3,686 research outputs found

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm

    Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

    Get PDF
    System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples

    Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates

    Get PDF
    Estimating the parameters of the autoregressive (AR) random process is a problem that has been well-studied. In many applications, only noisy measurements of AR process are available. The effect of the additive noise is that the system can be modeled as an AR model with colored noise, even when the measurement noise is white, where the correlation matrix depends on the AR parameters. Because of the correlation, it is expedient to compute using multiple stacked observations. Performing a weighted least-squares estimation of the AR parameters using an inverse covariance weighting can provide significantly better parameter estimates, with improvement increasing with the stack depth. The estimation algorithm is essentially a vector RLS adaptive filter, with time-varying covariance matrix. Different ways of estimating the unknown covariance are presented, as well as a method to estimate the variances of the AR and observation noise. The notation is extended to vector autoregressive (VAR) processes. Simulation results demonstrate performance improvements in coefficient error and in spectrum estimation

    Highly computationally efficient state filter based on the delta operator

    Get PDF
    The Kalman filter is not suitable for the state estimation of linear systems with multistate delays, and the extended state vector Kalman filtering algorithm results in heavy computational burden because of the large dimension of the state estimation covariance matrix. Thus, in this paper, we develop a novel state estimation algorithm for enhancing the computational efficiency based on the delta operator. The computation analysis and the simulation example show the performance of the proposed algorithm

    Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique

    Get PDF
    The parameter estimation issues of a block-oriented non-linear system that is bilinear in the parameters are studied, i.e. the bilinear-in-parameter system. Using the model decomposition technique, the bilinear-in-parameter model is decomposed into two fictitious submodels: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear dynamic one and the noise model. Then a gradient-based iterative algorithm is proposed to estimate all the unknown parameters by formulating and minimising two criterion functions. The stochastic gradient algorithms are provided for comparison. The simulation results indicate that the proposed iterative algorithm can give higher parameter estimation accuracy than the stochastic gradient algorithms

    Integrated adaptive filtering and design for control experiments of flexible structures

    Get PDF
    A novel method is presented of identifying a state space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relations between the state space model and the finite difference model for linear stochastic systems derived through projection filters. It is proven that least squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model. In estimating the corresponding state estimator gain, a z-domain method is used. First the deterministic component of the output is subtracted out, and then the state estimator gain is obtained by whitening the remaining signal. Experimental example is used to illustrate the feasibility of the method

    State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors

    Get PDF
    This paper considers the state estimation problem of bilinear systems in the presence of disturbances. The standard Kalman filter is recognized as the best state estimator for linear systems, but it is not applicable for bilinear systems. It is well known that the extended Kalman filter (EKF) is proposed based on the Taylor expansion to linearize the nonlinear model. In this paper, we show that the EKF method is not suitable for bilinear systems because the linearization method for bilinear systems cannot describe the behavior of the considered system. Therefore, this paper proposes a state filtering method for the single-input–single-output bilinear systems by minimizing the covariance matrix of the state estimation errors. Moreover, the state estimation algorithm is extended to multiple-input–multiple-output bilinear systems. The performance analysis indicates that the state estimates can track the true states. Finally, the numerical examples illustrate the specific performance of the proposed method

    Decomposition-based recursive least squares identification methods for multivariate pseudo-linear systems using the multi-innovation

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis Group. This paper studies the parameter estimation algorithms of multivariate pseudo-linear autoregressive systems. A decomposition-based recursive generalised least squares algorithm is deduced for estimating the system parameters by decomposing the multivariate pseudo-linear autoregressive system into two subsystems. In order to further improve the parameter accuracy, a decomposition based multi-innovation recursive generalised least squares algorithm is developed by means of the multi-innovation theory. The simulation results confirm that these two algorithms are effective
    • …
    corecore