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Abstract: System identification provides many convenient and useful methods for engineering modeling. This paper targets the
parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence
of the colored noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and
to transform the original system into a filtered system with white noises. Then we decompose the filtered system into several
subsystems and develop a filtering based partially-coupled generalized extended stochastic gradient algorithm via the coupling
concept. In contrast to the multivariable generalized extended stochastic gradient algorithm, the proposed algorithm can give more
accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples.

1 Introduction

Mathematical models can describe the dynamic behavior of a sys-
tem as a function of time and exist in various fields, such as
fault diagnosis [1, 2], telecommunication transmission [3–5], con-
trol system [6, 7] and signal processing [8, 9]. In most cases, it is
not easy to analyse the whole system and to construct the mathe-
matical model based on the analytic approach. Therefore, system
identification becomes the first choice when people model a system
[10–12], and has a wide application in both linear [13] and nonlinear
systems [14–17]. For the multiple-input and multiple-output Box-
Jenkins model with disturbances, a two-stage identification method
was developed by using the residual model of Kalman filter [18].
Separating the parameters to be estimated into a linear part and a
nonlinear part is a common idea to solve the nonlinear least squares
problems. Based on this method, Gan et al. eliminated the linear
parameters through the orthogonal projection and presented a vari-
able projection algorithm for the radial basis function network-based
autoregressive with exogenous inputs model [19].

During the past decade, a great deal of attention has been given
to multivariable system identification [20, 21] for the reason that
many modern industrial processes are multivariable systems [22].
Applying the scalar system identification methods to multivariable
systems may give poor performances, because multivariable systems
have high-dimensional variables, complicated structures and many
uncertain disturbances [23]. It attracts an increasing interest for
researchers to explore more valid methods for multivariable systems
[24, 25]. When dealing with the multivariable systems with colored
noises, the data filtering technique can be applied to reduce the influ-
ence of the noise and improve the estimation accuracy [26–28]. In
[29], a filtering based multi-innovation extended stochastic gradi-
ent algorithm was developed for improving the parameter estimation
accuracy of the multivariable system with the moving average noise.

To simplify the identification model for multivariable systems, the
hierarchical identification principle provides a new idea to this prob-
lem [30, 31]. The hierarchical identification, which is also known as

the decomposition identification, is to decompose a large-scale sys-
tem into several small size subsystems with fewer variables. How-
ever, after the decomposition of some multivariable systems, there
are some parameter coupled relations between the subsystems. In
this case, we link the parameter estimates inside the subsystems and
identify each subsystem based on the coupling identification concept
[32]. The coupling identification concept can avoid the redundant
estimates and improve the computational efficiency for multivariable
systems. In this literature, Ding et al. combined the coupling con-
cept and the gradient search to estimate the non-uniformly sampled
systems and obtained a highly computational efficiency algorithm
[33]. For nonlinear multivariable output-error moving average sys-
tems, a partially coupled extended stochastic gradient algorithm was
presented by using the decomposition technique and the coupling
concept [34]. In the previous work [35], we applied the hierar-
chical identification principle to multivariable system and used the
coupling concept to solve the redundant computation.

This work studies the recursive identification methods of multi-
variable equation-error autoregressive moving average systems by
using the data filtering technique and the coupling identification con-
cept. In view of the colored noises, we first design a filter according
to the model structure. By filtering the input-output data, the multi-
variable system is divided into a noise model and a filtered system
model. Next, the filtered system model is decomposed into sev-
eral sub-models on the basis of the number of outputs. However,
a major challenge encountered in estimating the parameters is that
there are some unmeasurable variables inside the noise system and
the sub-models. To obtain the feasible algorithm, we establish some
auxiliary models and replace the unknown variables with the outputs
of these models. Then, a filtering based partially-coupled general-
ized extended stochastic gradient (F-PC-GESG) algorithm is derived
by using the coupling concept and the auxiliary model. Compared
with the multivariable generalized extended stochastic gradient (M-
GESG) algorithm, the F-PC-GESG algorithm gives more accurate
parameter estimates under the same noise level. In addition, we
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introduce a forgetting factor to improve the performance of the
F-PC-GESG algorithm.

The outline of this paper is as follows. The symbols and the iden-
tification model for the multivariable equation-error autoregressive
moving average system are given in Section 2. Section 3 derives
the filtered identification models and presents the F-PC-GESG
algorithm based on the data filtering technique and the coupling con-
cept. Section 4 proposes the M-GESG algorithm and gives some
comparisons with the F-PC-GESG algorithm. The numerical simula-
tions are shown to verify the effectiveness of the proposed algorithms
in Section 5. Section 6 offers some concluding remarks to end the
paper.

2 Problem formulation

In this section, we state the identification problems and derive the
hierarchical identification model for multivariable equation-error
autoregressive moving average systems. Let us start by introducing
some symbols used in this paper. “A =: X” or “X := A” stands for
“A is defined as X”; the superscript T stands for the vector/matrix
transpose; the symbol Im denotes an identity matrix of appropri-
ate size (m×m); 1m stands for an m-dimensional column vector
whose elements are 1; 1m×n represents a matrix of size m× n
whose elements are 1; the symbol ⊗ represents the Kronecker
product, for example, A := aij ∈ Rm×n, B := bij ∈ Rp×q , A⊗
B = [aijB] ∈ R(mp)×(nq), in general,A⊗B ̸= B ⊗A; col[X]
is defined as a vector formed by all columns of matrix X and
arranged in order, for example, X := [x1,x2, · · · ,xn] ∈ Rm×n,
xi ∈ Rm(i = 1, 2, · · · , n), col[X] := [xT

1,x
T
2, · · · ,xT

n]
T ∈ Rmn;

θ̂(t) denotes the estimate of θ at time t; the norm of a matrix (or a
column vector)X is defined by ∥X∥2 := tr[XXT].

