes.

Each data node runs Java daemon processes called the task tracker and job tracker

that control data distribution and job execution. The master node (commonly called

the name node) coordinates the data nodes and communicates with the daemon

processes as data is loaded and accessed or as MapReduce jobs are run.

As data is loaded into HDFS, it is split into blocks and distributed across the data

nodes. The default block size is 64Mb, and the default replication factor is three,

meaning that all data is stored three times in the cluster. These values are

configurable, but for the purposes of this research, defaults were used except where

indicated. Figure 34 shows the basic setup of HDFS across the name and data nodes

of a cluster: the data blocks can be seen as numbered boxes with the three replicates

of each block distributed across the cluster.

197

FIGURE 38 DISTRIBUTION OF REPLICATED DATA BLOCKS IN HDFS

The main method for loading files and submitting jobs to the cluster is a command line

interface. A Java Application Programmers Interface (API) exists, which allows

front-end tools to be built on top of Hadoop to abstract the command line away from

end users. However, one objective of this research is to remove the need for users to

explicitly run processing jobs and as such none of these front-end tools are used in

this study. Being a file system HDFS is format-agnostic and allows data of any

internal structure to be loaded and stored.

The earlier versions of Hadoop were dependent solely on the MapReduce framework

for data processing. An eco-system has developed around the core Hadoop

components to allow other programming languages to be used to process data.

These include Hive, a SQL-like language developed by Facebook, and Pig, an

abstracted high-level query language. These tools are interfaces to the MapReduce

framework so when the abstracted language is used the code is converted into a

MapReduce job which is submitted to the cluster in the background. This removes the

complexity of writing MapReduce code in Java from the developer but can introduce a

198

time delay into the process. With the release of Hadoop version 2, Hadoop was

re-engineered to include the YARN (Yet Another Resource Negotiator) framework.

YARN consists of a resource manager and node managers which replace the job

tracker and task managers of version 1. An overview of the Hadoop cluster

architecture can be seen in Figure 35.

FIGURE 39 ARCHITECTURE OF A HADOOP CLUSTER

YARN is only concerned with resources such as CPU and memory and does not

specify how tasks should be completed. The result of this is that MapReduce has

become an application that can run on the YARN framework and Hadoop becomes a

more general purpose parallel platform that can run other parallel processing jobs.

For example, code written using older parallel frameworks such as MPI or BSP can

now be run on an Hadoop cluster. The earlier versions of Hadoop that did not include

the YARN framework are not used in practice now because they also lacked critical

components necessary to recover the system in the event of a name node failure.

Therefore, only version 2.4 of Hadoop is benchmarked here. Other changes were

introduced in the version two release such as enhanced security and a backup name

199

node, which mitigates the effect of having the name node as the single point of failure

in the system but none of these enhancements is benchmarked or used in the testing.

2 CASSANDRA

Apache Cassandra belongs to a class of cluster-based systems known as “NoSQL”.

The name stands for Not only SQL and refers to a class of databases that do rely on

the standard SQL language for querying and managing data. Cassandra stores data

in a table-like structure called a Column Family. The column family does contain rows

and columns, but individual rows do not need to include the same number of columns

as other rows in the same object. This column family structure means that a

Cassandra database can be used to store data that contains a different number of

attributes for each row. This capability contrasts with a relational database table

where each row of a table contains the same number of columns. NoSQL databases

commonly provide a query language for retrieving data that differs from the ANSI SQL

used by relational databases. In the case of Cassandra, querying data is

accomplished with the CQL language that is similar in structure and syntax to the

SQL language but with a limited number of operators.

Cassandra provides high availability and partition tolerance in the event of a node

and network failure. Blocks of data are written to nodes in the cluster using “eventual

consistency”. Eventual consistency means that as data is written to nodes, it can be

accessed before all the nodes report the successful update or write. This method can

lead to a situation where queries return different results for the same data, depending

on which node is queried. A level of tolerance for eventual consistency can be set in

the configuration files to mitigate this behaviour.

