
TECHNISCHE UNIVERSITÄT ILMENAU
Institut für Praktische Informatik und Medieninformatik

Fakultät für Informatik und Automatisierung
Fachgebiet Datenbanken und Informationssysteme

Dissertation

Hardware-Conscious Query Processing
for the Many-core Era

vorgelegt von

M.Sc. Constantin Pohl

zur Erlangung des akademischen Grades

Dr.-Ing.

Gutachter:

1. PROF. DR.–ING. HABIL. KAI-UWE SATTLER

2. PROF. DR.-ING. HABIL. KLAUS MEYER-WEGENER

3. PROF. DR. RER. NAT. HABIL. GUNTER SAAKE

Tag der Einreichung: 30.04.2020
Tag der wissenschaftlichen Aussprache: 19.10.2020

urn:nbn:de:gbv:ilm1-2020000443

Abstract

Exploiting the opportunities given by modern hardware for accelerating query processing speed
is no trivial task. Many DBMS and also DSMS from past decades are based on fundamentals
that have changed over time, e.g., servers of today with terabytes of main memory capacity
allow complete avoidance of spilling data to disk, which has prepared the ground some time
ago for main memory databases. One of the recent trends in hardware are many-core processors
with hundreds of logical cores on a single CPU, providing an intense degree of parallelism
through multithreading as well as vectorized instructions (SIMD). Their demand for memory
bandwidth has led to the further development of high-bandwidth memory (HBM) to overcome
the memory wall. However, many-core CPUs as well as HBM have many pitfalls that can
nullify any performance gain with ease.

In this work, we explore the many-core architecture along with HBM for database and data
stream query processing. We demonstrate that a hardware-conscious cost model with a cali-
bration approach allows reliable performance prediction of various query operations. Based on
that information, we can, therefore, come to an adaptive partitioning and merging strategy for
stream query parallelization as well as finding an ideal configuration of parameters for one of
the most common tasks in the history of DBMS, join processing.
However, not all operations and applications can exploit a many-core processor or HBM, though.
Stream queries optimized for low latency and quick individual responses usually do not benefit
well from more bandwidth and suffer from penalties like low clock frequencies of many-core
CPUs as well. Shared data structures between cores also lead to problems with cache coherence
as well as high contention. Based on our insights, we give a rule of thumb which data struc-
tures are suitable to parallelize with focus on HBM usage. In addition, different parallelization
schemas and synchronization techniques are evaluated, based on the example of a multiway
stream join operation.

Zusammenfassung

Die optimale Nutzung von moderner Hardware zur Beschleunigung von Datenbank-Anfragen
ist keine triviale Aufgabe. Viele DBMS als auch DSMS der letzten Jahrzehnte basieren auf
Sachverhalten, die heute kaum noch Gültigkeit besitzen. Ein Beispiel hierfür sind heutige Server-
Systeme, deren Hauptspeichergröße im Bereich mehrerer Terabytes liegen kann und somit
den Weg für Hauptspeicherdatenbanken geebnet haben. Einer der größeren letzten Hardware
Trends geht hin zu Prozessoren mit einer hohen Anzahl von Kernen, den sogenannten Many-
core CPUs. Diese erlauben hohe Parallelitätsgrade für Programme durch Multithreading sowie
Vektorisierung (SIMD), was die Anforderungen an die Speicher-Bandbreite allerdings deutlich
erhöht. Der sogenannte ”High-Bandwidth Memory”(HBM) versucht diese Lücke zu schließen,
kann aber ebenso wie Many-core CPUs jeglichen Performance-Vorteil negieren, wenn dieser
leichtfertig eingesetzt wird.

Diese Arbeit stellt die Many-core CPU-Architektur zusammen mit HBM vor, um Datenbank-
sowie Datenstrom-Anfragen zu beschleunigen. Es wird gezeigt, dass ein hardwarenahes Kosten-
modell zusammen mit einem Kalibrierungsansatz die Performance verschiedener Anfrageope-
ratoren verlässlich vorhersagen kann. Dies ermöglicht sowohl eine adaptive Partitionierungs-
und Merge-Strategie für die Parallelisierung von Datenstrom-Anfragen als auch eine ideale
Konfiguration von Join-Operationen auf einem DBMS.
Nichtsdestotrotz ist nicht jede Operation und Anwendung für die Nutzung einer Many-core
CPU und HBM geeignet. Datenstrom-Anfragen sind oft auch an niedrige Latenz und schnel-
le Antwortzeiten gebunden, welche von höherer Speicher-Bandbreite kaum profitieren können.
Hinzu kommen üblicherweise niedrigere Taktraten durch die hohe Kernzahl der CPUs, sowie
Nachteile für geteilte Datenstrukturen, wie das Herstellen von Cache-Kohärenz und das Syn-
chronisieren von parallelen Thread-Zugriffen. Basierend auf den Ergebnissen dieser Arbeit lässt
sich ableiten, welche parallelen Datenstrukturen sich für die Verwendung von HBM beson-
ders eignen. Des Weiteren werden verschiedene Techniken zur Parallelisierung und Synchroni-
sierung von Datenstrukturen vorgestellt, deren Effizienz anhand eines Mehrwege-Datenstrom-
Joins demonstriert wird.

Acronyms

API Application Programmer Interface
AVX Advanced Vector Extensions

CPU Central Processing Unit
CSV Comma-Separated Values

DBMS Database Management System
DDR Double Data Rate
DRAM Dynamic Random Access Memory
DSMS Data Stream Management System

FLOPS Floating Point Operations per Second
FPGA Field Programmable Gate Array

GDDR Graphics Double Data Rate
GPU Graphics Processing Unit
GUI Graphical User Interface

HBM High-Bandwidth Memory
HDD Hard Disk Drive
HDL Hardware Description Language
HLS High-Level Synthesis

I/O Input/Output
IPJ Independent Partitioning Join

KNC Knights Corner Processor
KNL Knights Landing Processor

MCDRAM Multi-Channel Dynamic Random Access Memory

NPJ No Partitioning Join
NUMA Non-Uniform Memory Access

OLAP Online Analytical Processing
OLTP Online Transaction Processing
OS Operating System

PCIe Peripheral Component Interconnect Express
PMem Persistent Memory
PRJ Parallel Radix Join

RAM Random-Access Memory

SDRAM Synchronous Dynamic Random Access Memory
SHJ Symmetric Hash Join
SIMD Single Instruction Multiple Data
SNC Sub-NUMA Cluster
SPE Stream Processing Engine
SPJ Shared Partitioning Join
SPSC Single Producer Single Consumer
SQL Structured Query Language
SRAM Static Random Access Memory
SSD Solid-State Drive

TBB Intel Threading Building Blocks
TLB Translation Lookaside Buffer
Tp/s Tuples per Second

UDF User-Defined Function

Contents

Abstract iii

Zusammenfassung v

Acronyms vi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Outline . 6

2 Modern Hardware 8

2.1 Many-Core CPUs . 9

2.1.1 Introduction . 9

2.1.2 Intel Xeon Phi Product Line . 9

2.2 High-Bandwidth Memory . 11

2.2.1 The Memory Hierarchy . 12

2.2.2 The Main Memory Layer . 12

2.2.3 Multi-Channel DRAM . 14

2.3 Other Hardware Accelerators . 15

2.4 Summary . 17

3 Data Stream Processing 18

3.1 Stream Processing Engines . 19

3.1.1 PipeFabric . 19

3.1.2 Challenges in Stream Processing . 22

3.2 Summary . 23

4 Stream Query Parallelization 24
4.1 Introduction . 24

4.2 Parallelization . 25

4.2.1 Goals and Requirements . 25

4.2.2 Partitioning . 26

Static Partitioning . 27

Dynamic Partitioning . 27

Adaptive Partitioning . 27

4.2.3 Merging . 28

Stateless Merging . 28

Stateful Merging . 28

Order-Preserved Merging . 28

4.2.4 Related Work and our Approach . 29

4.2.5 Implementation . 31

Partitioning . 31

Merging . 33

4.2.6 Evaluation . 35

Micro-Benchmark . 36

Linear Road Benchmark . 38

4.3 Summary . 39

5 Join Processing on Modern Hardware 41
5.1 Introduction . 41

5.2 Join History . 42

5.3 Classification of Join Processing . 43

5.3.1 Binary vs. Multiway Joins . 44

5.4 Join Processing with HBM . 45

5.4.1 Algorithms and Related Work . 46

Stream Joins . 46

Relational Joins . 47

5.4.2 Implementation . 52

Skew Handling . 53

Output Materialization . 53

Data Structures in HBM . 54

5.4.3 Evaluation . 54

Initial Expectations . 55

Setup and Test Cases . 55

Stream Join Results . 57

Relational Join Results . 58

Skewed Workloads . 66

Output Materialization . 67

Variation of Relation Sizes . 68

DDR4 only for Relations . 69

Comparison with AVX-512 . 69

Impact of KNL CPU Architecture . 70

5.4.4 Observations . 70

5.5 Multiway Stream Joins . 72

5.5.1 The Leapfrog Triejoin . 73

5.5.2 The MJoin and AMJoin . 73

5.5.3 Implementation . 74

Optimizations of the Implementation 74

Parallelization Schemes . 75

5.5.4 Evaluation . 78

5.6 Summary . 83

6 Hardware-Conscious Cost Modeling 85

6.1 Introduction . 86

6.2 Recap: Query Execution Phases . 86

6.3 Cost Models . 87

6.3.1 Stream Processing Model . 88

6.3.2 Hardware Factors and Calibration . 89

6.3.3 The Hardware-Conscious Cost Model 92

6.3.4 Evaluation . 97

Inter- and Intra Parallelism . 97

6.3.5 Single Operator Costs . 99

6.3.6 Combined Query Costs . 100

6.4 Related Work . 102

6.5 Summary . 103

7 Conclusion and Outlook 105
7.1 Contributions . 105

7.2 Conclusion . 107

7.3 Future Work . 108

Bibliography 112

1. Introduction

The technological advancement of processors, as well as memory, has led to a well-known per-
formance gap between both since 1980, the so-called memory wall [77]. While the throughput
of CPUs has increased by 35% until 1986, followed by 55% afterward until the 2000s, memory
latency only got around 7% improvement per year (see Figure 1.1) [22].

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Year

1

10

100

1000

10000

Pe
rfo

rm
an

ce

Processor-Memory
speed gap

CPU throughput
DRAM latency

Figure 1.1: Memory wall

Since around 2002, processors hit a plateau with their clock rate due to physical constraints.
To further improve processing power, CPUs got more and more cores leading to parallelism
advantages through multithreading, as well as wider CPU registers to benefit from vectorization.
The cache hierarchy on the memory side tried to overcome the memory wall, however, the
problem of CPUs being faster than memory still exists today. This is even more a problem for
many-core CPUs being able to run hundreds of threads simultaneously, overburdening regular
DRAM controllers with memory requests. Therefore, high-bandwidth memory (HBM) got an
increased research interest, e.g. by being included in the latest Xeon Phi many-core processor
from Intel.

The specialization of hardware is also very common today, which has led to a heterogeneous
landscape of processors and memory. To give a few examples: FPGAs, GPUs, or Vector-CPUs

are used as hardware accelerators on the processor side. Regarding memory types, GDDR,
HBM, SSD, or PMem are fulfilling different roles in query processing. There has been a lot of
research in all of those fields recently, but not only for DBMS. Since the millennium, researchers
came to the conclusion that a single database system cannot satisfy all upcoming requirements
from various applications [65]. As a result, different specialized systems for online stream
processing, OLTP/OLAP, and graph processing arose, just to name a few.

The combinations of different hardware and software obviously result in a huge design and
research space for optimization. In the following, we will describe the main motivation of this
thesis as well as contributions made.

1.1 Motivation

The diversity of hardware has fueled the discussion of hardware-oblivious and hardware-con-
scious algorithms in the past. An algorithm, that depends on parameter tuning based on hard-
ware features like cache or TLB sizes, is hardware-conscious, hardware-oblivious otherwise. To
give an example, a join operator tailored to specific hardware will beat any generalized operator
in performance numbers [4]. We are also in complete agreement with this, however, we believe
that most hardware parameters can be determined automatically by a calibration approach, like
proposed in [38].

Since many-core CPUs tend to use simpler cores with lower clock speed to reduce waste
heat, a cost model for query optimization becomes more reliable when taking hardware pa-
rameters into account. An example of such a many-core CPU is the Knights Landing (KNL)
processor from the Xeon Phi product line from Intel. Its high number of cores along with HBM
on chip (the so-called Multi-Channel DRAM (MCDRAM)) pose new challenges to make use
of this kind of hardware. The main two questions regarding this architecture are:

• How to utilize such a high number of cores, i.e. how to parallelize algorithms and queries
efficiently?

• Which algorithms can benefit from HBM, i.e. which data structures become I/O-bound
under high degrees of parallelism?

Both questions are not trivial to answer. Parallelism through multithreading is strongly
influenced by contention on data structures, ensuring cache coherence, bandwidth demands
along with access patterns, and many more. Hundreds of threads running on a single CPU

2

simultaneously can also saturate memory bandwidth for problems that are rather CPU-bound.
CPU-bound problems can be solved (or better solved) by adding more computational power,
like more CPU cores, more threads, faster processors, and so on. I/O-bound problems, on the
other hand, do not benefit from more processing capacity. They can only be solved faster if I/O
is improved, e.g. by increasing memory bandwidth using HBM instead of regular DRAM. It is
important to mention that the terms I/O-bound and memory-bound are often used in a similar
context - e.g. when a program has to wait for data fetched from main memory. In this thesis as
well as in most of the discussions, however, we refer to the definition of memory-boundedness
on problems as being dependent on the memory capacity.

1.2 Contributions

In this thesis, we will first give an overview of the general properties of many-core CPUs and
HBM. Since most of the experiments in this work use a KNL processor, we also summarize the
characteristics of the Xeon Phi many-core product line. To be able to answer the two questions
from the last section, we mainly differ between DBMS and DSMS queries. Their differences
are briefly summarized in [29], however, the line is blurred when batching techniques are used.
With possibly large batches, regular DBMS algorithms like for join operations can be applied
in stream queries also.
It should also be kept in mind that joining two or more relations is one of the most common
tasks in the history of DBMS. Therefore, we picked this operation for deep analysis with respect
to the chosen hardware. We select various join algorithms differentiating between the hash and
sort-merge schema, whose implementations have been made open-source for reproducibility.
We take a further look into the algorithm phases, like scanning the relation, partitioning into
chunks, building and probing (hash), or sorting and merging, applying various options to make
use of hundreds of threads. In addition, data skew, output materialization, explicit vectorization
as well as the impact of the KNL architecture is analyzed.

But not everything is driven by relational DBMS. In this work, we investigate real-time
data stream processing in particular when a many-core CPU is used. Since data streaming is
more sensitive to individual tuple latency, full utilization of hundreds of threads poses a serious
challenge. Completely different parallelization schemas compared to DBMS are necessary,
which we will discuss and demonstrate using the example of a massive multiway stream join
in our Stream Processing Engine (SPE) PipeFabric. An overview of design decisions as well
as the functionality of PipeFabric is also given, comparing it to other known SPE frameworks.
Due to stream query properties, like running for weeks, producing results continuously without
blocking, we take an additional look into adaptive partitioning and order-preserved merging.
This paradigm allows to scale out operations of a query during runtime whenever the demands

3

on computing resources rise, as well as to scale down the number of operator instances when
data stream delivering rates are getting low.

Finally, we further investigate if HBM should be used and how, as well as finding the right
degree of parallelism on a many-core CPU. This leads to an extended cost model for opti-
mization, which includes hardware factors to predict the performance of different operations.
We demonstrate that such a model prediction is close to real measurements during execution
time. This allows an optimizer to decide about the right configuration of a query in terms of
parallelism and HBM usage.

In this thesis, we show that

• CPUs with high numbers of cores provide new challenges but also opportunities for
stream query execution.

• HBM is a great extension also for CPUs, not only for GPUs.

• adaptive parallelization of stream queries is even more important on a many-core CPU
than on regular multi-core CPUs.

• parallel execution of stream queries inevitably lead to out-of-ordered tuples which can be
solved by the right merging strategy.

• HBM used in the right spots can help to overcome memory bandwidth bottlenecks, shown
at the example of various join operations.

• multiway stream joins are clearly superior to binary stream join trees for many concur-
rently running stream sources with respect to latency and throughput.

• a many-core CPU is well suited for a hardware-extended cost model, predicting operator
and query performance without execution beforehand.

The main scientific contributions of this thesis are listed in the following with respect to the
topics:

4

Stream query parallelization.
In Chapter 4, we have a look on stream queries running on the KNL many-core processor. To
fully utilize the cores, a good parallelization schema is necessary since singlethreaded perfor-
mance is very limited. We focus on two aspects here, the adaptive scaling of partitions during
runtime as well as the order-preserved merging of partitions afterward.
There is already work for scaling the partitions during runtime, but often in a distributed set-
ting with a lot of aspects not relevant to a parallel system, hurting performance. Therefore,
we classified approaches from the literature into different strategies, providing an own solution
afterward tied to the high number of cores of the KNL, solving the problem of unordered output
from parallelization as well as demonstrating efficient scaling to many logical cores.

This material was published in the following paper:

[55] Constantin Pohl and Kai-Uwe Sattler. Adaptive partitioning and order-
preserved merging of data streams. In Advances in Databases and Infor-
mation Systems - 23rd European Conference, ADBIS 2019, Bled, Slovenia,
September 8-11, 2019, Proceedings, pages 267–282, 2019.

Join processing on modern hardware.
Chapter 5 takes join processing as a promising research field for modern hardware, i.e. many-
core CPUs. We distinguish between binary and multiway join algorithms, for stream joins as
well as relational joins, to deeply analyze performance in combination with the KNL processor,
especially its attached HBM. CPUs with HBM are very uncommon, but gained a rising research
interest in the last years due to processors with more and more cores.
In the beginning of our work, only a few publications touching HBM with join operations ex-
isted, leaving a lot of research questions open. For example, when HBM and DDR4 memory
exist together, where to put the data for the most performance gain? Since HBM capacity is lim-
ited, could transfer costs eat up all performance improvements? Which data structures should
be kept in DDR4? Overall, with our work we are able to answer those questions, providing
further discussions and insights on the topic of join processing with HBM.

The material was published in the following papers, with [57] being an extended version of [54]:

[54] Constantin Pohl and Kai-Uwe Sattler. Joins in a heterogeneous memory hier-
archy: exploiting high-bandwidth memory. In Proceedings of the 14th Inter-
national Workshop on Data Management on New Hardware (DaMoN), Hous-
ton, TX, USA, June 11, 2018, pages 8:1–8:10, 2018.

[57] Constantin Pohl, Kai-Uwe Sattler, and Goetz Graefe. Joins on high-
bandwidth memory: a new level in the memory hierarchy. VLDB J.,
29(2):797–817, 2020.

5

[56] Constantin Pohl and Kai-Uwe Sattler. Parallelization of massive multiway
stream joins on manycore cpus. In Euro-Par 2019: Parallel Processing Work-
shops - Euro-Par 2019 International Workshops, Göttingen, Germany, August
26-30, 2019.

Hardware-conscious cost modeling.
The Chapter 6 has a focus on hardware-conscious cost modeling for many-core CPUs. Since
hardware-related factors are already used within many implementations and algorithms regard-
ing DBMS, e.g. partitioning data in cache-seized chunks or parallelizing operations dependent
on available logical CPU cores, we take this idea for a cost model being dependent on hard-
ware.
This approach, calibrating the underlying hardware automatically for later optimization, was
done before for DBMS queries, but not yet for stream query processing. We provide a model
evaluated with our SPE PipeFabric, showing a reliable performance prediction on multiple real
queries posed to the SPE.

This material was published in the following papers:

[53] Constantin Pohl, Philipp Götze, and Kai-Uwe Sattler. A Cost Model for Data
Stream Processing on Modern Hardware. In International Workshop on Ac-
celerating Analytics and Data Management Systems Using Modern Processor
and Storage Architectures, ADMS@VLDB 2017, Munich, Germany, Septem-
ber 1, 2017.

[49] Constantin Pohl. A Hardware-Oblivious Optimizer for Data Stream Process-
ing. In Proceedings of the VLDB 2017 PhD Workshop co-located with the
43rd International Conference on Very Large Databases (VLDB 2017), Mu-
nich, Germany, August 28, 2017.

1.3 Outline

In the next Chapter 2, we describe modern hardware with respect to many-core CPUs and HBM.
The KNL processor comes with some rather unusual features compared to regular server CPUs,
like ordering cores on tiles in a grid layout along with different configuration possibilities how
to handle core and memory management. It also includes HBM on chip (the MCDRAM), which
can be used as cache or addressable memory. At the end of the chapter, we briefly differentiate
many-core CPUs from other hardware accelerators like GPUs or FPGAs.
Then, Chapter 3 gives an overview of data stream processing, its paradigms and differences to

6

relational DBMS. Since parts of this work are implemented and evaluated in our SPE PipeFab-
ric, we also give a short introduction as well as a comparison to other SPEs. There are different
challenges in stream processing dependent on its design, like how to ensure fault tolerance or
handling out of order tuple delivery, which will also be described.
Chapter 4 combines both worlds of the first two chapters by presenting our approach to exploit
parallelism on a many-core processor for a stream processing query. We show that we are able
to scale adaptively over time to deal with changing stream behavior in an efficient way. In ad-
dition, we provide a low-overhead merge of partitions to handle out of order arrival of tuples,
which is a side-effect of multithreaded query execution.
The follow-up Chapter 5 addresses join processing as a classical example from DBMS history.
We briefly describe state of the art join algorithms for streaming as well as relational joins be-
tween tables, analyzing them for execution on a many-core CPU. In addition, the impact of
HBM on the different algorithms and join phases is shown, leading to further discussion where
HBM can be useful to accelerate join processing speed. The gained knowledge for parallel
stream joins is afterward extended directly to multiway join processing, which opens new pos-
sibilities to optimize for many-core CPUs.
Next, Chapter 6 deals with hardware-conscious query optimization, especially working with
cost models depending on hardware. First, the most relevant hardware factors must be deter-
mined and measured by a calibration approach. Afterward, the costs of operators regarding
execution performance are combined with the factors, leading to a reliable performance predic-
tion on execution.
Finally, Chapter 7 wraps up this thesis by summarizing the different contributions and giving a
conclusion. This chapter closes with an outlook on future work, giving possible directions that
could be investigated further.

7

2. Modern Hardware

Hardware evolves continuously, providing new possibilities and options to improve perfor-
mance. Some improvements can be exploited by simply re-compiling and re-running software
on new hardware, e.g. when a CPU has higher clock frequency, allowing to perform more oper-
ations per second, or attaching faster DDR4 memory instead of DDR3. On the other hand, there
are hardware improvements that are not automatically exploited well. To give an example, the
advanced vector extensions (AVX) from Intel processors can be used by auto-vectorization of
the compiler, however, for ideal vectorization, it is often necessary to apply vector intrinsics ex-
plicitly. Those intrinsics can change, like from the transition of AVX-2 to AVX-512, doubling
the CPU register width. In addition to enhanced instructions, the new AVX-512 instruction
set supports new operations like prefetch or conflict detection instructions, which opens new
possibilities for performance improvements (e.g. for hash joins or aggregation [48]).

In this work, we focus on many-core CPUs and HBM as two representatives of modern
hardware trends. Figure 2.1 underlines the increase of core numbers in CPUs, which continues
until today, e.g. for the latest Intel Cascade Lake architecture with up to 56 cores.

Figure 2.1: 42 years of microprocessor trend data (from [59])

This trend continues to put pressure on the memory system, especially the memory con-
trollers. When calculations are spread out to more cores, reducing processing time through
multithreading, the memory wall limits the effective degree of parallelism. Beyond the cache
hierarchy, recent development focuses on increasing memory bandwidth to close that gap. In
2008, the 3D-stacking of DRAM was proposed as a solution [35], which was later referred to
as HBM, mainly trading capacity for bandwidth. We will further describe the architecture of
many-core CPUs as well as HBM in the following.

2.1 Many-Core CPUs

2.1.1 Introduction

The difference between a multi-core and many-core CPU is not simply a threshold in the number
of cores. In general, a many-core processor has a lower clock speed due to the high number
of cores on small space, which leads to bad single-threaded performance. In addition, cores
are often kept simpler, which means that aggressive pipelining or out of order execution of
instructions is not available. However, the advantage of many-core CPUs is a higher degree of
parallelism, since more cores and more threads can perform more calculations per second. In
comparison to a cluster of multi-core CPUs, the communication costs are much smaller since
messages do not have to travel over the external network.

2.1.2 Intel Xeon Phi Product Line

One well-known example for many-core CPUs is the Xeon Phi product line from Intel. The
first Xeon Phi was released in 2010, mostly as a prototype version for research with no real
commercial use. Later, with further advancement in the semiconductor manufacturing process,
the Xeon Phi Knights Corner (KNC) was released as a co-processor.

Knights Corner

With up to 61 cores as a co-processor, the KNC is able to perform around one TeraFLOPS of
double precision floating point instructions. From research perspective, it also gained interest
from the database community, which investigated its potential for query acceleration, e.g. with
MapReduce [36], hash joins [24], or OLAP query processing [14].

9

Overall, the bottleneck of the PCIe connection between the KNC and its host is the most limiting
factor (with around 15 GB/s) [20]. Since the on chip memory of the KNC has only up to 16 GB
capacity, the data transfer is just inevitable, just like on GPUs. The computational model of the
KNC allows offloading the full program or fractions of a program for execution. This offload
can be realized by compiler pragmas for simpler data types (e.g. integers or arrays). For objects
like classes, the Cilk programming model is necessary, adding more complexity to programs.

Knights Landing

The successor of the KNC, the Knights Landing, solved this bottleneck by being released as full-
fledged CPU. With an increased core count (up to 72 cores), HBM on chip (the MCDRAM),
and the AVX-512 instruction set, it is a clear improvement over previous Xeon Phi versions.
The cores are organized in tiles on a grid (see Figure 2.2), while each tile contains two cores,
sharing an L2 cache.

Figure 2.2: Tile distribution of the KNL [57]

With up to 72 cores with own caches, sharing main memory, an efficient cache coherence
protocol is necessary. The KNL has a distributed tag directory to keep track of cache lines,
which is queried by cores for memory addresses not being cached locally. The handling of
memory addresses is directly influenced by the clustering mode of the KNL:

10

• All-to-All, where threads can be placed anywhere (on any core) by the operating system.
This can lead to long access paths if the memory address must be fetched from a respon-
sible memory controller on the other side of the chip or threads have to communicate with
each other.