Consider the following multivariable equation-error autoregres-
sive moving average system which is also called the multi-
variable controlled autoregressive autoregressive moving average
(CARARMA) system:

A(z)y(t) = B(z)u(t) +
D(z)

C(z)
v(t), (1)

where y(t) := [y1(t), y2(t), · · · , ym(t)]T ∈ Rm refers to the m-
dimensional output vector, u(t) := [u1(t), u2(t), · · · , ur(t)]T ∈
Rr denotes the r-dimensional input vector, v(t) := [v1(t), v2(t),
· · · , vm(t)]T ∈ Rm is a white noise vector, A(z) and B(z)
are matrix polynomials in the unit backward shift operator z−1

[z−1u(t) = u(t− 1)], C(z) and D(z) are scalar polynomials in
z−1, and they are defined as

A(z) := Im +A1z
−1 +A2z

−2 + · · ·+Anaz
−na ,

B(z) :=B1z
−1 +B2z

−2 + · · ·+Bnbz
−nb ,

C(z) := 1 + c1z
−1 + c2z

−2 + · · ·+ cncz
−nc ,

D(z) := 1 + d1z
−1 + d2z

−2 + · · ·+ dndz
−nd .

Define an intermediate variable

w(t) :=
D(z)

C(z)
v(t). (2)

Let n := mna + rnb, define the parameter matrix θ, the parameter
vector ρ, the information vector φ(t) and the information matrix
ψ(t) as

θT := [A1,A2, · · · ,Ana ,B1,B2, · · · ,Bnb ] ∈ Rm×n,

ρ := [c1, c2, · · · , cnc , d1, d2, · · · , dnd ]
T ∈ Rnc+nd ,

φ(t) := [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),

uT(t− 1),uT(t− 2), · · · ,uT(t− nb)]
T ∈ Rn,

ψ(t) := [−w(t− 1),−w(t− 2), · · · ,−w(t− nc),

v(t− 1),v(t− 2), · · · ,v(t− nd)] ∈ Rm×(nc+nd).

Through the above definitions, w(t) can be expressed as different
forms,

w(t) = [1− C(z)]w(t) +D(z)v(t)

=−
nc∑
i=1

ciw(t− i) +

nd∑
i=1

div(t− i) + v(t)

=ψ(t)ρ+ v(t). (3)

According to (1) and (2),w(t) can also be described as

w(t) =A(z)y(t)−B(z)u(t)

= y(t)− θTφ(t). (4)

Substituting (2)–(4) into (1), we can obtain the following hierarchi-
cal identification model,

y(t) = [Im −A(z)]y(t) +B(z)u(t) +w(t)

= θTφ(t) +w(t)

=ψ(t)ρ+ θTφ(t) + v(t). (5)

Equation (5) has a parameter vector ρ and a parameter matrix θ. In
order to simplify the model in (5), combine the information vector
φ(t) with the information matrix ψ(t) to construct an information
matrix Φ(t) by means of the Kronecker product:

Φ(t) := [ψ(t),φT(t)⊗ Im] ∈ Rm×n0 , n0 := nc + nd +mn.

Define a new parameter vector:

ϑ :=

[
ρ

col[θT]

]
∈ Rn0 .

Then Equation (5) can be rewritten as a pseudo-linear regressive
model:

y(t) = Φ(t)ϑ+ v(t). (6)

Equation (6) is the identification model for the multivariable
CARARMA system in (1).
Remark 1: For the identification model in (6), the parameter vector
ϑ contains all the parameters to be estimated. Although some algo-
rithms can estimate the parameter vector ϑ, the high-dimensional
parameter vector and information matrix result in a heavy compu-
tational burden and poor performance of these algorithms. On the
other hand, the information matrix Φ(t) consists of the unknown
intermediate variables w(t− j) and the noise terms v(t− j). The
objective of this paper is to present a new effective algorithm using
the observation datau(t) and y(t). By employing the coupling iden-
tification concept and the data filtering technique, the new algorithm
can deal with the unknown variables and give more accurate param-
eter estimates for the multivariable CARARMA system in (1). Since
this paper focuses on the parameter estimation, we assume that the
orders and the initial values are known, that is to say, the orders m, r,
na, nb, nc and nd are known and y(t) = 0, u(t) = 0 and v(t) = 0
for t 6 0.

3 The filtering based partially-coupled
generalized extended stochastic gradient algorithm

It is worth noting that the system considered in this paper is disturbed
by the autoregressive moving average noise (i.e., colored noise). In
order to reduce the impact of the noise, we introduce the data fil-
tering technique here to obtain more accurate estimates. The basic
idea is to use a filter to filter the input-output data and to decompose
the original identification model into two models which contain a
filtered system model and a noise model. Then we further divide the
system model into a series of subsystems according to the number of
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outputs and identify each subsystem based on the coupled relations
in part of the parameters between subsystems. From the above-
mentioned idea, we deduce the filtering based partially-coupled
generalized extended stochastic gradient (F-PC-GESG) algorithm in
this section.

Define the filtered input vectoruf(t) and the filtered output vector
yf(t) as

uf(t) := C(z)u(t) ∈ Rr,

yf(t) := C(z)y(t) ∈ Rm.

