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SUMMARY

The Kalman filter is not suitable for the state estimation of linear systems with multi-state-delays and the
extended state vector Kalman filtering algorithm results in heavy computational burden because of the large
dimension of the state estimation covariance matrix. Thus, in this paper, we develop a novel state estimation
algorithm for enhancing the computational efficiency based on the delta operator. The computation analysis
and the simulation example show the performance of the proposed algorithm. Copyright c© 2018 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

As the basis of modern control theory, the state-space representation is an effective mathematical
model to totally describe the dynamic behaviors of physical systems [1]. Compared with the transfer
function representation [2, 3, 4], it can be applied to more complex systems such as multi-input
multi-output systems [5] and nonlinear systems [6]. Filtering methods have been widely used in
parameter estimation [7,8], and the combined state and parameter estimation of state-space systems
have attracted much attention throughout the world [9]. Schön studied an expectation maximization
algorithm for nonlinear systems described by state-space models and acquired the state estimates
through a particle smoother [10]. Partovibakhsh and Liu proposed an adaptive unscented Kalman
filtering based approach for jointly online estimation of state-of-charge and parameters of lithium-
ion batteries for autonomous mobile robots and computed the noise covariances in the state
estimation process by covariance matching [11].

Time delays often exist in signal transmission and signal modeling [12-16] and control systems
[17, 18, 19]. For example, in communication, the measurements are often obtained with time delay
because of the transmission congestion; the communication networks between subsystems are often
unreliable, which will introduce the communication delays. Some important variables of chemical
processes are often obtained through online analyzers, resulting large time delays [20]. Such delays
may cause instability and poor performance of system dynamics [21]. Thus the analysis and control
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2 X. ZHANG AND F. DING

of time-delay systems are imporatnt [22]. In the literature, Chen et al. utilized a biased compensation
recursive least squares algorithm to estimate the parameters and delays of a time-delay rational
model [23]. Shi et al. considered the state estimation of Markovian jump neural networks with time-
delays, and developed a state estimator to obtain the network state estimates for the error dynamics
to be stochastic finite-time stable [24]. Xu utilized the first-order Taylor expansion to approximate
the time delay and presented a proportional differential control algorithm for parameter estimation
of first-order time-delay model with transfer function [25]. Gu et al. presented an iterative based
identification algorithm for linear models with multi-state-delays based on the negative gradient
search and the least squares principle, but without considering the state estimation of the unknown
states [26]. To the best of our knowledge, the related work has not been reported in the literature
on the state estimation of dynamic systems with multi-state-delays. Thus, there is a strong incentive
for us to develop an efficient state filter of such systems.

Parameter estimation and state filtering are basic for system identification [27,28,29] and system
analysis and design [30, 31, 32, 33], and can be applied to many areas [34-39]. The Kalman filter
(KF) is known as the optimal state filter for linear systems under the Gussian white noise and has
been extended to study the parameter estimation for bilinear systems [40, 41, 42]. For nonlinear
systems, its modifications such as the particle filter, the extended Kalman filter, the unscented
Kalman filter give approaches for nonlinear filtering problems. Differing from the above state
filters in the recursive way, Zhao et al. developed an unbiased finite impulse response filter to
iteratively estimate the state variables using a fixed number of recent measurements [43]. Shi et al.
presented a Kalman filter based parameter estimation algorithm on the basis of an output estimator
for networked control systems with missing output data and designed an adaptive controller to
achieve the output tracking [44].

The KF is employed to provide solutions for the state estimation of the linear system with multi-
state-delays. However, according to the computational analysis (see in Section 3), the dimension
of the state estimation covariance matrix is large, which causes the high computational burden for
state estimation. This motivates us to search for a highly-computationally-efficient state estimation
algorithm with high computational efficiency for estimating the system state based on the knowledge
of system dynamics and noisy observation data. The main contributions of this paper are as follows.

• Study a highly-computationally-efficient state filter for a multi-time-delay system described
by a state-space model.

• Apply the delta operator to minimize the state estimation error covariance matrix, resulting in
the improvement of computational efficiency.

• Analyze the computational complexity between the presented algorithms to demonstrate the
performance of the state filter based on the floating point operation.

The paper is organized as follows. Section 2 formulates the problem and presents a generalized
state estimation algorithm by gathering the sub-vectors into an extended state vector. Then a direct
state estimation algorithm based on the delta operator is presented to reduce the computational
burden in Section 3. The benefits of the proposed methods are shown by the simulation examples in
Section 4. Finally, Section 5 provides some concluding remarks.

