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INTEGRATED ADAPTIVE FILTERING AND DESIGN FOR

CONTROL EXPERIMENTS OF FLEXIBLE STRUCTURES

By

Jen-Kuang Huang*

SUMMARY

Attached is an article entitled, "Identification of Linear Stochastic Systems through

Projection Filters" which summarizes the final progress on research grant NAG-I-830.

Results of the other research works reported in the previous progress reports include:

,

.

,

Large Planar Maneuvers for Articulated Flexible Manipulators and Lyapunov-

Based Control Designs for Flexible-Link Manipulators, progress report, 1988.

Also published in the Proceedings of AIAA GNC Conference, 1988, pp. 556-

570 and AIAA SDM Conference 1989, pp. 497-506, respectively.

Rapid Rotational/Transitional Maneuvering Experiments of a Flexible Steel

Beam, progress report, 1989. Also published in the Proceedings of American

Control Conference, 1989, pp. 1403-1408.

Integrated System Identification and State Estimation of Large Flexible

Structures, progress report, 1990. Also published in the Proceedings of AIAA

GNC Conference, 1990, pp. 1396-1404.

*Associate Professor, Department of Mechanical Engineering and Mechanics, Old Dominion

University, Norfolk, Virginia 23508-0369.



Identification of Linear Stochastic Systems
Through Projection Filters
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Jen-Kuang Huang**
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Jet-Nan Juangt

NASA Langley Research Center, Hampton, Virginia 23665-5225

Abstract

This paper presents a novel method of identifying a state space model and a state es-

timator for linear stochastic systems from input and output data. The method is primarily

based on the relations between tile state space model and the finite difference model for

linear stochastic systems derived through projection filters. This paper proves that least-

squares identification of a finite difference model converges to the model derived from the

projection filters. System pulse response samples are computed from the coefficients of the

finite difference model. In estimating the corresponding state estimator gain, a z-domain

method is used. First the deterministic component of the output is subtracted out, and

then the state estimator gain is obtained by whitening the remaining signal. Experimental

example is used to iUustratc the feasibility of the method.

* Research Associate, Mars Mission Research Center, Dept. of Mechanical and Aerospace Engineering,

member AIAA.

** Associate Professor, Dept. of Mechanical Engineering and Mechanics, member AIAA.
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In trod uction

System identification, sometimes also called system modelling, deals with the prob-

lem of building mathematical models of dynamical systems of interest based on their in-

put/output data. This technique is important in many disciplines such as economics, com-

munication, system dynamics and controP ,2. The mathematical model allows researchers

to understand more about the properties of the systems, so that they can explain, predict

or control the behaviors of the systems.

In automatic control of dynamical systems, in order to determine appropriate control

force the controller design requires mathematical models of the systems. The quality of

the model, therefore, will greatly affect the performance of the controller. Though a great

variety of system identification methods have been proposed during the last few decades,

still identification of systems of large dimension, or systems with noises in both input and

output remains a difficult task. 1'2'3

Because modem control theories are mostly developed based on state space description

of systems, the model in state space format is preferred for control purpose. However,

because the relation between input/output data and parameters in state space model is

non-linear, if system identification chooses a state space model directly, the parameter

estimation of the model becomes a non-linear optimization problem, which is difficult to

solve in general. Usually iterative numerical methods should be resorted, but convergence

and uniqueness of the solution are not guaranteed. On the other hand, if some special

difference model which has linear relation between input/output data and parameters

is chosen, the parameter estimation is a linear optimization problem, which has unique

solution and can be solved analytically. The least-squares methods provide simple and

powerful tools for solving linear optimization problems, either recursively or in batch.



Therefore, in general, difference models are e_ier to identify theal state spacemodels.

However, for the demand of state spacemodels in control applications, efforts have been

made to convert a differencemodel to a state spacemodel.4

Recently, a method is introduced in Refs. 5 and 8 to identify a state space model

from a finite differencemodel, called the AutoRegressivewith eXogeneousinput (ARX)

model, which is derived through Kahnan filter theories. However, the requirement of large

order causesintensive computation in tile embeddedleast-squaresoperation. In Ref. 6

a method is derived to obtain a state space model from input/output data using the

notion of state observers. This approach can use an ARX model with the order much

smaller than that derived through the Kahnan filter, but the derivation is basedon the

deterrniniatic approach. In Ref. 7, it has been proved that as the order of the ARX model

increase to infinity, the observer identification converges to the Kalman filter identification.

