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Abstract

The enormous increase in the amount of publicly available chemical genomics data and the 

growing emphasis on data sharing and open science mandates that cheminformaticians make their 

models publicly available for broad use by the scientific community. Chembench is one of the first 

publicly-accessible, integrated cheminformatics Web portals. It has been extensively used by 

researchers from different fields for curation, visualization, analysis, and modeling of 

chemogenomics data. Since its launch in 2008, Chembench has been accessed more than 1 million 

times by more than 5K users from a total of 98 countries. We report on the recent updates and 

improvements that increase the simplicity of use, computational efficiency, accuracy, and 

accessibility of a broad range of tools and services for computer-assisted drug design and 

computational toxicology available on Chembench. Chembench remains freely accessible at 

https://chembench.mml.unc.edu
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SUPPORTING INFORMATION
Details about publicly available datasets and predictors are provided in the Supporting Information. For the 86 publicly available 
datasets on Chembench, the name, size and type (categorical or classification) of the dataset are provided, as well as the descriptors 
available for modeling, the modelability index, and the date of creation (Table S1). For the 124 publicly available predictors, the name 
of the model and the underlying dataset, the statistical evaluation of the predictor, the machine learning technique and descriptors 
used, and the date of creation are all provided (Table S2). All publicly available datasets and predictors are available at https://
chembench.mml.unc.edu/.
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INTRODUCTION

The scientific community faces an unprecedented growth of chemical genomics data1 caused 

by widespread proliferation of high-throughput screening (HTS) technologies in both 

academia and industry and ever-expanding, public databases of chemical structure and 

bioactivity, such as PubChem2,3 and ChEMBL.4 Quantitative Structure-Activity 

Relationship (QSAR) models can leverage these data to accelerate chemogenomics research 

and chemical safety assessment while simultaneously reducing the associated costs.1,5,6 At 

the same time, there has been a community-wide push for increased openness in data and 

model sharing.1,6 This trend is posed to promote greater cross-disciplinary collaborations 

and to advance the relevance and rigor of predictive modeling. This evolution in the culture 

of data science mandates cheminformatics groups to provide the scientific community with 

the free and open access to QSAR models.

Currently, freely-accessible QSAR models are typically shared through standalone software 

applications. Such examples include EPI Suite™ from the United States Environmental 

Protection Agency7, VEGA-QSAR8, and ToxTree.9 While these standalone applications 

provide access to some QSAR models, new models cannot be developed by the user, thereby 

limiting the scope of available models. The optimal method for both developing and sharing 

QSAR models is the creation of freely-accessible, integrated cheminformatics Web portals.

Chembench10 is one of the first publicly-accessible, integrated cheminformatics portals, 

along with OCHEM11. Chembench has been used for research in chemical genomics, drug 

discovery, computational toxicology, and other fields. Since its creation in 2008, Chembench 

has been extensively used for the development and distribution of QSAR models, as well as 

a teaching tool. To date, Chembench has been visited over one million times. Chembench 

has more than 550 active registered users from 38 different countries, with an additional 

~5K individual non-registered users from a total of 98 countries (Figure 1). In order to keep 

Chembench as a state-of-the-art Web portal during this time of growing interest in open 

science and molecular modeling, constant updates and upgrades must be made. Here, we 

aim to report on the updates and improvements made in the recent years to increase the 

simplicity, speed, reliability, and openness of Chembench.

Capuzzi et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

Chembench is a Java-based system, utilizing Java Server Pages (JSPs) with JavaScript12 at 

the front end of the website. The interface between data located on the JSPs and Java objects 

is maintained by the Apache Struts 2 framework.13 HIBERNATE14 provides the framework 

for mapping the Java objects to a relational database. Chembench is freely accessible at 

https://chembench.mml.unc.edu/.

Prior to QSAR modeling, the datasets are automatically curated following the protocols 

developed earlier in our group.15–17 For structural standardization and compound 

visualization J Chem Suite18 is used. Visualization scripts are executed using the R 

environment.

