1,516 research outputs found

    An assembly oriented design framework for product structure engineering and assembly sequence planning

    Get PDF
    The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    Product and process information interactions in assembly decision support systems

    Get PDF
    A characteristic of concurrent engineering is the intensive information interchange between areas that are involved through the product life cycle. Shared information structures to integrate different software applications have become necessary to support effectively the interchange of information. While . much work has been done into the concepts of Product and Manufacturing Models, there is a need to make them able to support Assembly related activities. The research reported in this thesis explores and defines the structures of a Product Model and. a Manufacturing Model to support assembly related information. These information models support the product development process, especially during the early stages of the product life cycle. The structures defined for the models allow information interactions between them and with application software; these interactions are essential to support an effective concurrent environment. The Product Model is a source and repository of the product information, whilst the Manufacturing Model holds information about the manufacturing processes and resources of an enterprise. A combination of methods was proposed in order to define the structure for the information models. An experimental software system was created and used to show that the structure defined for the Product Model and the Manufacturing Model can support· a range of assembly-related software applications through the concurrent development of the product, system and process, from conceptual design through to planning. The applications implemented in the experimental system were Design for Assembly and Assembly Process Planning. The real data used for the tests was obtained from an industrial collaborator who manufactures large electrical machines. This research contributes to the understanding of. the general structural requirements of the decision support systems based on information models, and to the integration of Design for Assembly and Assembly Process Planning

    Multiple viewpoint modelling framework enabling integrated product-process design

    Get PDF
    Nowadays, companies have to cope with numerous constraints at organisational and technical levels in order to improve their competitiveness edges such as productivity, efficiency, and flexibility. Integrated product-process design becomes more and more complex to manage because of increasingly customized products related to various stakeholders and concerns geographically distributed. It is still represents a huge challenge, especially in the early phases of product development process. In such a context, the management of information within integrated product-process design highlights needs in a consistent engineering model that enables product lifecycle management (PLM) integration. The paper presents a novel multiple viewpoint framework called multiple viewpoint assembly oriented, considering product design and assembly process domains in the broader context of concurrent engineering and PLM. The proposed framework describes the consistency, the propagation of information change, and mechanisms of views generation among the product lifecycle stages in order to support assembly oriented design philosophy. A new modelling language called System Modeling Language is used to describe the proposed model from a systems engineering point of view. The implementation of the model in a Web-service called PEGASUS as an application for PLM systems is describe

    BIM-enabled Design for Manufacture and Assembly

    Get PDF

    A methodology for aggregate assembly modelling and planning

    Get PDF
    The introduction of Concurrent Engineering highlights the need for a link between the early stages of product design and assembly planning. This thesis presents aggregate assembly process planning as a novel methodology to provide this link. The theory behind the research is to bring all aspects of product development together to consider assembly planning at the conceptual stage of design. Decisions taken during the early design stage not only have the greatest influence on production times and costs, but also should ensure that a design is easy to manufacture and assemble. An automated computer-based system has been developed to implement the methodology. The system generates aggregate assembly process plans which give details of feasible sequences, assembly process times and costs, resource requirements, and factory loadings. The Aggregate Assembly Modelling and Planning (AAMP) system employs object-oriented modelling techniques to represent designs, process planning knowledge, and assembly resources. The minimum information requirements have been identified, and a product model encompassing this data has been developed. An innovative factor of this thesis is to employ Assembly Feature Connections (AFCs) within the product model to represent assembly connectivity. Detailed generic assembly process models, functioning with limited design data, are used to calculate assembly criteria. The introduction of a detailed resource model to represent assembly facilities enables the system to calculate accurate assembly times, dependent on which resources are used within a factory, or even which factory is employed. A new algorithm uses the structure of the product model, process constraints and assembly rules to efficiently generate accurate assembly sequences. Another new algorithm loads the assembly operations onto workstations, ensuring that the capability and capacity are available. The aggregate assembly process planning functionality has been tested using products from industry, and has yielded accurate results that prove to be both technically feasible and realistic. Industrial response has been extremely favourable. Specific comments on the usefulness and simplicity of such a comprehensive system gives encouragement to the concept that aggregate assembly process planning provides the required link between the early stages of product design and assembly planning

    An intelligent knowledge based cost modelling system for innovative product development

