850 research outputs found

    5-hydroxymethylcytosine is a key epigenetic regulator of keratinocyte stem cells during psoriasis pathogenesis

    Full text link
    Epigenetic regulation is now known to play an important role in determining stem cell fate during normal tissue development and disease pathogenesis. In this study, we report loss of 5-hydroxymethylcytosine (5-hmC) mediated by ten-eleven translocation (TET) methylcytosine dioxygenases in keratinocyte stem cells (KSCs) and in their progenitor transit-amplifying (TA) cells of psoriatic lesions. We establish the DNA hydroxymethylation profile in both human psoriasis as well as in the imiquimod (IMQ)-induced mouse psoriasis model. Genome-wide mapping of 5-hmC in IMQ-treated mice epithelium revealed a loci-specific reduction of 5-hmC in genes associated with maintaining stem cell homeostasis including those involved in the RAR and Wnt/β-catenin signaling pathways. Restoration of TET expression in human KSC cultures via vitamin C treatment increased 5-hmC levels and induced more normal KSC differentiation. We found that by modulating 5-hmC levels in vitro, we could alter downstream expression of genes important in regulating stem cell homeostasis like nestin as well as IL-17R known to promote the psoriatic phenotype. Our findings demonstrate that loss of 5-hmC is a critical epigenomic phenomenon in KSCs and TA cells during psoriasis pathogenesis.2019-12-17T00:00:00

    DNA hydroxymethylation levels are altered in blood cells from Down syndrome persons enrolled in the MARK-AGE project

    Get PDF
    Down syndrome (DS) is caused by the presence of part or an entire extra copy of chromosome 21, a phenomenon that can cause a wide spectrum of clinically defined phenotypes of the disease. Most of the clinical signs of DS are typical of the ageing process including dysregulation of immune system. Beyond the causative genetic defect, DS persons display epigenetic alterations, particularly aberrant DNA methylation patterns that can contribute to the heterogeneity of the disease. In the present work we investigated the levels of 5-hydroxymethylcytosine (5hmC) and of the TET dioxygenase enzymes, which are involved in DNA demethylation processes and are often deregulated in pathological conditions as well as in ageing. Analyses were carried out on peripheral blood mononuclear cells of DS volunteers enrolled in the context of the MARK-AGE study, a large-scale cross-sectional population study with subjects representing the general population in eight European countries. We observed a decrease of 5hmC, TET1 and other components of the DNA methylation/demethylation machinery in DS subjects, indicating that aberrant DNA methylation patterns in DS, which may have consequences on the transcriptional status of immune cells, may be due to a global disturbance of methylation control in DS

    Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARKAGE Study

    Get PDF
    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly

    DNA hydroxymethylation and improved growth of Nile tilapia (Oreochromis niloticus) during domestication

    Get PDF
    Doctoral thesis (PhD) - Nord University, 2020The worldwide demand for fish consumption is highly dependent on aquaculture production because commercial fishing reached its maximum exploitation since the 90’s. However, continued expansion of the aquaculture industry in a sustainable manner is dependent on several factors, including domestication of new species and establishment of selective breeding programmes. Domestication of new fish species is a rather complex and long process but the deployment of new molecular tools could improve and accelerate it through the holistic characterization of fish genomes. This thesis is based on the hypothesis that epigenetic mechanisms underlie genome-wide adaptation under captivity, since genetic mutations and allele shifts alone cannot explain the rapid transcriptomic changes of fish undergoing domestication. In a series of experiments, we investigated the role of DNA hydroxymethylation during the early stages of fish domestication, and its potential involvement in regulating somatic growth. At first, we discovered that the DNA hydroxymethylome in fast muscle changes rapidly within a single generation of domestication. As a result of our 5-hydroxymethylcytosine (5hmC) profiling at single nucleotide resolution, we were able to identify that 5hmCs are largely enriched within gene bodies, which supports the notion that they are functionally relevant epigenetic modifications. The annotation of differentially hydroxymethylated genes between wild and first-generation of fish under captivity revealed that the changes occurred primarily within genes involved in immunity, growth and neuronal activity. By comparing gene expression profiles in muscle between wild and first generation of Nile tilapia in captivity, we showed that immune-related genes were upregulated in the wild fish, while genes involved in metabolism and muscle-specific functions were downregulated. These findings revealed that the first generation of fish undergoing domestication is strongly influenced by the environmental conditions under captivity, namely the lack of pathogens and the optimal conditions of water temperature, oxygen, pH and diet. Thus, we provided for the first time a link between environmentally-mediated DNA hydroxymethylation and gene regulation in fish undergoing domestication. To further explore the connection between DNA hydroxymethylation and somatic growth, we compared the liver hydroxymethylomes of slow- and fast-growing full siblings and examined the 5hmC abundance in three major tissues that compose the somatotropic axis. Interestingly, we identified several differentially hydroxymethylated genes between slowand fast-growers. These genes were involved in signaling pathways related to cell growth, survival and proliferation such as the PI3K-Akt, the Ras- and Rho- protein signal transduction pathways. By comparing the DNA hydroxymethylomes among the muscle, liver and pituitary, we identified several differentially hydroxymethylated growth factors, receptors and enhancers with major implications in growth, metabolism and skeletal muscle development. Taken together, this thesis provides for the first time a direct link between DNA hydroxymethylation and fish domestication and associates epigenetic marks at single nucleotide resolution to somatic growth using cutting-edge molecular tools. When validated, these epigenetic markers can potentially improve current breeding strategies in aquaculture by providing a holistic approach for broodstock selection.publishedVersio

    Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription

    Get PDF
    TET enzymes are the epigenetic factors involved in the formation of the Sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expression maintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 downregulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer

    Epigenetic mapping of the somatotropic axis in Nile tilapia reveals differential DNA hydroxymethylation marks associated with growth

    Get PDF
    In vertebrates, the somatotropic axis comprising the pituitary gland, liver and muscle plays a major role in myogenesis. Its output in terms of muscle growth is highly affected by nutritional and environmental cues, and thus likely epigenetically regulated. Hydroxymethylation is emerging as a DNA modification that modulates gene expression but a holistic characterization of the hydroxymethylome of the somatotropic axis has not been investigated to date. Using reduced representation 5-hydroxymethylcytosine profiling we demonstrate tissue-specific localization of 5-hydroxymethylcytosines at single nucleotide resolution. Their abundance within gene bodies and promoters of several growth-related genes supports their pertinent role in gene regulation. We propose that cytosine hydroxymethylation may contribute to the phenotypic plasticity of growth through epigenetic regulation of the somatotropic axis.publishedVersio

    Genome-wide hydroxymethylation profiles in liver of female Nile tilapia with distinct growth performance

    Get PDF
    The mechanisms underlying the fast genome evolution that occurs during animal domestication are poorly understood. Here, we present a genome-wide epigenetic dataset that quantifies DNA hydroxymethylation at single nucleotide resolution among full-sib Nile tilapia (Oreochromis niloticus) with distinct growth performance. In total, we obtained 355 million, 75 bp reads from 5 large- and 5 small-sized fish on an Illumina NextSeq500 platform. We identified several growth-related genes to be differentially hydroxymethylated, especially within gene bodies and promoters. Previously, we proposed that DNA hydroxymethylation greatly affects the earliest responses to adaptation and potentially drives genome evolution through its targeted enrichment and elevated nucleotide transversion rates. This dataset can be analysed in various contexts (e.g., epigenetics, evolution and growth) and compared to other epigenomic datasets in the future, namely DNA methylation and histone modifications. With forthcoming advancements in genome research, this hydroxymethylation dataset will also contribute to better understand the epigenetic regulation of key genomic features, such as cis-regulatory and transposable elements.publishedVersio

    Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during pronuclear development in equine zygotes produced by ICSI

    Get PDF
    Background: Global epigenetic reprogramming is considered to be essential during embryo development to establish totipotency. In the classic model first described in the mouse, the genome-wide DNA demethylation is asymmetric between the paternal and the maternal genome. The paternal genome undergoes ten-eleven translocation (TET)-mediated active DNA demethylation, which is completed before the end of the first cell cycle. Since TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine, the latter is postulated to be an intermediate stage toward DNA demethylation. The maternal genome, on the other hand, is protected from active demethylation and undergoes replication-dependent DNA demethylation. However, several species do not show the asymmetric DNA demethylation process described in this classic model, since 5-methylcytosine and 5-hydroxymethylcytosine are present during the first cell cycle in both parental genomes. In this study, global changes in the levels of 5-methylcytosine and 5-hydroxymethylcytosine throughout pronuclear development in equine zygotes produced in vitro were assessed using immunofluorescent staining. Results: We were able to show that 5-methylcytosine and 5-hydroxymethylcytosine both were explicitly present throughout pronuclear development, with similar intensity levels in both parental genomes, in equine zygotes produced by ICSI. The localization patterns of 5-methylcytosine and 5-hydroxymethylcytosine, however, were different, with 5-hydroxymethylcytosine homogeneously distributed in the DNA, while 5-methylcytosine tended to be clustered in certain regions. Fluorescence quantification showed increased 5-methylcytosine levels in the maternal genome from PN1 to PN2, while no differences were found in PN3 and PN4. No differences were observed in the paternal genome. Normalized levels of 5-hydroxymethylcytosine were preserved throughout all pronuclear stages in both parental genomes. Conclusions: In conclusion, the horse does not seem to follow the classic model of asymmetric demethylation as no evidence of global DNA demethylation of the paternal pronucleus during the first cell cycle was demonstrated. Instead, both parental genomes displayed sustained and similar levels of methylation and hydroxymethylation throughout pronuclear development

    Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas

    Get PDF
    5-Hydroxymethylcytosine (5hmC) is an important, yet poorly understood epigenetic DNA modification, especially in invertebrates. Aberrant genome-wide 5hmC levels have been associated with cadmium (Cd) exposure in humans, but such information is lacking for invertebrate bioindicators. Here, we aimed to determine whether this epigenetic mark is present in DNA of the hepatopancreas of the land snail Cantareus aspersus and is responsive to Cd exposure. Adult snails were reared under laboratory conditions and exposed to graded amounts of dietary cadmium for 14 days. Weight gain was used as a sublethal endpoint, whereas survival as a lethal endpoint. Our results are the first to provide evidence for the presence of 5hmC in DNA of terrestrial mollusks; 5hmC levels are generally low with the measured values falling below 0.03%. This is also the first study to investigate the interplay of Cd with DNA hydroxymethylation levels in a non-human animal study system. Cadmium retention in the hepatopancreas of C. aspersus increased from a dietary Cd dose of 1 milligram per kilogram dry weight (mg/kg d. wt). For the same treatment, we identified the only significant elevation in percentage of samples with detectable 5hmC levels despite the lack of significant mortalities and changes in weight gain among treatment groups. These findings indicate that 5hmC is an epigenetic mark that may be responsive to Cd exposure, thereby opening a new aspect to invertebrate environmental epigenetics
    corecore