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Abstract This paper focuses on the iterative identification problems for a class of Hammerstein
nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition
based least squares iterative algorithm is presented for estimating the parameter vectors in each
subsystem. Moreover, a data filtering based decomposition least squares iterative algorithm is
proposed. The simulation results indicate that the data filtering based least squares iterative
algorithm can generate more accurate parameter estimates than the least squares iterative algo-
rithm.

Keywords Data filtering · Least squares iterative · Model decomposition · Nonlinear system

1 Introduction

The block-oriented nonlinear systems are popular used for modeling and analyzing nonlinear
problems in various aspects of our society, such as chemistry processing [1,2], energy harvesting
systems [3], signal processing [4–6], predictive control [7,8] and system identification [9,10]. For
decades, many approaches have been studied on the system identification and parameter esti-
mation for linear or nonlinear dynamics systems. The approaches not only can be applied
to obtain the mathematical models of the systems [11] but also play an important
role in analyzing the controlled dynamics systems [12,13]. For example, Hagenblad et al.
derived a maximum likelihood identification method for Wiener models [14]. By the key-term
separation principle, Vörös solved the parameter identification problem of nonlinear dynamic sys-
tems with both actuator and sensor nonlinearities using three-block cascade models [15]. Based
on the least squares principle, Hu et al. derived a recursive extended least squares algorithm for
identifying Wiener nonlinear moving average systems [16]. By using the polynomial nonlinear
state space approach, Paduart et al. identified a nonliear system with a Wiener–Hammerstein
structure [17]. By using the maximum likelihood method, Sun and Liu offered an APSO-aided
identification algorithm to identify Hammerstein systems [18].
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The model decomposition technique can be used to separate a large-scale system into several
subsystems with small sizes and to enhance the computational efficiency [19,20]. Recently, Zhang
proposed a three-stage least squares iterative identification algorithm for output error moving
average systems using the model decomposition [21]; Bai and Liu presented a normalized iterative
method to find a least squares solution for a system of bilinear equations by using the decom-
position technique [22]; Wang and Ding separated a bilinear-parameter cost function into two
linear-parameter cost functions and derived a least squares based and a gradient based iterative
identification algorithms for Wiener nonlinear systems [23].

The filtering technique has been proved to be effective in parameter estimation [24,25] and
state estimation [26]. Recently, Zhao et al. studied a maximum likelihood method to obtain the
parameter estimation of the batch processes by employing the particle filtering approach [27];
Ding et al. used the filtering technique to derive a recursive least squares parameter identification
algorithm for systems with colored noise [28]; Wang and Tang presented a filtered three-stage
gradient-based iterative algorithm for a class of linear-in-parameters output error autoregressive
systems by using the model decomposition and the data filtering technique [29].

By extending the methods in [21,30] from the linear systems to an input nonlinear output error
autoregressive (IN-OEAR) system, this paper studies its iterative identification problem. The
objective is to decompose a bilinear-parameter system into two fictitious subsystems by using the
model decomposition and to present a least squares based iterative algorithm for the IN-OEAR
system. Furthermore, using an estimated noise transfer function to filter the input-output data
of the system to be identified, a data filtering based least squares iterative algorithm is presented.
Compared with the least squares iterative algorithm, the filtering based least squares iterative
algorithm can achieve higher estimation accuracy. The proposed algorithms differ from the least
squares or gradient based iterative algorithms for Hammerstein nonlinear ARMAX systems using
the over-parameterization method in [31] and from the decomposition based iterative least squares
algorithm for output error systems based on the partitioned matrix inversion lemma in [32].

Briefly, the rest of this paper is organized as follows. Section 2 gives the identification model
of the IN-OEAR systems. Section 3 presents a least squares iterative identification algorithm
by using the model decomposition. Section 4 derives a filtering based least squares iterative
identification algorithm for the IN-OEAR systems. A numerical example is provided in Section 6
to show the effectiveness of the proposed algorithms. Finally, we give some concluding remarks
in Section 7.

2 System description

The typical block-oriented nonlinear models include Hammerstein models (a nonlinear static
block followed by a dynamics linear block), Wiener models (a linear dynamics block followed by
a static nonlinear block), Hammerstein-Wiener models, and Wiener-Hammerstein models. Here,
we consider a Hammerstein nonlinear system with colored noise in Fig. 1,

y(t) =
B(z)

A(z)
ū(t) + w(t), (1)

ū(t) = f(u(t)), (2)

where y(t) is the measured output, w(t) is the disturbance with zero mean , u(t) and ū(t) are
the input and output of the nonlinear block, respectively, and A(z) and B(z) are polynomials in
the unit backward shift operator z−1 (z−1y(t) = y(t − 1)):

A(z) := 1 + a1z
−1 + a2z

−2 + . . . + ana
z−na ,

B(z) := b1z
−1 + b2z

−2 + . . . + bnb
z−nb .