The architecture of Cassandra is described as a ring where all nodes in the cluster

are peers with no head or coordinator node, which makes Cassandra a very robust

and resilient option for data storage and processing as there is no single point of

failure. Data is distributed across the cluster either at random or by ordering the data

in a certain way according to a user-provided key for each row in a column family.

200

Cassandra clusters are considered scalable with high performance [126] and are

used in production environments at major organisations such as Netflix, CERN and

Twitter. The Hadoop MapReduce framework can be configured to retrieve data from

Cassandra column families, replacing HDFS as the means of data storage. The

configuration that is usually deployed is to install Cassandra on the Hadoop data

nodes. In this configuration, each Cassandra node will run a separate version of the

Hadoop task tracker daemon, which is an efficient configuration as it minimises

network traffic at the Map task level while utilising Cassandra’s high-performance

data store. See Figure 36 for how Cassandra fits into a Hadoop-based cluster. It is

only necessary to change the input and output interfaces to allow MapReduce code

to read from and write to Cassandra. Therefore, the actual feature detection algorithm

code is unchanged from that used in Hadoop with HDFS for data storage.

FIGURE 40 HADOOP ENVIRONMENT WITH CASSANDRA INSTALLED ON THE DATA

NODES

201

3 ASTER

Aster has been chosen as an example of a relational database. It is based on the

widely used open source Postgres database [127] and shares a common SQL syntax

with it. The Teradata Corporation acquired the technology in September 2011 and it

is still known widely as Aster or Asterdata. Several aspects of the Aster database

make it highly suitable for this research work. Firstly, it is an MPP system with an

architecture comprising of worker nodes that carry out the processing and store data

in a distributed fashion, plus a coordinator node. Conceptually the architecture is like

the Hadoop architecture. As the coordinator node receives queries from clients it

distributes the query out to the worker nodes which process the query where the data

is located. Secondly, Aster contains the patented SQL-MapReduce framework that

allows MapReduce code to execute in parallel using data stored in the relational

database [128].

This combination of access methods allows a programmer to use the relevant parts of

the SQL set-based language or Java procedural code as required. The Aster

MapReduce framework operates in a similar fashion to the Hadoop MapReduce

framework, with the major differences being in the input and output interfaces.

Whereas Hadoop reads in and writes out through the passing of key-value pairs,

Aster achieves these operations by reading data directly from relational tables and

ensuring that the output from any query is also in the form of a relational table. The

code written and tested for Hadoop can be compiled ready to run in the Aster

SQL-MapReduce framework with minimal changes.

As Aster is based on an MPP version of the database software Postgres, it stores

data in relational database tables. These tables can store data in standard formats

such as, integers, strings and decimals. The tables are also able to store data in a

Binary Large Object (BLOB) format; these BLOBs are stored as separate files outside

the main database tables but are still accessible via standard SQL statements and

the SQL-MR functions. To benchmark Aster, the mass spectrometer output was

converted from Thermo Scientific RAW format to the SCMI format described in

Section 5.3 of this chapter. The base64 strings holding the arrays of mass and

intensity data could then be processed in a schema on read fashion using the

202

MapReduce algorithm. Figure 37 shows a basic view of the Aster Architecture, the

queen node is the coordinator; it receives queries and directs them to the worker

nodes, which are equivalent to Hadoop data nodes. Each worker node contains a mix

of primary (P) and secondary (S) virtual workers. The virtual workers are a unit of

CPU, memory and disk space. The secondary workers provide a backup in the event

of failure, therefore by default all data is mirrored on an Aster system. Aster provides

separate loader nodes dedicated for data loading tasks and backup nodes for use in

the Backup and Recovery (BAR) process.

