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Abstract: This paper focuses on the recursive parameter estimation problems for the nonlinear exponential autoregressive model
with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient
(ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is
proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, we employ the multi-innovation
identification theory to develop a multi-innovation extended stochastic gradient (MI-ESG) algorithm for the ExpARMA model.
Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an
appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown
parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.

1 Introduction

Nonlinearities are common in financial, hydrologic, industrial and
many other practical systems [1]. The exponential autoregressive
(ExpAR) family is an important kind of nonlinear time series mod-
els. The ExpAR models are applied to the statistical analysis of the
ship rolling data, the Canadian lynx data and other nonlinear time
series. The famous Canadian lynx data are the records of Cana-
dian lynx trapped in the years 1821-1934. Recently, Chen et al.
discussed the stationary conditions of several generalised ExpAR
models, and adopted these models to model and predict the Cana-
dian lynx data [2]. On the other hand, the ExpAR family has
shown the appropriateness in capturing certain well-known features
of nonlinear vibration theory, such as amplitude-dependent fre-
quency, jump phenomena and limit cycles [3, 4]. Given a time series
{y(t), y(t− 1), y(t− 2), · · · }, the ExpAR model can be described
as a stochastic difference equation

y(t) = [α1 + β1e
−γy2(t−1)]y(t− 1) + [α2 + β2e

−γy2(t−1)]

×y(t− 2) + · · ·+ [αn + βne
−γy2(t−1)]y(t− n) + v(t),

where v(t) is a stochastic white noise, n is the system degree, and αi,
βi and γ are the model parameters. The form in the above equation
represents the classic ExpAR model, some modified versions have
been presented. For instance, in order to give a more sophisticated
specification for the dynamics of the characteristic roots of autore-
gressive (AR) models, Ozaki derived a variant of the ExpAR model
in [5] using the Hermite type polynomials:

y(t) =

n∑
i=1

{αi + [βi0 +

mi∑
j=1

βijy
j(t− 1)]e−γy2(t−1)}

×y(t− i) + v(t).

Introducing a time-delay d and a scalar parameter ζ, Teräsvirta
developed a different variant of the ExpAR model in [6]:

y(t) = {α0 + β0e
−γ[y(t−d)−ζ]2}

+
n∑

i=1

{αi + βie
−γ[y(t−d)−ζ]2}y(t− i) + v(t).

Other generalised ExpAR models were summarised in [2]. However,
all the ExpAR models mentioned above involve the white noise.
This is not the case in many situations in practice. Colored noises
with different structures, such as the autoregressive (AR) noise, the
moving average (MA) noise and the autoregressive moving average
(ARMA) noise [7], are also required to be considered in modeling.
Many parameter estimation methods have been developed for linear
and nonlinear systems with colored noises [8, 9] and can be applied
to many areas [10–14].

System identification and parameter estimation are effective tools
to establish the mathematical models of many dynamical systems
[15, 16], and have been widely used in the area of sliding mode
control [17], fault diagnosis [18] and so on. In the field of sys-
tem identification, a great deal of publications are devoted to the
identification methods, such as moving horizon estimation [19] and
hierarchical identification [20, 21]. On the identification of bilinear
systems, Li et al. presented the least squares based iterative algo-
rithms by using the data filtering technique [22], the auxiliary model
based least squares iterative algorithms by using interval-varying
measurements [23] and the filtering-based maximum likelihood iter-
ative estimation algorithms by using the hierarchical identification
principle [24]. In respect of the ExpAR model identification, set-
ting the parameter of the nonlinear part at a specific value, Haggan
and Ozaki obtained the least squares (LS) estimates for the ExpAR
model [25]; with a certain definition of the parameter of the nonlin-
ear part, Shi et al. gave the parameter estimates of the linear part by
the LS estimator [26]. Imposing no special conditions on the model
parameters, Chen et al. developed a variable projection method for
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generalised ExpAR models, where the parameters of the linear part
are obtained by the LS algorithm and the parameters of the nonlin-
ear one are estimated by a line search procedure [2]. In the previous
work in [27, 28], decomposing the classic ExpAR model into two
sub-identification (Sub-ID) models by the hierarchical identification
principle, decomposition-based recursive parameter estimation algo-
rithms were developed for the ExpAR model. The parameters of the
linear and nonlinear Sub-ID models are estimated by an interactive
way. Different from all the above-mentioned work, setting no spe-
cial conditions on the parameters of the ExpARMA model, we aim
to investigate recursive identification algorithms by using a novel
identification technique in this paper.

In recent decades, many techniques have been be devoted to
improving the identification accuracy and convergence rate [29, 30]
such as the multi-innovation identification theory . The innovation
is the useful information which can improve the parameter and
state estimation accuracy [31]. The multi-innovation identification
theory has been developed as a significant branch of system iden-
tification. The key idea is to expand the scalar innovation into a
multi-dimensional innovation vector and to make full use of the
measurement data [32]. Recently, using the multi-innovation iden-
tification theory, Zhang et al. derived a multi-innovation extended
stochastic gradient algorithm for estimating the unknown param-
eters of bilinear systems [33]. Moreover, gradient-based methods
are widely used in system identification [34]. For instance, Xu and
Ding presented a gradient-based iterative algorithm for identify-
ing the unknown amplitudes, angular frequencies and phases of
multi-frequency signals [35] and derived a filtering-based gradient
iterative algorithm for pseudo-linear autoregressive moving aver-
age systems [36]. In this paper, through the gradient search and the
multi-innovation identification theory, we study the recursive identi-
fication algorithms for the ExpAR model with MA noise. The main
contributions of this paper are as follows.