• Hemisphere/Quadrant, where two regions of cores (or four regions, respectively) are
treated like individual CPUs of a symmetric multiprocessor. This configuration guar-
antees that memory addresses can be found by the spatially closest memory controller of
the requesting core, eliminating the worst-case path.

• SNC-2/SNC-4, where two regions of cores (or four regions, respectively) are declared and
made visible as NUMA nodes (SNC stands for Sub-NUMA Cluster). In addition to the
previous setting, it allows running code NUMA-aware with the least latency on average.

The KNL processor used for this thesis is a KNL 7210 with 64 cores, configured in SNC-
4 mode. Other recent research for the KNL in the field of databases again focuses on hash
joins [12] or OLAP query processing [13].

Knights Mill

The latest and final release of the Xeon Phi series is the Knights Mill processor. It simply differs
from the KNL through halved double precision and doubled single precision floating point
performance. This change improves the usability of the Knights Mill for machine learning
applications, where high precision is not required usually. Finally, the Knights Mill is the last
release of the Xeon Phi product line according to Intel.

2.2 High-Bandwidth Memory

HBM is a memory type focusing on the provision of as much memory bandwidth as possible.
It is very useful for I/O-bound problems, where only a few calculations per byte are performed.
In this section, we will first provide an overview of the memory hierarchy and its components.
We will then describe HBM along with its alternatives as well as the MCDRAM variant, used
in our evaluations.

11

2.2.1 The Memory Hierarchy

Todays memory landscape is very heterogeneous. The different types of memory differ in
access latency, capacity, price, and persistence, which allows the classification of memory in
different levels, leading to the memory hierarchy (see Figure 2.3).

Figure 2.3: Memory hierarchy [54]

CPU registers are incredibly fast and can be accessed within a single to a few nanoseconds.
Their capacity accounts for a few kB, which leads to a permanent swapping of data, fetch-
ing new and replacing old information. Since there are magnitudes in performance difference
between registers and main memory, the cache hierarchy was established. Caches have more
capacity than registers and less capacity than main memory while latency and throughput are
the other way around. There are different eviction strategies to utilize caches as well as possible,
with the goal of replacing the data that will not be used in the next time.
For the main memory layer, different technologies exist with specialization on certain memory
aspects. We will have a further look at it in the next Section 2.2.2. But even with a capacity
ranging between GB and TB, there is the necessity of persistent storage with even more capac-
ity. Data exchange with those memory types like SSD or HDD is again around one magnitude
slower than using DRAM.

2.2.2 The Main Memory Layer

For main memory, DRAM is used mainly due to monetary reasons while caches are realized
with much faster SRAM. SRAM does not need to refresh its memory cells constantly, deliver-
ing faster access and less energy consumption. However, it uses more space as well as more

12

complicated internal structures, leading to 2-3 orders of magnitude higher monetary costs for
the same capacity as DRAM.

DRAM itself is a collective term for different memory technologies:

• DDR SDRAM is the most common DRAM type. It is widely used in servers and desktop
PCs, with high capacity, low access latency and moderate prices. The KNL processor is
shipped with DDR4 as regular main memory, supporting up to 384 GB capacity.

• GDDR (Graphics DDR) SDRAM is used by most GPUs, focused on the memory band-
width aspect. Since GPUs run thousands of lightweight threads in parallel, the increased
bandwidth is necessary to avoid stalling of threads waiting for memory.

• HBM is another technology focused on memory bandwidth. On the same technological
level, it provides more bandwidth than GDDR, however, it is not that distributed yet
in systems of today. The KNL processor has its own HBM on chip, the MCDRAM,
described later in more detail in Section 2.2.3.

• Persistent Memory (PMem) is also considered as main memory type, being theoretically
known since decades [68]. There has been a release from Intel recently, the Optane DC
memory, which allows main memory to become persistent at the expense of latency. To
our point of view, it seems more than a possible additional layer between DRAM and
SSD/HDD.

Our focus in this thesis is on the main memory layer, especially HBM. HBM has compara-
ble, yet a little slower memory access latency than DDR SDRAM. It mainly trades capacity for
memory bandwidth to support bandwidth-critical applications, which is also beneficial for high
numbers of threads accessing memory frequently. On the current technological level of HBM2,
its capacity is between 16 and 32 GB, which might become more with the announced HBM3
technology.
GPUs using HBM instead of GDDR are Nvidia Tesla, Nvidia Quadro, and AMD Vega. Vector-
CPUs like the NEC SX-Aurora TSUBASA also make use of HBM to keep their extremely
wide registers filled (16.384 bits for TSUBASA). Regular CPUs, on the contrary, are often
latency-bound, since DRAM access is much slower than, e.g., accessing CPU registers. With
prefetching mechanisms as well as the cache hierarchy, memory bandwidth was not the main
bottleneck of processing in the past, which means that HBM simply was no candidate to replace
regular DRAM like DDR4.
However, this paradigm slowly begins to change. An increasing number of more and more (low
clocked) CPU cores, on the one hand, technological advancement of HBM for better latency,
more capacity, and even more bandwidth on the other hand, leads to processors with attached
HBM as valid configuration today. We expect that more many-core CPUs with HBM support
will be released in the near future.

13

2.2.3 Multi-Channel DRAM

The MCDRAM is a specialized HBM type for the KNL processor (and its successor). It directly
resides on the CPU, reducing communication path length. Following the Hybrid Memory Cube
interface, it has 3D-stacked memory and is connected with 8 memory controllers to the CPU.
This leads to a memory bandwidth of more than 400 GB (see Table 2.1).

Property DDR4 MCDRAM
Capacity 96GB 16GB

Access Latency 130-145ns 160-180ns
Peak Bandwidth 71GB/s 431GB/s

Table 2.1: KNL 7210 memory properties (SNC-4 mode) [54]

Configurations

There are three possible configurations of the MCDRAM:

• Cache mode, where the MCDRAM is not visible to the user. It is treated as a huge last-
level cache, which allows benefiting from high memory bandwidth automatically. How-
ever, cache misses are very costly, since a miss in L2 cache has to access MCDRAM and,
if it also misses, has to go back on chip and finally go to the DDR4 memory controllers.

• Flat mode, where the MCDRAM is treated as one or more separate NUMA nodes. In
this configuration, it is possible to allocate memory with tools like Numactl or memory
allocators like Memkind. If the MCDRAM is not addressed in any way, it stays unused.

• Hybrid mode, which is a combination of the previous modes. It is possible to specify the
fraction of MCDRAM which should be used as cache and which as addressable memory.

The cluster configuration of the KNL also influences how memory addresses are distributed
to the MCDRAM. In SNC-4 mode, the MCDRAM space is divided into four distinct regions.
If the MCDRAM runs in Flat mode, four NUMA nodes (holding 4 GB each) are visible.

14

MCDRAM Allocation

As already mentioned, there are different ways to address the MCDRAM in Flat mode.

Numactl is a library from Linux operating systems for NUMA support. It allows using a
NUMA scheduling policy for running an application on different NUMA nodes. Each node can
contain logical CPUs as well as assigned memory. The MCDRAM as NUMA node consists
of no logical CPUs, only memory, while other nodes contain logical CPUs and attached DDR4
memory. How many nodes the KNL provides depends on its clustering as well as MCDRAM
configuration. The maximum is 8 nodes for SNC-4 (or Quadrant) and Flat mode of the MC-
DRAM. With Numactl, it is possible to run an application with MCDRAM only, with a fraction,
or none at all.

However, Numactl has no option to specify which data structures (e.g. hash tables) should
allocate HBM and which should use regular DRAM. The Memkind API provides such an
fine-grained allocation by delivering various allocators for C/C++. The decision which data
structures benefit the most from more bandwidth can be difficult, though. It requires additional
efforts in modifying code as well as analyzing performance to exploit the MCDRAM in the
most efficient way.

2.3 Other Hardware Accelerators

There are other hardware accelerators around, regarding processors or memory, like GPUs.
However, they come with completely different execution models compared to a CPU, with own
advantages and disadvantages, as well as research. They greatly differ in performance as well
as use cases. Therefore, we are just briefly summarizing and comparing them to many-core
CPUs, since they are not in focus of this thesis.

GPUs

When many-core CPUs are compared to GPUs, they share some general concepts regarding
parallelism (multithreading) or, in case of the KNL, HBM usage. But going into detail, there
are major differences:

15

• GPUs are coexisting with CPUs. There is always a host system which runs the operating
system and coordinates the offload of data and programs to the GPU (just like with co-
processors). At the same time, the KNL is a full-fledged CPU without any offloading and
is able to run code like any other regular server CPU.

• GPUs coordinate threads in warps. Such warps execute the same instruction in parallel
(SIMD), which gets penalized whenever branching occurs (i.e., a thread has to execute
different instructions due to branch divergence). Regular OS threads might suffer also
penalties through branching when vectorized instructions are executed, however, the per-
formance does not drop that much compared to a 32-threads warp of a GPU.

• Programming code for execution on a GPU requires different frameworks, like CUDA or
OpenCL. Many-core CPUs like the KNL instead can use the same compilation routines
like regular server CPUs. This means that no additional efforts are necessary when using
such a CPU for running queries.

With those differences in mind, it is obvious that a simple comparison with a GPU is not
possible. Even when execution times are compared, a fair and ”real” comparison is often dif-
ficult to achieve, since there are many aspects like transfer time from offloading or loading
kernels which turn the tide when included in measurements.

FPGAs

FPGAs are configurable devices that can be specialized to execute mostly any operation. If
carefully designed, an FPGA provides low latency as well as high bandwidth, since pins can be
directly connected to data sources, like the interface of a network. There is already research for
utilizing FPGAs for query processing [7], but there are still challenges not yet solved [46]:

• A high reconfiguration overhead limits practical utilization. When an FPGA is (ideally)
configured for a posed query and a followup query needs a different configuration, the
FPGA has to be reconfigured. If it still takes hours to reconfigure the FPGA for a certain
workload, it is simply not feasible to use an FPGA in traditional systems. Regular many-
core CPUs do not suffer from that overhead - if code is compiled just-in-time, e.g. through
the LLVM compiler, a whole query might take less than a second to finish compilation
[44].

• Performance of a query running on an FPGA can vary a lot, depending on the used
language (high level or low level, HDL or HLS) and FPGA configuration (being a co-
processor, smart controller, or directly attached). This makes performance prediction for
an optimizer rather difficult compared to running a query on a many-core CPU.

16

Hardware acceleration with an FPGA is, therefore, difficult to compare equitably to many-
core CPUs.

Vector Processors

Another specialization in CPUs changes the scalar processing schema to vector processing. A
vector CPU executes instructions on an array of values instead of just single data items. This is a
rather old concept, already described for improving database performance 1987 [69]. However,
it was revisited recently for the vector CPU SX-Aurora TSUBASA from NEC [47]. This CPU
is available as PCIe card to run next to a regular host CPU as a co-processor (called from NEC
a Vector Engine). If the Aurora TSUBASA is compared to a regular CPU, it also suffers from
offloading penalties, the difficulty to vectorize operations for massive SIMD (16,384 bits wide
registers), and using a proprietary compiler with own instructions from NEC. A fair comparison
to results from a many-core CPU is, therefore, again very difficult.

2.4 Summary

In this Section 2, we described the general trend of modern CPUs, tending to become more and
more cores for performance improvements. In addition, the specialization of CPUs and memory
types lead to a heterogeneous landscape of modern hardware. Since the topic is focused on
parallel query processing on a many-core CPU, along with HBM, this section briefly introduced
the Xeon Phi product line from Intel as well as the MCDRAM as a CPU variant of HBM.
Of course, there are many more hardware accelerators available. Therefore, we gave a short
introduction in recent development trends on GPUs, FPGAs, and vector processors, however,
they are not in the central scope of this thesis.

17

3. Data Stream Processing

The rise of applications which require the processing of data in real-time, like stock trading, toll
calculations of freeways, the management of sensor networks or network traffic, and social net-
work analysis, has lead to a concept drift from regular DBMS to specialized DSMS. Instead of
storing everything persistent on disk, organized in relational tables, DSMS focus on continuous
query processing of data streams. Data streams are sequences of data, potentially unbounded,
which are continuously processed by stream queries, which means that a query has to perform
non-blocking operations, producing results continuously.

Since this processing paradigm contradicts the design of DBMS, new systems got designed
with focus only on stream processing. Usually, such systems aim for:

• Minimal latency, which means that a query produces a related output to a received input
as fast as possible, e.g. to react on an incoming event.

• Maximal throughput, which means that a query is able to process as many inputs per time
unit as possible.

There exist different strategies to target both requirements, often being contrary to each
other. A well-known example is batching, where input tuples are first gathered and stored until
the batch is full. Later operations on a batch instead of single tuples can benefit from SIMD
instructions as well as reduced overhead. This means that batching improves the throughput of
a query, but increases latency since a tuple might have to wait in a batch until it is processed.
Another example is the parallelization of stream queries, e.g. by an partitioning approach. More
partitions holding copies of operators increase the computational power through multithreading
and, thus, the throughput of a query. However, individual latency of a tuple might also increase,
since it is now routed through a partition with synchronized tuple access of threads and the
execution of a partitioning and merge function.

Most stream queries are realized as dataflow graphs, where tuples are received from one or
more sources, routed afterward through various operations and finally, outputted as sinks. This
model follows the Volcano approach, which was previously introduced in DBMS [19]. Parts of
the following sections have been previously published in [52] and [50].

3.1 Stream Processing Engines

The heart of all DSMS is the stream processing engine (SPE), which is responsible for all
operators as well as their connection in a stream query. A main design decision leads to a spe-
cialization of SPEs for a distributed execution (scale-out) or a single scale-up solution. Both
versions are valuable possibilities, even if the scale-up performance is limited.
Prominent examples of scale-out SPEs are Apache Flink [9], forked from the Stratosphere en-
gine, Apache Spark Streaming [79], and Apache Storm [70]. There is a lot of research done
with those SPEs for graph analytics, big data query optimization, twitter analysis, patient mon-
itoring, and more. They share a large user base and have various applications in industry.

However, recent work has shown that a SPE on a single server system is able to perform
much better on regular problems than a distributed one [80]. This is the case due to overhead
from distributed execution, like communication through the network, NUMA effects, expensive
synchronization with consistency, or the assurance of fault-tolerance. In addition, the program-
ming language has a great influence on the performance. To give an example, Java Virtual
Machines (JVMs) have an automatic process of garbage collection and make no guarantees
of using contiguous memory space for data structures. For a high-performance solution, such
mechanisms can harm the execution, e.g. when threads are stopped in background to perform
the garbage collection.
In the last years, scale-up SPEs like StreamBox [40] and SABER [28] were developed to take
advantage of high performance single server systems. SABER allows execution of stream
queries on heterogeneous processing units like GPUs for hardware acceleration. StreamBox
focuses on multi-core CPUs instead. Our SPE PipeFabric (available as an open-source aca-
demic prototype1) is also following the scale-up approach. Its current development is about the
investigation of possibilities given by modern hardware [52], especially many-core CPUs and
persistent memory. The main design decisions and an overview of PipeFabric are given in the
next section.

3.1.1 PipeFabric

The SPE PipeFabric is developed at our department at the TU Ilmenau. It also follows the one-
tuple-at-a-time processing strategy for low overhead. In addition, it heavily performs operator
fusion [23], where multiple subsequent operators are running by a single thread to avoid unnec-
essary inter-thread communication. To improve throughput at the expense of latency of a query,
it provides different mechanisms like micro-batching or partitioning of the data flow.
Micro-batching means that tuples are first gathered into a contiguous block of memory and

1online accessible by https://github.com/dbis-ilm/pipefabric

19

https://github.com/dbis-ilm/pipefabric

forwarded afterwards at once, to allow subsequent operations to benefit from vectorization and
to reduce communication overhead between threads. For streaming, the SPE Apache Flink is
well-known for utilizing this batching concept. Partitioning, on the other hand, will be further
explained and discussed in the next chapter of this thesis.

Queries in PipeFabric use a structure called a Topology, which contains one or more stream-
ing sources, operators, and optional sinks. Conceptually spoken, a query is a directed acyclic
graph which routes tuples through chosen operators. An example with two data streams and six
operators is visualized in Figure 3.1.

Figure 3.1: Conceptual example of a stream query [52]

Operators are connected via channels (called Pipes) in a publish/subscribe pattern. An op-
erator can subscribe to multiple sources upstream, like for a join or merge, as well as publishing
to multiple subscribers, like for a partitioner or multiple sub-queries. Tuples are generally only
passed between operators by pointers, to avoid the costly overhead for tuples with a high num-
ber of attributes.

Stream Sources

Stream sources are producers of tuples, usually outside of individual queries. They denote the
starting points of queries. PipeFabric supports a variety of sources currently. First, sources
provided by network protocols are very common, like a sensor transmitting its measurements
continuously to a server. A query can connect to such a source via REST API, ZeroMQ, MQTT,
RabbitMQ, and Apache Kafka. Since those protocols greatly differ in their syntax, their logic
is internally realized in parametrizable source operators, where the user only has to specify
necessary information like the server address and port.
Recent work in PipeFabric was done to allow transactions in stream processing. Transactions
allow queries also to read (and write) safely from SQL tables stored on disk. This means
that such a table can act as a stream source, where each line is treated as a single tuple. The
same concept is used for regular files, like CSVs or text files. Since a stream query outputs its
result also continuously like its input, there is also the option to treat this output as input for

20

other queries. This allows a modular query tree, which can be useful for long-running queries,
especially to further refine their results at a later moment without restarting them. Finally, there
is also the possibility to use specialized data sources directly tied to applications. An example is
the synchronized source publishing tuples from a file according to their timestamp, used in the
Linear Road benchmark [2], or a data generator, which generates tuples in a format specified
by a user-defined function (UDF).

Operators

Next to the stream sources, PipeFabric supports a wide range of operators being applied on
incoming tuples. Most of them are based on their relational counterparts, like a projection to
reduce the number of attributes or a selection to drop tuples based on predicates. Stateful op-
erators are aggregations with different aggregate functions, groupings to key attributes, or join
operations. Customizable operators are also provided, like the notify operator which applies
any given UDF.
Next to those well-known operations, there are also operators realizing stream processing re-
quirements. An example is the window operator, which keeps track of incoming tuples to mark
them as outdated after a while. Outdated tuples are removed from states like aggregates or
hash tables to not participate in further calculations anymore. This allows long-running queries
to keep their memory footprint low and manageable, even without TBs of RAM. There are
different window strategies to handle outdated tuples. Most common are tumbling or sliding
windows, which drops all tuples at once when its size is reached (tumbling) or fading out tuples
individually (sliding). In addition, it is possible to discard tuples based on time or on tuple
count. Time-based windows can vary in their size, e.g. in cases where the tuple arrival rate of a
stream is not constant, where tuple-based windows always discard tuples when a fixed amount
is reached. Figure 3.2 shows a sliding window operation calculating a sum over the data stream
with continuous updates.

Figure 3.2: A sliding window operation [52]

21

Stream Sinks

The end of a query is always defined by a sink operation. They logically terminate it when no
more additional operations should be performed. Results can be written into persistent files or
tables, or made visible for other queries as a new stream source. It is also possible to return
results for visualization, like a data graph in a GUI, however, PipeFabric has currently no focus
in the development of a visualization tool, like the SPE Aurora has [1].

3.1.2 Challenges in Stream Processing

Stream processing poses many challenges to SPEs due to hardware advancement, new appli-
cations, and ongoing research. General requirements of DSMS were already described 2005
in [66], defining 8 rules for stream processing. We will shortly compare those rules to our SPE
PipeFabric.

1. Keep the data moving. With the one-tuple-at-a-time concept in addition to non-blocking
algorithms like the symmetric hash join, PipeFabric is able to provide low latency for
each tuple. Tuple exchange between threads is also done by thread notification (push) of
the producer, which means that no polling is done.

2. Query using SQL on streams. Currently, PipeFabric has a basic SQL parser as well as
Python interface, however, most queries are formulated in C++ directly.

3. Handling stream imperfections. Imperfections like delayed, missing, or out-of-order tu-
ples can occur frequently in practical use cases. However, since PipeFabric queries do
not block in general, they do not suffer from those imperfections. If an application, like
pattern matching or complex event processing, needs tuples in order, we will describe our
approach of handling out-of-order tuples in the next Chapter 4.

4. Produce predictable outcomes. If the same data stream is processed multiple times, it
should produce the same output. This can be a problem for parallelization of stream
queries, since parallel threads tend to produce their output in a different order, e.g. due to
scheduling of the operating system. We also refer to Chapter 4 in this case.

5. Integrating stored with streaming data. This requirement is handled by PipeFabric with
transaction support, as described before. It is always possible to combine streaming data
with tables or raw files, even without transaction semantics in PipeFabric.

22

6. Guaranteeing data safety and availability. Since PipeFabric is a scale-up solution, it
has fewer risks to fail due to hardware issues than a distributed SPE has. Nevertheless,
currently, only transactions on tables are safe to restore states after a system failure. Avail-
ability through redundancy is not in focus of PipeFabric right now.

7. Partition and scale automatically. This requirement is explicitly addressed in the next
Chapter 4, where we introduce our adaptive partitioning approach for stream queries.

8. Instant processing and responding. PipeFabric is written in C++, which avoids the over-
head of higher programming languages (like Java). High-volume data streams that require
increased throughput while staying still reactive need a suitable parallelization schema
that we will introduce in the following Chapter 4.

To summarize, PipeFabric has potential to fulfill all the requirements of [66]. Along with those
requirements, we are aware of additional challenges posed by modern hardware, especially
many-core CPUs and HBM, which we discuss next in more detail.

3.2 Summary

In this section, we gave an introduction to data stream processing, with its requirements and
goals. Additionally, our SPE PipeFabric was briefly described with its design decisions and
details. Since our implementations were done and evaluated with PipeFabric, this overview
should give a good understanding of how stream queries are handled. Next, we will combine
the information given on hardware (Chapter 2) and the stream processing paradigm of this
chapter. To utilize high numbers of threads and cores, an efficient parallelization schema is
the key. Synchronization and contention pose serious problems for scaling, as well as handling
tuples that get out-of-order. Our research in this direction is presented in the next Chapter 4.
In addition to those problems, a high number of threads also leads to thread stalls because
of limited memory bandwidth. The HBM technology provides a solution for this bottleneck,
which is analyzed deeply with respect to many-core CPUs in Chapter 5 for join processing.
Chapter 6 finally provides our hardware-conscious cost model to predict the performance of
query operators on modern hardware.

23

4. Stream Query Parallelization

Already motivated by modern hardware, especially CPUs with high core numbers and threads,
the parallel execution of stream queries is absolutely necessary to exploit this hardware trend.
There are different levels of parallelization possible, like executing instructions on multiple data
elements at once (SIMD) or running different operators decoupled from each other by individual
threads. Available hardware resources should be utilized efficiently to improve throughput and
latency, which poses own challenges on many-core CPUs as well as HBM.

In this chapter, we first describe how stream queries can be optimized for performance.
Then, the parallelization strategies for a many-core CPU are further described with respect to
partitioning and merging of data streams in the current state of the art solutions. After that, we
describe our approach to allow an adaptive scaling of partitions during runtime along with han-
dling upcoming problems with the merge step. Finally, our results are evaluated and discussed,
using the KNL. Results presented here have been partially published in [55].

4.1 Introduction

Initial stream query optimization for parallelism was done by running each operator in an own
thread. Tuples from sources are thus passed between threads on different cores, executing
different functions on each of them. While this schema is simple and often better than using
only a single thread, it is very limited when it comes to efficiency. Regarding cache utilization,
context switches, or highly frequent message passing between cores, this sort of parallelization
does not scale well. Therefore, further optimization techniques were proposed and summarized,
e.g. in [23]. The most interesting technique is called operator fission, or the partitioning-merge
schema. We will describe this schema in the following.

4.2 Parallelization

In a stream query, where tuples are routed through a dataflow graph, consisting of different
operators, those operators vary in their maximum throughput. A hash join operator, for exam-
ple, has more computational complexity than a selection operation. The slowest operation in
such a graph, therefore, determines the overall throughput of the query (also described with
input/output rates [74]). The partitioning-merge schema can solve such a bottleneck with data
parallelism, where multiple instances of the operator run in parallel, each responsible for a cer-
tain range of tuple ids. This schema can be found in the area of parallel computing as well, also
referred to as Fork-join. In this thesis, we will stick with the name of Partitioning-merge for
consistency reasons. Figure 4.1 sketches this schema.

Figure 4.1: Partitioning-merge schema

A partition consists of one or more operators running by one thread, connected to a par-
tition operator in front and a merge operator afterward. Partitions itself do not share states,
even though this is possible. Shared states per default would require additional synchroniza-
tion which can be avoided if the partitioner is smart enough distributing tuples efficiently to
partitions. This case is discussed later in this chapter.

4.2.1 Goals and Requirements

The final goal of parallelizing a (stream) query is to improve performance. For DBMS queries,
this results in lower execution time, i.e. less time for the user to wait until receiving the query
results. On stream queries, better performance can lead to lower individual or average tuple
latency, a higher tuple throughput per second or fewer computations performed and, thus, less
computational resources used.
Achieving these goals through parallelism in a non-distributed setting has the following general
requirements, which are also often addressed in various ways in the related work:

25

• Load Balancing and Merge Overhead. With more operator instances (i.e. partitions),
more tuples per second (Tp/s) can be processed theoretically. If one operator is able to
process X Tp/s, y operators running independently would be able to process y ·X Tp/s.
However, this depends on how tuples are distributed to partitions. A round-robin approach
would achieve a perfect load balancing but suffer from keys distributed in multiple par-
titions per key. This increases the merge overhead for stateful computations, where the
merge operation has to compute a coherent result out of partitioned states all the time.
On the other hand, if tuples are distributed to partitions by their keys, the merge overhead
would be minimal but load balancing could not be guaranteed. On a heavily skewed data
stream consisting of 50% identical keys, a single partition would become overloaded with
computations, eliminating the performance advantage of parallelization.

• Efficient Synchronization and Contention Reduction. If multiple threads are involved
like for partitioning and merging, synchronization is necessary. This synchronization
could be applied on different levels and positions in the query. The tuple exchange from
the partitioner to a partition as well as from a partition to the merge operator is one
inevitable synchronization step. More important is the realization of synchronization
between partitions. If each partition has its own state instead of sharing one state for
all partitions, concurrency is reduced at the expense of possible merging steps afterward.
However, if the number of partitions is scaled up, synchronization on a shared state might
become a serious bottleneck otherwise regarding the performance.