However, for a stochastic system and a small order ARX model, to what the least-squares

identification of the ARX model will converge in a stochastic sense is not clear.

This paper addresses the above mentioned problem using the stochastic approach.

The approach ia primarily baaed on the relationahip between atate apace modela and finite

difference rnodela linked through the projection filter, s First, an ARX model is chosen, and

then the ordinary least-squares is used to estimate the coefficient matrices. Based on

the relationship between the projection filter and state space parameters the system pulse

response samples, i.e., the Markov parameters, can be calculated from the coefficients of the

identified ARX model. To decompose the Markov parameters into state space parameters,

the Eigensystem Realization Algorithm (ERA) 9 is employed. ERA is effective in realizing

state space model from system pulse responses, 1°-14 which are the Markov parameters for

discrete systems.

To compute the state estimator gain a different method is developed in this paper

3



using a z-domain approach in contrast to the time-domain approachesused in Refs.5 and

7. After identifying a state spacemodel, the deterministic part of the output is subtracted

out. The remaining sigmd representsthe stochasticpart and cmi bemodeled by a Moving

Average (MA) model of which the coefficients are in terms of state spaceparameters

and the Kalman filter gain. Identifying the MA model is approximated by identifying a

correspondingAotoRegressive(AR) model first and then inverting it. From the identified

MA model a state estimator gain can becalculated. Finally, the identification of a ten-bay

structure is used to illustrate the feasibility of the approach.

Relations between Projection Filter and

Finite Difference Model of a Linear System

The projection filter is a linear transformation matrix which projects (transforms) a

finite number of input/output data of a system into its current state space. The image of

the projection is an optimal estimate of the current state, and the filter is chosen such that

the mean square estimation error is minimized, s Here "filter" is a generic term referring to

a data processing procedure which extracts desired information from data. To explain the

relation between the projection filter and the finite difference model of a linear system, we

start from a simple case and gradually move to more general ones.

Consider a finite-dimensional, linear, discrete-time, time-invariant, noise-free dynamic

system, which can be represented by a state space model as

zk+i = Azk +Buk (1)

Yk = Cxk + Duk, (2)

where x is an n x 1 state vector, u an rn x 1 input vector, and y a p x 1 measurement or

output vector. Matrices A, B, C and D are respectively the state matrix, input matrix,

4



output matrix and direct influence matrix• The integer k is the sample indicator.

From Eqs. (1) and (2) it is easy to follow that

Yk

Yk-1

Yk-q+l

C

CA-X

CA-q+l

-D

0

0

Xk

0

CA-1B - D

,

CA-q+IB

0 Uk-1

CA-I"B - D uk-q+l

or in short

Yq,k = Hqzk -- GqUk,

(3)

(4)

or in normal form

Hqxk = Yq,k + GqUk, (5)

where q denotes the number of data stacked up to form the equation, and the meanings

of other notations are self-evident. If the state vector xk is the variable to be solved,

Eq. (5) contains n unknowns and p x q equations. However, there are only at most n

independent equations. Therefore, for a sufficiently large q (p x q _> n) which can make

Hq full-column-ranked, the unique solution of xk is

= F,(Y,,,k+ aqUk), (6)

where

Fq = (HTHq)-IH T (7)

is the pseudo-inverse of Hq and also the projection filter in this case. If p x q = n (i.e., Hq

is square), Fq becomes H_ -1. In general the number q can be any integer bigger than an

integer qmin which is the minimum number required to make Hq full-column-ranked. The

solution &k is identical with the true value xk.



To write a difference model of the system which expresses the current output as a

linear transformation of finite previous input/output data, one can use Eqs. (1), (2) and

(6)

yk = Cxk + Duk

= CAxI,-1 + CBuk-1 + Duk

= CA[Fq(Yq,k-1 + GqUk-1)] + CBuk-1 + Duk
q q

= _ CAFqiyk-i + D uk + (CB - CAffqlD)Uk-1 + Z CAFqGqiu_-i
i=1 i=2

q q

(s)

where Fqi (E R n×p) and Gqi (E 1_ p×q×m) are the i-th partitions of Fq and Gq, respectively,

• ..iFqq], Gq.= [Gql"Gq2i ...!aqq], (9)

Bo = D, B1 = CB -CAFqlD, Bi = CAFqGqi, (i =

, q). The model described by Eq. (8) is an ARX model.

