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Abstract 

Membrane transport proteins are the molecular gatekeepers that regulate the movement 

of chemicals into and out of every cell of every living organism.
1
 In this study, a 

cheminformatics approach was taken to predict the substrate and inhibitory activities of 14 major 

human intestinal transporters using quantitative structure-activity relationship (QSAR) models 

built from 56 datasets. Dataset compounds were represented using CDK or Dragon descriptors 

and modeled using random forests (RF), support vector machines (SVM), and k-nearest 

neighbors (kNN). In all, 274 predictors passed all cut-offs. The predictive power of these 

predictors, as quantified by the external coefficient of determination (R
2
) of regression predictors 

and correct classification rate (CCR) of classification predictors, was analyzed for correlations 

with characterizing data of the original datasets. Dataset size, represented by the logarithm of the 

cardinality; a modelability index (MODI), defined previously for binary datasets and extended to 

continuous datasets here; and the homology group of the represented transporter were each found 

to have statistically significant effects on predictive power. However, true validation of QSAR 

predictors requires additional laboratory experimentation. 
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Abbreviations 

ABC ATP-Binding Cassette superfamily of 
proteins 

MRP1-5 Multidrug Resistance- associated Proteins 
1-5 

AD Applicability Domain NBD Nucleotide-Binding Domain 

ASBT Apical Sodium-dependent Bile acid 
Transporter 

NTCP Sodium-Taurocholate Cotransporting 
Polypeptide 

ATP Adenosine TriPhosphate OATP2B1 Organic Anion Transport Protein 2B 1 

BCRP Breast Cancer Resistance Protein OCT1 Organic Cation Transporter 1 

BSEP Bile Salt export Pump PEPT1 PEPtide Transporter 1 

CAS Chemical Abstract Services QSAR Quantitative Structure- Activity Relationship 

CCR Correct Classification Rate R2 Coefficient of Determination 

CDK Chemistry Development Kit RF Random Forest 

GA Genetic Algorithm SA Simulated Annealing 

IC50 Half maximal Inhibitory Concentration SDF Structure Data Format 

kNN k-Nearest Neighbor SLC SoLute Carrier family of proteins 

MCT1 MonoCarboxylate Transporter 1 SMILES Simplified Molecular Input Line Entry 
Specification 

MDR1 MultiDrug Resistance Protein 1 SVM Support Vector Machines 

MODI MODelability Index TMD TransMembrane Domain 

 

Glossary of Terms 

Amino Acids the building blocks of proteins Homology the degree of conservation in 
amino acid sequences 

Auto Scaling normalization by standard 
deviation 

In silico conducted in simulation 

Chemical 
Descriptors 

quantified descriptions of the 
salient aspects of a compound 

In vitro conducted in laboratory 
setting 

Cheminformatics the application of information 
techniques to chemical data 

In vivo conducted in biological 
system 

Chemistry space the set of all energetically stable 
compounds Inhibitor 

a chemical that blocks a 
protein's active site 

Chirality asymmetry such that the molecule 
is different from its mirror image 

Pharmacophore abstract description of 
features of an active site 

Combinatorial 
chemistry 

chemical synthetic methods that 
produce entire compound libraries 
from a single process 

Range Scaling normalization by the range of 
values 

Electrochemical 
potential 

the combined effects of 
concentration and electrical 
potential 

Substrate a chemical that binds to a 
protein's active site 

High-throughput 
screening 

robotic or otherwise automated 
screening methods 

Transportome the set of all expressed 
genes corresponding to 
membrane transport 
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Background 

Major Human Transporters 

Drug resistance is mediated by 

nearly 600 identified human transport 

proteins, and it is assumed that at least 5% 

(>2000) of human genes are transport-

related.
1-3

 These transporters largely 

determine drug resistance by absorbing 

from and expelling chemicals into the 

intestines. Membrane transporters are the 

protein doorways responsible for 

facilitating and regulating the movement 

of both biological and pharmaceutical 

chemicals across the cell membrane.
1
 

Transporters may move chemicals into 

(importers) or out of (exporters) the cell 

and to or from the intestine (apical side) or bloodstream (basal side). Individual transporter-

doorways, however, are unlocked by and translocate only a specific profile of chemical-keys 

called substrates. In addition, chemicals may act as inhibitors by preventing the transporter from 

moving substrates. Determining the factors that dictate how a drug interacts with major human 

transport proteins is a critical challenge for drug discovery. 

The difficulty in predicting drug resistance, however, is compounded by the sheer 

complexity of the individual transporters. P-glycoprotein (MDR1) is the archetypal human ABC 

transporter, being the most medically relevant and well-studied. MDR1, Figure 1, is composed of 

1280 amino acids (170 kDa) arranged as a single polypeptide.
2
 Although the corresponding gene 

has been mapped, the crystal structure observed, and the amino acid sequence recorded, 

determining the actual mechanism of poly-specific substrate selection is still a major challenge 

for current bioinformatic techniques.
4
 Alternative methods in the field of cheminformatics 

attempt to predict the interaction between substrate and protein without explicitly modelling the 

transporter active site or the mechanism of selection and transport.
6
 

Figure 1. Crystallographic structure of mouse MDR3 

protein illustrating the tremendous complexity of 

membrane transport proteins. The protein is rainbow 

colored from blue (C-terminus) to red (N-terminus). 

Approximate positioning of the extracellular (blue) 

and cytoplasmic (red) faces of the cell membrane is 

identified by the overlaid lines.
5 
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In this study, we look at members of two major transporter families: the ATP-binding 

cassette (ABC) superfamily and the solute carrier (SLC) group. Collectively, these groups 

include the majority of identified proteins that contribute to drug resistance and susceptibility, 

and understanding their biological differences may help explain differences in our ability to 

predict their behavior. 

ATP-Binding Cassette (ABC) Superfamily 

The ABC superfamily of transporters is fundamental to life as it evolved on Earth; 

members are believed to be present in every cell of every living organism.
2
 All ABC transporters 

have two distinct substructures: a transmembrane domain (TMD, a portion of the protein that 

tunnels through the cell membrane) and cytosolic nucleotide binding domain (NBD). ABC 

proteins actively transport substrates through a series of conformational changes in the TMD that 

are initiated by the binding and hydrolysis of adenosine triphosphate (ATP, the cell’s energy 

molecule) to the NBD. Although the NBD is very similar in all ABC transporters, the TMD vary 

widely, corresponding to variations in compatible substrates. 

