

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

FEATURE-BASED REPRESENTATION FOR

ASSEMBLY MODELLING

by

WAN ABDUL RAHMAN JAUHARI BIN WAN HARUN

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of

Degree of Doctor of Philosophy

of the Loughborough University

September 1996

Department of Manufacturing Engineering

Loughborough University

© by Wan Abdul Rahman Jauhari Bin Wan Harun (1996)

Acknowledgements

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor, Professor Keith Case

for his expert guidance, support and encouragement throughout my research work. His

ideas, suggestions and comments form a valuable part of this thesis.

I am also thankful to Dave Walters and Robb Doyle for their excellent services in the CAE

laboratory and prompt responses to any technical problems.

Acknowledgements are due to the Govenrment of Malaysia for providing financial

support for my study and to the Director General of the Standards and Industrial Research

Institute of Malaysia (SIRIM) for granting me the study leave and provide

encouragement for me to pursue the research work.

Last but not least, very special thanks are due to my family and friends for their constant

support. The patience. understanding and encoura`ement of my wife and children are

greatly appreciated.

ii

To my parents,
Sharifah Alunad and Wan Harun Wan Hussin,

who passed away on 15th March 1996 and 28th March 1996

respectively, at the time when I really need their love and encouragement

to finish this thesis.

%1ati" Allah bless their souls

Synopsis

SYNOPSIS

The need for a product model which can support the modelling requirements of a broad

range of applications leads to the application of a feature-based model. An important

requirement in feature-based design and manufacture is that a single feature

representation should be capable of supporting a number of different applications. The

capability of representing products composed of assemblies is seen to be necessary to

serve the information needs of those applications. To achieve this aim it is an essential

prerequisite to develop a formal structure for the representation of assembly information

in a feature-based design system. This research addresses two basic questions related to

the lack of a unified definition for features and the problem of representing assemblies

in a feature-based representation. The intention is to extend the concept of designing

with features by incorporating assembly information in addition to the geometrical and

topological details of component parts. This allows models to be assembled using the

assembly information within the feature definitions.

Features in this research are defined as machined volumes which are represented in a

hierarchical taxonomy. The taxonomy includes several types and profiles of features

which cover a general range of machined parts. A hierarchical assembly structure is also

defined in which features form basic entities in the assembly. Each feature includes

information needed to establish assembly relationships among features in the form of

mating relationships. An analysis of typical assemblies shows that assembly interfaces

occur at the face level of the mating features and between features themselves. Three

mating relationships between pairs of features have been defined (against, fits and align)

and are represented in the form of expressions that can be used for evaluations. Various

sub-types of these major mating relationships can be identified (e. g. tight fit, clearance

fit, etc.) and represented through the use of qualifying attributes. Component Relation

Graphs, Feature Relation Graphs and Face Mating Graphs have been developed to

represent each level of interaction in an assembly, and assembly relationships are

combined with knowledge on process planning into a Component Connectivity Graph.

iii

Synopsis

These graphs are used as the basis for deriving an integrated data structure which is used

for defining classes for each level in the assembly hierarchy.

The implementation of a prototype system has been facilitated by use of an

object-oriented programming technique which provides a natural method of adding

functionality to the geometric reasoning process of features and the complex

relationships between the parts that make up the assembly. The feature-based model is

embedded in an object-oriented solid modeller kernel, ACIS®.

The research demonstrates the possibilities for a single feature representation to support

multiple activities within a computer integrated manufacturing environment. Such a

representation can form the basis of design improvement techniques and manufacturing

planning as well as be a model to support the life cycle of the product.

iv

Table of Contents

TABLE OF CONTENTS

Declaration
.. i

Acknowledgements
...