defined as

[ •

andAi = CAFqi, (i = 1,.-.,q);

,,.*

Next, consider a system without process noise but with additive, white, gaussian, and

zero-mean measurement noise which is not correlated with the state variable, the output

equation becomes

yk = Cxk + Duk + vk,

where Vk represents the measurement noise. Similarly, we can derive a matrix equation

HqXk -" Yq,k q" OqUk -- Vq,k,

where V r = [v_, 7" Tq,k Vk_l,''', Vk_q+l]. The unknown variable zk is still a deterministic

variable in this case. By the theory of parameter estimation for deterministic parameters

from a linear equation with independent white noise, 16 one can write the optimal estimate



of Xk as shown in Eq. (6) with

Fq = (H{R-I_L,)-I_[R -' (I0)

which is a weighted pseudo-inverse of Hq and _ = t2 ® Iq,® is the Kronecker product, 12

the covariance of the measurement noise, and Iq the identity matrix of dimension q. The

optimality is defined by the minimum variance of state estimation error.

To derive an ARX model using the relation provided by the projection filter is similar

to the previous case.

estimated state as

and define

We can form a one-step-ahead output prediction using the last

?)k = CA:_k-1 + CBuk-1 + Duk (11)

yk = _jk + r/k (12)

where r/k is the prediction error. Therefore,

Yk = CAfk-1 + CBuk-1 + Duk + rlk

= CA [Fq(Y_,k-1 + GqUk-1)] + CBuk-1 + Duk + rlk
q q

= E CAFqiyk-i + Duk + (CB - CAFqlD)uk-1 + _ CA.FqaqiUk-i + rlk
i=1 i=2

q q

= A,,jk_,+ + (13)
i=l i=0

where Fqi and Gqi are defined the same way as in Eq. (9), but Fq is defined by Eq. (10)

in this case.

Next, consider a more general case for a system with both process and measurement

noises. In state space format the system can be modeled as

xk+l = Axk + Buk + wk (14)

Yk = Cxk + Duk + vk, (15)



where the sequences{wk} and {vk} are the process(input) noise and the measurement

(output) noise, respectively. Both are assumedto be gaussian,zero-meanand white with

covariancematrices O and R, respectively. They are also assumed statistically independent

of each other.

Similarly, by writing the previous output in terms of the current state using Eqs. (14)

and (15), one can derive

Yq,I,. = Hqxk - G_Uk - MqWq,k + Vq,k,

where

Mq

''• 0

CA -1 . .. 0

CA-q+I ... C z[ -1

Equation (16) can be further simplified to be

Wk-1

Wk-q+l

HqXk --= Y' q,k + _q,k

(16)

(17)

where

Y,;,k = Y,,,k + avUk, (q,k = MqWq,k - Vq,k.

Note that the unknown variable xk is a random variable in this case. The overall noise

vector {q,k is still gaussian and zero-mean because Wq,k and Vq,k are gaussian and zero-

mean. It is also correlated with the unknown variable xk because Wq,k is correlated with

Xk. Denote the covariance between Xk and (q,k by Pxe. For a linear equation like Eq. (17),

suppose the mean of the current state xk and its variance Px is given, by the theory of

random parameters estimation s'l_ the optimal estimate of Xk can be obtained by

= ek+ Pq(U,k-?q',k), (18)

where the overb_ "-" denotes the expectation value,

]Tr !
q,k "-" HqX, k,

8



and

T T )-1F,, = (P_H[ + Pxe)(ItqP_ttf + HqP_e + P_eH,, + R e (19)

is the projection filter in this case. Matrix/?e denotes the covariance of _q,k. The optimality

is under the minimum variance of state estimation error.

Similarly, to derive an ARX model, we can use one-step-ahead output prediction as

Eq. (11) and have

_)k = CAkk-1 + CBuk-1 + Duk

I -I

= CA [5:k-1 + Fq(Y_,k_ 1 - Yq,k-1)] + CBuk_l + Duk

= CA.FqYq,k_I + CBuk-1 + CAFqGqUk-1 + CA(I, - FqHq)_.k-1 + Duk
q

= _ CAFqiyk-i + Duk + (CB - CAFqlD)uk_I
i=1

q

+ _ CAFqGqiuk-i + CALS:k_I,
i=2

(20)

where

L = I n u._qHq,

Fqi and Gqi are again defined the same way as in Eq. (9) but Fq is defined by Eq. (19)

instead.