Multiplying both sides of (1) by C(z) gives

A(z)C(z)y(t) = B(z)C(z)u(t) +D(z)v(t),

or
A(z)yf(t) = B(z)uf(t) +D(z)v(t). (7)

Define the noise parameter vector d, the information matrix ϕ(t)
and the filtered information vector φf(t):

d := [d1, d2, · · · , dnd ]
T ∈ Rnd ,

ϕ(t) := [v(t− 1),v(t− 2), · · · ,v(t− nd)] ∈ Rm×nd ,

φf(t) := [−yT
f (t− 1),−yT

f (t− 2), · · · ,−yT
f (t− na),

uT
f (t− 1),uT

f (t− 2), · · · ,uT
f (t− nb)]

T ∈ Rn.

Then Equation (7) can be modified as

yf(t) = [Im −A(z)]yf(t) +B(z)uf(t) +D(z)v(t)

= ϕ(t)d+ θTφf(t) + v(t). (8)

Let ϕT
i (t) ∈ R1×nd be the ith row of the information matrix ϕ(t):

ϕ(t) := [ϕ1(t),ϕ2(t), · · · ,ϕm(t)]T ∈ Rm×nd .

Similarly, let θi(t) ∈ Rn be the ith column of the parameter matrix
θ and yfi(t) be the ith element of the filtered output vector yf(t),
that is

θ := [θ1,θ2, · · · ,θm] ∈ Rn×m,

yf(t) := [yf1(t), yf2(t), · · · , yfm(t)]T ∈ Rm.

Equation (8) can be explicitly written as
yf1(t)
yf2(t)

...
yfm(t)

 =


ϕT
1(t)
ϕT
2(t)
...

ϕT
m(t)

d+


θT
1
θT
2
...
θT
m

φf(t) +


v1(t)
v2(t)

...
vm(t)

 . (9)

Then we can decompose the filtered system in (9) into m filtered
subsystem identification models

yfi(t) = ϕ
T
i (t)d+ θT

iφf(t) + vi(t)

= ϕT
i (t)d+φT

f (t)θi + vi(t)

= [ϕT
i (t),φ

T
f (t)]

[
d
θi

]
+ vi(t), i = 1, 2, · · · ,m. (10)

Define the subsystem information vector

ψi(t) :=

[
ϕi(t)
φf(t)

]
∈ Rn+nd .

The filtered subsystems in (10) can be expressed as

yfi(t) = ψ
T
i (t)

[
d
θi

]
+ vi(t). (11)

From the definition ofw(t), we can obtain

C(z)w(t) = D(z)v(t). (12)

Rewrite Equation (12) as the following form

w(t) = Ω(t)c+ ϕ(t)d+ v(t),

where Ω(t) is the noise information matrix and c is the noise
parameter vector:

Ω(t) := [−w(t− 1),−w(t− 2), · · · ,−w(t− nc)] ∈ Rm×nc ,

c := [c1, c2, · · · , cnc ]
T ∈ Rnc .

Define an intermediate variable wn(t) := w(t)− ϕ(t)d ∈ Rm.
Then another similar formula can be derived forwn(t):

wn(t) = Ω(t)c+ v(t). (13)

Equations (11) and (13) are the filter hierarchical subsystem identifi-
cation model and the noise model for the multivariable CARARMA
system in (1). Compared with the identification model in (6), the fil-
ter identification models divide the system parameters into two parts,
Equation (11) contains the parameter vectors θi and d, and the noise
vector c is in the noise model (13). Note that the filtered subsystem
identification model is disturbed by the white noise v(t), in other
word, we transform the origin system in (1) which has colored noise
to m filtered subsystem models with white noise and a noise model.

Based on the filtered subsystem identification model (11) and the
noise model (13), using the negative gradient search principle gives[

d̂(t)

θ̂i(t)

]
=

[
d̂(t− 1)

θ̂i(t− 1)

]
+
ψi(t)

r1(t)

×
{
yfi(t)−ψT

i (t)

[
d̂(t− 1)

θ̂i(t− 1)

]}
, (14)

r1,i(t) = r1,i(t− 1) + ∥ψi(t)∥
2, (15)

ĉ(t) = ĉ(t− 1) +
ΩT(t)

r2(t)
[wn(t)−Ω(t)ĉ(t− 1)], (16)

r2(t) = r2(t− 1) + ∥Ω(t)∥2. (17)

Note that the information vector ψi(t) (i = 1, 2, · · · ,m) contains
the unknown variable v(t− j), and the information matrix Ω(t)
is made of the unmeasured intermediate variable w(t− j). More-
over, since the parameter vector c is unknown, we cannot obtain
the filtered input vector uf(t) and the filtered output vector yf(t).
All these imply that the above relations are impossible to generate
the estimates d̂(t), θ̂i(t) and ĉ(t) directly. The solution here is to
replace the unknown variables w(t− j) and v(t− j) with the out-
puts ŵ(t− j) and v̂(t− j) of the auxiliary models. Then we can
obtain the estimates ofΩ(t) and ϕ(t):

Ω̂(t) := [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc)] ∈ Rm×nc ,

ϕ̂(t) := [v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)]

= [ϕ̂1(t), ϕ̂2(t), · · · , ϕ̂m(t)]T ∈ Rm×nd .

According to Equation (4), replacing θ with its estimate θ̂(t) gives

ŵ(t) = y(t)− θ̂
T
(t)φ(t).

From the definition of the intermediate variable wn(t), replacing
w(t) and d with ŵ(t− 1) and d̂(t− 1) gives

ŵn(t) = ŵ(t− 1)− ϕ̂(t)d̂(t− 1)

= y(t)− θ̂
T
(t− 1)φ(t)− ϕ̂(t)d̂(t− 1).

