24 research outputs found

    Design Issues in Radio Frequency Energy Harvesting System

    Get PDF

    Current State of Research at Imperial College London in RF Harvesting and Inductive Power Transfer

    No full text
    This paper presents simulation and experimental results for ambient RF energy harvesting and Inductive Power Transfer systems. End-to-end and dc-load efficiency measurements and calculations were performed to demonstrate the capabilities of both systems, respectively. An RF spectral survey was conducted across all the 270 underground stations in London. DTV, GSM900, GSM1800 and 3G were selected as the highest contributors and single banded rectennas were fabricated for all frequencies. Ground level measurements demonstrate that more than 50 stations have suitable channel power levels per band to allow ambient RF energy harvesting. Efficiencies of up to 40% were achieved with a single banded rectenna operating at GSM 900, and efficiencies higher than 20% were achieved for TV and 3G. Furthermore a high frequency, semi-resonant Class-E driver was used to transfer 60 W of power across a 30 cm distance with a dc-load efficiency of 66%

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Radio Frequency Energy Harvesting - Sources and Techniques

    Get PDF
    Energy harvesting technology is attracting huge attention and holds a promising future for generating electrical power. This process offers various environmentally friendly alternative energy sources. Especially, radio frequency (RF) energy has interesting key attributes that make it very attractive for low-power consumer electronics and wireless sensor networks (WSNs). Ambient RF energy could be provided by commercial RF broadcasting stations such as TV, GSM, Wi-Fi, or radar. In this study, particular attention is given to radio frequency energy harvesting (RFEH) as a green technology, which is very suitable for overcoming problems related to wireless sensor nodes located in harsh environments or inaccessible places. The aim of this paper is to review the progress achievements, the current approaches, and the future directions in the field of RF harvesting energy. Therefore, our aim is to provide RF energy harvesting techniques that open the possibility to power directly electronics or recharge secondary batteries. As a result, this overview is expected to lead to relevant techniques for developing an efficient RF energy harvesting system

    TFET-Based power management circuit for RF energy harvesting

    Get PDF
    This paper proposes a Tunnel FET (TFET)-based power management circuit (PMC) for ultra-low power RF energy harvesting applications. In contrast with conventional thermionic devices, the band-to-band tunneling mechanism of TFETs allows a better switching performance at sub-0.2 V operation. As a result, improved efficiencies in RF-powered circuits are achieved, thanks to increased rectification performance at low power levels and to the reduced energy required for a proper PMC operation. It is shown by simulations that heterojunction TFET devices designed with III-V materials can improve the rectification process at received power levels below -20 dBm (915 MHz) when compared to the application of homojunction III-V TFETs and Si FinFETs. For an available power of -25 dBm, the proposed converter is able to deliver 1.1 ”W of average power (with 0.5 V) to the output load with a boost efficiency of 86%.Postprint (author's final draft

    Ambient RF energy harvesting and eïŹƒcient DC-load inductive power transfer

    Get PDF
    This thesis analyses in detail the technology required for wireless power transfer via radio frequency (RF) ambient energy harvesting and an inductive power transfer system (IPT). Radio frequency harvesting circuits have been demonstrated for more than ïŹfty years, but only a few have been able to harvest energy from freely available ambient (i.e. non-dedicated) RF sources. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken in London. Using the results from this survey, various harvesters were designed to cover four frequency bands from the largest RF contributors within the ultra-high frequency (0.3 to 3 GHz) part of the frequency spectrum. Prototypes were designed, fabricated and tested for each band and proved that approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using the prototypes. Inductive Power Transfer systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link eïŹƒciency and have not taken into account the eïŹƒciency of the driver and rectiïŹer. Class-E ampliïŹers and rectiïŹers have been identiïŹed as ideal drivers for IPT applications, but their power handling capability at tens of MHz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link eïŹƒciency. The system presented in this work alleviates the use of heavy and expensive ïŹeld-shaping techniques by presenting an eïŹƒcient IPT system capable of transmitting energy with high dc-to-load eïŹƒciencies at 6 MHz across a distance of 30 cm.Open Acces

    Dynamically Reconfigurable SIR Filter Using Rectenna and Active Booster

    Get PDF
    Obrađeni su populacijski parametri čaglja (Cannis aureus L.) u proteklom desetogodiĆĄnjem razdoblju. IstraĆŸivanjem su se obuhvatila loviĆĄta koja pripadaju ĆĄirem području plavljenja rijeke Save. Rezultati ovog istraĆŸivanja pomaĆŸu boljem razumijevanju dinamike populacije čaglja i ĆĄirenju areala ove vrste koja je već prisutna na čitavom prostoru Republike Hrvatske