2. THE PROBLEM FORMULATION

Some necessary symbols are introduced as follows.

Symbols Meaning
A =: X X is defined by A.
X := A X is defined by A.
1n An n-dimensional column vector whose

entries are all 1.
E[x] The expectation of x.
I An identity matrix of appropriate size (n× n).
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HIGHLY COMPUTATIONALLY EFFICIENT STATE FILTER 3

z A unit forward shift operator like
zx(s) = x(s + 1) and z−1x(s) = x(s− 1).

T The vector/matrix transpose.

For the state-space system with a unit time-delay, there are some methods for discussing its
stability and identification problems [45, 46]. For more general conditions, this paper considers a
linear system with multi-time-delays:

x(s + 1) = Ax(s) + B1x(s− 1) + B2x(s− 2) + · · ·
+Brx(s− r) + bu(s) + w(s), (1)

y(s) = cx(s) + v(s), (2)

where u(s) ∈ R denotes the sampled input, y(s) ∈ R is the system output disturbed by a stochastic
noise v(s), x(s) ∈ Rn is the state vector, w(s) ∈ Rn is the process noise, A ∈ Rn×n, Bq ∈ Rn×n

(q = 1, 2, . . . , r), b ∈ Rn and c ∈ R1×n are the system parameters.
Assume that the system output variable is disturbed by a stochastic noise v(s) with zero mean

and variance Rv, w(s) ∈ Rn is the uncorrected process noise vector with zero mean and variance
Rw. The noises w(s) and v(s) are uncorrelated and their covariance matrices satisfy

(A1) E[w(s)] = 0, E[v(s)] = 0, E[w(s)v(i)] = 0,

(A2) E[w(s)wT(s)] = 0, E[v(l)v(t)] = 0, l 6= t,

(A3) E[w(s)wT(s)] = Rw ∈ Rn×n,E[v2(s)] = Rv ∈ R.

Assume that the system in (1)–(2) is stable, observable and controllable. For a linear dynamic system
with multi-state-delays, the Kalman filter cannot be employed directly to obtain the optimal state
estimates. Here we present a generalized state estimation algorithm on the basis of the Kalman filter
to compute the estimates of the unknown states.

Define the extended state vector X(s) := [xT(s),xT(s− 1),xT(s− 2), · · · ,xT(s− r)]T ∈
Rnr+n and the extended noise vector W (s) := [wT(s), 0, · · · , 0]T ∈ Rnr+n. Then System (1)–(2)
can be expressed as

X(s + 1) = GX(s) + Hu(s) + W (s), (3)
y(s) = ΓX(s) + v(s), (4)

where the parameter matrices and vectors are defined as

G :=




A B1 B2 · · · Br

In 0 0 · · · 0

0 In 0
. . .

...
...

. . . . . . . . . 0
0 · · · 0 In 0



∈ R(nr+n)×(nr+n),

H := [bT,0,0, · · · ,0]T ∈ Rnr+n,

Γ := [c,0,0, · · · ,0] ∈ R1×(nr+n).

For the state vector X(s), it is well-known that the Kalman filter can be employed to estimate
the unknown states for the linear systems from observation data. Let X̂(s|s− 1) ∈ Rnr+n and
X̂(s|s) ∈ Rnr+n be the predicted state estimate and the posterior state estimate of the unknown
X(s). Let K(s) ∈ Rnr+n denote the optimal gain vector, P (s|s− 1) ∈ R(nr+n)×(nr+n) denote the
priori state estimation error covariance matrix of X(s) and P (s|s) ∈ R(nr+n)×(nr+n) denote the
posteriori state estimation error covariance matrix of X(s). Based on the Kalman filtering principle,
we obtain the generalized state estimation algorithm:

X̂(s|s) = X̂(s|s− 1) + K(s)[y(s)− ΓX̂(s|s− 1)], (5)
K(s) = P (s|s− 1)Γ T[ΓP (s|s− 1)Γ T + Rv]−1, (6)
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4 X. ZHANG AND F. DING

P (s|s) = [I −K(s)Γ ]P (s|s− 1)[I −K(s)Γ ]T + K(s)RvKT(s), (7)

X̂(s|s− 1) = GX̂(s− 1|s− 1) + Hu(s− 1), (8)
P (s|s− 1) = GP (s− 1|s− 1)GT + RW . (9)

Define the state estimate X̂(s) := X̂(s|s) of X(s) at time s and the covariance matrix P (s) :=
P (s|s) at time s. Then through eliminating the intermediate variables X(s|s− 1) and P (s|s− 1)
in (5) to (9), we obtain the generalized Kalman filtering algorithm:

X̂(s) = GX̂(s− 1) + Hu(s− 1) + K(s){y(s)− Γ [GX̂(s− 1) + Hu(s− 1)]}, (10)
K(s) = [GP (s− 1)GT + RW ]Γ T{Γ [GP (s− 1)GT + RW ]Γ T + Rv}−1, (11)
P (s) = [I −K(s)Γ ][GP (s− 1)GT + RW ][I −K(s)Γ ]T + K(s)RvKT(s). (12)

Remark 1. Although the state estimation algorithm in (10)–(12) can be directly derived based on
the Kalman filtering principle, the most remarkable problem is its heavy computational burden,
especially for large-scale systems.
Remark 2. Because of the existence of the multi-state-delays, the dimension of the state-space
model sharply increases, which makes the dimension of the extended state vector become quite
large and causes heavy computational burden. This motivates us to design a highly-efficient state
filter for state estimation of the dynamics system with multi-state-delays from noisy observation
data.

The objective of this paper is to develop a highly-efficient state estimation algorithm based on
the delta operator. This method avoids gathering the sub-state vectors into an extended state vector
X(s) and greatly improves the computational efficiency – see Table III.

3. THE DIRECT STATE ESTIMATION ALGORITHM BASED ON THE DELTA OPERATOR

In order to improve the computational efficiency, this section presents a direct state estimation
algorithm in a two-step process for the linear system in (1)–(2).

Let x̂o(s + 1) := x̂(s + 1|s) denote the predicted state estimate of x(s + 1) based on the
observation data up to time s + 1, and x̂(s + 1) := x̂(s + 1|s + 1) denote the posteriori state
estimate of x(s + 1) based on the observation data up to and including time s + 1.
Prediction Step: The predicted state, i.e., the open-loop state estimate can be expressed as

x̂o(s + 1) = Ax̂(s) + B1x̂(s− 1) + B2x̂(s− 2) + · · ·+ Brx̂(s− r) + bu(s). (13)

Define the priori state error covariance matrix as

Po(s) := E{[x(s)− x̂o(s)][x(s)− x̂o(s)]T} ∈ Rn×n.

Then Po(s + 1) can be computed by

Po(s + 1) = E{[x(s + 1)− x̂o(s + 1)][x(s + 1)− x̂o(s + 1)]T}
= E{[Ax(s) + B1x(s− 1) + · · ·+ Brx(s− r)

+bu(s) + w(s)−Ax̂(s)−B1x̂(s− 1)
−B2x̂(s− 2)− · · · −Brx̂(s− r)− bu(s)][Ax(s)
+B1x(s− 1) + B2x(s− 2) + · · ·+ Brx(s− r)
+bu(s) + w(s)−Ax̂(s)−B1x̂(s− 1)
−B2x̂(s− 2)− · · · −Brx̂(s− r)− bu(s)]T}

= E{[Ae(s) + B1e(s− 1) + B2e(s− 2) + · · ·
+Bre(s− r) + w(s)][Ae(s) + B1e(s− 1)
+B2e(s− 2) + · · ·+ Bre(s− r) + w(s)]T}. (14)
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Update Step: Once the new measurement data u(s + 1) and y(s + 1) are sampled, the modified
state estimate, i.e., the closed-loop state estimate can be expressed as

x̂(s + 1) = x̂o(s + 1) + K(s + 1)[y(s + 1)− cx̂o(s + 1)]
= Ax̂(s) + B1x̂(s− 1) + B2x̂(s− 2) + · · ·

+Brx̂(s− r) + bu(s) + K(s + 1)
×[cx(s + 1) + v(s + 1)− cx̂o(s + 1)], (15)

where K(s + 1) is the state gain vector.
Remark 3: The choice of K(s + 1) determines the weight of the predicted state x̂o(s + 1) and the
practical measurement data y(s + 1) when updating the state estimate x̂(s + 1).

Define the state error as e(s) := x(s)− x̂(s) ∈ Rn, and the posteriori covariance matrix as

P (s) := E{[x(s)− x̂(s)][x(s)− x̂(s)]T}
= E{e(s)eT(s)} ∈ Rn×n. (16)

Then the state estimation error covariance matrix P (s) can be calculated by

P (s + 1) = E{[x(s + 1)− x̂(s + 1)][x(s + 1)− x̂(s + 1)]T}
= E{[Ae(s) + B1e(s− 1) + B2e(s− 2) + · · ·