Equation (20) represents the best prediction of Yk one can make using q previous

input/output data. If the prediction is made once and for all, namely, no prediction

of previous state is made, the best value assigned to _'k is zero. However, if previous

state estimation has been carried out, the best choice for x'k is the a priori Kalman filter

estimation. Note that for the Kalman filter

_'k--1 = A:_'[.-2 + AK(uk-2 - C'2'_._ 2 - Duk-2) + Buk-2

•---- ,..

q-1 q-1

= _ Ai-1AI(.yk-,-i + _ Ai-I(B - AI(D)uk-l-i + Aqx, k-q,

_=1 _=1

(21)

9



where

A = A(r,,- KC),

and K is the optimal steady state Kalman filter gain. Based on the argument above, we

can replace :_k-1 in Eq. (20) by Eq. (21) and obtain

q

= CAFq,yk_, Jr- _ CA (Fqi q- L._i-2AI() Yk-i q- Duk + (CB - CAFqlD)uk_l

q

Jr- _ CA (Fqeqi -_- L.7_i-2(B - A_(D)) Uk_ i -_- _l k

i=2

q q

= Z, +F_, +4,
i=l /=O

(22)

where r/_. = r/k + CT[qx.k_q. Note that if q is not large, {_,} is not white. Equations (8),

(13) and (22) represent the AutoRegressive with eXogeneous input (ARK) models of linear

systems in wtrious different noise situations. The equation in each case provides a best

prediction of the output measurement at time k in the sense of minimum state error at

time k - 1 using q previous input and output data.

Least-Squares Identification of ARX Model

A general AR.X model of a linear system can be written as

ql q2

Yk = _ Aiyk-, + _ Biuk-, + ek, (23)
i=1 i=:0

where (ql,q2) is the order of the model. Given a set of input and output data

{yk,"', yo, uk,'", u0} of the system, we can use the least-squares method to find a

set of matrix coefficients {-41,'" ", Aal, B0,"', /3_2 } which fits the equation and the data

"best" under least-squares error of output prediction sense. The lea.st-squares method

10



for single-input single-output ARX model (a scalar equation) can be found in many text

books.17'1sThe extension to multi-input multi-output model is straightforwards,s

The AILX models derived in the last section have an order (q, q), or just q in short,

which are special cases of the general ARX model. It can be proved (see appendix) that

if we choose an ARX model of order q and use the least-squares method to identify the

parameters of the model, the parameters will converge to that derived from the projection

filter.

Obtaining System Markov Parameters from ARX Model

There are some special relations between the system pulse response samples, i.e., the

system Markov parameters, and the coefficient matrices of the ARX models derived in the

previous section. Based on these relations we can obtain the system Markov parameters

from the ARX models.

For noise-free systems, fl'om Eq. (8) if we denote the coefficient matrices of yk-j and

uk-j by Aj and/)j, respectively, we can have

J

CAJB = Bj+I + _ AiCAJ-iB + Aj+ID. (24)
/mS

Note that this equation can calculate the system Markov parameters CAJB (j = 1,..., q -

1) iteratively from the coefficient matrices of a ARX model of order q (note B0 = D and

CB = B1 + A1D).

Proofi

By definition

Gql = [-D T, oT, "'', oT] T

11



and for j _> 2

_qj =

0

CA-1B - D

CA-q+i-1B

C

CA-i+2

= CA_J+1

CA-q+I

= HqAJ-2D - E(J-2) B _ D(J)

AJ-21_ _

CA j-2

C

0

0

FO
i

IO
!D

LOJ

(25)

where

E(J-2)= [(CAJ-2) T, ..., C T, 0 T, ...oT] T,

D(J) = [0T,. • •, 0 T, D T, 0T,..., oT] T,

D (j) has D in the j-th block and is zero elsewhere. Therefore, with j >__1

CAFqGq(#+I) = CAFqHqAJ-ID - CAFqE(J-1) B - CAFq(j+I)D

J

=CAFqHqAJ-IB- _CAFqiCAJ-iB-CAFq(j+DD (26)
i=l

It is noted that Eq. (26) also holds for the system with both process and measurement

noises. Now, because

FqHq = I., (27)

and from Eqs. (8) and (26), we have

Bj+I = CAFqGq(j+I) = CAJ B - ___ AiCAJ-I B - Aj+ID.
i=l

So, Eq. (24) follows•

Q.E.D.