Solute Carrier (SLC) Group 

In contrast to the evolutionary relatedness of ABC transporters, membership in the SLC 

group is functional, encompassing all families of transmembrane solute transporters that are not 

primary active transporters, ion channels, nor water channels. Accordingly, different SLC 

subfamilies exhibit little structural similarity, also referred to has homology.
3
 

Mechanisms of Transport 

Membrane transporters form doorways through the cell membrane and operate by one of 

three means: 

 Passive transporters allow substrates to move naturally across the membrane from 

regions of high electrochemical potential to regions of low potential. This flow down an 

electrochemical gradient is energetically favorable and requires no additional energy. 

 Primary active transporters are molecular motors that utilize an energy source, usually 

ATP hydrolysis, to drive the movement of substrate. 

 Secondary active transporters are molecular turbines that couple the movement of two 

substrates simultaneously. The flow of one substrate down its gradient is used to power 

the movement of the other such that the overall energy change is still favorable. 
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ABC proteins undergo primary active transport while the SLC group includes both passive and 

secondary active transporters. 

Cheminformatics 

Although the intersection of chemistry and informatics had been established by the mid-

1960s, the term “cheminformatics” was coined by F. K. Brown in 1998 as  

“the mixing of those information resources to transform data into information and 

information into knowledge for the intended purpose of making better decisions 

faster in the area of drug lead identification and optimization.”
7,8

  

One year later, at the August 1999 meeting of the American Chemical Society, G. Paris 

broadened to the term to  

“[encompass] the design, creation, organization, management, retrieval, analysis, 

dissemination, visualization, and use of chemical information.”
6
  

The new nomenclature was a symptom of the exploding interest in the field during the 1990s 

brought about both by advances in synthetic techniques and increases in computational power. In 

particular, the concurrent developments of combinatorial chemical synthesis and high-throughput 

screening allowed chemists to collect data hundreds of thousands times faster than before, the 

quantity of which conventional analytical techniques were simply unable to manage.
8-10

 

In particular, cheminformatics seeks to reduce the time and capital costs of drug 

discovery by better identifying potential candidates earlier in silico. Current drug discovery 

techniques require an estimated fifteen-years and nearly two billion US dollars to bring a new 

drug into the market.
6,11

 These costs are due to the immensity of the chemistry space as well as 

the rigor of clinical trials. Computational techniques, however, are relatively fast and cheap and 

can be employed to reduce the number of exploratory assays and studies necessary.
12-14

 

Molecular Representation 

Molecules are complex real-world objects. Even 3-dimensional topography models are 

little more than illustrative simplifications of what are in reality infinite fields of electron density 

associating infinitesimal points of mass and charge. Although many standards exist in practice, 

the task of representing molecules in silico is neither trivial nor complete. A database of 

molecules may be queried using the accepted common name or a unique registry number 

assigned by the Chemical Abstracts Services (CAS). More informative representations reference 

the chemical structure explicitly: the International Union of Pure and Applied Chemistry               
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Figure 2. Standard cheminformatic representations for aspirin.
6 

Name Representation 

Common Name Aspirin 

Synonyms 
Acetylsalicylic acid, Ecotrin, Acenterine, Acylpyrin, Polopyryna, Acetophen, 

Acetosal, Aspergum 

Empirical Formula C9H8O4 

2D Structure 

 

IUPAC Name 2-Acetoxybenzoic acid 

CAS Registry Number 50-78-2 

SMILES CC(=O)OC1=CC=CC=C1C(=O)O 

InChl 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12) 

Connection Table (SDF) 

Aspirin 
  Comment Line 
 

21 21  0  0  0  0  0  0  0  999 V2000 

   6.3301   -0.5600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   4.5981   -1.5600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   6.3301   -1.5600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   5.4641   -2.0600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   2.0000   -0.0600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   5.4641   -0.0600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   4.5981   -0.5600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   4.5981    1.4400    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0 

   2.8660   -1.5600    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0 

   6.3301    1.4400    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0 

   5.4641    0.9400    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   2.8660   -0.5600    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0 

   3.7321   -0.0600    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0 

   6.3301    2.0600    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   6.8671   -0.2500    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   4.0611   -1.8700    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   6.8671   -1.8700    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   5.4641   -2.6800    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   2.3100    0.4769    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   1.4631    0.2500    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

   1.6900   -0.5969    0.0000 H   0  0  0  0  0  0  0  0  0  0  0  0 

 6  7  2  0  0  0  0 

 1  6  1  0  0  0  0 

 6 11  1  0  0  0  0 

 2  7  1  0  0  0  0 

 7 13  1  0  0  0  0 

 1  3  2  0  0  0  0 

10 11  1  0  0  0  0 

 8 11  2  0  0  0  0 

 2  4  2  0  0  0  0 

12 13  1  0  0  0  0 

 5 12  1  0  0  0  0 

 9 12  2  0  0  0  0 

 3  4  1  0  0  0  0 

 1 15  1  0  0  0  0 

 2 16  1  0  0  0  0 

 3 17  1  0  0  0  0 

10 14  1  0  0  0  0 

 4 18  1  0  0  0  0 

 5 19  1  0  0  0  0 

 5 20  1  0  0  0  0 

 5 21  1  0  0  0  0 

M  END 

$$$$ 
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(IUPAC) has defined explicit nomenclature standards, Simplified Molecular Input Line Entry 

Specification (SMILES) defines rules for describing molecular structure using an ASCII string, 

and the Structure Data Format (SDF) standards are the most commonly used graph-based 

representation.
6
 Figure 2 illustrates several standard representations for aspirin. 

The structure itself is usually not useful for analysis, so descriptors are generated from 

the structural representation. Molecular descriptors are quantified features that describe the 

salient aspects of the compound. Both open-source, e.g. CDK, and privately licensed, e.g. 