+Bre(s− r) + w(s)−K(s + 1)c[x(s + 1)
−x̂o(s + 1)]−K(s + 1)v(s + 1)][Ae(s) + B1e(s− 1)
+B2e(s− 2) + · · ·+ Bre(s− r) + w(s)−K(s + 1)c
×[x(s + 1)− x̂o(s + 1)]−K(s + 1)v(s + 1)]T

= E{{[I −K(s + 1)c][x(s + 1)− x̂o(s + 1)]
−K(s + 1)v(s + 1)}{[I −K(s + 1)c][x(s + 1)
−x̂o(s + 1)]−K(s + 1)v(s + 1)}T}

= [I −K(s + 1)c]Po(s + 1)[I −K(s + 1)c]T

+K(s + 1)RvKT(s + 1). (17)

Because the system state x(s), and the state estimates x̂(s) and x̂o(s) are uncorrected with w(s).
That is to say, E{x(s)wT(s)} = 0, E{x̂(s)wT(s)} = 0, E[e(s− i)wT(s)] = 0 (i = 0, 1, 2, . . . , r).
From (14), we have

Po(s + 1) = AE{e(s)eT(s)}AT + B1E{e(s− 1)eT(s− 1)}BT
1 + · · ·

+BrE{e(s− r)eT(s− r)}BT
r + AE{e(s)

×eT(s− 1)}BT
1 + · · ·+ AE{e(s)eT(s− r)}BT

r

+B1E{e(s− 1)eT(s)}AT + · · ·+ B1E{e(s− 1)
×eT(s− r)}BT

r + BrE{e(s− r)eT(s)}AT + · · ·
+BrE{e(s− r)eT(s− r + 1)}BT

r−1 + E{w(s)wT(s)}. (18)

Define the covariance matrix Pij(s) := E[e(s− i)e(s− j)], i = 0, 1, 2, . . . , r, j = 0, 1, . . . , r. Then
Po(s + 1) can be expressed as

Po(s + 1) = [A,B1,B2, . . . ,Br]P1(s)[A,B1,B2, . . . ,Br]T + Rw, (19)

where P1(s) := [Pij(s)] ∈ R(nr+n)×(nr+n). In order to simplify the computation complexity, we
assume that Pij(s) = 0 (i 6= j). Suppose that K(s + 1) is the optimal gain vector which minimizes
the state estimation error covariance matrix P (s + 1). In this condition, let P (s + 1) be the
minimum covariance matrix. Obviously, if there exists the departure δK(s + 1) form the filtering
gain to the optimal gain K(s + 1), the state estimation error covariance matrix P (s + 1) computed
by (17) will deviate from the minimum P (s + 1) and reach P (s + 1) + δP (s + 1). δP (s + 1) is a
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6 X. ZHANG AND F. DING

non-negative definite matrix. From (17), we find

P (s + 1) + δP (s + 1)
= {I − [K(s + 1) + δK(s + 1)]c}Po(s + 1){I − [K(s + 1) + δK(s + 1)]c}T

+[K(s + 1) + δK(s + 1)]Rv[K(s + 1) + δK(s + 1)]T, (20)

where P (s + 1) and K(s + 1) satisfy (17). By substituting (17) into (20), we obtain

δP (s + 1) = M(s + 1) + MT(s + 1) + δK(s + 1)
×[cPo(s + 1)cT + Rv]δKT(s + 1), (21)

where

M(s + 1) =−δK(s + 1){cPo(s + 1)[I − cTKT(s + 1)]−RvKT(s + 1)}
=−δK(s + 1){cPo(s + 1)− [cPo(s + 1)cT + Rv]KT(s + 1)}. (22)

If we take

cPo(s + 1)− [cPo(s + 1)cT + Rv]KT(s + 1) = 0,

then we can obtain

K(s + 1) = Po(s + 1)cT[cPo(s + 1)cT + Rv]−1. (23)

Thus, we have M(s + 1) = 0 and

δP (s + 1) = δK(s + 1)[cPo(s + 1)cT + Rv]δKT(s + 1). (24)

Remark 4: From (24), it is obvious that cPo(s + 1)cT + Rv is non-negative. If δK(s + 1) 6= 0,
then δP (s + 1) 6= 0, which shows that the non-negative deviation of P (s + 1) is generated when
any departure δK(s + 1) 6= 0. Thus K(s + 1) in (23) is the optimal gain which makes P (s + 1)
minimum.