IET Research Journals, pp. 1–9
c⃝ The Institution of Engineering and Technology 2015 3



Use the parameter estimate

ĉ(t) := [ĉ1(t), ĉ2(t), · · · , ĉnc(t)]
T ∈ Rnc×1

to construct the estimate of C(z):

Ĉ(t, z) = 1 + ĉ1(t)z
−1 + ĉ2(t)z

−2 + · · ·+ ĉnc(t)z
−nc .

Here, we use the filter Ĉ(t, z) to filter the input vector and the output
vector, and obtain the estimates of the filtered input vector uf(t) and
the filtered output vector yf(t):

ûf(t) = Ĉ(t, z)u(t)

= u(t) + ĉ1(t)u(t− 1) + · · ·+ ĉnc(t)u(t− nc)

= u(t) + [u(t− 1),u(t− 2), · · · ,u(t− nc)]ĉ(t),

ŷf(t) = Ĉ(t, z)y(t)

= y(t) + ĉ1(t)y(t− 1) + · · ·+ ĉnc(t)y(t− nc)

= y(t) + [y(t− 1),y(t− 2), · · · ,y(t− nc)]ĉ(t)

= [ŷf1(t), ŷf2(t), · · · , ŷfm(t)]T.

Then the estimate of φf(t) can be defined as

φ̂f(t) := [−ŷT
f (t− 1),−ŷT

f (t− 2), · · · ,−ŷT
f (t− na),

ûT
f (t− 1), ûT

f (t− 2), · · · , ûT
f (t− nb)]

T ∈ Rn.

Subsequently, the information vector ψ̂i(t) is constructed by using
ϕ̂i(t) and φ̂f(t):

ψ̂i(t) =

[
ϕ̂i(t)
φ̂f(t)

]
∈ Rn+nd .

According to Equation (8), replacing yf(t), ϕ(t) and φf(t) with
their estimates ŷf(t), ϕ̂(t) and φ̂f(t), we can get the estimate of
v(t):

v̂(t) = ŷf(t)− ϕ̂(t)d̂(t)− θ̂
T
(t)φ̂f(t). (18)

Besides the unknown variables involved in (14)–(17), there is still
a problem that each subsystem will produce a parameter estimation
vector d̂(t) of the same parameter vector d at each time t. In order
to make it clear, we use d̂i(t) to represent the estimate of Subsystem
i. Then, replace yfi(t) and ψi(t) in (14)–(15) with their estimates
ŷfi(t) and ψ̂i(t), and replace wn(t) and Ω(t) in (16)–(17) with
their estimates ŵn(t) and Ω̂(t). Through these replacement, we
modify Equations (14)–(17) as[

d̂i(t)

θ̂i(t)

]
=

[
d̂i(t− 1)

θ̂i(t− 1)

]
+
ψ̂i(t)

r1,i(t)

×
{
ŷfi(t)− ψ̂

T
i (t)

[
d̂i(t− 1)

θ̂i(t− 1)

]}
, (19)

r1,i(t) = r1,i(t− 1) + ∥ψ̂i(t)∥
2, i = 1, 2, · · · ,m, (20)

ĉ(t) = ĉ(t− 1) +
Ω̂

T
(t)

r2(t)
[ŵn(t)− Ω̂(t)ĉ(t− 1)], (21)

r2(t) = r2(t− 1) + ∥Ω̂(t)∥2. (22)

It is worth noting that there are d̂1(t), d̂2(t), · · · , d̂m(t) for
i = 1, 2, · · · ,m in (19)–(22), and this leads to many redundant
parameter estimates. However, cutting down the redundant param-
eter estimates and improving the parameter estimation accuracy are
our aims to explore new identification methods. In general, we usu-
ally desire that the proposed algorithm is convergent, that is to say,
the parameter estimates approach their true values as the time t
increases. Therefore, we can assume that the parameter estimate

d̂i−1(t) is closer to the true value than the parameter estimate
d̂i(t− 1). Based on the coupling identification concept, for i =
2, 3, · · · ,m, use d̂i−1(t) to replace d̂i(t− 1) and for i = 1, use
d̂m(t− 1) to replace d̂1(t− 1). Thus, we can obtain the following
F-PC-GESG algorithm:

[
d̂i(t)

θ̂i(t)

]
=

[
d̂i−1(t)

θ̂i(t− 1)

]
+
ψ̂i(t)

r1,i(t)

×
{
ŷfi(t)− ψ̂

T
i (t)

[
d̂i−1(t)

θ̂i(t− 1)

]}
, (23)

r1,i(t) = r1,i(t− 1) + ∥ψ̂i(t)∥
2, i = 2, 3, · · · ,m, (24)[

d̂1(t)

θ̂1(t)

]
=

[
d̂m(t− 1)

θ̂1(t− 1)

]
+
ψ̂1(t)

r1,1(t)

×
{
ŷf1(t)− ψ̂

T
1(t)

[
d̂m(t− 1)

θ̂i(t− 1)

]}
, (25)

r1,1(t) = r1,1(t− 1) + ∥ψ̂1(t)∥
2, (26)

ĉ(t) = ĉ(t− 1) +
Ω̂

T
(t)

r2(t)
[ŵn(t)− Ω̂(t)ĉ(t− 1)], (27)

r2(t) = r2(t− 1) + ∥Ω̂(t)∥2, (28)

ŷf(t) = y(t) + [y(t− 1), · · · ,y(t− nc)]ĉ(t) (29)

= [ŷf1(t), ŷf2(t), · · · , ŷfm(t)]T, (30)

ûf(t) = u(t) + [u(t− 1), · · · ,u(t− nc)]ĉ(t), (31)

ψ̂i(t) = [ϕ̂
T
i (t), φ̂

T
f (t)]

T, (32)