FIGURE 41 ASTER ARCHITECTURE

4 HBASE

HBase is part of the Apache Hadoop ecosystem and as such is usually found ready

configured on most Hadoop clusters as it is part of the base install. Figure 38 shows

the Hadoop cluster with HBase services and Zookeeper installed, Zookeeper is a

cluster coordination tool used by HBase for synchronisation and to provide failover

support. Google’s Big Table system [129] first proposed in 2006 was the inspiration

for developing HBase. It runs on top of Hadoop’s HDFS file system and provides a

203

column store in a non-relational format that is like the column families implemented by

Cassandra. A fast, random access environment is achieved by the HBase

implementation of table structures, as opposed to the simple file storage of HDFS. An

HBase table has rows that are indexed by a row key and each row may contain a

different number columns. Hadoop’s MapReduce framework can read and write

directly from and to HBase tables. To enable this, the Java MapReduce code must be

changed to use the HBase interface instead of the HDFS text based input and output

format.

FIGURE 42 HADOOP CLUSTER INCLUDING THE HBASE SERVICES

HBase tables are automatically distributed across the cluster nodes (a process known

as sharding) by grouping rows into clusters called regions. For this reason, in HBase

terminology, the data nodes are called region servers. The default behaviour is to

load all data into a single region on a single region server and then start to split it into

multiple regions as the size of the table grows. It is possible to override this behaviour

and supply information on how the data should be distributed. HBase provides a

mechanism for this called pre-splitting using the RegionSplitter utility that takes the

output from a plug-in algorithm. Several algorithms are available, and their

204

effectiveness at minimising data skew is dependent on the distribution of the keys in a

specific data set. A Java API is supplied for loading and extracting data which allow

data to be stored either as text or as binary sequence files as with HDFS.

5 SPARK

Spark was initially developed at the University of Berkeley and is now an Apache

open source project. Unlike other systems reviewed in this research project, Spark

does not supply a native data repository. Instead, it reads data from sources held on

Hadoop or Cassandra clusters into memory ready for processing. Resilient

Distributed Datasets (RDD) that allow efficient data sharing in memory across

computations form the basis of the Spark environment. Spark can run as a YARN

application on Hadoop version 2 and can read from many formats used in clusters

including HDFS text and sequence files, HBase and Cassandra. Spark employs a

native processing framework that is similar in principle to the Hadoop MapReduce

framework.

Spark jobs can be coded in a variety of programming languages including Java,

Python and Scala. Spark also provides a SQL interface that allows a developer to

query table-like data structures called data frames in the same program flow as Java

and Scala. In this way, Spark is like the Aster platform allowing a mix of SQL and

procedural code to be run on the data, although the implementation is very different.

As the programming framework differs from MapReduce, there is some refactoring of

code required before the mass spectrometer pre-processing code can run. The

changes include altering the input and output interfaces and wrapping the map and

reduce steps into Spark functions. More detail can be found in Chapter 6 where the

batch-based process is described in detail. Spark also includes a stream processing

interface; this allows data to be processed in real-time. Chapter 7 details the use of

this stream processing interface and the results obtained from it. To run as a YARN

application, the Spark slave services are installed on the data nodes of a Hadoop

cluster with the master service installed on the name node. Figure 39 shows the

Hadoop architecture updated to include the Spark services. This setup allows Spark

205

to run in parallel on the cluster and access data in HDFS, Cassandra and HBase (if it

is installed).

FIGURE 43 HADOOP ENVIRONMENT UPDATED TO INCLUDE APACHE SPARK

6 FLINK

Apache Flink is a relatively new software package, developed at the University of

Berlin. Flink is gaining traction as an alternative to Spark and as a capable streaming

data processing platform. Like Spark, Flink is an execution engine that can run as a

YARN application on a Hadoop cluster. Although Flink can run as a standalone

system, when operating on a Hadoop cluster YARN takes control of scheduling and

resource allocation. The control from YARN is necessary if the cluster is a

multi-tenanted environment with many users or systems accessing data and

resources at the same time.