• Order Preservation. If subsequent operators after the merge step are depending on tuple
order, the partitioning-merge schema in its pure form would not be applicable. It is very
likely that threads processing tuples independently from each other will lead to unordered
results. But reordering causes additional costs as well as delays for the final output. It
even poses additional challenges like partitions not producing output tuples for a longer
period, e.g. containing a very selective predicate discarding tuples.

Regarding the mentioned requirements, it is obvious that there is no clear solution that
performs best in all possible cases. Instead, it is a trade-off, e.g. between balancing load and the
merge overhead. In the following Sections 4.2.2 and 4.2.3, we will classify general strategies
for partitioning and merging before we have a look on the related work and a comparison to our
approach in Section 4.2.4.

4.2.2 Partitioning

Since each partition is run by a single thread and receives tuples from the partitioner, a good load
balancing is the main challenge for this concept as already mentioned in the previous section. A

26

partitioning function should have low computational effort, distribute tuples mostly even to all
partitions to avoid their under-utilization, as well as avoiding the scattering of keys for stateful
operations to many partitions. Especially the latter requirement is important for a good scaling,
else the merge operator has to perform additional grouping by key on partial results of the
partitions. Overall, this leads to an optimization tradeoff how to handle the partitioning and
merging efficiently [26]. The partitioning strategies can be classified into three general variants,
according to our work from [55].

Static Partitioning

It is possible to define the number of partitions as well as the partitioning function statically.
This simply means that after a query is started, the previously configured behavior is always the
same. This has the advantage that additional computations for statistics or changing parameters
are avoided completely. The decision on the configuration can be made through mathematical
models, calibration, or by user experience. Good use cases for static partitioning are queries on
streams that are most stable in their tuple delivery rate, or in systems without many concurrently
running queries. However, for all other scenarios, this schema can become bad very quickly,
e.g. when a data stream has a peak in tuple delivery and more partitions are necessary to keep
up with the data stream.

Dynamic Partitioning

To balance reconfiguration overhead with the ability to react on real stream behavior, a dynamic
approach is able to adapt the current load by changing the partitioning function during runtime.
This allows distributing tuples to partitions that are under-utilized, e.g. when key distributions
are skewed. Statistical information can thus be useful, e.g. the number of tuples that the parti-
tioner has routed to a partition or the key space that a partition is responsible for.

Adaptive Partitioning

A full adaptive partitioning approach additionally changes the number of partitions during run-
time. Such a parallelization schema allows to increase and reduce the degree of parallelism and
thus, the occupied computing resources overall. It has additional challenges to solve, like de-
ciding when to change that number and which number of partitions is ideal. Runtime statistics
can give information for that decision, which can be made by exceeding a threshold, learning a
model, or leaving it to the user.

27

4.2.3 Merging

The merge operation combines the output of partitions into a single consistent view. Its efforts
depend in a large part on the partitioning strategy, the operators used inside of partitions, as
well as additional requirements like a sorted output, e.g. by timestamps. A further refinement
is possible by the following classification.

Stateless Merging

Partitions without any states are the most trivial examples to merge. It means that tuples from
the partitions just need to be gathered and forwarded once to any subsequent operator. This
operation is very cheap in general with not much computational complexity. However, if the
number of threads rises, tuple exchange between partitions and the merge operation can become
a bottleneck if the synchronization is too costly (e.g. by using locks per tuple).

Stateful Merging

For stateful operations based on tuple keys, it is more difficult since the output of multiple par-
titions must be grouped if a key is scattered to multiple partitions. This means that an additional
internal data structure must be held to check the current key distribution at least.

Order-Preserved Merging

Since partitions run in separate threads, it is inevitable that tuples get out of order over time. A
selection predicate might drop more tuples in a partition than in another one, or a join operation
finds more matches compared to others. There are applications like in the field of complex
event processing where the order of tuples is important for correct results. To order tuples,
e.g. based on timestamps, it is necessary to buffer them before they are forwarded. However,
the immediate question arises, how long this buffering should take since a tuple waiting in the
buffer increases overall latency and leads to a delayed result. A good approach is the k-slack
algorithm [33], which specifies an interval in which tuples will always be returned in order.

28

4.2.4 Related Work and our Approach

With the last two sections about partitioning and merging in mind, we can set our approach into
relation to the current related work, visualized in Figure 4.2.

Figure 4.2: Classification of partitioning strategies

Our goal is to provide an adaptive partitioning and order-preserved merging component
unifying both aspects together. This allows to adaptively scale the number of active partitions
as well as merging their results in the right order while taking the varying number of partitions
into account. To achieve this setting, we have different intersections with related work.

First, we did not focus on a distributed setting. Since PipeFabric is a parallel SPE and the
hardware focus is on the many-core CPU aspect, a comparison with distributed systems and
algorithms is not profitable. It was already shown that such a comparison will strongly prefer
parallel over distributed SPEs [80].
However, this limits our overall comparison abilities mostly to other parallel SPEs. SABER
[28] exploits GPUs as accelerators for query processing. They also apply partitioning, not for
data parallelism but for avoiding redundant computations. StreamBox [40] also does not apply
operator fission. Instead, each thread performs out-of-order computations. It receives a partition
of data from a previously finished computation, executes its calculation, and finally publishes
the results for the next computation which is executed possibly by a different thread. Trill [10]
puts incoming tuples into batches which are scheduled to worker threads according to time
constraints. It follows the Map-Reduce paradigm, where the batches are distributed stateless to
threads (”spraying”) and merged in the reduce step.
To the best of our knowledge, there is no parallel SPE around that we could use to compare

29

our results in a fair manner - even if the performance numbers of an executed stream query are
set into relation, there are too many knobs that could lead to unfair numbers. Performance-
wise (regarding throughput, not efficiency), a downscaling of partitions would only lead to
performance drops during state migration - but it is not an option to simply stick with too many
partitions, wasting resources.

On a more fine-grained comparison with related work, we have the following aspects to
consider:

• State Handling. A prominent example in a distributed environment is the Flux opera-
tor [64]. It is one of the first repartitioning strategies with state movements in stream
processing, published in 2003. The state movement property was later further analyzed
to propose two different strategies like moving state and parallel track [81]. To avoid
possible large downtimes during state migration of a removed partition and possible in-
consistencies, we use the idea of the parallel track strategy. In our case, the partition
finishes processing the input tuples (receiving no new ones) before performing the state
migration. More details are given in the next Section 4.2.5.

• Partitioning Function. The function is responsible for a good distribution of tuples to
partitions. Partitioning functions have been investigated for different use cases [15], later
further refined with an elastic auto-parallelization approach [17]. In our work, it was
no goal to find another partitioning function that behaves better in some constructed use
case. Instead, we provide the ability to switch and reconfigure the partitioning function
during runtime, using multiple functions from the literature to demonstrate their usage on
adaptive scaling.

• Load Balancing. Distributed stream processing on multiple machines shares the same
problem of load balancing. A general investigation related to minimizing memory over-
head and key splitting with partitions was published for the distributed use case [45].
Since the key distribution strongly influences load balancing, a distribution-aware key
grouping algorithm was also proposed in [58]. A recent approach weighs up aggregation
costs with tuple imbalance, parameterized by the partitioner [26]. Their results are com-
pared to the previous state of the art algorithm of partial key grouping [42], which was
also refined with heavy hitter detection [43]. In our work, we also use the idea of [26],
weighting the costs of aggregation (merge) against tuple imbalance (keys scattered on
multiple partitions). However, as described later, we demonstrate our implementation on
a synthetical dataset with round-robin partitioning as well as on the Linear Road stream
benchmark [2] with a more complex partitioning pattern also.

In the next section, we will describe the implementational details of our work.

30

4.2.5 Implementation

Our approach of an adaptive partitioning strategy combined with an order-preserved merging
is implemented in our SPE PipeFabric. We describe the most relevant design decisions in the
following.

Partitioning

The partitioning of a data stream for parallel execution in the dataflow graph was already
sketched in Figure 4.1. On the implementation view, a partition is a replicated group of op-
erators which are equal in all partitions (data parallelism). It acts like a sub-query, where all
input for the partition comes from the partitioner and all final output is directed to the merge
operator. The partitioner spawns the specified number of partitions during compilation and as-
signs a new thread for each partition to process. It also handles the connection to partitions by
creating a queue buffer linked with an ID to allow tuple exchange between threads. This com-
mon design leads to a static partitioning schema first, which does not change the partitioning
function or number of partitions later.

For an adaptive approach, the central questions are:

• What changes are necessary to allow the addition and removal of partitions during run-
time, as well as changing the partitioning function?

• Which information can be used to decide when an adaption is advisable and how to re-
trieve this information?

• How to avoid ping-pong scaling decisions, i.e. a continuous addition and removal of
partitions?

In our implementation, we have a separate optimizer thread which is responsible for par-
tition scaling as well as the modification of the partitioning function. Since a re-optimization
should not happen in very short time intervals (which would imply partition ping-pong), a sin-
gle thread can easily handle the optimization.
A scaling decision can be based on different information. In our experiments, we came to the
conclusion that too much complexity (i.e. information) does not lead to a better decision over-
all. Best and most robust results were obtained by keeping track of the input buffer queues of
partitions. Each queue was modified to provide an interface for the optimizer thread, to allow
periodic checks about the number of currently buffered elements. In addition, the optimizer

31

thread stores that information for future checks, which opens the possibility to track the pro-
cessing rates (in terms of tuples processed per second) of partitions over time. The following
Figure 4.3 visualizes this behavior.

Figure 4.3: Optimizer decision space

Of course, the amount of information can be extended by also checking the individual oper-
ators in the partitions to find bottlenecks more fine-grained, however, as already mentioned, it
does not necessarily lead to better scaling decisions.

Overall, the scaling decision is a trade-off between the fast reaction on changes in tuple
arrival rates versus the avoidance of unnecessary efforts for scaling up and down. If restrictions
on latency are very tight, e.g. to respond on any input within 5 seconds like the Linear Road
benchmark [2], an adaption of the partition number must be done faster with a higher risk of
ping-pong. Just as a side note, to counter this risk, a good strategy would be to delay downscal-
ing for longer. Our general decision is based on the output of the following boolean equation,
explained in more detail afterward:

∀i ∈ partitions : size(qi)+ t p ins(qi)< t ps(pi)

For all current partitions, the number of tuples already in their individual input queue
(size(qi)) plus the number of tuples that arrived in the last time interval of checking (t p ins(qi))

32

should not exceed the throughput of the corresponding partition (t ps(pi). If this equation re-
turns false, it is very likely that the number of tuples in the queue will get larger in the next time
intervals, leading to delays in further processing and finally, violating the latency constraints.
If this is the case, additional partitions must be added to increase the overall throughput of the
query.
It is possible to initialize new partitions whenever they are needed, however, we adopted the idea
of a thread pool and pre-initialized partitions already in the beginning to reduce the overhead of
adding partitions. The optimizer then atomically adds a new partition with the necessary con-
nection to the partitioner and merge operator, which is very cheap and changes the partitioning
function in such a way that the new partition unburdens the overloaded partitions beforehand.
We did not focus that much on a new partitioning function design to achieve that, since there
was already a lot of research done in this field [26, 42, 43, 45, 58].

The decision for a scale-down is shown in Algorithm 1, which describes the removal of
partitions based on an intensity approach. First, all input queues of the partitions are iterated
through to check if there is any idling partition with empty input (line 4). Such a partition is
then marked for removal (line 7) and the intensity for a reduction increases (line 6). If there are
no empty queues to partitions, i.e. the intensity has not changed since the previous time interval,
it is set to zero (line 11). If the intensity has exceeded a given threshold instead, the number of
partitions is reduced (line 14). This configurable algorithm allows to deal with different latency
constraints with a threshold - a higher threshold leads to a longer possible overestimation of
necessary computing resources while a lower threshold might lead to ping-pong behavior for
skewed data streams.

There are also other scaling algorithms possible. With the recent rise of machine learning,
a reinforcement learning approach in combination with adaptive partitioning was proposed re-
cently [60], where an agent learns the ideal partitioning schema over time. However, there are
several drawbacks to such a solution. There is no real guarantee that a model will always stay
within a given latency constraint. Especially while the model is in the learning stage, it will
inevitably exceed the constraints to gain penalties and learn the performance boundaries. Even
pre-trained models might get an input that they did not see during training, leading to undefined
behavior. In addition, pre-trained models are not able to adapt to new workloads over time.
Beyond machine learning solutions, it is always possible to use statistical information about
stream behavior, operator performance, and the running system, to come to a better quality so-
lution. However, too many details can also lead to higher overhead in calculations as well as
losing robustness, e.g. when tens of factors have to be combined for a decision. There is also
the case where factors influence each other, which makes it even more difficult.

Merging

The merge operator is responsible for the collection of results from all previous partitions. On a
logical view, it merges multiple substreams into a single, consistent stream. There are different

33

Input : Initial configuration, Threshold t, Partitions ps
1 Intensityold=Intensitynew=0;
2 while query is running do
3 Intensityold = Intensitynew;
4 for each p in ps do
5 if qinp(p) == empty then //a partition has no input tuples
6 Intensitynew++;
7 mark partition(p); //for later removal
8 end
9 end

10 if Intensityold == Intensitynew then //all partition queues filled
11 Intensitynew=0;
12 end
13 if Intensitynew >= t then //reduction can be applied
14 reduce partition(); //based on marked partitions
15 Intensitynew=0;
16 end
17 end

Algorithm 1 : Intensity Algorithm

implementation options on how to realize this operation. Two general concepts are shown in
Figure 4.4.

Figure 4.4: Merge with one queue (left) and multiple queues (right)

A single queue as a buffer between the partition threads and the merge thread is sufficient
when the number of partitions is relatively small or the partitions are very compute-intensive,
and the order of tuples does not matter. It has the advantage that there is only a single buffer
for exchange, which means that there is a low memory overhead as well as an efficient check
for the merge if tuples are ready to be forwarded. On the other hand, high numbers of threads
can fill the queue very fast, especially when the merge thread gets locked out repeatedly due

34

to mutexes or Compare-And-Swap (CAS) fails. In addition, a reordering makes it necessary to
sort tuples afterward according to their timestamp, leading to additional data structures.
An efficient solution are multiple queues, one between each partition and the merge. Then,
specialized single producer, single consumer (SPSC) queues can be used for low-overhead syn-
chronization, and the degree of contention is minimized since only two threads are accessing
each queue. It also allows to forward tuples in the right order, sketched in Figure 4.5.

Figure 4.5: Order-preserving merge operation

If the assumption holds that each partition processes its incoming tuples in the right order,
it is guaranteed that its output is also locally ordered, with the oldest element on top of the local
queue. The merge thread is then able to compare the first element of all queues against each
other to find the oldest tuple, which can then be forwarded.
However, there is an important corner case. It is possible that a partition produces no results over
a certain time interval, e.g. due to a 100% selection predicate dropping all input, no tuples in key
range of the partition arriving from the input stream, or a scheduling issue where the partition
thread starves. This leads to a merge operator producing no output because it waits on the empty
queue for an input to compare with. A solution to this problem is the k-slack algorithm [33]
mentioned before. When the k-boundary is reached, a dummy element is inserted into the
queue, allowing to continue merging even if a partition has no output overall. This can also be
realized by a timeout to ignore the output queue of a partition for further comparisons.

4.2.6 Evaluation

To demonstrate the effectiveness of our adaptive partitioning and order-preserving merge ap-
proach, we use a synthetically generated dataset as micro-benchmark as well as an open-source

35

stream benchmark with varying stream behavior, called Linear Road [2]. The underlying hard-
ware is a Xeon Phi KNL 7210 processor, as mentioned in Section 2.1.2.

Micro-Benchmark

We generate tuples with three attributes, namely a timestamp, key, and payload. The gener-
ated dataset follows a sine distribution, where the number of tuples arriving per second varies
between zero (minimum in sine curve) and 100,000 (maximum in sine curve) over 30 minutes
overall. A query subscribing to that stream has to scale its parallelism for adapting to its chang-
ing behavior. While a single partition is enough for the minimum in the sine curve, it needs
more partitions to handle the maximum.
Written in SQL, the query can be formulated like the following:

SELECT key, SUM(payload)
FROM stream
GROUP BY key

It simply groups the payloads of equal keys together over time, discarding the timestamp
also. The related physical query plan is shown in Figure 4.6.

Figure 4.6: Micro-benchmark query

Each partition runs an own groupby operator. The projection, removing the timestamp, is
performed after the merge by the merge thread since it is a very cheap stateless operation.
Figure 4.7 plots the sine waveform, where each point describes the number of tuples arriving in
that second. In addition, the number of active partitions is shown, which is converted into their
overall throughput (maximum tuples processed per second).

The adaptive approach scales correctly with the sine curve. The scale-down of partitions
realized by the intensity-based algorithm is intentionally delayed to avoid ping-pong since an
overextension of resources is much less problematic than the other way around.

36

0 200 400 600 800 1000 1200 1400 1600 1800
Time [s]

0

20000

40000

60000

80000

100000

120000

140000

T
u
p
le

s
p
e
r

se
co

n
d

Dataset
Partitions [tp/s overall]

Figure 4.7: Adaptive partitioning with the sine tuple distribution

Another important mechanism to reduce synchronization efforts for the partitioning is micro-
batching. Instead of forwarding tuples individually to partitions, the partitioner batches tuples
beforehand. Whenever a batch is full (it is also possible to specify a time-out mechanism to
avoid huge latencies), it is exchanged to its responsible partition. Afterward, the partition has
first to unbatch it for further processing, which increases the computational efforts. We mea-
sured the advantage of micro-batching by varying the batch size, shown in Figure 4.8.

4 64 128 256
Partitions [#]

0

100k

200k

300k

400k

T
u
p
le

s
p
e
r

se
co

n
d

No Batching
Batchsize 2
Batchsize 5
Batchsize 10
Batchsize 100

Figure 4.8: Partitioning with micro-batching

For only a few partitions, synchronization is no relevant factor. But with more threads
executing more partitions, it improves the overall throughput notably. This makes the micro-

37

batching strategy attractive to use on a many-core CPU. Bigger batches do not improve through-
put inconclusively, because they tend to exceed cache lines and cache sizes.

Finally, we compare the performance of our order-preserving merge to a regular merge,
executing the same query of Figure 4.6 on the sine dataset. Since the order-preservation strategy
requires additional efforts with queues and timestamp comparisons, we demonstrate that this
operation scales up to the maximum of parallel executed threads on the KNL. Figure 4.9 shows
our results.

4 8 16 32 64 128 256
Partitions [#]

0

50k

100k

150k

200k

250k

300k

T
u
p
le

s
p
e
r

se
co

n
d

Merge
Ordered Merge

Figure 4.9: Merge overhead

It can be seen that the ordering even improves performance for low numbers of partitions.
The reason for this behavior is the usage of SPSC queues (one output queue per partition)
instead of one single queue for all output. But even for more partitions, there is no huge drop in
performance.

Linear Road Benchmark

First SPEs like Aurora [1] and STREAM [41] faced the problem of benchmarking their systems
as well as comparing results to other SPEs consistantly. Specialized on stream processing, early
work on SPEs claims being superior to relational DBMS for that task which is not surprising,
though [2]. The Linear Road Benchmark was developed and announced to provide a fair com-
parison between SPEs by providing a scalable use case for stream processing as well as a data
generator and validator [2].

38

It simulates a configurable number of vehicle expressways on which cars enter and leave
continuously. Each car emits its position report along with further information like its id or
speed once every 30 seconds in real-time. The system now has to keep track of the cars to
calculate tolls, based on congestion and accidents, which must be returned within five seconds
after report arrival. With a higher number of expressways, there are more events in terms of
position reports to process and respond, leading to the so-called L-Rating - an L-Rating of five
means that the system can handle five expressways simultaneously. When the benchmark starts,
the expressways are empty, producing only tens of events per second. However, over time more
and more cars enter the expressways which lead to thousands of events after the first hour. The
benchmark finishes in three hours in real-time.

For our adaptive scaling approach, this benchmark allows demonstrating the use of adaptive
partitioning. Otherwise, the system would have to start already with the maximum number of
partitions necessary to handle the thousands of events per second at the end of the benchmark,
wasting a lot of resources in the beginning. Our results for L1 and L2 are shown in Figure 4.10.

0 2000 4000 6000 8000 10000
Time [s]

5000

10000

15000

20000

T
u
p
le

s
p
e
r

se
co

n
d
 [

T
P
/s

]

L1 Dataset
L2 Dataset
L1 Partitions (in TP/s)
L2 Partitions (in TP/s)

5

10

15

20

#
P
a
rt

it
io

n
s

Figure 4.10: Linear Road benchmark with adaptive partitioning

It can be seen that the number of events per second is skewed, leading to over-provisioning
of partitions in general. However, this is intentional since the five-second response constraint
has the highest priority and ping-pong of adding and removing partitions must be avoided.

4.3 Summary

The parallelization of stream queries is absolutely necessary to take advantage of multi-core and
many-core CPUs as well as dealing with high requirements on performance. In this chapter,

39

we presented the partitioning-merge schema which is commonly found and used in SPEs on
a conceptual level. Its realization provides various degrees of freedom, where we proposed
an adaptive partitioning and order-preserved merging strategy. Since data stream behavior is
undeterminable in most cases, elastic handling of potentially long-running queries is crucial to
avoid over-provisioning as well as under-estimation of computing resources. We have shown
and demonstrated the effectiveness of our approach with synthetical data as well as the Linear
Road benchmark, being able to adapt on varying stream behavior over time.

40

5. Join Processing on Modern Hardware

The join operation in relational database systems or for stream processing is one of the most
common operations inside of any query. There exist abundant research and literature about
joins already since the 70s and its basics are regularly taught in database courses at schools and
universities until nowadays.

A join operator concatenates tuples from (mostly) two data sources that satisfy the given
join condition, e.g. when key values are equal in both tuples, they become joined together. Data
sources can be tables or data streams, for example. The most prominent join algorithms use
hashing or sorting to find matching tuples, but more about the state of art join algorithms can
be found later in this section.

The main focus of this work is not to provide a new join algorithm that performs minimally
better than a well-known one in a rare combination of circumstances. Instead, current state of art
join operators are investigated for their potential running on modern hardware, like a CPU with
a high number of cores or in combination with HBM. This leads not only to recommendations
for joins on that kind of hardware but also to further insights based on analysis and extensive
experimental testing, which was partially published in [51], [54] and [57]. In addition, we
investigated join performance for data stream processing with respect to parallelism, leading to
an optimized multiway join algorithm that is able to join hundreds of streams with low memory
footprint and good scalability, published partially in [56].

5.1 Introduction

In relational algebra, a regular join operator is defined by executing a cartesian product followed
by a selection. Basically, the cartesian product combines each tuple from the first relation with
all tuples from the second relation, while the selection afterward reduces the output to only
satisfying tuple combinations, i.e. combinations fulfilling the join condition. Based on the

variant of the join condition, there are different names for joins, like the Equi-Join for testing
equality (A==B), the Theta-Join for any comparison operation, the Natural Join (suppressing
duplicates of the Equi-Join), or Outer Joins (filling missing matches with NULL values).

Besides relational theory, join implementations have high degrees of freedom how to realize
this behavior. Until today, there is no solution found that is superior to all others in all different
use cases. That is the reason why database and streaming systems usually provide multiple
implementations for joins to cover any combination of circumstances. To give some examples,
the simple nested loop join is used for joining small tables with only tens to hundreds of tuples
inside, while a hash join performs best when two relations differ in size greatly (having a small
and a huge relation). Finally, a sort-merge join can be used when the relations are more equally
sized, while a multiway join allows joining more than two tables or streams efficiently.

A user writing his query does not have any interest in choosing the right implementation,
though. Almost all database systems use, therefore, a query optimizer that decides about the
right implementation for a query. Such decisions are based on cost models and statistics, like
the number of tuples that a table holds. For join processing, the most important information is
the selectivity of a join which describes how many output tuples a join will produce. With this
knowledge, the right join order, as well as an algorithm, can be chosen to minimize answering
time for a query. More information about cost models is given in Section 6.

5.2 Join History

There have been disruptive events in database history changing the focus of research regarding
join processing. In the early days, the main memory size was small compared to typical work-
loads. A join over two relations could not be executed initially when both relations do not fit
into main memory. Partitioning strategies were defined, to split the data into smaller subsets
that fit in memory. This leads to multiple join executions over different subsets, storing results
back to disk until all subsets are processed. Finally, the results are gathered and appended.
To improve performance and maximize overall throughput, subsets are formed efficiently by
hashing or sorting techniques to store tuples in subsets belonging together.

However, after technological advance main memory databases became possible. Partition-
ing techniques are still relevant since caching effects or TLB hits greatly boost overall per-
formance. Since CPU caches and TLBs are limited in size, the same problem between main
memory and disk reappears. In addition to caches and TLBs, the trend to CPUs with more cores
also fueled the research for partitioning strategies. To benefit from multiple cores and threads,
data must be split between them to allow efficient parallelism.

42

But not only main memory databases disrupted the database environment. Other hardware ac-
celerators like GPUs or FPGAs also gained research interest in the recent decade. Questions
arose how such accelerators can improve different aspects of query processing, e.g. joins or
groupings. They all have their own characteristics and benefits - a GPU, for instance, has thou-
sands of lightweight threads and thus an intense amount of parallelism, however, since data
must be transferred first from a host CPU to GPU, it is only beneficial for compute-intensive
tasks.
Other accelerators can also be found on the memory level. A current trend is the upcoming
persistent memory technology, which has comparable performance numbers to main memory
(slower writes), but with the advantage of persistence. This memory type can change how
databases grant durability on their transactions and opens a huge new field for database re-
search.

Our focus in this work is twofold. First, we explore the HBM potential for join processing.
Since some join phases are very throughput-intensive, new bottlenecks using a many-core CPU
can occur, leading to changes in cost models and optimal uses of join algorithms. Second, it is
not only possible to parallelize a single, binary join operator, joining two data sources (streams
or tables). If the number of joinable sources becomes large, multiway join algorithms provide a
different view on the join task, which we also investigate with respect to many-core CPUs.

5.3 Classification of Join Processing

As already mentioned, there are a lot of research results available regarding join processing. We
propose the following classification relevant for this thesis (see Figure 5.1).

There are two dimensions to explore, the hardware-side as well as the join side. Regarding
hardware, HBM and the multi-core aspect play the most important role. For joins, there is work
about the stream and relational join processing done in the past. Stream processing is the most
relevant part, however, through massive batching techniques used, we do not limit ourselves to
stream algorithms only. Apache Flink [9] is a prominent example, unifying one-tuple-at-a-time
processing with batch processing. Our SPE PipeFabric also provides both strategies, therefore,
we also have a look on relational joins in this thesis.

