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Abstract 13 

The illicit market for new psychoactive substances is forever expanding. Benzodiazepines 14 

and their derivatives are one of a number of groups of these substances and thus far their 15 

number has grown year upon year. As a consequence of the illicit nature of these compounds, 16 

there is a deficiency in the pharmacological data available for these ‘new’ benzodiazepines. A 17 

set of 69 benzodiazepine-based compounds was analysed to develop a quantitative structure-18 

activity relationship (QSAR) training set with respect to published binding values to GABAA
 19 

receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were 20 

found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic 21 

group. A test set of nine random compounds was then selected for internal validation to 22 

determine the predictive ability of the model and gave an R2 value of 0.86 when comparing 23 

the binding values with their experimental data. The QSAR model was then used to predict 24 

the binding for 22 benzodiazepines that are classed as new psychoactive substances. This 25 

model will allow rapid prediction of the pharmacological activity of emerging 26 

benzodiazepines in a rapid and economic way, compared with lengthy and expensive in 27 

vitro/in vivo analysis. 28 
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Introduction 32 

Benzodiazepines and their derivatives are routinely prescribed for a variety of medical 33 

conditions as anxiolytic, anti-insomnia and anti-convulsant drugs, acting on the gamma-34 

aminobutyric acid type A (GABAA) receptor [1, 2]. The endogenous neurotransmitter for the 35 

GABAA receptor is gamma-aminobutyric acid (GABA), the binding of which reduces the 36 

excitability of the cell [3]. Benzodiazepines potentiate the response of the GABAA receptor to 37 

GABA which results in far less cellular excitability which,  in physiological terms, results in 38 

sedation and relaxation [1]. 39 

In these circumstances benzodiazepines are medically beneficial by alleviating stress and 40 

agitation in patients through their anxiolytic effects. However, as a result of their 41 

psychoactive effects, benzodiazepines have a long history of abuse and are often illicitly 42 

obtained [4-6].  In more recent years a steady stream of benzodiazepines have appeared on 43 

the illicit market that have either been newly-synthesised or are licensed as prescription drugs 44 

in another country but not in the home country [7-10]. These are termed ‘new psychoactive 45 

substances’ [11, 12]. The majority of these emerging benzodiazepines have not undergone 46 

standard pharmaceutical trials and can be quite variant in their effects and potentially 47 

dangerous in their activity [13]. Although relatively safe when used as medically prescribed, 48 

concurrent use of benzodiazepines and opioids (either prescribed or abused) can lead to 49 

respiratory depression and death [4, 14, 15]. When benzodiazepines are not carefully 50 

prescribed and monitored, they can cause a variety of side effects including tolerance and 51 

dependency if taken long-term and sudden withdrawal can cause medical problems including 52 

anxiety and insomnia [16-18]. These new psychoactive substance (NPS) benzodiazepines 53 

have already been reported in a number of overdose cases, driving under the influence of 54 

drugs (DUID) cases and hospital admissions [8, 19-22]. The lack of control and safety over 55 
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these illicit benzodiazepines is a prevalent issue and it is likely that it will become an even 56 

more worrying trend as their misuse continues to rise.  57 

Benzodiazepines are a diverse group of psychoactive compounds with a central structural 58 

component consisting of a benzene ring and a diazepine ring (Figure 1). A whole host of 59 

derivatives exist which include triazolobenzodiazepines, thienotriazolobenzodiazepines and 60 

imidazobenzodiazepines (see Supplementary Information Figure S1 and Table S1).  61 

Quantitative structure-activity relationship (QSAR) models attempt to correlate molecular 62 

structure to biological activity, often using a variety of molecular descriptors such as 63 

physiochemical, topological, electronic and steric properties [23]. Typically, a set of 64 

compounds whose biological activity is known is used to create a ‘training’ dataset and a 65 

model. This model can then be used to predict the unknown biological activity of compounds 66 

with a similar structure or to explore the structural features that are important for the specific 67 

biological activity in question. QSAR has been extensively used within the pharmaceutical 68 

industry for a number of years [24, 25]. In terms of applications towards new psychoactive 69 

substances, the predictive power of QSAR has been mainly applied to cannabinoid binding to 70 

the CB1 and CB2 receptors [26-28] but has also been used to examine the biological activity 71 

of hallucinogenic phenylalkylamines [29], the binding of phenylalkylamines, tryptamines and 72 