ii

Synopsis
.. iii

Table of Contents
... v

CHAPTER 1- INTRODUCTION

1.1 The Need For a Product Model
................................. 1

1.2 Product Modelling and Features
................................

2

1.3 Features in Applications
6

1.4 The Role of Assembly Modelling
............................... 7

1.5 Towards an Object-Oriented Approach
..........................

9

1.6 Problem Statement
...

10

1.7 Objectives of the Research Work
................................

11

1.8 Research Scope
...

12

1.9 Organisation of the Thesis
.....................................

12

CHAPTER 2- REVIEW OF FEATURES AND ASSEMBLY MODELLING

2.1 Introduction
..

14

2.2 Issues in Features Research
.................................... 14

2.2.1 Feature Definitions 14

2.2.2 Feature Taxonomies 18

2.2.3 Feature Modelling Approaches 23

2.2.4 Representation of Feature Knowledge 26

2.2.5 Manufacturing Application Areas 28

2.2.5.1 Process Planning 28

2.2.5.2 Design For Assembly and Assembly Planning
....... 29

2.2.6 Feature Mapping 31

2.2.7 Standardisation of Features 32

2.2.8 Feature-Based Design Systems 34

2.2.8.1 ASU Features Testbed Modeller 35

2.2.8.2 FSMT 36

V

Table of Contents

2.2.8.3 LUT-FBDS
37

2.3 Assembly Modelling ... 39

2.3.1 Modelling of Parts
.................................... 40

2.3.2 Assembly Structure and Mating Relationships 41

2.4 Summary
.. 49

CHAPTER 3- OBJECT ORIENTED TECHNIQUES

3.1 Introduction
..

51

3.2 Object-Oriented Programming Concepts 51
3.2.1 Encapsulation

.. 52

3.2.2 Polymorphism 55

3.2.3 Inheritance .. 55

3.3 Benefits of Object-Oriented Programming 57

3.4 Object-Oriented Design Approach 59

3.5 The C++ Programming Language 62

3.6 ACIS Solid Modeller ... 64

3.6.1 General Description
................................... 64

3.6.2 Application Procedural Interface (API) 66

3.6.3 C++ Class Structures 67

3.6.4 The Test Harness 69

3.6.5 Example of an ACIS Program 69

3.7 Summary .. 71

CHAPTER 4- FEATURE REPRESENTATION

4.1 Introduction .. 72

4.2 Feature Description .. 72

4.3 Feature Taxonomy ... 74

4.4 Feature Class Representation 81

4.4.1 Feature Class .. 81

4.4.2 Feature Type Class
.................................... 86

4.4.3 Profile Class ... 88

4.4.4 Relationship Among Classes 94

vi

Table of Contents

4.5 Summary ..
95

CHAPTER 5- EXTENDING FEATURE DEFINITIONS FOR

ASSEMBLY MODELLING

5.1 Introduction
..

96

5.2 Modelling Requirements 96

5.3 Assembly Structure .. 98

5.4 Analysis of Assembly .. 100

5.4.1 The Lathe Tool Post 105

5.4.2 Bracket and Pulley Assembly 110

5.4.3 Valve Subassembly 116

5.5 Feature Mating Relationships 125

5.6 Representation of dating Relationships 129

5.7 Inference of Positions .. 132

5.8 Assembly and Process Planning Features
.........................

137

5.9 Assembly Data Structure 145

5.10 Implementation ... 150

5.10.1 Assembly Class 150

5.10.2 SubAssembly Class 152

5.10.3 Component Class 153

5.10.4 Feature Relationship Class 155

5.10.5 Link Class .. 157

5.10.5.1 Objectlink Class 157

5.10.5.2 Assylist Class 158

5.10.6 Relationship Among Classes 159

5.11 Summary .. 161

CHAPTER 6- IMPLEMENTING A FEATURE-BASED ASSEMBLY

MODELLING SYSTEM

6.1 Introduction .. 162

6.2 A Prototype Feature-Based Design System 162

6.3 Model Creation Procedures 164

6.4 Feature Creation ... 166

VII

Table of Contents

6.5 Component Model ... 166

6.6 Creation of an Assembly Model 168

6.7 Assembly Data .. 169

6.8 Example 1- Pin and Block 169

6.9 Example 2- Ejector Plate Assembly 175

6.10 Summary .. 182

CHAPTER 7- DISCUSSION

7.1 Introduction .. 183

7.2 Review of the Methodology 183

7.3 Feature Representation 184

7.4 Assembly Representation 185

7.5 Use of the Object-Oriented Approach 186

7.6 Practical Implementation Issues 187

7.7 Summary .. 189

CHAPTER 8- SUMMARY AND CONCLUSIONS

8.1 Introduction .. 190

8.2 Summary of the Thesis 190

8.3 Research Contributions 191

8.4 Recommendations For Future Work 193

8.4.1 Addition of Feature Attributes 193

8.4.2 Application in Assembly Planning 194

8.4.3 Validity Checking 194

8.4.4 Interface With CAD/CAM Systems 195

8.4.5 Other Manufacturing Applications 196

8.5 Conclusions .. 196

REFERENCES
... 198

APPENDIX A- ASSEMBLY CLASS DECLARATIONS 212

APPENDIX B- APPLICATION AND MAKE FILES 216

APPENDIX C- SAMPLE ACIS FILE 220

viii

Chapter I

CHAPTER ONE
INTRODUCTION

1.1 THE NEED FOR A PRODUCT MODEL

The need for higher productivity in manufacturing industry has grown rapidly during the

