
Global Sensor Networks �

Karl Aberer, Manfred Hauswirth, Ali Salehi
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract
The availability of cheap and smart wireless sensing devices provides unprece-

dented possibilities to monitor the physical world. On the technical side these
devices introduce several original research problems, many of them related to the
integration of the rampant technology proposals. Global Sensor Network (GSN) is
a platform which provides a scalable infrastructure for integrating heterogeneous
sensor network technologies using a small set of powerful abstractions. GSN sup-
ports the integration and discovery of sensor networks and sensor data, provides
distributed querying, filtering, and combination of sensor data, and supports the
dynamic adaption of the system configuration during operation through a declara-
tive XML-based language.

Keywords: Sensor networks, sensor middleware, sensor Internet

1 Towards a Sensor Internet
In 1999, Business Week named networked micro-sensor technology as one of the 21
most important technologies of the ������� century. Today, cheap and smart devices with
multiple on-board sensors, networked with wireless links are available from research
groups and companies, for example, MICA Motes from Berkeley or BTNodes from
ETH. Currently, sensors run specialized operating systems, mostly TinyOS, and tools
exist for accessing and querying sensor data using declarative languages, for example,
TinySQL or TAG. To date, the research in the sensor network community has mainly
focused on routing protocols and information collection and aggregation in a single
sensor network with multiple different sensors connected through wireless links. As
the prices of sensors decrease rapidly, there will soon exist huge numbers of sensor
networks in different places, managed by different organizations. To fully exploit the
potential of this “Sensor Internet,” platforms enabling the integration and management

�
The work presented in this paper was supported (in part) by the National Competence Center in Re-

search on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the Swiss
National Science Foundation under grant number 5005-67322 and was (partly) carried out in the framework
of the EPFL Center for Global Computing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147909225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the sensor sites and the produced data streams will be required. At the moment
sensor networks are being deployed and made accessible in an ad-hoc fashion.

Given the current growth rate, we may soon expect to arrive at a situation compa-
rable to the publication of documents on the Web whose success is mainly based on
sharing a few simple logical abstractions (URL, hyperlinks, HTML) and basic commu-
nication protocols (HTTP, more recently Web Services) that provide universal access
and linking among autonomously published data sources. The Global Sensor Network
(GSN) platform takes up these successful ideas and aims at making publication and ac-
cess to sensor networks and sensor data as simple, powerful, and flexible as accessing
Web documents. The design of GSN follows four basic goals:

Simplicity. The goal was to design the system based on a minimal set of powerful
abstractions which could be easily configured and adopted to the user’s needs. We
targeted the possibility to define sensor networks and data streams in a declarative way
by using SQL as data manipulation language. As a syntactic framework for system
configuration we relied on XML.

Adaptivity. Adding new types of sensor networks and dynamic (re-) configuration
of data sources has to be supported during run-time without having to interrupt ongo-
ing system operation (query processing, etc.). To that end we used a container-based
implementation allowing dynamic reconfiguration.

Scalability. Targeting a very large number of data producers and consumers with a
variety of application requirements, GSN has to consider scalability issues specifically
for distributed query processing and distributed discovery of sensor networks. To meet
this requirement, the design of GSN is based on a peer-to-peer architecture.

Light-weight implementation. GSN was planned to be easily deployable in stan-
dard computing environments (no excessive hardware requirements, standard network
connectivity, etc.), portable (Java-based implementation), should require minimal ini-
tial configuration, and provide easy-to-use, web-based management tools.

In this paper we provide an overview of the key design decisions of GSN that
we made in order to achieve the goals mentioned above. In Section 2 we provide an
overview of the conceptual model GSN is based on. In Section 3 we introduce the
key abstraction of virtual sensors. In Section 4 we discuss our approach to data stream
processing. In Section 5 we provide the architecture and implementation of the system.
In order to illustrate the potential benefits of GSN we sketch some usage scenarios in
Section 6. We conclude in Section 7 by comparing to related efforts in the field.

2 Global Sensor Network Model
The current view on wireless sensor networks is based on a physical view as shown
in Figure 1. Single sensors or whole sensor networks are connected via wireless con-
nections to an access point. Ad-hoc routing protocols route data to selected sensors

Global Sensor Networks 2 Aberer, Hauswirth, Salehi



(sinks) that communicate with an access point which is connected to the Internet and
can process and make available the data received from the sensors. Applications want-
ing to use sensor data need to first identify the access points, possibly through multiple
layers, and then follow the specific access protocols defined.