We can also iteratively calculate CAJB (j = q, q + 1, ...) by

CAJB= CA(FqHq)AJ-IB

q

= _ Ai CAj-iB.
i=l

12

(28)



Though derived from noise-free systems, the above equations (Eqs. (24) to (28)) also

hold for systems with additive white measurement noise. Because for systems with white

measurement noise the projection filter Fq is nothing but a weighted pseudo-inverse of Hq,

hence Eq. (27) also hohls.

It is interesting to sec that Eq. (24) also holds for systems with both process and

measurement noise even though Eq. (27) does not hold in this case. This can be proved

as follows.

u

Proofi

Be definition (sec gq. (22))

J

Bj+I + _"_ AiCAJ-iB + Aj+tD

= CA(FqGq(j+I) + LAJ-I(.B - AKD)) + CAFqlCAJ-IB + CA(Fq2 + LAK)CAJ-2B

+... + CA(Fqj + LflJ-2 AK)CB + 6'A(F_(j+I) + LftJ-I AI()D

J

= CAFqGq(j+I) + CAL.ItJ-I(B - At(D) + _--_CAFqiCAJ-iB
_-= 1

j--1

+ _ CALAi-IAI(CAJ-i-IB + CA(F_dj+I ) + LA.J-IAK)D
i=l

J

= CAFqHqAJ-_B- _ CAFqiC Aj-iB -CAFq(j+DD + CAL.4.J-_B
_=1

j j-1

-- CAL,A j-' AI(D + _ CAFqiCai-i.l-3 + _ CAL,4 i-1AI(CAi-i-I B
i=1 i=1

+ CAFq(j+I)D + CALftJ-IAKD

= CAFqHqAJ-IB + CALftJ-_B + CAL.4J-2AKCB

j-2

+ _ CAL.74i-lAKCAJ-i-lB
i=l

j-2

= CAF, HqA 1-1B + CALAi-2(ft + AI(C)B + _ CALl '-1AKCA j-'-I B
i=l

13



j-2

= CAFqHqAJ-ID + CAL'4i-2AB + _2 CALfIi-IAIi'CAJ-i-IB
/=:1

__ .* *

= CAFqHqAJ-IB + CALAAJ-2B + CALAKCAJ-2B

= CAFqHqAJ-IB + CALAJ-XB

= CA(FqH, 1 + L)Ai-IB

= CAiB
(29)

where the relations ,4. + AKC = A, FqHq + L = I,, and Eq. (26) are used.

Q.E.D.

However, Eq. (28) does not hold for systems with process noise. Hence, for an ARX

model of order q, only q terms of the system Markov parameters can be obtained. A

system of order n has only n independent M_n'kov parameters; all the rest are the linear

combination of these n independent ones. Therefore, the order chosen for the ARX model

q should be greater than or equal to n. In general, more Markov parameters can improve

the accuracy of the identified state space model in the later procedure; however, a trade-off

is that a larger q will increase computational load.

To decompose the identified Markov parameters into state space parameters [A, B, C],

one can use the Eigensystem Realization Algorithm (ERA). ERA is a simple and accurate

algorithm for identification of linear systems from pulse response samples. It has been

proved valuable for modal state parameter identification from test data. la,14 The algorithm

uses the pulse response samples (i.e., the Markov parameters for a discrete-time system)

to form a large block data matrix which is referred to as the general Hankel matrix. Then

the technique of singular value decomposition is used to decompose the Hankel matrix.

The system order is determined by counting the number of singular values retained. The

small singular values are attributed to noises and are truncated. The state space model

14



can be computed from the decomposedmatrices. The realized model is not unique, but

the Markov parameters are unique. For further details, the readersare referred to Ref. 9.

Identification of a State Estimator Gain

After obtaining a set of state space para,neters via the ERA, a corresponding state

estimator gain can be estimated. This m('thod is enlightened by tile Kalman filter theory. 1_

From the Kahnan filter formulations, a filter model in innovation form is 19

J:k+l = A&'[, + Buk + AKkek

Yk = C&_. + Duk + ek

(30)

(31)

where :_- is the optimal prediction made by the Kalman filter based on all the data prior

to the moment k, and Kj, the Kalman filter gain; the quantity ek, called residual, is the

difference between true output Yk and predicted output _)k (= Ca?_-). In steady state the

filter gain is constant and the subscript of it can be omitted. Equations (30) and (31) are

called "innovation model", because the quantity ek is also called "innovation" because in

a sense it contains new information which can not be obtained fl'om previous data. For an

optimal Kalman filter, the aequence {ek} is white, 19 which is a useful property.