last few years. The requirement for shorter product life cycles, increased pressure for

shorter time to market and demand for high quality products makes it imperative for

industry to focus on new product development strategies in design and manufacturing

processes. In recent years, issues such as Simultaneous Engineering (or Concurrent

Engineering) and Design for Man ufacturability andAssembiv (DFMA) have received an

increasing amount of attention by manufacturing industries. Simultaneous Engineering

means a way of work where the various engineering activities in the product and

production development process, as well as the management and control of production,

are integrated and performed as much as possible in parallel rather than in sequence

(Sohlenius 1992). DFMA is one of the tools used to achieve the aims of Simultaneous

Engineering, and is defined as a technique by which a product is designed for ease and

economy of manufacturing and assembly (Boothroyd, et. al. 1994). These concepts

attempt to address the issue of product development productivity by helping the designer

to make early decisions that minimise costs over the life of the product, thus shortening

the lead time both for the development of new products and for individual orders. A

critical part of implementing these concepts is the integration of design and

manufacturing processes which involves an efficient communication of large amounts of

data. This is achieved through the use of computers and computerised models.

Computer Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems

have been key components of the automation of design and manufacturing processes.

Since its beginning in the 60's, CAD has passed through a number of distinct phases

(Gero 1989). It commenced with a concern for graphical representation of the objects

being designed. In the 1970's there was an emphasis on object modelling to support

graphical representation of geometry and topology (connectivity). CAD has been used to

Chapter 1

create geometric entities, which is often called geometric modelling. However, there was

a recognition that aspects other than geometric were also needed, so many systems

allowed the inclusion of non-geometric attributes by attaching them to geometric

entities.

By the end of 1970's and early 1980's geometric modelling had reached sophisticated

levels and at the same time engineering analysis tools were finding their way into CAD

systems. The most prominent amongst these was the finite element analysis method.

However, with some exceptions, CAD systems were not concerned with providing direct

assistance to designers in their design decision making processes. Recently the need for

the designer to consider the methods of manufacturing and assembly during the design

process has been emphasised, and has led to the idea of a product model.

1.2 PRODUCT MODELLING AND FEATURES

Product modelling refers to the activities related to representing and utilising information

related to products, their design and manufacturing processes and their production

management (Mantyla 1989). The ultimate goal of product modelling is to be able to

represent all this information in a way that makes it possible to capture and access the

relevant information through the whole design-planning-manufacturing sequence with

no loss of information at any stage. Although the definition of a product model varies

according to the application, it should contain data, algorithms and a defined data

structure suitable for the representation of the product. The ideal model should

automatically generate the design, functions, service life, manufacturing methods and all

data needed for the processing of customer orders (Rembold et. al. 1993). Due to the fast

development of computer and information technologies and the increasing demand for

productivity, the scope and approaches to product modelling have evolved rapidly in

recent years (Krause et. al. 1993). Various modelling approaches have been proposed and

implemented, but as much of the information needed in the design and manufacturing

process deals with the geometric shape of the product, the geometric model forms the

most important component in the representation of the product model. Mortenson (1985)

identifies three purposes of geometric modelling in design and manufacturing -1) part

2

Chapter 1

representation, which mandates a complete geometric definition of the part for

manufacturing and other applications, 2) design, which allows the user to input a

geometric specification and manipulate it and 3) rendering, which uses the geometry to

paint a realistic picture of the object on the computer graphics output device.

In order to manipulate data in the geometric model for design and manufacturing

activities, various geometric reasoning techniques have been developed. Geometric

reasoning involves the application of computer techniques to spatial problems so that

deductions can be made from geometry (Bonney et. al. 1989). To facilitate geometric

reasoning, part geometry must be represented by higher level entities that relate directly

to certain design functionalities or manufacturing characteristics. This necessitates the

use of a system that is capable of reasoning about the geometry and topology of a design.