Dragon, descriptor generators exist with their own individual sets of descriptors.
6
 There are two 

primary classes of descriptors. Information-based descriptors encapsulate the structure of the 

compound and include descriptors for the molecular weight, the number of rotatable bonds, and 

Kier shape indices. Knowledge-based descriptors are calculated using known models and include 

estimates of the polarity in different regions of the compound. The Dragon descriptor set is much 

larger than CDK (2489 v. 202) and includes many more esoteric and hyper-specific descriptors, 

e.g. the frequency of carbon-fluorine atom pairs exactly 10 bonds apart. In general, there is a 

trade-off between interpretability and predictive usefulness.
13

 

QSAR Modeling 

Quantitative structure-activity relationship (QSAR) modelling may be described as the 

use of computational, analytical, and statistical methods to accurately and reliably predict or 

explain the properties or activities of chemical compounds provided only their structure.
15

 

Chemical activity can be defined as any quantifiable and observable behavior. It may be a 

classification (e.g. substrate or not), a regression (e.g. the rate of transport through a membrane), 

or a categorization into an ordered set of classes (e.g. highly active, active, or inactive).
16

 

As early as 1869, Alexander Crum Brown and Thomas Richard Fraser proposed that a 

molecule’s activity can be defined as a mathematical function of its structure.
6
 Furthermore, the 

structure-activity relationship hypothesis states that similar compounds possess similar 

properties. Unfortunately, chemical similarity and diversity are oftentimes extremely difficult to 

define, and different measures of similarity may be relevant when considering different 

activities. QSAR modeling attempts to quantify a structure-activity relationship such that it may 

be used to identify priority compounds for experimental validation. 
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        The predictive QSAR modeling workflow presented in Figure 3 has been adapted from 

Tropsha 2010.
15

 The input to the QSAR workflow is always a dataset of compounds with 

experimentally confirmed chemical activities. Thus the quality of a QSAR predictor is 

fundamentally reliant on the quality of the experimental values and an accurate understanding 

and representation of the chemical structures. It is critical to curate the chemical dataset to ensure 

accurate structures and to remove any compounds that may not be informative to the model. If 

chirality-sensitive descriptors are not employed, all pairs of mirror images will be represented as 

duplicates; one must be removed, and any variance in their activities must be reconciled. In 

addition, any compounds should be removed that cannot be handled by current techniques, 

including organometallic complexes, inorganic compounds, salts, and mixtures.
15

 

        Any number of supervised learning techniques may then applied to the curated dataset to 

construct the predictor, but the workflow remains the same.
15

 Firstly the dataset must be divided 

Figure 3. Predictive QSAR modeling workflow.
 15 
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into modeling and external sets. Usually many models are constructed from the modelling set, 

and the best models, as identified by some internal evaluation, are consolidated to form the 

predictor. To avoid overfitting, training is conducted using only the modelling set, and the 

external set is used to validate the predictor.
17

 By considering the distribution of compounds, an 

applicability domain (AD) is applied to each model as well as the overall predictor that defines 

the subspace of the chemistry space for which the model has been validated. 

        Although there is a precedent for regulation based solely on predictive modelling,
18

 a 

predictor should ideally be subject to laboratory validation. In silico high-throughput screening 

of the predictor on compound databases will identify additional compounds with activities of 

interest. The activities of some of these compounds should be determined experimentally to 

further validate the predictor.
15

 

Modeling Major Human Transporters 

        The human transportome consists of the subset of the proteome devoted to membrane 

transporters. Recently, there have been several large-scale efforts to collect and organize the ever 

increasing amount of transportome data available.
19-23

 Yet, until very recently, there has been 

little effort to model this substrate data with the corresponding explicit molecular structures.
1
 In 

this study, 56 datasets comprised of 10,407 activity values corresponding to the interaction 

between 3,906 unique chemical compounds and 14 transporters were curated, characterized, and 

modeled using multiple QSAR algorithms. The quality of the QSAR predictors was analyzed to 

elucidate correlations with the chemical, biological, and numerical characters of the datasets. 

Materials and Methods 

Dataset Creation and Curation 

 Chemical-transporter interaction data were collected and curated by the Molecular 

Modeling Lab in the Eshelman School of Pharmacy at the University of North Carolina at 

Chapel Hill. Data were extracted from multiple publically available sources and consolidated 

into 56 datasets.
19-23

 Equivalent records were compared and reconciled to form a single, 

harmonious database. Classification datasets were constructed by combining reports of substrate 

or inhibitory activity. Accordant reports were assigned values of 0 or 1, and ambiguous 

chemicals were not included. Inhibitor classification is defined at a specified threshold 

concentration for each dataset. Binding affinities are included as the negative log of either the 
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Michaelis-Menten constant of transportation (pKm, the relative concentration of substrate needed 

to transport at a rate half of the maximum) or of the half maximal inhibitory concentration 

(pIC50, the relative concentration of inhibitor needed to reduce the rate of transport by half).  In 

addition, datasets of pIC50 values are included for both general and specific hot ligands (the 

substrate whose transport is being inhibited).   

 Chemical structures were standardized by the Molecular Modeling Lab using 

PipelinePilot ver.6.15 (Accelrys) and the Standardizer module (ChemAxon).
1
 Organometallic 

and poorly defined compounds were excluded from the database. In addition, polymers, 

identified as extreme molecular weight outliers, were also excluded. Remaining compounds were 

standardized and translated into their predominant and neutral form. The final curated database is 

available on Chembench.
26

 The full, detailed process for data collection and curation has been 

previously described by Sedykh et al.
1
 

Dataset Characterization 

 The 56 datasets were preliminarily 

characterized by their relevant transporter and 

by the parameters of the activity reported (see 

Tables 6 and 7 of the appendix). A summary 

of the number of compounds in the datasets is available in Table 1. Twenty-five datasets 

comprised of continuous values, and 31 contained binary assignments. Eighteen datasets 

reported substrate activity, and 38 reported inhibitory activity (see Figure 5).  

 Transporters were also characterized by 

the physiological role in the human body (see 

Table 8 of the appendix and Figure 4).
24

 In all, 

14 transporters from the ABC and SLC groups 

are represented. Their membrane location, 

direction of flow, subfamily, and archetypal 

substrate are also reported and were included in 

the statistical analysis. 

Table 1. Summary of dataset cardinality. 

Activity Type Max Min Mean St. Dev. 