Internet

Figure 1: Physical view of sensor networks

A major problem of this model is the dependency of the access to sensor data on the
specific implementation. Since sensors can be considered as data sources GSN adopts
as a fundamental idea the principle of data independence. This abstraction is well-
accepted and has proven extremely successful in the design of database systems. It
allows the users of GSN to abstract from the highly heterogeneous physical infrastruc-
tures coming along with current sensor network platforms, just as in a database system
where the user abstracts from the specific implementation of physical data storage and
access.

GSN provides a logical view on sensor networks based on the virtual sensor ab-
straction. Virtual sensors abstract from the implementation details to access sensor
data and model sensor data as temporal streams of relational data. Virtual sensors can
also represent derived views on sensor data streams, resulting from post-processing and
combination of sensor data from different sources. This is shown informally by the
conceptual data flow in Figure 2 which illustrates how data streams from sensor net-
works can be connected in a peer-to-peer overlay network. Virtual sensors are bound
to physical nodes in the network by deploying them to GSN containers that host vir-
tual sensors. This approach supports our goal of simplicity, as users with one single
abstraction can work with sensor data from heterogeneous sensor sources and any data
derived from raw sensor data.

Architecturally GSN adopts a service-oriented view on sensor networks as shown in
Figure 3. This architectural paradigm has already successfully proven its applicability
in several other domains, for example, Web Services. In this view sensor networks
are considered as abstract types of services performing a sensing task and providing a

Global Sensor Networks 3 Aberer, Hauswirth, Salehi



Stream Source Query

...
Relation Name : Stream Source Alias

...

Stream Source Query

...
Relation Name : Stream Source Alias

...

from stream source
Stream elements coming

raw sensor data
Relation with timestamped

Stream data element Timestamp Stream data element Timestamp

of the stream source query
Relation produced as the result

The relation produced
as the result of the Input
Stream Query

...
Relation Name : Input Stream name

...

Virtual Sensor’s Main Java Class

of the input source query
Relation produced as the result

Persistent storage

Input Stream Query

Figure 2: Conceptual data flow in a GSN node

specific type of data. The sensor services are published through a peer-to-peer directory
and searched based on their properties. Applications can discover sensor networks
using the registry and subsequently access sensor networks by using a standard data
access interface. The use of the service-oriented paradigm facilitates GSN’s design
goal of adaptivity as it enables on-demand use and combination of sensor networks.

Sensor
Networks

Sensor

Registries
Network

GSN

discover query,
subscribe

register

Figure 3: Service-oriented view of sensor networks

Global Sensor Networks 4 Aberer, Hauswirth, Salehi



3 Virtual Sensor Specification
The key abstraction in GSN is the virtual sensor (VS). Virtual sensors abstract from
implementation details of access to sensor data and they are the services provided and
managed by GSN. A virtual sensor corresponds either to a data stream received directly
from sensors or to a data stream derived from other virtual sensors. The specification
of a virtual sensor provides all necessary information required for deploying and using
it including:

	 metadata used for identification and discovery
	 the structure of the data streams which the virtual sensor consumes and produces
	 a declarative SQL-based specification of the data stream processing performed

in a virtual sensor
	 functional properties related to persistency, error handling, life-cycle manage-

ment, and physical deployment

To support rapid deployment, these properties of virtual sensors are provided in a
declarative deployment descriptor, as shown in Figure 4.

In order to refer to the data streams produced by a virtual sensor we use logical ad-
dressing. Each virtual sensor can be equipped with a set of key-value pairs which can
be registered and discovered in GSN. The example specification in Figure 4 shows a
virtual sensor with three input streams. The virtual sensors generating the input streams
are identified by their metadata (lines 17–18, 25–26, and 33–34) and the metadata for
identifying the virtual sensor producing the output stream is given in lines 2–5. This
example also demonstrates GSN ability to access multiple stream producers simulta-
neously.