LSD to the 5-HT2A receptor [30] and methcathinone selectivity for dopamine (DAT), 73 

norepinephrine (NAT) and serotonin transporters (SERT) [31].  Currently, the majority of 74 

novel benzodiazepines have not been analysed to determine their physicochemical and 75 

biological properties as this would require a substantial investment in both time and money. It 76 

is for this reason that a fast, yet economical method to predict their properties is desirable. 77 

QSAR has previously been applied to benzodiazepines to predict bioavailability, absorption 78 

rate, clearance, half-life and volume of distribution for a group of benzodiazepines. This 79 
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study included phenazepam [32], a benzodiazepine that appeared as an NPS in 2007 [33].  80 

Other benzodiazepines (such as etaziolam) only appeared as new psychoactive substances in 81 

the years following the publication of this study. Furthermore, the application of a QSAR 82 

methodology has been used for modelling post-mortem redistribution of benzodiazepines 83 

where a good model was obtained (R2 = 0.98) in which energy, ionisation and molecular size 84 

were found to exert significant impact [34]. Quantitative structure-toxicity relationships  85 

(QSTR) have been used to correlate the toxicity of benzodiazepines to their structure in an 86 

attempt to predict the toxicity of these compounds  [35]. More recently, a study reported the 87 

use of QSTR whereby it was concluded that it is possible to identify structural fragments 88 

responsible for toxicity (the presence of amine and hydrazone substitutions as well as 89 

saturated heterocyclic ring systems resulted in a greater toxicity) and potentially use this 90 

information to create new, less toxic benzodiazepines for medical use [36].  91 

Various QSAR models have been used to correlate benzodiazepine structure to GABAA 92 

receptor binding and tease apart the complex relationship between various substituents and 93 

their effect on activity [37-42] although none have specifically attempted to predict binding 94 

values for benzodiazepines that are new psychoactive substances. 95 

In this study we focus on the relationship between the structure of characterised 96 

benzodiazepines and observed biological activity through receptor binding, expressed as the 97 

logarithm of the reciprocal of concentration (log 1/c) where c is the molar inhibitory 98 

concentration (IC50) required to displace 50 % of [3H]-diazepam from rat cerebral cortex 99 

synaptosomal preparations [40]. The purpose of this work is to create a QSAR model that can 100 

be used to predict the potential biological activity of the newly-emerging benzodiazepines to 101 

help understand, and therefore minimise their harmful potential in a faster time scale 102 

compared with in vitro/in vivo testing.  103 
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 104 

Methods and Materials 105 

Selection of the dataset 106 

The binding data for the benzodiazepines was used as obtained from the literature, 107 

experimentally determined using spectrometric measurements of [3H]-diazepam 108 

displacement [43]. Benzodiazepines were selected from four categories; 1,4-benzodiazepines, 109 

triazolobenzodiazepines, imidazobenzodiazepines and thienotriazolobenzodiazepines.  110 

Benzodiazepines that did not have definitive binding values (i.e. listed values were simply 111 

stated as >1000 or >5000) were excluded. For simplicity benzodiazepines with atypical atoms 112 

or substituents (e.g. Ro 07-9238 which contained a sodium atom and Ro 05-5065 which 113 

contained a naphthalene ring) were also excluded. Benzodiazepines that also had atypical 114 

substitutions (i.e. positions R6, R8 and R9 from Figure 1 which are not found in medically-115 

used benzodiazepines or indeed those that are new psychoactive substances) were also 116 

excluded. In total, 88 benzodiazepines were selected for the training dataset. 117 

QSAR/Software and Data Analysis Method 118 

The 88 benzodiazepines were converted from SMILES to 3D structures based on Merck 119 

Molecular Force Field (MMFF) atom type and force field optimisation. These compounds 120 

were then aligned by common substructure and confirmation to Ro 05-306. Subsequently, the 121 

aligned compounds were clustered by Atomic Property Fields (APF) to identify 122 

benzodiazepines with poor alignment. The APF method, designed by MolSoft, uses the 123 

assignment of a 3D pharmacophore potential on a continuously distributed grid using physio-124 

chemical properties of the selected compound(s) to classify or superimpose compounds. 125 