Classification 
(N = 31) 

1585 34 228.3 313.7 

Continuous 
(N = 25) 

476 27 133.2 121.5 

 

Figure 4. Localization of major intestinal 

transporters on intestinal skin cells. Rectangles 

with arrows represent transporters. ABC (black) 

and SLC (white) families are designated by color.
1 
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Descriptor Generation 

 Descriptors were generated for each 

dataset using both the open-source 

Chemistry Development Kit (CDK) ver.1.3 

(202 descriptors) as well as Dragon 

ver.1.4.4 (Talete) with explicit hydrogens 

(2489 descriptors). Any descriptors that 

generated an error for at least one 

compound were dropped from the datasets. Descriptors were considered non-informative and 

dropped from individual datasets if they correlated completely with another descriptor or if they 

did not vary across compounds in that 

dataset.  Counts of retained descriptors for 

individual classification and continuous 

datasets are listed in Tables 6 and 7 of the 

appendix and are summarized in Table 2.  

Modelability Index Calculation  

 In a recent publication, Golbraikh et al. proposed the use of a MODelability Index 

(MODI) to assess the goodness of a dataset for successful model building based on the frequency 

of activity cliffs (regions in the descriptor space where chemical activity changes rapidly).
25

 

They offer a definition for classification datasets computed from the number of dissimilar nearest 

neighbors present for each class in the dataset:  

   

(1) 

   

where K is the number of classes, Ni
same

 is the number of compounds belonging to the i
th

 class 

whose nearest neighbor belongs to the same class, and Ni
total

 is the total number of compounds in 

the i
th

 class. Nearest neighbors are determined as the neighbor with the least Euclidean distance 

Table 2. Summary of descriptors retained. 

Descriptor Set  Max Min Mean St. Dev. 

CDK 162 127 151.6 8.4 

Dragon 1420 835 1098.3 135.9 

 

                   
 

 
∑

  
    

  
     

 

 

 

 

Figure 5. Distribution of the characterizations 

of datasets in the database. Note the bias 

towards inhibition datasets, especially among 

continuous datasets.
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from the compound in the entire descriptor space.
25

 Because descriptors are generated from the 

chemical structure, the nearest neighbor will be the most structurally similar compound. 

I offer a similar definition of MODI for continuous datasets for use and evaluation in this 

study: 

 

(2) 

 

where N is the total number of compounds, z(ai) is the normalized activity of the i
th

 compound, 

and z(  
 ) is the normalized activity of the neighbor nearest to the i

th
 compound. Therefore MODI 

is calculated as the average number of standard deviations in activity between nearest neighbors.  

 MODI values were computed for each transporter dataset using Python ver.2.7.6 

including the packages NumPy and scikit-learn 

ver.0.14. Descriptors were auto scaled before 

calculating neighbor distances. MODI values 

for individual classification and continuous 

datasets are listed in Tables 6 and 7 of the 

appendix and are summarized in Table 3. 

QSAR Modeling  

 Quantitative structure-activity relationship (QSAR) predictors were created using the 

Carolina Cheminformatics Workbench (Chembench) developed by the Carolina Exploratory 

Center for Cheminformatics Research (CECCR) and according to the workflow outlined in 

Figure 3.
26

 Random forests (RFs) were generated using the randomForest package for R ver.4.6-

7, support vector machines (SVMs) were constructed using an grid-search built on libsvm, and k-

nearest neighbors (kNN) predictors were prepared using an internally developed KNN+ ver.2.82. 

Meta-parameters for each predictor type were controlled across datasets.  

Datasets were split into five equal folds for external cross-validation. Separate predictors 

were generated and evaluated for each external fold and then consolidated into a single 

consensus predictor. Internal test sets were selected by sphere exclusion for datasets with fewer 

than 300 compounds and randomly otherwise. Predictors were created for each dataset using 

either CDK or Dragon descriptor sets. 

               
 

 
∑| (  )   (  

 )|

 

 

 

 

Table 3. Summary of dataset modelability indices. 

Activity Type  Max Min Mean St. Dev. 

Classification 
(N = 31) 

0.98 0.39 0.75 0.11 

Continuous   
(N = 25) 0.58 0.06 0.31 0.13 
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 Continuous datasets were modeled using RF, SVM, and kNN. The kNN predictors were 

trained using a genetic algorithm (GA-kNN) for datasets with greater than 150 compounds and 

both GA-kNN and simulated annealing (SA-kNN) otherwise. Descriptors were normalized using 

range scaling. Predictors were evaluated by the average coefficient of determination (R
2
) of the 

five folds: 

  

(3) 

 

where yi is the observed activity of the i
th

 compound, ŷi is the predicted activity of the i
th

 

compound, and ȳ is the average activity of all compounds.
15

 Note that because the model 

predictions are not a linear best fit, the sum of squared errors (SSE) may be greater than the total 

sum of squares (SST) in the observed activities. 

Therefore R
2
 values may be negative.

17
 Coefficients 

of determination for individual regression 

predictors, reported as the mean of five cross-

validation folds, are shown in Table 9 of the 

appendix and are summarized in Table 4. 

 As will be shown, modeling technique was not found to have a significant effect on 

predictive power. Therefore, because of its rapid modeling time, classification datasets were 

modeled using RF only. Four predictors were generated for each dataset corresponding to each 

combination of range or auto scaled CDK or Dragon descriptors. Predictors were evaluated by 

the overall correct classification rate (CCR) of the five folds: 

 

(4) 

 

where K is the number of classes (K = 2 for binary datasets), Ni,correct is the number of correctly 

classified compounds in the i
th

 class, and Ni,total is the total number of compounds in the i
th

 class. 

Previous studies have identified a CCR of 0.7 to 

be the threshold for acceptable predictive 

power.
15,25

 CCR, reported as the mean of five 

cross-validation folds, are shown in Table 10 of 

the appendix and are summarized in Table 5. 

 

   
   

   
   

   

   
   

∑ (    ̂ )
 

 

∑ (    ̅)  
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Table 4. Summary of coefficients of 

determination for regression predictors. 

 

Max Min Mean St. Dev. 

R
2
 0.82 -0.20 0.37 0.22 

 

Table 5. Summary of correct classification 

rates for classification predictors. 

 

Max Min Mean St. Dev. 

