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Abstract—With the price of wireless sensor technologies di-
minishing rapidly we can expect large numbers of autonomous
sensor networks being deployed in the near future. These sensor
networks will typically not remain isolated but the need of
interconnecting them on the network level to enable integrated
data processing will arise, thus realizing the vision of a global
“Sensor Internet.” This requires a flexible middleware layer
which abstracts from the underlying, heterogeneous sensornet-
work technologies and supports fast and simple deployment
and addition of new platforms, facilitates efficient distributed
query processing and combination of sensor data, provides
support for sensor mobility, and enables the dynamic adaption
of the system configuration during runtime with minimal (zero-
programming) effort. This paper describes the Global Sensor
Networks (GSN) middleware which addresses these goals. We
present GSN’s conceptual model, abstractions, and architecture,
and demonstrate the efficiency of the implementation through
experiments with typical high-load application profiles. The GSN
implementation is available from http://gsn.sourceforge.net/.

I. I NTRODUCTION

Until now, research in the sensor network domain has
mainly focused on routing, data aggregation, and energy con-
servation inside a single sensor network while the intergration
of multiple sensor networks has only been studied to a limited
extent. However, as the price of wireless sensors diminishes
rapidly we can soon expect large numbers of autonomous sen-
sor networks being deployed. These sensor networks will be
managed by different organizations but the interconnection of
their infrastructures along with data integration and distributed
query processing will soon become an issue to fully exploit
the potential of this “Sensor Internet.” This requires platforms
which enable the dynamic integration and management of
sensor networks and the produced data streams.

The Global Sensor Networks (GSN) platform aims at
providing a flexible middleware to accomplish these goals.
GSN assumes the simple model shown in Figure 1: A sensor
network internally may use arbitrary multi-hop, ad-hoc routing
algorithms to deliver sensor readings to one or more sink
node(s). A sink node is a node which is connected to a
more powerful base computer which in turn runs the GSN
middleware and may particpate in a (large-scale) network of
base computers, each running GSN and servicing one or more
sensor networks.
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Fig. 1. GSN model

We do not make any assumptions on the internals of a
sensor network other than that the sink node is connected to
the base computer via a software wrapper conforming to the
GSN API. On top of this physical access layer GSN provides
so-calledvirtual sensors which abstract from implementation
details of access to sensor data and define the data stream
processing to be performed. Local and remote virtual sensors,
their data streams and the associated query processing can be
combined in arbitrary ways and thus enable the user to build a
data-oriented “Sensor Internet” consisting of sensor networks
connected via GSN.

In the follwoing we start with a detailed description of the
virtual sensor abstraction in Section II, discuss GSN’s data
stream processing and time model in Section III, and present
GSN’s system architecture in Section IV. We evaluate the
performance of GSN in Section V and discuss related work
in Section VI before concluding.

II. V IRTUAL SENSORS

The key abstraction in GSN is thevirtual sensor. Virtual
sensors abstract from implementation details of access to
sensor data and correspond either to a data stream received
directly from sensors or to a data stream derived from other
virtual sensors. A virtual sensor can be any kind of data
producer, for example, a real sensor, a wireless camera, a
desktop computer, a cell phone, or any combination of virtual
sensors. A virtual sensor may have any number of input
data streams and produces exactly one output data stream
based on the input data streams and arbitrary local processing.
The specification of a virtual sensor provides all necessary
information required for deploying and using it, including
(1) metadata used for identification and discovery, (2) the
structure of the data streams which the virtual sensor consumes
and produces (3) an SQL-based specification of the stream
processing performed in a virtual sensor, and (4) functional
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1 <virtual-sensor name="room-monitor" priority="11">
2 <addressing>
3 <predicate key="geographical">BC143</predicate>
4 <predicate key="usage">room monitoring</predicate>
5 </addressing>
6 <life-cycle pool-size="10" />
7 <output-structure>
8 <field name="image" type="binary:jpeg" />
9 <field name="temp" type="int" />
10 </output-structure>
11 <storage permanent="true" history-size="10h" />
12 <streams>
13 <stream name="cam">
14 <source alias="cam" storage-size="1"
15 disconnect-buffer-size="10">
16 <address wrapper="remote">
17 <predicate key="geographical">BC143</predicate>
18 <predicate key="type">Camera</predicate>
19 </address>
20 <query>select * from WRAPPER</query>
21 </source>
22 <source alias="temperature1" storage-size="1m"
23 disconnect-buffer-size="10">
24 <address wrapper="remote">
25 <predicate key="type">temperature</predicate>
26 <predicate key="geographical">BC143-N</predicate>
27 </address>
28 <query>select AVG(temp1) as T1 from WRAPPER</query>
29 </source>
30 <source alias="temperature2" storage-size="1m"
31 disconnect-buffer-size="10">
32 <address wrapper="remote">
33 <predicate key="type">temperature</predicate>
34 <predicate key="geographical">BC143-S</predicate>
35 </address>
36 <query>select AVG(temp2) as T2 from WRAPPER</query>
37 </source>
38 <query>
39 select cam.picture as image, temperature.T1 as temp
40 from cam, temperature1
41 where temperature1.T1 > 30 AND
42 temperature1.T1 = temperature2.T2
43 </query>
44 </stream>
45 </streams>
46 </virtual-sensor>