In GSN data streams are temporal sequences of relational tuples. This is in line with
the model used in most stream processing systems. The structure of the data stream
a virtual sensor produces is encoded in XML as shown in line 7–11. The structure of
the input streams is learned from the respective specifications of their virtual sensor
definitions.

Data stream processing is separated into two stages: (1) processing applied to the
input streams (lines 20, 28, and 36) and (2) processing for combining data from the
different input streams and producing the output stream (lines 38–43). To specify the
processing of the input streams we use SQL queries which refer to the input streams by
the reserved keyword WRAPPER. The attribute wrapper="remote" indicates that
the data stream is obtained from the Internet through GSN. Thus logical addressing
could be used to address the virtual sensor. In the given example the output stream
joins the data received from two temperature sensors and returns a camera image if
certain conditions on the temperature are satisfied. The specification of the structure of
the output stream directly relates to the data stream processing that is performed by the
virtual sensor and needs to be consistent with it. In the design of GSN specifications
we decided to separate the temporal aspects from the relational data processing using
SQL. Thus standard SQL is used for the different processing stages. The temporal

Global Sensor Networks 5 Aberer, Hauswirth, Salehi



processing is controlled by various attributes provided in the input and output stream
specifications, e.g., the attribute storage-size. Due to its specific importance we
will discuss the temporal processing in detail in a later section.

In addition to the specification of the data-related properties a virtual sensor also
provides high-level specifications of functional properties: The <storage> element
allows the user to control how stream data is persistently stored, the <life-cycle>
element enables the control of network deployment aspects such as the number of
threads available for processing, the <priority> element controls the processing
priority of this virtual sensor when competing for resources with other virtual sensors,
and the disconnect-buffer-size attribute specifies the amount of storage pro-
vided to deal with temporary disconnections.




�

�




1 <virtual-sensor name="room-monitor" priority="11">
2 <addressing>
3 <predicate key="geographical">BC143</predicate>
4 <predicate key="usage">room monitoring</predicate>
5 </addressing>
6 <life-cycle pool-size="10" />
7 <output-structure>
8 <field name="image" type="binary:jpeg" />
9 <field name="temp" type="int" />

10 </output-structure>
11 <storage permanent-storage="true" />
12 <input-streams>
13 <input-stream name="cam">
14 <stream-source alias="cam" storage-size="1"
15 disconnect-buffer-size="10">
16 <address wrapper="remote">
17 <predicate key="geographical">BC143</predicate>
18 <predicate key="type">Camera</predicate>
19 </address>
20 <query>select * from WRAPPER</query>
21 </stream-source>
22 <stream-source alias="temperature1" storage-size="1m"
23 disconnect-buffer-size="10">
24 <address wrapper="remote">
25 <predicate key="type">temperature</predicate>
26 <predicate key="geographical">BC143-N</predicate>
27 </address>
28 <query>select AVG(temp1) as T1 from WRAPPER</query>
29 </stream-source>
30 <stream-source alias="temperature2" storage-size="1m"
31 disconnect-buffer-size="10">
32 <address wrapper="remote">
33 <predicate key="type">temperature</predicate>
34 <predicate key="geographical">BC143-S</predicate>
35 </address>
36 <query>select AVG(temp2) as T2 from WRAPPER</query>
37 </stream-source>
38 <query>
39 select cam.picture as image, temperature.T1 as temp
40 from cam, temperature1
41 where temperature1.T1 > 30 AND
42 temperature1.T1 = temperature2.T2
43 </query>
44 </input-stream>
45 </input-streams>
46 </virtual-sensor>

Figure 4: A complex virtual sensor definition using other virtual sensors as input

Global Sensor Networks 6 Aberer, Hauswirth, Salehi



In contrast to Figure 4, which shows the specification of a virtual sensor for process-
ing data streams received from other virtual sensors, Figure 5 shows a virtual sensor
producing a data stream generated directly by a sensor, in this case a TinyOS-based
sensor.