An additional differentiation between binary and multiway joins is meaningful for both
dimensions as they differ greatly from each other. This is discussed with more details in the
next section.

43

Figure 5.1: Classification of joins

5.3.1 Binary vs. Multiway Joins

The outcome of a multiway join is the same as cascading multiple binary join operators, ob-
viously. Tuples are produced continuously by two or more data stream sources and the join
operator matches key values on both streams, often limited by window functions. Compared to
relational joins, a non-blocking behavior is often required, i.e. producing an output also contin-
uously as a data stream. If more than two streams are joined and binary join operators are used,
they are cascaded, which is sketched in Figure 5.2.

Tables are denoted as Tx, while x describes tuples from stream(s) stored in T . Depending
on the join order, join trees can be realized as left or right deep trees or bushy trees. This
schema is common in relational database systems even for hundreds of tables, where a lot of
research was done already to find a good order for joining. In stream processing, this can be a
serious challenge due to latency constraints. Tuples that are probed with multiple hash tables for
matches is slow, especially due to random access patterns, eliminating any hardware advantage
like caching.
Multiway joins, on the other hand, have access to all inputs at once on a logical level, allowing
to add optimizations while seeing the whole picture. Ideally, this leads to a much better scaling
behavior by reducing unnecessary probe cycles as well as the materialization of intermediate
join results. A fundamental multiway join is shown in Figure 5.3.

44

Figure 5.2: Generic concept of a left-deep binary join tree

Figure 5.3: Generic multiway join operator

5.4 Join Processing with HBM

As mentioned before, a join consists of different phases, dependent on algorithm and imple-
mentation. Therefore, the impact of more memory bandwidth provided by HBM varies greatly,
which leads to further investigations necessary. In addition, there are different possibilities of
how to address the HBM. There are the following variants possible:

• Use HBM as main memory completely, without touching e.g. DDR3 or DDR4, which
represents a regular main memory type.

• Use HBM transparently in composition with regular DRAM, like as a last-level cache.
Since it is not possible to address HBM in that case directly, the only question for such a
configuration is how much performance improvement will be gained in this way.

45

• Use HBM directly as well as regular DRAM. In this case, the question arises which data
structures should be kept in DRAM and which on HBM. Is there a benefit at all compared
to transparent use?

As a baseline, only regular DRAM can be used without HBM for all join phases.

5.4.1 Algorithms and Related Work

To categorize join algorithms from the literature, it is possible to divide them first into relational
and stream joins according to Figure 5.1. While relational join operators work on finite tables,
optimized for fast query response times, stream joins aim for low individual tuple response time
(latency) as well as being able to keep up with tuples per second arrival rate (throughput). In
both categories, different, mostly disjoint algorithms exist. However, as previously mentioned,
common batching techniques allow streaming systems also to benefit from relational join algo-
rithms. Therefore, we do not limit our work on stream join algorithms only. In this work, we
focus on the most common ones found in systems as well as publications, using implementa-
tions that are open-source for reproducibility.

Stream Joins

One of the first and most robust stream join algorithms was the Pipelining Hash Join from
Wilschut et al. [75], which was renamed later Symmetric Hash Join (SHJ). This algorithm uses
two in-memory hash tables, one per input stream, to store incoming tuples. Each tuple is then
probed with all other tuples of the second hash table for matches. This leads to a low individual
tuple latency since each incoming tuple produces all its matches immediately before the next
tuple arrives. The SHJ algorithm is sketched in Figure 5.4.

We will use the SHJ for our experiments with HBM later. Since main memory was a very
limiting factor in the 1990s, the SHJ got further enhanced by Urhan et al. [71] to solve the
problem that hash tables do not fit fully into main memory. They named their version of the
SHJ XJoin, inserting tuples into partitions instead of hash tables, consisting of a disk-resident
and memory-resident portion. This allows to switch tuples between RAM and disk efficiently.
In addition, fluctuations in tuple arrival rates of streams can be used to process disk-resident
tuples when the rate is low, to balance the incoming load.
After processors and memory types got more diversified, further algorithms were proposed
to utilize the specialized hardware. Teubner et al. [67] proposed the Handshake Join, which
was parallelized for multi-core CPUs. Two joinable streams are logically routed through the

46

Figure 5.4: SHJ algorithm

cores close to each other, where each core is responsible for joining their local partition of both
streams. The analogy for this algorithm are soccer players of two teams, shaking hands at the
beginning of the match with the other team. Gedik et al. [16] investigated the potential of the
cell processor for stream joins. They developed the CellJoin that partitions the window of one
input stream to the available CPU cores. Gulisano et al. [21] developed the ScaleJoin, a parallel
stream join algorithm with improved load balancing and scaling to higher numbers of threads.
Regarding GPUs, Karnagel et al. [25] proposed the HELLS-Join for large windows that must
be joined, exploiting the processing power and bandwidth of a GPU.

Relational Joins

Regarding parallelism on multi-core or many-core CPUs, it is necessary to distribute data and
work over available threads. Mainly, each parallel relational join with two tables follows three
phases - distributing the tuples of both tables to threads, performing the join, and merging the
results into a single, consistent view. Each strategy in a phase leads to a different algorithm,
which we will describe next.

The No-Partitioning Join (NPJ). This algorithm is a straightforward concept to distribute
the join process over many threads. First, the smaller input relation is logically split among
available threads. Since the relation is only read by the threads, no contention and, thus, no

47

synchronization occurs. Each thread gets a range of tuples for the relation to process them.
While reading the input tuple by tuple, a single shared hash table is built by all threads, inserting
the key-value pairs continuously, until all input tuples are inserted. Due to shared hash table
access, synchronization is inevitable to provide correct results, however, this can be realized on
bucket level for a fine-grained synchronization, no need to lock the full hash table.
When all threads have returned from inserting, the probing phase starts. The same mechanism is
applied again, the (bigger) second relation is split among threads. Instead of building a second
table, the tuples are just probed for matches, which can be done without synchronization since
all threads are just reading from the hash table. If matches are found, the output tuples can be
stored thread-local first, reducing contention. When all threads have finished execution, each
local thread result is collected and merged for a single, consistent view. Just for completeness,
internally, the results might stay thread-local if the next operator after the join is parallelizable
and partitioned results can directly be used for the computation.
An overview of the NPJ is sketched in Figure 5.5.

Figure 5.5: NPJ algorithm

The Shared Partitioning Join (SPJ). When all available threads share read/write access to a
single data structure like the hash table, the scaling regarding numbers of threads is not ideal.
Whenever a thread writes something, e.g. a tuple to a hash bucket, this bucket will stay in the
cache of its core to speed up further frequent accesses. If another thread running on another
core wants to access the same bucket, it gets invalidated in the previous cache and is fetched
again from main memory. In combination with thread collisions, i.e. two threads writing into
the same bucket, the performance degrades due to synchronization and cache misses.

48

To avoid this behavior, the SPJ algorithm extends both reading phases with an additional par-
titioning step. Instead of writing the tuples into a single shared hash table, probing afterward,
each thread writes them synchronized with latches into range partitions. This means that each
partition is responsible for a determined key range. After this step, threads get partitions from
both relations assigned, performing the build and probe step locally with their partitions, elimi-
nating any synchronization. If the partitions are small enough (parameterizable by key ranges),
they can stay in cache speeding up processing, in addition to being stored in contiguous memory
regions, allowing prefetch mechanisms to skip any memory stalls.
The disadvantage beyond synchronization of building partitions is the vulnerability of the par-
titioning to data skew. If the same key values occur frequently, partitions become unequally
sized, leading to a few long-running threads still processing while other threads are already fin-
ished.
The SPJ concept can be seen in Figure 5.6.

Figure 5.6: SPJ algorithm

The Independent Partitioning Join (IPJ). Due to latches necessary for the partitioning
phase of the SPJ, where threads might write simultaneously to the same partition, the scala-

49

bility of the SPJ regarding high numbers of threads is limited. To further reduce contention for
shared access of data structures, the IPJ splits the partitioning phase into two parts, a thread-
local partitioning followed by a consolidation phase afterward. When each thread gets a fraction
of the input relation assigned, it applies the same partitioning algorithm like the SPJ, however,
instead of writing into shared output partitions, it writes into own partitions without synchro-
nization necessary. When all threads have finished their local partitioning, the consolidation
step occurs. In this step, fragmented partitions belonging together (i.e. having the same key
range) are identified and transferred into regular partitions. This consolidation can be done very
quickly with only a few computational costs.
After that, the regular build phase starts, where a hash table for each partition is built, probed
with the other partitioned relation for matches, just like the SPJ. The main part of the IPJ algo-
rithm is shown in Figure 5.7.

Figure 5.7: IPJ partitioning of relation R with two threads

The Parallel Radix Join (PRJ). The radix join exploits the fact that processing speed of
CPUs increase faster than memory access speed due to technological advance. Therefore, it
can be beneficial to increase CPU processing costs at the expense of fewer memory accesses.
In 2002, Manegold et al. [39] proposed the radix clustering for partitioning join relations. To
avoid cache and TLB misses, it is essential to keep partitions small enough when joining huge
relations.
The radix clustering first requires both relations stored in contiguous memory regions for a se-
quential read access pattern. Then, a histogram on hash values of keys is built, simply to get

50

the number of tuples falling into the same key range. By calculating the prefix sum on the his-
togram, the offset of each partition can be obtained. Finally, threads read their assigned fraction
of the relation a second time, writing tuples to their destination in the partition, determined by
the prefix sum.
For bigger relations, this can be done in multiple runs, so-called passes, to adapt the partitioning
size to caches and TLB. After the partitioning step, a regular build and probe phase can follow,
just like the SPJ. Figure 5.8 sketches the radix partitioning step.

Figure 5.8: Radix partitioning of relation R in two passes

The Sort-Merge Join (M-Way). Sort-merge joins first sort their relations by key, performing
the join afterward by merging. This means that after the sorting, the tuples with the smallest
key are loaded for comparison. If no outer join is performed, a join is only successful if at least
one tuple is loaded on both relations. This routine is executed until one sorted relation is empty.
While this concept is straightforward, there are different options for sorting and merging effi-
ciently on today’s multi-core CPUs. First, a partitioning step can be applied just like for the
hash joins. Regarding NUMA nodes, it is possible to sort a relation first NUMA-local to avoid

51

crossing regions. For sorting, many algorithms exist, using sorting networks and SIMD instruc-
tions to speed up the sorting step. When relations are sorted finally NUMA-local, it is inevitable
to get globally sorted relations by performing a merge over them.
To balance memory access and computation, Balkesen et al. [3] proposed the Multiway merge
(M-Way). Instead of performing the merge in a single run, leading to stalled threads due to
limited memory bandwidth, a thread switches between merge levels or runs. On the one hand,
it reduces the pressure on memory controllers, on the other hand, it raises the number of context
switches and increases the computational costs. Figure 5.9 sketches the M-Way algorithm.

Figure 5.9: M-Way algorithm

5.4.2 Implementation

Beyond the concepts, we use our own implementation of the SHJ in our SPE PipeFabric (intro-
duced in Section 3.1.1) while applying open source implementations for the other algorithms.
The hash join algorithms are published by Blanas et al. [8] (implementations online acces-
sible1), while the sort merge join algorithm belongs to the publication of Balkesen et al. [3]
(implementation online accessible2, in addition to an optimized radix join algorithm from [4]).
However, to allow those algorithms to run on a KNL many-core architecture, some code adapta-
tions were necessary, especially regarding the MCDRAM. First, the MCDRAM running in Flat
mode is declared as a separate NUMA node, without CPUs on it. This means that an imple-
mentation doing NUMA-aware partitioning should not try to assign threads to that node since

1http://web.cse.ohio-state.edu/˜blanas.2/
2https://www.systems.ethz.ch/projects/paralleljoins

52

http://web.cse.ohio-state.edu/~blanas.2/
https://www.systems.ethz.ch/projects/paralleljoins

this will lead to runtime failures. This was the case for the PRJ implementation of Balkesen
et al., leading to minor code adjustments necessary. Second, when libraries like Memkind are
used, providing custom allocators for high-bandwidth memory, any implementation must be
examined for its data structures to allow placement of the HBM allocators at the right place.
Finally, compiling with additional flags like the C++14 standard, libnuma, and AVX-512 are
recommended. In the next subsections, we describe how the implementations handle different
topics like skew and materialization, as well as which data structures were chosen to be stored
in MCDRAM.

Skew Handling

Skew in joins occurs whenever a key appears more frequently than others. In real applications,
skew is mostly inevitable, however, low skew is usually not a problem for parallel join execu-
tion. Whenever the degree of skew rises, range partitions become unequally sized, leading to
threads running longer than others, limiting the effectiveness of parallelism.
In all implementations, a variable degree of skew can be considered due to generated datasets.
This degree can be expressed as a Zipf distribution, where a Zipf factor s of 1.05 leads to low
skew and 1.25 results in high skew. Table 5.1 shows how often a key appears in the dataset for
uniform as well as skewed key distributions.

Dataset Most freq. key 10 most freq. key
Uniform 16 times 16 times each
s=1.05 5.2% 14.7%
s=1.25 21.7% 51.6%

Table 5.1: Key distributions of the second relation (256M tuples)

For hash joins, the skew is added to the bigger second relation, which is used for probing.
In [8], the probe relation was 16 times bigger than the first relation, which means that a key
occurs at least 16 times in a uniform distribution.
It can be seen that for a Zipf factor s of 1.25 more than 50% (128M tuples) of the relation share
the same 10 keys, having 16M different keys usually. A range partition will lead to a few, large
partitions very likely, which is a problem for all partitioning algorithms.

Output Materialization

Since threads produce join results independently from each other, it depends if their results
should be visible as a single, consistent output table. In many cases, only tuple ID pairs are re-
turned from joins, avoiding long tuple chains due to many attributes not participating in the join.

53

Measuring performance, those results are often kept thread-local for later processing, which is
an assumption that is not true for all cases.
The implementations used in this work take different approaches to materialization. The SHJ
fully materializes its output tuples in main memory. Each result produced is wrapped into a
pointer, forwarded to subsequent operators. The relational join implementations use preproces-
sor directives based on variables to add or skip materialization. When skipped, join results stay
thread-local within the performance measurements. This is also the default configuration if not
specified otherwise. In this work, we applied materialization only for a separate test case.

Data Structures in HBM

For the SHJ, we divided our approach only into three categories - using only regular mem-
ory (DDR4) without HBM, using only HBM without DDR4, and using HBM transparently as
cache. The reason for skipping fine-granular allocations can be found in the next Section 5.4.3.
The main data structures for SHJ are incoming tuples (stored with pointers in a contiguous
memory block through a window function), two hash tables for the inputs, and individual join
results.
The NPJ, building a single, shared hash table with all threads without partitioning of the input
first, has mainly two tables representing the input relations, as well as the built hash table. In
addition to the three allocation categories of the SHJ, we further distinguish between keeping
the input relations in HBM and the built hash table in DDR4, as well as the other way around.
The SPJ, IPJ, and PRJ all use a partitioning strategy and multiple hash tables, one per partition
of the first relation. A partition is represented as a regular table, stored in contiguous memory.
For the measurements, we keep the partitions as well as hash tables in DDR4, while both input
relations are allocated on HBM and the other way around. It is important to notice that the
radix join implementation needs its relation stored in contiguous memory, which is realized as
an additional step in the implementations being not measured.
The M-Way algorithm uses next to its input relations NUMA-local partitions, which are later
sorted in-place. Merged results are stored in new relations finally, to perform the join. Just
like for the hash join implementations, we further divide the measurements into storing only
relations in DDR4, all other structures in HBM, or the other way around.

5.4.3 Evaluation

In this section, we provide results and discussion of the join algorithms and implementations
regarding HBM usage. First, we will wrap-up our expectations on the measurements. Then, we
will describe the test cases and setup used, followed by the results of the join processing. In
addition to the join results regarding HBM, we further investigate special cases like skew, mate-
rialization, AVX-512 instructions, relation sizes, and impact of the KNL processor architecture
on the results.

54

Initial Expectations

Memory bandwidth is a common bottleneck for implementations having only a few calculations
per byte read. Relational joins iterating over tables and partitions are highly I/O-bound, while
stream joins like the SHJ perform tuplewise processing being more latency bound. This means
that the SHJ will probably not benefit from more bandwidth of HBM as long as no batching
strategies are applied.
The NPJ reads both input tables, building a single shared hash table that is probed afterwards.
Due to fine-grained locking only on hash table buckets, a higher bandwidth should improve
performance drastically when the degree of parallelism increases. Compared to the SPJ and IPJ,
where an additional partitioning step is applied along with multiple hash tables (one per partition
of the first table), both algorithms should also greatly benefit from more memory bandwidth,
especially in the partitioning phase.
The PRJ that partitions the input relations in multiple passes according to cache and TLB sizes
might show a better performance on HBM during the reading of relations. However, since
tuples are reused in multiple passes of radix partitioning, caches play a more important role
than the bandwidth of main memory.
Finally, the sort-merge join. This algorithm is mostly I/O-bound due to its sorting and also
merging phase. To save memory bandwidth, the M-Way algorithm even splits merging into
multiple merging steps with queues and buffers to avoid overwhelming of memory controllers
with high numbers of requests. With HBM, any sort-merge join like M-Way should greatly
improve its performance.

Setup and Test Cases

The hardware used is a Xeon Phi KNL processor 7210, as mentioned in Section 2.1.2. We scale
threads up to 256 since the KNL has 64 cores à 4 threads each (due to hyperthreading). An
important component for the measurements is its MCDRAM, the 16 GB HBM, compared to
the 96 GB DDR4 regular main memory. The KNL runs in SNC-4 mode, while the MCDRAM
is specified in Flat or Cache mode, depending on the test cases. Threads are evenly distributed
by using the KMP AFFINITY variable of the OpenMP library set to scattered.
As shortly mentioned before, the SHJ implementation is used from the SPE PipeFabric, com-
piled with AVX-512 enabled and the Intel compiler 17.0.6. The relational join algorithms are
mostly compiled with the same settings, but with additional adaptations to the KNL architecture
where necessary (see Section 5.4.2). However, since the code from Balkesen et al. [3, 4] was
written with many intrinsic functions for AVX/AVX-2, we did not completely rewrite it. To
allow a comparison between the impact of AVX-2 to AVX-512, we added a separate test case
(see Section 5.4.3).

55

The metric cycles per tuple refers to measurements done within the code, using timestamp coun-
ters (RDTSC) for the different join phases. It includes the partitioning, building, and probing
for all hash join algorithms while not measuring the time necessary for creating the input tables
in main memory (or HBM). Software prefetching is always enabled but not explicitly triggered
in the code.

For measuring the performance of the stream join implementation (SHJ), we created two
test cases overall. First, we compare the impact of HBM on regular tuple processing. Tuples
are allocated (1) with the Memkind API directly in HBM compared to (2) using DDR4 with the
standard C++ allocator (std::allocator<T>). Crossing NUMA regions is avoided by allocating
tuples on the same node the thread runs on. In the first test case, we just stream the tuples
through a selection operator with 50% selectivity.
The second test case joins two input streams, producing an average of 10 output tuples per input
tuple. Each stream runs a sliding window operation with a size of 10,000 to avoid memory
overflow. When a tuple gets dropped out of the window, it is also removed completely from the
corresponding hash table of the SHJ.
1,000,000 tuples are used for both test cases, which is enough to stabilize results over time due
to empty hash tables in the beginning. All output tuples are fully materialized in main memory
or HBM, depending on the measurement.

The relational joins use the same generated dataset to allow reasonable comparisons. As
originally used and proposed by Blanas et al. [8], we generate 16M tuples on build and 256M tu-
ples on probe side. The impact of different dataset sizes is discussed separately in Section 5.4.3.
Each tuple consists of a key and a payload with 8 byte each, leading to a total workload size of
256 MB of relation R and 4 GB of relation S. All keys are uniformly generated with dense key
space (i.e. contiguous key values).
For each implementation, we distinguish further into four different situations:

• Joins completely rely on MCDRAM. This is achieved by using the Numactl library (see
Section 2.2.3).

• Joins are run on DDR4 while the MCDRAM is configured in Cache mode.

• Joins use only DDR4 memory without touching MCDRAM at all. This is realized by
using MCDRAM in Flat mode without addressing it.

• Joins run partially on DDR4 and MCDRAM at the same time by using Memkind API.
Relations are stored in MCDRAM while all other structures like partitions, hash tables,
etc. are kept in DDR4. There is a separate test case for storing relations in DDR4 while
all other structures are using HBM, though (see Section 5.4.3).

56

The benefit of the last situation is clearly on hand. HBM is limited in capacity, e.g. 16 GB
for MCDRAM. If only the bandwidth-critical data structures are placed there, it is possible to
process even larger datasets as well as not wasting memory unnecessarily. Tables are not split
and further distributed along with the NUMA nodes, which would be possible by adding an
additional partitioning step beforehand or by creating fractions of relations on each node.

Stream Join Results

The first result shown in Figure 5.10 is obtained by running a query with a selection operator.
Tuples are just streamed one by one through the operator, calculating the necessary cycles per
produced result tuple. The number of selection queries executed in parallel by one thread each is
increased up to 256, which is the limit of the KNL processor regarding parallel thread execution.

0 16 32 64 128 192 256
#Threads

100
500

1k

5k

10k

C
y
cl

e
s

p
e
r

O
u
tp

u
t

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Cache

Figure 5.10: Tuple allocation with selection operator

Since there are no real relations for streaming, we did not further divide the results into
partially allocated data structures. It can be seen that the higher bandwidth allows more threads
to produce results in comparable execution time. Even with 256 threads and hyperthreading,
the necessary CPU cycles per tuple stay in low numbers, around 500. In Cache mode or even
without using MCDRAM at all, the average amount of cycles raises drastically after 64 threads,
overburdening the memory controllers with memory requests. A huge cache does not help
either since tuples are not reused at all in such a simple streaming scenario with just a single
selection operator.

57

While those results are promising for streaming, this situation changes when a latency-
bound operator like the SHJ is used. Figure 5.11 shows the result. Weak scaling is used, where
the same join operation is executed independently from other threads in a rising number. Each
added thread performs an additional join over two input streams. Due to the sliding window
semantics, dropping outdated tuples after a while, it is possible to run up to 256 SHJ queries
completely in MCDRAM. The Numactl library is used to achieve this situation.

0 16 32 64 128 192 256
#Threads

10

100

1k

10k

C
y
cl

e
s

p
e
r

O
u
tp

u
t

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Cache

Figure 5.11: Query with SHJ operator

Overall, the SHJ is no suitable candidate for using HBM. Having randomized memory ac-
cess patterns for the hash tables as well as tuplewise processing, memory bandwidth is not the
main cost factor. Only for close to 256 threads, the MCDRAM allows reducing cycles for output
tuples notably.

Relational Join Results

For the relational join implementations, we use the uniform dataset as well as DDR4 memory
and MCDRAM of the KNL processor, addressed via Numactl library and Memkind API. The
first results are obtained by applying the NPJ.

No-Partitioning Join (NPJ) As described before, the implementation of Blanas et al. [8]
utilizes linked lists of buffers to define input tables, partitions, and hash tables. To allow only
the input tables to be allocated on MCDRAM, we added an additional flag on table creation to

58

indicate if the Memkind allocator should be used. In this case, only the relations are stored on
MCDRAM while all other structures like partitions and hash tables stay on DDR4. By using
the tool Numastat3, we can verify that MCDRAM is only occupied at the beginning of the join
execution, where the relations are allocated. Finally, the results can be found in Figure 5.12.

0 16 32 64 128 192 256
#Threads

20

40

60

80

C
y
cl

e
s

p
e
r

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Relations

MCDRAM Cache

Figure 5.12: No-Partitioning Join (NPJ)

More threads lead to an intense improvement of performance, reducing the necessary cy-
cles per output tuple drastically. When more than 16 threads are performing the same join, the
higher bandwidth of the MCDRAM allows reducing the number of cycles even more. Before
16 threads there is not much gain in higher bandwidth, which can even hurt performance due to
increased access latency of the MCDRAM compared to DDR4. The performance gets better up
to 64 threads, which is the point where one thread is running on each core of the KNL processor.
Even with more threads available due to hyperthreading, the NPJ scales further with the usage
of MCDRAM.
At 192 threads, the join needs approximately 3.5 times more cycles on DDR4 than running on
MCDRAM, which is exploiting its higher memory bandwidth. The Cache mode of the MC-
DRAM is not useful at all for the NPJ, since all threads build a single, shared hash table. This
leads to randomized accesses and cache misses and, thus, to performance penalties, just like the
SHJ. Storing both input relations in the MCDRAM allows a minor performance improvement
for building and probing, but since the hash table is allocated on DDR4, there are bottlenecks
on bandwidth whenever hash buckets are not cached in L1 or L2.

3https://www.systutorials.com/docs/linux/man/8-numastat

59

https://www.systutorials.com/docs/linux/man/8-numastat

Shared Partitioning Join (SPJ) Compared to the NPJ, the SPJ performs a partitioning of the
input relations first (with contention), leading to a fixed number of partitions. Each partition of
one relation is then used to build a hash table, probed afterward with the corresponding partition
of the second relation. The results are shown in Figure 5.13.

0 16 32 64 128 192 256
#Threads

20

40

60

80

100

C
y
cl

e
s

p
e
r

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Relations

MCDRAM Cache

Figure 5.13: Shared Partitioning Join (SPJ)

First, for a low number of threads, the performance gain is huge when more threads are
added. After hitting a sweet spot at around 64 threads, the performance gets worse again for
cases where more and more threads are added. This can be explained by having a look at the
implementation as well as the algorithm of the SPJ. In the partitioning phase, all threads write
tuples into partitions concurrently under contention, raising the necessity of locks or latches. In
the implementation, a latch is realized by atomic primitives like xchgb to switch register content
atomically. Measurements have shown that the time needed for partitioning starts to rise after
80 threads, taking up to three times longer with 256 threads finally. This is not surprising,
though. It was already stated by Yu et al. [78] that locks and latches can nullify any progress
and throughput under high contention. In practice, the degree of contention should stay in low
numbers, since multiple queries running in parallel are not able to utilize all 256 threads on each
of them.
While the MCDRAM can counter this progression to some extent, it is still suffering from
high contention of high numbers of threads. Up to three times fewer cycles are necessary
on the MCDRAM compared to DDR4 for the SPJ, allowing to better exploit its bandwidth.
However, if compared to the NPJ, it still takes more cycles to finish after using 16 threads or
more. The further distinction of keeping only relations in the MCDRAM leads to a performance
improvement again, but only for the partitioning phase. Since the partitioning phase takes most
of the time of all phases in this implementation, it is a good trade-off between MCDRAM usage

60

and performance gain.