Assume that the order na and nb are known and y(t) = 0, u(t) = 0 and v(t) = 0 for t 6 0.
The output of the nonlinear block is a linear combination of the known basic functions fj(∗) and
unknown coefficients αi:

ū(t) = α1f1(u(t)) + α2f2(u(t)) + . . . + αmfm(u(t)) = f(u(t))α,
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Fig. 1 The Hammerstein nonlinear system with colored noise

where

α := [α1, α2, . . . , αm]T ∈ R
m,

f(u(t)) := [f1(u(t)), f2(u(t)), . . . , fm(u(t))] ∈ R
1×m.

The basic functions fj(∗) can be the known order in the input or the trigonometric functions.
For the system with colored noise, the disturbance w(t) can be fitted by an autoregressive

process

w(t) =
1

C(z)
v(t), (3)

or a moving average process

w(t) = D(z)v(t),

or an autoregressive moving average process

w(t) =
D(z)

C(z)
v(t),

where v(t) is the white noise with zero mean and variances σ2, C(z) and D(z) are polynomials
in the unit backward shift operator z−1 [33]:

C(z) := 1 + c1z
−1 + c2z

−2 + . . . + cnc
z−nc ,

D(z) := 1 + d1z
−1 + d2z

−2 + . . . + dnd
z−nd .

This paper assumes the disturbance to be an autoregressive process, and the proposed algorithms
can be extended to the other two cases.

Define an intermediate variable:

x(t) :=
B(z)

A(z)
ū(t). (4)

Define the parameter vectors and the information vectors as

a :=











a1

a2

...
ana











∈ R
na , b :=











b1

b2

...
bnb











∈ R
nb , c :=











c1

c2

...
cnc











∈ R
nc ,

F (t) :=











f(u(t − 1))
f(u(t − 2))

...
f(u(t − nb))











∈ R
nb×m,

ϕa(t) := [−x(t − 1),−x(t − 2), . . . ,−x(t − na)]T ∈ R
na ,

ϕn(t) := [−w(t − 1),−w(t − 2), . . . ,−w(t − nc)]
T ∈ R

nc .

From (3) and (4), we have

w(t) = [1 − C(z)]w(t) + v(t)

=−c1w(t − 1) − c2w(t − 2) − . . . − cnc
w(t − nc) + v(t)

= ϕT

n(t)c + v(t), (5)
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x(t) = [1 − A(z)]x(t) + B(z)ū(t)

=−a1x(t − 1) − a2x(t − 2) − . . . − ana
x(t − na) + b1f(u(t − 1))α + b2f(u(t − 2))α

+ . . . + bnb
f(u(t − nb))α

= ϕT

a (t)a + bTF (t)α. (6)

The output y(t) in (1) can be expressed as

y(t) = x(t) + w(t) (7)

= ϕT

a (t)a + bTF (t)α + ϕT

n(t)c + v(t). (8)

This is the identification model for the Hammerstein nonlinear system.

3 The decomposition based least squares iterative algorithm

It is worth pointing out that model (8) contains the product of the parameters b of the linear
part and α of the nonlinear part. The pair βb and α/β leads to the same input-output relation
for any nonzero constant β. In order to ensure identifiability, we assume that ‖α‖ = 1 and the
first entry of the vector α is positive, i.e., α1 > 0. Although we can use the Kronecker product
to transform the bilinear parameter identification problem to a linear parameter identification
problem [34,35], the dimension of the resulting unknown parameter vector increases, so does the
calculation load. Here, we decompose this system into two fictitious subsystems: one containing

the parameter vector θ :=

[

a

b

]

, and the other containing the parameter vector ϑ :=

[

α

c

]

. Let

k = 1, 2, 3, . . . be an iterative variable, θ̂k(t) :=

[

âk(t)

b̂k(t)

]

and ϑ̂k(t) :=

[

α̂k(t)
ĉk(t)

]

be the estimates

of θ and ϑ at iteration k. Define two fictitious outputs:

y1(t) := y(t) − ϕT

n(t)c (9)

= ϕT

a (t)a + bTF (t)α + v(t),

= ϕT

1 (t)θ + v(t),

y2(t) := y(t) − ϕT

a (t)a (10)

= bTF (t)α + ϕT

n(t)c + v(t),

= ϕT

2 (t)ϑ + v(t),

where

ϕ1(t) :=

[

ϕa(t)
F (t)α

]

∈ R
na+nb ,

ϕ2(t) :=

[

F T(t)b
ϕn(t)

]

∈ R
m+nc .

Opt a set of data from j = t−L+1 to j = t (L denotes the data length) and define two quadratic
criterion functions:

J1(θ) =
t

∑

j=t−L+1

[y1(j) − ϕT

1 (j)θ]2,

J2(ϑ) =
t

∑

j=t−L+1

[y2(j) − ϕT

2 (j)ϑ]2.