• After parameterization, the ExpARMA model is written as an
identification model. Defining a criterion function, the identification
problem is transformed into a nonlinear optimization problem. Using
the gradient search to minimize the optimization problem, we derive
an extended stochastic gradient (ESG) algorithm and its variant for
the ExpARMA model.
• Note that the information vector of the identification model con-
tains the unknown parameter, the computation of the step-size in the
ESG algorithm is a highly nonlinear optimization problem. In this
paper, we employ the one-dimensional search method to obtain the
optimal step-size.
• Applying the multi-innovation identification theory, we expand
the scalar innovation into a multi-dimensional innovation vector,
such that we can make full use of the sampled data and innova-
tions, and develop a multi-innovation extended stochastic gradient
(MI-ESG) algorithm and its variant for the ExpARMA model.

In summary, the rest of this paper is organised as follows.
Section 2 describes the identification problem for the ExpARMA
model. An extended stochastic gradient algorithm and its variant are
derived in Section 3. A multi-innovation extended stochastic gradi-
ent algorithm and its variant are presented in Section 4. Section 5
provides a numerical example for testing the effectiveness of the
proposed algorithms. Finally, some concluding remarks are given in
Section 6.

2 Problem description

Given a time series {y(t), y(t− 1), y(t− 2), · · · }, the ExpARMA
model of order n can be described as

y(t) = [α1 + β1e
−γy2(t−1)]y(t− 1) + · · ·

+[αn + βne
−γy2(t−1)]y(t− n) +D(z)v(t), (1)

where v(t) is a stochastic white noise with zero mean and vari-
ance σ2, D(z) is the polynomial in the unit backward shift operator

z−1 [z−1y(t) = y(t− 1)]:

D(z) := 1 + d1z
−1 + d2z

−2 + · · ·+ dmz−m, dj ∈ R,

and αi, βi (i = 1, 2, · · · , n), γ and dj (j = 1, 2, · · · ,m) are the
parameters to be estimated.

The nonlinearity of the ExpARMA model comes from the expo-
nential dependence on γy2(t− 1). When the parameter γ is large
enough, Equation (1) reduces to an autoregressive moving average
(ARMA) model with respect to the parameters αi and dj ; when
γ = 0, the ExpARMA model reduces to an ARMA model with
respect to the parameters (αi + βi) and dj . Neither of these two
ARMA models can describe any nonlinear dynamics. Thus, the
parameter γ is essentially a scaling factor, and should be limited in a
range so that e−γy2(t−1) is different from both zero and one.

Assume that the orders m and n are known, y(t) is measurable.
Without loss of generality, the initial values are set to be y(t) = 0
and v(t) = 0 for t ≤ 0.

It is obvious that y(t) is linear with respect to the parameters αi,
βi and dj , and is nonlinear with respect to the parameter γ. Define
the parameter vectors and the information vectors as

ϑ := [θT,dT]T ∈ R2n+m,

θ := [αT,βT]T ∈ R2n,

α := [α1, α2, · · · , αn]
T ∈ Rn,

β := [β1, β2, · · · , βn]T ∈ Rn,

d := [d1, d2, · · · , dm]T ∈ Rm,

ϕ(γ, t) := [ϕT
s(γ, t),ϕ

T
n(t)]

T ∈ R2n+m,

ϕs(γ, t) := [φT(t), e−γy2(t−1)φT(t)]T ∈ R2n,

φ(t) := [y(t− 1), y(t− 2), · · · , y(t− n)]T ∈ Rn,

ϕn(t) := [v(t− 1), v(t− 2), · · · , v(t−m)]T ∈ Rm.

Then, Equation (1) can be written as

y(t) =

n∑
i=1

αiy(t− i) + e−γy2(t−1)
n∑

i=1

βiy(t− i)

+

m∑
j=1

djv(t− j) + v(t)

=φT(t)α+ e−γy2(t−1)φT(t)β + ϕT
n(t)d+ v(t)

= ϕT
s(γ, t)θ + ϕT

n(t)d+ v(t)

= ϕT(γ, t)ϑ+ v(t). (2)

Equation (2) is the identification model of the ExpARMA process. In
the field of system identification, the least squares method has been
used for certain nonlinear systems. For example, Hafezi and Arefi
derived a recursive generalised extended least squares and recursive
maximum likelihood algorithm for bilinear systems [37]. Kazemi
and Arefi presented an iterative recursive least squares and a robust
recursive least squares algorithm for Wiener systems [38]. More-
over, the least squares method has shown the appropriateness in
controller design and some other areas [39, 40]. Note that y(t) is
highly nonlinear with respect to the parameter γ, the identification
problem becomes a complex nonlinear optimization problem and
the least squares method cannot be used directly for the ExpARMA
model. The objective of this paper is to study and present new recur-
sive identification algorithms for the ExpARMA model by using the
gradient search and the multi-innovation identification theory.

3 Extended stochastic gradient algorithm

In this section, applying the gradient search, we derive an
extended stochastic gradient (ESG) algorithm and its variant for the
ExpARMA model.
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For convenience, we let Θ := [ϑT, γ]T ∈ R2n+m+1. Then, the
parameter vector Θ involves all the model parameters to be esti-
mated. Define the cost function

J1(Θ) :=
1

2
[y(t)− ϕT(γ, t)ϑ]2.