φ̂f(t) = [−ŷT
f (t− 1),−ŷT

f (t− 2), · · · ,−ŷT
f (t− na),

uT
f (t− 1),uT

f (t− 2), · · · ,uT
f (t− nb)]

T, (33)

ϕ̂(t) = [v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)] (34)

= [ϕ̂1(t), ϕ̂2(t), · · · , ϕ̂m(t)]T, (35)

Ω̂(t) = [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc)], (36)

φ(t) = [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),

uT(t− 1),uT(t− 2), · · · ,uT(t− nb)]
T, (37)

ŵn(t) = y(t)− θ̂
T
(t− 1)φ(t)− ϕ̂(t)d̂m(t− 1), (38)

ŵ(t) = y(t)− θ̂
T
(t)φ(t), (39)

v̂(t) = ŷf(t)− ϕ̂(t)d̂m(t)− θ̂
T
(t)φ̂f(t), (40)

θ̂(t) = [θ̂1(t), θ̂2(t), · · · , θ̂m(t)]. (41)

Through the F-PC-GESG algorithm in (23)–(41), we can get the esti-
mates ĉ(t), d̂(t) := d̂m(t) and θ̂(t)=[θ̂1(t), θ̂2(t), · · · , θ̂m(t)]. So
d̂(t) in (18) is modified as d̂m(t) when we calculate v̂(t).

To state the algorithm clearly, we list the steps involved in the
F-PC-GESG algorithm in (23)–(41) as follows.

1. Set the initial values: let t = 1, ĉ(0) = 1nc/p0, d̂m(0) =
1nd/p0, θ̂i,0 = 1n/p0, r1,i(0) = 1 (i = 1, 2, · · · ,m), r2(0) = 1,
ŷf(t− j) = 1m/p0, ûf(t− j) = 1r/p0, ŵ(0) = 1m/p0, v̂(0) =
1m/p0, p0 = 106.
2. Collect the input and output data u(t) and y(t), and construct
the information vector φ(t) using (37), form ϕ̂(t) using (34), read
ϕ̂i(t) from (35), and construct Ω̂(t) by (36).
3. Compute ŵn(t) and r2(t) using (38) and (28), update the
parameter estimate ĉ(t) using (27).
4. Compute ŷf(t) by (29), read ŷfi(t) from (30), compute ûf(t) by
(31), form φ̂f(t) using (33), then construct ψ̂i(t) by (32).
5. Compute r1,1(t) by (26), update d̂1(t) and θ̂1(t) using (25).
6. For i = 2, 3, · · · ,m, compute r1,i(t) using (24) and update
d̂i(t) and θ̂i(t) using (23).
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7. Form θ̂(t) by (41), compute ŵ(t) and v̂(t) using (39)–(40).
8. Increase t by 1 and go to Step 2.

The flowchart of computing ĉ(t), θ̂(t) and d̂m(t) in the F-PC-
GESG algorithm is shown in Figure 1.�

�
�
�Start: let t = 1

?
Collect u(t) and y(t), form φ(t)
Ω̂(t), ϕ̂(t), read ϕ̂i(t) from ϕ̂(t)

?
Compute ŵn(t), r2(t), and update ĉ(t)

?
Compute ŷf(t) and ûf(t)

?
Read ŷfi(t) from ŷf(t) and form ψ̂i(t)

?
Compute r1,1(t), update d̂1(t) and θ̂1(t)

?
Compute r1,2(t), update d̂2(t) and θ̂2(t)

?ppp
?

Compute r1,m(t), update d̂m(t) and θ̂m(t)

?

�

Form θ̂(t) by θ̂i(t), i = 1, 2, · · · ,m

?
Computew(t) and v̂(t)

?
t := t+ 1

Fig. 1: The flowchart of computing the F-PC-GESG parameter
estimates θ̂(t), d̂m(t) and ĉ(t).

Remark 2: From the F-PC-GESG algorithm in (23)–(41), we can
see that only part of the parameters are coupled. To be more specific,
only d̂i(t) are coupled between the filtered subsystems. The param-
eter vectors θ̂i(t) are independent, because every subsystem has a
corresponding θ̂i(t). This is the meaning of the partially-coupled
algorithm.
Remark 3: To improve the performance of the F-PC-GESG
algorithm, we introduce forgetting factors λ1,i and λ2 to the F-PC-
GESG algorithm. Replace (24), (26) and (28) with Equations (42)–
(44), and remain other formulas unchanged for the F-PC-GESG
algorithm in (23)–(41):

r1,i(t) = λ1,ir1,i(t− 1) + ∥ψ̂i(t)∥
2, i = 2, 3, · · · ,m, (42)

r1,1(t) = λ1,1r1,1(t− 1) + ∥ψ̂1(t)∥
2, 0 ≤ λ1,i < 1, (43)

r2(t) = λ2r2(t− 1) + ∥Ω̂(t)∥2, 0 ≤ λ2 < 1. (44)

Since the F-PC-GESG algorithm produces the data saturation prob-
lem with the time length increasing. The forgetting factors can

reduce the weight of the past data and improve the estimation accu-
racy. The forgetting factors λ1,i and λ2 can be the same or different
in (42)–(44).
Remark 4: Compared with the algorithms in the previous work [33]
and [34], this paper considers on the parameter identification prob-
lems for multivariable equation-error system with the autoregressive
moving average noises. In order to eliminate the effect of the colored
noises, the F-PC-GESG algorithm uses the data filtering technique to
transform the system into a filtered system and a noise system. Then
we decompose the filtered system into m subsystems and estimate
the parameters by the coupling identification concept.