These properties include: hydrogen bond donors, acceptors, Sp2 hybridisation, lipophilicity, 126 

size, electropositivity/negativity and charge [44, 45]. Poorly aligned benzodiazepines 127 

identified by APF clustering were subjected to re-alignment using APF-based flexible 128 
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superimposition. At this point, 10 benzodiazepines with poor alignment were removed to 129 

improve model accuracy. (Supplementary Information Table 1S). 130 

From the remaining 78 aligned compounds, 9 compounds were selected using a random 131 

number generator based on atmospheric noise. These compounds were removed from the 132 

training set and used for final model validation. The residual 69 compounds were used as the 133 

training set to build a 3D QSAR model, as shown in Figure 2.  134 

The APF 3D QSAR method was used where, for each of the 69 aligned compounds, the 135 

seven physicochemical properties were calculated and pooled together. Based on the activity 136 

data obtained from literature and the 3D aligned structures for the known compounds, 137 

weighted contributions for each APF component were obtained to allow quantitative activity 138 

predictions for unknown compounds. The optimal weight distributions were assigned by 139 

partial least-squares (PLS) methodology, where the optimal number of latent vectors for PLS 140 

was established by leave-one-out cross-validation on the training set. Then the weighted 141 

contributions were added together. The 9 compounds for validation and unknown compounds 142 

were assigned predicted binding values by calculating their fit within the combined QSAR 143 

APF. Any unknown benzodiazepines were subjected to the conversion and alignment 144 

protocol before predicted binding data was obtained. The above steps were conducted using 145 

Molsoft’s ICM Pro software [46]. 146 

Further analysis of the PLS model fragment contributions from the 69 compounds was 147 

conducted using SPCI software. Here, a 2D QSAR model was built using the same PLS 148 

methodology as above. Additionally, a consensus model was created from averaging the 149 

predictions of PLS, gradient boosting, support vector machine and random forest modelling 150 

methods. The compounds were then subjected to automatic fragmentation and contribution 151 

calculations, which resulted in information on 11 key contributing groups [47]. Using Ligand 152 
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Scout with default settings, four ligand-based pharmacophore models were created using 153 

compounds with binding values of 6.0-9.0, 7.0-9.0, 8.0-9.0 and 8.5-9.0, as exemplified in 154 

Figure 3. 155 

Ten benzodiazepines that had the highest predicted binding values were docked into a 156 

modelled GABAA5 receptor using ICM software. The GABAA5 receptor model was generated 157 

by homology modelling, using the crystal structure of a human GABA(A)R-beta3 158 

homopentamer (PDB id 4COF) as a template. A pre-defined binding site containing co-159 

crystallised benzodiazepine is already present in the template, which was retained in the final 160 

model. Modeller software was used to generate the homology models [48]. The final chosen 161 

model was energy minimized using the ACEMD software [49]. The stereochemistry was 162 

checked using Procheck and ProSA software [50, 51]. The benzodiazepine in the allosteric 163 

binding site on the GABAA5 receptor was used as a chemical template to dock NPS-164 

benzodiazepines and the best-scoring conformations were analysed.  165 

The distances between principle physiochemical properties and their weights in the 166 

pharmacophore model were calculated using the software LigandScout [52]. 167 

Results and Discussion 168 

The data that was used to create the QSAR model (i.e. benzodiazepine structural substitutions 169 

and experimentally-observed binding values) is provided in the Supplementary Information 170 

(Table S1). 171 

From the pharmacophore model visualised in Figure 3 for highly bound benzodiazepines (log 172 

1/c of 8.0 – 9.0), it is evident that important binding features for the benzodiazepines were the 173 

positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group all with 174 

weights of 1.0. 175 
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The predicted binding values are not presented here but are listed in Supplementary 176 

Information (Table S1). They can be visualised in Figure 4 as a plot of the observed binding 177 

value versus the predicted binding value.   178 

Nine compounds were selected at random from the QSAR training set and their binding 179 

values estimated using the model as a system of internal validation. These estimated values 180 

were then compared to the experimental binding values (Figure 5).  181 

The QSAR model was then used to predict the binding for 22 benzodiazepines that are 182 

classed as new psychoactive substances. The results are divided in to four categories 183 

depending upon the nature of the substitutions, as shown in Tables 1, 2, 3 and 4.  184 

Five compounds were present in the training dataset but have also appeared as new 185 

psychoactive substances; adinazolam, desalkylflurazepam, desmethylflunitrazepam 186 

