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Summary

This paper considers the state estimation problem of bilinear systems in the
presence of disturbances. The standard Kalman filter is recognized as the best
state estimator for linear systems, but it is not applicable for bilinear systems.
It is well known that the extended Kalman filter (EKF) is proposed based
on the Taylor expansion to linearize the nonlinear model. In this paper, we
show that the EKF method is not suitable for bilinear systems because the
linearization method for bilinear systems cannot describe the behavior of the
considered system. Therefore, this paper proposes a state filtering method for
the single-input–single-output bilinear systems by minimizing the covariance
matrix of the state estimation errors. Moreover, the state estimation algorithm is
extended to multiple-input–multiple-output bilinear systems. The performance
analysis indicates that the state estimates can track the true states. Finally, the
numerical examples illustrate the specific performance of the proposed method.
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1 INTRODUCTION

For decades, there are many activities in utilizing linear models,1-3 bilinear models, and nonlinear models4,5 and many
identification methods have been developed. Specifically, much attractive attention has been paid to bilinear systems
as they are simple nonlinear systems and represent the intermediary structure between linear models and nonlinear
models.6 Some methods based on the approximation idea have been used in parameter estimation for bilinear systems.7

Dai and Sinha utilized the block functions for parameter estimation of the bilinear system.8 Hizir et al identified the
bilinear systems through equivalent linear models.9 Nowadays, the Carleman linearization is an approach to reach the
approximation, and the bilinear model is proven to be an effective approximator for some nonlinear systems, which can
solve the nonlinear system state filtering problems in signal processing and control.10
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Parameter estimation methods and state filtering can be applied to many areas,11,12 such as information fusion and
fault diagnosis,13,14 system modelling,15,16 and signal processing.17-19 The Kalman filter (KF) is considered as one of the
most common state filtering methods for the linear state-space systems with Gaussian noise since the 1960s.20 However,
the Kalman filtering method cannot be applied to bilinear systems. In the literature, the particle filters can be used for
state estimation of nonlinear systems with non-Gaussian noise. For nonlinear systems with Gaussian noise, the typi-
cal filters such as the extended KF (EKF), the unscented KF, and the Guass-Hermite quadrature filter can be applied to
state filtering. Moreover, Zhao et al proposed a Kalman-like optimal unbiased finite impulse response filter.21,22 Johnston
and Krishnamurthy presented an iterative algorithm for the state estimation of bilinear systems based on the expecta-
tion maximum.23 Germani et al proposed a decomposition-based robust filtering algorithm to estimate the states of the
time-varying bilinear systems with unknown inputs.24 Kulikov and Kulikova presented a continuous-discrete unscented
state filter for nonlinear stochastic models in radar tracking.25

Regardless of the filtering technique for state estimation of bilinear systems, the state observer is vital in the field of
control. Hara and Furuta considered a minimal order state estimator for bilinear systems, whose estimation error was
independent of inputs.26 Tsai developed a linear matrix inequality approach to design a robust H-infinity fuzzy observer
for a class of time-delay Takagi-Sugeno uncertain discrete bilinear systems.27 Gomez-Exposito et al presented a three-stage
state estimation method for the energy management system based on the explicit nonlinear transformation and the linear
weighted least squares solution.28 Phan et al formulated a full-order bilinear state observer and optimized the observer
gain by interaction matrices.29

Since the KF is the optimal linear filter for state estimation, it is not applicable for nonlinear state estimation. In this
paper, a bilinear state estimator is formulated to solve the state estimation problem for the single-input–single-output
bilinear system on the basis of the extremum principle. Then, the proposed state estimation method is extended to obtain
the unknown states of the multiple-input–multiple-output bilinear system. The basic idea is to minimize the covari-
ance matrix of the state estimation errors and to obtain the optimal gain vector based on the delta operator. The main
contributions of this paper are listed as follows:

• present a bilinear state estimator for a bilinear state-space system disturbed by the process noise and the measurement
noise;

• apply the delta operator to minimize the state estimation error covariance matrix and compute the optimal gain vector;
• analyze the convergence of the proposed algorithm and demonstrate the performance of the state filter through a

numerical example.

The outline of this paper is as follows. Section 2 describes the state filtering problem of bilinear systems. According to
the extremum principle, the derivation of the bilinear state estimator for the single-input–single-output bilinear system is
presented in Section 3. Then, the extension of the state filtering method for the multiple-input–multiple-output bilinear
system is proposed to estimate the unknown states in Section 4. In Section 5, the performance of the proposed algorithms
is shown based on an illustrative example. Finally, some conclusions are given in Section 6.

2 PROBLEM STATEMENT

In this paper, the following symbols are exploited in such a way that the expression “A =∶ X ” or “X ∶= A” stands for “A
is defined as X ”, the superscript T denotes the matrix/vector transpose, the symbol I (In) stands for an identity matrix of
appropriate sizes (n × n), and 1n marks an n-dimensional column vector whose elements are all unity.