4 The multivariable generalized extended
stochastic gradient algorithm

In the following, we discuss the multivariable generalized extended
stochastic gradient (M-GESG) algorithm for comparison. As we
can see from the identification model (6), the parameter vec-
tor ϑ contains parameters θ, ci, (i = 1, 2, · · · , nc) and di, (i =
1, 2, · · · , nd) of System (1).

In consideration of the unknown variables w(t− j) and v(t−
j), we also employe the auxiliary model method as we do in the F-
PC-GESG algorithm. Let ŵ(t− j) and v̂(t− j) be the outputs of
the auxiliary models, and define the estimate of ψ(t):

ψ̂(t) := [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc),

v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)] ∈ Rm×(nc+nd).

Then, the estimate of the information matrixΦ(t) can be constructed
by φ(t) and ϕ̂(t):

Φ̂(t) := [ψ̂(t),φT(t)⊗ Im] ∈ Rm×n0 .

ReplacingΦ(t), θ and ϑ with their estimates Φ̂(t), θ̂(t) and ϑ̂(t) in
(4) and (6), ŵ(t) and v̂(t) can be computed by

ŵ(t) := y(t)− θ̂
T
(t)φ(t),

v̂(t) := y(t)− Φ̂(t)ϑ̂(t).

Replacing Φ(t) in (6) with its estimate Φ̂(t) and using the nega-
tive gradient search principle, we can obtain the following M-GESG
algorithm:

ϑ̂(t) = ϑ̂(t− 1) +
Φ̂

T
(t)

r(t)
[y(t)− Φ̂(t)ϑ̂(t− 1)], (45)

r(t) = r(t− 1) + ∥Φ̂(t)∥2, (46)

Φ̂(t) = [ψ̂(t),φT(t)⊗ Im], (47)

φ(t) = [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),

uT(t− 1),uT(t− 2), · · · ,uT(t− nb)]
T, (48)

ψ̂(t) = [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc),

v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)], (49)

ŵ(t) = y(t)− θ̂
T
(t)φ(t), (50)

v̂(t) = y(t)− Φ̂(t)ϑ̂(t), (51)

ϑ̂(t) =

[
ρ̂(t)

col[θ̂
T
(t)]

]
. (52)

The procedures involved in the M-GESG algorithm in (45)–(52)
are listed as follows.

1. Set the initial values: let t = 1, ϑ̂(0) = 1n0/p0, r(0) = 1,
v̂(−j) = 1m/p0, ŵ(−j) = 1m/p0, j > 0, p0 = 106.
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2. Collect the observation data u(t) and y(t), and construct the
information vector and matrices φ(t), ψ̂(t) and Φ̂(t) using (48)–
(49) and (47).
3. Compute r(t) using (46) and update the parameter estimation
vector ϑ̂(t) by (45).
4. Read θ̂(t) and ρ̂(t) from ϑ̂(t) by (52), and compute ŵ(t) and
v̂(t) by (50)–(51).
5. Increase t by 1 and go to Step 2.

Remark 5: By means of the auxiliary model identification idea,
the M-GESG algorithm in (45)–(52) handles the unknown informa-
tion matrix Φ(t) by replacing it with its estimate Φ̂(t) in order to
guarantee the realization of the algorithm.
Remark 6: Although the M-GESG algorithm in (45)–(52) can pro-
duce the parameter estimation vector ϑ̂(t), the weakness is that Φ̂(t)
is a large dimension informational matrix, which gives rise to heavy
computational burden. Differing from the M-GESG algorithm, the
F-PC-GESG algorithm in (23)–(41) divides the system in (1) into
one noise model and m filtered subsystems. Moreover, the F-PC-
GESG algorithm uses the data filtering to reduce the influence of the
noise and improve the estimation accuracy. For every t, the F-PC-
GESG algorithm first gets the noise parameter vector ĉ(t), and uses
it to calculate the filtered input and output, then identifies the param-
eters θ̂i(t) and d̂i(t) based on the coupled relations between these
filtered subsystems. This property also can be seen in Figure 1.
Remark 7: The computational efficiency of an algorithm can be
measured by using flops. The computational costs of the M-GESG
algorithm and the F-PC-GESG algorithm are listed in Tables 1–2,
where n0 = nc + nd +mn, n1 = n+ nd and n = mna + rnb.
In order to make it clear, we take an example. Assume that m = 10,
r = 10, na = 10, nb = 10, nc = 10 and nd = 10. Then we can
calculate N1 −N2 = 167630− 17811 = 149819. It shows that
the F-PC-GESG algorithm has a higher computational efficiency
than the M-GESG algorithm. For the system with high orders, the
advantage of the F-PC-GESG algorithm becomes more obvious.

The proposed algorithms in this paper can be developed to mul-
tivariable bilinear systems with colored noises [36–38], and can
combine the neural network methods [39] and the kernel meth-
ods [40, 41] to study parameter identification of different systems
[42–44].

5 Examples

In this section, we give two numerical simulations to show the
effectiveness of the proposed algorithm.
Example 1. Consider the following multivariable system with two-
input two-output:

A(z)y(t) =B(z)u(t) +
D(z)

C(z)
v(t),

A(z) = I2 +

[
a11 a12
a21 a22

]
z−1

=

[
1 + 0.24z−1 0.94z−1

−0.80z−1 1 + 1.05z−1

]
,

B(z) =

[
b11 b12
b21 b22

]
z−1 =

[
0.10z−1 0.15z−1

0.12z−1 −0.10z−1

]
,

C(z) = 1 + c1z
−1 = 1 + 0.14z−1,

D(z) = 1 + d1z
−1 = 1− 0.80z−1,

θT =

[
0.24 0.94 0.10 0.15

−0.80 1.05 0.12 −0.10

]
,

ρ= [c1, d1]
T = [0.14,−0.80]T,

ϑ=

[
ρ

col[θT]

]
.