    Towards Battery-Free Internet of Things (IoT) Sensors: Far-Field Wireless Power Transfer and Harmonic Backscattering

    Get PDF
    RÉSUMÉ Notre vie tend Ă  ĂȘtre plus agrĂ©able, plus facile et plus efficace grĂące Ă  l'Ă©volution rapide de la technologie de l'Internet des objets (IoT). La clef de voute de cette technologie repose essentiellement sur la quantitĂ© de capteurs IoT interconnectĂ©s, que l’on est en mesure de dĂ©ployer dans notre environnement. Malheureusement, l’électronique conventionnelle fonctionnant sur piles ou reliĂ© au rĂ©seau Ă©lectrique ne peut pas constituer une solution durable en raison des aspects de coĂ»t, de faisabilitĂ© et d'impact environnemental. Pendant ce temps, le changement climatique dĂ» Ă  la consommation excessive de combustibles fossiles continue de s'aggraver. Il devient donc urgent de trouver une solution pour l’alimentation Ă©lectrique des capteurs IoT gĂ©ographiquement rĂ©partis Ă  grande Ă©chelle, afin de simultanĂ©ment soutenir la mise en oeuvre de nombreux capteurs IoT tout en limitant leur poids environnemental. L'Ă©nergie radiofrĂ©quence (RF) ambiante, qui sert de support Ă  l'information sans fil, est non seulement capitale pour notre sociĂ©tĂ©, mais aussi omniprĂ©sente dans les zones urbaines et suburbaines. Elle permet de rĂ©aliser des communications et des dĂ©tections sans fil. Cependant, l'Ă©nergie RF ambiante est majoritairement « gaspillĂ©e » car seule une toute petite partie de la puissance transmise est effectivement reçu ou « consommĂ©e » par le destinataire. C'est pourquoi le recyclage de l'Ă©nergie RF ambiante est une solution prometteuse pour alimenter les capteurs IoT. Pour certains capteurs IoT consommant une puissance plus Ă©levĂ©e, l’apport d'Ă©nergie sans fil pourra similairement se faire par des centrales Ă©lectriques spĂ©cialisĂ©es, suivant le mĂȘme schĂ©ma d’alimentation sans fil. Pour utiliser et rĂ©cupĂ©rer cette Ă©nergie RF, cette thĂšse prĂ©sente deux techniques principales : la rĂ©cupĂ©ration/rĂ©ception de puissance sans fil en champ lointain (wireless power transfer: WPT) et la rĂ©trodiffusion d'harmoniques. Le chapitre 2 aborde les diffĂ©rents mĂ©canismes de conversion de frĂ©quence entre le WPT en champ lointain et la rĂ©trodiffusion d'harmoniques. La rĂ©cupĂ©ration de WPT en champ lointain consiste Ă  convertir l'Ă©nergie RF en puissance continue. En revanche, la rĂ©trodiffusion d'harmoniques a pour but de convertir l'Ă©nergie RF dans une autre frĂ©quence, dans la plupart des cas, la composante harmonique de rang 2. A titre d'Ă©tape prĂ©liminaire de recherche et d'Ă©tude de faisabilitĂ©, une cartographie de la densitĂ© de l'Ă©nergie RF ambiante dans les zones centrales de l'Ăźle de MontrĂ©al est rĂ©sumĂ©e au chapitre 3. Contrairement aux mesures traditionnelles prĂ©cĂ©dentes effectuĂ©es Ă  des endroits fixes, cette mesure dynamique a Ă©tĂ© rĂ©alisĂ©e le long des rues, des routes, des avenues et des autoroutes pour couvrir une large zone.----------ABSTRACT Our life is becoming more convenient, efficient, and intelligent with the aid of fast-evolving Internet of Things (IoT) technology. One essential foundation of IoT technology is the development of numerous interrelated IoT sensors that are distributed extensively in our environment. However, conventional batteries/cords-based powering solutions are certainly not an acceptable long-term solution, considering the incurred cost, feasibility, most of all, environmental impact. Meanwhile, climate change due to excessive consumption of fossil fuels is worsening day by day. Therefore, a transformative powering solution for such large-scale and geographically scattered IoT sensors is of extreme importance in support of such extensive IoT sensors implementation while simultaneously mitigating its environmental burden. Serving as a critical information carrier, ambient radiofrequency (RF) energy is pervasive in urban and suburban areas to realize wireless communication and sensing. However, part of ambient RF energy is dissipated due to path loss if not fully consumed by end-users. Hence, recycling the wasted ambient RF energy to power IoT sensors is a promising solution. The concept of harnessing wireless energy for powering IoT sensors requiring a higher power supply is also feasible through the dedicated wireless power delivery from specialized power stations, which can be an effective supplement. To realize the RF power scavenging, this thesis research introduces two mainstream techniques: far-field wireless power transfer (WPT) and harmonic backscattering. Chapter 2 discusses the different frequency conversion mechanisms applied for far-field or ambient WPT harvesting and harmonic backscattering. Far-field WPT harvesting converts RF energy into dc power (zeroth harmonic). In contrast, harmonic backscattering upconverts RF energy into its harmonics, in most cases, the second harmonic component. As a preliminary research step and a feasibility study, a survey of ambient RF energy density in the core areas on Montreal Island is summarized in Chapter 3. Different from the previously published traditional measurements at fixed locations, this dynamic measurement is carried out along streets, roads, avenues, and highways to cover a large area. Also, a stationary measurement in Downtown Montreal is to reveal whether human activities are able to bring visible change to ambient RF energy levels. This work demonstrates how much ambient RF energy is available in free space and acts as a significant reference for researchers and engineers designing ambient RF energy harvesting circuits/systems for practical applications