CCR 0.96 0.48 0.79 0.09 
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Model Fortification 

 Predictors were subjected to several additional thresholds throughout the modeling 

process to maximize predictive power. Datasets with fewer than 30 compounds were not 

modeled (N = 2). Individual models were required to present a squared leave-one-out cross-

validation correlation coefficient (Q
2
) of at least 0.6 to be accepted.  

In addition, stochastic models were identified using y-randomization. This process 

randomly redistributes activities to the compounds in the modeling set, constructs a predictor, 

and calculates a CCR or R
2
 using a fraction of the modeling set as an evaluation set. Five y-

randomized predictors are constructed in this way such that a one-tailed t-test could be conducted 

to determine the probability of obtaining the CCR or R
2
 of the true-activity predictor with 

randomized values. If the p-value was greater than 0.05, the models built using the real data were 

deemed unreliable and rejected. 

An applicability domain (AD) of 0.5 standard deviations was also applied to each model 

of kNN predictors. The standard deviation in Euclidean distance in the descriptor space between 

each compound and its k nearest neighbors was calculated. Models were ignored during 

prediction and evaluation if the new compound did not have at least k neighbors within 0.5 

standard deviations. 

In all, 274 predictors passed all cut-offs. The five datasets with fewer than 50 compounds 

(N = 5) failed to produce any kNN models that passed all cut-offs. In addition, two datasets with 

51 compounds failed to generate adequate models for a single kNN predictor each. 

Statistical Analysis 

 Dataset characterization data and predictor quality data were prepared for analysis using 

Excel ver.14.0 (Microsoft). Statistical analyses were conducted using Stata ver.13.0 (StataCorp). 

Results and Discussion 

A series of linear regression analyses were conducted to reveal correlations between the 

biological, chemical, and numerical characteristics of the datasets and the modelability as 

expressed by the coefficient of determination (R
2
) or correct classification rate (CCR) of the 

predictor. These results may be used to improve future QSAR studies as well as to identify 

relevant properties of the transporter pharmacophores that have not previously been described. 
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Quantifying Predictive Power 

 The coefficient of determination (R
2
) calculated for continuous predictors is a measure of 

the sum of squares of the external validation. Unfortunately, this value does not lend itself well 

to linear regression. In addition, some values of R
2
 were found to be negative. Therefore a 

transformed root of squares (R
1
) was used for analysis: 

 

(5) 

 

where R
2
 is the coefficient of determination. 

 Although it may be tempting to make conclusions about the relative success of regression 

and classification QSAR predictors, it should be emphasized that R
1
 (equations (3) and (5)) and 

CCR (equation (4)) are distinct evaluation measures that are not comparable. Both R
1
 and CCR 

asymptotically approach 1.0 as external prediction improves. However, while R
1
 ranges to 

negative infinity, CCR has a minimal value of zero. A random assignment of regression 

predictions from the observed distribution will result in an R of 0.0, but a random classification 

will result in a CCR of the inverse of the number of classes (CCR = 0.5 for binary data sets). 

Therefore all analyses were conducted separately on either regression or classification predictors.  

Numerical Characteristics 

 Not surprisingly, the size of a dataset was found to have a significant positive correlation 

(p < 0.001) with predictive power for both regression and classification datasets. Furthermore, 

this correlation is best realized when the dataset size is represented by the logarithm of the 

cardinality. Figures 6 and 7 plot the R
1
 values for each regression predictor and CCRs for each 

classification predictor, respectively, against the size of the original dataset.  

     √     

Figure 6. Correlations between the logarithm of the number of compounds and the R
1
 of regression 

predictors. CDK (circles) and Dragon (triangles) descriptors are denoted by shape. RF (green), SVM 

(blue) and kNN (orange) are denoted by color. 
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In addition, QSAR modeling technique, descriptor type, and descriptor scaling are 

denoted for each datum in Figures 6 and 7. None of these characteristics, nor the number of 

descriptors, had a statistically significant effect on predictive power for either continuous or 

classification datasets when controlling for the size of the dataset. 

Modelability Indices 

Classification MODI 

 The definition of a Modelability Index (MODI) offered by Golbraikh et al.
25

 and 

presented again here as equation (1) was found to be a strong indicator of the predictive power of 

RF classification transporter datasets. A significant correlation (R
2
 = 0.72) was found between 

MODI and a predictor’s external CCR. Figure 8 is a plot of each predictor’s CCR against the 

MODI of its original dataset. Using the threshold for modelability also offered by Golbraikh et 

al. (CCR > 0.7), MODI can be used to reliably estimate whether a dataset may yield an 

acceptable predictor. Nearly all (N = 107 of 112) predictors built from datasets with MODI 

above 0.64 resulted in a CCR greater than 0.7. 

In addition, descriptor type, and by extension the number of descriptors, was not found to 

affect the MODI of a dataset. Figure 8 is a plot of the MODI calculated using Dragon descriptors 

versus the MODI calculated using CDK descriptors for each classification dataset. A significant 

correlation (R
2
 = 0.77) was determined for a linear regression through the origin. Note that only 

two datasets deviate from this trend: datasets 41 and 40 located in the lower left of Figure 9. The 

discrepancy in MODI implies that the compounds in these datasets are represented differently in 

some significant way in the different descriptor spaces. These datasets are both concerned with 

R² = 0.2059 
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Figure 7. Correlations between the logarithm of the number of compounds and the CCR of 

classification predictors. CDK (circles) and Dragon (triangles) descriptors are denoted by shape. Auto 

scaling is indicated by the presence of a black border. 
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the inhibition of MRP3 at different thresholds. Cross referencing Figure 8 reveals that the MODI 

calculated using Dragon descriptors better predicted the CCR of the resultant predictors. 

Therefore it may be inferred that CDK does not include some key descriptors relevant to MRP3 

inhibition. However, any major conclusions from these datasets should be avoided because they 

contain relatively few compounds (N = 36 and 35).  

In addition, this set of datasets is biased toward modelable datasets. Additional predictors 

with CCR between 0.5 and 0.7 would need to be studied to verify the correlation in the 

unmodelable quadrant of Figure 8.  

y = 0.7238x + 0.2416 
R² = 0.7219 
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Figure 8. Correlation between the CCR of classification predictors and the MODI of their original 

datasets. The threshold for modelability is marked at CCR = 0.7 and correspondingly at MODI = 0.63. 