Independent Partitioning Join (IPJ) This algorithm improves the SPJ by partitioning the
relations thread-local first to reduce contention. The results of the measurements can be found
in Figure 5.14.

0 16 32 64 128 192 256
#Threads

20

40

60

80

100

120

140

160

180

200

C
y
cl

e
s

p
e
r

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Relations

MCDRAM Cache

Figure 5.14: Independent Partitioning Join (IPJ)

The performance of the IPJ degrades again after hitting a minimum between 32 and 64
threads. The cache mode of the KNL is again not promising for the results. When only the rela-
tions are stored with Memkind API on the MCDRAM, approximately 80% of the performance
advantage is achieved compared to storing everything on MCDRAM with the Numactl library.
Further analysis has shown that the memory footprint of the IPJ when joining 4 GB and 256 MB
is around 4.3 GB for the in-memory relation tables on MCDRAM, with additional 350 MB
needed for buffer administration like pointers stored on DDR4. The join execution with parti-
tioning, building and probing with 64 threads increases the memory usage up to 9.6 GB total.
This means that around 55% of memory occupation can be moved to DDR4 losing around
20% performance advantage. The execution time in CPU cycles is shown in Figure 5.15 for
partitioning, building, and probing with 64 threads.

It takes around 78 cycles per output tuple for executing the IPJ with DDR4 only, compared
to 37 cycles using MCDRAM for any allocations. Since the partitioning phase takes most of the
performance, it is a good option to store its input relations on MCDRAM. Using the Memkind
API for storing the relations explicitly on MCDRAM leads to a drop in necessary cycles from

61

DDR4 only MCDRAM Relations MCDRAM only

20

40

60

80

C
y
cl

e
s

p
e
r

O
u
tp

u
t

T
u
p
le

Independent Hash Join 64 Threads

Partitioning Phase
Build Phase
Probe Phase

Figure 5.15: IPJ phases

58 to 26, independently from other join phases in general. Of course, if the MCDRAM is used
for the relations and DDR4 for all other structures, the build and probe phase have the same
behavior as using DDR4 only. Therefore, three options for joining in HBM exist:

• When both input relations, as well as the structures of the join execution, fit into 16 GB,
MCDRAM can be fully used without touching DDR4 at all.

• Keep relations in MCDRAM and all other structures in DDR4 if 16 GB would be ex-
ceeded.

• If even a relation would not fit into 16 GB, a partitioning into MCDRAM-sized chunks
could still improve performance.

Parallel Radix Join (PRJ) We tested two implementations for the PRJ, as mentioned, one
from Blanas et al. [8] and the other from Balkesen et al. [4]. By processing the input tables in
multiple passes instead of all at once, TLB and cache misses are reduced. The results running
the PRJ implementation of Blanas et al. can be found in Figure 5.16.

It is clearly visible that there is not much reduction in CPU cycles achieved after 32 to 64
threads involved. For only a few threads, the PRJ has better results than the NPJ, but if scaled
up with hyperthreading, the NPJ is still slightly faster on average. MCDRAM running in Cache
mode improves performance because of reusing data in each pass (reading and creating the

62

0 16 32 64 128 192 256
#Threads

10

20

30

40

50

60

C
y
cl

e
s

p
e
r

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Contiguous Relations

MCDRAM Cache

Figure 5.16: Parallel Radix Join (PRJ) of [8]

histogram, then reading again for the partitions). Even better than running as a cache is di-
rect allocation of everything in MCDRAM, of course, due to the avoidance of additional cache
misses and redirection to DDR4 memory.
Allocating only relations in MCDRAM with Memkind API has an important difference to other
join implementations, due to the requirement of both relations being stored in contiguous mem-
ory. This implementation of Blanas et al. achieves this requirement by an additional step after
reading the relations into in-memory tables. After the relations are read, a contiguous mem-
ory block is allocated for both relations, moving the tuples into these blocks afterward before
the radix partitioning takes place. This additional step is not taken into the measurements and,
therefore, no difference in performance can be noticed if the input relations stay in DDR4 or
MCDRAM. To allow the join still to benefit from higher bandwidth, we changed the allocation
of the contiguous memory regions to use MCDRAM instead of DDR4. Then, the performance
gain is mostly equal to MCDRAM running in Cache mode for a high number of threads. The
high bandwidth of the MCDRAM cannot be exploited that well compared to the other join
algorithms, but a speed-up of up to 1.9 compared to DDR4 only is possible.

The second PRJ implementation is from Balkesen et al. [4], being an improved version
of the first implementation. They reworked the code in such a way that approximately 40%
function calls of the radix partitioning phase are saved and, thus, reducing the CPU cycles per
output tuple significantly. We configured the implementation to use 18 radix bits, in addition
to set parameters for cache and TLB size, since this information is required for running their
implementation. In Figure 5.17, the cycles spent for radix partitioning are shown.

Running the join only on DDR4 leads again to the largest number of cycles when partition-

63

0 16 32 64 128 192 256
#Threads

5

10

15

20

C
y
cl

e
s

p
e
r

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Relations

MCDRAM Cache

Figure 5.17: Partitioning phase of the PRJ from [4]

ing. This does only improve marginally when relations are stored on MCDRAM due to the
movement of tuples into a contiguous memory region. The Cache mode is again useful for the
PRJ, because of multiple passes of the radix partitioning, however, using only MCDRAM still
provides the best performance overall. Figure 5.18 shows the number of CPU cycles per output
tuple on the left and the corresponding throughput on the right.

Figure 5.18: Parallel Radix Join (PRJ) of [4], cycles and throughput

For a number of threads less than 32, there is not much gain from MCDRAM at all. But at
that point, the memory bandwidth of DDR4 becomes a limitation, which allows the MCDRAM
to shine regarding performance numbers. With hyperthreading at 64 threads, the performance

64

gets worse again for all test cases. Interestingly, running the MCDRAM in cache or flat mode
(addressed with Numactl) improves performance more or less equally.

M-Way Sort Merge Join The M-Way sort-merge join from Balkesen et al. [3] was described
as being superior to other sort-merge join algorithms up to that time. However, it must be
parameterized correctly, especially regarding the buffer size for merging, i.e. the FIFO queues.
Due to the memory heterogeneity of DDR4 and MCDRAM, we evaluated different buffer sizes
on the memory types and configuration. The results can be found in Figure 5.19.

8 16 32 64 128 256 512 1024
Merge Buffer Size in MB

2

5

10

20

C
y
cl

e
s

p
e
r

O
u
tp

u
t

T
u
p
le

DDR4 only

MCDRAM only

MCDRAM Cache

Figure 5.19: Variation of the sort-merge buffer size

If the size of the buffers gets too big, demands on memory for merging increases drasti-
cally, leading to a flattened curve for DDR4 when the memory bandwidth is reached. If, on
the other hand, the buffer size is too small, the task switches between merge tasks limit the
overall performance massively. There is no best configuration for using MCDRAM, but there
is also no more gain when hitting a larger size than 128 MB, compared to DDR4 reaching its
limit at 32 MB. Because of no decrease in performance for the MCDRAM at some point, the
available bandwidth is not saturated at all. If the buffer size is big enough, no task switches
occur anymore, leading to no more performance gain if the buffer size is increased further. The
Cache mode shows slightly better results than running in Flat mode, indicating that fractions of
the code are latency-bound. If the MCDRAM is used without DDR4, its slightly higher latency
worsens performance in that case.
Another parameter is the partitioning fanout. The KNL supports up to 256 concurrently running
threads in addition to a TLB size of 256 entries on L2. Therefore, we set the fanout equal to

65

the number of threads that we use for our evaluation. The overall results on the whole M-Way
sort-merge join can be found in Figure 5.20.

Figure 5.20: M-Way Sort Merge Join of [3], cycles and throughput

Due to the fact that the number of threads has always to be a power of two, it is not possible
to have more plot points, though. Reliable results are achieved when each core runs a single
thread, but with two threads per core, the performance can be increased even more. The Cache
mode is again slightly better here than using only MCDRAM. Overall, a great performance
benefit can be achieved with MCDRAM, with up to 2.5 times more throughput compared to
DDR4 only.
A further look into the numbers of the different join phases have shown that the time necessary
for sorting is decreasing continually with more threads, but the time for merging doubles be-
tween 128 and 256 threads. Because of only one thread performing the merging step, this is not
that surprising overall.

Skewed Workloads

All measurements from the previous sections used uniform datasets. To see the impact of HBM
on skewed workloads, we added a separate test case. The key distribution was previously de-
scribed in Section 5.4.2, using a Zipf factor of 1.05 for low skew and 1.25 for high skew. The
NPJ algorithm actually benefits from skew, since all threads build the same hash table in the
build phase, as well as probing it. Without partitioning, there is no notable impact of skew on
the execution time, mentioned also by Blanas et al. [8]. Therefore, we use the SPJ algorithm
for our measurements, running it on DDR4 and MCDRAM only. The results are shown in
Figure 5.21.

66

Figure 5.21: SPJ with lowly (left) and highly (right) skewed data

More skew, i.e. more times the same key, increases the probability of collisions with multi-
ple threads as well as uneven load in partitions, leading to a few long-running partitions. With
more threads, the problem only gets worse, since more threads have to wait on others. Even
if the MCDRAM can reduce the necessary cycles due to more bandwidth in bandwidth-critical
sections, most of the time is spent with a few threads processing large partitions, which cannot
be improved simply by adding more bandwidth.

Output Materialization

The results of join execution, i.e. tuples belonging together, are often kept separate without
actually joining them. If the concatenation is not performed, some calculations can be saved,
returning just pairs of pointers to the real tuples. Blanas et al. [8] raised the assumption that the
materialization step does not hurt performance that badly. We tested that assumption by running
the NPJ, SPJ, and PRJ on DDR4 as well as MCDRAM.
With enabled materialization, all join results are written in thread-local tables, each tuple con-
sisting of keys and payload. The time necessary to combine all local output tables into a single,
consistent output table is omitted. Table 5.2 describes the overhead of materialization compared
to skipping the materialization completely.

When only a few or even a single thread is used, the individual overhead is much higher than
using a high number of threads. With fewer threads and CPU cores idling, it takes more time
to write the tuples into their output tables. The percentage of materialization overhead is higher
on MCDRAM since it has lower execution time (cycles) to perform the join. With around 10
cycles an overhead of 5 to 10 cycles varies more than adding that cycles to 30.
Overall, materializing tuples in DDR4 or MCDRAM has no major impact on performance, as

67

MCDRAM
Join Algorithm Flat Cache Unused

NPJ 32% 21% 20%
SPJ 14% 13% 14%
PRJ 39% 35% 31%

Table 5.2: Overall materialization overhead

stated in the previous assumption. Since latencies are almost equal to DDR4 and MCDRAM,
more bandwidth does not improve materialization at all. The decision of materializing the
output in DDR4 or MCDRAM should then be based on subsequent operators, if they can benefit
from higher bandwidth or not.

Variation of Relation Sizes

With only 16 GB capacity, it is not possible to join huge relations only with MCDRAM. De-
pending on the algorithm and implementation, even intermediate results and data structures like
hash tables, partitions, or histograms can occupy amounts of memory multiple times of relations
alone. To see the impact of different relation sizes as well as different ratios between relations,
we ran multiple test cases. Table 5.3 shows their results by running the PRJ implementation of
Balkesen et al. [4] with 64 threads. HBMrel means that only relations are stored in MCDRAM.

R — S [GB] DDR4 HBMrel HBMcache

0.256 — 4 4.5 3.1 2.4
0.768 — 12 4.2 3.3 3.2

1.5 — 24 4.1 3.6 3.9
4 — 4 9.3 6.6 7.5
8 — 8 9.2 6.6 7.3

16 — 16 9.2 7.6 9.4

Table 5.3: Summary of performance (cycles per output tuple)

Larger relations lead to more join results as well as longer processing time necessary, there-
fore, the measured numbers are relatively equal. Whenever the memory footprint is larger than
the MCDRAM capacity running in cache mode, a huge performance drop can be noticed due
to cache eviction. On the other hand, when running in Flat mode and storing only relations in
MCDRAM, the performance does not change that much if the size is exceeded partially.

68

DDR4 only for Relations

In the previous measurements of all implementations, only relations were allocated in MC-
DRAM while keeping other in-memory structures in DDR4. This leads to a performance trade-
off against used capacity. However, it is also possible to keep the relations in DDR4 while using
MCDRAM for all other purposes. NUMA-bitmasks allow this distinction, applying them on
relation allocation to pin them on DDR4. If Numactl is used afterward, only memory from
the MCDRAM is used except the relations. Table 5.4 summarizes the measurements with 64
threads and the 256 MB and 4 GB dataset. The implementations are used from Blanas et al. [8].

Memory NPJ SPJ IPJ
DDR4 only 23.1 46.8 78.1
DDR4 relations 22.1 32.6 76.1
HBM relations 18.4 32.0 44.5
HBM only 13.2 25.8 37.3

Table 5.4: Comparison of allocations (cycles per output Tp)

A performance advantage can be achieved, but much less than the other way around, mov-
ing relations to MCDRAM and all other structures on DDR4. Due to relations read sequentially
for the partitioning phase, there is a huge need in memory bandwidth, while building and prob-
ing hash tables afterward suffer from randomized memory access patterns. Compared to a real
query execution with more operators than just a join, it might be useful to allow threads allocat-
ing local data structures on MCDRAM when the memory bandwidth demands are high.

Comparison with AVX-512

Vectorization beyond automatically applied by the compiler with intrinsic functions was not a
focus of this work. If our conclusions about HBM and MCDRAM are correct, there should be
no more performance gain on DDR4 through vectorization, since the bandwidth is already on
its limit. MCDRAM, on the other hand, should perform better if its maximum bandwidth is not
reached yet. The PRJ implementation of [4] already uses AVX-2 intrinsics, so we switched the
registers to AVX-512 and allowed the compiler to use them by setting the corresponding flag.
The implementation is then run again with 256 MB and 4 GB datasets for the input relations.
The results can be found in Figure 5.22.

As stated before, there is no real advantage using AVX-512 instructions when using DDR4
only. Using only MCDRAM with Numactl, the throughput can be increased by around 20% on
128 threads, which leads to the conclusion that the memory bandwidth can be exploited even
more.

69

1 4 8 16 32 64 128 192 256
#Threads

100

200

300

400

500

600

700

800

900

1000

T
h
ro

u
g
h
p
u
t

[M
.
tu

p
le

s/
se

c]

DDR4 original code

DDR4 with AVX512

MCDRAM original code

MCDRAM with AVX512

Figure 5.22: PRJ throughput of [4] analyzed for AVX-512 impact

Impact of KNL CPU Architecture

The KNL processor with its tile architecture, exposed as four NUMA nodes, does not follow
common CPU architectures. Therefore, we have an additional look at the generalizability of the
results to regular CPUs, using HBM in the future. To measure join execution without NUMA
effects, we used the PRJ from Balkesen et al. [4], pinning threads on a single NUMA node and
allowing memory allocation also only on that node. This can be achieved by using Numactl
with -N0 and -m0 as argument for DDR4, -m4 for the local MCDRAM node respectively. With
only 16 physical cores on a single NUMA node, the maximum number of threads is set to 64.
The size of the relations was also quartered to avoid overflowing the local MCDRAM node
(having 4 GB). The results can be found in Figure 5.23.

A notable improvement can be seen, however, it is not as high as running the implementation
on all nodes. Because of the small dataset, the execution finishes in less than a second real-time,
allowing to improve performance only around 20%.

5.4.4 Observations

Based on the implementations and algorithms that we used for our evaluation with and without
HBM, we can observe multiple things.

HBM could be added to CPUs transparently as cache or directly addressable as regular, ad-
ditional memory type. Regarding performance on join processing, a huge HBM cache does not

70

16 32 48 64
#Threads

20

40

60

80

100

120

140

160

T
h
ro

u
g
h
p
u
t

[M
.
tu

p
le

s/
se

c]

DDR4 only

MCDRAM only

Figure 5.23: PRJ throughput of [4], pinned on one NUMA node

tap the full potential. Cache misses can be very costly in such a scenario because if all CPU
cores share one large cache, it is not spatially local like an L1 or L2 cache. This means that a
memory request has to travel to the HBM cache, might get an additional miss, being redirected
on chip until it arrives at one of the main memory controllers. Caches are also only useful if
data gets read multiple times or prefetching can move data closer to cores before it is used in
sequential (and, thus, predictable) access patterns. This is not true for all algorithms, wasting
potential again, compared to a manually allocated HBM.
But even with random access patterns on building and probing hash tables can benefit from
increased memory bandwidth if the number of threads is high enough. On many-core CPUs
with hundreds of threads, it is very easy to reach a degree of parallelism where CPU bound
algorithms become I/O bound. Using HBM allows to keep up with the increased bandwidth
demand of many threads, improving scalability overall. Latency can only get worse if memory
bandwidth is saturated due to the fact that threads start to idle, waiting for memory controllers to
finish their requests. This holds also true for regular main memory, where join implementations
use alignments or cache-sized structures to better utilize the bandwidth available, which is also
correct for HBM.
Another property of HBM is its limited capacity. Currently, it is not possible to create a server
holding e.g. one TB of HBM as main memory type. Therefore, the capacity of HBM must be
utilized carefully to benefit the most from its bandwidth. Mainly, it closes a gap between even
smaller last-level cache capacity and larger main memory. Relational joins should store only
bandwidth-critical parts in HBM, like relations for partitioning, while stream joins could adapt
window sizes accordingly to keep only relevant tuples in HBM. In addition to that, random
memory access patterns do not saturate memory bandwidth in general. Randomized accesses
disable any prefetching benefit more or less completely, reducing the effective bandwidth uti-
lization. Such accesses depend more on memory latency, which is not an advantage when using

71

HBM. To make this more clear, joining two relations that are stored in HBM is ideal for the par-
titioning step while probing hash tables will only benefit from more bandwidth if the number of
threads is high. This is also true for latency-sensitive stream join algorithms.
The usage of HBM does also not improve performance for scenarios with poor load balancing
or latches on partitions. More bandwidth can help threads to finish their work faster and, thus,
speed-up execution time. However, it might be beneficial for high numbers of threads to simply
use the NPJ instead because of its insensitivity against skew, which would lead to load balanc-
ing problems otherwise.
The addition of AVX-512 instructions improves bandwidth utilization in general since more
data is processed at once. But if the memory bandwidth limit is already reached, as shown in
Section 5.4.3, there is no advantage of AVX-512 instructions. HBM in combination with those
instructions can improve the overall performance even more, as long as its limit is not reached
also.
Another interesting observation is the fact that around 90% of the performance gain through
HBM can be reached for joins when only relations are stored there, reducing the memory foot-
print up to 50%. The different join phases like partitioning, sorting or building the hash table
benefit in different quantities from more bandwidth, though. When the phases are sped up that
take most of the time, HBM space can be saved, losing performance only marginally.

After investigating HBM for highly parallel join operators, the next section investigates the
potential of a many-core CPU regarding stream joins with high numbers of input streams. The
HBM aspect will not be analyzed again for multiway join operations since we believe that it will
not lead to notable additional new insights. Instead, we focus on the scalability and memory
efficiency aspect of such a join running in a highly parallel setting.

5.5 Multiway Stream Joins

The join algorithms described in the previous section join two inputs, like relations or tables, or
streams. Such algorithms are classified as binary joins as described in Section 5.3.1 due to two
inputs. If more than just two inputs are joined, it is possible to cascade multiple binary joins,
where one input is the output of the previous join and the second input is the new relation or
stream. However, it is often also possible to realize this behavior in a single operator, described
as multiway join.
With our work, we introduce an optimized multiway join for many, concurrent stream sources,
evaluated on a many-core CPU, the Xeon Phi KNL. With parallelism in mind, we investigate
the scalability of a chosen binary as well as multiway join algorithm. Since binary join operator
trees have to store intermediate join results, the memory footprint of such a tree can get huge
very quickly. How big it gets will be shown also in this section. In addition to the memory
footprint, the worst-case latency of a single tuple also rises the deeper the tree gets, because it is

72

probed and inserted multiple times, one for each level of the join tree. Both disadvantages can
be avoided if a multiway join is used, however, a key for good performance is to reduce unnec-
essary, long probe sequences for joining as well as storing intermediate join results explicitly.

5.5.1 The Leapfrog Triejoin

The Leapfrog Triejoin [72] is a multiway join operator for DBMS, allowing to join multiple
relations without producing intermediate results. Its basic idea is to provide all relations sorted
by key first, like in a sort-merge join. For each relation, an iterator is provided, pointing at the
first key position. The smallest and largest key at current iterator positions is stored during the
join phase. The iterator of the smallest key is then increased until reaching at least the position
with the current largest key. Whenever all iterators have reached the same key value, a join is
performed. This procedure is repeatedly done until an iterator reaches the end of its relation.
With this algorithm in mind, the authors prove that it performs worst-case optimal.
However, the prerequisite of sorted relations is not achievable for streaming, only in case of
massive batching with window semantics. Its goal, avoiding intermediate results completely
and processing all relations simultaneously, is instead very suitable for a multiway stream join.
We will discuss these goals in the following with more detail.

5.5.2 The MJoin and AMJoin

The concept of multiway joins in data streaming came up late when compared to relational
joins. One of the first algorithms was the MJoin from Viglas et al. [74]. It extends the idea
of the SHJ by allowing more than two inputs. For each input stream, an additional hash table
is created. When a tuple arrives from a source, it is inserted into its corresponding hash table,
probed afterwards with all other hash tables for matches. With this concept, deep binary join
trees are avoided. In addition, the join order does not play an important role also, since all inputs
share the same tables and execution. The problem is, however, that this algorithm is not well
suited for higher numbers of streams that must be joined. Long probe sequences hurt individual
tuple latencies as well as leading to an exacerbated out-of-order handling of tuples.
Those problems have been addressed by Kwon et al. [31]. They added additional data structures
to probe only when a result can be computed successfully. After inserting an incoming tuple
into its hash table, a single bitvector hash table is accessed and checked first. Each bitvector
of the table holds information if a key is present on each input stream (1) or not (0). If all bit
positions are equal to 1, a key is present in all tables and a match is successful. This leads to an
initiated probe sequence, producing a join output.
However, their evaluation was only scaled up to five input streams, on which scaling problems
could not be seen yet. The next section describes the join implementations along with optimiza-
tions and parallelization schemes that we use for our implementation and evaluation.

73

5.5.3 Implementation

As representation for a binary join operator, we applied the SHJ implemented in PipeFabric.
The SHJ was already described in Section 5.4.1, therefore, we provide no further description of
the SHJ here.
For a multiway join, we implemented the AMJoin algorithm published by Kwon et al. [31],
skipping the part of memory overflow. The most important addition of the AMJoin is the bitvec-
tor hash table. Each entry consists of a bitvector in the length of the number of input streams.
For each key that has been seen on one of the input streams, a bitvector exists. A position inside
of the bitvector is 0 if the key was not delivered on that input stream yet, or 1, if the key is
present. It is obvious that this bitvector hash table is under intense access from threads since all
threads have to store and lookup values continuously, for each tuple arrived.
Implementation-wise, a concurrent vector structure from Intel Threading Building Blocks TBB
was used to represent a bitvector, storing booleans. The table itself was realized using a regular
hash table schema, where a key maps to a bucket holding a single bitvector of that key. This
implementation allows fast access to vectors in mostly constant time. However, we added more
optimization techniques to improve scaling even further, as described next.

Optimizations of the Implementation

As we scaled up the implementation of the paper to more streams than 5, we found potential to
optimize parts of it for a better throughput overall. The optimizations are based on the following
observations:

Resolve long bitvectors. Bitvectors can become large since for each input stream one bit is
added. Even if vectorization can speed up testing bit positions for zeros, it is not necessary to
find out at which bit position a zero resides. This allows switching the concept of bitvectors to
atomic counters. Such a counter, replacing the bitvector, can be increased (if a key is present)
and decreased (if a key expires) atomically in a threadsafe way. To check if a key can be found
in all tables, the counter can simply be compared to the number of input streams. If it is equal,
the probing sequence can start. A counter not only allows to avoid concurrently accessing bit
positions in a vector but also reduces the memory used for higher numbers of streams.
It is important to add that this assumption is only true when joining over primary key attributes.
If a key exists twice on a table, a counter would produce wrong results if used mindlessly. To
avoid this behavior, a thread-local duplicate detection must be applied, where a thread checks if
an arrived key is occurring the first time or an expired key is the last one.
An important issue of the original algorithm as well as of the implementation is stream re-
silience. If an input stream fails and does not deliver tuples, no output would be produced,

74

since a bit position in all vectors will always be zero. To react on timeouts of input streams,
especially for high numbers of streams, a dummy element could be added or a null value is set.
This allows a join to be realized as an outer join, enforcing results even in failure cases of single
streams. With atomic counters, a threshold could be used to achieve this.

Resolve randomized hash table access. Tuples in hash tables provide fast lookups, inser-
tions, and deletions. However, on a hardware perspective, randomized access patterns are a
serious limitation of memory bandwidth utilization, which could be seen in the previous sec-
tions. Therefore, if a key distribution is dense enough, it is possible to use an array instead of
a hash table [62]. An array provides sequential memory access, in addition to reduced memory
usage since payloads of tuples are stored at the key position of the array. This means that a key
is not stored explicitly anymore, it is replaced by the index of the array. Redirections through
pointers to buckets of the hash table are also avoided, speeding up execution time even further.
To reduce memory overhead in sparse key scenarios, where many array positions stay empty,
compression schemes can be applied. An example would be the usage of a Run Length Encod-
ing technique.

Resolve stalling threads due to locks and latches. Whenever parallelism through multi-
threading is applied, synchronization between them is necessary. Locks and latches are a com-
mon way to deal with this situation, e.g. by acquiring a lock before modifying a bitvector or
inserting a new tuple in the hash table. Even if there are only a few collisions, acquiring and
releasing locks or latches increases the overhead per tuple notably, even more in a distributed
system. Besides pessimistic approaches with locks, optimistic approaches with lock-free al-
gorithms exist. Such algorithms allow a much better scaling and granting progress of threads,
which was evaluated also for the SHJ by Baumstark et al. [6]. Most difficulties of lock-free
implementations come from their complexity, though. Therefore, we used TBB as a library for
concurrent data structures, e.g. for a concurrent vector as array representation.

