44 research outputs found

    Data Set Modelability by QSAR

    Get PDF
    We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to separate non-modelable from the modelable datasets

    Study of the Applicability Domain of the QSAR Classification Models by Means of the Rivality and Modelability Indexes

    Get PDF
    The reliability of a QSAR classification model depends on its capacity to achieve confident predictions of new compounds not considered in the building of the model. The results of this external validation process show the applicability domain (AD) of the QSAR model and, therefore, the robustness of the model to predict the property/activity of new molecules. In this paper we propose the use of the rivality and modelability indexes for the study of the characteristics of the datasets to be correctly modeled by a QSAR algorithm and to predict the reliability of the built model to prognosticate the property/activity of new molecules. The calculation of these indexes has a very low computational cost, not requiring the building of a model, thus being good tools for the analysis of the datasets in the first stages of the building of QSAR classification models. In our study, we have selected two benchmark datasets with similar number of molecules but with very different modelability and we have corroborated the capacity of the predictability of the rivality and modelability indexes regarding the classification models built using Support Vector Machine and Random Forest algorithms with 5-fold cross-validation and leave-one-out techniques. The results have shown the excellent ability of both indexes to predict outliers and the applicability domain of the QSAR classification models. In all cases, these values accurately predicted the statistic parameters of the QSAR models generated by the algorithm

    Characterisation of data resources for in silico modelling: benchmark datasets for ADME properties.

    Get PDF
    Introduction: The cost of in vivo and in vitro screening of ADME properties of compounds has motivated efforts to develop a range of in silico models. At the heart of the development of any computational model are the data; high quality data are essential for developing robust and accurate models. The characteristics of a dataset, such as its availability, size, format and type of chemical identifiers used, influence the modelability of the data. Areas covered: This review explores the usefulness of publicly available ADME datasets for researchers to use in the development of predictive models. More than 140 ADME datasets were collated from publicly available resources and the modelability of 31selected datasets were assessed using specific criteria derived in this study. Expert opinion: Publicly available datasets differ significantly in information content and presentation. From a modelling perspective, datasets should be of adequate size, available in a user-friendly format with all chemical structures associated with one or more chemical identifiers suitable for automated processing (e.g. CAS number, SMILES string or InChIKey). Recommendations for assessing dataset suitability for modelling and publishing data in an appropriate format are discussed

    Computational approaches to virtual screening in human central nervous system therapeutic targets

    Get PDF
    In the past several years of drug design, advanced high-throughput synthetic and analytical chemical technologies are continuously producing a large number of compounds. These large collections of chemical structures have resulted in many public and commercial molecular databases. Thus, the availability of larger data sets provided the opportunity for developing new knowledge mining or virtual screening (VS) methods. Therefore, this research work is motivated by the fact that one of the main interests in the modern drug discovery process is the development of new methods to predict compounds with large therapeutic profiles (multi-targeting activity), which is essential for the discovery of novel drug candidates against complex multifactorial diseases like central nervous system (CNS) disorders. This work aims to advance VS approaches by providing a deeper understanding of the relationship between chemical structure and pharmacological properties and design new fast and robust tools for drug designing against different targets/pathways. To accomplish the defined goals, the first challenge is dealing with big data set of diverse molecular structures to derive a correlation between structures and activity. However, an extendable and a customizable fully automated in-silico Quantitative-Structure Activity Relationship (QSAR) modeling framework was developed in the first phase of this work. QSAR models are computationally fast and powerful tool to screen huge databases of compounds to determine the biological properties of chemical molecules based on their chemical structure. The generated framework reliably implemented a full QSAR modeling pipeline from data preparation to model building and validation. The main distinctive features of the designed framework include a)efficient data curation b) prior estimation of data modelability and, c)an-optimized variable selection methodology that was able to identify the most biologically relevant features responsible for compound activity. Since the underlying principle in QSAR modeling is the assumption that the structures of molecules are mainly responsible for their pharmacological activity, the accuracy of different structural representation approaches to decode molecular structural information largely influence model predictability. However, to find the best approach in QSAR modeling, a comparative analysis of two main categories of molecular representations that included descriptor-based (vector space) and distance-based (metric space) methods was carried out. Results obtained from five QSAR data sets showed that distance-based method was superior to capture the more relevant structural elements for the accurate characterization of molecular properties in highly diverse data sets (remote chemical space regions). This finding further assisted to the development of a novel tool for molecular space visualization to increase the understanding of structure-activity relationships (SAR) in drug discovery projects by exploring the diversity of large heterogeneous chemical data. In the proposed visual approach, four nonlinear DR methods were tested to represent molecules lower dimensionality (2D projected space) on which a non-parametric 2D kernel density estimation (KDE) was applied to map the most likely activity regions (activity surfaces). The analysis of the produced probabilistic surface of molecular activities (PSMAs) from the four datasets showed that these maps have both descriptive and predictive power, thus can be used as a spatial classification model, a tool to perform VS using only structural similarity of molecules. The above QSAR modeling approach was complemented with molecular docking, an approach that predicts the best mode of drug-target interaction. Both approaches were integrated to develop a rational and re-usable polypharmacology-based VS pipeline with improved hits identification rate. For the validation of the developed pipeline, a dual-targeting drug designing model against Parkinson’s disease (PD) was derived to identify novel inhibitors for improving the motor functions of PD patients by enhancing the bioavailability of dopamine and avoiding neurotoxicity. The proposed approach can easily be extended to more complex multi-targeting disease models containing several targets and anti/offtargets to achieve increased efficacy and reduced toxicity in multifactorial diseases like CNS disorders and cancer. This thesis addresses several issues of cheminformatics methods (e.g., molecular structures representation, machine learning, and molecular similarity analysis) to improve and design new computational approaches used in chemical data mining. Moreover, an integrative drug-designing pipeline is designed to improve polypharmacology-based VS approach. This presented methodology can identify the most promising multi-targeting candidates for experimental validation of drug-targets network at the systems biology level in the drug discovery process