Conventional CAD systems allow users to draw lines, arcs and circles as geometric

entities and store a part's geometry and topology that is used for display and geometric

computation. There are three predominant types of geometric representations in CAD -

wireframe, surface and solid models (Bedworth et. al. 1991). Hybrid schemes of

representation such as combined surface and solid modelling have also been developed

and are now becoming commercially available (e. g. Unigraphics). While conventional

w ireframe and surface models represent only edges and envelopes of a geometry, solid

models also precisely define the material inside a part. Most solid modellers represent

part geometry in terms of low level geometric and topological entities. The structure and

contents of a solid modeller database represent the most robust part description available,

and eliminates any ambiguity in interpreting the model and provides a more complete

database for performing a range of functions. For these reasons, solid modelling has

become a popular choice for CAD representation and is envisaged as becoming the de

facto 3D modeller of the 1990s (Sharp 1993).

There are two predominant methods of representing solid objects - Constructive Solid

Geometry (CSG) and Boundary Representation (B-Rep) (Requicha 1980, Zeid 1991).

CSG is characterised by an internal data structure that defines solids in terms of Boolean

3

Chapter I

operations on solid primitives such as blocks, cylinders, cones and wedges. One

difficulty with the usual CSG approach is that the primitives do not always have a direct

relationship to the functional features of the part, and their sizing, position and

orientation are usually added in a mathematical, rather than functional way (Faux 1988).

In a B-Rep technique, solids are defined in terms of the faces, edges and vertices that

form the boundaries of a solid object. The topology showing the relationships among

these geometric elements provides the shape and structure of the solid. The advantages

and limitations of each representation in design and manufacturing have been the subject

of discussion by many authors such as Joshi et. al. (1986) and are very briefly described

below.

The type of representation scheme supported by a CAD system is an important

consideration, because this has an effect on how a model can be visualised and more

importantly, it determines which information can possibly be derived from the CAD

database. In many manufacturing applications, B-Rep is preferred to CSG as each part

has a unique and explicit representation and thus a B-Rep data structure directly contains

the required information whereas a CSG model has to derive this information when

required. The geometric domain of CSG is practically limited to the quadric surfaces

such as planes, cylinders, cones, tori and spheres whereas, in theory, a B-Rep model has

no such limitations. To take advantage of each representation, a hybrid CSG/B-Rep

representation has been proposed by some authors such as Falcidieno and Giannini

(1991).

It has been recognised that many existing CAD systems do not provide the representation

necessary for geometric reasoning and lack sufficient information to support

downstream manufacturing applications. Even solid modellers do not provide higher

level abstractions of the part that relate directly to certain design functionalities or

manufacturing characteristics. A significant problem in the use of current CAD systems

is the total effort required to capture the geometry of a product, which tends to limit the

desire to make significant changes in product structure once this has been fully carried

out (Boothroyd et. al. 1994). Consequently, the concept of features has been proposed to

4

Chapter I

serve the geometric reasoning needs of the CAD system. Instead of using a model

consisting of graphics primitives such as points, lines and circles as the basis of geometry

definition, the designer uses a set of features such as holes, pockets and slots. Features not

only describe the product but also contain implicit and explicit information (Clark and

South 1987). In the academic and industrial environments, feature technology is viewed

as a key technology to the next generation of computer-aided design and manufacturing

(van Houten 1992). The growing use of features in the CAD/CAM area is due to the fact

that features offer many advantages over conventional CAD systems. Some of the

advantages of features are summarised below (Clark and South 1987, Shah et. al. 1988,

Mantyla 1989, van Emmerik and Jansen 1989, Chen et. al. 1991, Gui and Mantyla,

1994):

i. Features provide a more natural vocabulary for expressing the designed object

than geometric primitives. Hence they capture more of the designer's intent in the

design object representation than plain geometric models.

ii. Features facilitate the capture and management of parameter relationships and

dependencies in a model and thus provide a more convenient path to fully

parameterised design.

iii. Features effectively divide the geometry into two levels - feature types and

geometric attributes of features. This allows the designer to leave geometric

details unspecified until such time as they have to be determined.

iv. Features offer a good basis for modelling various kinds of manufacturing

planning information, which require non-geometric data as well as geometric

data.

ý. It is easy to make design changes because of the associativities between

geometric entities maintained in the data structure of feature modellers.

vi. In manufacturing, the use of features has the additional benefits of cost reduction

in the long term due to the development of standards which will reduce tool

5

Chapter 1

inventories, reduce process control and material management problems, provide

effective dimensioning and reduce errors.