In the evaluation of the AMJoin, we run both versions, our implementation of the paper
algorithm as well as the optimized version, shortly named as OptAMJoin, using all optimization
techniques described in this section.

Parallelization Schemes

Next to general optimizations of the implementation, there are different ways how to parallelize
the AMJoin utilizing many CPU cores. With the requirement to produce results without block-
ing when executing a stream join, there are no join phases that could be run one after another.

75

We evaluated three different schemes, namely data parallelism, the SPSC paradigm, and shared
data structures. All three approaches are applicable to the AMJoin as well as its optimized vari-
ant. It would even be possible to combine them all together, however, we decided to evaluate
them separately for performance efficiency. An important assumption is that each stream that
produces tuples is run as a single thread, representing one of the concurrent data sources.

Data parallelism. When many concurrent data sources deliver tuples to a single join operator,
it might become overburdened, leading to discarded tuples because of full exchange queues, or
raised tuple latency at least. If incoming tuples are partitioned, where each partition runs a join
for a certain key range, the load can be balanced. In addition, the number of partitions can be
changed adaptively as introduced in Chapter 4. A schema for this kind of parallelism is shown
in Figure 5.24.

Figure 5.24: Data parallelism

Another advantage of this schema is that there is no additional synchronization between
partitions, i.e. join instances (shown as rectangular boxes). On the other hand, load balancing is
inevitable to not end with a few partitions holding most of the tuples, especially when streams
are skewed. The partitioning step (shown as P) also requires additional computations to de-
cide which partition is responsible for each key value. Finally, the tuple exchange to partitions
(shown as Q) must also be realized efficiently to achieve good throughput and no synchroniza-
tion between the partitions.

SPSC paradigm. The SPSC concept is a prominent example of a lockfree algorithm. When
data is exchanged between only two threads, one thread is treated as a writer and the other as
a reader. It is often used for queues, implemented as a ring buffer, avoiding any locking tech-
niques. Such queues can be applied between the concurrent data sources and the join operator
as shown in Figure 5.25.

The thread executing the join can go through all of the connected queues, fetching the oldest
tuple first, and perform its join task. Between internal structures, like hash tables or the bitvector

76

Figure 5.25: SPSC paradigm

table, no synchronization is used since only one thread performs the join. This means that the
join thread can realize a high throughput in general, avoiding the contention problem internally.
However, with tuple exchange between streams and the join operator, a delay is inevitable,
which can become huge when the join is not fast enough to process high tuple input rates. This
can be the case for bursty data streams or simply when the number of streams becomes larger.

Shared data structures. Another approach is to share all internal join structures like hash
tables or the bitvector table between all input streams, synchronizing their access. This is shown
in Figure 5.26.

Figure 5.26: Shared data structures

The overhead of additional computations like partitioning or additional data structures like
exchange queues can be traded against lightweight internal synchronization. When high num-
bers of streams access the same values frequently, efficient synchronization is a must to avoid
duplicates or missing join results, as well as a good scaling behavior. We use lock-free con-
current hash tables and vectors from the TBB library to minimize synchronization overhead of
threads.

77

5.5.4 Evaluation

To demonstrate the effectiveness and discuss the performance of a binary join tree, a multiway
join, and an optimized variant, we run our implementations again on the KNL processor. Since
the possible combinations of algorithms, parallelism strategies with and without optimizations,
numbers of threads, and others are huge, we restrict our results to the most important ones. The
MCDRAM is not used currently, to avoid the interference of HBM on the results. Measurements
start when the first tuple is produced and stops when all join results are fully materialized in the
output.
The join query that we use can be formulated in Stream SQL like the following:

SELECT *
FROM Stream S1, S2, ... , SN−1, SN
SLIDING WINDOW(1000000)
WHERE S1.key = S2.key

AND ...
AND SN−1.key = SN .key

As mentioned before, each stream is treated as independently running source, realized as a
separate thread. The join operation is executed as a binary join tree with SHJ operators, as well
as the AMJoin, and as its optimized version, OptAMJoin, using all optimization techniques
mentioned in Section 5.5.3. In addition, we use one different parallelization strategy per mea-
surement.
One million tuples per stream are kept relevant through a sliding window operator as shown
above in the Stream SQL formulation to avoid memory overflow. Tuples are also shuffled ran-
domly to avoid predictable access patterns. Each tuple is a pair of key and value, 8 byte each,
starting with zero up to one million. This realizes a dense key distribution which slightly favors
the array optimization without compression.
The binary join tree using SHJ operators is an optimal left deep tree, since this kind of trees
is also often found in the literature, e.g. by Selinger et al. [63]. It also has the additional ad-
vantage that it is easy to scale the tree up since there will no imbalances of bushy trees occur.
The maximal number of streams is 256 again since this is the maximum of parallelism with
multithreading on the KNL.
Finally, we distinguish between strong and weak scaling for the results. Strong scaling fixes
the number of streams to 8 while spawning as many join queries as the scale factor, e.g. with a
scale factor of 4, a join between 8 streams is executed 4 times in parallel, merging results. Weak
scaling simply scales up the number of streams to join.

The first performance numbers are obtained by increasing the number of input streams and
measuring the latency per joined output tuple. For each tuple incoming from one stream one

78

output tuple is produced. This means that the number of output tuples does not increase with
more streams, the output tuples only become larger due to more executed join operations per
key. For simplicity reasons, we do not consider distractions of window operations for the mea-
surements, like when a key becomes invalidated on one stream before the same key arrives on
another stream. All three implementations use the shared data structures parallelization tech-
nique. Figure 5.27 shows the result for the weak scaling.

2 32 64 96 128 160 192 224 256
#Streams

10us

100us

1ms

10ms

100ms

T
im

e
 p

e
r

o
u
tp

u
t

tu
p
le

OOM

SHJ

AMJoin

OptAMJoin

Figure 5.27: Weak scaling of the implementations using shared data structures

It can be seen that the optimized variant of the AMJoin performs around one magnitude
better than the straightforward implementation. The performance only gets worse with more
threads on weak scaling, which turns out as expected due to the production of the same amount
of output tuples for all numbers of threads. The AMJoin, as well as the OptAMJoin, show
a good scaling overall since unsuccessful, long probe sequences are avoided completely. The
SHJ gets out of memory (OOM) after reaching 96 streams, since the main memory capacity
of 96 GB is reached in this case due to the fact that the SHJ stores all intermediate results for
each additional stream joined. In addition, the latency rises drastically if the join tree becomes
deeper since probe sequences through all of the intermediate tables take more and more time to
finish. If the initial case of joining two streams is considered, the SHJ is comparable to a 2-way
join. For each added stream, the tree becomes one level deeper and, thus, it would have to probe
255 tables in the worst case at 256 threads, finally.
For strong scaling (shown in Figure 5.28), the performance results look different.

With more join instances sharing the work, no performance gain can be achieved for the SHJ
as well as the original algorithm, the AMJoin. Due to costly synchronized access with latches
and locks, as well as NUMA-effects occurring for higher numbers of threads on the KNL, any
performance advantages are lost. The optimized version using optimistic concurrency control
protocols can actually overcome the NUMA-effects, allowing to scale overall.

79

1 4 8 12 16 20 24 28 32
Scale factor

1us

10us

100us

T
im

e
 p

e
r

o
u
tp

u
t

tu
p
le

SHJ

AMJoin

OptAMJoin

Figure 5.28: Strong scaling of the implementations using shared data structures

In the next Figure 5.29, we tested the weak scaling of our OptAMJoin under variation of the
parallelization schemes. The differences in the numbers are comparable to the SHJ tree and the
AMJoin, therefore, we can skip those plots.

2 32 64 96 128 160 192 224 256
#Streams

10us

100us

1ms

10ms

T
im

e
 p

e
r

O
u
tp

u
t

T
u
p
le

Shared Data Structures

Data Parallelism

SPSC paradigm

Figure 5.29: Weak scaling of OptAMJoin using all three parallelism strategies

When the number of input streams is increased, the number of partitions for the data paral-
lelism approach is fixed to 4 partitions. Each partition is run by a separate thread, while stream
threads write their tuples to partitioning queues. It can be seen that the results of the SPSC
queues are more or less equal to the data parallelism strategy on weak scaling. This indicates
that a single thread is able to perform the join processing independent of the number of input
streams, at least until 256 streams are reached. Lock-free shared data structures show the best

80

behavior since there are not many collisions between threads on randomly accessing tables.
The results for strong scaling of the OptAMJoin are visible in Figure 5.30.

1 4 8 12 16 20 24 28 32
Scale factor

1us

10us

100us

T
im

e
 p

e
r

o
u
tp

u
t

tu
p
le

Shared Data Structures

Data Parallelism

SPSC paradigm

Figure 5.30: Strong scaling of OptAMJoin using all three parallelism strategies

The strong scaling performance differs between the parallelization strategies. When scaling
up to more than 21 join instances, it can be explained by the number of threads used per instance.
There are 8 threads running the streams per instance, with 4 additional threads on the data
parallelism strategy, one per partition. With 256 threads on the KNL, context switching occurs
after 21 join instances (21 times 12).

In addition, we analyzed the amount of memory used by all three join variants. Since this
footprint is highly dependent on the real implementation, we restrict ourselves in the following
calculations to data structures only, e.g. tables and tuples. The real memory footprint of the join
will be higher of course (around 1.3 times as profiling shows). The data structures we used are
briefly described in the following paragraphs.

Incoming stream tuples from data sources Each tuple uses 32 byte for its maintenance. On
top of that, a key (8 byte) and payload (8 byte) is stored, leading to 48 byte per incoming tuple.

Stored tuples in hash tables (SHJ, AMJoin) For the worst case, each bucket in a hash table
holds only one key, leading to 40 byte overhead per tuple. This is independent of the length of
the tuple since only pointers on tuples are stored in tables. For the SHJ and n input streams,
additional hash tables for intermediate results are necessary, leading to 2n−1 tables for the SHJ
overall.

81

Stored tuples in arrays (OptAMJoin) Usually, only the payload is stored in an array. Since
our implementation uses a concurrent vector from TBB, each entry is aligned to 64 byte.

Materialized intermediate tuples (SHJ) Each tuple produced by an intermediate SHJ oper-
ator within the binary join tree consists of 32 byte maintenance cost, 8 byte key and 8 byte per
payload (one per stream).

The bitvector hash table (AMJoin) The size of this table directly depends on the number of
input streams and the number of different hash values of keys. Since we align each bit vector
to 64 byte, assuming that each vector is stored in its own hash bucket (worst case), the memory
consumption per vector is 96 byte.

Vector of atomic counters (OptAMJoin) An atomic counter consists of 2 byte since we will
not scale further than 256 streams (an unsigned character is enough). Compared to 96 byte of
a bitvector hash table entry, this is a great reduction on memory usage.

Outgoing joined stream tuples Finally joined tuples consist of 32 byte maintenance cost
along with a key (8 byte) and payload (8 byte per stream). To point an example, if 16 streams
are joined, a result tuple has 168 byte in size overall.

A summary of overall memory consumption of data structures is given in Table 5.5, assum-
ing one million tuples arriving per input stream.

Streams SHJ AMJoin OptAMJoin
2 0.260 0.253 0.106
8 1.646 0.745 0.419

16 4.328 1.400 0.836
64 40.449 5.334 3.339
256 528.253 21.079 13.353

Table 5.5: Memory footprint for data structures [GB]

A binary join tree with the materialization of intermediate results is no good candidate for
scaling out, as seen before, leading to an out of memory failure on only 96 GB main memory.

82

5.6 Summary

The join operation is commonly found in any information processing system, in the literature,
research, and teaching of database knowledge. While abundant research exists to the join topic
within the last decades, trends and breakthroughs in other fields lead to renewed investigations
in that area. We had a look on HBM impact on stream and relational join implementations, as
well as scalability of multiway stream join operations.

HBM with higher bandwidth than regular main memory and comparable latency is an addi-
tional level in the heterogeneous memory hierarchy. With limited capacity, it is not possible to
perform huge joins only on HBM. Due to high thread counts that are common on GPUs but also
many-core CPUs, memory controllers can easily be overburdened with memory fetch requests,
even on basic database operations. With HBM, this limitation can be removed, but fine-granular
tuning is necessary to select data structures that benefit the most from more bandwidth. Since
recent trends in CPU architectures tend to apply more and more cores on single chips, it is
highly possible that HBM will find its way into CPUs launched in the future. An investigation
of risks, as well as opportunities, for database applications might be a good decision.
In this section, we measured the impact of HBM on common join algorithms provided in open-
source implementations. We distinguished between tuple-wise stream processing and regular
joins of two relations in DBMS in a highly parallel scenario. With a many-core CPU like the
Xeon Phi KNL, we can take measurements in the absence of network delay, like between sock-
ets, with a scaling up to 256 threads. In addition to that, we can declare NUMA regions on the
KNL to run NUMA-aware code in different regions of the CPU.
Regarding the different layers in the memory hierarchy, interesting results have been shown.
With L1-L3 caches as well as storage technologies like SSD and HDD, many different factors
in terms of latency, capacity, and bandwidth exist. However, the algorithms show comparable
behavior for almost all layers of the hierarchy, i.e. an L1 cache has smaller capacity but higher
bandwidth than an L3 cache which is also true for a SSD/HDD comparison or HBM compared
to regular DRAM.
Beyond measuring the performance of different open-source implementations, we investigated
deeper into settings like skew levels, tuple materialization, AVX-512, and others. HBM can im-
prove performance in all of the cases, but cannot overcome limitations like occurring NUMA-
effects, smaller capacity, or uneven load balancing. For the least efforts, HBM can be used
cache inclusive like a last-level cache, even if there are cases where the performance does not
increase that much since it does not degrade performance also. For database operators, scans
benefit greatly from sequential memory access and, thus, more bandwidth provided from HBM.
If explicitly addressed, relations are a good candidate to keep in HBM. Due to limited capacity,
a partitioning strategy should be applied in the same way as partitioning already is done for
cache and TLB capacities.

Next to HBM, we also investigated cases with high numbers of streams that must be joined.
First, we had a look at basic solutions with join trees, measured by cascading SHJ operators.

83

While binary join trees are commonly found in relational query execution plans, they are no
good solution for streaming when the number of concurrently running sources is high. Storing
all intermediate results leads to huge memory requirements, in addition to high worst-case la-
tency for individual tuples, being probed up the whole join tree. It is clear that such a join has
to minimize join steps that do not lead to results, i.e. long probe sequences failing due to a key
missing in late hash tables. Therefore, we came up with the AMJoin algorithm described by
Kwon et al. [31], which looks promising to scale up on modern hardware, even if not evaluated
with more than 5 streams in the original paper.
We added optimizations as well as investigations for different parallelization schemes based on
our insights about memory usage and response time, reducing the memory footprint by approx-
imately 40% and speeding up the execution time by around one magnitude. By experimenting
with the parallelization schemes, we can conclude that the straightforward idea of sharing all
data structures between all stream threads shows the best performance. Such a result is not that
surprising overall, since also the NPJ from Blanas et al. [8], sharing a single hash table between
all threads instead of partitioning, was stated to be superior to most more complex algorithms
around it. However, with skewed streams or additional scaling, it is possible that the other
parallelization techniques might become superior.

84

6. Hardware-Conscious Cost Modeling

Query optimization is, next to joins, also one of the core topics in database research. With in-
creasingly more data to analyze and process, the execution time of queries can rise drastically,
independent from computational power. Even ten years ago, there were publications already
addressing joins of thousands of tables [11]. To make things even worse, there are magnitudes
of difference in performance between best and worst-case execution plans.
To find a good query execution plan, optimizers in database systems use cost models in com-
bination with heuristics to estimate the overall execution time. Statistics like table sizes or key
distributions play an important role to decide join orders or even algorithms used. To give an
example, when two tables have only a few entries, a simple nested loop join might be the fastest
variant due to avoiding the overhead of partitioning, building and probing hash tables, or sorting
and merging. On the other hand, if one table is much larger than another, a hash join might be
the right approach, avoiding multiple sorting and merging runs on the larger table if it does not
fit fully into main memory.

Cost models often tend to overextension, taking abundant amounts of parameters into ac-
count to improve accuracy. However, at a certain point, this overextension just degrades perfor-
mance through massive calculations or produce wrong results in some parameter combinations.
Leis et al. [32] recently pointed out that simple models, even if more inaccurate, can provide
more reliable results than complex models. We believe that a simple model using hardware pa-
rameters can provide reliable as well as precise results better than a hardware-oblivious model.
Query optimization for stream processing shares the same concepts but with different ap-
proaches regarding properties like long-running queries or continuous data arrival. This mo-
tivates research regarding re-optimization of queries like our adaptive partitioning approach
from Chapter 4 or a rate-based instead of cardinality-based query optimization [73].

In this section, we describe our approach using hardware parameters in a cost model for
stream processing tied to the KNL many-core CPU. The results have been partially published
in [49] and [53], as well as in a report in combination with persistent memory in [18].

6.1 Introduction

As already mentioned above, query optimization plays an important role for query processing.
With a focus on stream queries, there are additional differences regarding cost models and op-
timization compared to relational database queries. First, stream queries run continuously in
a changing environment. A subscribed stream may change its tuple delivery rate or may also
introduce skew. If we think about a stream representing Twitter messages, there could be spikes
with high message arrival rates during holidays, like New Year’s Eve, where everyone sends
best wishes to his friends. In addition, messages are related to topics. If a query has applied
a partitioning on topics ID, a partition could get overwhelmed if the associated topic becomes
hot, i.e. many people sending messages and talking about it, introducing skew. Therefore, a
stream query has to be re-optimized over time to avoid becoming inefficient in its processing
rate [30].
Beyond re-optimization, stream queries often utilize continuous statistics gathered from stream
and query behavior. Since operators run for longer time intervals, a rate based optimization is
applied, showing better performance than a static optimization based on snapshots [73]. We
believe that such an optimization process can be improved by two additions - (static) hardware
properties as well as operator statistics of the actual implementation. Examples for important
hardware parameters are the number of supported threads used for partitioning, the impact of
vectorization by a given instruction set like AVX-512, or operator state management by the
available storage layers like caches, main memory, and disk.
The question that arises immediately after these considerations is about the required level of
detail with such an extended cost model. To allow experiments and discussion about this ap-
proach, we focused on using the KNL processor with stream partitioning and state management
within the SPE PipeFabric.

6.2 Recap: Query Execution Phases

When the user poses his query to the system regardless of whether it is a relational DBMS or a
SPE, there are common steps executed until the query finally runs.
First, the query expression is simplified and transformed into a query plan, often expressed in
the relational algebra. Initially, the query often contains redundant information or complicated
and complex arithmetic expressions. To detect these sections, heuristics are widely used. The
result is a query plan that is still not yet optimized but provides the fundament for the follow-up
steps.

With this query plan, the optimizer is able to perform logical optimization first. This means
that even without having information about real data, stream behavior, key distributions and

86

more it is possible to apply changes to the query plan which are more or less always beneficial.
The classical example in the literature is to execute a selection operation before other operators
first since it reduces the number of tuples to process in subsequent operations. But also the
reduction of unnecessary operations is done, like additional joins that can be avoided without
losing correctness overall.
After this step, the physical optimization is applied by the optimizer component. Instead of
operators expressed in relational algebra, their specific implementations within the system are
selected. For example, take a join operation - the optimizer could select a hash or sort-merge
join, based on information about the system and data. This leads to many possible query exe-
cution plans consisting of different combinations of available algorithms.
Since the query should only be executed once with the best query execution plan, the next step
is to select the best one or avoid the worst ones at least. To allow weighting of plans against
each other, cost models are used which assign each plan costs depending on various statistics
of operations, history, stored data or even of the underlying hardware.
When a query plan is selected for execution finally, the optimizing component hands over the
plan for parametrization and code generation.

In the next section, we will concentrate on the cost model part, i.e. the selection of the best
query execution plan.

6.3 Cost Models

After applying logical as well as physical optimizations to the user posed query, cost models
are used to choose the best available query execution plan. Cost models combine mainly three
components according to [61] (see Figure 6.1).

Figure 6.1: Cost model components

87

The first component is about cost functions. They calculate the costs of individual operators
and queries. The second component lists statistical information, e.g. processing rates of
stream operators or their selectivities. The third component contains cardinality estimation,
i.e. equations and formulas to calculate intermediate result sizes.
The focus of this work is clearly on cost functions and partially on statistical information. We
assume that we know the relevant cardinalities - there is already a lot of related work about
cardinality estimation in the literature, like the already mentioned rate-based approach [73] or
heuristics, which can be applied when cardinalities are not known beforehand.
In this section, we describe first our focus on stream processing, especially the operators of
our cost model as well as costs for parallelization strategies. After discussing the most relevant
hardware factors and their values obtained by a calibration approach, we put them into relation
with stream processing leading to various equations of operator costs. Finally, we combine them
in two real queries posed to our SPE PipeFabric, estimating processing rates under different
parallelization approaches.

6.3.1 Stream Processing Model

To benefit from a many-core CPU, as already demonstrated multiple times in the previous chap-
ters, parallelization through multithreading is a key requirement. The main concepts are inter-
and intra-operator parallelism, which can be applied on stream queries also (in addition to re-
lational database queries). For inter-operator parallelism, the dataflow is split into multiple
fractions, running in parallel. Each fraction is controlled by a single thread, exchanging tuples
with other fractions by using synchronized data structures like queues. Intra-operator paral-
lelism creates multiple instances of the same operator, applying a partitioning merge schema.
This schema was already further described in Section 4.2. Figure 6.2 gives a short overview
about the concepts.

Not all queries or operators can benefit from parallelization, therefore, it is inevitable to
calculate a break-even point in performance for efficiency reasons. With low computational
requirements, the overhead for tuple exchange synchronization between threads and partitioning
overhead can even hurt performance overall. However, when the computational complexity
rises, a single-threaded execution is not able to catch up leading to discarded tuples and, thus,
wrong results (or inaccurate results at least). Consequently, it is the task of the query optimizer
to decide if and where a query should apply parallelism.

Next to parallelism decisions, we can distinguish between stateless and stateful operations
for the cost model. Stateless operations like selections or projections do not have an internal
state to access, acting independently on each incoming tuple. This means that there are no more
memory or (data) cache accesses beyond the tuple itself. Stateful operations, on the other hand,

88

Figure 6.2: Operator execution principles
(1) Single-threaded execution (no parallelism)

(2) Inter-operator parallelism
(3) Intra-operator parallelism

have to take such parameters into account. A state like a hash table from joins will access the L1
cache at least, it is even more likely to access L2 or main memory, possibly even disk but that is
very rare for stream processing and hardware of today. The size of a window operator, keeping
track of arrived tuples and discarding the oldest ones, will greatly influence if a hash table fits
into one of the caches. If such an internal state is shared between threads in a parallel scenario,
the complexity of the cost model rises drastically, e.g. by regarding costs for invalidating other
caches, distribution of tuples in the memory regions, synchronization delays, and many more.
Again, this leads to a tradeoff between precision and complexity.

6.3.2 Hardware Factors and Calibration

The used hardware strongly influences the performance of any query, obviously. CPUs with
different core numbers or clock frequencies vary greatly, not to mention hardware accelerators
like FPGAs or GPUs. In our work, we stick with the KNL many-core CPU, although we ran
several tests on a regular multi-core CPU also. When compared against each other, the KNL
with more cores and lower clock frequency than, e.g., an Intel i7 processor, has to use paral-
lelism with more threads sooner to keep up with more complex queries.
Measuring hardware performance can be difficult due to modern hardware technologies. Out
of order execution of instructions or prefetching mechanisms moving data from memory into
caches in advance poses challenges to obtain reliable measurements without interferences. A

89

prominent example is the measurement of memory access latencies. If measurements are re-
peated, the data can be fetched from caches instead of main memory, being much faster than
probably expected. Even if a measurement is taken only once for reading more data, a pre-
dictable memory access pattern triggers prefetching, hiding the real access latency. One could
argue that such effects occur in modern systems anyway and should not be excluded in measure-
ments to avoid measuring under laboratory conditions far away from real systems. However,
to give an example, if randomized access like on hash tables disable prefetching more or less
completely, the predicted execution time might be much worse than expected.

To categorize hardware factors, we use three main categories: CPU-based, main memory-
based, and cache-based factors. We take the factors into account that have the most impact on
tuple latency and throughput of queries.

• CPU. The most important factors are the clock frequency (fclock) and the number of sup-
ported threads (numthread). A higher clock frequency leads to faster execution of CPU
instructions and, thus, to a lower individual tuple latency. Regarding throughput, the
number of threads determines the maximum degree of parallelism and, therefore, the
processing capabilities for a given query.

• Memory. For the memory perspective, its capacity (memcap) and access latency (memlat)
are most important for query performance. Even if main memory capacity ranges in Ter-
abytes today, there are high performance penalties when disk access is involved due to
a data structure not fully fitting into main memory. The main memory access latency
describes how long it takes to move data into caches, being ready to become processed.

• Cache. The cache hierarchy closes the gap between CPU registers and main memory.
The L1 cache with the smallest capacity and fastest access speed is closest to the CPU
core, followed by L2 and probably L3. For each cache present on a CPU, its capacity
(L jcap) along with access latency (L jlat) provide most information for a hardware-based
cost model. When the size is exceeded, the performance likely drops by one level. The
latency of access is often further distinguished into hits and misses (where a miss travels
down in the hierarchy).

The factors with their abbreviations are summarized in Table 6.1. The results of the cali-
bration approach can be found in Table 6.2 for the KNL with additional numbers for reasons of
comparison for the Intel Xeon E5-2699 v4, which is a regular multi-core server CPU.