Based on the least squares principle, letting the partial derivative of J1(θ) and J2(ϑ) with respect
to θ and ϑ be zero, respectively, we can obtain the following least squares iterative algorithm:

θ̂k(t) =





t
∑

j=t−L+1

ϕ1(j)ϕ
T

1 (j)





−1
t

∑

j=t−L+1

ϕ1(j)y1(j), (11)
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ϑ̂k(t) =





t
∑

j=t−L+1

ϕ2(j)ϕ
T

2 (j)





−1
t

∑

j=t−L+1

ϕ2(j)y2(j). (12)

Substituting (9) into (11) and (10) into (12) gives

θ̂k(t) =





t
∑

j=t−L+1

ϕ1(j)ϕ
T

1 (j)





−1
t

∑

j=t−L+1

ϕ1(j)[y(j) − ϕT

n(j)c], (13)

ϑ̂k(t) =





t
∑

j=t−L+1

ϕ2(j)ϕ
T

2 (j)





−1
t

∑

j=t−L+1

ϕ2(j)[y(j) − ϕT

a (j)a]. (14)

The difficulty is that the right-hand sides of (13) and (14) contain the unknown parameter vectors
c and a, the information vectors ϕ1(t) and ϕ2(t) contain the unknown parameter vectors α and b

and the unknown intermediate variables x(t− i) and w(t− i), so it is impossible to compute θ̂k(t)

and ϑ̂k(t) by (13) and (14) directly. Here, the solution is based on the hierarchical identification
principle [36]. Let ŵk(t − i) and x̂k(t − i) be the estimates of w(t − i) and x(t − i) at iteration
k, ϕ̂a,k(t), ϕ̂n,k(t), ϕ̂1,k(t), and ϕ̂2,k(t) be the estimates of ϕa(t), ϕn(t), ϕ1(t), and ϕ2(t) at
iteration k and define

ϕ̂a,k(t) := [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − na)]T ∈ R
na ,

ϕ̂n,k(t) := [−ŵk−1(t − 1),−ŵk−1(t − 2), . . . ,−ŵk−1(t − nc)]
T ∈ R

nc ,

ϕ̂1,k(t) :=

[

ϕ̂a,k(t)
F (t)α̂k−1(t)

]

∈ R
na+nb ,

ϕ̂2,k(t) :=

[

F T(t)b̂k(t)
ϕ̂n,k(t)

]

∈ R
m+nc .

From (6), we have xk(t − i) = ϕT

a (t − i)a + bTF (t − i)α. Replacing ϕa(t − i), a, b and α with

their estimates ϕ̂a,k(t − i), âk(t), b̂k(t) and α̂k(t) gives

x̂k(t − i) = ϕ̂
T

a,k(t − i)âk(t) + b̂
T

k(t)F (t − i)α̂k(t).

From (7), we have w(t− i) = y(t− i)−x(t− i). Replacing x(t− i) with x̂k(t− i) , we can compute
the estimate of w(t) through:

ŵk(t − i) = y(t − i) − x̂k(t − i).

Replacing the unknown c and ϕ1(t) in (13) with their estimates ĉk−1(t) and ϕ̂1,k(t), the unknown
a, ϕ2(t) and ϕa(t) in (14) with their estimates âk(t), ϕ̂2,k(t) and ϕ̂a,k(t), we can summarize the
decomposition based least squares iterative (D-LSI) algorithm for estimating θ and ϑ as follows:

θ̂k(t) =





t
∑

j=t−L+1

ϕ̂1,k(j)ϕ̂T

1,k(j)





−1
t

∑

j=t−L+1

ϕ̂1,k(j)[y(j) − ϕ̂
T

n,k(j)ĉk−1(j)], (15)

ϑ̂k(t) =





t
∑

j=t−L+1

ϕ̂2,k(j)ϕ̂T

2,k(j)





−1
t

∑

j=t−L+1

ϕ̂2,k(j)[y(j) − ϕ̂
T

a,k(j)âk(j)], (16)

ϕ̂a,k(t) = [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − na)]T, (17)

ϕ̂n,k(t) = [−ŵk−1(t − 1),−ŵk−1(t − 2), . . . ,−ŵk−1(t − nc)]
T, (18)

ϕ̂1,k(t) = [ϕ̂T

a,k(t), α̂T

k−1(t)F
T(t)]T, (19)

ϕ̂2,k(t) = [b̂
T

k(t)F (t), ϕ̂T

n,k(t)]T, (20)

x̂k(t − i) = ϕ̂
T

a,k(t − i)âk(t) + b̂
T

k(t)F (t − i)α̂k(t), i = 1, 2, . . . , na (21)

ŵk(t − j) = y(t − j) − x̂k(t − j), j = 1, 2, . . . , nc (22)
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F (t) =











f1(u(t − 1)) f2(u(t − 1)) . . . fm(u(t − 1))
f1(u(t − 2)) f2(u(t − 2)) . . . fm(u(t − 2))

...
...

...
f1(u(t − nb)) f2(u(t − nb)) . . . fm(u(t − nb))











, (23)

âk(t) = θ̂k(t)(1 : na), (24)

b̂k(t) = θ̂k(t)(na + 1 : na + nb), (25)

α̂k(t) = sgn[ϑ̂k(t)(1)]
ϑ̂k(t)(1 : m)

‖ϑ̂k(t)(1 : m)‖
. (26)

To initialize the D-LSI algorithm, the initial value θ̂0(t) =

[

â0(t)

b̂0(t)

]

is generally taken to be a

nonzero vector with b̂0(t) 6= 0, α̂0(t) is taken to be a vector with ‖α̂0(t)‖ = 1, and ĉ0(t) is taken
to be an arbitrary real vector. The initial value of intermediate variables ŵ0(t − i) and x̂0(t − i)
are taken to be two random numbers.