Fig. 2. A virtual sensor definition

properties related to persistency, error handling, life-cycle,
management, and physical deployment.

To support rapid deployment, these properties of virtual
sensors are provided in a declarative deployment descriptor.
Figure 2 shows an example which defines a virtual sensor that
reads two temperature sensors and in case both of them have
the same reading above a certain threshold in the last minute,
the virtual sensor returns the latest picture from the webcam
in the same room together with the measured temperature.

A virtual sensor has a unique name (thename attribute
in line 1) and can be equipped with a set of key-value
pairs (lines 2–5), i.e., associated with metadata. Both types
of addressing information can be registered and discovered
in GSN and other virtual sensors can use either the unique
name or logical addressing based on the metadata to refer to
a virtual sensor. The example specification above defines a
virtual sensor with three input streams which are identified
by their metadata (lines 17–18, 25–26, and 33–34), i.e., by
logical addressing. For example, the first temperature sensor
is addressed by specifying two requirements on its metadata
(lines 25–26), namely that it is of type temperature sensor and
at a certain physical certain location. By using multiple input
streams Figure 2 also demonstrates GSN’s ability to access
multiple stream producers simultaneously. For the moment,
we assume that the input streams (two temperature sensors and
a webcam) have already been defined in other virtual sensor
definitions (how this is done, will be described below).

In GSN data streams are temporal sequences of timestamped
tuples. This is in line with the model used in most stream

processing systems. The structure of the data stream a virtual
sensor produces is encoded in XML as shown in lines 7–
10. The structure of the input streams is learned from the
respective specifications of their virtual sensor definitions.
Data stream processing is separated into two stages: (1)
processing applied to the input streams (lines 20, 28, and 36)
and (2) processing for combining data from the different input
streams and producing the output stream (lines 38–43). To
specify the processing of the input streams we use SQL queries
which refer to the input streams by the reserved keyword
WRAPPER. The attributewrapper="remote" indicates that
the data stream is obtained through the network from another
GSN instance. In the case of a directly connected local sensor,
thewrapper attribute would reference the required wrapper.
For example,wrapper="tinyos" would denote a TinyOS-
based sensor whose data stream is accessed via GSN’s TinyOS
wrapper. GSN already includes wrappers for all major TinyOS
platforms (Mica2, Mica2Dot, etc.), for wired and wireless
(HTTP-based) cameras (e.g., AXIS 206W), several RFID read-
ers (Texas Instruments, Alien Technology), Bluetooth devices,
Shockfish, WiseNodes, epuck robots, etc. The implementation
effort for wrappers is rather low, for example, the RFID reader
wrapper has 50 lines of code (LOC), the TinyOS 2.x wrapper
has 80 LOC, and the generic serial wrapper has 180 LOC.