The measurements for the factors are obtained by our calibration tool written in C++: Linux
sysinfo1 returns cache and memory capacities due to the fact that the KNL runs on CentOS

1http://man7.org/linux/man-pages/man2/sysinfo.2.html

90

http://man7.org/linux/man-pages/man2/sysinfo.2.html

Hardware Factor Symbol
Clock frequency fclock
Number of threads numthread
Main memory capacity memcap
Memory access latency memlat
Capacity of cache j L jcap
Hit latency of cache j L jlat

Table 6.1: Hardware factors for the cost model

Hardware Factor KNL 7210 E5-2699
Clock frequency 1.30 GHz 2.20 GHz

Number of threads 256 44
Main memory capacity 96 GB max. 1.5 TB
Memory access latency 146.3 ns 75.3 ns
Capacity of cache L1 32 kB 720 kB
Capacity of cache L2 1 MB 5.5 MB
Capacity of cache L3 16 GB* 55 MB

L1 access latency 3.1 ns 1.8 ns
L2 access latency 13.2 ns 5.5 ns
L3 access latency 172.7 ns 17.3 ns

Table 6.2: Measured hardware factors
*MCDRAM runs in cache mode

operating system (a Linux distribution). The number of threads supported from hardware can
be retrieved by the thread class from the C++ standard library (STL). For measuring the raw
access latency for main memory, we are writing an object a million times into memory repeat-
edly. For cache access latencies, we need to bypass the prefetching mechanisms first. This
can be achieved by using unpredictable, randomized access patterns on a given array. The size
of the array is chosen in such a way that it fits into the current cache but does not fit into the
previous, smaller cache. Such accesses generate misses every time in previous caches but not
on the current cache (except the first time). On the KNL, there is no L3 cache, however, we
configured the MCDRAM in cache mode, acting as a last-level cache (L3).
Of course, there are many possible ways and alternatives to obtain the hardware parameters.
One could also think of fetching the necessary information from hardware specifications pub-
lished like from the official website from Intel. However, it is always preferable to measure
numbers from own hardware to avoid overestimation of hardware vendors or performance
degradation due to signs of old age, e.g. an SSD close to its lifetime cycle.

91

6.3.3 The Hardware-Conscious Cost Model

A cost model has to take the different query operators into account to be able to add opti-
mizations like rearranging operators or applying different forms of parallelism on performance
bottlenecks. It is important to remember that not only algorithmic costs play a role, like for
joining two hash tables, but also their corresponding implementation. Designing a hash table,
for example, has many degrees of freedom about choosing the right hash function, resolving
collisions, or handling resizing.
Query costs are described as the amount of work necessary before a result is obtained. To make
different query plans comparable, the latency (lat) of tuples (t p) is a suitable measure. Even
throughput can be expressed in an improved average latency of individual tuples. Equation 6.1
describes the query cost cq depending on the average tuple latency lat(t p) multiplied with the
number of tuples processed within a time window t pproc.

cq = lat(t p) · t pproc (6.1)

If a query is executed by a single thread, the query costs cqs can be expressed as the sum
over its operators along with their selectivities. For tuple-wise processing and n operators, those
operators are applied one after another on each tuple. Each operator applies its function on it,
forwarding the output to its subsequent operator. When there are no more threads involved and,
thus, no synchronized tuple exchange is necessary, transfer costs of sending tuples between
operators are negligible. How often operator costs cop(i) occur directly relates to the amount of
tuples t pin it has to process. A formula to express the single-threaded query costs can, therefore,
be expressed like in the following Equation 6.2. Figure 6.3 visualizes this equation also.

cqs =
n

∑
i=1

(cop(i) · t pin) (6.2)

Figure 6.3: Single thread query costs

92

For inter-query and intra-query parallelism, the equation becomes more complex. When
the dataflow of a query is decoupled into independent subqueries with multithreading, each
subquery is run by a single thread. This allows the upper part of a query to already process the
next tuple while the latter part of the query is still processing the previous one.
Overall, the average latency of a tuple, in this case, can be expressed like the following: There
are synchronization costs for tuple exchange cqueue in addition to the maximum time that a tuple
needs for going through one of the subqueries - the subquery, that is the most time consuming
(e.g. by computational complexity) will determine the overall execution time. Equation 6.3
describes the costs of this kind of parallelism, where operators 1 to k belong to the first subquery
and operators k+1 to n belong to the second one. Figure 6.4 also shows this equation by way
of illustration.

cqm = max(
k

∑
i=1

(cop(i) · t pin),
n

∑
i=k+1

(cop(i) · t pin))+ cqueue · t pin (6.3)

Figure 6.4: Inter-query parallelism costs

For intra-query and intra-operator parallelism, where a fraction of the query or a single
operator is parallelized with multiple instances, there are three components (or subqueries)
determining the costs. The first subquery consists of all operators until the partitioner, with
partitioning costs cpart . The second subquery represents one partition, holding a single operator
or many of them in addition to tuple exchanging costs with the partitioner cqueue. The third sub-
query consists of the merging step with merge cost cmerge, the exchanging costs cqueue, and all
remaining operators until the end of the query. Just like before, the overall costs are determined
by the slowest component, using the maximum. This can be formulated like in Equation 6.4

93

and visualized like in Figure 6.5.

cq multi = max(
k−1

∑
i=1

(cop(i) · t pin)+ cpart · t pin,

(cqueue + cop(k)) · t pin,

(cqueue + cmerge) · t pin +
n

∑
i=k+1

(cop(i) · t pin))

(6.4)

Figure 6.5: Intra-query parallelism costs

The number of partitions is indirectly hidden in the equation due to the fact that the factor
t pin is reduced when more partitions are added. If the number of partitions is not the perfor-
mance bottleneck, adding more partitions will not speed up the overall execution time.

For stateful operations like joins or groupings, the corresponding memory access pattern
along with the used memory types play an important role. Reads and writes often have differ-
ent memory latency, depending on the used hardware. This means that each operator should
distinguish between reading a state with latency Sr lat and writing to a state with latency Sw lat .
By calibrating the hardware factors, we are able to retrieve the relevant cost factors for reading
(f<op> Sr) and writing (f<op> Sw) for a given operator, formulating its general costs per tuple as
described in Equation 6.5.

cS <op> = Sr lat · f<op> Sr +Sw lat · f<op> Sw (6.5)

94

Until now, all equations have been more or less generic for the stream processing use case.
As mentioned before, we need to combine them with hardware factors for each used operator
to be able to calculate the overall query execution time. To prevent overfitting equations to
all available details, we use the factor ccpu to express optimizations added by the compiler,
algorithmic costs, and other implementational aspects. Each operator op has, therefore, costs
of cop.

Projection The projection operator allows incoming tuples to drop attributes or rearrange
them. Since pointers to tuples are passed between operators in PipeFabric, a projection has to
access the attributes behind the pointer first. Ideally, those values are cached and can be accessed
fast. Otherwise, but also for cache coherence reasons, the projected tuple has to be written into
main memory again. The overall costs can be written like in the following Equation 6.6.

cpro j = L1lat +memlat +
ccpu

fclock
(6.6)

Selection Next to vertical modifications of tuples through projections, the selection operator
allows skipping tuples that do not satisfy the selection predicate. To evaluate the predicate, the
attributes behind the pointer have to be accessed first. If the conditions are met, the pointer is
forwarded to the next tuple or skipped, if the predicate evaluates to false. Since there are no
modifications on tuples, no main memory is involved ideally, leading to Equation 6.7.

csel = L1lat +
ccpu

fclock
(6.7)

Aggregation The aggregation operator holds an internal state, representing the aggregate.
Each incoming tuple applies to the aggregate with costs cS aggr, e.g. by a sum over an attribute
or a continuous average. Accessing and updating the state leads to a cached read and write to
the main memory. In addition to the cached attribute access of the tuple, the costs accumulate
to the following Equation 6.8.

caggr = 2 ·L1lat +memlat +
ccpu + cS aggr

fclock
(6.8)

95

Grouping The group by operation stores an aggregate associated with a key attribute with
costs cS grp. Therefore, it behaves similar to the aggregation operation but has an additional
predicate to evaluate the key attribute (with costs ckey). It is also important to remember that
there is now a state like average or sum per key-value, decreasing the probability that it is
successfully cached because of high numbers of states probably. The costs are expressed in
Equation 6.9.

cgrp = 2 ·L1lat +memlat +
ccpu + ckey + cS grp

fclock
(6.9)

Queue Queues are used to exchange tuples between threads, using inter- and intra-operator
parallelism. Tuples written into a queue have to be synchronized, adding additional costs csync.
Each written tuple has also to be written into main memory for cache coherence reasons, leading
to Equation 6.10.

cqueue = memlat +
csync + ccpu

fclock
(6.10)

Partitioning and Merging To realize intra-operator parallelism, a partition operator and a
merge operator are used. The partitioner evaluates the partitioning function on each incom-
ing tuple, writing it into the partition queue responsible for further processing. The costs for
partitioning are shown in Equation 6.11.

cpart = L1lat + cqueue +
ccpu

fclock
(6.11)

The merge operator reads tuples from the output queue of partitions and forwards them. Its
costs can be noted as in Equation 6.12.

cmerge = cqueue +
ccpu

fclock
(6.12)

96

Combining both Equations 6.11 and 6.12 with the costs of the partitioning and merge
schema (Equation 6.4), we can refine it into Equation 6.13.

cq mS = max(
k−1

∑
i=1

(cop(i) · t pin)+ cpart · t pin + cS part ,

(cqueue + cS op(k)+ cop(k)) · t pin,

(cqueue + cmerge) · t pin +
n

∑
i=k+1

(cop(i) · t pin))

(6.13)

This equation describes the costs of stateful intra-operator parallelism. It contains the costs
of accessing the internal states for partitioning, the partitions itself, and merging.

Until this point, each operator has been described in isolation. However, it will be demon-
strated in the next section that chained operators in a query follow the individual equations of
the operators. It is important to say again that cardinality estimation is not in focus of this work.
Since operator costs apply for each processed tuple, the number of tuples to process within a
time frame is a very important measure. But as mentioned before, there are well-known tech-
niques for those estimates in the literature which can be applied without problems to this cost
model, like the rate-based approach [73], keeping track of tuples arriving and exiting on each
operator over time.

6.3.4 Evaluation

The goal of our evaluation is to show the validity as well as the accuracy of our cost model.
As described before, a full cost model has three aspects to consider, cost functions, statistical
information, and cardinality estimations. For our evaluation, we leave the cardinality estimation
aspect open, referring to known techniques from the literature. The statistical information is
retrieved by our calibration approach, obtaining the hardware as well as SPE-relevant factors.
The cost functions are in the main focus of this thesis, which we will elaborate in the following.

Inter- and Intra Parallelism

First, it is necessary to analyze the general behavior of parallelism strategies under an increasing
workload. Therefore, we use a pure mathematical operator which calculates some value out

97

of each incoming tuple. By changing the mathematical function, we are able to increase its
complexity, leading to more calculations per tuple overall. For real operators like projections
or aggregations, the mathematical calculations can be related to general CPU efforts of the
operator. Using the partitioning and merge schema, scaling up instances of the mathematical
operator, lead to results shown in Figure 6.6.

20 25 210

Complexity [Iterations per Tuple]

0

20000

40000

60000

80000

100000

120000

140000

160000

La
te

n
cy

 p
e
r

T
u
p
le

 [
n
s]

singlethreaded
2 partitions
4 partitions
8 partitions

Figure 6.6: Measured results for intra-operator parallelism (partitioning and merge)

With only a few operations per incoming tuple, a single-threaded solution without parti-
tioning clearly dominates performance. This would be an example for small user queries, like
applying a selection or projection on incoming data (tuples). Parallelizing such a query would
only produce overhead through synchronization and additional partitioning costs. On the other
hand, when an operator takes too much time to process a tuple, progress would stall, leading to
lost tuples when buffers are full or approximation techniques to catch up.

When a query gets decoupled into two or more independently running parts using queues for
exchange, it is important to choose the right position in the query for splitting. If the split leads
to one query fraction clearly dominating the processing time, there is no real performance gain
achieved. To show the behavior, we run the mathematical operator two times simultaneously,
one after another, where the first one is decoupled with a queue from the second one. The results
are shown in Figure 6.7.

With two threads and a queue between them, a query with low computational complexity
will only suffer from synchronization on each tuple exchange. However, there is a break-even

98

20 25 210

Complexity [Iterations per Tuple]

0

20000

40000

60000

80000

100000

120000

140000

160000

La
te

n
cy

 p
e
r

T
u
p
le

 [
n
s]

singlethreaded
queue

Figure 6.7: Measured results for inter-operator parallelism (queue)

point after which this decoupling improves throughput and average latency. A query optimizer
has, therefore, to decide when and where parallelism can be useful. As a next step, we measure
real operators instead of a constructed mathematical operation.

6.3.5 Single Operator Costs

The data stream is represented by a tuple generator, producing one million tuples with a string,
integer, and double attribute each. The integer is declared as the key attribute with values
between zero and 10.000 with repetitions. First, we measure the runtime for the generator
only (empty query). This allows us to subtract this value from the execution time of a query
consisting of a single operator, isolating the measurements of each operator. The results are
listed in Table 6.3.

Operation Latency Costs
Projection cpro j 340ns
Selection csel 112ns

Aggregation caggr 552ns
Grouping cgrp 700ns
Queue cqueue 2650ns

Table 6.3: Measured operators [average latency per tuple]

99

The projection drops the string and double attribute completely, forwarding a new tuple
with the integer attribute only. The selection applies a predicate with 20% selectivity, dropping
4 out of 5 tuples. The aggregation applies a continuous sum on the double attribute, while the
grouping operation does the same with respect to the integer key value. The queue itself takes
most of the time due to high synchronization costs with locks - for each tuple, a lock has to be
acquired and a notification for the following thread has to be done.
The measurements can be used to split the costs of the equations into memory access and CPU
costs. Finally, we can construct queries with and without parallelism applied to predict their
performance behavior.

6.3.6 Combined Query Costs

The first query Q1 consists of a selection (20% selectivity), a projection (on integer and double
value, dropping the string), and an aggregate (on the double attribute). The second query Q2
uses a projection (on integer and double) with a followup grouping (with integer as key and
double as value).
There are three combinations per query - single-threaded (Q s.), decoupled (Q d.) and parti-
tioned (Q p.). The results of both queries with three combinations each are shown in Figure 6.8.

Q1 s. Q1 d. Q1 p. Q2 s. Q2 d. Q2 p.
0

500

1000

1500

2000

2500

3000

3500

La
te

n
cy

 p
e
r

T
u
p

le
 [

n
s]

Measurements

Cost Model

-1ns

-9ns
+13ns

-119ns

+29ns
-18ns

Figure 6.8: Results for test queries

The difference between the measured performance and the calculated performance using
the cost model is very small. To explain how the cost model numbers are obtained, we will
describe the mathematical steps for Q1 decoupled. Figure 6.9 below visualizes Q1.

100

Figure 6.9: Query Q1 with inter-operator parallelism

The query consists of four operators, the selection, the queue for thread decoupling, the
projection and aggregation. The first thread executes the selection operator and the second
thread runs the projection and aggregation, having a queue between them. The query costs are
expressed as the maximum of both threads, i.e. their executed operations, in addition to the
overhead of the queue (according to Equation 6.3):

cQ1 = max((csel · t pin),(cpro j · t pin + caggr · t pin))+ cqueue · t pin

If the computational effort of both threads is compared, it can easily be noticed that the
second thread has more complexity to solve (the selection is the cheapest operation according to
Table 6.3). Therefore, the maximum in the calculation can be simplified to its second argument:

cQ1 = cpro j · t pin + caggr · t pin + cqueue · t pin

Because of the first thread running a selection with 20% selectivity, only 200.000 tuples
out of one million are exchanged by the queue. Since for each input tuple one output tuple
is produced for the queue, the projection and the aggregation, the calculation can be further
expressed like the following:

cQ1 = (cpro j + caggr + cqueue) ·200.000

The costs can, thus, be derived as sum of the costs of the queue (Equation 6.10), the projec-
tion (Equation 6.6), and the aggregation (Equation 6.8) per tuple. By calibrating on the hard-
ware, the clock frequency and cache and main memory access latencies can be determined. The
real CPU costs of an operator are measured and evaluated outside of PipeFabric with smaller
C++ tests. We can now insert the numbers from Table 6.3 into the expression:

cQ1 = (340 ns+552 ns+2650 ns) ·200.000

cQ1 = 708.400.000 ns

According to equation 6.1, the latency per tuple of the query Q1 is:

lat(t p) = cQ1
1.000.000 = 709 ns

101

When everything is added up, the cost model returns 709 ns approximately per tuple. The
real query measurement delivers 718 ns, which shows a difference of around 1-2% to the pre-
diction.

Overall, the results are promising. When a cost model is able to predict the performance
of a query without executing it, it delivers a great contribution for any query optimizer. Since
hardware factors are evaluated only once and also automatically via calibration, there is no
over-complication with performance degradation. For the next direction in research and imple-
mentation there are multiple ways possible:

• Extend the model to more operators, providing also an opportunity to predict UDF oper-
ator performance. The model would not become more precise, but with broader support,
more query performances can be predicted and, thus, it becomes more applicable overall.

• Transfer the model to other SPEs. This would not only prove its viability for stream query
optimization but also reach more application cases and users to demonstrate effectiveness
but maybe also finding weaknesses, in different real scenarios.

• Use the model to design a hardware-conscious stream query optimizer for PipeFabric.
Currently, there is no query optimization done beyond optimization posed by the user.
There is a great potential to not only make stream queries perform better with fewer
resources used but also to identify bottlenecks in our SPE for further development.

The next Section 6.4 shows relevant, already done work in the field of cost modeling.

6.4 Related Work

There is a lot of literature to cost models and their classification already since the 1980s. Since
cost models consist of cost functions, statistical information, and cardinality estimation, related
work often picks one category explicitly. Even if cardinality estimation is not in the focus of
this chapter, we will give a short overview of recent work done.

Leis et al. [32] published results compromising query optimizers using very complex cost
models underneath. The core of their observations are large estimation errors occurring very
frequently, which are propagated through the query plan since a wrong estimate leads to the
next wrong estimate being much worse than the last one. Simpler approaches, on the other
hand, can also suffer from this but have the advantage of being much faster calculated.
With the upcoming rise of machine learning, there has been research to use a well-trained model

102

instead of the classical approach with cost models. Wu et al. [76] compared their calibrated
optimizer using a cost model to machine learning models, stating that it delivers much better
results than other trained models. Kipf et al. [27] also applied machine learning, but only for
the aspect of cardinality estimation. They extracted features from materialized samples, feeding
them into their machine learning model, which allows predicting output cardinalities of applied
operators.
For stream queries, to the best of our knowledge, there is no recent work regarding machine
learning to estimate intermediate results. This is probably the case because stream queries
calculate approximate results with window operators mostly. The rate-based approach from
Viglas et al. [73] is still commonly found in most cases, using input and output rates of operators
to identify bottlenecks.

The combination of hardware factors and cost models, which is also the main idea of this
chapter, was deeply analyzed by Manegold et al. [37] for relational databases. They combined
hardware factors, especially CPU and memory costs, with factors inherited from algorithms to
come to a cost model predicting query performance. Stream processing, on the other hand,
has other features and characteristics to optimize. Kraemer et al. [29] shed light on these char-
acteristics. They focused on re-optimizing queries, integrating optimized plans into a running
system, as well as providing cost models considering various operations. However, without a
focus on parallelism, they are too inaccurate, missing partitioning strategies completely to ben-
efit from multithreading.
Intra-query parallelism was explicitly addressed in terms of partitioning by Liu et al. [34]. In
their paper, they used heuristics for selectivity estimates, costs of operations, the query plan
structure, and table sizes. With this information in hand, they addressed the problem of where
partitioning must be applied within a query to improve performance. This is also a possible
extension of our cost model, as described before. A full stream query optimizer has to decide
where to parallelize, for which we lay the fundament by providing mathematical expressions
for the costs of partitioning.

6.5 Summary

Query optimization based on cost models has a long tradition already. Tying them to specific
hardware has shown great results like the work from Manegold et al. [37]. However, the stream
processing component was often not in the focus of research. In our work, we combined stream
processing with hardware factors to come to a cost model being able to predict query perfor-
mance on at least a many-core CPU. First, we ran a calibration approach to collect relevant
information about the used hardware automatically, like memory latencies and clock frequency.

103

Then, we analyzed the operators used by our SPE PipeFabric, not only their implementation as-
pects but also the algorithm used. With these prerequisites, we were able to derive a cost model
for queries on stream processing, being able to come to the ideal degree of multithreading.

Small queries with less complexity are no good candidate for parallelism due to synchro-
nization, which was also detected by our model. There are more possibilities to extend and
improve this cost model, like addressing the TLB or taking caches more deeply into account.
But as already stated before, more knobs to tune does not always lead to a better result. It is a
tradeoff between performance gain and the time necessary to optimize. Therefore, we think that
a model on this level is suitable enough for this task, however, an extension to other hardware
architectures could be interesting to exploit.

104

7. Conclusion and Outlook

The technological advance in hardware and software poses the challenge to continuously adapt
applications and programs to the changing environment. Sometimes, it is a good idea to re-
design everything from scratch, sometimes it is already enough to make minor changes to fully
benefit from new technologies. And, sometimes, it might be the right choice to completely ig-
nore some hot trend that will not become relevant in the short (and long) term. Multi-core (and
also many-core) processors have a long tradition already, starting in the very early 2000s, and
are commonly found in all environments, like servers, desktop PCs, and more. Therefore, it is
safe to say that focusing research on exploiting parallelism is a good choice.
With real-time requirements, processing data on the fly without storing first has become more
and more interest within the last decade. The stream processing paradigm proposes a solution
for the problem handling such data with short delays. The ultimate goals for stream processing
are low latency and high throughput, beyond reliability, low resource consumption, and oth-
ers. To achieve these goals, it is inevitable to not just run old code on modern hardware but to
investigate potential, chances, and risks for traditional approaches.

7.1 Contributions

In this thesis, we exploited modern hardware in terms of many CPU cores and HBM for stream
processing, identifying bottlenecks and describing our work to overcome them.

Parallelizing Stream Queries

When a many-core CPU is involved, being able to run hundreds of threads in parallel with-
out even touching sockets or the network, it is straight forward to utilize them for parallelizing
queries. The lower clock frequency of the cores makes it very difficult to catch up with a

regular, high-clocked server CPU. To benefit from the cores, parallelizing operator instances,
instruction execution, and also incoming data from streams is a must. However, multithreading
always leads to synchronization, cache coherence problems, scheduling decisions, and more
which might lead to inefficient query execution.
We first investigated the potential of a partitioning strategy representing intra-operator paral-
lelism. Due to long-running stream queries under varying load from streams, we came to an
adaptive partitioning strategy which does not only take many CPU cores into account but also
requirements of an individual query. An intensity-based partitioning algorithm along with a
supervising optimizer component for our SPE PipeFabric has shown great results, being able to
scale the incoming load accordingly to the available cores.
Since partitioning leads to tuples becoming unordered, we further investigated an order-preserving
merge strategy. Such a merge step on a many-core CPU can easily become a bottleneck if more
than a hundred partitions run asynchronously. We came up with an efficient comparative merge
algorithm which poses only a few computational overhead compared to a regular merge. The
well-known streaming benchmark Linear Road has demonstrated the effectiveness and also cor-
rectness of our parallelizing approach.

Parallelizing Joins

Beyond a general parallelization pattern like partitioning with intra-operator parallelism, we
also looked into the potential of HBM and a many-core CPU regarding the join operation. Joins
are more or less the database operations with the richest history in research which makes them
a good candidate for evaluating new hardware. To address an even broader audience and to sup-
port the widely used batching strategy for streaming, we decided not only to restrict ourselves
on stream join algorithms but also to investigate common join algorithms like hash and sort-
merge joins. Being one of the first commercially available CPU with HBM attached on chip,
we adapted open-source implementations of state of art algorithms on the KNL architecture.
Analyzing the performance, we made a complete setup regarding various characteristics like
skewness, materialization, relation sizes, vectorization, or memory ratios (HBM, DDR4) with
the available implementations, providing an overview about our observations, lessons learned,
and suggestions when using that kind of memory.
Parallelizing individual join operators is not the only way to exploit the parallelism capabilities
of a many-core processor. Since query execution plans can become very complex, especially
when many data sources have to be joined, multiway join algorithms also became candidates
for research. Current state of art lacks multiway stream join algorithms that are able to join high
numbers of streams efficiently. Due to the rise of IoT, Industry 4.0, and others, it is very likely
that the number of data sources providing information as streams will increase drastically within
the next decade. If the information has to be combined to see the full picture, join operations
are responsible for doing this. In our work, we picked up a multiway algorithm developed for

106

multi-core CPUs which meets the general requirements for scaling up. To avoid long probe se-
quences when hundreds of streams are involved, the multiway join has to keep track of the join
conditions. After analyzing the initial performance of the join executed on the KNL processor,
there have been various knobs to tune. We applied additional optimizations and parallelization
schemes to improve the multiway performance, beating classical binary join performance by
magnitudes.

Cost Modeling Stream Queries

Parallel algorithms and implementations are great, but they have to be added in the right spots
to avoid unnecessary parallelism disadvantages like synchronization where it is not needed.
Query optimization is still mostly based on cost models to be able to choose a better execution
plan than the straight forward one. In our work, we put our stream processing cost model of
PipeFabric in relation to hardware parameters of the many-core CPU. This allows us to take the
many-core CPU characteristics into account. With low clock frequency, it is inevitable to par-
allelize a query sooner than the same query running on a regular multi-core CPU, for example.
The hardware factors were retrieved by a calibration approach, collecting all relevant hard-
ware information directly from the CPU. Since we know about the implementational details of
PipeFabric, we can derive formulas and equations regarding their memory and cache access as
well as CPU costs. In addition, we looked into equations regarding inter- and intra-operator
parallelism with decoupled queues and the partitioning-merge schema.
Putting everything together, we measured the performance of given queries running on the KNL
and compared it with the calculation result of our cost model. The comparison shows that our
approach allows predicting query execution time, which allows an optimizer to choose between
different query plans efficiently.

7.2 Conclusion

Parallelism for query processing is a wide topic. In this thesis, our focus was mainly on stream
processing in combination with many-core CPUs and HBM, with some extensions to regular
database query processing which are also applicable to stream processing with batching. We
have shown that CPUs with high numbers of cores come up with additional challenges to solve,
like cache coherence with close to a hundred caches, as well as NUMA effects, on a single
CPU. On the other hand, opportunities for stream queries have risen, like adaptive scaling of
operator instances or performance prediction of individual operators and queries due to simpler
core architecture.

107

We also addressed HBM with respect to join processing and parallel query execution. It was
shown that query performance greatly benefits from HBM in parallel cases, even more with
batching strategies instead of tuple-wise processing. Due to its limited capacity, it poses addi-
tional research questions where to use it with the greatest benefit, like for tables or intermediate
join results, which we also demonstrated on adapted open-source implementations.

In this thesis, we have given an overview of the KNL processor architecture and our SPE
PipeFabric first. After that, we directly addressed the question of how to exploit the intense
amount of parallelism from a many-core CPU for query processing.
Then, we had a look into general parallelization of any stream query operator with an adaptive
partitioning approach, along with an order-preserved merging of partitions. After that, we fo-
cused on the join operation for stream processing as well as regular database query processing.
Beyond a deep analysis regarding the HBM, we developed an improved multiway stream join
algorithm which benefits very well from the many-core paradigm. Finally, we introduced a
hardware-conscious cost model, taking the most relevant hardware parameters of the KNL into
account. Based on our SPE Pipefabric, we derived equations to predict query performance with
only minimal deviation.
There are more areas needing improvement to fully benefit from many CPU cores, but this
thesis was focusing on the most urgent and relevant areas, at least from our perspective.