Consider a bilinear state-space model30-32

xk+1 = Axk + Bxkuk + f uk + wk, (1)

𝑦k = cxk + duk + vk, (2)

where xk ∈ Rn is the system state vector, uk ∈ R is the system input, 𝑦k ∈ R is the system output, vk ∈ R is an uncorrelated
random noise with zero mean, wk ∈ Rn is an uncorrelated process noise vector with zero mean, and A ∈ Rn×n, B ∈ Rn×n,
f ∈ Rn, c ∈ R1×n, and d ∈ R are the known parameters of the system.

Assume that wk and vk are uncorrelated and satisfy

(A1) E[wk] = 0,E[vk] = 0,E[wkvi] = 0,
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(A2) E[wkwT
s ] = 0, E[vkvs] = 0, k ≠ s,

(A3) E[wkwT
k ] = Rw ∈ Rn×n, E[v2

k] = Rv ∈ R.

Remark 1. It is well known that the standard KF is applied for linear system state filtering, which is not applicable
for nonlinear systems. In order to overcome this difficulty, one uses the EKF to linearize a nonlinear system function
by computing the partial derivative of the state and measurement equations to obtain the estimated states. Since the
bilinear systems are a special class of nonlinear systems, it is curious whether we can utilize the linearization method
to solve the state estimation problem for bilinear systems. The answer is no. The details are as follows.

The bilinear state-space model in (1)-(2) can be expressed as the following nonlinear model:

xk+1 = g(xk,uk) + wk, (3)

𝑦k = cxk + duk + vk, (4)

g(xk,uk) = Axk + Bxkuk + f uk. (5)

Then we use the linearization method for (3) and get a linear approximate model

xk+1 =
𝜕g(0, 0)
𝜕xk

xk +
𝜕g(0, 0)
𝜕uk

uk + wk

= Axk + f uk + wk. (6)

Remark 2. This linearization method is utilized in the iterative linear-quadratic-Gaussian method for locally-optimal
control and estimation of nonlinear stochastic systems.33 However, the linearization of the bilinear system leads to a
linear model and lost a bilinear term so it cannot describe the bilinear behavior of the original bilinear system. This
motivates us to study new state estimation methods to solve the state filtering problem for bilinear systems. The main
objectives of this paper lie in the following:

• to design a bilinear state estimator for the single-input–single-output bilinear system by minimizing the covariance
matrix of the state estimation errors based on the delta operator;

• to extend the proposed bilinear state filtering algorithm to multiple-input–multiple-output bilinear systems;
• to demonstrate the effectiveness of the proposed methods through the convergence analysis and the numerical

example.

3 THE BILINEAR STATE ESTIMATOR

In this section, we derive a bilinear state estimator based on the extremum principle for state estimation and choose a
suitable gain vector so that the state estimation error is minimal, which is similar to the requirement of the KF for the
linear case.

3.1 The derivation of the bilinear state estimator
Similar to the state observer, we construct a bilinear state estimator

x̂k+1 = Ax̂k + Bx̂kuk + f uk + Lk(𝑦k − cx̂k − duk), (7)

where x̂k is the state estimation vector of xk and Lk is the gain vector to be determined. Define the state estimation error

x̃k ∶= xk − x̂k. (8)

Then, we have
x̃k+1 = (A − Lkc)x̃k + Bx̃kuk + wk − Lkvk. (9)
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Then, we have

E[x̃k+1] = (A − Lkc)E[x̃k] + BE[x̃k]uk.

Define the state estimation error covariance matrix Pk as

Pk = E
[
x̃kx̃T

k
]
. (10)

Thus, Pk+1 can be expressed as

Pk+1 = E
[
x̃k+1x̃T

k+1
]

= (A − Lkc)E
[
x̃kx̃T

k
] (

AT − cTLT
k
)
+ (A − Lkc)E

[
x̃kx̃T

k
]

BTuk

+ BukE
[
x̃kx̃T

k
] (

AT − cTLT
k
)
+ BukE

[
x̃kx̃T

k
]

BTuk + Rw + LkRvLT
k . (11)

The aim is to choose an optimal gain vector Lk to minimize the state estimation error covariance matrix Pk+1. From (11),
we find that Pk+1 is complicated, and it is difficult to compute the partial derivative of Pk+1 with respect to Lk on the
condition that the order n ⩾ 2. Therefore, we first consider the scalar case that the system order n = 1, then we have

Pk+1 = E
[
x̃2

k+1
]

= (A − Lkc)2Pk + 2(A − Lkc)BukPk + Rw + L2
kRv + B2u2

kPk. (12)

Calculating the partial derivative of Pk+1 by Lk yields

𝜕Pk+1

𝜕Lk
= 2[A − Lkc]cPk − 2cBPkuk + 2LkRv = 0, (13)

which gives

Lk = AcPk + cBPkuk

c2Pk + Rv
. (14)

Suppose that n ⩾ 2. Equation (11) gives

Pk+1 = (A − Lkc)Pk
(

AT − cTLT
k + BTuk

)
+ Rw

+ BukPk
(

AT − cTLT
k + BTuk

)
+ LkRvLT

k . (15)

Remark 3. It is difficult in the matrix case to compute the partial derivative of (15). Li and Todorov33 computed the
partial derivative of the trace of the covariance matrix with respect to the gain vector for the purpose of computing the
optimal filter gain, which is different from the method in this paper. The basic idea of the derivation in this paper is to
minimize the magnitude of the estimation errors by introducing the delta operator to minimize the state estimation
error covariance matrix for the purpose of computing the optimal gain vector Lk.