In the given example the output stream joins the data
received from two temperature sensors and returns a camera
image if certain conditions on the temperature are satisfied
(lines 38–43). To enable the SQL statement in lines 39–42 to
produce the output stream, it needs to be able to reference
the required input data streams which is accomplished by
the alias attribute (lines 14, 22, and 30) that defines a
symbolic name for each input stream. The definition of the
structure of the output stream directly relates to the data stream
processing that is performed by the virtual sensor and needsto
be consistent with it, i.e., the data fields in theselect clause
(line 40) must match the definition of the output stream in lines
7–10.

In the design of GSN specifications we decided to separate
the temporal aspects from the relational data processing using
SQL. The temporal processing is controlled by various at-
tributes provided in the input and output stream specifications,
e.g., the attributestorage-size (lines 14, 22, and 30)
defines the time window used for producing the input stream’s
data elements. Due to its specific importance the temporal
processing will be discussed in detail in Section III.

In addition to the specification of the data-related prop-
erties a virtual sensor also includes high-level specifica-
tions of functional properties: Thepriority attribute (line
1) controls the processing priority of a virtual sensor, the
<life-cycle> element (line 6) enables the control and
management of resources provided to a virtual sensor such
as the maximum number of threads/queues available for pro-
cessing, the<storage> element (line 11) allows the user
to control how output stream data is persistently stored, and
the disconnect-buffer-size attribute (lines 15, 23,
31) specifies the amount of storage provided to deal with



temporary disconnections.
For example, in Figure 2 thepriority attribute in line

1 assigns a priority of 11 to this virtual sensor (10 is
the lowest priority and 20 the highest, default is 10), the
<life-cycle> element in line 6 specifies a maximum
number of 10 threads, which means that if the pool size is
reached, data will be dropped (if no pool size is specified, it
will be controlled by GSN depending on the current load),
the <storage> element in line 11 defines that the output
stream’s data elements of the last 10 hours (history-size
attribute) are stored permanently to enable off-line processing,
the storage-size attribute in line 14 defines that the last
image taken by the webcam will be returned irrespective of
the time it was taken, whereas thestorage-size attributes
in lines 22 and 30 define a time window of one minute
for the amount of sensor readings subsequent queries will
be run on, i.e., theAVG operations in lines 28 and 36 are
executed on the sensor readings received in the last minute
which of course depends on the rate at which the underlying
temperature virtual sensor produces its readings, and finally,
thedisconnect-buffer-size attributes in lines 15, 23,
and 31 specify up to 10 missed sensor readings to be read
after a disconnection from the associated stream source.

The query producing the output stream (lines 39–42) also
demonstrates another interesting capability of GSN as it also
mediates among three different flavors of queries: The virtual
sensor itself uses continuous queries on the temperature data,
a “normal” database query on the camera data and produces a
result only if certain conditions are satisfied, i.e., a notification
analogous to pub/sub or active rules.

Virtual sensors are a powerful abstraction mechanism which
enables the user to declaratively specify sensors and combi-
nations of arbitrary complexity. Virtual sensors can be de-
fined and deployed to a running GSN instance at any time
without having to stop the system. Also dynamic unloading
is supported but should be used carefully as unloading a
virtual sensor may have undesired (cascading) effects. Dueto
space limitations we cannot describe all possible configuration
options, for example, how virtual sensors are mapped to
wrappers which facilitate the physical access or the various
notification possibilities, such as email or SMS. A complete
list along with a user manual and examples is available from
the GSN website at http://gsn.sourceforge.net/.

III. D ATA STREAM PROCESSING AND TIME MODEL

Data stream processing has received substantial attentionin
the recent years in other application domains, such as network
monitoring or telecommunications. As a result, a rich set of
query languages and query processing approaches for data
streams exist on which we can build. A central building block
in data stream processing is the time model as it defines the
temporal semantics of data and thus determines the design and
implementation of a system. Currently, most stream processing
systems use a global reference time as the basis for their
temporal semantics because they were designed for centralized
architectures in the first place. As GSN is targeted at enabling

a distributed “Sensor Internet,” imposing a specific temporal
semantics seems inadequate and maintaining it might come at
unacceptable cost. GSN provides the essential building blocks
for dealing with time, but leaves temporal semantics largely
to applications allowing them to express and satisfy their
specific, largely varying requirements. In our opinion, this
pragmatic approach is viable as it reflects the requirements
and capabilities of sensor network processing.