4 The filtering-based least squares iterative algorithm

Using the polynomial C(z) (a linear filter) to filter the input-output data, the model in (1) can
be transformed into two identification models: an input nonlinear output error model with white
noise and an autoregressive noise model. Multiplying both sides of Equation (1) by C(z) yields

C(z)y(t) =
B(z)

A(z)
C(z)ū(t) + v(t). (27)

Define the filtered output yf(t) and input ūf(t):

yf(t) := C(z)y(t)

= y(t) + c1y(t − 1) + c2y(t − 2) + . . . + cny(t − n),

ūf(t) := C(z)ū(t)

= C(z)[α1f1(u(t)) + α2f2(u(t)) + . . . + αmfm(u(t))]

= α1g1(t) + α2g2(t) + . . . + αmgm(t),

where

gj(t) := C(z)fj(u(t)), j = 1, 2, . . . , m.

Define an information matrix:

G(t) :=











g1(t − 1) g2(t − 1) . . . gm(t − 1)
g1(t − 2) g2(t − 2) . . . gm(t − 2)

...
...

...
g1(t − nb) g2(t − nb) . . . gm(t − nb)











∈ R
nb×m.

Then Equation (27) can be rewritten as

yf(t) =
B(z)

A(z)
ūf(t) + v(t).

Define an intermediate variable:

xf(t) :=
B(z)

A(z)
ūf(t).

Then we have

xf(t) = [1 − A(z)]xf(t) + B(z)ūf(t)

= ϕT

f (t)a + bTG(t)α, (28)
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where

ϕf(t) := [−xf(t − 1),−xf(t − 2), . . . ,−xf(t − na)]T ∈ R
na .

The filtered output yf(t) can be expressed as

yf(t) = xf(t) + v(t)

= ϕT

f (t)a + bTG(t)α + v(t). (29)

Define a fictitious output and two quadratic criterion functions as

y3(t) := yf(t) − ϕT

f (t)a

= bTG(t)α + v(t),

J3(θ) :=
t

∑

j=t−L+1

[yf(j) − ϕT

3 (j)θ]2,

J4(α) :=
t

∑

j=t−L+1

[y3(j) − ϕT

4 (j)α]2,

where

ϕ3(t) :=

[

ϕf(t)
G(t)α

]

∈ R
na+nb , (30)

ϕ4(t) := GT(t)b ∈ R
m. (31)

Minimizing the criterion functions J3(θ) and J4(α), and letting the partial derivatives of J3(θ)
and J4(α) with respect to θ and α be zero, respectively, give the following iterative algorithm
to estimate θ and α:

θ̂k(t) =





t
∑

j=t−L+1

ϕ3(j)ϕ
T

3 (j)





−1
t

∑

j=t−L+1

ϕ3(j)yf(j), (32)

α̂k(t) =





t
∑

j=t−L+1

ϕ4(j)ϕ
T

4 (j)





−1
t

∑

j=t−L+1

ϕ4(j)y3(j)

=





t
∑

j=t−L+1

ϕ4(j)ϕ
T

4 (j)





−1
t

∑

j=t−L+1

ϕ4(j)[yf(j) − ϕT

f (j)a]. (33)

However, the polynomial C(z) is unknown, so are the filtered output yf(t), the filtered input
ūf(t), and the filtered information matrix G(t). Thus it is impossible to obtain the estimates

θ̂k(t) and α̂k(t) by (32) and (33). Here, we need to compute the parameter estimation vector
ĉk(t) = [ĉ1,k(t), ĉ2,k(t), . . . , ĉnc,k(t)]T firstly, and then use the estimated polynomial Ĉk(t, z) :=
1 + ĉ1,k(t)z−1 + ĉ2,k(t)z−2 + . . . + ĉnc,k(t)z−nc to filter y(t), ū(t) to obtain the estimates ŷf,k(t),
ˆ̄uf,k(t) and Ĝk(t).

According to (5), define a quadratic criterion function:

J5(c) :=
t

∑

j=t−L+1

[w(j) − ϕn(j)c]2.

Minimizing the criterion functions J5(c) gives the iterative estimate of c:

ĉk(t) =





t
∑

j=t−L+1

ϕn(j)ϕT

n(j)





−1
t

∑

j=t−L+1

ϕn(j)w(j). (34)

We can find that the right-hand side of (34) contains the unknown information vector ϕn(t) and
intermediate variable w(t). Similarly, replacing the unknown ϕn(t) and w(t) in (34) with their
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corresponding estimates ϕ̂n,k(t) and ŵk(t), we can obtain the least squares iterative algorithm
for computing the estimate ĉk(t) as follows:

ĉk(t) =





t
∑

j=t−L+1

ϕ̂n,k(j)ϕ̂T

n,k(j)





−1
t

∑

j=t−L+1

ϕ̂n,k(j)ŵk(j), (35)

ϕ̂n,k(t) = [−ŵk−1(t − 1),−ŵk−1(t − 2), . . . ,−ŵk−1(t − nc)]
T, (36)