Assume that Lk is the optimal gain vector to minimize the state estimation error covariance matrix Pk+1, that is,
Pk+1 is the minimal state estimation covariance matrix. Obviously, if there exists the departure 𝛿Lk from the filtering
gain vector to the optimal gain vector Lk, the estimation error covariance matrix obtained from (15) will deviate from
the minimal Pk+1 and reaches Pk+1 + 𝛿Pk+1, where 𝛿Pk+1 is the nonnegative definite matrix. From (15), we find that
Lk + 𝛿Lk and Pk+1 + 𝛿Pk+1 satisfy

Pk+1 + 𝛿Pk+1 = [A − (Lk + 𝛿Lk)c]Pk[AT − cT(Lk + 𝛿Lk)T + BTuk]
+ BukPk[AT − cT(Lk + 𝛿Lk)T + BTuk]
+ Rw + (Lk + 𝛿Lk)Rv(Lk + 𝛿Lk)T, (16)



ZHANG ET AL. 5

where Pk+1 and Lk satisfy (15). Substituting (15) into (16) gives

𝛿Pk+1 = (A − Lkc − 𝛿Lkc)Pk
(

AT − cTLT
k + BTuk − cT𝛿LT

k
)
+ BukPk

(
AT − cTLT

k + BTuk
)

− BukPkcT𝛿LT
k + Rw + LkRvLT

k + LkRv𝛿LT
k + 𝛿LkRvLT

k + 𝛿LkRv𝛿LT
k − Pk+1

= −𝛿Lk
(

cPkAT − cPkcTLT
k + cPkBTuk − RvLT

k
)

−
(

cPkAT − cPkcTLT
k + cPkBTuk − RvLT

k
)T
𝛿LT

k + 𝛿Lk(cPkcT + Rv)𝛿LT
k

= W k + WT
k + 𝛿Lk(cPkcT + Rv)𝛿LT

k , (17)

where W k ∶= −𝛿Lk(cPkAT − cPkcTLT
k + cPkBTuk − RvLT

k ). If we take

cPkAT − cPkcTLT
k + cPkBTuk − RvLT

k = 0,

then we can obtain
Lk = (A + Buk)PkcT(cPkcT + Rv)−1. (18)

Thus, we have Wk = 0 and
𝛿Pk+1 = 𝛿Lk(cPkcT + Rv)𝛿LT

k . (19)

Remark 4. From (19), we can see that cPkcT + Rv is nonnegative because Rv is nonnegative, Pk is nonnegative. If
𝛿Lk ≠ 0, then 𝛿Pk+1 is the nonnegative definite matrix. This explains that the nonnegative deviation 𝛿Pk+1 of the
minimal covariance matrix Pk+1 is generated when any departure 𝛿Lk affects the optimal gain vector Lk. Therefore,
Lk = (A+Buk)PkcT(cPkcT + Rv)−1 in (18) is the optimal gain vector, which makes the state estimation error covariance
matrix minimal.

To summarize, the bilinear state estimator is as follows:

x̂k+1 = Ax̂k + Bx̂kuk + f uk + Lk(𝑦k − cx̂k − duk), (20)

Lk = APkcT(cPkcT + Rv)−1 + BukPkcT(cPkcT + Rv)−1, (21)

Pk+1 = (A − Lkc + Buk)Pk
(

AT − cTLT
k + BTuk

)
+ Rw + LkRvLT

k . (22)

Let n = 1, Equation (21) reduces to

Lk = AcPk + cBPkuk

c2Pk + Rv
, (23)

which means Equation (14).

3.2 Theoretical analysis of the bilinear state estimator
From (9), we have

x̃k+1 = (Gk − Lkc)x̃k + 𝜼k, (24)

where
Gk ∶= A + Buk, (25)

𝜼k ∶= wk − Lkvk. (26)

In order to analyze the error dynamics, we give some lemmas.

Definition 1. If there exist real numbers 0 < 𝜚, 𝜍 < ∞ and 0 < 𝜙 < 1 such that

E{||x̃k||2} ⩽ 𝜚||x̃0||2𝜙k + 𝜍, k = 1, 2, 3, … , (27)

then the stochastic process x̃k is called exponentially bounded in mean square.
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Definition 2. If the stochastic process satisfies

sup
k⩾0

||x̃k|| < ∞, a.s., k = 1, 2, 3, … , (28)

then the stochastic process is said to be bounded with probability one.