(fonazepam), etizolam and meclonazepam. The experimental binding values from the 187 

literature and the predicted binding values are displayed in Table 5.  188 

The NPS-benzodiazepine with the highest predicted log 1/c value was flunitrazolam with 189 

8.88, closely followed by clonazolam with 8.86. However, based upon experimental data, 190 

meclonazepam with a log 1/c value of 8.92 (8.52 predicted) actually exhibited the greatest 191 

binding affinity. Only two benzodiazepines in the training set experimental values had a log 192 

1/c value of 8.92; these were meclonazepam and brotizolam with the rest falling below this 193 

point. In general, the limitations to this model are most likely caused by the small size of the 194 

data set. It is widely reported that QSAR models have poorer predictive capabilities with 195 

training sets under 100 compounds [53, 54]. Moreover, the diversity of substitutions within 196 

the small set of training compounds, created difficulties with APF superimposition and 197 

therefore may have reduced the accuracy of the model predictors. Secondary modelling with 198 

SPCI highlighted these limitations and demonstrated the existing dataset was less suitable for 199 
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PLS 2D QSAR modelling [47]. However, the consensus from multiple modelling methods 200 

improves the predictive power of the 2D QSAR model.  Additionally, as experimental errors 201 

in the training set are amplified both by the logarithmic scale and when calculating the 202 

weighted contributions, consistency and accuracy in the initial experimental values are 203 

essential for a strong QSAR model. Ideally, further improvements to the model could be 204 

made by using a larger training dataset with lower diversity yet this cannot be achievable as a 205 

consequence of limitations on literature data available. 206 

From these docking studies with the modelled GABAA5 receptor it can be seen that they only 207 

partially occupy the available volume at the allosteric binding site (exemplified in Figure 6 208 

for flunitrazolam). From the ten compounds that had the greatest binding affinity, four had 209 

non-bonded interactions with the T80 region within the receptor, two had non-bonded 210 

interactions with the K182 and S231 regions respectively. There were also stacking 211 

interactions with the Y96 region for four of the compounds. Therefore the possibility is that 212 

the binding is not completely optimal for these benzodiazepines and that with a modified 213 

chemical structure, a greater binding affinity could be theoretically possible. The reality 214 

exists that a benzodiazepine with an optimised binding affinity could emerge onto the illicit 215 

drugs market and could potentially (but not necessarily) exhibit a greater potency. 216 

The 10 compounds with the greatest binding affinity for the receptor are listed in Table 6 217 

(lower scores indicate a greater binding effect).  218 

There are 35 benzodiazepines and their derivatives currently subject to international control, 219 

30 of these compounds had binding values listed in the original source [43]. The average log 220 

1/c value for these 30 controlled compounds was 7.57. Out of these compounds, 43 % (13 out 221 

of 30) had a log 1/c value that was greater than 8.00. The average log 1/c value for the whole 222 

training dataset was 7.81 and 48 % of the compounds (33 out of 69) had a log 1/c value that 223 

was greater than 8.00. These values are fairly similar, however when comparing the results of 224 
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the benzodiazepines that are new psychoactive substances, the average log 1/c value that was 225 

predicted was 8.22 and 68 % of the compounds (15 out of 22) had a log 1/c value that was 226 

greater than 8.00. From this it is appears that benzodiazepines that are appearing as new 227 

psychoactive substances are more likely to have a greater binding affinity at the GABAA 228 

receptor. Whether this trend is deliberate is unclear.  229 

A log 1/c value of 7.88 was obtained for 4-chlorodiazepam (Ro 5-4864). This suggests a 230 

relatively high affinity for the GABAA receptor when compared with the log 1/c values for 231 

clinically-used benzodiazepines; the binding value for diazepam is 8.09 and 8.40 for 232 

triazolam. However it has been reported that the experimental value for 4-chlorodiazepam 233 

(Ro-4864) is actually 3.79 (i.e. an IC50 value of 160,500 nM) in one dataset when compared 234 

with a log 1/c of 7.80 for diazepam and 8.72 for triazolam in the same dataset [55]. There are 235 

obvious impracticalities with comparing different datasets as a result of differences in 236 

methods (e.g. the use of [3H]-diazepam versus [3H]-flunitrazepam as a radioligand), the 237 

differences in the species used (rat vs. mouse) and the differences in GABAA receptor 238 

expression between different brain homogenates. Despite this it is clear that 4-239 

chlorodiazepam observes an extremely low affinity for GABAA receptors and one that this 240 

model did not accurately predict. This most likely results from the deficit of compounds in 241 

the training dataset that had a similar substitution on the R4’ position of the phenyl ring. 242 