In GSN a data stream is a set of timestamped tuples. The
order of the data stream is derived from the ordering of the
timestamps and GSN provides basic support for managing and
manipulating the timestamps. The following essential services
are provided:

1) a local clock at each GSN container;
2) implicit management of a timestamp attribute

(TIMEID);
3) implicit timestamping of tuples upon arrival at the GSN

container (reception time);
4) a windowing mechanism which allows the user to define

count- or time-based windows on data streams.

In this way it is always possible to trace the temporal history
of data stream elements throughout the processing history.
Multiple time attributes can be associated with data streams
and can be manipulated through SQL queries. Thus sensor
networks can be used as observation tools for the physical
world, in which network and processing delays are inherent
properties of the observation process which cannot be made
transparent by abstraction. Let us illustrate this by a simple
example: Assume a bank is being robbed and images of the
crime scene taken by the security cameras are transmitted to
the police. For the insurance company the time at which the
images are taken in the bank will be relevant when processing
a claim, whereas for the police report the time the images
arrived at the police station will be relevant to justify thetime
of intervention. Depending on the context the robbery is thus
taking place at different times.

The temporal processing in GSN is defined as follows: The
production of a new output stream element of a virtual sensor
is always triggered by the arrival of a data stream element
from one of its input streams. Thus processing is event-driven
and the following processing steps are performed:

1) By default the new data stream element is timestamped
using the local clock of the virtual sensor provided that
the stream element had no timestamp.

2) Based on the timestamps for each input stream the
stream elements are selected according to the definition
of the time window and the resulting sets of relations
are unnested into flat relations.

3) The input stream queries are evaluated and stored into
temporary relations.

4) The output query for producing the output stream ele-
ment is executed based on the temporary relations.

5) The result is permanently stored if required (possibly
after some processing) and all consumers of the virtual
sensor are notified of the new stream element.
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Fig. 3. Conceptual data flow in a GSN node

Figure 3 shows the logical data flow inside a GSN node.
Additionally, GSN provides a number of possibilities to

control the temporal processing of data streams, e.g.:
• The rate of a data stream can be bounded in order to avoid

overloading the system which might cause undesirable
delays.

• Data streams can be sampled to reduce the data rate.
• A windowing mechanism can be used to limit the amount

of data that needs to be stored for query processing.
Windows can be defined using absolute, landmark, or
sliding intervals.

• The lifetime of data streams and queries can be bounded
such that they only consume resources when actually
active. Lifetimes can be specified in terms of explicit
start and end times, start time and duration, or number
of tuples.

As tuples (sensor readings) are timestamped, queries can
also deal explicitly with time. For example, the query in
lines 39–42 of Figure 2 could be extended such that it
explicitly specifies the maximum time interval between the
readings of the two temperatures and the maximum age of
the readings. This would additionally require changes in the
input stream definitions as the input streams then must provide
this information, and also the averaging of the temperature
readings (lines 28 and 36) would have to be changed to be
explicit in respect to the time dimension. Additionally, GSN
supports the integration of continuous and historical data. For
example, if the user wants to be notified when the temperature
is 10 degrees above the average temperature in the last 24
hours, he/she can simply define two stream sources, getting
data from the same wrapper but with different window sizes,
i.e., 1 (count) and 24h (time), and then simply write a query
specifying the original condition with these input streams.

To specify the data stream processing a suitable language is
needed. A number of proposals exist already, so we compare
the language approach of GSN to the major proposals from the
literature. In the Aurora project [5] (http://www.cs.brown.edu/

research/aurora/) users can compose stream relationshipsand
construct queries in a graphical representation which is then
used as input for the query planner. The Continuous Query
Language (CQL) suggested by the STREAM project [2] (http:
//www-db.stanford.edu/stream/) extends standard SQL syntax
with new constructs for temporal semantics and defines a map-
ping between streams and relations. Similarly, in Cougar [13]
(http://www.cs.cornell.edu/database/cougar/) an extended ver-
sion of SQL is used, modeling temporal characteristics in
the language itself. The StreaQuel language suggested by
the TelegraphCQ project [3] (http://telegraph.cs.berkeley.edu/)
follows a different path and tries to isolate temporal semantics
from the query language through external definitions in a C-
like syntax. For example, for specifying a sliding window for
a query afor-loop is used. The actual query is then formulated
in an SQL-like syntax.