Lemma 1. For the state estimation error in (9), if there exist a stochastic process Vk(x̃k) and real numbers 𝜒1, 𝜒2, 𝜇 > 0
and 0 < 𝛽 < 1 such that

𝜒1||x̃k||2 ⩽ Vk(x̃k) ⩽ 𝜒2||x̃k||2 (29)

and
E{Vk+1(x̃k+1)|x̃k} − Vk(x̃k) ⩽ 𝜇 − 𝛽Vk(x̃k) (30)

are fulfilled for every solution of (24), then the stochastic process is exponentially bounded in mean square, ie, we have

E{||x̃k||2} ⩽
𝜒2

𝜒1
||x̃0||2(1 − 𝛽)k + 𝜇

𝜒1

k−1∑
i=1

(1 − 𝛽)i (31)

⩽
𝜒2

𝜒1
||x̃0||2(1 − 𝛽)k + 𝜇

𝜒1𝛽
, k = 1, 2, 3, … . (32)

Moreover, the stochastic process Vk(x̃k) is bounded with probability one.34,35

Lemma 2. For the system in (1)-(2) and the bilinear state estimator in (20)-(22), assume the conditions that Gk is nonsin-
gular and there exist positive real numbers 0 < g, c1 < ∞ and p1, p2 > 0 such that ||Gk|| ⩽ g, ||c|| ⩽ c1, p1In ⩽ Pk ⩽ p2In
hold. Let 0 < 𝛽 ∶= 1 − 1∕[1 + q1

(g−gp2c2
1∕r)2

] < 1 and 𝜩k = P−1
k . Then, we have

(Gk − Lkc)T𝜩k+1(Gk − Lkc) ⩽ (1 − 𝛽)𝜩k, k = 1, 2, 3, … , (33)

with Lk given by (21).

Proof. From (21) and (22), we have
Pk+1 = GkPkGT

k + Rw + LkRvLT
k (34)

= (Gk − Lkc)Pk(Gk − Lkc)T + Rw + (Gk − Lkc)PkcTLT
k . (35)

Inserting (21) into (35) obtains

(Gk − Lkc)Pk = GkPk − GkPkcT(cPkcT + Rv)−1cPk. (36)

Multiplying both sides of (36) by G−1
k gives

G−1
k (Gk − Lkc)Pk = Pk − PkcT(cPkcT + Rv)−1cPk, (37)

which is a symmetric matrix. Then, we apply the matrix inversion lemma to obtain

G−1
k (Gk − Lkc)Pk =

(
P−1

k + cTR−1
v c

)−1
> 0 (38)

because P−1
k is positive definite. Moreover, since Pk,Rv > 0, from (21), we conclude that

Pk+1 ⩾ (Gk − Lkc)Pk(Gk − Lkc)T + Rw ⩾ Rw.

Inequality (38) implies that the inverse of the matrix Gk − Lkc exists and then we may obtain

Pk+1 ⩾ (Gk − Lkc)[Pk + (Gk − Lkc)−1Rw(Gk − Lkc)−T](Gk − Lkc)T. (39)

From (21), the conditions in Lemma 2, and cPkcT ⩾ 0, we have ||Lk|| ⩽ gp2c1
r

and obtain

Pk+1 ⩾ (Gk − Lkc)

[
Pk +

q1(
g − gp2c2

1∕r
)2 In

]
(Gk − Lkc)T. (40)
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Using the assumptions that Pk ⩾ p1In and Gk − Lkc is nonsingular, by taking the inverse of both sides of (40), and
premultiplying and postmultiplying by (Gk − Lkc)T and Gk − Lkc, we get

(Gk − Lkc)T𝜩k+1(Gk − Lkc) ⩽

[
Pk +

q1(
g − gp2c2

1∕r
)2 In

]−1

=

[
1 +

q1(
g − gp2c2

1∕r
)2

]−1

𝜩k

= (1 − 𝛽)𝜩k. (41)

The proof is completed.

Lemma 3. For the system in (1)-(2) and the state estimator in (20)-(22), assume that the initial estimation error satisfies||x̃0|| ⩽ 𝜀 and the covariance matrices of the noise terms are bounded via q1In ⩽ Rw ⩽ 𝛼In, r ⩽ Rv ⩽ 𝛼 for some
q1, r, 𝛼, 𝜀 > 0. Let 𝜩k = P−1

k and 𝜅n ∶= n∕p1 + (gp2c1)2∕(p1r2) > 0 independent of 𝛼. Then, we have

E
{
𝜼T

k𝜩k+1𝜼k
}
⩽ 𝜅n𝛼, k = 1, 2, 3, … , (42)

with 𝜼k given by (26).