Then the direct state estimation algorithm for the linear system with time-delays in (1)–(2) is as
follows,

x̂o(s + 1) = Ax̂(s) + B1x̂(s− 1) + · · ·+ Brx̂(s− r) + bu(s), (25)
Po(s + 1) = AP (s)AT + B1P (s− 1)BT

1 + B2P (s− 2)BT
2 + · · ·

+BrP (s− r)BT
r + Rw, (26)

x̂(s + 1) = Ax̂(s) + B1x̂(s− 1) + B2x̂(s− 2) + · · ·+ Brx̂(s− r) + bu(s)
+K(s + 1)[y(s + 1)− cx̂o(s + 1)], (27)

K(s + 1) = Po(s + 1)cT[cPo(s + 1)cT + Rv]−1, (28)
P (s + 1) = [I −K(s + 1)c]Po(s + 1)[I −K(s + 1)

×c]T + K(s + 1)RvKT(s + 1). (29)

Remark 5: In practical area, the variances of w(s) and v(s) are unknown. Thus the unknown Rw

and Rv in (25)–(29) may be replaced with their estimates R̂w(s) and R̂v(s):

R̂w(s) =
1
s

s∑

j=1

[x̂(j + 1)−Ax̂(j)−
r∑

i=1

Bix̂(j − i)− bu(j)]

×[x̂(j + 1)−Ax̂(j)−
r∑

i=1

Bix̂(j − i)− bu(j)]T ∈ Rn×n, (30)

R̂v(s) =
1
s

s∑

j=1

[y(j)− cx̂(j)][y(j)− cx̂(j)]T ∈ R. (31)
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Replacing Rw and Rv in (25)–(29) with their estimates R̂w(s) and R̂v(s) gives the direct state
estimation algorithm:

x̂o(s + 1) = Ax̂(s) + B1x̂(s− 1) + B2x̂(s− 2) + · · ·+ Brx̂(s− r) + bu(s), (32)
Po(s + 1) = AP (s)AT + B1P (s− 1)BT

1 + B2P (s− 2)BT
2 + · · ·

+BrP (s− r)BT
r + R̂w(s), (33)

x̂(s + 1) = Ax̂(s) + B1x̂(s− 1) + B2x̂(s− 2) + · · ·+ Brx̂(s− r) + bu(s)
+K(s + 1)[y(s + 1)− cx̂o(s + 1)], (34)

K(s + 1) = Po(s + 1)cT[cPo(s + 1)cT + R̂v(s)]−1, (35)
P (s + 1) = [I −K(s + 1)c]Po(s + 1)[I −K(s + 1)c]T

+K(s + 1)R̂v(s)KT(s + 1). (36)

The estimation steps of the algorithm in (30)–(36) to compute the state estimate x̂(s) of x(s) are
listed in the following.

1. Let s = 1, set the initial values x̂(1) = 1n, P (1) = In, u(s− i) = 0, y(s− i) = 0 and
x̂(s− i) = 0 for i = 1, 2, · · · , n, R̂v(s) = 1 and R̂w(s) = In.

2. Collect the input-output information u(s) and y(s) and obtain the system parameters A, B,
Bj for j = 1, 2, · · · , r, b, and c.

3. Compute the priori state estimate x̂o(s + 1) by (32).
4. Compute the priori state estimation error covariance matrix Po(s + 1) using (33).
5. Compute the gain vector K(s + 1) by (35) and the posteriori state estimation error covariance

matrix P (s + 1) by (36). Increase s by 1.
6. Collect the input-output data u(s) and y(s) and update the state estimation vector x̂(s + 1)

using (34).
7. Compute the covariance matrix R̂w(s) by (30) and the variance R̂v(s) by (31).
8. Go to Step 2 and continue the recursive calculation.

Remark 6: The computational burden may be evaluated by floating point operation [47]. Tables I
and II give the number of additions and multiplications for each recursive computation of the
generalized Kalman filtering algorithm and the director state estimation algorithm for computational
complex analysis.

Table I. The computational efficiency of the generalized Kalman filtering algorithm

Variables Computation Sequences Number of multiplications Number of additions
X̂(s + 1|s) X̂(s + 1|s) = GX̂(s|s) + bu(s) ∈ Rnr+n (nr + n)2 + nr + n (nr + n)2

P (s + 1|s) P (s + 1|s) = W (s)GT + R̂w(s) ∈ R(nr+n)×(nr+n) (nr + n)3 (nr + n)3

W (s) := GP (s|s) ∈ R(nr+n)×(nr+n) (nr + n)3 (nr + n)3 − (nr + n)2

X̂(s + 1|s + 1)X̂(s + 1|s + 1) = X̂(s + 1|s) + K(s + 1)s(s + 1) ∈ Rnr+n nr + n nr + n

s(s + 1) := y(s + 1)− Γ X̂(s + 1|s) ∈ R nr + n nr + n
K(s + 1) K(s + 1) = L(s + 1)/ζ(s + 1) ∈ Rnr+n nr + n 0