ŵk(t − i) = y(t − i) − ϕ̂
T

a,k(t − i)âk−1(t) − b̂
T

k−1F (t − i)α̂k−1(t). (37)

Using the obtained estimate ĉk(t) to construct the polynomial

Ĉk(t, z) = 1 + ĉ1,k(t)z−1 + ĉ2,k(t)z−2 + . . . + ĉnc,k(t)z−nc

to filter y(t) and ˆ̄u(t) gives the filtered estimates ŷf,k(t) and ˆ̄uf,k(t):

ŷf,k(t) = Ĉk(t, z)y(t)

= y(t) + ĉ1,k(t)y(t − 1) + ĉ2,k(t)y(t − 2) + . . . + ĉnc,k(t)y(t − nc),

ˆ̄uf,k(t) = Ĉk(t, z)ˆ̄u(t)

= Ĉk(t, z)[α̂1,k(t)f1(u(t)) + α̂2,k(t)f2(u(t)) + . . . + α̂m,k(t)fm(u(t))]

= α̂1(t)ĝ1,k(t) + α̂2,k(t)ĝ2,k(t) + . . . + α̂m,k(t)ĝm,k(t),

where ĝj,k(t) can be computed by

ĝj,k(t) = Ĉk(t, z)fj(u(t))

= fj(u(t)) + ĉ1,k(t)fj(u(t − 1)) + ĉ2,k(t)fj(u(t − 2)) + . . . + ĉnc,k(t)fj(u(t − nc)).

Let ϕ̂f,k(t) be the estimate of ϕf(t) and define

ϕ̂f,k(t) := [−x̂f,k−1(t − 1),−x̂f,k−1(t − 2), . . . ,−x̂f,k−1(t − na)] ∈ R
na .

From (28), we have xf(t − i) = ϕT

f (t − i)a + bTG(t − i)α. Replacing the parameter vectors a, b

and α with their estimates âk(t), b̂k(t) and α̂k(t) at iteration k and the unknown ϕf(t − i) and

G(t− i) with their estimates ϕ̂f,k(t− i) and Ĝk(t− i) , respectively, the estimate x̂f,k(t− i) can
be computed by

x̂f,k(t − i) = ϕ̂f,k(t − i)âk(t) + b̂
T

k(t)Ĝk(t − i)α̂k(t).

According to (30) and (31), we define

ϕ̂3,k(t) :=

[

ϕ̂f,k(t)

Ĝk(t)α̂k−1(t)

]

∈ R
na+nb ,

ϕ̂4,k(t) := Ĝ
T

k(t)b̂k(t) ∈ R
m.

Replacing ϕ3(t) and yf(t) in (32) with their estimates ϕ̂3,k(t) and ŷf(t), replacing ϕ4(t), yf(t)
and ϕf(t) in (33) with their estimates ϕ̂4,k(t), ŷf(t) and ϕ̂f,k(t), respectively, we can obtain the
following data filtering based least squares iterative algorithm by using the model decomposition
technique (the F-D-LSI algorithm for short):

θ̂k(t) =





t
∑

j=t−L+1

ϕ̂3,k(j)ϕ̂T

3,k(j)





−1
t

∑

j=t−L+1

ϕ̂3,k(j)ŷf,k(j), (38)

ϕ̂3,k(t) = [ϕ̂T

f,k(t), α̂T

k−1(t)Ĝ
T

k(t)]T, (39)

ϕ̂f,k(t) = [−x̂f,k−1(t − 1),−x̂f,k−1(t − 2), . . . ,−x̂f,k−1(t − na)]T, i = 1, 2, . . . , na, (40)

x̂f,k(t − i) = ϕ̂
T

f,k(t − i)âk(t) + b̂
T

k(t)Ĝk(t − i)α̂k(t), (41)

α̂k(t) =





t
∑

j=t−L+1

ϕ̂4,k(j)ϕ̂T

4,k(j)





−1
t

∑

j=t−L+1

ϕ̂4,k(j)[ŷf,k(j) − ϕ̂
T

f,k(j)âk(j)], (42)
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ϕ̂4,k(t) = Ĝ
T

k(t)b̂k(t), (43)

Ĝk(t) =











ĝ1,k(t − 1) ĝ2,k(t − 1) . . . ĝm,k(t − 1)
ĝ1,k(t − 2) ĝ2,k(t − 2) . . . ĝm,k(t − 2)

...
...