Proof. Since the noises wk and vk are uncorrelated white noise, we establish the following relation:

𝜼T
k𝜩k+1𝜼k = (wk − Lkvk)T𝜩k+1(wk − Lkvk)

= wT
k𝜩k+1wk − wT

k𝜩k+1Lkvk − vkLT
k𝜩k+1wk + vkLT

k𝜩k+1Lkvk. (43)

Taking the expectation yields

E
{
𝜼T

k𝜩k+1𝜼k
}
= E

{
wT

k𝜩k+1wk
}
+ E

{
LT

k𝜩k+1Lkv2
k
}
. (44)

From (21), the conditions in Theorem 1, and cPkcT ⩾ 0, we have ||Lk|| ⩽ gp2c1∕r. Using (44) and cPkcT ⩾ 0, we obtain

E
{
𝜼T

k𝜩k+1𝜼k
}
⩽ 1

p1
E
{

wT
k wk

}
+

(gp2c1)2

p1r2 E
{

v2
k
}
. (45)

Using wT
k wk = tr[wkwT

k ] and combining the conditions (A1) to (A3), we have

E
{
𝜼T

k𝜩k+1𝜼k
}
⩽ 1

p1
tr[Rw] +

(gp2c1)2

p1r2 Rv. (46)

Then, using the conditions in Lemma 3 and the definition of 𝜅n, we have

E
{
𝜼T

k𝜩k+1𝜼k
}
⩽ 𝜅n𝛼.

The proof of Lemma 3 is finished.

Theorem 1. For the bilinear system in (1)-(2) and the bilinear state estimator in (20)-(22), assume that the conditions
in Lemma 2 and Lemma 3 hold. Let 𝜒1 = 1∕p1, 𝜒2 = 1∕p2, and 𝜇 = 𝜅n𝛼. For k = 1, 2, 3, … , the following inequalities
hold:

𝜒1||x̃k||2 ⩽ Vk(x̃k) ⩽ 𝜒2||x̃k||2, (47)

and
E{Vk+1(x̃k+1)|x̃k} − Vk(x̃k) ⩽ 𝜇 − 𝛽Vk(x̃k). (48)

Then, the state estimation error x̃k given by (8) is exponentially bounded in mean square and bounded with
probability one.
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Proof. Choose a nonnegative function Vk(x̃k) = x̃T
k𝜩kx̃k. From the conditions in Lemma 2, we have

1
p2

||x̃k||2 ⩽ Vk(x̃k) ⩽
1
p1

||x̃k||2.
For the purpose of satisfying the requirements of Lemma 1, we need an upper bound on E{Vk+1(x̃k+1)|x̃k}. From (24),
we have

Vk+1(x̃k+1) = [Gk − Lkcx̃k + 𝜼k]T𝜩k+1[Gk − Lkcx̃k + 𝜼k]. (49)

Applying Lemma 2 and combining Vk(x̃k) = x̃T
k𝜩kx̃k obtain

Vk+1(x̃k+1) ⩽ (1 − 𝛽)Vk(x̃k) + 𝜼T
k𝜩k+1𝜼k

+ x̃T
k (Gk − Lkc)T𝜩k+1𝜼k + 𝜼T

k𝜩k+1(Gk − Lkc)x̃k. (50)

Because the terms 𝜩k+1, Gk, Lkc, c, and x̃k are independent of 𝜼k. Taking the conditional expectation
E{Vk+1(x̃k+1)|x̃k} and applying Lemma 3 yield

E{Vk+1(x̃k+1)|x̃k} − Vk(x̃k) ⩽ 𝜅n𝛼 − 𝛽Vk(x̃k)
= 𝜇 − 𝛽Vk(x̃k),

for ||x̃k|| ⩽ 𝜀. According to Lemma 1, we conclude that the stochastic process Vk(x̃k) is exponentially bounded in
mean square and the stochastic process Vk(x̃k) is bounded with probability one. However, we must notice that the
supermartingale inequality

E{Vk+1(x̃k+1)|x̃k} − Vk(x̃k) ⩽ 𝜅n𝛼 − 𝛽Vk(x̃k) ⩽ 0 (51)

is fulfilled to guarantee the boundedness of the state estimation error for 𝜀′ ⩽ ||x̃k|| ⩽ 𝜀. Choosing 𝛼 ⩽ 𝛽𝜀′2

𝜅np1
, we have

𝜅n𝛼 ⩽ 𝛽
1
p1

𝜀′2 ⩽ 𝛽
1
p1

||x̃k||2 ⩽ 𝛽Vk(x̃k),

then Inequality (51) holds. Thus, we conclude that the state estimation error x̃k remains bounded if the certain
conditions are satisfied. The proof of Theorem 1 is finished.

In general, covariance matrix Rw of the process noise vector wk and the variance Rv of the observation noise vk in
(21)-(22) are unknown. Therefore, the unknown Rw and Rv in (21)-(22) may be replaced with their estimates R̂w,k and
R̂v,k, ie,

R̂w,k = 1
k

k∑
𝑗=1

(x̂𝑗+1 − Ax̂𝑗 − Bx̂𝑗u𝑗 − f u𝑗)(x̂𝑗+1 − Ax̂𝑗 − Bx̂𝑗u𝑗 − f u𝑗)T ∈ R
n×n, (52)

R̂v,k = 1
k

k∑
𝑗=1

(𝑦𝑗 − cx̂𝑗 − du𝑗)2 ∈ R. (53)

Replacing Rv and Rw with their estimates R̂v,k and R̂w,k obtains the bilinear state estimator. The steps of computing
the state estimate R̂k in (20)-(22) and (52)-(53) are listed in the following.