Computing the gradient of J(Θ) gives

grad[J1(Θ)] =

 ∂J1(Θ)
∂ϑ

∂J1(Θ)
∂γ


=−

[
ϕ(γ, t)[y(t)− ϕT(γ, t)ϑ]

ϑTϕ′(γ, t)[y(t)− ϕT(γ, t)ϑ]

]
∈ R2n+m+1,

where ϕ′(γ, t) is the derivative of ϕ(γ, t) with respect to γ, i.e.,

ϕ′(γ, t) :=
∂ϕ(γ, t)

∂γ
=

[
∂ϕs(γ,t)

∂γ
∂ϕn(t)

∂γ

]

= [0n,−y2(t− 1)e−γy2(t−1)φT(t),0m]T ∈ R2n+m.

Define the generalised information vector

ψ(Θ, t) :=

[
ϕ(γ, t)
ϑTϕ′(γ, t)

]
∈ R2n+m+1.

Then, the gradient of J1(Θ) can be written as

grad[J1(Θ)] = −ψ(Θ, t)[y(t)− ϕT(γ, t)ϑ].

Let Θ̂(t) := [ϑ̂
T
(t), γ̂(t)]T ∈ R2n+m+1 denote the estimate of Θ

at time t. Using the gradient search to minimize the cost function
J1(Θ), we obtain the following recursive algorithm,

Θ̂(t) = Θ̂(t− 1)− µ(t)grad[J1(Θ̂(t− 1))]

= Θ̂(t− 1) + µ(t)ψ(Θ̂(t− 1), t)

×[y(t)− ϕT(γ̂(t− 1), t)ϑ̂(t− 1)], (3)

where µ(t) represents the step-size of the recursive algorithm. One
method of determining µ(t) is to apply the one-dimensional search,
i.e., to solve the optimization problem

µ(t) = argmin
µ(t)≥0

J1[Θ̂(t)].

Let g[µ(t)] := J1[Θ̂(t)] and define the innovation e(t) := y(t)−
ϕT(γ̂(t− 1), t)ϑ̂(t− 1) ∈ R. Substituting (3) into J1(Θ) gives

g[µ(t)] =
1

2
[y(t)− ϕT(γ̂(t), t)ϑ̂(t)]2

=
1

2
{y(t)− ϕT[γ̂(t− 1)

+µ(t)ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)e(t), t]

×[ϑ̂(t− 1) + µ(t)ϕ(γ̂(t− 1), t)e(t)]}2.

Substituting the first-order Taylor expansion ofϕ(γ, t) at γ = γ̂(t−
1) into the above equation, we have

g[µ(t)] =
1

2
{y(t)− [ϕT(γ̂(t− 1), t) + [ϕ′(γ̂(t− 1), t)]T

×[γ̂(t)− γ̂(t− 1)] + o[γ̂(t)− γ̂(t− 1)]]ϑ̂(t)}2

=
1

2
{y(t)− [ϕT(γ̂(t− 1), t) + [ϕ′(γ̂(t− 1), t)]T

×[µ(t)ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)e(t)]

+o[γ̂(t)− γ̂(t− 1)]]ϑ̂(t)}2

=
1

2
{y(t)− ϕT(γ̂(t− 1), t)[ϑ̂(t− 1)

+µ(t)ϕ(γ̂(t− 1), t)e(t)]

−[ϕ′(γ̂(t− 1), t)]T[µ(t)ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)e(t)]

×[ϑ̂(t− 1) + µ(t)ϕ(γ̂(t− 1), t)e(t)]

−o[γ̂(t)− γ̂(t− 1)]}2

=
1

2
{[y(t)− ϕT(γ̂(t− 1), t)ϑ̂(t− 1)]

−e(t)∥ϕ(γ̂(t− 1), t)∥2µ(t)

−e(t)∥ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)∥2µ(t)

−e2(t)ϑ̂
T
(t− 1)ϕ(γ̂(t− 1), t)∥ϕ′(γ̂(t− 1), t)∥2µ2(t)

−o[γ̂(t)− γ̂(t− 1)]}2

=
1

2
e2(t){1− [∥ϕ(γ̂(t− 1), t)∥2

+∥ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)∥2]µ(t)

−e(t)ϑ̂
T
(t− 1)ϕ(γ̂(t− 1), t)

×∥ϕ′(γ̂(t− 1), t)∥2µ2(t)− o[γ̂(t)− γ̂(t− 1)]}2

=
1

2
e2(t)[1− ∥ψ(Θ̂(t− 1), t)∥2µ(t)− ξ(t)µ2(t)]2

+o[γ̂(t)− γ̂(t− 1)]2,

where

ξ(t) := e(t)ϑ̂
T
(t− 1)ϕ(γ̂(t− 1), t)∥ϕ′(γ̂(t− 1), t)∥2 ∈ R.

Minimizing g[µ(t)] is equal to solving the equation

1− ∥ψ(Θ̂(t− 1), t)∥2µ(t)− ξ(t)µ2(t) = 0.