�

�




1 <virtual-sensor name="Light-sensor1" priority="11">
2 <class>gsn.vsensor.BridgeVirtualSensor</class>
3 <author>Ali Salehi</author>
4 <email>ali.salehi@epfl.ch</email>
5 <description>A TinyOS temperature vsensor</description>
6 <life-cycle pool-size="10" />
7 <output-specification rate="500" />
8 <addressing>
9 <predicate key="geographical">BC143-N</predicate>

10 <predicate key="type">temperature</predicate>
11 </addressing>
12 <output-structure>
13 <field name="temperature" type="int" />
14 </output-structure>
15 <storage history-size="10s" permanent-storage="true" />
16 <input-streams>
17 <input-stream name="temperature" >
18 <stream-source alias="tsensor" storage-size="1">
19 <address wrapper="tinyos">
20 <predicate key="host">lsirpc24.epfl.ch</predicate>
21 <predicate key="port">9001</predicate>
22 </address>
23 <query>
24 select WRAPPER.TEMPERATURE as temperature,
25 WRAPPER.TIMED as timestamp from WRAPPER
26 </query>
27 </stream-source>
28 <query>
29 select temperature from tsensor
30 </query>
31 </input-stream>
32 </input-streams>
33 </virtual-sensor>

Figure 5: A virtual sensor definition using a physical temperature sensor using TinyOS

In contrast to the complex virtual sensor, this virtual sensor obtains its data stream
from a specific physically deployed sensor, rather than through GSN. This is indi-
cated by the attribute wrapper="tinyos" in line 19. This specification relies on
the availability of the implementation of such a wrapper that connects the GSN to a
specific type of sensor or sensor network. The implementation of the wrapper is re-
ferred to in line 2. The wrapper is responsible for providing implementations of the
access functions used in the specification of the output stream of this virtual sensor
(WRAPPER.TEMPERATURE and WRAPPER.TIMED in lines 23–26). In this variant
of a virtual sensor specification, a binding of the virtual sensor to its physical imple-
mentation is required. Thus the sensor is addressed physically (lines 19–22) rather
than logically. Despite this necessary difference in addressing, locally and remotely
produced data streams are otherwise treated logically the same way.

Global Sensor Networks 7 Aberer, Hauswirth, Salehi



4 Data Stream Processing in GSN
Data stream processing has received substantial attention in the recent years in other
application domains, such as network monitoring or telecommunications. As a result, a
rich set of solutions for query languages and query processing for data streams exist on
which we can build. Currently, most stream processing systems use a global reference
time as basis for their temporal semantics because they were designed for centralized
architectures in the first place.

As GSN is targeted at a distributed “Sensor Internet” imposing a specific temporal
semantics might be inadequate and maintaining it might come at unacceptable cost.
GSN provides essential building blocks for dealing with time but leaves temporal se-
mantics largely to applications. In our opinion, this pragmatic approach is viable as it
reflects the requirements and capabilities of sensor network processing.

In GSN a data stream is a set of timestamped relations, i.e., each element of the
data stream consists of a set of tuples. The order of the data stream is derived from the
ordering of the timestamps and the GSN container provides basic support to manage
and manipulate the timestamps. These services essentially consist of the following
components:

1. a local clock at each GSN container

2. implicit management of a timestamp attribute (TIMEID)

3. implicit timestamping of stream elements upon arrival at the GSN container (re-
ception time)

4. a windowing mechanism which allows the user to define count- or time-based
windows on data streams.

In this way it is always possible to trace the temporal history of data stream ele-
ments throughout the processing history in GSN. Multiple time attributes can be as-
sociated with data streams and can be manipulated through SQL queries. In this way
sensor networks can be used as observation tools for the physical world, in which net-
work and processing delays are inherent properties of the observation process which
cannot be made transparent by abstraction.

Let us illustrate this by a simple example: Assume a bank is being robbed and
images of the crime scene taken by the security cameras are transmitted to the police.
For the insurance company the time the images are taken at the bank will be relevant
when processing a claim, whereas for the police report the time the images arrived at
the police station will be relevant to justify the time of intervention. Depending on the
context the robbery is thus taking place at different times.

We describe now the services provided by GSN for supporting temporal processing.
The production of a new output stream element of a virtual sensor is always triggered
by the arrival of a data stream element from one of its input streams. Thus processing
is event-driven. Informally, the processing steps are then as follows:

1. By default the new data stream element is timestamped using the local clock of
the virtual sensor provided that the stream element had no timestamp.

Global Sensor Networks 8 Aberer, Hauswirth, Salehi



2. Based on the timestamps for each input stream the stream elements are selected
according to the definition of the time window and the resulting sets of relations
are unnested into flat relations.