206

Superficially Flink and Spark are very similar; they are both capable of parallel

processing, have Scala, Java and Python APIs and use in-memory processing for

intermediate results. However, at the time of writing Flink has an advantage over

Spark in stream processing. Whereas Spark processes streams of data in

mini-batches, Flink uses a true streaming approach; this means that data is

processed record by record as it arrives from the stream. This method of handling

data streams is the reason for the inclusion of Flink as a platform to be researched

during this work. The results of the streaming process testing and benchmarking can

be found in Chapter 7 of this thesis. The differences in performance between Flink

and Spark have been studied, and the results published [130]. A comprehensive set

of results showed that in many cases for batch processing the elapsed times are

similar between the two. However, some significant differences are noted in the

method and efficiency of real-time stream processing, mainly due to Flink’s pipelined

execution, which allows tasks to be executed concurrently where possible. Figure 40

shows the Hadoop environment updated to include Flink; note the similarity with

Figure 39 which shows the same environment but with Spark installed.

FIGURE 44 HADOOP ENVIRONMENT UPDATED TO INCLUDE APACHE FLINK

207

7 KAFKA

Unlike Flink and Spark, Kafka is not an execution engine. It does not process data

and perform complex transformations on it. Instead, Kafka is a distributed

publish-subscribe messaging system. During this research, Kafka is used to publish a

stream of data to which the stream processing engines can subscribe. Once

subscribed, data is received record by record in a constant flow. Using Kafka, it was

possible to simulate the situation where mass spectrometers could stream out the

results from an experiment as they were created instead of writing them to a file on

disk that can only be accessed when the experiment is complete. Kafka was originally

developed by the online social media company LinkedIn before being open-sourced

and becoming an Apache Foundation project in 2011. In common with other

publish-subscribe messaging systems, Kafka is organised by topics.

A topic is a collection of data that is published as a stream; for example, the data from

a single proteomics experiment could be a topic, or a group of mass spectrometers

could all publish their data to the same topic. In the Kafka environment records of

data are called messages and are stored in a log for a set amount of time. This

logging allows for recovery of data in a distributed environment in case of

communication or server failure. The important point is that Kafka can be configured

so that the streamed data is not lost and processing of the complete dataset can be

continued later. Kafka can support many consumers so that in a complex

environment many topics can be published and many subscribers can be consuming

and processing the messages simultaneously. As part of this research, Kafka was

used to simulate mass spectrometers streaming their data out directly, as opposed to

the current situation where the output data is saved to disk. Apache Flink was then

used to process the data in real-time. The cluster architecture including the Kafka

component is show in Figure 41.

208

FIGURE 45 REAL-TIME ARCHITECTURE USING KAFKA

209

APPENDIX B – FEATURE DETECTION PROCESS

For the purposes of reproducibility, the setup and process for feature detection that

was used in this research is presented in this appendix.

HARDWARE AND SOFTWARE

The cluster used for all the benchmarks was made up of one name node and three

data nodes for all benchmarks except for Aster which used a similar cluster with one

Queen and three worker nodes. Note that additional benchmarks were also run on a

seven node Aster cluster. The specification for the types of node are as follows

Name/Queen Nodes

8-core Xeon E5-2670 @ 2.6GHz.

512Gb Ram

worker/Data Nodes

6-core Xeon E5-2670 @ 2GHz.

256Gb Ram

Software
Hadoop version 2.4

Cassandra Version 2.1.2

Aster Version 6.2

HBase Version 0.98.9

Spark Version 1.6.1

Flink Version 1.0

Kafka Version 2.10

Java Version 1_8.0_77SE

Code is available at the Github repository https://github.com/chillman99/phd

Data Is available online at this URL http://bit.ly/2BhqLdx

210

EXECUTING THE PROCESS

Loading and Parsing Files
From Local File System to Local File System:

java -jar parsemzML.jar local <file>.mzml

<localdir>/<file>.scmi

Example:
java -jar parsemzML.jar local phd/data/myfile.mzml

phd/data/myfile.scmi

From Local File System to Hadoop
java -jar parsemzML.jar hdfs <file>.mzml

<remotedir>/<file>.scmi hdfs://<Hadoop master node IP> : <port>

Example:
java -jar parsemzML.jar hdfs phd/data/myfile.mzml

/user/user1/scmifiles/myfile.scmi hdfs://192.168.100.10 9000

From Local File System to Cassandra
java -jar parsemzML.jar Cassandra <file>.mzml <Cassandra

column family> <Cassandra IP address><Cassandra keyspace>

Example
java -jar parsemzML.jar cassandra myfile.mzml scandata

192.168.100.10 phd

From Local File System to HBase
java -jar parsemzML.jar hbase <file>.mzml <HBase table>