    Chembench: A Publicly Accessible, Integrated Cheminformatics Portal

    Get PDF
    The enormous increase in the amount of publicly available chemical genomics data and the growing emphasis on data sharing and open science mandates that cheminformaticians also make their models publicly available for broad use by the scientific community. Chembench is one of the first publicly accessible, integrated cheminformatics Web portals. It has been extensively used by researchers from different fields for curation, visualization, analysis, and modeling of chemogenomics data. Since its launch in 2008, Chembench has been accessed more than 1 million times by more than 5000 users from a total of 98 countries. We report on the recent updates and improvements that increase the simplicity of use, computational efficiency, accuracy, and accessibility of a broad range of tools and services for computer-assisted drug design and computational toxicology available on Chembench. Chembench remains freely accessible at https://chembench.mml.unc.ed

    Roughness of molecular property landscapes and its impact on modellability

    Full text link
    In molecular discovery and drug design, structure-property relationships and activity landscapes are often qualitatively or quantitatively analyzed to guide the navigation of chemical space. The roughness (or smoothness) of these molecular property landscapes is one of their most studied geometric attributes, as it can characterize the presence of activity cliffs, with rougher landscapes generally expected to pose tougher optimization challenges. Here, we introduce a general, quantitative measure for describing the roughness of molecular property landscapes. The proposed roughness index (ROGI) is loosely inspired by the concept of fractal dimension and strongly correlates with the out-of-sample error achieved by machine learning models on numerous regression tasks.Comment: 17 pages, 6 figures, 2 tables (SI with 17 pages, 16 figures

    Predictive Capability of QSAR Models Based on the CompTox Zebrafish Embryo Assays: An Imbalanced Classification Problem

    Get PDF
    The CompTox Chemistry Dashboard (ToxCast) contains one of the largest public databases on Zebrafish (Danio rerio) developmental toxicity. The data consists of 19 toxicological endpoints on unique 1018 compounds measured in relatively low concentration ranges. The endpoints are related to developmental effects occurring in dechorionated zebrafish embryos for 120 hours post fertilization and monitored via gross malformations and mortality. We report the predictive capability of 209 quantitative structure–activity relationship (QSAR) models developed by machine learning methods using penalization techniques and diverse model quality metrics to cope with the imbalanced endpoints. All these QSAR models were generated to test how the imbalanced classification (toxic or non-toxic) endpoints could be predicted regardless which of three algorithms is used: logistic regression, multi-layer perceptron, or random forests. Additionally, QSAR toxicity models are developed starting from sets of classical molecular descriptors, structural fingerprints and their combinations. Only 8 out of 209 models passed the 0.20 Matthew’s correlation coefficient value defined a priori as a threshold for acceptable model quality on the test sets. The best models were obtained for endpoints mortality (MORT), ActivityScore and JAW (deformation). The low predictability of the QSAR model developed from the zebrafish embryotoxicity data in the database is mainly due to a higher sensitivity of 19 measurements of endpoints carried out on dechorionated embryos at low concentration

    Analysis and QSAR Modeling of Human Intestinal Transporter Database

    Get PDF
    Membrane transport proteins are the molecular gatekeepers that regulate the movement of chemicals into and out of every cell of every living organism. In this study, a cheminformatics approach was taken to predict the substrate and inhibitory activities of 14 major human intestinal transporters using quantitative structure-activity relationship (QSAR) models built from 56 datasets. Dataset compounds were represented using CDK or Dragon descriptors and modeled using random forests (RF), support vector machines (SVM), and k-nearest neighbors (kNN). In all, 274 predictors passed all cut-offs. The predictive power of these predictors, as quantified by the external coefficient of determination (R2) of regression predictors and correct classification rate (CCR) of classification predictors, was analyzed for correlations with characterizing data of the original datasets. Dataset size, represented by the logarithm of the cardinality; a modelability index (MODI), defined previously for binary datasets and extended to continuous datasets here; and the homology group of the represented transporter were each found to have statistically significant effects on predictive power. However, true validation of QSAR predictors requires additional laboratory experimentation.Bachelor of Scienc

    The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines

    Get PDF
    The illicit market for new psychoactive substances is forever expanding. Benzodiazepines and their derivatives are one of a number of groups of these substances and thus far their number has grown year upon year. For both forensic and clinical purposes it is important to be able to rapidly understand these emerging substances. However as a consequence of the illicit nature of these compounds, there is a deficiency in the pharmacological data available for these ‘new’ benzodiazepines. In order to further understand the pharmacology of ‘new’ benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set with respect to published binding values to GABAA receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds was then selected for internal validation to determine the predictive ability of the model and gave an R2 value of 0.86 when comparing the binding values with their experimental data. The QSAR model was then used to predict the binding for 22 benzodiazepines that are classed as new psychoactive substances. This model will allow rapid prediction of the binding activity of emerging benzodiazepines in a rapid and economic way, compared with lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and toxicologists to better understand both recently developed compounds and prediction of substances likely to emerge in the future
    corecore