3. The input stream queries are evaluated and stored into temporary relations.

4. The output query for producing the output stream element is executed based on
the temporary relations.

5. The result is permanently stored if required and all consumers of the virtual
sensor are notified of the new stream element.

Additionally, GSN provides a number of possibilities to control the temporal pro-
cessing of data streams, for example:

	 Bounding the rate of a data stream in order to avoid overloads of the system that
might cause undesirable delays.

	 Sampling of data streams in order to reduce the data rate.
	 Bounding the lifetime of a data stream in order to reserve resources only when

they are needed.

In order to specify data stream processing as described a suitable language is needed.
A number of proposals exist already, so we compare the language approach of GSN
to the major proposals from the literature. In the Aurora project (http://www.cs.brown.
edu/research/aurora/) users can compose stream relationships and construct queries in
a graphical representation which is then used as input for the query planner. The Con-
tinuous Query Language (CQL) suggested by the STREAM project (http://www-db.
stanford.edu/stream/) extends standard SQL syntax with new constructs for tempo-
ral semantics and defines a mapping between streams and relations. Similarly, in
Cougar (http://www.cs.cornell.edu/database/cougar/) an extended version of SQL is
used, modeling temporal characteristics in the language itself.

The StreaQuel language suggested by the TelegraphCQ project (http://telegraph.
cs.berkeley.edu/) follows a different path and tries to isolate temporal semantics from
the query language through external definitions in a C-like syntax. For example, for
specifying a sliding window for a query a for-loop is used. The actual query is then
formulated in an SQL-like syntax. GSN’s approach is related to TelegraphCQ’s as it
separates the time-related constructs from the actual query. Temporal specifications,
e.g., the window size, are provided in XML in the virtual sensor specification, while
data processing is specified in a subset of SQL. At the moment GSN supports SELECT
queries with the full range of operations allowed by the standard SQL syntax, i.e., joins,
subqueries, ordering, grouping, unions, intersections, etc. The advantage of using SQL
is that it is well-known and SQL query optimization and planning techniques can be
directly applied.

Global Sensor Networks 9 Aberer, Hauswirth, Salehi



5 System Architecture and Implementation
Having discussed the basic abstractions and the query processing features of GSN, we
now take a closer look at the overall system architecture. GSN provides a container
implementation for hosting virtual sensors. Similar to Web application servers, GSN
provides an environment in which sensor network services can easily and flexibly be
specified and deployed by hiding most of the system complexity in the GSN container.
Using the declarative specifications, virtual sensors can be deployed and reconfigured
in GSN containers at runtime. Communication and processing among different GSN
containers is performed in a peer-to-peer style through standard Internet and Web pro-
tocols. By viewing GSN containers as cooperating peers in a decentralized system,
we tried avoid some of the intrinsic scalability problems of many other systems which
rely on a centralized or hierarchical architecture. Additionally, we benefit from a high
degree of fault tolerance. Targeting a “Sensor Internet” as the long-term goal we also
need to take into account that such a system will consist of “Autonomous Sensor Sys-
tems” with a large degree of freedom and only limited possibilities of control, similarly
as in the Internet.

Query Processor

Notification Manager

Query Repository

Manager

Life Cycle

Storage

Integrity service

GSN/Web/Web−Services Interfaces

Pool of Virtual Sensors

Stream Quality Manager

Q
ue

ry
 M

an
ag

er

Virtual Sensor Manager

Input Stream Manager

Access control

Figure 6: GSN container architecture

Figure 6 shows the basic architecture of a single GSN container. Each GSN con-
tainer hosts a number of virtual sensor definitions for the set of virtual sensors it is
responsible for. The virtual sensor manager (VSM) is responsible for providing ac-
cess to the virtual sensors, managing the delivery of sensor data, and providing the
necessary administrative infrastructure. The VSM has two main subcomponents: The
life-cycle manager (LCM) provides and manages the resources provided to a virtual
sensor and manages the interactions with a virtual sensor (sensor readings, etc.). The
input stream manager (ISM) is responsible for handling sensor disconnections, missing
values, unexpected delays, etc., thus ensuring stream quality of service via the included
stream quality manager (SQM). The data from/to the VSM passes through the storage
layer which is in charge of providing and managing persistent storage for data streams.
Query processing is done by the query manager (QM) which includes the query pro-
cessor being in charge of SQL parsing, query planning, execution of queries (using an
adaptive query execution plan). The query repository manages all registered queries

Global Sensor Networks 10 Aberer, Hauswirth, Salehi



(subscriptions) and defines and maintains the set of currently active queries for the
query processor. The notification manager deals with the delivery of events and query
results to the registered clients. The notification manager has an extensible architecture
which allows the user to customize its functionality, for example, having results mailed
or being notified via SMS.