<HBase IP address> <port>

Example
java -jar parsemzML.jar hbase myfile.mzml scandata

192.168.100.10 2181

211

RUNNING THE BATCH CODE

Hadoop HDFS map tasks only (for testing)
hadoop jar ../code/PeakPick.jar hdfsmap phd/flat1000 phd/flatout

Hadoop HDFS
hadoop jar ../code/PeakPick.jar hdfs phd/flat1000 phd/flatout

Hadoop HBase
hadoop jar ../code/PeakPick.jar hbase node0

Hadoop HBase write results to HDFS (not used)
hadoop jar ../code/PeakPick.jar hbasehdfs node0 phd/flattestout13

Hadoop Cassandra
hadoop jar ../code/PeakPick.jar cassandra node0 phd/flattestout42

Flink
./flink run ../code/PeakPickFlink.jar phd/flat phd/flinkmap -c
PeakPickFlink -m node0 –p42

Spark
SPARK_JAR=/usr/local/spark/lib/spark-assembly-1.2.0-hadoop2.4.
0.jar HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
/usr/local/spark/bin/spark-submit --master yarn --deploy-mode
cluster --class peaks.PeakPickSpark ../code/PeakPickSpark.jar
"hdfs://node0:9000/user/user1/phd/flattest/100312_100.txt"

Aster
CREATE TABLE phd.peaks2d DISTRIBUTE BY HASH(pkey)
AS SELECT *
 FROM PeakPick2D(
 ON (SELECT scan, mslvl, rettime, mzarray, intensityarray
 FROM scandata_100312
 WHERE mslvl = 1));

CREATE TABLE phd.peaks3D DISTRIBUTE BY HASH(charge) AS
SELECT charge, mass, intensity, rt
FROM PeakPick3D(
 ON PeakPick2D)
 Partition by newindex
 order by scan);

212

RUNNING THE STREAM CODE

Run Kafka to simulate the stream
java -cp StreamScmiFile.jar StreamScmiFile 127.0.0.1:9092

127.0.0.1:2181 PhD/data/100312_100.scmi scmiStream 500

Run a console consumer to monitor output (optional for testing)
/Users/localadmin/Documents/working/kafka/kafka_2.10-0.8.2.1/b

in/kafka-console-consumer.sh --zookeeper localhost:2181

--topic scmiStream

Run Flink code to process stream and create output (note the topic name scmiStream

is hardcoded in the source code)
./flink run ../code/PeakPickFlink.jar -m node0 –p42

OUTPUT

Depending on the mode of operation, the output will either be file in HDFS at a

specified location, a file on the local system of hadoop, a table in HBase or a column

family in Cassandra. The output is tab delimited if in a text format with each row

describing a detected 3D peak and consisting of the following columns.

Column 1 charge

Column 2 mass

Column 3 intensity

Column 4 retention time

213

APPENDIX C – SONARQUBE CODE CHECKING OUTPUT EXAMPLE

The SonarQube software scans program code and produces a web-based output that

lists the issues it finds in several categories:

Bugs issues with the code that can prevent correct functioning

In the above example an attempt to directly compare floating point values has been

detected, which can lead to an incorrect result.

Vulnerabilities code that can cause a security issue

This example shows a variable has been declared as public and static but not final,

meaning that other code can modify its value.

Code Smells This refers to bad practice that does not cause incorrect results

but could mean that code is difficult to understand or inefficient

Here, adding the @override annotation is standard practice and the 2nd example

shows inefficient coding that introduces an unnecessary temporary variable.

The web console displays the complete analysis including the “Debt” measured in

days. This is the estimated amount of time needed to fix all of the issues detected.