1.3 FEATURES IN APPLICATIONS

Many manufacturing applications require non-geometric as well as geometric data. The

information carried by features can be embedded in a product model to serve as

information carriers that will feed downstream manufacturing processes in the

manufacturing environment. They provide an alternative component representation that

forms a suitable basis for a wide ranging set of activities throughout the product's life

cycle and this facilitates the bridging of the gap between design and manufacturing.

Because of this potential, features have been used in many CAD/CAM applications (Pratt

1993). In design, features have been used as a fulfilment of functional requirements, for

building of a geometric model and as preparation for design analysis activities (Case and

Gao 1993). In manufacturing, most of the applications of features can be found in the

process planning area, where the feature data provides a convenient way to model parts

(Krause et. al. 1991, Gindy et. al. 1993). Applications such as casting (Corbett and

Woodward 1991), injection moulding (Al-Ashaab and Young 1995), design for

assembly (DeFazio et. al. 1990), assembly planning (Wang and Li 1991), inspection

planning (ElMaraghy and ElMaraghy 1994) and manufacturing cost analysis (Nieminen

and Tuomi 1991) have used feature representations.

A significant aspect of the development of the above applications is that a system is

typically only capable of supporting a specific application domain. For example a

feature based system for process planning is intended as an input representation for use

in process planning only and cannot be used to support other applications. This limitation

is mainly due to the way features are defined and data is represented, as discussed in

Chapter 2. The ability of a feature-based system to be applied to more than one

application is important in a Simultaneous Engineering environment and to fulfil the

requirement of a product model that can support the product development process.

6

Chapter 1

1.4 THE ROLE OF ASSEMBLY MODELLING

Most of the existing CAD/CAM packages can be classified as geometric modellers. Their

data structures are designed to store and manipulate geometric data of individual parts.

However, in most engineering design, the product of interest is a composition of parts,

formed into an assembly. As products become more complex, the demand to pay more

attention to the assembly process during the design phase is becoming increasingly high.

With current CAD systems considerable time and effort is still required to enter and

design all parts and subassemblies of a product (Boothroyd et. al. 1994). There is thus a

need for a system that allows a designer to create individual parts, assemble them and

then perform the necessary analysis of the assembly. Modelling and representing

assemblies, generating assembly sequences and analysing assembly are all relevant

issues for geometric modelling and CAD/CAM technology.

Assembly modelling deals with the inter-relations among assembled parts rather than

detailed shapes of each part. Functional understanding of assembly modelling is a key

step towards a real CAD environment that can support early design (Gui and Mantyla

1994). The capability to represent products composed of assemblies is needed to support

further integration of manufacturing systems at a more general level as well as to serve

the information needs of the applications at the level of the part (Usher 1993). An

assembly model provides data for generating assembly sequences and for assembly

analysis, as discussed in Chapter 7. The role of assembly modelling in a CAD/CAM

environment is shown in Figure 1.1 and it forms the main focus of this research.

A mechanical assembly can be represented by the description of its individual parts and

their relationships in the assembly. Most of the interaction between parts occurs at mating

surfaces- The modelling representation of these relationships and mating conditions are

the distinguishing characteristics between modelling single parts and assemblies. Thus

an assembly modeller can be considered as an extension of a geometric modeller where

the data structure is extended to allow representation and manipulation of part

relationships and mating conditions.

7

Chapter i

CAD II Process Planning

assembly
product
assembly model planning

detailed product
assembly plan

CAM

machining
and
assembly
production
systems

robot path
planning

Figure 1.1: Role of Assembly Model in CAD/CAM (Lin and Chang 1993)

Individual parts are first created with the shape information (geometry and topology) and

are then analysed and assembled. An ideal system allows the link to be established

between the geometric and assembly model such that designers need only to modify

individual parts for design modification by using the geometric modeller and the

assembly model is updated automatically (Zeid 1991).

Due to the importance of assembly modelling, the activity has been the subject of much

research work related to geometric modelling (Libardi et. al. 1988). Various assembly

representation schemes and their related data structures are reviewed in Chapter 2. One

of the significant developments in assembly modelling research in recent years is the use

of features instead of piece parts as the lowest denomination of a product. This is because

feature-based design has been found to facilitate assembly modelling applications by

providing natural semantics for describing part interactions in a CAD system.