The models are built and rigorously validated according to best practices of QSAR 

modeling.19,20 Chembench implements several chemical descriptor generation packages – 

CDK,21 DRAGON,22 MACCS keys,23 MOE,24 and ISIDA.25 Molconn Z descriptors26 are 

no longer supported; however, descriptors files for archived datasets are still available for 

download. In addition, users can also upload their datasets characterized by any descriptors 

precomputed outside of Chembench. The following machine learning algorithms are 

supported by Chembench for both continuous and classification model building: random 

forest,27 support vector machine,28 k-nearest neighbors (kNN) with genetic algorithm (GA) 

or simulated annealing (SA) descriptor selection.29 Predictors are built using the scikit-learn 

package from Python.30 Single compounds for prediction can be sketched using JSME, a 

free molecule editor written in JavaScript.31 Calculations are performed on the KillDevil 

800-node Beowulf Linux cluster housed at UNC-Chapel Hill.

CHEMBENCH ENVIRONMENT

Chembench facilitates cheminformatics analyses via four modules described below: My 

Bench; Datasets; Modeling; and Prediction. Each module can be utilized individually or 

integrated as part of an integrated study design.

My Bench

Every dataset, predictor (QSAR model), and prediction created by a register user on 

Chembench is privately stored and available for personal download. After receiving approval 

from the Chembench management team, registered users have the option to make all 

datasets, predictors, and predictions publicly available. Both registered and guest (non-

registered) users are able to download all publicly available datasets and predictors. Curated 

datasets downloaded from Chembench contain, among other files, the standardized structure 

file and generated descriptor matrices. Predictors, when downloaded, contain the non-

overlapping training and test sets used in each fold during cross-validation and the 

underlying Python scripts used for model building. Guest users are not able to download 

datasets and predictors associated with proprietary descriptors. Users can track the progress 

of all running jobs using the job queue feature.
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Datasets

Chembench facilitates the creation of datasets for model building and validation. Modeling 

datasets can be used for either predictor generation or virtual screening, while prediction 

datasets are used exclusively for virtual screening. Users have the option to upload 

proprietary descriptors; otherwise, available descriptors (see Methods) are automatically 

generated from an uploaded structure file. The modelability index (MODI) of each dataset is 

calculated automatically.32 Structures are standardized following our chemical data curation 

workflow,16 and a chemical similarity heat maps, using either Tanimoto similarity33 or 

Mahalanobis distance measure,34 can be generated as an option. Rigorous external 

validation is an inherent part of model building. For this purpose, specific set of compounds 

can be selected for external validation or, as other options, random external set or n-fold 

external cross-validation can be used.19 In order to promote best practices of QSAR 

modeling,19 Chembench will automatically warn the user if the modeling dataset is too 

small (less than 40 compounds) for rigorous QSAR modeling. After the dataset has been 

created, the user can view chemical structures, examine the heatmap and a histogram of 

activities, as well as investigate each generated descriptor type and examine possible errors 

during calculation. Currently, there are 86 publicly available datasets on Chembench, 

including, for example, datasets of human skin sensitization,35,36 P-glycoprotein 

substrates,37 chemical toxicants tested against Tetrahymena pyriformis,38 and blood–brain 

barrier permeability.39 A full list of publicly available datasets on Chembench can be found 

in the Supporting Information.

Modeling

Chembench allows for the generation of statistically validated QSAR models of target 

endpoints for either personally uploaded or publicly available modeling datasets. Generated 

descriptors (See Methods) or externally uploaded descriptors, if applicable, are available for 

use in the predictor. Descriptors can be range scaled, auto scaled, or left unscaled. Users can 

manually set the maximum allowed descriptor cross-correlation. For each pair of 

descriptors, if the correlation coefficient is above the maximum, one of the two will be 

chosen randomly and removed; descriptors with zero variance across compounds will be 

automatically removed as well. It should be noted that if the descriptor type cannot be 

generated due to incompatible chemical structures (see Datasets), then this descriptor type 

will be unavailable for use in QSAR modeling. After the model has been built, the 

robustness of the predictor can be probed through a detailed assessment of external 

validation statistics. For models built with continuous data, the linear regression is plotted, 

and the Q2, RMSE, and MAE are calculated. For models built with categorical data, a 

confusion matrix is generated from which specificity (SP), sensitivity (SE), correct 

classification rate (CCR), accuracy (ACC), negative predictive value (NPV), and positive 

predictive value (PPV) are calculated. All external validation results can be download as 