From the innovation model, the Kalman filter can be viewed as driven by deterministic

input uk through B and by stochastic input ek through AK. Hence, the filter state and

output can be decomposed into two parts -- one caused by the deterministic input and the

other caused by the stochastic input. Accordingly, the innovation model can be divided

into two models:

:}k-+l,1 = A_'/,1 + Buk

Yk,1 = Cx-[.,1 + Duk

15

(32)

(aa)



and

_"k-:_-1,2= A:2'[,_ + AKkek

yk,2 = C'._..2 + ek

(34)

(35)

where x; = x}-,, + x[.,2 and yk = Yt,I + Yk,2. Expanding Eqs. (33) and (35) based on

Eqs. (32)and (34), rcspectiv,_'ly, one can derive

k

y_,, = Duk + _ CA_-'Buk_i, (3G)
i=-1

k

Yk,_ = ¢k + _ CAiKck-i. (37)
i.= 1

Combining tile above two equations, one obtains

k k

y_, D_L_+ _CAi-_l)**k_i + ek + _ ' "= CA Ii. ek-i.

i=1 i=l

(3s)

Equation (38) clearly shows the two parts of which the output is composed. If the accu-

rate state space parameters [A, B, C, D] are known, one can subtract the deterministic

A
component Yk,1 out from the output yk; that is, 1)y defining sk=yk,2 = yJ, --Yk,1, then

k k

i= 1 2:i=0

where Co = Ip, Ci = CAiK. The remaining signal s j, represents the stochastic component

and is driven by the sequence {el,}. For a stable system all the terms CAiK, i > q, are

negligibly small when q is sufficiently large; therefore, when k is large the upper limit

of the summation on the right side of Eq. (39) can be replaced by q. Equation (39)

describes sk as a linear transformation of a white sequence {¢1,}; therefore, it is called a

Moving Average (Iv[A) model, xs,19 The matrices C1,'", Cq are constants, called the MA

parameters. The term moving average arose because sk can be regarded as a weighted

average of ¢k,'", ek-q. Note that the MA parameters are expressed in terms of the state
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spaceparametersA, C and steady state Kahnan filter gain K. If the MA parameters are

known one can compute the filter gain fl'c_m them.

The problem of estimating the MA model in Eq. (39) is that the white sequence {¢k} is

not readily available; therefore, ordinary least-squares methods frequently used estimating

the coefficients of linear equations can not be used directly. However, we can estimate

a corresponding autoregressive (AR) model first, and then invert it to approximate the

original MA model. To highlight this point, taking z-transform of both sides of Eq. (39)

to become
q

c° = E Ciz-iE = M(z-')E, (40)
Z_=O

where M(z -1) is a polynomial matrix in z -1 (a matrix whose entries are polynomials in

z -1 ). Matrix M(z -1 ) can be regarded as a filter which receives ek and its delayed versions

as the input and yields sk as the output. If we can find the inverse filtcr N(z -1) of M(z -1 )

such that N(z-')29I(z -1) = Ip, by pre-multiplying Eq. (40) with N(z -1) we have

N(z-')S=E. (41)

Matrix N(z -1) in general is an infinite-or&._ed polynomial matrix in z -_. In Eq. (41),

N(z -1) can be viewed as a whitening filter which receives ak and its delayed versions as

the input and yields white sequence {ek} as the output.

To obtain a whitening filter for tile signal sk, we can write a AutoRegressive model of

sl, with order r in time domain as

F

E Nisk-i = ¢k, (42)
i=0

where No = Ip, and estimate the AR parameters N_,.-., N,-. _s Comparing Eq. (41) with

Eq. (42) it can be seen that the infinite-ordered polynomial matrix N(z -_) is approximated

by a finite-ordered polynomial matrix Y_'i=o Ni z-i" The parameter estimation of the AR

model can be accomplished using the ordinary least-squares method.
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After obtaining an identified N(z-_), we can invert it to approximate M(z-1). In-

verting a square polynomial matrix is similar to inverting an ordinary square matrix (a

matrix with scalar entries), and the result is the adjoint matrix divided by the determinant

of the matrix. In the operation, multiplying two polynomials is equivalent to convoluting

the coefficient sequences of the two polynomial, dividing two polynomials is equivalent

to deconvoluting the coefficient sequence of the numerator polynomial over that of the

denominator, expanding to the number of terms desired.