Thus, we have

µ(t) =

√
∥ψ(Θ̂(t− 1), t)∥4 + 4ξ(t)− ∥ψ(Θ̂(t− 1), t)∥2

2ξ(t)

=
2√

∥ψ(Θ̂(t− 1), t)∥4 + 4ξ(t) + ∥ψ(Θ̂(t− 1), t)∥2
.(4)

Equation (4) for computing the step-size µ(t) is complicated. Refer-
ring to the method of finding the optimal step-size for Hammerstein
nonlinear systems in [41], Equation (4) can be simplified as

µ(t) =
1

∥ψ(Θ̂(t− 1), t)∥2
.

In order to avoid the denominator being zero, we take the step-size
as

µ(t) =
1

1 + ∥ψ(Θ̂(t− 1), t)∥2
. (5)

Since the generalised information vector ψ(Θ̂(t− 1), t) in (3)
and (5) and the information vector ϕ(γ̂(t− 1), t) in (3) involve
the unmeasurable noise v(t− j), Equations (3) and (5) cannot be
directly used to compute the estimate Θ̂(t). To address this prob-
lem, we replace v(t− j) with the estimate v̂(t− j). From (2), we
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have

v(t) = y(t)− ϕT(γ, t)ϑ.

Replacing ϑ and γ in the above equation with ϑ̂(t) and γ̂(t− 1)
gives

v̂(t) = y(t)− ϕ̂
T
(γ̂(t− 1), t)ϑ̂(t), (6)

where

ϕ̂(γ̂(t− 1), t) = [ϕT
s(γ̂(t− 1), t), ϕ̂

T
n(t)]

T, (7)

ϕ̂n(t) = [v̂(t− 1), v̂(t− 2), · · · , v̂(t−m)]T. (8)

Replacing ϑ and γ with ϑ̂(t− 1) and γ̂(t− 1), the estimate of the
generalised information vector ψ(Θ, t) can be computed by

ψ̂(Θ̂(t− 1), t) =

[
ϕ̂(γ̂(t− 1), t)

ϑ̂
T
(t− 1)ϕ̂

′
(γ̂(t− 1), t)

]
. (9)

Substituting (6)–(9) into (3)–(4), we have

Θ̂(t) = Θ̂(t− 1) + µ(t)ψ̂(Θ̂(t− 1), t)

×[y(t)− ϕ̂
T
(γ̂(t− 1), t)ϑ̂(t− 1)], (10)

µ(t) =
1

1 + ∥ψ̂(Θ̂(t− 1), t)∥2
. (11)

Equations (10)–(11) and (6)–(9) form the projection algorithm
for the ExpARMA model. The projection algorithm is sensi-
tive to the noise since the gain vector µ(t)ψ̂(Θ̂(t− 1), t) =

ψ̂(Θ̂(t−1),t)

1+∥ψ̂(Θ̂(t−1),t)∥2
does not approach zero. In order to adjust the

gain vector of the projection algorithm, we take the step-size to be
µ(t) = 1

r(t)
and summarise the following recursive algorithm,

Θ̂(t) = Θ̂(t− 1) +
1

r(t)
ψ̂(Θ̂(t− 1), t)e(t), (12)

e(t) = y(t)− ϕ̂
T
(γ̂(t− 1), t)ϑ̂(t− 1), (13)

r(t) = r(t− 1) + ∥ψ̂(Θ̂(t− 1), t)∥2, (14)

ψ̂(Θ̂(t− 1), t) =

[
ϕ̂(γ̂(t− 1), t)

ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)

]
, (15)

ϕ̂(γ̂(t− 1), t) = [ϕT
s(γ̂(t− 1), t), ϕ̂

T
n(t)]

T, (16)

ϕs(γ̂(t− 1), t) = [φT(t), e−γ̂(t−1)y2(t−1)φT(t)]T, (17)

φ(t) = [y(t− 1), y(t− 2), · · · , y(t− n)]T, (18)

ϕ̂n(t) = [v̂(t− 1), v̂(t− 2), · · · , v̂(t−m)]T, (19)

ϕ′(γ̂(t− 1), t) = [0n,−y2(t− 1)e−γ̂(t−1)y2(t−1)φT(t),0m]T,

(20)

v̂(t) = y(t)− ϕ̂
T
(γ̂(t− 1), t)ϑ̂(t), (21)

Θ̂(t) = [α̂T(t), β̂
T
(t), d̂T(t), γ̂(t)]T. (22)

Equations (12)–(22) form the ESG algorithm for the ExpARMA
model.

Remark 1: In (12) and (14), r(t) represents the reciprocal of the
step-size µ(t). Compared with the denominator of the gain vector

ψ̂(Θ̂(t−1),t)

1+∥ψ̂(Θ̂(t−1),t)∥2
in the projection algorithm, the denominator of

1
r(t)

ψ̂(Θ̂(t− 1), t) in the ESG algorithm involves both the current
and the preceding (t− 1) information, which makes the new gain
vector approach zero.

Remark 2: In order to improve the parameter estimation accuracy,
we introduce a forgetting factor (FF) λ into (14), i.e.

r(t) = λr(t− 1) + ∥ψ̂(Θ̂(t− 1), t)∥2, 0 < λ < 1. (23)

Replacing (14) in the ESG algorithm with (23), we obtain the forget-
ting factor extended stochastic gradient (FF-ESG) algorithm for the
ExpARMA model. When λ = 1, the FF-ESG degenerates into the
ESG algorithm.

To summarise, we list the steps for computing the FF-ESG
parameter estimation vector Θ̂(t) as follows.