...
ĝ1,k(t − nb) ĝ2,k(t − nb) . . . ĝm,k(t − nb)











, (44)

ĝj,k(t) = fj(u(t)) + ĉ1,k(t)fj(u(t − 1)) + ĉ2,k(t)fj(u(t − 2)) + . . . + ĉnc,k(t)fj(u(t − nc)), (45)

ŷf,k(t) = y(t) + ĉ1,k(t)y(t − 1) + ĉ2,k(t)y(t − 2) + . . . + ĉnc,k(t)y(t − nc), (46)

ĉk(t) =





t
∑

j=t−L+1

ϕ̂n,k(j)ϕ̂T

n,k(j)





−1
t

∑

j=t−L+1

ϕ̂n,k(j)ŵk(j), (47)

ϕ̂n,k(t) = [−ŵk−1(t − 1),−ŵk−1(t − 2), . . . ,−ŵk−1(t − nc)]
T, (48)

ŵk(t − j) = y(t − j) − ϕ̂
T

a,k(t − j)âk−1(t) − b̂
T

k−1(t)F (t − j)α̂k−1(t), j = 1, 2, . . . , nc (49)

ϕ̂a,k(t) = [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − na)]T, (50)

x̂k(t − i) = [ϕ̂T

a,k(t − i), α̂T

k(t)F T(t − i)]θ̂k(t), i = 1, 2, . . . , na, (51)

F (t) =











f1(u(t − 1)) f2(u(t − 1)) . . . fm(u(t − 1))
f1(u(t − 2)) f2(u(t − 2)) . . . fm(u(t − 2))

...
...

...
f1(u(t − nb)) f2(u(t − nb)) . . . fm(u(t − nb))











, (52)

âk(t) = θ̂k(t)(1 : na), (53)

b̂k(t) = θ̂k(t)(na + 1 : na + nb), (54)

ᾱk(t) = sgn[α̂k(t)(1)]
α̂k(t)

‖α̂k(t)‖
, α̂k(t) = ᾱk(t), (55)

ĉk(t) = [ĉ1,k(t), ĉ2,k(t), . . . , ĉnc,k(t)]T, (56)

Θ̂k(t) = [θ̂
T

k(t), α̂T

k(t), ĉT

k(t)]T. (57)

To initialize the F-D-LSI algorithm: let k = 1, and set the initial values: θ̂0(t) =

[

â0(t)

b̂0(t)

]

be any nonzero real vector with b̂0(t) 6= 0, α̂0(t) be an real vector with ‖α̂0(t)‖ = 1,
ĉ0(t) be an arbitrary real vector, x̂f,0(t− i), x̂0(t− i) and ŵ0(t− i) are random numbers,
ŷf,0(t− i) = 1/p0, p0 is taken to be a large number, for example p0 = 106. The flowchart

of the F-D-LSI algorithm for computing θ̂k(t), α̂k(t) and ĉk(t) is shown in Fig. 2.

5 The F-D-LSI algorithm with finite measurement data

On the basis of the F-D-LSI algorithm, this section simply gives the data filtering based least
squares iterative algorithm with finite measurement data. Letting t = L, from J3(θ), J4(α) and
J5(c), we have

J6(θ) :=
L

∑

j=1

[yf(j) − ϕ3(j)θ]2,

J7(α) :=
L

∑

j=1

[yf(t) − ϕT

f (t)a − ϕT

4 (j)α]2,

J8(c) :=
L

∑

j=1

[w(j) − ϕn(j)c]2.

Applying the similar way of deriving the F-D-LSI algorithm and minimizing the criterion func-
tions J6(θ), J7(α) and J8(c), we can obtain the F-D-LSI algorithm with finite measurement data
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Start

¶
µ

³
´

?
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?
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?
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?
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?
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?
Update α̂k(t)

?
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XXXXXXXXX

XXXXXXXXX
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?
t := t + 1

¾

Fig. 2 The flowchart of the F-D-LSI algorithm for computing θ̂k(t), α̂k(t) and ĉk(t)

for estimating θ̂k, α̂k and ĉk as follows:

θ̂k =





L
∑

j=1

ϕ̂3,k(j)ϕ̂T

3,k(j)





−1
L

∑

j=1

ϕ̂3,k(j)ŷf,k(j), (58)

ϕ̂3,k(t) = [ϕ̂T

f,k(t), α̂T

k−1Ĝ
T

k(t)]T, t = 1, 2, . . . , L, (59)

ϕ̂f,k(t) = [−x̂f,k−1(t − 1),−x̂f,k−1(t − 2), . . . ,−x̂f,k−1(t − na)]T, (60)

x̂f,k(t) = ϕ̂f,k(t)âk + b̂
T

kĜk(t)α̂k, (61)

α̂k =





L
∑

j=1

ϕ̂4,k(j)ϕ̂T

4,k(j)





−1
L

∑

j=1

ϕ̂4,k(j)[ŷf,k(j) − ϕ̂
T

f,k(j)âk], (62)

ϕ̂4,k(t) = Ĝ
T

k(t)b̂k, (63)
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Ĝk(t) =











ĝ1,k(t − 1) ĝ2,k(t − 1) . . . ĝm,k(t − 1)
ĝ1,k(t − 2) ĝ2,k(t − 2) . . . ĝm,k(t − 2)

...
...