Finally, it is important to address the generalizability of the results of this thesis to many-
core CPUs. The different evaluations have been done with the Xeon Phi KNL processor since it
was the state of art hardware regarding CPUs with many cores. Its predecessor was released as
a co-processor which was very limited in performance through offloading penalties and small
memory, mostly only useful for number crunching in other fields than database research or
systems. However, even as regular CPU, the KNL has some very specific settings like its
configuration modes or cores ordered in tiles on a grid. This leads to behavior and results that
are possibly not immediately transferable to regular server CPUs.
The reproducibility of results has always been a point of discussion in research and even if
possible on the same setup in hardware and software, it needs re-investigation and overhaul
when technology has advanced, e.g. by a new processor generation. From our perspective,
most of the knowledge gained is still valid. The theoretical background, the algorithmic ideas
and optimization applied is independent of the individual hardware used (with respect to many-
core CPUs, obviously). Otherwise, it would be necessary to tune some knobs to the respective
hardware, e.g. the number of threads or the access latency and memory bandwidth of HBM,
like for the next generation of HBM (HBM3).

7.3 Future Work

As mentioned before, there is still room to expand for future work. Even when there is no
successor to the KNL processor (Knights Mill was the last one of the Xeon Phi series), the

108

trend to even more cores than current CPUs is still unbroken. To give an example, the 2020
announced Xeon Cooper Lake architecture will have up to 48 CPU cores, compared to the (up
to) 72 cores of the KNL.

Synchronization on Many-core CPUs

Thread synchronization for shared data access is a well-known problem, also from the outside
of database research. For smaller problems, it is often not recommended to invest time and risks
of buggy code from programmers to be a few percents faster. Instead of manually scheduling
threads to cores and dealing with race conditions individually, many programming languages
hide the synchronization complexity from programmers by providing high-level APIs and meth-
ods, e.g. the ”synchronized” keyword in Java. With this concept, performance is traded against
robustness and also simplicity.
However, such an approach hits its limit when the number of threads increases drastically which
was shown in a simulated one thousand core machine already years ago for concurrency con-
trol in database systems [78]. For a many-core CPU like the KNL this is also true, leading to
NUMA effects and massively reduced performance from stalling threads. At least from this
perspective, it is not advisable to leave all synchronization decisions to the OS.

In this thesis, we also used different kinds of synchronization techniques, beginning with
locks and concluding with lock-free algorithms, used in PipeFabric [6]. While locking tech-
niques are commonly used, it can clearly be seen that they limit performance drastically. In our
cost model, we used queues with locks for tuple exchange between threads, one publisher and
one reader. In this case, the overall synchronization is still minimized, but already a magnitude
worse than e.g. a projection operation. For our cost model, this was not of much relevance,
because we could predict the final performance anyway. However, it fueled further discussions
in the direction of lock-free algorithms which have scaled much better, e.g. for a shared hash
table of a streaming hash join. But overall, there is still a lot of potential left unused.
This is not only a problem for stream processing but query processing in general. To follow
the trend of more CPU cores in the future, the synchronization aspect will keep its relevance.
Future work could investigate additional partitioning strategies as well as their placement on a
many-core CPU to overall minimize or avoid the synchronization problem while still exploiting
high numbers of threads.

HBM and PM in the Memory Hierarchy

The memory hierarchy has become more and more diverse and specialized. Two more or less
new trends are (1) HBM for other processing units than GPUs, like CPUs and FPGAs, and (2)

109

PMem with persistent storage and comparable performance on the main memory layer. With
more and more CPU cores, the demand for memory bandwidth also increases, especially for
operators that are very bandwidth-critical, like scans. The KNL is the first CPU with HBM
on chip, opening a new area of research and possibilities for query processing. At least from
our perspective, it is very likely that there will be more CPUs in the future using that kind of
memory.
But even when this thesis is focused on CPUs, HBM is also coming to other hardware accel-
erators like FPGAs. The newly announced Intel Agilex FPGA is a very promising candidate
to exploit since it has 16 GB HBM as well as Intel Optane DC PMem attached. With both
memory types next to regular DDR4 (or even DDR5) main memory, it provides a lot of new
opportunities for research already.

In this thesis, we analyzed HBM using join processing as a well-known operation of DBMS
and DSMS. The question if a hash join or a sort-merge join performs better on HBM can be
answered by saying both do, due to equal phases like reading the input relations or partitioning
them. For the chosen workloads, the PRJ still has an edge over the sort-merge join, though. It
is difficult to give an accurate, general answer for all possible cases, but at least for the chosen
open-source implementations we can summarize that hash joins can surpass sort-merge joins
when HBM is used.
If more CPUs become released with HBM attached, algorithms and implementations should
manually address the HBM based on decisions like cost models, which are very common in
databases since the beginning. With limited capacity, only the bandwidth-critical parts of an
algorithm should use it to avoid wasting potential. But since it is very rare that a query consists
of only single operators, the whole picture must be taken into account. Even if a single operator
can utilize that bandwidth, subsequent operators could possibly behave differently, stumbling
into a local optimum which is not ideal for the whole query. We, therefore, propose an extension
of usual cost models for the optimizer to choose where HBM can perform best. As a first step,
it could be beneficial to compare DDR4/HBM behavior to the cache hierarchy or the behavior
of HDD to SSD.

Overall, HBM might not disrupt current technologies that much like in-memory databases
did or the persistent memory technology might do in the future. But whenever the parallel
execution of algorithms is considered, there is still a trend to even more cores on CPUs. More
parallelism also increases bandwidth demands by threads, leading to the development of better
HBM technologies with more capacity and even more bandwidth. Therefore, it might be a
good choice to integrate HBM into the existing database model to keep up with the future
degree of parallelism. For future work, a cost model regarding HBM might become beneficial
or a partitioning strategy with chunks in size of the HBM, possibly extending our cost model of
this thesis.

110

Query Adaptivity in Real Time

When a stream query runs for a long time and is stateful, i.e. it performs operations like a join
with an internal hash table, it accumulates large states over longer time periods. Over that time,
it is possible that the requirements and the starting situation of the query have changed. To give
an example, the schema of incoming tuples could have additional or changed attributes. Until
today, in most systems, the running query has to be stopped while a new query reflecting the
changes takes over. The state of the old query has to be integrated into the new one to avoid
data loss or wrong results.
Such a complete restart can be difficult due to state integrations and thread distribution on a
many-core CPU. To solve this problem, there is already a generic prototype for Flink [5] which
uses just-in-time compilation to reconfigure the query plan during execution. We believe that
there is potential to include that mechanism also in cost modeling with respect to many-core
CPUs, since large state transfers over the whole chip are not applicable performance-wise. In
addition, there are use cases where a migration time of even tens of seconds is not allowed, e.g.
when a system is monitored and has real-time constraints.

111

Bibliography

[1] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
C. Erwin, Eduardo F. Galvez, M. Hatoun, Anurag Maskey, Alex Rasin, A. Singer, Michael
Stonebraker, Nesime Tatbul, Ying Xing, R. Yan, and Stanley B. Zdonik. Aurora: A Data
Stream Management System. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA, June 9-12, 2003, page
666, 2003.

[2] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey, Esther
Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear Road: A Stream Data Man-
agement Benchmark. In VLDB Proceedings, Toronto, Canada, August 31 - September 3
2004, pages 480–491, 2004.

[3] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-core, main-
memory joins: Sort vs. hash revisited. PVLDB, 7(1):85–96, 2013.

[4] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. Main-memory hash
joins on multi-core CPUs: Tuning to the underlying hardware. In 29th IEEE Interna-
tional Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12,
2013, pages 362–373, 2013.

[5] Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, and Volker Markl. On-the-fly re-
configuration of query plans for stateful stream processing engines. In Datenbanksysteme
für Business, Technologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs
,,Datenbanken und Informationssysteme” (DBIS), 4.-8. März 2019, Rostock, Germany,
Proceedings, pages 127–146, 2019.

[6] Alexander Baumstark and Constantin Pohl. Lock-free data structures for data stream
processing - A closer look. Datenbank-Spektrum, 19(3):209–218, 2019.

[7] Andreas Becher, Lekshmi B. G., David Broneske, Tobias Drewes, Bala Gurumurthy,
Klaus Meyer-Wegener, Thilo Pionteck, Gunter Saake, Jürgen Teich, and Stefan Wilder-
mann. Integration of fpgas in database management systems: Challenges and opportuni-
ties. Datenbank-Spektrum, 18(3):145–156, 2018.

[8] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 37–48, 2011.

[9] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. State Management in Apache Flink R©: Consistent Stateful Distributed Stream
Processing. PVLDB, 10(12):1718–1729, 2017.

[10] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, John C. Platt,
James F. Terwilliger, and John Wernsing. Trill: A high-performance incremental query
processor for diverse analytics. PVLDB, 8(4):401–412, 2014.

[11] Yijou Chen, Richard L. Cole, William J. McKenna, Sergei Perfilov, Aman Sinha, and
Eugene Szedenits Jr. Partial join order optimization in the paraccel analytic database.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 905–908,
2009.

[12] Xuntao Cheng, Bingsheng He, Xiaoli Du, and Chiew Tong Lau. A Study of Main-Memory
Hash Joins on Many-core Processor: A Case with Intel Knights Landing Architecture. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment, CIKM 2017, Singapore, November 06 - 10, 2017, pages 657–666, 2017.

[13] Xuntao Cheng, Bingsheng He, Mian Lu, and Chiew Tong Lau. Many-core needs fine-
grained scheduling: A case study of query processing on Intel Xeon Phi processors. J.
Parallel Distrib. Comput., 120:395–404, 2018.

[14] Xuntao Cheng, Bingsheng He, Mian Lu, Chiew Tong Lau, Huynh Phung Huynh, and Rick
Siow Mong Goh. Efficient Query Processing on Many-core Architectures: A Case Study
with Intel Xeon Phi Processor. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, pages 2081–2084, 2016.

[15] Bugra Gedik. Partitioning functions for stateful data parallelism in stream processing.
VLDB J., 23(4):517–539, 2014.

[16] Bugra Gedik, Rajesh Bordawekar, and Philip S. Yu. Celljoin: a parallel stream join oper-
ator for the cell processor. VLDB J., 18(2):501–519, 2009.

[17] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. Elastic Scaling for Data
Stream Processing. IEEE Trans. Parallel Distrib. Syst., 25(6):1447–1463, 2014.

113

[18] Philipp Götze, Constantin Pohl, and Kai-Uwe Sattler. Query Planning for Transactional
Stream Processing on Heterogeneous Hardware. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs ,,Datenbanken und
Informationssysteme” (DBIS), 4.-8. März 2019, Rostock, Germany, Workshopband, pages
71–80, 2019.

[19] Goetz Graefe. Volcano - An Extensible and Parallel Query Evaluation System. IEEE
Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[20] Chris Gregg and Kim M. Hazelwood. Where is the data? Why you cannot debate CPU vs.
GPU performance without the answer. In IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2011, 10-12 April, 2011, Austin, TX, USA,
pages 134–144, 2011.

[21] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philippas Tsi-
gas. Scalejoin: A deterministic, disjoint-parallel and skew-resilient stream join. In 2015
IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, Oc-
tober 29 - November 1, 2015, pages 144–153, 2015.

[22] John L. Hennessy and David A. Patterson. Computer architecture - a quantitative ap-
proach, 3rd Edition. Morgan Kaufmann, 2003.

[23] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm. A catalog
of stream processing optimizations. ACM Comput. Surv., 46(4):46:1–46:34, 2013.

[24] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung Huynh. Improv-
ing Main Memory Hash Joins on Intel Xeon Phi Processors: An Experimental Approach.
PVLDB, 8(6):642–653, 2015.

[25] Tomas Karnagel, Dirk Habich, Benjamin Schlegel, and Wolfgang Lehner. The hells-join:
a heterogeneous stream join for extremely large windows. In Proceedings of the Ninth
International Workshop on Data Management on New Hardware, DaMoN 1013, New
York, NY, USA, June 24, 2013, page 2, 2013.

[26] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysanthis. A holistic view
of stream partitioning costs. PVLDB, 10(11):1286–1297, 2017.

[27] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons
Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019.

[28] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf,
Paolo Costa, and Peter R. Pietzuch. SABER: Window-Based Hybrid Stream Processing

114

for Heterogeneous Architectures. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 555–569, 2016.

[29] Juergen Kraemer. Continuous queries over data streams - semantics and implementation.
In Ausgezeichnete Informatikdissertationen 2007, pages 181–190, 2007.

[30] Jürgen Krämer. Continuous queries over data stream - semantics and implementation.
PhD thesis, University of Marburg, Germany, 2007.

[31] Tae-Hyung Kwon, Hyeon Gyu Kim, Myoung-Ho Kim, and Jin Hyun Son. Amjoin: An
advanced join algorithm for multiple data streams using a bit-vector hash table. IEICE
Transactions, 92-D(7):1429–1434, 2009.

[32] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? PVLDB, 9(3):204–215, 2015.

[33] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali Mani. Event Stream
Processing with Out-of-Order Data Arrival. In 27th International Conference on Dis-
tributed Computing Systems Workshops (ICDCS 2007 Workshops), June 25-29, 2007,
Toronto, Ontario, Canada, page 67, 2007.

[34] Yanchen Liu, Masood Mortazavi, Fang Cao, Mengmeng Chen, and Guangyu Shi. Cost-
based data-partitioning for intra-query parallelism. In Databases and Information Systems
VIII - Selected Papers from the Eleventh International Baltic Conference, DB&IS 2014,
8-11 June 2014, Tallinn, Estonia, pages 233–244, 2014.

[35] Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In 35th In-
ternational Symposium on Computer Architecture (ISCA 2008), June 21-25, 2008, Beijing,
China, pages 453–464, 2008.

[36] Mian Lu, Lei Zhang, Huynh Phung Huynh, Zhongliang Ong, Yun Liang, Bingsheng He,
Rick Siow Mong Goh, and Richard Huynh. Optimizing the MapReduce framework on
Intel Xeon Phi coprocessor. In Proceedings of the 2013 IEEE International Conference
on Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages 125–130, 2013.

[37] Stefan Manegold. Understanding, Modeling, and Improving Main-Memory Database Per-
formance. PhD thesis, Universiteit van Amsterdam, 2002.

[38] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What happens during a join?
dissecting CPU and memory optimization effects. In VLDB 2000, Proceedings of 26th In-
ternational Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt,
pages 339–350, 2000.

115

[39] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing main-memory join
on modern hardware. IEEE Trans. Knowl. Data Eng., 14(4):709–730, 2002.

[40] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKin-
ley, and Felix Xiaozhu Lin. StreamBox: Modern Stream Processing on a Multicore Ma-
chine. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12-14, 2017., pages 617–629, 2017.

[41] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
Processing, Approximation, and Resource Management in a Data Stream Management
System. In CIDR 2003, First Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 5-8, 2003, Online Proceedings, 2003.

[42] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David Garcı́a-Soriano,
Nicolas Kourtellis, and Marco Serafini. The power of both choices: Practical load balanc-
ing for distributed stream processing engines. In 31st IEEE International Conference on
Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 137–148,
2015.

[43] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtellis, and
Marco Serafini. When two choices are not enough: Balancing at scale in Distributed
Stream Processing. In 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016, pages 589–600, 2016.

[44] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB, 4(9):539–550, 2011.

[45] Anil Pacaci and M. Tamer Özsu. Distribution-Aware Stream Partitioning for Distributed
Stream Processing Systems. In Proceedings of the 5th ACM SIGMOD Workshop on Algo-
rithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2018, Houston,
TX, USA, June 15, 2018, pages 6:1–6:10, 2018.

[46] Johns Paul, Bingsheng He, and Chiew Tong Lau. Query Processing on OpenCL-Based
FPGAs: Challenges and Opportunities. In 24th IEEE International Conference on Parallel
and Distributed Systems, ICPADS 2018, Singapore, December 11-13, 2018, pages 937–
945, 2018.

[47] Johannes Pietrzyk, Dirk Habich, Patrick Damme, and Wolfgang Lehner. First investiga-
tions of the vector supercomputer sx-aurora TSUBASA as a co-processor for database
systems. In Datenbanksysteme für Business, Technologie und Web (BTW 2019), 18. Fach-
tagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme” (DBIS), 4.-8. März
2019, Rostock, Germany, Workshopband, pages 33–50, 2019.

116

[48] Johannes Pietrzyk, Annett Ungethüm, Dirk Habich, and Wolfgang Lehner. Fighting the
Duplicates in Hashing: Conflict Detection-aware Vectorization of Linear Probing. In
Datenbanksysteme für Business, Technologie und Web (BTW) 2019), 18. Fachtagung des
GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), 4.-8. März 2019, Ro-
stock, Germany, Proceedings, pages 35–53, 2019.

[49] Constantin Pohl. A Hardware-Oblivious Optimizer for Data Stream Processing. In Pro-
ceedings of the VLDB 2017 PhD Workshop co-located with the 43rd International Con-
ference on Very Large Databases (VLDB 2017), Munich, Germany, August 28, 2017.

[50] Constantin Pohl. Exploiting Manycore Architectures for Parallel Data Stream Process-
ing. In Proceedings of the 29th GI-Workshop Grundlagen von Datenbanken, Blanken-
burg/Harz, Germany, May 30 - June 02, 2017., pages 66–71, 2017.

[51] Constantin Pohl. Stream Processing on High-Bandwidth Memory. In Proceedings of
the 30th GI-Workshop Grundlagen von Datenbanken, Wuppertal, Germany, May 22-25,
2018., pages 41–46, 2018.

[52] Constantin Pohl. How to become a (Throughput) Billionaire: The Stream Processing En-
gine PipeFabric. In Proceedings of the 31st GI-Workshop Grundlagen von Datenbanken,
Saarburg, Germany, June 11-14, 2019., pages 44–49, 2019.

[53] Constantin Pohl, Philipp Götze, and Kai-Uwe Sattler. A Cost Model for Data Stream
Processing on Modern Hardware. In International Workshop on Accelerating Analyt-
ics and Data Management Systems Using Modern Processor and Storage Architectures,
ADMS@VLDB 2017, Munich, Germany, September 1, 2017.

[54] Constantin Pohl and Kai-Uwe Sattler. Joins in a heterogeneous memory hierarchy: ex-
ploiting high-bandwidth memory. In Proceedings of the 14th International Workshop on
Data Management on New Hardware (DaMoN), Houston, TX, USA, June 11, 2018, pages
8:1–8:10, 2018.

[55] Constantin Pohl and Kai-Uwe Sattler. Adaptive partitioning and order-preserved merging
of data streams. In Advances in Databases and Information Systems - 23rd European
Conference, ADBIS 2019, Bled, Slovenia, September 8-11, 2019, Proceedings, pages 267–
282, 2019.

[56] Constantin Pohl and Kai-Uwe Sattler. Parallelization of massive multiway stream joins
on manycore cpus. In Euro-Par 2019: Parallel Processing Workshops - Euro-Par 2019
International Workshops, Göttingen, Germany, August 26-30, 2019.

[57] Constantin Pohl, Kai-Uwe Sattler, and Goetz Graefe. Joins on high-bandwidth memory:
a new level in the memory hierarchy. VLDB J., 29(2):797–817, 2020.

117

[58] Nicolo Rivetti, Leonardo Querzoni, Emmanuelle Anceaume, Yann Busnel, and Bruno
Sericola. Efficient key grouping for near-optimal load balancing in stream processing
systems. In Proceedings of the 9th ACM International Conference on Distributed Event-
Based Systems, DEBS ’15, Oslo, Norway, June 29 - July 3, 2015, pages 80–91, 2015.

[59] Karl Rupp. 42 years of microprocessor trend data. https://www.karlrupp.net/
2018/02/42-years-of-microprocessor-trend-data/, 2018. [Online; ac-
cessed 23-July-2019].

[60] Gabriele Russo Russo, Matteo Nardelli, Valeria Cardellini, and Francesco Lo Presti.
Multi-Level Elasticity for Wide-Area Data Streaming Systems: A Reinforcement Learn-
ing Approach. Algorithms, 11(9):134, 2018.

[61] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken - Implementierung-
stechniken, 3. Auflage. MITP, 2011.

[62] Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental comparison of thirteen re-
lational equi-joins in main memory. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1961–1976, 2016.

[63] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie,
and Thomas G. Price. Access path selection in a relational database management system.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management of
Data, Boston, Massachusetts, USA, May 30 - June 1, pages 23–34, 1979.

[64] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J. Franklin.
Flux: An Adaptive Partitioning Operator for Continuous Query Systems. In Proceedings
of the 19th International Conference on Data Engineering, March 5-8, 2003, Bangalore,
India, pages 25–36, 2003.

[65] Michael Stonebraker and Ugur Çetintemel. ”One Size Fits All”: An Idea Whose Time
Has Come and Gone. In Proceedings of the 21st International Conference on Data Engi-
neering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages 2–11, 2005.

[66] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. The 8 requirements of
real-time stream processing. SIGMOD Record, 34(4):42–47, 2005.

[67] Jens Teubner and René Müller. How soccer players would do stream joins. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011, pages 625–636, 2011.

118

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

[68] Satish M. Thatte. Persistent memory: A storage architecture for object-oriented database
systems. In 1986 International Workshop on Object-Oriented Database Systems, Septem-
ber 23-26, 1986, Asilomar Conference Center, Pacific Grove, California, USA, Proceed-
ings, pages 148–159, 1986.

[69] Shun’ichi Torii, Keiji Kojima, Seiichi Yoshizumi, Akiharu Sakata, Yoshifumi Takamoto,
Shun Kawabe, Masami Takahashi, and Tsuguo Ishizuka. A relational database system
architecture based on a vector processing method. In Proceedings of the Third Interna-
tional Conference on Data Engineering, February 3-5, 1987, Los Angeles, California,
USA, pages 182–189, 1987.

[70] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, Jignesh M. Pa-
tel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj
Bhagat, Sailesh Mittal, and Dmitriy V. Ryaboy. Storm @Twitter. In SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 147–156, 2014.

[71] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled pipelined join oper-
ator. IEEE Data Eng. Bull., 23(2):27–33, 2000.

[72] Todd L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm. CoRR,
abs/1210.0481, 2012.

[73] Stratis Viglas and Jeffrey F. Naughton. Rate-based query optimization for streaming in-
formation sources. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, pages 37–48, 2002.

[74] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the Output Rate of
Multi-Way Join Queries over Streaming Information Sources. In Proceedings of 29th In-
ternational Conference on Very Large Data Bases, VLDB 2003, Berlin, Germany, Septem-
ber 9-12, 2003, pages 285–296, 2003.

[75] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel main-
memory environment. In Proceedings of the First International Conference on Parallel
and Distributed Information Systems (PDIS 1991), Fontainebleu Hilton Resort, Miami
Beach, Florida, USA, December 4-6, 1991, pages 68–77, 1991.

[76] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and Jeffrey F.
Naughton. Predicting query execution time: Are optimizer cost models really unusable?
In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Aus-
tralia, April 8-12, 2013, pages 1081–1092, 2013.

[77] William A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995.

119

[78] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker.
Staring into the abyss: An evaluation of concurrency control with one thousand cores.
PVLDB, 8(3):209–220, 2014.

[79] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters.
In 4th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’12, Boston, MA,
USA, June 12-13, 2012.

[80] Steffen Zeuch, Sebastian Breß, Tilmann Rabl, Bonaventura Del Monte, Jeyhun Karimov,
Clemens Lutz, Manuel Renz, Jonas Traub, and Volker Markl. Analyzing Efficient Stream
Processing on Modern Hardware. PVLDB, 12(5):516–530, 2019.

[81] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic Plan Migration
for Continuous Queries Over Data Streams. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004, pages
431–442, 2004.

Eidesstattliche Erklärung / Affirmation

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen di-
rekt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennze-
ichnet.

An der inhaltlich-materiellen Erstellung der vorliegenden Arbeit waren keine weiteren Perso-
nen beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw.
Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genommen. Nie-
mand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die
im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer
Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung als
Täuschungsversuch bewertet wird und gemäß §7 Abs. 10 der Promotionsordnung den Abbruch
des Promotionsverfahrens zur Folge hat.

Ilmenau, October 20, 2020

	Abstract
	Zusammenfassung
	Acronyms
	Introduction
	Motivation
	Contributions
	Outline

	Modern Hardware
	Many-Core CPUs
	Introduction
	Intel Xeon Phi Product Line

	High-Bandwidth Memory
	The Memory Hierarchy
	The Main Memory Layer
	Multi-Channel DRAM

	Other Hardware Accelerators
	Summary

	Data Stream Processing
	Stream Processing Engines
	PipeFabric
	Challenges in Stream Processing

	Summary

	Stream Query Parallelization
	Introduction
	Parallelization
	Goals and Requirements
	Partitioning
	Static Partitioning
	Dynamic Partitioning
	Adaptive Partitioning

	Merging
	Stateless Merging
	Stateful Merging
	Order-Preserved Merging

	Related Work and our Approach
	Implementation
	Partitioning
	Merging

	Evaluation
	Micro-Benchmark
	Linear Road Benchmark

	Summary

	Join Processing on Modern Hardware
	Introduction
	Join History
	Classification of Join Processing
	Binary vs. Multiway Joins

	Join Processing with HBM
	Algorithms and Related Work
	Stream Joins
	Relational Joins

	Implementation
	Skew Handling
	Output Materialization
	Data Structures in HBM

	Evaluation
	Initial Expectations
	Setup and Test Cases
	Stream Join Results
	Relational Join Results
	Skewed Workloads
	Output Materialization
	Variation of Relation Sizes
	DDR4 only for Relations
	Comparison with AVX-512
	Impact of KNL CPU Architecture

	Observations

	Multiway Stream Joins
	The Leapfrog Triejoin
	The MJoin and AMJoin
	Implementation
	Optimizations of the Implementation
	Parallelization Schemes

	Evaluation

	Summary

	Hardware-Conscious Cost Modeling
	Introduction
	Recap: Query Execution Phases
	Cost Models
	Stream Processing Model
	Hardware Factors and Calibration
	The Hardware-Conscious Cost Model
	Evaluation
	Inter- and Intra Parallelism

	Single Operator Costs
	Combined Query Costs

	Related Work
	Summary

	Conclusion and Outlook
	Contributions
	Conclusion
	Future Work

	Bibliography