1. Let k = 1, set the initial values x̂1 = 1n, P1 = In, uk−i = 0, and yk−i = 0, for i = 1, 2, … ,n, and the system parameters
A,B, f, c, and d.

2. Collect the input-output data uk and yk.
3. Compute the gain vector Lk by (21) and the covariance matrix Pk+1 by (22).
4. Update the state estimates x̂k+1 by (20).
5. Compute the covariance matrix R̂w,k by (52) and the variance R̂v,k by (53).
6. Increase k by 1 and go to Step 2 and continue the recursive calculation.
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4 EXTENSION FOR THE MULTIVARIATE BILINEAR SYSTEM

In this section, we consider the following multiple-input–multiple-output bilinear system:

xk+1 = Axk +
m∑

i=1
Bixkui,k + f uk + wk, (54)

yk = cxk + duk + vk, (55)

where xk ∈ Rn is the system state vector, uk ∈ Rm is the system input vector, yk ∈ Rl is the system output vector, vk ∈ Rl

is an uncorrelated random noise vector with zero mean, wk ∈ Rn is an uncorrelated process noise vector with zero mean,
and A ∈ Rn×n, Bi ∈ Rn×n, f ∈ Rn×m, c ∈ Rl×n, and d ∈ Rl×m are the parameter matrices of the system.

Assume that the state estimation algorithm adopts as follows:

x̂k+1 = Ax̂k +
m∑

i=1
Bix̂kui,k + f uk + L1,k(yk − cx̂k − duk), (56)

where L1,k ∈ Rn×l is the gain matrix. Then, the state estimation error vector is formed as

x̃k+1 = (A − L1,kc)x̃k + wk − L1,kvk. (57)

Define the state estimation error covariance matrix

P1,k+1 ∶= E
[
x̃k+1x̃T

k+1
]
. (58)

Hence, we have

P1,k+1 = (A − L1,k)P1,k

[
(A − L1,kc)T +

m∑
i=1

BT
i ui,k

]

+
m∑

i=1
BiP1,k

[
(A − L1,kc)Tui,k + ui,k

m∑
𝑗=1

BT
𝑗 u𝑗,k

]
+ Rw + L1,kRvLT

1,k. (59)

Similarly, introducing the departure 𝛿L1,k from the filtering gain vector to the optimal gain vector makes the estimation
error covariance matrix obtained from (59) reach P1,k+1 + 𝛿P1,k+1. 𝛿P1,k+1 is the nonnegative definite matrix. From (59),
we find that L1,k + 𝛿L1,k and P1,k+1 + 𝛿P1,k+1 satisfy

P1,k+1 + 𝛿P1,k+1 = [A − (L1,k + 𝛿L1,k)c]P1,k

[
AT − cT(L1,k + 𝛿L1,k)T +

m∑
i=1

BT
i ui,k

]

+
m∑

i=1
BiP1,k

{
[AT − cT(L1,k + 𝛿L1,k)T]ui,k + ui,k

m∑
𝑗=1

BT
𝑗 u𝑗,k

}

+ Rw + (L1,k + 𝛿L1,k)Rv(L1,k + 𝛿L1,k)T, (60)
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where P1,k+1 and L1,k satisfy (59). Substituting (59) into (60) obtains

𝛿P1,k+1 = (A − L1,kc − 𝛿L1,kc)P1,k

(
AT − cTLT

1,k − cT𝛿LT
1,k +

m∑
i=1

BT
i ui,k

)

+
m∑

i=1
BiP1,k

(
ATui,k − cTLT

1,k + ui,k

m∑
𝑗=1

BT
𝑗 u𝑗,k − cT𝛿LT

1,kui,k

)
+ Rw + L1,kRvLT

1,k

+ L1,kRv𝛿LT
1,k + 𝛿L1,kRvLT

1,k + 𝛿L1,kRv𝛿LT
1,k − P1,k+1

= −𝛿L1,k

(
cP1,kAT − cP1,kcTLT

1,k + cP1,k

m∑
i=1

BT
i ui,k − RvLT

1,k

)

−

(
cP1,kAT − cP1,kcTLT

1,k + cP1,k

m∑
i=1

BT
i ui,k − RvLT

1,k

)T

𝛿LT
1,k + 𝛿L1,k(cP1,kcT + Lv)𝛿LT

1,k

= W k + WT
k + 𝛿L1,k(cP1,kcT + Rv)𝛿LT

1,k, (61)

where

W k ∶= −𝛿L1,k

(
cP1,kAT − cP1,kcTLT

1,k + cP1,k

m∑
i=1

BT
i ui,k − RvLT

1,k

)
. (62)