...
ĝ1,k(t − nb) ĝ2,k(t − nb) . . . ĝm,k(t − nb)











, (64)

ĝj,k(t) = fj(u(t)) + ĉ1,kfj(u(t − 1)) + ĉ2,kfj(u(t − 2)) + . . . + ĉnc,kfj(u(t − nc)), (65)

ŷf,k(t) = y(t) + ĉ1,ky(t − 1) + ĉ2,ky(t − 2) + . . . + ĉnc,ky(t − nc), (66)

ĉk =





L
∑

j=1

ϕ̂n,k(j)ϕ̂T

n,k(j)





−1
L

∑

j=1

ϕ̂n,k(j)ŵk(j), (67)

ϕ̂n,k(t) = [−ŵk−1(t − 1),−ŵk−1(t − 2), . . . ,−ŵk−1(t − nc)]
T, (68)

ŵk(t) = y(t) − ϕ̂
T

a,k(t)âk−1 − b̂
T

k−1F (t)α̂k−1, (69)

ϕ̂a,k(t) = [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − na)]T, (70)

x̂k(t) = [ϕ̂T

a,k(t), α̂T

kF T(t)]θ̂k, (71)

F (t) =











f1(u(t − 1)) f2(u(t − 1)) . . . fm(u(t − 1))
f1(u(t − 2)) f2(u(t − 2)) . . . fm(u(t − 2))

...
...

...
f1(u(t − nb)) f2(u(t − nb)) . . . fm(u(t − nb))











, (72)

âk = θ̂k(1 : na), (73)

b̂k = θ̂k(1 + na : na + nb), (74)

ᾱk = sgn[α̂k(1)]
α̂k

‖α̂k‖
, α̂k = ᾱk, (75)

ĉk = [ĉ1,k, ĉ2,k, . . . , ĉnc,k]T, (76)

Θ̂k = [θ̂
T

k , α̂T

k , ĉT

k ]T. (77)

The flowchart of computing the parameter estimate Θ̂k in the F-D-LSI algorithm in
(58)–(77) with finite measurement data is shown in Fig. 3.

The F-D-LSI algorithm can be used to identify input nonlinear systems (Hammer-
stein nonlinear systems). The typical example is the first-order water tank system
in Fig. 4, where u(t) is the valve opening, ū(t) is the water inlet flow, and y(t) is
the liquid level, the transfer function of the linear dynamical block has the form of

b1z−1

1+a1z−1 . The nonlinearity of the valve can be approximately fitted by a polynomial
or a linear combination of the known base functions and the disturbance is an au-
toregressive process w(t) := 1

1+c1z−1 v(t), v(t) is white noise. The diagram of the water
tank setup is shown in Fig. 5. Thus, the proposed F-D-LSI algorithm can be applied
to such a system.

6 Example

Consider a Hammerstein nonlinear simulation model as follow:

y(t) =
B(z)

A(z)
ū(t) +

1

C(z)
v(t),

ū(t) = α1u
2(t) + α2u

3(t) = 0.80u2(t) + 0.60u3(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 + 0.38z−1 + 0.42z−2,

B(z) = b1z
−1 + b2z

−2 = 0.75z−1 − 0.33z−2,

C(z) = 1 + c1z
−1 = 1 + 0.85z−1,

θ = [0.38, 0.42, 0.75,−0.33, 0.80, 0.60, 0.85]T.

In simulation, the input {u(t)} is taken as a persistent excitation signal sequence with zero mean
and unit variance, and {v(t)} as a white noise sequence with zero mean and variance σ2, the data
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Fig. 3 The flowchart of the F-D-LSI algorithm with finite measurement data for computing Θ̂k

u(t)
½½ZZ

?

ū(t)

?

6

y(t)

?
Fig. 4 An experimental setup of a water tank system

length L = 1000 and L = 2000, respectively. Applying the D-LSI algorithm in (15)–(26) and the
F-D-LSI algorithm with finite measurement data in (58)–(77) to estimate the parameters of this
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-
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u(t) ū(t) x(t)

v(t)

y(t)

Fig. 5 The diagram of the water tank setup

system, the parameter estimates and their estimation errors δ := ‖θ̂k − θ‖/‖θ‖ with different
data length L are shown in Tables 1–2, the F-D-LSI parameter estimation errors with different
noise variances σ2 are shown in Fig. 6, the parameter estimation errors of the two algorithms are
plotted in Fig. 7.

When the noise variance σ2 = 1.002, iteration k = 15, the D-LSI estimated model is given by

y(t) =
0.76582z−1 − 0.31992z−2

1 + 0.38788z−1 + 0.37752z−2
ū(t) +

1

1 + 0.85828z−1
v(t),

ū(t) = 0.77549u2(t) + 0.63137u3(t),

the F-D-LSI estimated model is given by

y(t) =
0.77354z−1 − 0.31140z−2

1 + 0.39827z−1 + 0.40385z−2
ū(t) +

1

1 + 0.85839z−1
v(t),

ū(t) = 0.79551u2(t) + 0.60594u3(t).