8

Chapter 1

1.5 TOWARDS AN OBJECT-ORIENTED APPROACH

With the continuing demand to increase competitiveness, manufacturing software is

becoming more sophisticated and complex (Nof 1994). Computational functions are

extended and at the same time additional information types are included. The increasing

level of complexity is needed to provide better computational support of necessary

manufacturing functions. Since the seventies, structured programming has been the

preferred method for building software systems. However, in the last few years, the

concept of Object-Oriented (00) programming has gained popularity in many

computing areas. The 00 technology has been recognised as a very promising software

engineering tool that will help develop application software faster, cheaper and better

through the reuse of existing program codes (Korah 1994). Many manufacturing

applications have been developed to take advantage of this technology and have been

shown to offer very high potential. The 00 approach has already influenced the

development of models for manufacturing decisions such as planning. design, control

and simulation (Nof 1994).

In an 00 programming environment, the basic unit of information is the object. which is

defined by a name, a set of attributes that describe the object and methods to manipulate

the object. A major advantage of using 00 programming is that knowledge about the part

is easy to maintain. The information is not scattered around the program structure but can

be stored in objects that can be inherited many times. 00 programming can improve the

process of software development and programmer productivity. It can also result in a

software product that is effective and flexible to subsequent modifications. These and

other benefits, discussed in Chapter 3, have been utilised in the development of complex

manufacturing software. To support the 00 approach for computer programming many

00 programming languages have been developed such as Smalltalk, C++ and Object

Pascal.

Pressures for software to interface with other systems has forced many companies to

consider using 00 technology as a basis for their next generation CAD systems. The 00

technique has been shown to offer substantial help in simplifying the design and

9

Chapter I

implementation of CAD systems (Warman 1990, Wolf 1991). The use of 00 for CAD

modelling represents a means of expressing real world models and results in a design that

is easier to maintain and extend to other applications. The Computer Aided Design

Report (1991) suggested that the trend in the application of CAD in the next century is

towards the use of kernel modellers using an 00 approach which will be able to improve

programmer productivity. Currently, one such modeller which is increasingly used is

ACIS '. This software provides a collection of reusable codes to be used in the creation of

solid models and the development of CAD/CAM systems, and is discussed in Chapter 3.

The 00 approach was also found to provide an effective way to conceptualise and

manipulate features for geometric reasoning, and has been used by several researchers to

support various manufacturing applications (e. g. Unger and Ray 1984. Latif and Hannam

1993, Marefat et. al. 1993, Chen et. al. 1994).

1.6 PROBLEM STATEMENT

The overview in the previous sections shows that the integration of manufacturing

processes through the support of CAD systems requires an efficient means of

communicating design data to the various applications within a manufacturing

enterprise. This requires an identification of the best means of representing design data in

the form of a product model which can support the modelling requirements for a broad

range of applications. The model should contain information from which all applications

can either derive their data or access it directly. In order to fulfil these requirements, the

trend points to the wider application of feature-based solid modelling with emphasis on

the functionality of the product. Much previous work on feature-based design systems is

concerned with using the method for the planning of machined and formed parts, with

systems being dedicated to a particular application. However, an important concept in

feature-based design and manufacture is that a single feature representation should be

capable of supporting a number of different applications. There is a clear opportunity to

extend the feature-based approach to other activities to verify the generic nature of the

representation.

I0

Chapter 1

The development of a formal structure for the representation of assembly information in

a feature-based design system is considered to be an essential prerequisite component to

the generation of CAD/CAM systems that are capable of achieving the aims of

optimising product design and manufacture. Such a representation can form the basis of

design improvement techniques and manufacturing planning and help to support the life

cycle of the product. There is a need to establish feature representations which can be an

integrating agent across a number of manufacturing applications. The 00 approach can

provide a natural method of handling the complex relationships between the parts and

sub-assemblies in the product. This research thus will address two basic issues:

1) the lack of a unified definition for features and

2) the problem of representing assembly in a feature-based representation.

The next section introduces the research objectives in consideration of the above stated

problems.

1.7 OBJECTIVES OF THE RESEARCH WORK

The principal objective of this research work is:

to extend the knowledge of feature-based product representations as an aid to

the automation of various aspects of design and manufacturing and to explore

their use as supporting tools for assembly modelling.

