73,451 research outputs found

    Distributed Inference and Query Processing for RFID Tracking and Monitoring

    Get PDF
    In this paper, we present the design of a scalable, distributed stream processing system for RFID tracking and monitoring. Since RFID data lacks containment and location information that is key to query processing, we propose to combine location and containment inference with stream query processing in a single architecture, with inference as an enabling mechanism for high-level query processing. We further consider challenges in instantiating such a system in large distributed settings and design techniques for distributed inference and query processing. Our experimental results, using both real-world data and large synthetic traces, demonstrate the accuracy, efficiency, and scalability of our proposed techniques.Comment: VLDB201

    Distributed Stream Filtering for Database Applications

    Get PDF
    Distributed stream filtering is a mechanism for implementing a new class of real-time applications with distributed processing requirements. These applications require scalable architectures to support the efficient processing and multiplexing of large volumes of continuously generated data. This paper provides an overview of a stream-oriented model for database query processing and presents a supporting implementation. To facilitate distributed stream filtering, we introduce several new query processing operations, including pipelined filtering that efficiently joins and eliminates duplicates from database streams and a new join method, the progressive join, that joins streams of tuples. Finally, recognizing that the stream-oriented model results in performance tradeoffs that differ significantly from those in traditional databases, we present a new query optimization strategy specifically designed for stream-oriented databases

    Stream Reasoning in Temporal Datalog

    Full text link
    In recent years, there has been an increasing interest in extending traditional stream processing engines with logical, rule-based, reasoning capabilities. This poses significant theoretical and practical challenges since rules can derive new information and propagate it both towards past and future time points; as a result, streamed query answers can depend on data that has not yet been received, as well as on data that arrived far in the past. Stream reasoning algorithms, however, must be able to stream out query answers as soon as possible, and can only keep a limited number of previous input facts in memory. In this paper, we propose novel reasoning problems to deal with these challenges, and study their computational properties on Datalog extended with a temporal sort and the successor function (a core rule-based language for stream reasoning applications)

    Enhanced Stream Processing in a DBMS Kernel

    Get PDF
    Continuous query processing has emerged as a promising query processing paradigm with numerous applications. A recent development is the need to handle both streaming queries and typical one-time queries in the same application. For example, data warehousing can greatly benefit from the integration of stream semantics, i.e., online analysis of incoming data and combination with existing data. This is especially useful to provide low latency in data-intensive analysis in big data warehouses that are augmented with new data on a daily basis. However, state-of-the-art database technology cannot handle streams efficiently due to their "continuous" nature. At the same time, state-of-the-art stream technology is purely focused on stream applications. The research efforts are mostly geared towards the creation of specialized stream management systems built with a different philosophy than a DBMS. The drawback of this approach is the limited opportunities to exploit successful past data processing technology, e.g., query optimization techniques. For this new problem we need to combine the best of both worlds. Here we take a completely different route by designing a stream engine on top of an existing relational database kernel. This includes reuse of both its storage/execution engine and its optimizer infrastructure. The major challenge then becomes the efficient support for specialized stream features. This paper focuses on incremental window-based processing, arguably the most crucial stream-specific requirement. In order to maintain and reuse the generic storage and execution model of the DBMS, we elevate the problem at the query plan level. Proper op

    Capturing Data Uncertainty in High-Volume Stream Processing

    Get PDF
    We present the design and development of a data stream system that captures data uncertainty from data collection to query processing to final result generation. Our system focuses on data that is naturally modeled as continuous random variables. For such data, our system employs an approach grounded in probability and statistical theory to capture data uncertainty and integrates this approach into high-volume stream processing. The first component of our system captures uncertainty of raw data streams from sensing devices. Since such raw streams can be highly noisy and may not carry sufficient information for query processing, our system employs probabilistic models of the data generation process and stream-speed inference to transform raw data into a desired format with an uncertainty metric. The second component captures uncertainty as data propagates through query operators. To efficiently quantify result uncertainty of a query operator, we explore a variety of techniques based on probability and statistical theory to compute the result distribution at stream speed. We are currently working with a group of scientists to evaluate our system using traces collected from the domains of (and eventually in the real systems for) hazardous weather monitoring and object tracking and monitoring.Comment: CIDR 200

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes
    corecore