214

FIGURE 46 SONARQUBE DASHBOARD

215

FIGURE 47 SONARQUBE CODE DETAIL

Drilling into the issues allows the users to see the actual code and the issues that

need to be fixed. The interface also displays a categorisation of each issues such as

“convention”, “bad practice”, “brain-overload” which is a synonym for complexity in the

code.

216

APPENDIX D – DATA STORAGE SCHEMAS

This appendix details the Data Schemas used in the various storage systems that

were used in this research

Aster
As Aster is a relational database based on the Postgres system, the Aster schema

consisted of a relational table mirroring the format of the SCMI text file. The SQL

Data Definition Language (DDL) is detailed below:
 CREATE TABLE scandata(

 fileName varchar,

 scan int,

 mslvl int,

 retTime double,

 precursorIonMz double,

 precursorIonIntensity double,

 precursorIonCharge int,

 mzArray varchar,

 intensityArray varchar)

 DISTRIBUTE BY HASH(scan);

The Aster DDL syntax is mostly ANSI standard SQL with the addition of the

DISTRIBUTE BY clause. This clause specifies how data is distributed between

the nodes of a cluster. In this case, the HASH(scan) clause specifies that a Java

hash code generated from the scan number is used; in other words the scans are

distributed evenly around the cluster.

Cassandra
The Cassandra syntax for creating a column family is similar to the SQL syntax.

CREATE KEYSPACE phd WITH REPLICATION = { 'class' :

'SimpleStrategy', 'replication_factor' : 3 };

USE phd;

217

CREATE TABLE scandata(

 fileName varchar,

 scan int,

 mslvl int,

 retTime double,

 precursorIonMz double,

 precursorIonIntensity double,

 precursorIonCharge int,

 mzArray varchar,

 intensityArray varchar,

 PRIMARY KEY (scan, fileName));

Here a Keyspace is like a Schema in a relational database in that it specifies an

area of the system where related tables can be referenced. Cassandra handles

the distribution of the data automatically as the data is loaded.

HBase
HBase uses a different syntax in that the column families are specified but not the

individual columns:

create 'scandata', 'meta', 'array', 'precursor'

This statement means that a table called scandata is created with three sections

or column families. The column names themselves are referenced in the load and

query statements. The fields from the source file are arranged in the column

families as follows:

218

⁃ Meta
 Scan

 Mslvl

 rt

⁃ Array
 Mzarray

 Intensityarray

⁃ Precursor
 PrecursorIonMz

 PrecursorIonIntensity

 PrecursorIonCharge

219

APPENDIX E – SYSTEM CONSOLES

This appendix shows the browser-based consoles used to monitor and control the

processing frameworks used in this research.

Figure 48 shows the Hadoop web console, this view shows basic information on

the jobs that have run, the job names are hyperlinks that lead to detailed

information child pages.

FIGURE 48 HADOOP WEB CONSOLE

Figure 49 shows the detailed information of a job, listing the individual map tasks

and their execution times, a similar view is available for the reduce tasks.

220

FIGURE 49 DETAILED INFORMATION ON A MAPREDUCE JOB

Figure 50 shows the management console for an Aster system, the landing page

displays general system information such as current load, disk space usage and the

last processes that ran. Figure 51 shows a Job detail page which displays the

execution time and the SQL statement that was executed.

FIGURE 50 ASTER MANAGEMENT CONSOLE

221

FIGURE 51 ASTER JOB PAGE

Both the Aster and the Hadoop systems include a tool called Ganglia which is an

add-on system monitoring tool. Ganglia allows a finer degree of control than the

total run time when investigating performance on a distributed system. Using

Ganglia, it is possible to view individual nodes and CPUs within nodes to see task

completion times, memory usage and disk access.

Figure 52 is an example report generated from Ganglia, it is possible to select

from many different system metrics and display them per node in the cluster in

this format. This allows a fine degree of system monitoring and troubleshooting.

Note that Spark and Flink also supply web based monitoring consoles, which

show similar information to those of Hadoop and Aster: these are not shown here.

222

FIGURE 52 GANGLIA REPORT