Datasets 40 (red) and 41(orange) are identified from Figure 9. 
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Figure 9. Correlation between MODI calculated using Dragon descriptors and CDK descriptors for 

each classification dataset. Datasets 40 (red) and 41(orange) are identified as significant outliers.  
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Continuous MODI 

 A novel definition for the MODI of continuous datasets was introduced in equation (2). A 

significant correlation (R
2
 = 0.59) was found between values calculated using this definition of 

MODI and a regression predictor’s R
1
 value. Figure 10 illustrates this relationship with 

descriptor type and modeling technique identified. Using a coefficient of determination of R
2 

> 

0.5 as the threshold for modelability
15

 corresponds to a root of squares of roughly R
1
 > 0.3. 

Therefore I propose a heuristic threshold of MODI > 0.35 to estimate the modelability of 

continuous datasets.  This cutoff deviates from the regression line to increase sensitivity without 

sacrificing precision in this set. 

Biological Characteristics 

 The membrane transporters were divided into homologous groups for additional analysis. 

Because all ABC transporters are related, this process grouped ABC together and SLC 

transporters into subfamilies. A statistically significant correlation was determined between this 

grouping and the predictive power of classification datasets. In particular, predictors concerning 

SLC transporters reported CCRs 0.089 greater (p < 0.001) than ABC predictors, on average. This 

correlation persists when dataset size and MODI are included in the regression. Figure 11 

illustrates the way that ABC predictors evaluated more poorly, even when the original datasets 

computed similar MODI. This indicates that there are additional factors affecting modelability 
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Figure 10. Correlation between the R
1
 of regression predictors and the MODI of their original 

datasets. The threshold for modelability is marked at R
1 

= 0.3, and a corresponding cutoff is proposed 

at MODI = 0.35. CDK (circles) and Dragon (triangles) descriptors are denoted by shape. RF (green), 

SVM (blue) and kNN (orange) are denoted by color. 
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besides those captured by MODI. This trend may result from the interaction with ATP as the 

energy source or it may indicate that ABC transporters are reliant on the selectivity of multiple 

external binding proteins.  

Additional features characterizing the membrane transporter and activity measure were 

analyzed as well. The location of the transporter in vivo, whether in the basal or apical 

membranes, was not found to be significant for predictive power. Whether the dataset included 

inhibitor or substrate activity data, however, was significant for both classification and regression 

predictors when controlling for dataset size. Curiously, classification inhibitor datasets predicted 

CCR 0.034 less (p = 0.022) than their substrate counterparts on average, but continuous inhibitor 

datasets evaluated with R
1
 0.080 greater (p = 0.007) on average. This discrepancy is not quickly 

explained, and additional research is needed to determine which, if either, correlation is accurate. 

Conclusions 

 Membrane transport proteins are directly responsible for the movement of chemicals into 

and out of each cell, so predicting their interaction with potential drug candidates is an important 

challenge for drug discovery.
1
 Quantitative structure-activity relationship (QSAR) modeling, as 

part of the greater field of cheminformatics, attempts to predict the activity of new compounds 

by comparing their structures with the structures of compounds with known interactions. This 

technique was applied to 56 datasets concerning 14 major human transporters. A modelability 

index (MODI) for chemical datasets of continuous activities was developed to mimic an existing 
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Figure 11. CCR of predictors by homology group: ABC (blue), SLC10 (yellow), SLC15 (orange), 

SLC16 (green), SLC22 (brown), and SLCO (red). 
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MODI for classification datasets as a heuristic device for estimating predictive power. Dataset 

cardinality and MODI were found to have significant effects on predictive power, but modeling 

technique and descriptor type were not. In addition, transporter homology group was found to 

have a significant effect such that ABC datasets modeled more poorly, on average. This suggests 

that the mechanism of substrate selection of ABC proteins is more complex than that of SLC 

proteins. True validation of QSAR predictors requires laboratory experimentation, which was not 

available for this study.
15

 Therefore additional research is needed to confirm the predictive 

powers of each dataset and verify the correlations observed. 
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Appendix 

  

Table 6. Characterization data for continuous datasets.  

Transporter Activity Hot Ligand 
a 

Number of 
Compounds 

Number of Descriptors 
b
 

 
Modelability Index 

c 

CDK Dragon   CDK Dragon 

Substrate Datasets      

ASBT pKm  51 127               878  
 

0.234 0.147 

MDR1 pKm  63 152            1,015  
 

0.226 0.059 

MRP2 pKm  27 148               944  
 

0.081 0.000 

PEPT1 pKm  72 133               845  
 

0.411 0.329 

Inhibition Datasets      

ASBT pIC50 Taurocholate 341 159            1,243  
 

0.565 0.576 

BCRP pIC50 Any 119 155            1,096  
 

0.420 0.394 

BCRP pIC50 Mitoxantrone 46 138               902  
 

0.389 0.452 

BSEP pIC50 Taurocholate 295 160            1,215  
 

0.175 0.166 

MCT1 pIC50 Any 46 142               955  
 

0.114 0.279 

MDR1 pIC50 Any 476 159            1,229  
 

0.378 0.383 

MDR1 pIC50 Calcein AM 116 154            1,119  
 

0.374 0.306 

MDR1 pIC50 Daunorubicin 302 152            1,164  
 

0.364 0.413 

MDR1 pIC50 Vinblastine 48 140               942  
 

0.148 0.167 

MRP1 pIC50 Any 196 151            1,056  
 

0.474 0.391 

MRP1 pIC50 Calcein AM 54 140               943  
 

0.426 0.236 

MRP1 pIC50 Daunorubicin 108 139               951  
 

0.325 0.341 

MRP2 pIC50 Any 103 154            1,138  
 

0.344 0.313 

MRP2 pIC50 DNP-SG 46 145               971  
 

0.466 0.532 

MRP4 pIC50 Any 40 143               987  
 

0.228 0.240 

NTCP pIC50 Taurocholate 75 155            1,099  
 

0.162 0.177 

OATP2B1 pIC50 Any 27 146            1,010  
 

0.412 0.202 

OCT1 pIC50 Any 87 149               981  
 

0.068 0.207 

OCT1 pIC50 Tetraethylammonium 51 148               949  
 

0.196 0.286 

PEPT1 pIC50 Any 272 155            1,149  
 

0.412 0.326 

PEPT1 pIC50 Glycylsarcosine 269 154            1,147  
 

0.408 0.323 

a 
Hot ligands are specified for inhibition datasets. 

b 
Number of descriptors is the count of informative 

descriptors retained from an initial 202 CDK and 2489 Dragon descriptors. 
c
 Modelability indices 

calculated using equation (2). 
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Table 7. Characterization data for classification datasets.  