ζ(s + 1) := Γ L(s + 1) + R̂v(s) ∈ R nr + n nr + n
L(s + 1) := P (s + 1|s)Γ T ∈ Rnr+n (nr + n)2 (nr + n)2 − (nr + n)

P (s + 1|s + 1) P (s + 1|s + 1) = [I −K(s)Γ ]P (s|s− 1)[I −K(s)Γ ]T (nr + n)3 + 4(nr + n)2 (nr + n)3 + 3(nr + n)2

+K(s)R̂v(s)KT(s) ∈ R(nr+n)×(nr+n) +(nr + n)

R̂w(s) R̂w(s) = 1
s

∑s
j=1[X′(j)X′T(j)] ∈ R(nr+n)×(nr+n) 2(nr + n)2 (nr + n)2

X′(s) := X̂(s + 1|s + 1)−GX̂(s|s)−Hu(s) ∈ Rnr+n (nr + n)2 + (nr + n) (nr + n)2 + (nr + n)

R̂v(s) R̂v(s) = 1
s

∑s
j=1 %2(j) ∈ R 2 1

%(s) := y(s)− Γ X̂(s|s) ∈ R nr + n nr + n
Sum 3(nr + n)3 + 9(nr + n)2 3(nr + n)3 + 3(nr + n)2

+8(nr + n) + 2 +4(nr + n) + 1
Total flop N1 := 6(nr + n)3 + 12(nr + n)2 + 12(nr + n) + 3

The difference of the computation cost between two algorithms at each step is

N1 −N2 = 6(nr + n)3 + 12(nr + n)2 + 12(nr + n) + 3

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2018)
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Table II. The computational efficiency of the direct state estimation algorithm based on the delta operator

Variables Computation Sequences Number of multiplications Number of additions
x̂o(s + 1) x̂o(s + 1) = Ax̂(s) + B1x̂(s− 1) n2(r + 1) + n n2(r + 1)

+ · · ·+ Brx̂(s− r) + bu(s) ∈ Rn

Po(s + 1) Po(s + 1) = W1(s) + · · ·+ Wr+1(s) + R̂w(s) ∈ Rn×n 0 (r + 1)n2

W1(s) := AP (s)AT ∈ Rn×n 2n3 2n3 − 2n2

W2(s) := B1P (s− 1)BT
1 ∈ Rn×n 2n3 2n3 − 2n2

...
...

...
Wr+1(s) := BrP (s− r)BT

r ∈ Rn×n 2n3 2n3 − 2n2

x̂(s + 1) x̂(s + 1) = x̂o(s + 1) + K(s + 1)s(s + 1) ∈ Rn n n
s(s + 1) := y(s + 1)− cx̂o(s + 1) ∈ R n n

K(s + 1) K(s + 1) = L(s + 1)/ζ(s + 1) ∈ Rn n 0

ζ(s + 1) := cL(s + 1) + R̂v(s) ∈ R n n
L(s + 1) := Po(s + 1)cT ∈ Rn n2 n2 − n

P (s + 1) P (s + 1) = [I −K(s)c]Po(s)[I −K(s)c]T n3 + 4n2 + n n3 + 3n2

+K(s)R̂v(s)KT(s) ∈ Rn×n

R̂w(s) R̂w(s) = 1
s

∑s
j=1[x′(j)x′T(j)] ∈ Rn×n 2n2 n2

x′(s) := x̂(s + 1)−Ax̂(s)−B1x̂(s− 1)− · · · (r + 1)n2 + n (r + 1)n2 + n
−Brx̂(s− r)− bu(s) ∈ Rn

R̂v(s) R̂v(s) = 1
s

∑s
j=1 %2(j) ∈ R 2 1

%(s) := y(s)− cx̂(s) ∈ R n n
Sum (2r + 3)n3 + (2r + 9)n2 (2r + 3)n3 + (r + 6)n2

+8n + 2 4n + 1
Total flop N2 := (4r + 6)n3 + (3r + 15)n2 + 12n + 3

−[(4r + 6)n3 + (3r + 15)n2 + 12n + 3]
= n3(6r3 + 18r2 + 14r) + n2(12r2

+21r − 1) + 12nr.

Assume that the system order n = 10 and the delay r = 5, then we can calculate the difference
between the computation loads of the two algorithms at each step:

N1 −N2 = (6× 603 + 12× 602 + 723)
−(26× 103 + 30× 102 + 123)

= 1.3108× 106.