To apply the proposed method, it is necessary to collect the input
and output data. Here, we take the inputs {u1(t)} and {u2(t)} as two
independent persistent excitation signal sequences with zero mean
and unit variances, and {v1(t)} and {v2(t)} are taken as two white
noise sequences with zero mean and variances σ2

1=0.202 for v1(t)
and σ2

2=0.302 for v2(t). Then, we can compute the output vector
y(t) = [y1(t), y2(t)]

T based on the given input signals, the model
and the simulation condition. After obtaining the input and output
data, apply the M-GESG algorithm in (45)–(52) and the F-PC-GESG
algorithm in (23)–(41) to estimate the parameters of this system. In
addition, we add a forgetting factor λ = 0.99 to the F-PC-GESG
algorithm to estimate the parameters. The parameter estimates and
errors are shown in Tables 3–5. The parameter estimation errors δ :=
∥ϑ̂(t)− ϑ∥/∥ϑ∥ versus t and the parameter estimates versus t are
shown in Figure 2–4.
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Fig. 2: The parameter estimation errors versus t

0 500 1000 1500 2000 2500 3000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

P
ar

am
et

er
 e

st
im

at
es

c
1

d
1

a
11

a
21

b
22

Fig. 3: The M-GESG parameter estimates ĉ1(t), d̂1(t), â11(t),
â21(t), b̂22(t) versus t
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Fig. 4: The F-PC-GESG parameter estimates ĉ1(t), d̂1(t), â11(t),
â21(t), b̂22(t) versus t

IET Research Journals, pp. 1–9
6 c⃝ The Institution of Engineering and Technology 2015



Table 1 The computational efficiency of the M-GESG algorithm

Expressions Number of multiplications Number of additions

ϑ̂(t) = ϑ̂(t− 1) +
Φ̂

T
(t)

r(t)
e(t) ∈ Rn0 mn0 +m mn0

e(t) := y(t)− Φ̂(t)ϑ̂(t− 1) ∈ Rm mn0 mn0

r(t) = r(t− 1) + ∥Φ̂(t)∥2 ∈ R mn0 mn0

Φ̂(t) = [ψ̂(t),φT(t)⊗ Im] ∈ Rm×n0 n

ŵ(t) = y(t)− θT(t)φ(t) ∈ Rm mn mn

v̂(t) = y(t)− Φ̂(t)ϑ̂(t) ∈ Rm mn0 mn0

Sum 4mn0 +mn+m+ n 4mn0 +mn

Total flops N1 = 8mn0 + 2mn+m+ n

Table 2 The computational efficiency of the F-PC-GESG algorithm

Expressions Number of multiplications Number of additions[
d̂i(t)

θ̂i(t)

]
=

[
d̂i−1(t)

θ̂i(t− 1)

]
+
ψ̂i(t)
r1,i(t)

x1,i(t) ∈ Rn1 mn1 +m mn1

xi(t) := yi(t)− ψ̂
T
i (t)

[
d̂i−1(t)

θ̂i(t− 1)

]
∈ R mn1 mn1

r1,i(t) = r1,i(t− 1) + ∥ψ̂i(t)∥2 ∈ R mn1 mn1

ĉ(t) = ĉ(t− 1) +
Ω̂

T
(t)

r2(t)
x2(t) ∈ Rnc mnc + 1 mnc

x2(t) := ŵn(t)− Ω̂(t)ĉ(t− 1) ∈ Rm mnc mnc

r2(t) = r2(t− 1) + ∥Ω̂(t)∥2 ∈ R mnc mnc

ŷf(t) = y(t) + [y(t− 1),y(t− 2), · · · ,y(t− nc)]ĉ(t) ∈ Rm mnc mnc

ûf(t) = u(t) + [u(t− 1),u(t− 2), · · · ,u(t− nc)]ĉ(t) ∈ Rr rnc rnc

ŵ(t) = y(t)− θT(t)φ(t) ∈ Rm mn mn

v̂(t) = y(t)− ϕ̂(t)d̂m(t)− θ̂
T
(t)φ(t) ∈ Rm m(nc + nd) m(nc + nd)

Sum 4mnc + 3mn1 + rnc 4mnc + 3mn1 + rnc

+mn+m+ 1 +m(n+ nc + nd)

Total flops N2 = 9mnc + 6mn1 + 2rnc +m(2n+ nd) +m+ 1

Table 3 The M-GESG parameter estimates and errors
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 0.29814 -0.37722 0.17325 0.60704 -0.44106 0.39523 0.09329 0.19856 0.15585 0.14712 52.61754
200 0.31325 -0.41248 0.18312 0.67058 -0.51004 0.44544 0.09371 0.19839 0.15499 0.14735 47.59884
500 0.32579 -0.44659 0.19271 0.73519 -0.58466 0.51074 0.09380 0.19812 0.15509 0.14702 42.19534
1000 0.33453 -0.47454 0.20027 0.79069 -0.65147 0.58459 0.09380 0.19811 0.15518 0.14697 37.21425
2000 0.34254 -0.50497 0.21045 0.85604 -0.72945 0.70419 0.09378 0.19812 0.15511 0.14698 30.92303
3000 0.34628 -0.52138 0.21874 0.89587 -0.77404 0.80734 0.09378 0.19812 0.15511 0.14698 26.93724

True values 0.14000 -0.80000 0.24000 0.94000 -0.80000 1.05000 0.10000 0.15000 0.12000 -0.10000