GSN’s approach is related to TelegraphCQ’s as it separates
the time-related constructs from the actual query. Temporal
specifications, e.g., the window size and rates, are specified in
XML in the virtual sensor specification, while data processing
is specified in SQL. At the moment GSN supports SQL queries
with the full range of operations allowed by the standard
SQL syntax, i.e., joins, subqueries, ordering, grouping, unions,
intersections, etc. The advantage of using SQL is that it is well-
known and SQL query optimization and planning techniques
can be directly applied.

IV. SYSTEM ARCHITECTURE

GSN uses a container-based architecture for hosting virtual
sensors. Similar to application servers, GSN provides an
environment in which sensor networks can easily and flexibly
be specified and deployed by hiding most of the system
complexity in the GSN container. Using the declarative spec-
ifications, virtual sensors can be deployed and reconfigured
in GSN containers at runtime. Communication and processing
among different GSN containers is performed in a peer-to-peer
style through standard Internet and Web protocols. By viewing
GSN containers as cooperating peers in a decentralized system,
we tried avoid some of the intrinsic scalability problems of
many other systems which rely on a centralized or hierarchical
architecture. Targeting a “Sensor Internet” as the long-term
goal we also need to take into account that such a system will
consist of “Autonomous Sensor Systems” with a large degree
of freedom and only limited possibilities of control, similarly
as in the Internet.

Figure 4 shows the layered architecture of a GSN container.
Each GSN container hosts a number of virtual sensors

it is responsible for. The virtual sensor manager (VSM) is
responsible for providing access to the virtual sensors, man-
aging the delivery of sensor data, and providing the necessary
administrative infrastructure. The VSM has two subcompo-
nents: The life-cycle manager (LCM) provides and manages
the resources provided to a virtual sensor and manages the
interactions with a virtual sensor (sensor readings, etc.). The
input stream manager (ISM) is responsible for managing the
streams, allocating resources to them, and enabling resource
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sharing among them while its stream quality manager subcom-
ponent (SQM) handles sensor disconnections, missing values,
unexpected delays, etc., thus ensuring the QoS of streams. All
data from/to the VSM passes through the storage layer which
is in charge of providing and managing persistent storage
for data streams. Query processing in turn relies on all of
the above layers and is done by the query manager (QM)
which includes the query processor being in charge of SQL
parsing, query planning, and execution of queries. The query
repository manages all registered queries (subscriptions) and
defines and maintains the set of currently active queries for
the query processor. The notification manager deals with the
delivery of events and query results to registered, local or
remote consumers. The notification manager has an extensible
architecture which allows the user to largely customize its
functionality, for example, having results mailed or being
notified via SMS.

The top three layers of the architecture deal with access
to the GSN container. The interface layer provides access
functions for other GSN containers and via the Web (through
a browser or via web services). These functionalities are
protected and shielded by the access control layer providing
access only to entitled parties and the data integrity layer
which provides data integrity and confidentiality through elec-
tronic signatures and encryption. Data access and data integrity
can be defined at different levels, for example, for the whole
GSN container or at a virtual sensor level.

An interesting feature of GSN’s architecture is the support
for sensor mobility based on automatic detection of sensors
and zero-programing deployment: A large number of sensors
already support the IEEE 1451 standard which describes a

sensor’s properties and measurement characteristics suchas
type of measurement, scaling, and calibration informationin
a so-called Transducer Electronic Data Sheet (TEDS) which is
stored inside the sensor. When a new sensor node is detected
by GSN, for example, by moving into the transmission range
of a sink node, GSN requests its TEDS and uses the contained
information for the dynamic generation of a virtual sensor
description by using a virtual sensor description template
and deriving the sensor-specific fields of the template from
the data extracted from the TEDS. At the moment TEDS
provides only that information about a sensor which enables
interaction with it. Thus for some parts of the generated virtual
sensor description, e.g., security requirements, storageand
resource management, etc., we use default values. Then GSN
dynamically instantiates the new virtual sensor based on this
synthesized description and all local and remote processing
dependent on the new sensor is executed. This is done on-the-
fly while GSN is running. The inverse process is performed if
a sensor is no longer associated with a GSN node, e.g., it has
moved away.