Transporter Activity 
a
 

Threshold 
(μM) 

Number of 
Compounds 

Number of Descriptors 
b 

 
Modelability Index 

c 

CDK Dragon   CDK Dragon 

Substrate Datasets      

ASBT Substrate                 106                144             1,064  
 

0.906 0.877 

BCRP Substrate                 169                160             1,227  
 

0.722 0.720 

BSEP Substrate                   34                140                924  
 

0.733 0.708 

MCT1 Substrate                   36                138                835  
 

0.694 0.694 

MDR1 Substrate                 567                162             1,347  
 

0.686 0.679 

MRP1 Substrate                 180                160             1,206  
 

0.849 0.817 

MRP2 Substrate                 222                160             1,192  
 

0.736 0.752 

MRP3 Substrate                 100                158             1,075  
 

0.870 0.910 

MRP4 Substrate                 122                159             1,187  
 

0.762 0.713 

MRP5 Substrate                   58                152             1,092  
 

0.776 0.759 

NTCP Substrate                   70                153             1,065  
 

0.786 0.829 

OATP2B1 Substrate                   59                153             1,046  
 

0.649 0.691 

OCT1 Substrate                   82                154             1,124  
 

0.866 0.817 

PEPT1 Substrate                 292                158             1,176  
 

0.807 0.762 

Inhibition Datasets      

ASBT Inhibitor 10                232                159             1,217  
 

0.853 0.780 

BCRP Inhibitor 10                395                162             1,266  
 

0.762 0.762 

BSEP Inhibitor 10                679                162             1,387  
 

0.753 0.740 

BSEP Inhibitor 100                725                162             1,393  
 

0.791 0.763 

MCT1 Inhibitor 10                  68                147             1,028  
 

0.979 0.954 

MDR1 Inhibitor 10             1,585                162             1,420  
 

0.888 0.886 

MRP1 Inhibitor 10                426                158             1,242  
 

0.831 0.814 

MRP2 Inhibitor 10                104                153             1,127  
 

0.721 0.740 

MRP3 Inhibitor 10                  36                154             1,048  
 

0.624 0.405 

MRP3 Inhibitor 50                  35                154             1,061  
 

0.571 0.393 

MRP4 Inhibitor 10                  67                148             1,069  
 

0.641 0.615 

MRP4 Inhibitor 50                  69                148             1,074  
 

0.761 0.783 

MRP5 Inhibitor 50                  37                144             1,030  
 

0.801 0.763 

NTCP Inhibitor 10                127                158             1,171  
 

0.746 0.673 

OATP2B1 Inhibitor 100                114                159             1,122  
 

0.737 0.754 

OCT1 Inhibitor 100                199                159             1,162  
 

0.779 0.806 

PEPT1 Inhibitor 100                  82                141                956  
 

0.659 0.610 

a 
Substrate datasets distinguish substrates from non-substrates, and inhibitor datasets distinguish 

inhibitors from non-inhibitors at the given threshold concentration. 
b 
Number of descriptors is the count of 

informative descriptors retained from an initial 202 CDK and 2,489 Dragon descriptors. 
c
 Modelability 

indices calculated using equation (1). 
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Table 8. Characterization data for each transporter represented in the database. 

Transporter Gene Membrane Direction Superfamily Subfamily Substrate 

MDR1 ABCB1 Apical Efflux ABC MDR Xenobiotics 

BSEP ABCB11 Apical Efflux ABC MDR Bile Acids 

MRP1 ABCC1 Basal Efflux ABC MRP Organic Anions 

MRP2 ABCC2 Apical Efflux ABC MRP Bile Acids 

MRP3 ABCC3 Basal Efflux ABC MRP Organic Anions 

MRP4 ABCC4 Basal Efflux ABC MRP Cyclic Nucleotides 

MRP5 ABCC5 Basal Efflux ABC MRP Cyclic Nucleotides 

BCRP ABCG2 Apical Efflux ABC White Xenobiotics 

NTCP SLC10A1 Basal Influx SLC SLC10 Bile Acids 

ASBT SLC10A2 Apical Influx SLC SLC10 Bile Acids 

PEPT1 SLC15A1 Apical Influx SLC SLC15 Oligopeptides 

MCT1 SLC16A1 Apical Influx SLC SLC16 Monocarboxylates 

OCT1 SLC22A1 Basal Influx SLC SLC22 Organic Cations 

OATP2B1 SLCO2B1 Apical Influx SLC SLCO Organic Anions 
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Table 9. External validation results (R
2
, %) for transporter regression predictors.  