*.csv files. For all models, regardless of the machine learning algorithm, y-randomization40 

is performed with a corresponding statistical evaluation. For random forest, the individual 

trees can be investigated with the selected descriptors displayed. Additionally, feature 

selection is performed, and the most important descriptors are ranked. For SVM, a matrix 

search is used and the gamma parameter of each radical basis function (RBF) kernel can be 

identified. For kNN, the number of k nearest neighbors and descriptors used for each model 
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can be probed. All users can download publicly available models from Chembench, while 

only registered users can save, store, and download their personal models on Chembench. 

Currently, there are 124 publicly available predictors on Chembench that can either be 

downloaded or used for virtual screening (See Prediction), including, for example, predictors 

of the human intestinal transporter inhibition,41 human oral bioavailability,42 human plasma 

protein binding,43 stress response and nuclear receptor signaling toxicity assays.44 A full list 

of publicly available predictors can be found in the Supporting Information.

Prediction

Chembench possesses several prediction modalities for single compounds, batches of 

multiple compounds, and virtual chemical libraries. For instance, a single compound can be 

sketched using JSME31 or its SMILES uploaded. Additionally, Chembench has integrated 

several publicly available chemical libraries, such as the DrugBank45 and the ZINC lead-like 

library,46 that can be used for virtual screening. A user can also upload a specific library of 

interest or a batch of compounds (See Datasets). Then, the specific activity or spectrum of 

activities of the compound(s) or the virtual library can be predicted by selecting the desired 

predictor(s). The user has the ability to predict one or more endpoints for one or more 

compounds. The applicability domain threshold,19 if selected, can be manually set. Non-

registered users, using publicly available predictors, have the ability to predict single 

compounds and publicly available chemical libraries. In order to encourage registration, 

non-registered users cannot perform batch predictions of multiple compounds. It should be 

noted that models built with user-uploaded, proprietary descriptors cannot be used in the 

“Predict a Single Compound” component of Chembench, as these descriptors cannot be 

automatically generated. Moreover, only random forest (RF) models are compatible with the 

“Predict a Single Compound” component in order to accelerate the speed of the prediction. 

For the prediction of a single compound using kNN or SVM models, the compound should 

be uploaded as a dataset, and the “Predict a Dataset” function should be used.

CONCLUSIONS

Chembench implements the best practices of QSAR modeling and validation,19 and all 

publicly available models are fully compliant with OECD principles for the validation of 

(Q)SAR models.47 Chembench provides a variety of cheminformatics and data science-

related services including data curation, standardization, and visualization; descriptor 

generation; development, rigorous external validation, and interpretation of QSAR models; 

prediction of a single property or activity profile for compound(s) of interest or prepared 

virtual screening libraries; targeted design of novel compounds with desired activity profile; 

etc. While Chembench in its current form is useful for both expert and beginner modellers, it 

is constantly being updated to meet the needs of the scientific community. Updates in 

progress are fragment-based structural interpretation of QSAR models, implementation of 

SiRMS48 descriptors, and additional datasets for download. Chembench was one of the first 

cheminformatics Web portals and, since its creation in 2008, continues to position itself as 

the gold-standard of publicly-accessible, integrated cheminformatics portals. Chembench, 

along with similar cheminformatics portals such as OCHEM,11 promotes the principles of 

both open science and data and model sharing49 in the era of Big Data.1 The continuing 
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need for Chembench and the high quality of services it provides are supported by more than 

1 million visits and more 550 registered and ~5K unregistered users from a total of 98 

countries as of today. Chembench is freely accessible at https://chembench.mml.unc.edu/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
World map of Chembench users. Countries with registered and guest users are shown in 

green and yellow, respectively.
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