55 research outputs found

    Issues and Challenges of Grid-Following Converters Interfacing Renewable Energy Sources in Low Inertia Systems : A Review

    Get PDF
    The integration of renewable energy sources (RESs) is a key objective for energy sector decision-makers worldwide, aiming to establish renewable-rich future power grids. However, transitioning from conventional systems based on synchronous generators (SGs) or systems with a low RESs share presents challenges, particularly when accompanied by decommissioning large central generation units. This is because the reduction in inertia and system strength, traditionally provided by SGs, can lead to a loss of essential system support functions like voltage and frequency. While current converter technologies attempt to compensate for the grid support provided by SGs by enhancing converter capabilities, they still heavily rely on the presence of SGs to function effectively. These converters, known as grid-following (GFL) converters, depend on the grid to operate in a stable and secure manner. As the penetration of RESs increases, the efficacy of GFL converters diminishes, posing stability challenges in low inertia systems and limiting the integration of RESs. Therefore, it is crucial to reassess the existing GFL converter technologies, control mechanisms, and grid codes to understand their status and future requirements. This will shed light on the advancements and limitations of GFL converters, enabling greater RESs integration and grid support independent of SGs. This paper aims to provide an up-to-date reference for researchers and system operators, addressing the issues and challenges related to GFL converter technologies, control systems, and applications in low inertia systems. It serves as a valuable resource for facilitating the transition towards future systems with 100% RESs penetration scenarios.© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Control strategies in enhanced stand-alone mini-grid operations for the NESI–an overview

    Get PDF
    Diverse control strategies for enhancing operations of isolated distribution grids are reviewed. Such distribution grids are called mini-grids or micro-grids, depending on their power flow capabilities. Robust control schemes identified in other climates for mini-grid and micro-grid operations are yet to be fully explored in the Nigerian electricity supply industry (NESI). Sustainable control strategies suitable for isolated distribution grids in the NESI predicate on capabilities for diverse objectives, such as energy conservation, affordability, efficient power throughput, and utilization, for enhanced resiliency and reliability. Consequently, the distributed control system in hierarchical layers is identified as a suitable choice for mini-grid operations in Nigeria because of its robustness in scalability and in energy conservation. However, the model predictive control (MPC) scheme is observed to be uniquely applicable in all of the hierarchical control layers. Therefore, a cascade-free MPC with improved robustness against sensitivity to system parameter variation is presented at the primary control layer for an H8 voltage source inverter (VSI) used for grid integration of the solar photovoltaic (PV) system. The H8 inverter gives more promising mitigation strategies against common-mode voltage and leakage current. Moreover, the control of DC link voltage for maximum power point tracking (MPPT) is achieved by the H8 inverter, thereby eliminating the need for a separate converter for MPPT. Thus, sustainability is achieved

    Advanced Modeling and Research in Hybrid Microgrid Control and Optimization

    Get PDF
    This book presents the latest solutions in fuel cell (FC) and renewable energy implementation in mobile and stationary applications. The implementation of advanced energy management and optimization strategies are detailed for fuel cell and renewable microgrids, and for the multi-FC stack architecture of FC/electric vehicles to enhance the reliability of these systems and to reduce the costs related to energy production and maintenance. Cyber-security methods based on blockchain technology to increase the resilience of FC renewable hybrid microgrids are also presented. Therefore, this book is for all readers interested in these challenging directions of research

    A new method of virtual direct torque control of doubly fed induction generator for grid connection

    Get PDF
    Over the past few years, due to the shortage of fossil fuels and their unwanted environmental impacts, the use of renewable energy has vastly increased. Among them is wind power, which has been at the center of attention as one of the most important renewable energies. Many studies have been conducted regarding wind farms with variable speeds. Among these, the doubly fed induction generator (DFIG) has been of utmost importance due to its capability of separately controlling the active and reactive power, reducing the nominal converter capacity, maintaining constant variable speed frequency, and improving quality. The goal of this study is to control the synchronizing and network connection to the DFIG such that when connected to the network, no pulse is seen in the torque, rotor current, or stator. The method used in this study is known as virtual torque, which is derived from direct torque control, but instead of an electromagnetic torque, we use a virtual one. To implement this method, it is only required to measure the network voltage, current, and rotor position, and changing the control algorithm from synchronizing to grid connection only includes some changes in the flux references and torque, and calculating the electromagnetic torque instead of the virtual one

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Control Approach of a grid connected DFIG based wind turbine using MPPT and PI controller

    Get PDF
    double-fed induction generator (DFIG) has been frequently utilized in wind turbines due to its ability to handle variable-speed operations. This study investigates the real parameters of the Mitsubishi MWT 92/2.4 MW wind turbine model. It performs and implements grid-connected variable-speed turbines to control the active and reactive powers. Moreover, it presents a vector control strategy for DFIG for con- trolling the generated stator power. The unique fea- ture of the approach proposed in the study is the com- parison between two control techniques - the Maxi- mum Power Point Tracking (MPPT) algorithm and the Proportional-Integral (PI) controller - for regulat- ing DFIG based wind turbine systems. Thus, the result demonstrates that the performance of the MPPT tech- nique provides strong robustness and reaches steady- state much faster than the PI controller with variable parameters. To the contrary, a typical PI controller gives a fast response when tracking the references of DFIG magnitudes. The effectiveness of the overall sys- tem is tested by MATLAB simulation

    Analysis and Modeling of Advanced Power Control and Protection Requirements for Integrating Renewable Energy Sources in Smart Grid,

    Get PDF
    Attempts to reduce greenhouse gas emissions are promising with the recent dramatic increase of installed renewable energy sources (RES) capacity. Integration of large intermittent renewable resources affects smart grid systems in several significant ways, such as transient and voltage stability, existing protection scheme, and power leveling and energy balancing. To protect the grid from threats related to these issues, utilities impose rigorous technical requirements, more importantly, focusing on fault ride through requirements and active/reactive power responses following disturbances. This dissertation is aimed at developing and verifying the advanced and algorithmic methods for specification of protection schemes, reactive power capability and power control requirements for interconnection of the RESs to the smart grid systems. The first findings of this dissertation verified that the integration of large RESs become more promising from the energy-saving, and downsizing perspective by introducing a resistive superconducting fault current limiter (SFCL) as a self-healing equipment. The proposed SFCL decreased the activation of the conventional control scheme for the wind power plant (WPP), such as dc braking chopper and fast pitch angle control systems, thereby increased the reliability of the system. A static synchronous compensator (STATCOM) has been proposed to assist with the uninterrupted operation of the doubly-fed induction generators (DFIGs)-based WTs during grid disturbances. The key motivation of this study was to design a new computational intelligence technique based on a multi-objective optimization problem (MOP), for the online coordinated reactive power control between the DFIG and the STATCOM in order to improve the low voltage ride-through (LVRT) capability of the WT during the fault, and to smooth low-frequency oscillations of the active power during the recovery. Furthermore, the application of a three-phase single-stage module-integrated converter (MIC) incorporated into a grid-tied photovoltaic (PV) system was investigated in this dissertation. A new current control scheme based on multivariable PI controller, with a faster dynamic and superior axis decoupling capability compared with the conventional PI control method, was developed and experimentally evaluated for three-phase PV MIC system. Finally, a study was conducted based on the framework of stochastic game theory to enable a power system to dynamically survive concurrent severe multi-failure events, before such failures turn into a full blown cascading failure. This effort provides reliable strategies in the form of insightful guidelines on how to deploy limited budgets for protecting critical components of the smart grid systems
    corecore