1. To initialise, let t = 1, Θ̂(0) = 12n+m+1/p0, v̂(t− j) =
1/p0, j = 1, 2, · · · ,m, r(0) = 1, p0 = 106, give an error tolerance
ε > 0.
2. Collect the measurement data y(t), form the information vectors
φ(t) and ϕ̂n(t) by (18) and (19).
3. Compute the information vector ϕs(γ̂(t− 1), t) by (17), form
the information vector ϕ̂(γ̂(t− 1), t) by (16).
4. Compute the derivative vector ϕ′(γ̂(t− 1), t) by (20), form the
generalised information vector ψ̂(Θ̂(t− 1), t) by (15).
5. Compute the innovation e(t) and the reciprocal of the step-size
r(t) by (13) and (23).
6. Update the parameter estimation vector Θ̂(t) by (12), read out
α̂(t), β̂(t), d̂(t) and γ̂(t) from Θ̂(t) in (22).
7. Compute the noise estimate v̂(t) by (21).
8. Compare Θ̂(t) with Θ̂(t− 1): if ∥Θ̂(t)− Θ̂(t− 1)∥ > ε,
increase t by 1 and go to Step 2; otherwise, terminate this procedure.

Multi-innovation identification is an important branch of system
identification and has been widely used in parameter estimation for
many systems, such as bilinear state space systems, multivariate
systems and so on. Expanding the scalar innovation into a multi-
dimensional innovation vector, not only the current observation and
innovation, but also the preceding observations and innovations are
included in identification algorithms. The innovation e(t) of the ESG
algorithm is a scalar. Based on the multi-innovation identification
theory, the scalar innovation can be expanded into an innovation
vector, and the resulting multi-innovation identification algorithm
has improved convergence rate and parameter estimation accuracy
[42–44].

4 Multi-innovation extended stochastic gradient
algorithm

The innovation is the useful information which can improve the
parameter estimation accuracy. The traditional identification meth-
ods for scalar systems contains the single-innovation which is a
scalar. The multi-innovation identification is the innovation expan-
sion based identification [42–45]. That is, expanding the scalar
innovation of the traditional identification method into an innova-
tion vector, the resulting algorithm uses more innovations and has an
improved parameter estimation accuracy. In this section, the innova-
tion e(t) in (13) is expanded into an innovation vector, and thus a
multi-innovation extended stochastic gradient (MI-ESG) algorithm
and its variant are derived for the ExpARMA model. The details are
as follows.

Expanding the innovation e(t) into the innovation vector

E(p, t) :=


y(t)− ϕ̂

T
(γ̂(t− 1), t)ϑ̂(t− 1)

y(t− 1)− ϕ̂
T
(γ̂(t− 1), t− 1)ϑ̂(t− 1)

...
y(t− p+ 1)− ϕ̂

T
(γ̂(t− 1), t− p+ 1)ϑ̂(t− 1)

 ∈ Rp,

(24)
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where p is the innovation length. Define the stacked vector Y (p, t)
and the stacked information matrix Φ̂(γ̂(t− 1), t) as

Y (p, t) :=


y(t)

y(t− 1)
...

y(t− p+ 1)

 ∈ Rp, (25)

Φ̂(γ̂(t− 1), t) :=


ϕ̂

T
(γ̂(t− 1), t)

ϕ̂
T
(γ̂(t− 1), t− 1)

...
ϕ̂

T
(γ̂(t− 1), t− p+ 1)


T

∈ R(2n+m)×p.

(26)

Then, the innovation vector E(p, t) in (24) can be written as

E(p, t) = Y (p, t)− Φ̂T
(γ̂(t− 1), t)ϑ̂(t− 1). (27)

In order to guarantee the compatibility of the matrix multiplication
dimension, the generalised information vector ψ̂(Θ̂(t− 1), t) in
(12) must be expanded into a generalised stacked information matrix

Ψ̂(p, t) :=


ψ̂

T
(Θ̂(t− 1), t)

ψ̂
T
(Θ̂(t− 1), t− 1)

...
ψ̂

T
(Θ̂(t− 1), t− p+ 1)]


T

∈ R(2n+m+1)×p.

(28)
Applying the multi-innovation identification theory [42], we expand
the scalar innovation e(t) in (12) into the innovation vector E(p, t)
and the information vector ψ̂(Θ̂(t− 1), t) into the information
matrix Ψ̂(p, t), and obtain

Θ̂(t) = Θ̂(t− 1) +
1

r(t)
Ψ̂(p, t)E(p, t). (29)

Combining (25)–(29) and (14)–(22), we obtain the MI-ESG
algorithm for the ExpARMA model:

Θ̂(t) = Θ̂(t− 1) +
1

r(t)
Ψ̂(p, t)E(p, t), (30)

E(p, t) = Y (p, t)− Φ̂T
(γ̂(t− 1), t)ϑ̂(t− 1), (31)

r(t) = r(t− 1) + ∥ψ̂(Θ̂(t− 1), t)∥2, (32)

Y (p, t) = [y(t), y(t− 1), · · · , y(t− p+ 1)]T, (33)

Φ̂(γ̂(t− 1), t) = [ϕ̂(γ̂(t− 1), t), ϕ̂(γ̂(t− 1), t− 1), · · · ,

ϕ̂(γ̂(t− 1), t− p+ 1)], (34)