Indeed, this model focused upon the ‘classical’ 1,4-benzodiazepine, triazolobenzodiazepine, 243 

imidazobenzodiazepine and thienotriazolodiazepine substitutions. Substitutions on the R4’ 244 

position of the phenyl ring are known to exhibit strong steric repulsion at the GABAA 245 

receptor interface and therefore compound binding is severely inhibited [39] [56]. 4-246 

chlorodiazepam is an outlier and atypical benzodiazepine as it does not act upon the GABAA 247 

receptor; instead exerting its pharmacological effects through the translocator protein 18 kDa 248 

(TSPO), previously known as the peripheral benzodiazepine receptor [57, 58]. 249 
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 250 

The oxazolobenzodiazepine flutazolam, a prescription drug in Japan, had a predicted log 1/c 251 

binding value of 6.83 which seems extremely low compared with the other benzodiazepines 252 

in this dataset. To the best of the authors’ knowledge there exists no experimental GABAA 253 

receptor binding data for flutazolam. However other oxazolobenzodiazepines have low 254 

affinities for the GABAA receptor such as ketazolam with a log 1/c value of 5.89 [59] and 255 

oxazolam with a log 1/c value of 5.00 [60]. These log 1/c binding values are from additional 256 

sources – the previous paragraph discusses the difficulties in comparing binding values from 257 

different datasets. Nonetheless it is clear that oxazolobenzodiazepines exhibit a much lower 258 

affinity for the GABAA receptor.   If the value for flutazolam is correct then this QSAR 259 

model successfully predicted the low binding affinity of flutazolam despite having no 260 

oxazolobenzodiazepines in the training dataset which serves as an indicator to the potential 261 

strength of the model. 262 

Conclusions 263 

The emergence of benzodiazepines and their derivatives as new psychoactive substances 264 

necessitates the investigation of their pharmacological attributes. The use of a QSAR model 265 

is ideal to gain an understanding into the binding properties of these substances. In this work 266 

a QSAR model has been successfully developed to predict the binding data for NPS-267 

benzodiazepines. Benzodiazepines that have emerged as new psychoactive substances appear 268 

to have a greater binding affinity to GABAA receptors than those benzodiazepines that are 269 

used medically and are under international control. Whether this trend will continue is 270 

uncertain. Further in vitro work would allow the compilation of more data to improve the 271 

accuracy of this model. However, this model does allow a rapid estimation of the binding 272 

affinity of emerging benzodiazepines before more detailed studies can be carried out. 273 
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Tables 474 
Table 1. Structural information and predicted binding values for 1,4-benzodiazepines 475 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R7 R1 R2' R3 

Diclazepam Cl CH3 Cl - 8.39 

 

Desalkylflurazepam Cl - F - 8.44 

Meclonazepam NO2 - Cl CH3 8.52 

Phenazepam Br - Cl - 8.12 

Desmethylflunitrazepam NO2 - F - 8.46 

3-hydroxyphenazepam Br - Cl OH 8.42 

Flubromazepam F - Br - 8.37 

Nifoxipam NO2 - F OH 8.63 

Cloniprazepam NO2 - Cl C3H5CH3 7.83 

Nimetazepam NO2 CH3 - - 7.87 

4-chlorodiazepama Cl CH3 - - 7.88 
a4-chlorodiazepam has a Cl substituted on the R4’ position of the phenyl ring 

 
 

  

Table 2. Structural information and predicted binding values for triazolobenzodiazepines 476 

 477 

 478 

 479 

 480 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R8 R1 R2' R4 

Flubromazolam Br CH3 F - 8.77 

 

Clonazolam NO2 CH3 Cl - 8.86 

Flunitrazolam NO2 CH3 F - 8.88 

Bromazolam NO2 CH3 - - 8.25 

Adinazolam Cl CH3N(CH3)2 - - 7.18 

Pyrazolama Br CH3 - - 7.79 

Nitrazolam NO2 CH3 - - 8.34 

aPyrazolam has a 2-pyridyl ring at position 6 rather than a phenyl ring  
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Table 3. Structural information and predicted binding values for thienotriazolodiazepines 481 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R9 R2 R2' 