In connection with RFID tags this “plug-and-play” feature
of GSN even provides new and interesting types of mobility
which we will investigate in future work. For example, an
RFID tag may store queries which are executed as soon as
the tag is detected by a reader, thus transforming RFID tags
from simple means for identification and description into a
container for physically mobile queries which opens up new
and interesting possibilities for mobile information systems.

V. EVALUATION

GSN aims at providing a zero-programming and efficient
infrastructure for large-scale interconnected sensor networks.
To justify this claim we experimentally evaluate the throughput
of the local sensor data processing and the performance
and scalability of query processing as the key influencing
factors. As virtual sensors are addressed explicitly and GSN
nodes communicate directly in a point-to-point (peer-to-peer)
style, we can reasonably extrapolate the experimental results
presented in this section to larger network sizes. For our
experiments, we used the setup shown in Figure 5.

The GSN network consisted of 5 standard Dell desktop PCs
with Pentium 4, 3.2GHz Intel processors with 1MB cache,
1GB memory, 100Mbit Ethernet, running Debian 3.1 Linux
with an unmodified kernel 2.4.27. For the storage layer use
standard MySQL 5.18. The PCs were attached to the following
sensor networks as shown in Figure 5.

• A sensor network consisting of 10 Mica2 motes, each
mote being equipped with light and temperature sensors.
The packet size was configured to 15 Bytes (data portion
excluding the headers).

• A sensor network consisting of 8 Mica2 motes, each
equipped with light, temperature, acceleration, and sound
sensors. The packet size was configured to 100 Bytes
(data portion excluding the headers). The maximum pos-
sible packet size for TinyOS 1.x packets of the current
TinyOS implementation is 128 bytes (including headers).
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• A sensor network consisting of 4 Tiny-Nodes (TinyOS
compatible motes produced by Shockfish, http://www.
shockfish.com/), each equipped with a light and two
temperature sensors with TinyOS standard packet size of
29 Bytes.

• 15 Wireless network cameras (AXIS 206W) which can
capture 640x480 JPEG pictures with a rate of 30 frames
per second. 5 cameras use the highest available com-
pression (16kB average image size), 5 use medium
compression (32kB average image size), and 5 use no
compression (75kB average image size). The cameras
are connected to a Linksys WRT54G wireless access
point via 802.11b and the access point is connected via
100Mbit Ethernet to a GSN node.

• A Texas Instruments Series 6000 S6700 multi-protocol
RFID reader with three different kind of tags, which can
keep up to 8KB of data. 128 Bytes capacity.

The motes in each sensor network form a sensor network
and routing among the motes is done with the surge multi-hop
ad-hoc routing algorithm provided by TinyOS.

A. Internal processing time

In the first experiment we wanted to determine the internal
processing time a GSN node requires for processing sensor
readings, i.e., the time interval when the wrapper gets the
sensor data until the data can be provided to clients by the
associated virtual sensor. This delay depends on the size of
the sensor data and the rate at which the data is produced, but
is independent of the number of clients wanting to receive the
sensor data. Thus it is a lower bound and characterizes the
efficiency of the implementation.

We configured the 22 motes and 15 cameras to produce data
every 10, 25, 50, 100, 250, 500, and 1000 milliseconds. As
the cameras have a maximum rate of 30 frames/second, i.e.,
a frame every 33 milliseconds, we added a proxy between

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700  800  900  1000

P
ro

ce
ss

in
g 

T
im

e 
in

 (
m

s)

Output Interval (ms)

15 bytes
50 bytes

100 bytes
16KB
32KB
75 KB

Fig. 6. GSN node under time-triggered load

the GSN node and the WRT54G access point which repeated
the last available frame in order to reach a frame interval of
10 milliseconds. All GSN instances used the Sun Java Virtual
Machine (1.5.0 update 6) with memory restricted to 64MB.