Ψ̂(p, t) = [ψ̂(Θ̂(t− 1), t), ψ̂(Θ̂(t− 1), t− 1), · · · ,

ψ̂(Θ̂(t− 1), t− p+ 1)], (35)

ψ̂(Θ̂(t− 1), t) =

[
ϕ̂(γ̂(t− 1), t)

ϑ̂
T
(t− 1)ϕ′(γ̂(t− 1), t)

]
, (36)

ϕ̂(γ̂(t− 1), t) = [ϕT
s(γ̂(t− 1), t), ϕ̂

T
n(t)]

T, (37)

ϕs(γ̂(t− 1), t) = [φT(t), e−γ̂(t−1)y2(t−1)φT(t)]T, (38)

φ(t) = [y(t− 1), y(t− 2), · · · , y(t− n)]T, (39)

ϕ̂n(t) = [v̂(t− 1), v̂(t− 2), · · · , v̂(t−m)]T, (40)

ϕ′(γ̂(t− 1), t) = [0n,−y2(t− 1)e−γ̂(t−1)y2(t−1)φT(t),0m]T,

(41)

v̂(t) = y(t)− ϕ̂
T
(γ̂(t− 1), t)ϑ̂(t), (42)

Θ̂(t) = [α̂T(t), β̂
T
(t), d̂T(t), γ̂(t)]T. (43)

When p = 1, the MI-ESG algorithm reduces to the ESG algorithm.
Remark 3: Similarly, introducing a forgetting factor (FF) λ into

(32) gives

r(t) = λr(t− 1) + ∥ψ̂(Θ̂(t− 1), t)∥2, 0 < λ < 1. (44)

Replacing (32) in the MI-ESG algorithm with (44), we obtain the
forgetting factor multi-innovation extended stochastic gradient (FF-
MI-ESG) algorithm for the ExpARMA model. When λ = 1, the
FF-MI-ESG degenerates into the MI-ESG algorithm. The methods
proposed in this paper can be extended to study the parameter esti-
mation problems of different systems with colored noises [46–49]
such as signal modeling and communication networked systems
[50–54].

The process of computing Θ̂(t) by the FF-MI-ESG algorithm is
summarised as follows.

1. Choose the innovation length p and initialise: let t = 1, Θ̂(0) =
12n+m+1/p0, v̂(t− j) = 1/p0, j = 1, 2, · · · ,m, r(0) = 1, p0 =
106, give an error tolerance ε > 0.
2. Collect the measurement data y(t), form the stacked vector
Y (p, t) by (33), and the information vectorsφ(t) and ϕ̂n(t) by (39)
and (40).
3. Compute the information vector ϕs(γ̂(t− 1), t) by (38), form
the information vector ϕ̂(γ̂(t− 1), t) by (37).
4. Compute the derivative vector ϕ̂

′
(γ̂(t− 1), t) by (41), form the

generalised information vector ψ̂(Θ̂(t− 1), t) by (36).
5. Form the stacked information matrixes Φ̂(γ̂(t− 1), t) and
Ψ̂(p, t) by (34) and (35).
6. Compute the innovation E(p, t) and the reciprocal of the step-
size r(t) by (31) and (44).
7. Update the parameter estimation vector Θ̂(t) by (30), read out
α̂(t), β̂(t), d̂(t) and γ̂(t) from Θ̂(t) in (43).
8. Compute the noise estimate v̂(t) by (42).
9. Compare Θ̂(t) with Θ̂(t− 1): if ∥Θ̂(t)− Θ̂(t− 1)∥ > ε,
increase t by 1 and go to Step 2; otherwise, terminate this procedure.

Compared with the traditional single-innovation algorithms, the
new recursive algorithm proposed in this paper uses the multi-
innovation identification theory to expand the single-innovation into
a multi-innovation vector, such that both the current and preced-
ing innovations are employed to estimate the unknown parameters.
Thus, the proposed multi-innovation identification algorithm makes
full advantage of the identification innovations and has an improved
parameter estimation accuracy.

5 Example

Consider the following ExpARMA model

y(t) = [α1 + β1e
−γy2(t−1)]y(t− 1) + · · ·

+[αn + βne
−γy2(t−1)]y(t− n) +D(z)v(t)

= [1.23 + 2.00e−2.76y2(t−1)]y(t− 1)

+[−0.26 + 1.86e−2.76y2(t−1)]y(t− 2)

+0.11v(t− 1)− 0.15v(t− 2) + v(t).

The parameters to be estimated are

Θ = [α1, α2, β1, β2, d1, d2, γ]
T

= [1.23,−0.26, 2.00, 1.86, 0.11,−0.15, 2.76]T.

In simulation, the noise {v(t)} is taken as a white noise sequence
with zero mean and variance σ2, and the data length is taken as Le =
3000.
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To exhibit the advantage of the proposed multi-innovation identi-
fication algorithm, taking the variance σ2 = 0.202 and the forgetting
factor λ = 0.98, we use the FF-ESG algorithm and the FF-MI-
ESG algorithm with p = 10 and p = 15 to identify this ExpARMA
model, respectively. The parameter estimates and their errors are
shown in Tables 1–3, the parameter estimation errors δ := ∥Θ̂(t)−
Θ∥/∥Θ∥ × 100% against t are shown in Figure 1.