    Practical rectennas : far-field RF power harvesting and transport

    Get PDF

    Développement de nouvelles rectennas pour la récupération d'énergie RF ambiante

    Get PDF
    La rĂ©cupĂ©ration d'Ă©nergie a attirĂ© beaucoup d'intĂ©rĂȘt ces derniĂšres annĂ©es. Cette technologie permet d'exploiter l'Ă©nergie ambiante RF disponible dans notre environnement en la convertissant en Ă©nergie continue Ă  l'aide de la technologie des Rectennas. La Rectenna, qui est associĂ©e Ă  un redresseur et une antenne, permet de rĂ©cupĂ©rer l’énergie RF sans fil dans l’air pour la convertir en un courant continu (batterie). L’objectif de ce mĂ©moire est de proposer un nouveau systĂšme Rectenna de type mono-bande et double-bandes pour les applications de rĂ©cupĂ©ration d'Ă©nergie radiofrĂ©quence (RF). Un Ă©tat de l’art des diffĂ©rentes Rectennas utilisĂ©es dans la littĂ©rature a Ă©tĂ© introduit, avec une explication de principe de fonctionnement. Plusieurs prototypes ont Ă©tĂ© dĂ©veloppĂ©s et simulĂ©s : le premier prototype est une Rectenna Ă  gain Ă©levĂ©, constituĂ©e d’une antenne micro-ruban Ă  substrat multicouche alimentĂ©e par couplage et fonctionnant dans la bande de frĂ©quence 5,8 GHz et un redresseur Ă  base d’une seule diode Schottky. Pour amĂ©liorer le gain de cette antenne, la technologie des mĂ©tamatĂ©riaux (FSS) a Ă©tĂ© utilisĂ©e pour atteindre un gain final de (la structure (antenne + FSS)) 13.1 dBi. La deuxiĂšme structure est basĂ©e sur un nouveau rĂ©seau hexagonale constituĂ© du Rectenna (conçu prĂ©cĂ©demment) permettant de rĂ©cupĂ©rer l’énergie Ă  360 degrĂ©s. Le troisiĂšme prototype concerne une nouvelle Rectenna Ă  double bande fonctionnant Ă  3,5 GHz et 5,8 GHz, pour les applications de la rĂ©cupĂ©ration d’énergie. La Rectenna proposĂ©e consiste en une antenne double-bande Ă  gain Ă©levĂ© et un redresseur double bande utilisant la diode Schottky comme Ă©lĂ©ment de redressement. Une procĂ©dure d’optimisation utilisant l’algorithme gĂ©nĂ©tique a Ă©tĂ© appliquĂ©e sur l’antenne pour atteindre un gain maximal de 10.2 dBi et 8.92 dBi dans les deux bandes, respectivement
    corecore