After obtaining the estimated MA model and collecting ql coefficients, one can form

M _._

a matrix

and the least-squares solution of K is

where

A

C.,_ I(
A

C ,t'2 K

CA'IlK

(43)

_" : (HTH)-IHTM :HtM (44)

H = [(CA) T , (CA2) T, ..., (CAq')T] T (45)

is an observability-like matrix, which is full-column-ranked for an observable system; H t

is the pseudo-inverse of H.

Because of the approximation used in the process, f( is not a real optimal Kalman

filter gain; however, it represents an identified state estimator gain (or suboptimal Kalman

filter gain). The quality of the identified gain relies on the accuracy of the identified state

space parameters and the order of the whitening filter r. If the identified state space model

is accurate and the order r is chosen large enough, the identified gain will converge to the

optimal steady state I(ahnan filter gain.

Experimental Example
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An experimental example is used to demonstrate the feasibility of the integrated

system identification and state estimation method developedabove. A ten-bay structure

asshownin Fig. 1 is considered. The truss is oneof the structures built in NASA Langley

ResearchCenter for experiments in studies of control and structure interaction (CSI). It

is 100incheslong, with a square cross section of 10 in x 10 in. All the tubing (longerons,

battens, and diagon',xls) and ball joints are made of aluminum. The structure is in a vertical

configuration attached from the top using an L-shaped fixture to a backstop. Two cold air

thrusters acting in the same direction are placed at the tip, The thrusters which are used

for excitation and control have a maximum thrust of 2.2 lb each. A mass of approximately

20 lb is attached at the beam tip to lower the fundamental frequency of the truss. Two

servo accelerometers located at a corner of the square cross section provide the in-plan tip

acceleration.

The structure was excited using random inputs to both thrusters for 30 seconds. The

input signals were filtered to concentrate the energy in the low frequency range. A total

of 7499 data points at sampling rate 250 tIz is taken. The two output acceleration signals

were filtered using a three-pole Bessel filter with a break frequency of 20 Hz.

From the output we can tell the dominant mode is about 5 to 6 Hz. To avoid using

too large order in the least-squares filter the sampling rate is reduced to 1/2 of the original

one by choosing one out of every two samples. Hence, the sampling rate becomes 125 Hz

and totals 3750 data. The order of the ARX model is set to 100. Figure 2 shows the

identified system Markov parameters CAi-IB (i = 1,..., 100). By the ERA three modes

are identified and the identified modal frequencies and dampings are listed as follows:

Mode Frequency (tad/see) Daanping (%)

1 37.0988 0.27

2 46.1175 2.87
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3 304.4817 0.40

The corresponding state space parameters in normalized modal format are

1,Lrr0.9555 0.2922][ 0.9229 0.3568= diag -0.2922 0.9555 -0.3563 0.9229

= [ 0.1725 -0.1117

[ -0.1789 0.1247

= [1.7754 0.0000
L0.9201 0.0362

b

0.1122 -0.0321

-0.1522 0.0556

1.0023 0.0000

-1.6909 -0.3692

[-0.00,1.20.O165]0.02150.0009"

[-0.7538 0.6423-0.6423 -0.7538 ] }

0.3241 -0.1871 ] T

J0.3309 -0.2725

1.3946 0.0000]
!

-1.4287 0.1185 J

The identified state space parameters are us,_d to estimate the corresponding Kalmaa filter

gain. The identified stochastic Markov parameters CAiK (i = 1,..., 100) are shown in

Fig. 3, and the estimated state estimator gains is

0.2787 0.1807 0.3437 0.1072
/? = [.0.2277 -0.0085 0.1236 -0.0884

0.0065 0.0357 ] T

J-0.0874 -0.0182

To show the results of state estimation, the first state of each mode is shown in Fig. 4.

Since the modal model has been normalized, the amplitude of each modal state indicates

the energy allocated in that mode. To evaluate the quality of the systern identification

and state estimation, the estimated outputs calculated based on the estimated state are

compared to the true outputs. Because the true state is not available, output comparison

is the only way to validate the results. The comparison of the first output is shown in

Fig. 5, where wc can scc the estimated and the true outputs are in good agreement. The

covariance of the error is less than 1.5 '?6 of the covariance of the output.