The top three layers in Figure 6 deal with access to the GSN container. The inter-
face layer provides access functions for other GSN container and via the Web (through
a browser or via web services). These functionalities are protected and shielded by the
access control layer providing access only to entitled parties and the data integrity layer
which provides data integrity and confidentiality through electronic signatures and en-
cryption. Data access and data integrity can be defined at different levels, for example,
for the whole GSN container or for individual virtual sensor.

We implemented the GSN container in Java. The core implementation of the con-
tainer is around 15,000 lines of Java code which encompasses the query processor,
query manager, network manager, input stream manager, storage manager and life cy-
cle manager in addition to the web interface. For deploying a virtual sensor a user has
to specify the XML deployment descriptors as illustrated in Section 3. For enabling a
new type of sensor or sensor network a Java-based wrapper implementation is required.
At the current time we implemented wrappers for the TinyOS family of wireless sen-
sor networks (e.g., Mica2, Mica2Dot,...), wired and wireless (HTTP-based) cameras
(e.g., AXIS 206W camera) and several RFID readers provided by Texas Instruments.
Since most of the main services are implemented by the GSN container, the implemen-
tation of a new wrapper requires the implementation of a standard wrapper interface
which requires typically around 100-200 lines of Java (e.g., 150 lines for the TinyOS
wrapper).

6 A Simple Case Study
To illustrate the potential applications and flexibility of GSN we provide a simple ap-
plications scenario in this section. Figure 7 shows a small-scale example configuration
in university buildings similar to the ones we are experimenting with.

WAN

Wireless Camera

Sensor network, sensing light,sound
tempreature, pressure, accleration, etc.

RFID Tags

RFID reader

120
121

126 127

128

129

131

130

124

132

123

122

125

Figure 7: A simple scenario

We assume the following, fairly typical hardware setup:

Global Sensor Networks 11 Aberer, Hauswirth, Salehi



	 wireless cameras with built-in HTTP access;
	 wireless sensors (motes) equipped with light, sound, temperature, pressure, GPS,

etc. sensors; we assume that all motes in a single room form a sensor network;
	 RFID tags which are attached to the key rings of people, and to books, mobile

phones and laptops in the buildings; and
	 several RFID readers whose coverage ranges are shown in yellow in Figure 7.

Further we assume that:

	 each computer runs a GSN container;
	 the webcams are accessed directly via HTTP for which some GSN container

holds the corresponding virtual sensor definitions;
	 and the other sensors (motes) or a complete sensor network can either be ac-

cessed via the local area network or are physically connected to one of the com-
puters close to them; in the first case any GSN container can host the virtual
sensor definitions, in the second case, we assume that the computer which has
the physical connection also hosts the virtual sensor definitions.

Given this setup, GSN allows the user to accomplish a large variety of tasks. For
example, the library manager can register a query to be notified when there are more
than 15 books (equipped with RFIDs) in one room in addition to the monthly report on
the most popular books of the month (e.g., to buy more of them). Individual users can
post one-shot queries to the library (room 123) to get the status of certain books or, in
case a book of interest is currently not available, can register a continuous query to be
notified when the book is returned to the library.

In another example, a person in room 128 may be interested to receive a stream
of camera images whenever a movement in the house is detected or the sound sensor
attached to a mote observes some noise above a certain threshold. Assuming the sysad-
min’s office is 130 and he has an RFID tag on his key ring and the user in office 132
wants to meet him, this user can post a passive query to be notified (e.g., via SMS)
whenever the overall GSN system observes the sysadmin in a certain radius around his
office.