To demonstrate the influence of the forgetting factor on the param-
eter estimation accuracy, taking σ2 = 0.202 and the innovation
length p = 15, we use the MI-ESG algorithm and the FF-MI-
ESG algorithm with λ = 0.99 to identify this ExpARMA model,
respectively. The parameter estimates and their errors are shown in
Tables 4–5, the parameter estimation errors δ against t are shown in
Figure 2.

To show how the performance of the proposed FF-MI-ESG
algorithm depends on the noise level, we fix the innovation length
p = 15 and the forgetting factor λ = 0.98, and adopt the FF-MI-
ESG algorithm with the noise variance σ2 = 0.232 and σ2 = 0.262

to identify this ExpARMA model, respectively. The parameter esti-
mates and their errors are shown in Tables 6–7, the parameter
estimation errors δ against t are shown in Figure 3.

To show how the FF-MI-ESG estimates fluctuate against t, we
set p = 15, λ = 0.98 and σ2 = 0.202. The identification results are
shown in Figure 4.
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Fig. 1: FF-ESG and FF-MI-ESG errors δ against t (λ = 0.98, σ2 =
0.202)
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Fig. 2: MI-ESG and FF-MI-ESG errors δ against t (p = 15, σ2 =
0.202)

The vertical axes of Figures 1–3 depict the parameter estimation
errors, which are corresponding to the last columns in Tables 1–7,
and the abscissa vertical axes depict the recursion numbers, which
are corresponding to the first columns in Tables 1–7. The vertical
axis of Figure 4 depicts the parameter estimates of the FF-MI-ESG
algorithm with an appropriate innovation length and forgetting fac-
tor. The following conclusions can be drawn from Figures 1–4 and
Tables 1–7.
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Fig. 3: FF-MI-ESG errors δ against t (p = 15, λ = 0.98)
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Fig. 4: FF-MI-ESG estimates against t (p = 15, λ = 0.98)

From Figure 1 and Tables 1–3, we find that when λ = 0.98 and
σ2 = 0.202, the FF-MI-ESG algorithm with p = 10 and p = 15 has
higher parameter estimation accuracy than the FF-ESG algorithm
when p = 1, and the parameter estimation accuracy becomes higher
with the innovation length p increasing.

From Figure 2 and Tables 3–5, we find that when p = 15 and
σ2 = 0.202, the FF-MI-ESG algorithm with λ = 0.98 and λ =
0.99 has higher parameter estimation accuracy than the MI-ESG
algorithm when λ = 1.00, and the estimation errors of the FF-MI-
ESG algorithm become smaller with the decreasing of the forgetting
factors.

From Figure 3, Table 3 and Tables 6–7, we find that when p = 15
and λ = 0.98, the parameter estimation errors of the FF-MI-ESG
algorithm become smaller with the decreasing of the noise levels.

From Figure 4, we find that under the appropriate forgetting factor
and multi-innovation length, the parameter estimates of the FF-MI-
ESG algorithm tend to the corresponding true values.

For the model validation, we use the remaining Lr = 200 data
from t = Le + 1 to t = Le + Lr and the estimated model obtained
by the FF-MI-ESG algorithm with λ = 0.98 and p = 15. The pre-
dicted data ŷ(t) and the measurement data y(t) are plotted in
Figure 5. To evaluate the prediction performance, we define and
compute the mean square error (MSE) as

MSE :=

 1

Lr

Le+Lr∑
t=Le+1

[ŷ(t)− y(t)]2

1/2

= 0.21018.

From Figure 5, we can see that the predicted data ŷ(t) is close to
the measurement data y(t), which means the estimated model can
capture the dynamics of this ExpARMA model.

Remark 4: In terms of identifying the nonlinear ExpAR model,
many literatures suppose that the parameter of the nonlinear part γ
is known a priori or imposed on certain conditions, and use the LS
estimator to identify the parameters of the linear part [2, 25, 26].
In addition, colored noise was hardly taken into account. Compared
with the recursive identification algorithms in these publications,
the multi-innovation identification algorithm proposed in this paper
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Table 1 FF-ESG parameter estimates and errors (p = 1, λ = 0.98, σ2 = 0.202)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.23511 0.26681 0.22467 0.25507 0.05204 -0.01804 0.01015 93.45056
200 0.24729 0.27229 0.23630 0.26018 0.05808 -0.02088 0.00584 93.27890
500 0.25797 0.26534 0.24616 0.25358 0.07158 -0.03250 0.02913 92.71970
1000 0.27867 0.24902 0.26516 0.23920 0.10365 -0.04529 0.04968 92.09531
2000 0.32386 0.23368 0.30319 0.22539 0.15347 -0.07135 0.05074 91.46356
3000 0.34902 0.20326 0.32136 0.19726 0.20343 -0.08325 0.05829 91.20649

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

Table 2 FF-MI-ESG parameter estimates and errors (p = 10, λ = 0.98, σ2 = 0.202)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.60229 0.31075 1.06646 0.92473 0.13237 -0.01259 1.40848 50.82531
200 0.69296 0.28233 1.05284 0.90249 0.18121 -0.08157 1.43258 49.97128
500 0.77458 0.13912 1.03700 0.87213 0.22854 -0.22789 1.51029 48.03716
1000 0.89646 -0.01545 1.01651 0.83556 0.30344 -0.24284 1.63614 45.77020
2000 1.04824 -0.05567 1.02746 0.84350 0.22686 -0.23467 1.78769 42.53559
3000 1.08229 -0.14975 1.05618 0.87543 0.15308 -0.13462 1.90325 39.69558