Concludilig Remarks

In contrast to most existing system identification methods of which the great major-

ity use deterministic approach, the method developed in this paper is derived under the
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stochastic framework, taking into account tile effects of process noise as well as measure-

ment noise. The use of projection filter to derive a state space model provides stochastic

insight into the model. The accuracy of the identified state estimator gain relics on the

accuracy of tlle identified state space model and the order of the whitening filter. The

order of the whitening filter is not necessary to be equal to the order of the system. The

larger the filter order is the whiter the residual will be. If the identified model is accurate

and the order of the whitening filter is sufficiently large, the identified gain converges to the

optimal steady state Kalman filter gain. An experimental example shows the feasibility of

the method.
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Appe_dix

In the appendix, we want to show that for a linear time-invariant system described by

a known state space model, the system output predicted by an optimal state (in the least-

mean-square sense) based on the system model is also optimal (in the least-mean-square

sense) if the number of the stationary data sample is sufficiently large. In other words,

though the projection filter is derived based on the criterion of resulting least-mean-square

state error, it also provides least-squares output error.

An AR.X model of order q of a linear time-invaria_lt system can be written as

q q

Yk = EAiYk-i + ZBiuJ,-i+ek=_k +_k (A1)
_=1 i=O

where ek is the output error. Given a set of input/output data {yk,"', Y0, uk,'.', u0}

of the system, we can use the least-squares method to find a set of matrix coefficients

{A1,'", .4.q, /30, "", /3,j} which fits the equation optimally in the least-squares error of
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output prediction sense. It minimizes a scalar cost function dl, defined by

k k

J, ; X)(y,- '),)/= (A2)

t=q t=q

However, assume ei is stationary and k is sufficiently large,

1 " T

J1 =(k-q+l) h-q+l [¢,ei] _(k-q+l)E[eTei], (A3)

for a stationary random process the sample average can represent the ensemble average

(expectation) due to its ergodic property. Therefore, minimizing J1 is equivalent to mini-

mizing mean-square output error.

On the other hand, the projection filter provides a least-mean-square state estimate

xk-x of xk-1 from a set of previous input/output data yZ = [y721,..., yTo, Uk_a,r ... , uTo]

of the system. Similar to yk, the estimated state 2k-1 is also a linear combination of

previous input/output data and can be shown as (see Eq. (20))

where F is the projection filter.

function J2, defined by

The optimal estimated state minimizes a scalar cost

z_= E[(xk-1- }k-1)r(x_-,- _-_)1

= E[(zk__--Fl')r(zk__--FY)]

= traceE[(xk-1- rY)(x,__, - FY)T]

= trace E[Xk_lxT_I -- Xk_IyTF r -- FYxT_i + FyyTF T] (A4)

with

d J2 d J2
- 0 or _ = -2E[xk_lY T] + 2F(E[yyT]) = 0

d:["k-1 dF

F(E[I'YT]) - E[xk_lY T] = 0 (X5)
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The optimal predicted output Yk can be derived by using the one-step-ahead prediction

from the optimal state ik-1 as shown in Eq. (11). From Eqs. (11) and (15) one can obtain

ek = Yk -- Yk = CA(zI,.-1 - FY) + Cwk-1 + vk

-- and

= trace

= trace E[CA(zk__ - FY)(xk-1 - Fy)TATc T] + trace[CQC r + R]

Because the process noise covariance Q and the measurement noise covariance/_ are con-

stant, we have

dJl d
- {trace E[CA(xk_, - FZ)(xk-1 - Fy)TATcT]}

dF dF

= -2ATCTCA(E[xk__YT]) + 2ATCTCAF(E[yyT])

= 2ATCTCA{F(E[yyTI)- E[zk__YT]}

From Eq. (A5), we get dJ1/dF = 0. This proves that the predicted output Yk shown

in Eq. (11) from the projection filter is also the lest-squares output. The coefficients in

Eq. (22) should be equivalent to those in ARX model (A1) derived from the least squares

method if the number of data is sufficiently large.
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Figure Captions

Fig. 1 Ten-bay truss structure test configuration.

Fig. 2 Identified system Markov parameters CA"_--1B (the (1,1) element).

Fig. 3 Identified stochastic Markov parameters C'ffi'I( (the (1,1) element).

Fig. 4 Estimated Modal states.

Fig. 5 Comparison of true and estimated outputs.
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