Taking

cP1,kAT − cP1,kcTLT
1,k + cP1,k

m∑
i=1

BT
i ui,k − RvLT

1,k = 0

obtains the optimal gain matrix

L1,k =

(
PA1,kcT + P1,kcT

m∑
i=1

Biui,k

)
(cP1,kcT + Rv)−1. (63)

Thus, we have
𝛿P1,k+1 = 𝛿L1,k(cP1,kcT + Rv)𝛿LT

1,k. (64)

According to the explanation in Remark 4, we can conclude that L1,k in (63) is the optimal gain vector
that makes the state estimation error covariance matrix minimal. Then, the bilinear state estimator for the
multiple-input–multiple-output bilinear system is as follows:

x̂k+1 = Ax̂k +
m∑

i=1
Bix̂kui,k + f uk + L1,k(yk − cx̂k − duk), (65)

L1,k =

(
AP1,kcT + P1,kcT

m∑
i=1

Biui,k

)
(cP1,kcT + Rv)−1, (66)

P1,k+1 = (A − L1,k)P1,k

[
(A − L1,kc)T +

m∑
i=1

BT
i ui,k

]

+
m∑

i=1
BiP1,k

[
(A − L1,kc)Tui,k + ui,k

m∑
𝑗=1

BT
𝑗 u𝑗,k

]
+ Rw + L1,kRvLT

1,k. (67)

Replacing the unknown Rw and Rv in (66)-(67) with their estimates R̂w,k and R̂v,k obtains the following:

x̂k+1 = Ax̂k +
m∑

i=1
Bix̂kui,k + f uk + L1,k(yk − cx̂k − duk), (68)
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L1,k =

(
AP1,kcT + P1,kcT

m∑
i=1

Biui,k

)
(cP1,kcT + R̂v,k)−1, (69)

P1,k+1 = (A − L1,k)P1,k

[
(A − L1,kc)T +

m∑
i=1

BT
i ui,k

]
+

m∑
i=1

BiP1,k

[
(A − L1,kc)Tui,k + ui,k

m∑
𝑗=1

BT
𝑗 u𝑗,k

]
+ R̂w,k + L1,kR̂v,kLT

1,k, (70)

R̂w,k = 1
k

k∑
𝑗=1

[
x̂𝑗+1 − Ax̂𝑗 −

m∑
i=1

Bix𝑗ui,𝑗 − f u𝑗

][
x̂𝑗+1 − Ax̂𝑗 −

m∑
i=1

Bix𝑗ui,𝑗 − f u𝑗

]T

∈ R
n×n, (71)

R̂v,k = 1
k

k∑
𝑗=1

[y𝑗 − cx̂𝑗 − du𝑗][y𝑗 − cx̂𝑗 − du𝑗]T ∈ R
l×l. (72)

Equations (68)-(72) form the state estimation algorithm for the multiple-input–multiple-output bilinear system in
(54)-(55). The proposed methods can be used to study parameter estimation and state filtering of linear systems36-40 and
nonlinear systems with colored noise.41-43

5 EXAMPLE

The numerical example is selected to test the effectiveness of the proposed bilinear state estimator. Consider the following
bilinear system:

xk+1 = Axk + Bxkuk + f uk + wk,

𝑦k = cxk + duk + vk.

In simulation, input {uk} is taken as a persistently excited signal, and {vk} and {wk} as uncorrelated Gaussian white noise
sequence with zero mean and variance Rv and Rw, respectively. The initial values include x̂1 = 1n, P1 = In.

Case I: Consider a second-order bilinear state-space system, whose parameters are

A =
[

0.20 0.25
0.25 −0.35

]
, B =

[
0.20 −0.15
0.10 −0.17

]
,

f =
[
−0.45
−0.25

]
, c = [0.30, 0.25], d = 0.70.

In simulation, input {uk} is taken as a persistent excitation signal sequence with zero mean and unit variance. The covari-
ance matrix of the process noise wk is Rw, and the variance of the measurement noise vk is Rv. Figure 1 shows the simulated
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FIGURE 1 System input uk, output yk, and its estimate 𝑦̂k [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 The state estimate x̂1,k and the estimation errors versus k (Rv = 0.202, Rw = 0.102I2) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 The state estimate x̂2,k and the estimation errors versus k (Rv = 0.202, Rw = 0.102I2) [Colour figure can be viewed at
wileyonlinelibrary.com]

input-output data and the predicted output data. Figure 2 shows the true states x1,k and its estimated value x̂1,k and their
estimation errors computed by x̂1,k − x1,k and (x̂1,k − x1,k)2. Figure 3 shows the true state x̂2,k and its estimate x̂2,k and
their estimation errors x̂2,k − x2,k and (x̂2,k − x2,k)2. Then, the root mean square error (RMSE) is used to describe the error
between the true state xi,k and its estimated value x̂i,k, and the error between the true output yk and its predicted output
𝑦̂k, which are defined as

Errorx =

{
1
L

L∑
k=1

[x̂i,k − xi,k]2

}1∕2

,

Error𝑦 =

{
1
L

L∑
k=1

[𝑦̂k − 𝑦k]2

}1∕2

.