Deschloroetizolam CH3 CH2CH3 - 7.96 

 

Etizolam CH3 CH2CH3 Cl 8.64 

Metizolam - CH2CH3 Cl 8.34 

 482 

 483 

Table 4. Structural information and a predicted binding value for an oxazolobenzodiazepine 484 

 485 

 486 

Name 
Substitutions Log 1/c 

predicted 
Basic Structure 

R10 R7 R2' 

Flutazolam Cl CH2CH2OH F 6.83 
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Table 5. Observed and predicted binding values for new psychoactive substances 487 

Compound 
Log 1/c 

observed 

Log 1/c 

predicted 
% (log 1/c obs.) / (log 1/c pred.) 

Adinazolam 6.87 7.18 95.9 % 

Desalkylflurazepam 8.70 8.44 103.1 % 

Desmethylflunitrazepam 

(fonazepam) 

8.82 8.46 104.3 % 

Etizolam 8.51 8.64 98.5 % 

Meclonazepam 8.92 8.52 104.7 % 

 488 

Table 6. Binding scores and molecular descriptors of the 10 compounds exhibiting the 489 

greatest binding affinity for the receptor 490 

 491 

Compound 

Name 

Score  Number 

of 

Atoms 

in 

ligand 

number of 

rotatable 

torsions 

Hydrogen 

Bond 

energy 

hydropho

bic energy 

in 

exposing 

a surface 

to water  

van der 

Waals 

interactio

n energy  

internal 

conformation 

energy of the 

ligand  

desolvation of 

exposed h-

bond donors 

and acceptors 

solvation 

electrostatics 

energy change 

upon binding  

potential of 

mean force 

score 

Flunitrazolam -17.9003 37 1 -1.55071 -6.12229 -27.3992 4.10324 10.7377 13.4407 -158.403 

Clonazolam -15.4617 37 1 -1.53992 -6.124 -27.9233 7.64508 11.6698 16.8309 -154.162 

Flubromazolam -18.2738 35 0 -1.61755 -6.89366 -25.8773 3.57746 11.0855 12.122 -151.357 

Etizolam -18.7025 38 1 -2.03733 -7.14073 -25.5154 7.89581 11.8052 11.0572 -101.516 

Nifoxipam -20.836 33 2 -5.90608 -4.9646 -22.352 6.0639 12.5432 13.905 -129.57 

Meclonazepam -13.4447 35 1 -2.27939 -5.98463 -21.8787 5.69717 10.6159 14.6192 -124.257 

Desmethylfluni

trazepam 

-15.5192 32 2 -0.82246 -5.27009 -26.2114 2.37454 10.376 11.0938 -144.474 

Desalkylfluraze

pam 

-21.7837 30 0 -2.01574 -5.82939 -27.462 0.691701 9.53716 11.4106 -154.372 

Diclazepam -16.8002 33 0 -0.60989 -6.76567 -25.688 2.00693 10.3028 10.9647 -121.093 

Metizolam -13.7614 35 1 -1.78622 -6.65559 -24.7768 3.51234 14.5321 12.8708 -138.056 

 492 
 493 
 494 
 495 

 496 
 497 
 498 
 499 
 500 

 501 

 502 

 503 
 504 
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Figures 505 
 506 

 507 

Figure 1: The basic structural formula for benzodiazepines considered in this work 508 

 509 

 510 

Figure 2: Alignment of 69 training set benzodiazepines shown in two orientations. 511 
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 512 
Figure 3: Pharmacophore model of 33 compounds with binding values 8.0-9.0  513 

 514 

 515 
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 516 

Figure 4: Literature (i.e. observed) binding values (log 1/c) vs. QSAR predicted binding 517 

values fit with a partial least squares (PLS) regression (R2 = 0.90).  518 

 519 
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 520 

Figure 5: Literature (i.e. observed) binding values (log 1/c) vs. QSAR predicted binding 521 

values for 9 compounds randomly selected for internal validation (R2 = 0.86).  522 

 523 
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 524 
 525 

Figure 6: Visualisation of the NPS-benzodiazepine flunitrazolam binding to the allosteric 526 

site of the GABAA5 receptor 527 

 528 
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