For model validation, we use a different data set (Le = 1000 samples from t = 2001 to 3000)
and the estimated models obtained by the D-LSI algorithm and the F-D-LSI algorithm. The
predicted outputs and the true outputs are plotted in Fig. 8 from t = 2001 to 2100 and Fig. 9
from t = 2001 to 3000. Using the estimated outputs to compute the average output errors:

δe1 =
1

1000





3000
∑

j=2001

[y(j) − ŷ1(j)]
2





1

2

= 0.0550784,

δe2 =
1

1000





3000
∑

j=2001

[y(j) − ŷ2(j)]
2





1

2

= 0.0548344,

where ŷ1(t) is the predicted output given by the D-LSI model, ŷ2(t) is the predicted output given
by the F-D-LSI model, and y(t) is the true output.
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2
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2
σ

2
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2
σ

2
 = 3.00

2

      k

δ

Fig. 6 The F-D-LSI estimation errors δ versus k (L = 2000)

From Figs. 6–9 and Tables 1–2, we can draw the following conclusions.
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Table 1 The parameter estimates and errors versus iteration k (σ2 = 0.502, L = 1000)

Algorithms k a1 a2 b1 b2 α1 α2 c1 δ(%)
D-LSI 1 0.02094 -0.03204 0.74481 -0.55602 0.77692 0.62960 0.00093 63.84914

2 0.43473 0.42385 0.77060 -0.33095 0.79820 0.60240 0.73608 7.77756
3 0.33152 0.34580 0.77836 -0.38595 0.79127 0.61147 0.84967 6.64827
4 0.33904 0.36807 0.77330 -0.37870 0.79340 0.60870 0.85005 5.22390
5 0.35427 0.38317 0.77291 -0.36665 0.79227 0.61017 0.85142 3.86301
10 0.35876 0.38411 0.76986 -0.36141 0.79072 0.61218 0.85202 3.51741

F-D-LSI 1 0.04618 -0.02019 0.75006 -0.57505 0.88337 0.66748 0.61513 39.88773
2 0.35925 0.45558 0.76516 -0.37960 0.76723 0.61844 0.77757 6.37890
3 0.30853 0.36912 0.75579 -0.38307 0.78741 0.62341 0.84159 6.45868
4 0.37483 0.39413 0.75879 -0.34759 0.78024 0.62273 0.85002 2.70707
5 0.37107 0.40813 0.75494 -0.33713 0.78356 0.62274 0.85211 2.00202
10 0.37561 0.40488 0.75717 -0.33660 0.78353 0.62138 0.85277 1.99342

True values 0.38000 0.42000 0.75000 -0.33000 0.80000 0.60000 0.85000

Table 2 The parameter estimates and errors versus iteration k (σ2 = 0.502, L = 2000)

Algorithms k a1 a2 b1 b2 α1 α2 c1 δ(%)
D-LSI 1 -0.01200 0.00614 0.72453 -0.55148 0.77936 0.62658 -0.00384 63.79498

2 0.46302 0.45050 0.74061 -0.29910 0.79530 0.60622 0.75542 8.11391
3 0.33566 0.35793 0.76113 -0.36301 0.78854 0.61498 0.85624 5.23040
4 0.36287 0.39897 0.75618 -0.34691 0.79055 0.61239 0.85650 2.22579
5 0.38124 0.40648 0.75569 -0.33352 0.78855 0.61497 0.85919 1.56941
10 0.37432 0.40012 0.75440 -0.33702 0.78826 0.61534 0.85936 1.87768

F-D-LSI 1 -0.00063 -0.00294 0.73928 -0.57364 0.88889 0.66575 0.57716 41.60456
2 0.37176 0.46262 0.75183 -0.36609 0.76951 0.61516 0.77109 6.24188
3 0.31375 0.38596 0.74718 -0.37215 0.79236 0.61911 0.84758 5.34710
4 0.37879 0.39422 0.75172 -0.33997 0.78415 0.61771 0.85527 2.23945
5 0.38252 0.42147 0.74641 -0.32178 0.78701 0.61801 0.85822 1.54725
10 0.38485 0.41473 0.74928 -0.32332 0.78753 0.61631 0.85903 1.48614

True values 0.38000 0.42000 0.75000 -0.33000 0.80000 0.60000 0.85000
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0
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0.4
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       k

δ

Fig. 7 The parameter estimation errors δ versus k (σ2 = 1.502, L = 1000)

– The parameter estimation errors are becoming smaller (in general) as k increasing – see Fig. 6
and Fig. 7.

– Under the same data length, the parameter estimation errors become smaller as the noise
variances decrease – see Fig. 6.

– Under the same noise variances and data lengths, the F-D-LSI algorithm can generate more
accurate parameter estimates than the F-LSI algorithm – see Tables 1–2 and Fig. 7.

– The F-D-LSI algorithm can generate accurate parameter estimates after only several iterations
– see Tables 1–2.
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Fig. 8 The true output and predicted output from t = 2001 to 2100 (σ2 = 1.002, k = 15)
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Fig. 9 The true output and predicted output from t = 2001 to 3000 (σ2 = 1.002, k = 15)

– The predicted outputs are very close to the true outputs, so the estimated model can capture
the dynamics system well – see Figs. 8–9.

7 Conclusions

This paper presents a least squares iterative algorithm and a filtering based least squares iterative
algorithm for IN-OEAR systems by using the model decomposition technique. Compared with
the D-LSI algorithm, the F-D-LSI algorithm has higher estimation accuracy. The simulation test
validates the effectiveness of the proposed algorithms. The proposed algorithms can be extended
to study the parameter estimation problem for dual-rate sampled systems and non-uniformly
sampled systems [37–39] and Wiener nonlinear systems [40].
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