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

Table 3 FF-MI-ESG parameter estimates and errors (p = 15, λ = 0.98, σ2 = 0.202)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.55589 0.31925 2.24138 2.14677 0.13644 0.10226 2.22887 27.65778
200 0.71193 0.29624 2.22847 2.12799 0.11448 -0.09881 2.25693 23.95071
500 0.86134 0.09741 2.19618 2.07137 0.22886 -0.23127 2.30289 18.58408
1000 0.99530 -0.09519 2.15640 2.01246 0.26082 -0.21296 2.41099 12.91608
2000 1.15592 -0.15372 2.12482 1.96271 0.17554 -0.15008 2.52964 7.75066
3000 1.17948 -0.23927 2.12790 1.96237 0.10568 -0.11382 2.62146 5.49173

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

Table 4 MI-ESG parameter estimates and errors (λ = 1.00, p = 15, σ2 = 0.202)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.56564 0.38885 2.23932 2.14695 0.24692 0.24258 2.21467 29.69835
200 0.56407 0.35165 2.23742 2.14416 0.18196 0.14363 2.22996 28.19570
500 0.61867 0.34532 2.23360 2.13678 0.14191 0.04498 2.23204 26.69020
1000 0.62121 0.29184 2.22818 2.12899 0.13780 -0.00736 2.24878 25.46024
2000 0.65855 0.27320 2.22326 2.12159 0.15265 -0.04628 2.26252 24.34341
3000 0.68441 0.26388 2.22105 2.11832 0.15695 -0.07340 2.27010 23.67712

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

Table 5 FF-MI-ESG parameter estimates and errors (λ = 0.99, p = 15, σ2 = 0.202)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.53333 0.33275 2.24056 2.14728 0.18527 0.17154 2.22441 28.67996
200 0.62984 0.33615 2.23511 2.13915 0.12865 0.02364 2.24480 26.18731
500 0.74715 0.21697 2.21634 2.10550 0.16899 -0.13742 2.26999 22.04848
1000 0.84964 0.02584 2.18560 2.06078 0.26499 -0.21714 2.35584 17.18589
2000 1.02851 -0.02874 2.15867 2.01963 0.27475 -0.20701 2.44950 12.75436
3000 1.06581 -0.12723 2.15354 2.00985 0.19872 -0.18773 2.52776 9.60038

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

Table 6 FF-MI-ESG parameter estimates and errors (σ2 = 0.232, p = 15, λ = 0.98)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.58532 0.26730 2.17817 2.05554 0.16031 0.11100 1.78116 32.76890
200 0.76307 0.21254 2.14495 2.00777 0.18812 -0.08588 1.84323 28.27856
500 0.93646 0.01647 2.08632 1.90471 0.25662 -0.21953 1.91140 23.45756
1000 1.06574 -0.20754 2.00440 1.78370 0.27584 -0.16086 2.08296 17.67674
2000 1.22838 -0.22229 1.94411 1.69432 0.15671 -0.11107 2.24358 13.45933
3000 1.23096 -0.29613 1.94083 1.68448 0.09262 -0.08036 2.36405 10.87852

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000

relaxes the conditions on the parameter γ and estimates all the
unknown parameters simultaneously.

6 Conclusions

This paper studies the parameter estimation problems of the non-
linear ExpARMA model. Using the gradient search and the multi-
innovation identification theory, we derive an extended stochastic
gradient (ESG) algorithm and a multi-innovation extended stochastic
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Table 7 FF-MI-ESG parameter estimates and errors (σ2 = 0.262, p = 15, λ = 0.98)
t α1 α2 β1 β2 d1 d2 γ δ (%)

100 0.61384 0.22498 2.11402 1.96108 0.17009 0.11774 1.53205 36.47859
200 0.80507 0.15333 2.06676 1.89252 0.22326 -0.08515 1.62147 31.63197
500 0.98578 -0.03228 1.99436 1.76350 0.25283 -0.21275 1.70108 27.54511
1000 1.10716 -0.26658 1.88923 1.60417 0.25302 -0.13730 1.90613 22.46679
2000 1.25851 -0.25212 1.81583 1.50057 0.13280 -0.09038 2.08634 19.30154
3000 1.25026 -0.31685 1.81291 1.49080 0.08494 -0.06697 2.21894 16.87283

True values 1.23000 -0.26000 2.00000 1.86000 0.11000 -0.15000 2.76000
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Fig. 5: Predicted data and measurement data

gradient (MI-ESG) algorithm to identify the unknown parameters.
Introducing a forgetting factor into the MI-ESG algorithm, we obtain
the forgetting factor multi-innovation extended stochastic gradient
(FF-MI-ESG) algorithm. The simulation results indicate that with an
appropriate innovation length and forgetting factor, the FF-MI-ESG
algorithm has improved parameter estimation accuracy and conver-
gence rate than the FF-ESG algorithm, and can be effectively used
to identify the nonlinear ExpARMA model. The proposed multi-
innovation extended stochastic gradient (MI-ESG) algorithm for the
ExpARMA model can combine other estimation algorithms [55–59]
to explore new identification methods of linear and nonlinear sys-
tems [60–64] and can be applied to other fields such as information
processing and communication [65–69].
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