Table 4 The F-PC-GESG parameter estimates and errors
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 0.14689 -0.75226 0.28804 0.77230 -0.65336 0.68846 0.08574 0.13932 0.09144 -0.13092 23.45508
200 0.13990 -0.76652 0.27860 0.80983 -0.68485 0.75869 0.08627 0.13935 0.09232 -0.13025 18.75964
500 0.13497 -0.77753 0.26826 0.84469 -0.71807 0.82916 0.08624 0.13931 0.09195 -0.12974 14.12815
1000 0.13303 -0.78535 0.25797 0.87810 -0.74940 0.90104 0.08616 0.13928 0.09178 -0.12966 9.57124
2000 0.13030 -0.79015 0.24796 0.91167 -0.77756 0.97892 0.08617 0.13927 0.09181 -0.12965 5.02683
3000 0.12748 -0.79124 0.24341 0.92736 -0.78984 1.01712 0.08617 0.13927 0.09181 -0.12965 3.23992

True values 0.14000 -0.80000 0.24000 0.94000 -0.80000 1.05000 0.10000 0.15000 0.12000 -0.10000

Example 2. Consider the following multivariable system:

A(z)y(t) =B(z)u(t) +
d(z)

c(z)
v(t),

A(z) = I3 +

 a1 a2 a3
a4 a5 a6
a7 a8 a9

 z−1

=

 −0.55 0.45 −0.15
−0.63 −0.64 0.56
0.69 0.32 −0.41

 z−1,

B(z) =

 b1 b2 b3
b4 b5 b6
b7 b8 b9

 z−1

=

 0.13 −0.08 −0.13
0.10 −0.08 −0.20

−0.09 0.07 0.17

 z−1,

c(z) = 1 + c1z
−1 = 1− 0.73z−1,

d(z) = 1 + d1z
−1 = 1 + 0.68z−1,

ρT =

 −0.55 0.45 −0.15 0.13 −0.08 −0.13
−0.63 −0.64 0.56 0.10 −0.08 −0.20
0.69 0.32 −0.41 −0.09 0.07 0.17

 ,

β = [c1, d1]
T = [−0.73, 0.68]T,

ϑ=

[
β

col[ρT]

]
.

Here, we take the inputs {u1(t)}, {u2(t)} and {u3(t)} as three
independent persistent excitation signal sequences with zero mean
and unit variances, and {v1(t)}, {v2(t)} and {v3(t)} are taken
as three white noise sequences with zero mean and variances
σ2
1=σ2

2=σ2
3=0.102 for v1(t), v2(t) and v3(t). We use the M-GESG

algorithm and the PC-GESG algorithm to estimate the parameters
of this multivariable system, respectively. Since there are 20 param-
eters, we do not give the table for parameter estimates and errors.
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Table 5 The F-PC-GESG parameter estimates and errors (λ = 0.99)
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 0.14682 -0.76037 0.28162 0.79617 -0.67552 0.73238 0.08518 0.13966 0.09120 -0.12830 20.46260
200 0.13898 -0.77519 0.26953 0.84149 -0.71302 0.82292 0.08582 0.13969 0.09222 -0.12729 14.56687
500 0.13454 -0.78673 0.25350 0.89464 -0.76236 0.93976 0.08579 0.13949 0.09144 -0.12640 7.24352
1000 0.13318 -0.78989 0.24296 0.92922 -0.79208 1.02175 0.08569 0.13935 0.09123 -0.12619 2.95373
2000 0.12958 -0.79009 0.24026 0.93935 -0.79938 1.04802 0.08569 0.13933 0.09124 -0.12615 2.45025
3000 0.12587 -0.79010 0.24001 0.93995 -0.79996 1.04986 0.08569 0.13933 0.09124 -0.12615 2.50150

True values 0.14000 -0.80000 0.24000 0.94000 -0.80000 1.05000 0.10000 0.15000 0.12000 -0.10000

Here, we use the parameter estimation errors curve to show the per-
formance of the algorithms. The parameter estimation errors versus
t are shown in Figure 5.
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Fig. 5: The parameter estimation errors versus t

From Tables 3–5 and Figures 2–5, we can draw the following
conclusions.

1. The parameter estimation errors of the M-GESG and the F-PC-
GESG algorithms become smaller with the data length t increasing
– see the estimation errors of the last columns in Tables 3–5.
2. Under the same noise level, the PC-GESG algorithm has a higher
parameter estimation accuracy than the M-GESG algorithm – see
Tables 3–5 and Figures 2–4. This demonstrates that the proposed
algorithm is effective.
3. Introducing a forgetting factor can improve the parameter esti-
mation accuracy of the F-PC-GESG algorithm – see Table 5 and
Figure 2.

6 Conclusions

In this paper, the parameter estimation problem has been investigated
for multivariable CARARMA systems. An F-PC-GESG algorithm is
derived by adopting the filtering technique and the coupling concept.
In order to reduce the influence of the noise, we construct a filter to
filter the input and output data and transform the system into two
parts, including a noise model and a filtered system model. In addi-
tion, the filtered system model is divided into several subsystems and
identified by the coupling concept. According to the computational
comparison, the F-PC-GESG algorithm has less computational bur-
den than the M-GESG algorithm. The simulation results indicate that
the F-PC-GESG algorithm can generate more accurate parameter
estimates. Moreover, introducing the forgetting factor can improve
the performance of the F-PC-GESG algorithm. The basic idea of the
proposed method in this paper can be used to study the parameter
identification problems of other multivariable systems with different
structures and disturbance noises.

The identification method presented in this paper can combine
the multi-innovation methods [45] and some mathematical skills
[46–48] and statistical methods [49–51] can be used to study the
performances of parameter estimation algorithms and can be applied
other fields [52–55].
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