Assume that the system order n = 100 and the delay r = 50, then the difference between two
algorithms is

N1 −N2 = (6× 51003 + 12× 51002 + 12× 5100 + 3)
−(206× 1003 + 165× 1002 + 12× 100 + 3)

≈ 8.0× 1011.

Table III. The computational comparison between two algorithms

n r N1 −N2 (N1 −N2)/N1 N2/N1

10 10 8.08× 106 0.993 0.007
20 10 6.41× 107 0.994 0.006
20 20 4.50× 108 0.998 0.002

Remark 7: Tables I–III show the comparison of the computational burden of the two algorithms,
which illustrates that the direct state estimation algorithm based on the delta operator can greatly
reduce the computational burden compared with the generalized Kalman filtering algorithm,
especially for large-scale systems.
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4. NUMERICAL EXAMPLES

Example 1. Consider a third-order system with time-delay:

x(s + 1) =
[

A11 A12

A21 A22

] [
x1(s)
x2(s)

]

+
[
B11

B12

] [
x1(s− 1)
x2(s− 1)

]
+

[
b1

b2

]
u(s) + w(s),

y(s) = cx(s) + v(s),

where the parameters are given by

A11 = 0.10, A12 = [0.40, 0.20],

A21 =
[−0.30
−0.20

]
, A22 =

[
0.20 −0.40
0.10 −0.10

]
,

B11 = [0.20, 0.60, 0.30],

B12 =
[

0.20 −0.20 −0.30
−0.40 −0.20 −0.10

]
,

b = [0.30, 0.50, 0.60]T, c = [0.40, 0.60, 0.50].

In simulation, the input {u(s)} is taken as a persistent excitation signal sequence with zero mean
and unit variance, and {v(s)} as a random sequence with the normal distribution, zero mean and
variance Rv = 0.102, and {w(s)} as a white noise vector sequence with zero mean and variance
Rw = 0.052I3. Take the data length L = 300 as the data length, and apply the direct state estimation
algorithm in (30)–(36) to estimate the states of the considered system. The system input u(s),
the true output y(s) and the predicted output ŷ(s) are shown in Figure 1. The states x(s) and
their estimates x̂(s) and errors versus s by the generalized Kalman filtering algorithm are shown
in Figures 2–4. The states x(s) and their estimates x̂(s) and errors versus s by the direct state
estimation algorithm are shown in Figures 5–7. The root mean squares error is used to describe the
error between the true state xi(s) and its estimated value x̂i(s), and the error between the true output
y(s) and its predicted output ŷ(s), which are defined as

Errorx =

{
1
L

L∑
s=1

[x̂i(s)− xi(s)]2
}1/2

,

Errory =

{
1
L

L∑
s=1

[ŷ(s)− y(s)]2
}1/2

.

The results are shown in Tables IV and V.

Table IV. The root mean squares error of the generalized Kalman filtering algorithm

Rv Rw x1(s) x2(s) x3(s) y(s)

0.102 0.052I6 0.22360 0.21388 0.24850 0.21475
0.052 0.102I6 0.28187 0.27252 0.27762 0.22835

Example 2. Consider the following system:

x(s + 1) =




A11 A12 A13

A21 A22 A23

A31 A32 A33







x1(s)
x2(s)
x3(s)




+




B11

B12

B13







x1(s− 1)
x2(s− 1)
x3(s− 1)


 +




b1

b2

b3


u(s) + w(s),

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2018)
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Table V. The root mean squares error of the direct state estimation algorithm

Rv Rw x1(s) x2(s) x3(s) y(s)

0.102 0.052I3 0.21313 0.19787 0.24351 0.17861
0.152 0.052I3 0.22125 0.20553 0.24756 0.19423
0.202 0.052I3 0.23125 0.21491 0.25275 0.21448
0.052 0.102I3 0.22617 0.20542 0.24981 0.16904
0.052 0.152I3 0.25340 0.22602 0.26550 0.17085
0.052 0.202I3 0.28617 0.25130 0.28650 0.17359
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Figure 1. The system input u(s), output y(s) and the predicted output ŷ(s) versus s
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Figure 2. State x1(s) and the estimated state x̂1(s) versus s by the generalized Kalman filtering algorithm

y(s) = cx(s) + v(s),
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Figure 3. State x2(s) and the estimated state x̂2(s) versus s by the generalized Kalman filtering algorithm
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Figure 4. State x3(s) and the estimated state x̂3(s) versus s by the generalized Kalman filtering algorithm
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Figure 5. State x1(s) and the estimated state x̂1(s) versus s by the direct state estimation algorithm
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Figure 6. State x2(s) and the estimated state x̂2(s) versus s by the direct state estimation algorithm
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Figure 7. State x3(s) and the estimated state x̂3(s) versus s by the direct state estimation algorithm