The experiment was conducted as follows: All motes and
cameras were set to the same rate and produced data for
8 hours and we measured the processing delay. This was
repeated 3 times for each rate and the measurements were
averaged. Figure 6 shows the results of the experiment for the
different data sizes produced by the motes and the cameras.

High data rates put some stress on the system but the abso-
lute delays are still quite tolerable. The delays drop sharply if
the interval is increased and then converge to a nearly constant
time at a rate of approximately 4 readings/second or less. This
result shows that GSN can tolerate high rates and incurs low
overhead for realistic rates as in practical sensor deployments
lower rates are more probable due to energy constraints of the
sensor devices while still being able to deal also with high
rates.

B. Scalability in the number of queries and clients

In this experiment the goal was to measure GSN’s scalabil-
ity in the number of clients and queries. To do so, we used
two 1.8 GHz Centrino laptops with 1GB memory as shown in
Figure 5 which each ran 250 lightweight GSN instances. The
lightweight GSN instance only included those components that
we needed for the experiment. Each GSN-light instance used a
random query generator to generate queries with varying table
names, varying filtering condition complexity, and varying
configuration parameters such as history size, sampling rate,
etc. For the experiments we configured the query generator
to produce random queries with 3 filtering predicates in the
where clause on average, using random history sizes from
1 second up to 30 minutes and uniformly distributed random
sampling rates (seconds) in the interval[0.01, 1].

Then we configured the motes such that they produce
a measurement each second but would deliver it with a
probability P < 1, i.e., a reading would be dropped with
probability1−P > 0. Additionally, each mote could produce
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a burst ofR readings at the highest possible speed depending
on the hardware with probabilityB > 0, where R is a
uniformly random integer from the interval[1, 100]. I.e., a
burst would occur with a probability ofP ∗ B and would
produce randomly 1 up to 100 data items. In the experiments
we usedP = 0.85 and B = 0.3. On the desktops we used
MySQL as the database with the recommended configuration
for large memory systems. Figure 7 shows the results for a
stream element size (SES) of 30 Bytes. Using SES=32KB
gives the same latencies. Due to space limitations we do not
include this figure.

The spikes in the graphs are bursts as described above.
Basically this experiment measures the performance of the
database server under various loads which heavily depends
on the used database. As expected the database server’s
performance is directly related to the number of the clientsas
with the increasing number of clients more queries are sent to
the database and also the cost of the query compiling increases.
Nevertheless, the query processing time is reasonably low as
the graphs show that the average time to process a query if
500 clients issue queries is less than 50ms, i.e., approximately
0.5ms per client. If required, a cluster could be used to the
improve query processing times which is supported by most
of the existing databases already.

In the next experiment shown in Figure 8 we look at
the average processing time for a client excluding the query
processing part. In this experiment we usedP = 0.85,
B = 0.05, andR is as above.

We can make three interesting observations from Figure 8:

1) GSN only allocates resources for virtual sensors that are
being used. The left side of the graph shows the situation
when the first clients arrive and use virtual sensors.
The system has to instantiate the virtual sensor and
activates the necessary resources for query processing,
notification, connection caching, etc. Thus for the first
clients to arrive average processing times are a bit higher.
CPU usage is around 34% in this interval. After a short
time (around 30 clients) the initialization phase is over
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and the average processing time decreases as the newly
arriving clients can already use the services in place.
CPU usage then drops to around 12%.

2) Again the spikes in the graph relate to bursts. Although
the processing time increases considerably during the
bursts, the system immediately restores its normal be-
havior with low processing times when the bursts are
over, i.e., it is very responsive and quickly adopts to
varying loads.

3) As the number of clients increases, the average pro-
cessing time for each client decreases. This is due to
the implemented data sharing functionalities. As the
number of clients increases, also the probability of using
common resources and data items grows.