Trans-
porter 

Hot 
Ligand a 

CDK Descriptors 
 
Dragon Descriptors 

RF SVM GA-kNN b SA-kNN b,c   RF SVM GA-kNN b SA-kNN b,c 

Substrate Predictors               

ASBT  27 ± 16 15 ± 39 failed 32 ± 36  27 ± 20 -2 ± 20 14 ± 39 3 ± 29 

MDR1  -5 ± 17 12 ± 34 -9 ± 58 22 ± 44  2 ± 30 13 ± 13 6 ± 51 25 ± 28 

PEPT1  41 ± 16 23 ± 29 23 ± 24 30 ± 26  23 ± 18 38 ± 17 39 ± 24 45 ± 19 

Inhibition Predictors               

ASBT Tauro. 82 ± 3 80 ± 2 75 ± 9 77 ± 7  79 ± 4 79 ± 3 73 ± 5 81 ± 4 

BCRP Any 53 ± 14 55 ± 8 59 ± 13 51 ± 15  44 ± 7 56 ± 11 60 ± 7 58 ± 8 

BCRP Mitox. 55 ± 25 31 ± 28 failed failed  36 ± 43 54 ± 18 failed failed 

BSEP Tauro. 27 ± 10 7 ± 10 failed ---  30 ± 18 37 ± 12 5 ± 18 --- 

MCT1 Any 21 ± 23 23 ± 35 failed failed  44 ± 16 33 ± 13 failed failed 

MDR1 Any 55 ± 9 51 ± 10 52 ± 6 ---  55 ± 7 57 ± 8 52 ± 7 --- 

MDR1 Calc.-AM 57 ± 15 50 ± 29 55 ± 6 57 ± 6  60 ± 4 59 ± 10 53 ± 9 56 ± 10 

MDR1 Dauno. 57 ± 10 54 ± 11 59 ± 7 ---  61 ± 8 60 ± 9 60 ± 6 --- 

MDR1 Vinbl. 8 ± 55 -12 ± 55 failed failed  12 ± 34 37 ± 27 failed failed 

MRP1 Any 62 ± 7 64 ± 6 61 ± 9 ---  63 ± 5 61 ± 7 59 ± 11 --- 

MRP1 Calc.-AM 44 ± 24 47 ± 36 27 ± 39 60 ± 20  31 ± 21 45 ± 9 46 ± 29 48 ± 8 

MRP1 Dauno. 53 ± 6 54 ± 15 46 ± 11 54 ± 10  49 ± 14 54 ± 5 38 ± 22 50 ± 8 

MRP2 Any 29 ± 25 -8 ± 76 42 ± 19 40 ± 11  19 ± 33 55 ± 14 34 ± 8 41 ± 7 

MRP2 DNP-SG 50 ± 23 41 ± 35 failed failed  45 ± 19 68 ± 30 failed failed 

MRP4 Any 11 ± 27 8 ± 17 failed failed  18 ± 44 12 ± 36 failed failed 

NTCP Tauro. 27 ± 15 -9 ± 14 9 ± 19 9 ± 11  21 ± 14 -20 ± 62 10 ± 14 10 ± 23 

OCT1 Any 34 ± 28 8 ± 41 29 ± 28 34 ± 24  40 ± 20 16 ± 25 33 ± 33 34 ± 30 

OCT1 N(Et)4 41 ± 31 34 ± 8 19 ± 45 26 ± 39  27 ± 36 59 ± 15 failed 36 ± 26 

PEPT1 Any 46 ± 8 47 ± 16 45 ± 1 ---  40 ± 18 39 ± 12 33 ± 19 --- 

PEPT1 Glycyl. 48 ± 8 27 ± 25 29 ± 21 ---  38 ± 13 28 ± 17 33 ± 15 --- 

Results are mean ± st.dev across five cross-validation folds. All regression predictors were creating using 

range scaled descriptors.
 a 

Inhibition datasets are identified by a hot ligand. 
b
 kNN models of datasets with 

fewer than 50 compounds failed to pass required cut-offs. 
c
 kNN-SA models were not created for datasets 

with more than 150 compounds. No models were created for datasets with fewer than 30 compounds. All 

successful models were significantly better than y-randomized models (see Methods). 
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Table 10. External validation results (CCR, %) for classification transporter predictors.  

Transporter 
Threshold 

a 

(μM) 

CDK Descriptors 
 

Dragon Descriptors 

Range Auto   Range Auto 

Substrate Predictors        

ASBT  87 ± 7 88 ± 7  88 ± 9 87 ± 9 

BCRP  79 ± 3 75 ± 3  73 ± 4 75 ± 3 

BSEP  62 ± 19 68 ± 22  73 ± 18 68 ± 16 

MCT1  79 ± 13 76 ± 12  76 ± 12 79 ± 8 

MDR1  72 ± 3 72 ± 3  74 ± 5 72 ± 5 

MRP1  83 ± 5 85 ± 5  85 ± 7 86 ± 5 

MRP2  79 ± 3 79 ± 4  81 ± 5 80 ± 7 

PEPT1  86 ± 5 86 ± 5  86 ± 5 86 ± 5 

MRP3  89 ± 4 87 ± 7  92 ± 5 91 ± 6 

MRP4  75 ± 11 76 ± 9  75 ± 12 75 ± 13 

MRP5  76 ± 16 69 ± 18  74 ± 12 76 ± 16 

NTCP  89 ± 4 89 ± 6  86 ± 11 83 ± 8 

OATP2B1  73 ± 17 71 ± 9  77 ± 13 81 ± 7 

OCT1  85 ± 11 87 ± 13  85 ± 6 86 ± 8 

Inhibition Predictors        

ASBT 10 88 ± 5 89 ± 5  87 ± 7 87 ± 5 

BCRP 10 81 ± 7 79 ± 7  80 ± 5 82 ± 8 

MCT1 10 96 ± 5 96 ± 5  93 ± 8 91 ± 7 

BSEP 10 83 ± 3 83 ± 3  84 ± 2 84 ± 2 

BSEP 100 77 ± 4 77 ± 5  76 ± 3 77 ± 5 

MDR1 10 91 ± 2 91 ± 2  91 ± 1 91 ± 2 

MRP1 10 84 ± 3 84 ± 4  83 ± 5 83 ± 4 

MRP2 10 79 ± 6 78 ± 11  80 ± 7 81 ± 9 

MRP3 10 61 ± 15
 

56 ± 14  60 ± 20 63 ± 16 

MRP3 50 48 ± 23 54 ± 15  53 ± 21 57 ± 18 

MRP4 10 78 ± 5 73 ± 9  70 ± 11 69 ± 6 

MRP4 50 75 ± 17 73 ± 10  76 ± 12 73 ± 11 

MRP5 50 73 ± 20 78 ± 18  72 ± 17 70 ± 21 

NTCP 10 78 ± 6 79 ± 8  76 ± 9 80 ± 8 

OATP2B1 100 79 ± 8 83 ± 7  81 ± 10 80 ± 5 

OCT1 100 86 ± 7 86 ± 6  85 ± 7 85 ± 7 
PEPT1 100 70 ± 4 74 ± 11 

 

72 ± 6 69 ± 7 

Results are mean ± st.dev across five cross-validation folds. All classification predictors were creating 

using random forests. 
a 
Inhibition datasets are identified by a threshold concentration. All models 

were significantly better than y-randomized models (see Methods). 

 