where the parameters are given by

A11 = 0.10, A12 = [0.20,−0.20],A13 = [0.50,−0.30, 0.20], A21 =
[−0.30

0.20

]
,

A22 =
[

0.20 −0.22
0.30 −0.10

]
,A23 =

[
0.25 0.15 −0.25
0.30 −0.15 0.40

]
, A31 =




0.14
−0.15
−0.25


 ,

A32 =



−0.12 0.25

0 0.22
−0.20 0.30


 , A33 =




0 0.30 −0.21
0.25 0.20 −0.30
−0.20 0.35 0.15


 ,

B11 = [0.20, 0.40, 0, 0.10, 0.30,−0.25],

B12 =
[

0.32 0.12 −0.25 0.25 0.30 0.20
−0.35 0.15 −0.15 0.25 0 0.25

]
,

B13 =



−0.14 −0.22 0.15 0.26 0.43 −0.15
0.20 0.30 0 −0.25 0.10 0.25
−0.20 −0.30 −0.45 0.15 0.45 0.25


 ,
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b1 = 0.3, b2 = [0.5, 0.6]T, b3 = [0.35, 0.40, 0.60]T,
c = [0.4, 0.6, 0.5, 0.3, 0.2, 0.1].

The simulation condition is the same as that in Example 1. Take {v(s)} as a random sequence
with the normal distribution, zero mean and variance Rv = 0.102, and {w(s)} as a white noise
vector sequence with zero mean and variance Rw = 0.052I6. Take the data length L = 300 as the
data length, and apply the direct state estimation algorithm in (30)–(36) to estimate the states of
the considered system. The system input u(s), the true output y(s) and the predicted output ŷ(s)
are shown in Figure 8. The state x(s) and their estimates x̂(s) and errors versus s are shown in
Figures 9–11 and Table VI.

Table VI. The root mean squares error of the algorithm

Rv Rw x1(s) x2(s) x3(s) x4(s) x5(s) x6(s) y(s)

0.102 0.052I6 0.12170 0.16359 0.20876 0.10843 0.14794 0.20944 0.15523
0.152 0.052I6 0.13191 0.17089 0.21133 0.11074 0.15249 0.21055 0.16663
0.202 0.052I6 0.14383 0.17980 0.21433 0.11396 0.15810 0.21204 0.18057
0.052 0.102I6 0.16699 0.17819 0.23226 0.15911 0.17552 0.25575 0.14069
0.052 0.152I6 0.23150 0.20952 0.27084 0.22020 0.21885 0.31968 0.13729
0.052 0.202I6 0.29976 0.24777 0.31760 0.28459 0.26852 0.39236 0.13664
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Figure 8. The system input u(s), output y(s) and the predicted output ŷ(s) versus s

From the simulation results in Tables I–V and Figures 1–11, we can draw the following
conclusions.

• The state estimation accuracy of the direct state estimation algorithm is approximate to that
of the generalized Kalman filtering algorithm. They both has good performance because the
estimated states are close to their true values with s increasing. However, the direct state
estimation algorithm requires less computational cost compared with the generalized Kalman
filtering algorithm, see Tables I–V, and Figures 2–7 and Figures 9–11.
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Figure 9. States x1(s), x2(s) and the estimated states x̂1(s) and x̂2(s) versus s
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Figure 10. States x3(s), x4(s) and the estimated states x̂3(s) and x̂4(s) versus s

• The proposed estimation algorithm can generate good estimates because the predicted output
is close to the true output, see Tables V–VI, and Figures 1 and 8.

• The state estimation accuracy of the proposed algorithm becomes better under the lower noise
levels, see Tables V–VI.
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Figure 11. States x5(s), x6(s) and the estimated states x̂5(s) and x̂6(s) versus s

5. CONCLUSIONS

This paper studies the state estimation for linear systems with multi-state-delays from observation
data. A state estimation algorithm based on the Kalman filtering principle is proposed for
comparison. A direct state estimation algorithm is presented by minimizing the state estimation
error covariance matrix based on the delta operator. The computational complexity analysis shows
that the direct state estimation algorithm requires less computational cost than the generalized state
estimation algorithm. The simulation results show that the direct state estimation algorithm can
generate accurate estimates. The methods proposed in this paper can combine some statistical
methods [48-55] to studu the parameter identification and state filter design for different systems
with coloured noise [56-62].
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