To show the influence of the noise level on the proposed algorithm, we study the bilinear state estimator in (20)-(22) with
the noise variances Rv = 0.102 and Rw = 0.102I2, Rv = 0.152 and Rw = 0.102I2, Rv = 0.202 and Rw = 0.102I2, Rv = 0.252

and Rw = 0.102I2, Rv = 0.302 and Rw = 0.102I2. The RMSE results are shown in Table 1.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 1 The root mean square errors
(RMSEs) under different noise levels

Noise Level RMSE
Rv Rw x1,k x2,k yk

0.102 0.102I2 0.08545 0.07354 0.14067
0.152 0.102I2 0.08549 0.07346 0.18116
0.202 0.102I2 0.08548 0.07341 0.22609
0.252 0.102I2 0.08546 0.07338 0.27327
0.302 0.102I2 0.08544 0.07336 0.32173
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FIGURE 4 System input uk, output yk, and its estimate 𝑦̂k [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 The state estimate x̂1,k and the estimation errors versus k (Rv = 0.202, Rw = 0.102I3) [Colour figure can be viewed at
wileyonlinelibrary.com]

Case II: Consider a third-order bilinear state-space system, whose parameters are

A =

[ 0.38 −0.15 −0.21
0.20 −0.35 −0.15
0.32 −0.25 −0.20

]
, f =

[−0.45
−0.65
−0.35

]
,

B =

[ 0.20 −0.15 −0.05
0.19 −0.15 −0.10
0.15 −0.15 −0.10

]
, d = 0.20, c = [0.30, 0.25, 0.15]. (73)

http://wileyonlinelibrary.com
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FIGURE 6 The state estimate x̂2,k and the estimation errors versus k (Rv = 0.202, Rw = 0.102I3) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 7 The state estimate x̂3,k and the estimation errors versus k (Rv = 0.202, Rw = 0.102I3) [Colour figure can be viewed at
wileyonlinelibrary.com]

Assume that the covariance matrix of the process noise wk is Rw = 0.10I3, and the variance of the measurement noise
vk is Rv = 0.20. The simulation conditions are same as Case I. The proposed bilinear state estimator is used to obtain
the state estimates. Figure 4 shows the system input-output data and the estimated output. Figures 5 to 7 show the true
system states x1,k, x2,k, and x3,k, the estimated states x̂1,k, x̂2,k, and x̂3,k, and their estimation errors x̂1,k−x1,k and (x̂1,k − x1,k)2,
x̂2,k − x2,k and (x̂2,k − x2,k)2, and x̂3,k − x3,k and (x̂3,k − x3,k)2. Under different noise levels Rv = 0.102 and Rw = 0.102I3,
Rv = 0.152 and Rw = 0.102I3, Rv = 0.202 and Rw = 0.102I3, Rv = 0.252 and Rw = 0.102I3, Rv = 0.302 and Rw = 0.102I3, the
RMSEs between the true state xi,k and its estimated value x̂i,k, and the error between the true output yk and its predicted
output 𝑦̂k are shown in Table 2.

From Figures 1 to 7 and Tables 1 to 2, we can draw the following conclusions.

• The bilinear state estimator has good performance because the estimated states are close to their true values with k
increasing and the estimation errors between the true states and the estimated states are quite small (see Figures 2 and
3 and Figures 5 to 7).

• The bilinear state estimator can generate good estimates because the estimated output is close to the true out-
put and the RMSEs under different noise levels are close to the noise standard deviation (see Tables 1 and 2, and
Figures 1 and 4).

http://wileyonlinelibrary.com
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TABLE 2 The root mean square errors (RMSEs) under
different noise levels

Noise Level RMSE
Rv Rw x1,k x2,k x3,k yk

0.102 0.102I3 0.10490 0.11541 0.09902 0.12590
0.152 0.102I3 0.10497 0.11550 0.09908 0.16902
0.202 0.102I3 0.10502 0.11555 0.09911 0.21551
0.252 0.102I3 0.10506 0.11559 0.09913 0.26359
0.302 0.102I3 0.10509 0.11563 0.09914 0.31253

6 CONCLUSIONS

This paper proposes a bilinear state estimator for the single-input–single-output bilinear state-space system based on the
delta operator. Different from the previous linearization method like Taylor expansion, we take use of the special structure
of the bilinear system and propose the state filtering algorithm to obtain the unknown states by minimizing the covariance
matrix of the state estimation errors based on the extremum principle. Moreover, the bilinear state estimator is extended
for the multiple-input–multiple-output bilinear system. Finally, the convergence analysis and the simulation results show
that the proposed state estimator has good performance in the state estimation of bilinear systems. The methods proposed
in this paper can combine some statistical optimal strategies44-47 to study the parameter estimation algorithms of linear
and nonlinear systems48-52 and can be applied to other fields,53-59 such as fault detection, image processing, and sliding
mode control.60-63
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