17 research outputs found

    Celiac Immunogenic Potential of α-Gliadin Epitope Variants from Triticum and Aegilops Species

    Get PDF
    The high global demand of wheat and its subsequent consumption arise from the physicochemical properties of bread dough and its contribution to the protein intake in the human diet. Gluten is the main structural complex of wheat proteins and subjects affected by celiac disease (CD) cannot tolerate gluten protein. Within gluten proteins, α-gliadins constitute the most immunogenic fraction since they contain the main T-cell stimulating epitopes (DQ2.5-glia-α1, DQ2.5-glia-α2, and DQ2.5-glia-α3). In this work, the celiac immunotoxic potential of α-gliadins was studied within Triticeae: diploid, tetraploid, and hexaploid species. The abundance and immunostimulatory capacity of CD canonical epitopes and variants (with one or two mismatches) in all α-gliadin sequences were determined. The results showed that the canonical epitopes DQ2.5-glia-α1 and DQ2.5-glia-α3 were more frequent than DQ2.5-glia-α2. A higher abundance of canonical DQ2.5-glia-α1 epitope was found to be associated with genomes of the BBAADD, AA, and DD types; however, the abundance of DQ2.5-glia-α3 epitope variants was very high in BBAADD and BBAA wheat despite their low abundance in the canonical epitope. The most abundant substitution was that of proline to serine, which was disposed mainly on the three canonical DQ2.5 domains on position 8. Interestingly, our results demonstrated that the natural introduction of Q to H at any position eliminates the toxicity of the three T-cell epitopes in the α-gliadins. The results provided a rational approach for the introduction of natural amino acid substitutions to eliminate the toxicity of three T-cell epitopes, while maintaining the technological properties of commercial wheats

    Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing

    Get PDF
    BACKGROUND: Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses in the small intestine. Various peptides with three major T cell epitopes involved in CD are derived from alpha-gliadin fraction of gluten. Alpha-gliadins are encoded by a large multigene family and amino acid variation in the CD epitopes is known to influence the immunogenicity of individual gene family members. Current commercial methods of gluten detection are unable to distinguish between immunogenic and non-immunogenic CD epitope variants and thus to accurately quantify the overall CD epitope load of a given wheat variety. Such quantification is indispensable for correct selection of wheat varieties with low potential to cause CD. RESULTS: A 454 RNA-amplicon sequencing method was developed for alpha-gliadin transcripts encompassing the three major CD epitopes and their variants. The method was used to screen developing grains on plants of 61 different durum wheat cultivars and accessions. A dedicated sequence analysis pipeline returned a total of 304 unique alpha-gliadin transcripts, corresponding to a total of 171 ‘unique deduced protein fragments’ of alpha-gliadins. The numbers of these fragments obtained in each plant were used to calculate quantitative and quantitative differences between the CD epitopes expressed in the endosperm of these wheat plants. A few plants showed a lower fraction of CD epitope-encoding alpha-gliadin transcripts, but none were free of CD epitopes. CONCLUSIONS: The dedicated 454 RNA-amplicon sequencing method enables 1) the grouping of wheat plants according to the genetic variation in alpha-gliadin transcripts, and 2) the screening for plants which are potentially less CD-immunogenic. The resulting alpha-gliadin sequence database will be useful as a reference in proteomics analysis regarding the immunogenic potential of mature wheat grains

    T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease

    Get PDF
    The human leukocyte antigen (HLA) locus is strongly associated with T cell-mediated autoimmune disorders. HLA-DQ2.5-mediated celiac disease (CeD) is triggered by the ingestion of gluten, although the relative roles of genetic and environmental risk factors in CeD is unclear. Here we identify microbially derived mimics of gliadin epitopes and a parental bacterial protein that is naturally processed by antigen-presenting cells and activated gliadin reactive HLA-DQ2.5-restricted T cells derived from CeD patients. Crystal structures of T cell receptors in complex with HLA-DQ2.5 bound to two distinct bacterial peptides demonstrate that molecular mimicry underpins cross-reactivity toward the gliadin epitopes. Accordingly, gliadin reactive T cells involved in CeD pathogenesis cross-react with ubiquitous bacterial peptides, thereby suggesting microbial exposure as a potential environmental factor in CeD

    Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplican sequencing

    Get PDF
    Background - Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses in the small intestine. Various peptides with three major T cell epitopes involved in CD are derived from alpha-gliadin fraction of gluten. Alpha-gliadins are encoded by a large multigene family and amino acid variation in the CD epitopes is known to influence the immunogenicity of individual gene family members. Current commercial methods of gluten detection are unable to distinguish between immunogenic and non-immunogenic CD epitope variants and thus to accurately quantify the overall CD epitope load of a given wheat variety. Such quantification is indispensable for correct selection of wheat varieties with low potential to cause CD. Results - A 454 RNA-amplicon sequencing method was developed for alpha-gliadin transcripts encompassing the three major CD epitopes and their variants. The method was used to screen developing grains on plants of 61 different durum wheat cultivars and accessions. A dedicated sequence analysis pipeline returned a total of 304 unique alpha-gliadin transcripts, corresponding to a total of 171 'unique deduced protein fragments' of alpha-gliadins. The numbers of these fragments obtained in each plant were used to calculate quantitative and quantitative differences between the CD epitopes expressed in the endosperm of these wheat plants. A few plants showed a lower fraction of CD epitope-encoding alpha-gliadin transcripts, but none were free of CD epitopes. Conclusions - The dedicated 454 RNA-amplicon sequencing method enables 1) the grouping of wheat plants according to the genetic variation in alpha-gliadin transcripts, and 2) the screening for plants which are potentially less CD-immunogenic. The resulting alpha-gliadin sequence database will be useful as a reference in proteomics analysis regarding the immunogenic potential of mature wheat grains

    A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease

    Get PDF
    The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5–mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance

    Gluten-Free Diet

    Get PDF
    In the last few years, an increasing number of individuals have adopted a gluten free diet (GFD). A significant proportion of that includes patients affected by celiac disease (CD), who have to follow a strict GFD for medical purposes. However, a high number of individuals are currently following a GFD without medical counseling and without a specific diagnosis needing a gluten withdrawal from the diet. This is due to the frequently incorrect information diffused on the Internet and mass media on the topic of GFD. For these reasons, research on the GFD and its clinical use and biological effects is urgently needed

    Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis

    Get PDF
    Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individ-uals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.Fil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Schilbert, Hanna M.. Universitat Bielefeld; AlemaniaFil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Discriminative T-cell receptor recognition of highly homologous HLA-DQ2–bound gluten epitopes

    Get PDF
    Celiac disease (CeD) provides an opportunity to study the specificity underlying human T-cell responses to an array of similar epitopes presented by the same human leukocyte antigen II (HLA-II) molecule. Here, we investigated T-cell responses to the two immunodominant and highly homologous HLA-DQ2.5–restricted gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). Using HLA-DQ2.5–DQ2.5-glia-α1a and HLA-DQ2.5–DQ2.5-glia-ω1 tetramers and single-cell αβ T-cell receptor (TCR) sequencing, we observed that despite similarity in biased variable-gene usage in the TCR repertoire responding to these nearly identical peptide–HLA-II complexes, most of the T cells are specific for either of the two epitopes. To understand the molecular basis of this exquisite fine specificity, we undertook Ala substitution assays revealing that the p7 residue (Leu/Gln) is critical for specific epitope recognition by both DQ2.5-glia-α1a– and DQ2.5-glia-ω1–reactive T-cell clones. We determined high-resolution binary crystal structures of HLA-DQ2.5 bound to DQ2.5-glia-α1a (2.0 Å) and DQ2.5-glia-ω1 (2.6 Å). These structures disclosed that differences around the p7 residue subtly alter the neighboring substructure and electrostatic properties of the HLA-DQ2.5–peptide complex, providing the fine specificity underlying the responses against these two highly homologous gluten epitopes. This study underscores the ability of TCRs to recognize subtle differences in the peptide–HLA-II landscape in a human disease setting

    Stimulatory Response of Celiac Disease Peripheral Blood Mononuclear Cells Induced by RNAi Wheat Lines Differing in Grain Protein Composition

    Get PDF
    Wheat gluten proteins are responsible for the bread-making properties of the dough but also for triggering important gastrointestinal disorders. Celiac disease (CD) affects approximately 1% of the population in Western countries. The only treatment available is the strict avoidance of gluten in the diet. Interference RNA (RNAi) is an excellent approach for the down-regulation of genes coding for immunogenic proteins related to celiac disease, providing an alternative for the development of cereals suitable for CD patients. In the present work, we report a comparative study of the stimulatory capacity of seven low-gluten RNAi lines differing in grain gluten and non-gluten protein composition, relevant for CD and other gluten pathologies. Peripheral blood mononuclear cells (PBMCs) of 35 patients with active CD were included in this study to assess the stimulatory response induced by protein extracts from the RNAi lines. Analysis of the proliferative response and interferon-gamma (INF-γ) release of PBMCs demonstrated impaired stimulation in response to all RNAi lines. The lower response was provided by lines with a very low content of α- and γ-gliadins, and low or almost devoid of DQ2.5 and p31–43 α-gliadin epitopes. The non-gluten protein seems not to play a key role in PBMC stimulation.Spanish Ministry of Economy, Industry and competitiveness AGL2016-80566-PEuropean Regional Development Fund (FEDER
    corecore