    Get PDF
    This research work aims to develop an intelligent knowledge-based system for product cost modelling and design for automation at an early design stage of the product development cycle, that would enable designers/manufacturing planners to make more accurate estimates of the product cost. Consequently, a quicker response to customers’ expectations. The main objectives of the research are to: (1) develop a prototype system that assists an inexperienced designer to estimate the manufacturing cost of the product, (2) advise designers on how to eliminate design and manufacturing related conflicts that may arise during the product development process, (3) recommend the most economic assembly technique for the product in order to consider this technique during the design process and provide design improvement suggestions to simplify the assembly operations (i.e. to provide an opportunity for designers to design for assembly (DFA)), (4) apply a fuzzy logic approach to certain cases, and (5) evaluate the developed prototype system through five case studies. The developed system for cost modelling comprises of a CAD solid modelling system, a material selection module, knowledge-based system (KBS), process optimisation module, design for assembly module, cost estimation technique module, and a user interface. In addition, the system encompasses two types of databases, permanent (static) and temporary (dynamic). These databases are categorised into five separate groups of database, Feature database, Material database, Machinability database, Machine database, and Mould database. The system development process has passed through four major steps: firstly, constructing the knowledge-based and process optimisation system, secondly developing a design for assembly module. Thirdly, integrating the KBS with both material selection database and a CAD system. Finally, developing and implementing a ii fuzzy logic approach to generate reliable estimation of cost and to handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods. The developed system has, besides estimating the total cost of a product, the capability to: (1) select a material as well as the machining processes, their sequence and machining parameters based on a set of design and production parameters that the user provides to the system, and (2) recommend the most economic assembly technique for a product and provide design improvement suggestion, in the early stages of the design process, based on a design feasibility technique. It provides recommendations when a design cannot be manufactured with the available manufacturing resources and capabilities. In addition, a feature-by-feature cost estimation report was generated using the system to highlight the features of high manufacturing cost. The system can be applied without the need for detailed design information, so that it can be implemented at an early design stage and consequently cost redesign, and longer lead-time can be avoided. One of the tangible advantages of this system is that it warns users of features that are costly and difficult to manufacture. In addition, the system is developed in such a way that, users can modify the product design at any stage of the design processes. This research dealt with cost modelling of both machined components and injection moulded components. The developed cost effective design environment was evaluated on real products, including a scientific calculator, a telephone handset, and two machined components. Conclusions drawn from the system indicated that the developed prototype system could help companies reducing product cost and lead time by estimating the total product cost throughout the entire product development cycle including assembly cost. Case studies demonstrated that designing a product using the developed system is more cost effective than using traditional systems. The cost estimated for a number of products used in the case studies was almost 10 to 15% less than cost estimated by the traditional system since the latter does not take into consideration process optimisation, design alternatives, nor design for assembly issue

    Feature-based representation for assembly modelling

    Get PDF
    The need for a product model which can support the modelling requirements of a broad range of applications leads to the application of a feature-based model. An important requirement in feature-based design and manufacture is that a single feature representation should be capable of supporting a number of different applications. The capability of representing products composed of assemblies is seen to be necessary to serve the information needs of those applications. To achieve this aim it is an essential prerequisite to develop a formal structure for the representation of assembly information in a feature-based design system. This research addresses two basic questions related to the lack of a unified definition for features and the problem of representing assemblies in a feature-based representation. The intention is to extend the concept of designing with features by incorporating assembly information in addition to the geometrical and topological details of component parts. This allows models to be assembled using the assembly information within the feature definitions. Features in this research are defined as machined volumes which are represented in a hierarchical taxonomy. The taxonomy includes several types and profiles of features which cover a general range of machined parts. A hierarchical assembly structure is also defined in which features form basic entities in the assembly. Each feature includes information needed to establish assembly relationships among features in the form of mating relationships. An analysis of typical assemblies shows that assembly interfaces occur at the face level of the mating features and between features themselves. Three mating relationships between pairs of features have been defined (against, fits and align) and are represented in the form of expressions that can be used for evaluations. Various sub-types of these major mating relationships can be identified (e.g. tight fit, clearance fit, etc.) and represented through the use of qualifying attributes. Component Relation Graphs, Feature Relation Graphs and Face Mating Graphs have been developed to represent each level of interaction in an assembly, and assembly relationships are combined with knowledge on process planning into a Component Connectivity Graph. These graphs are used as the basis for deriving an integrated data structure which is used for defining classes for each level in the assembly hierarchy. The implementation of a prototype system has been facilitated by use of an object-oriented programming technique which provides a natural method of adding functionality to the geometric reasoning process of features and the complex relationships between the parts that make up the assembly. The feature-based model is embedded in an object-oriented solid modeller kernel, ACIS®. The research demonstrates the possibilities for a single feature representation to support multiple activities within a computer integrated manufacturing environment. Such a representation can form the basis of design improvement techniques and manufacturing planning as well as be a model to support the life cycle of the product

    Aggregate assembly process planning for concurrent engineering

    Get PDF
    In today's consumer and economic climate, manufacturers are finding it increasingly difficult to produce finished products with increased functionality whilst fulfilling the aesthetic requirements of the consumer. To remain competitive, manufacturers must always look for ways to meet the faster, better, and cheaper mantra of today's economy. The ability for any industry to mirror the ideal world, where the design, manufacturing, and assembly process of a product would be perfected before it is put mto production, will undoubtedly save a great deal of time and money. This thesis introduces the concept of aggregate assembly process planning for the conceptual stages of design, with the aim of providing the methodology behind such an environment. The methodology is based on an aggregate product model and a connectivity model. Together, they encompass all the requirements needed to fully describe a product in terms of its assembly processes, providing a suitable means for generating assembly sequences. Two general-purpose heuristics methods namely, simulated annealing and genetic algorithms are used for the optimisation of assembly sequences generated, and the loading of the optimal assembly sequences on to workstations, generating an optimal assembly process plan for any given product. The main novelty of this work is in the mapping of the optimisation methods to the issue of assembly sequence generation and line balancing. This includes the formulation of the objective functions for optimismg assembly sequences and resource loading. Also novel to this work is the derivation of standard part assembly methodologies, used to establish and estimate functional tunes for standard assembly operations. The method is demonstrated using CAPABLEAssembly; a suite of interlinked modules that generates a pool of optimised assembly process plans using the concepts above. A total of nine industrial products have been modelled, four of which are the conceptual product models. The process plans generated to date have been tested on industrial assembly lines and in some cases yield an increase in the production rate
    corecore