If someone loses a mobile phone (with an RFID tag attached to its battery slot),
one can check for its last location in the building simply by posting a query on the
previous observations provided by all sensor networks deployed in the building. One
can also register a continuous query to the system in order to be notified (e.g., via
email) whenever the mobile phone is observed by any of the sensor networks.

7 Related Systems and Conclusions
So far only few architecture architectures to support interconnected sensor networks
exist. Probably the closest approach to GSN is the work by Sgroi et.al. [4] who suggest

Global Sensor Networks 12 Aberer, Hauswirth, Salehi



basic abstractions, a standard set of services, and an API to free application developers
from the details of the underlying sensor networks. However, the focus is on systematic
definition and classification of abstractions and services, while GSN takes a more gen-
eral view and provides not only APIs but a complete query processing and management
infrastructure with a declarative language interface.

Hourglass [5] provides an Internet-based infrastructure for connecting sensor net-
works to applications and offers topic-based discovery and data-processing services.
Similar to GSN it tries to hide internals of sensors from the user but focuses on main-
taining quality of service of data streams in the presence of disconnections while GSN
is more targeted at flexible configurations, general abstractions and distributed query
support.

HiFi [1] provides efficient, hierarchical data stream query processing to acquire,
filter, and aggregate data from multiple devices in a static environment while GSN
takes a peer-to-peer perspective assuming a dynamic environment and allowing any
node to be a data source, data sink, or data aggregator.

IrisNet [2] proposes a two-tier architecture consisting of sensing agents (SA) which
collect and pre-process sensor data and organizing agents (OA) which store sensor data
in a hierarchical, distributed XML database. This database is modeled after the design
of the Internet DNS and supports XPath queries. In contrast to that, GSN follows a
symmetric peer-to-peer approach as already mentioned and supports publish/subscribe
besides active queries.

Besides these architectures, a large number of systems for query processing in sen-
sor networks exist. Aurora (Brandeis University, Braun University, MIT), STREAM
(Stanford), TelegraphCQ (UC Berkeley), and Cougar (Cornell) have already been briefly
related to GSN. Other related systems are Borealis (MIT, Brown University, and Bran-
deis University) and TinyDB (MIT). Additionally, several systems providing publish /
subscribe-style query processing comparable to GSN exist, for example, [3].

The availability of cheap sensing devices will soon create a huge number of sen-
sor networks whose full power will be unleashed as soon as they are interconnected in
a “Sensor Internet” to offer powerful, large-scale data processing and integration. To
enable this vision, we believe that it is important to follow the example of other success-
ful, global information technologies such as the Web, whose success was mainly based
on sharing a few simple logical abstractions and basic communication protocols that
provide universal access and linking among autonomously published data sources. The
Global Sensor Networks (GSN) platform presented in this article follows this model
by making publication of sensor data and access to sensor networks and sensor data as
simple, powerful, and flexible as accessing Web documents. GSN hides arbitrary data
sources behind its virtual sensor abstraction and provides simple and uniform access
to the host of heterogeneous technologies available through powerful declarative spec-
ification and query tools which support on-the-fly configuration and adaptation of the
running system.

Global Sensor Networks 13 Aberer, Hauswirth, Salehi



References
[1] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper,

A. Edakkunni, and W. Hong. Design Considerations for High Fan-in Systems: The
HiFi Approach. In CIDR, 2005.

[2] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architecture
for a World-Wide Sensor Web. IEEE Pervasive Computing, 2(4), 2003.

[3] A. J. G. Gray and W. Nutt. A Data Stream Publish/Subscribe Architecture with
Self-adapting Queries. In International Conference on Cooperative Information
Systems (CoopIS), 2005.

[4] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and J. M. Rabaey. A service-
based universal application interface for ad hoc wireless sensor and actuator net-
works. In W. Weber (Infineon), J. Rabaey (UC Berkeley), and E. Aarts (Philips),
editors, Ambient Intelligence. Springer Verlag, 2005.

[5] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh.
Hourglass: An Infrastructure for Connecting Sensor Networks and Applica-
tions. Technical Report TR-21-04, Harvard University, Electrical Engineering and
Computer Science, 2004. http://www.eecs.harvard.edu/ � syrah/hourglass/papers/
tr2104.pdf.

Global Sensor Networks 14 Aberer, Hauswirth, Salehi