VI. RELATED WORK

So far only few architectures to support interconnected sen-
sor networks exist. Sgroi et al. [11] suggest basic abstractions,
a standard set of services, and an API to free application
developers from the details of the underlying sensor networks.
However, the focus is on systematic definition and classifi-
cation of abstractions and services, while GSN takes a more
general view and provides not only APIs but a complete query
processing and management infrastructure with a declarative
language interface.

Hourglass [12] provides an Internet-based infrastructurefor
connecting sensor networks to applications and offers topic-
based discovery and data-processing services. Similar to GSN
it tries to hide internals of sensors from the user but focuses
on maintaining quality of service of data streams in the
presence of disconnections while GSN is more targeted at
flexible configurations, general abstractions, and distributed
query support.

HiFi [7] provides efficient, hierarchical data stream query
processing to acquire, filter, and aggregate data from multiple
devices in a static environment while GSN takes a peer-to-peer
perspective assuming a dynamic environment and allowing any
node to be a data source, data sink, or data aggregator.



IrisNet [8] proposes a two-tier architecture consisting of
sensing agents (SA) which collect and pre-process sensor
data and organizing agents (OA) which store sensor data in
a hierarchical, distributed XML database. This database is
modeled after the design of the Internet DNS and supports
XPath queries. X-Tree [] extends IrisNet by providing a
database centric programming model (stored functions and
stored queries) with efficient distributed execution. In contrast
to that, GSN follows a symmetric peer-to-peer approach as
already mentioned and supports relational queries using SQL.

Rooney et al. [10] propose so-called EdgeServers to inte-
grate sensor networks into enterprise networks. EdgeServers
filter and aggregate raw sensor data (using application specific
code) to reduce the amount of data forwarded to application
servers. The system uses publish/subscribe style communica-
tion and also includes specialized protocols for the integration
of sensor networks. While GSN provides a general-purpose
infrastructure for sensor network deployment and distributed
query processing, the EdgeServer system targets enterprise
networks with application-based customization to reduce sen-
sor data traffic in closed environments.

Besides these architectures, a large number of systems
for query processing in sensor networks exist. Aurora [5]
(Brandeis University, Braun University, MIT), STREAM [2]
(Stanford), TelegraphCQ [3] (UC Berkeley), and Cougar [13]
(Cornell) have already been discussed and related to GSN in
Section III.

In the Medusa distributed stream-processing system [14],
Aurora is being used as the processing engine on each of
the participating nodes. Medusa takes Aurora queries and
distributes them across multiple nodes and particularly focuses
on load management using economic principles and high
availability issues. The Borealis stream processing engine [1]
is based on the work in Medusa and Aurora and supports dy-
namic query modification, dynamic revision of query results,
and flexible optimization. These systems focus on (distributed)
query processing only, which is only one specific component
of GSN, and focus on sensor heavy and server heavy applica-
tion domains.

Additionally, several systems providing publish/subscribe-
style query processing comparable to GSN exist, for example,
[9]. GSN can also integrate easily existing approaches (as a
new virtual sensor) for precision estimation, for example,[6]
or aggregation handling uncertainty, for example, [4].

VII. C ONCLUSIONS

The full potential of sensor technology will be unleashed
through large-scale (up to global scale) data-oriented integra-
tion of sensor networks. To realize this vision of a “Sensor
Internet” we suggest our Global Sensor Networks (GSN)
middleware which enables fast and flexible deployment and
interconnection of sensor networks. Through its virtual sensor
abstraction which can abstract from arbitrary stream data
sources and its powerful declarative specification and query
tools, GSN provides simple and uniform access to the host
of heterogeneous technologies. GSN offers zero-programming

deployment and data-oriented integration of sensor networks
and supports dynamic configuration and adaptation at runtime.
Zero-programming deployment in conjunction with GSN’s
plug-and-play detection and deployment feature provides a
basic functionality to enable sensor mobility. GSN is imple-
mented in Java and C/C++ and is available from SourceForge
at http://gsn.sourcefourge.net/. The experimental evaluation of
GSN demonstrates that the implementation is highly efficient,
offers very good performance and throughput even under high
loads and scales gracefully in the number of nodes, queries,
and query complexity.
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