To achieve the principal objective, the sub-objectives are:

i. To devise a feature representation that is capable of defining the assembly of

mechanical parts

ii. To analyse typical mechanical assemblies and the interactions of features that

constitute the assemblies

in. To define and establish a taxonomy of assembly relationships

iv. To specify an enhanced version of a feature-based design system which

incorporates assembly knowledge

11

Chapter 1

v. To implement a prototype system using 00 techniques

vi. To test the functioning of the model on typical assemblies

1.8 RESEARCH SCOPE

The research focuses on the static assembly of discrete mechanical components.

Assembly parts are limited to feature types defined in this thesis. The assembly directions

are limited to three primary axes of x. y and z. This is justified as seventy five percent of

all products are assembled along three perpendicular directions (Delchambre 1992). The

types of mating relationship are defined to suit the common surfaces available from the

range of features. Other limitations are described in the relevant chapters. A simple proof

of concept prototype feature-based assembly modeller is developed to validate the

proposed model through testing of feature representations and profiles. The 00

approach is employed in this research work through the use of the C++ programming

language in a UNIX environment.

1.9 ORGANISATION OF THE THESIS

The thesis covers eight chapters. In the next chapter, a survey of the relevant literature is

presented to highlight the current trends and problems of features technology and

assembly modelling. Chapter 3 gives a general overview of the 00 concept and the main

tools, the C++ programming language and the solid modeller kernel ACIS, used in

developing ideas in this research. Chapter 4 details the feature representation used,

including feature definition, feature taxonomy and the application of the 00 approach in

representing features. In Chapter 5, the problems of assembly will be discussed through

an analysis of assembly interactions involving typical assemblies. The definition of

mating relationships are established and analysed with the relevant process planning

knowledge. This results in a data structure which encompasses both types of knowledge.

12

Chapter I

The structure of a prototype feature-based design system is described in Chapter 6. and

the prototype is tested on simple assemblies. A review of the approach and methodology

used is provided in Chapter 7. Chapter 8 concludes the thesis by summarising the

research findings, highlighting the main contributions and suggesting areas for future

research.

13

Chapter 2

CHAPTER TWO
REVIEW OF FEATURES AND

ASSEMBLY MODELLING

2.1 INTRODUCTION

Feature technology has been recognised as a key technology for the next generation of

computer-aided design and manufacturing systems. Research in this area is aimed at

providing alternative component representations which are applicable for a wide ranging

set of activities throughout the life cycle of a product. Features are used in this research as

the basis for the development of an assembly model. In this chapter, relevant issues

related to the research work are outlined, covering two important areas, namely features

and assembly modelling. Section 2.2 presents some research issues in features

technology. The research in assembly modelling and the application of features in this

area are discussed in Section 2.3.

2.2 ISSUES IN FEATURES RESEARCH

Feature modelling can be considered as a relatively new development in the CAD/CAM

area and much research is being undertaken to resolve the problems arising from this

technique. Among major issues discussed are the definition of features, feature

taxonomies, modelling approaches for feature data, representation of feature knowledge,

feature mapping, standardisation of feature data, application areas and feature-based

design systems. These are considered as major issues which affect this research work and

thus are highlighted in the following sections. Comprehensive reviews on research in

features are given by Shah et. al. (1988), Shah (1991), Salomons et. al. (1993), Case and

Gao (1993), Bronsvoort and Jansen (1993) and Allada and Anand (1995).

2.2.1 FEATURE DEFINITIONS

Since features are used in the reasoning processes in various activities such as design,

analysis and manufacturing, they are frequently associated with particular application

14

Chapter 2

domains. Each application domain has its own definition of features, which differs from

one to another. This results in a lack of a formal definition for features which is

universally acceptable. The same geometry may have different interpretations according

to its application. For example, a hole feature shown in Figure 2.1 may be viewed from

three different perspectives - as a design feature for holding a shaft, as a manufacturing

feature to be created by a machining process or as a geometric feature created by a

Boolean operation (Xue and Dong 1993). The discussion on the various definitions of the

concept of a feature as outlined by Unger and Ray (1988), Case and Gao (1993),

Salomons et. al. (1993) and Lenau and Mu (1993) reflect the different technological or

application viewpoints considered.

100,

a hole design feature

manufacturing feature geometric feature

Figure 2.1: Feature definition from different perspectives (Xue and Dong 1993)

Shah et. al. (1988) analysed various definitions of features and proposed that the

definitions converged into five major disciplines - design, process planning, geometric

modelling, expert systems and databases. In general, the classification can be converged

into two distinct applications - design and manufacturing (Van Emmerik 1991). A design

feature defines generic shapes or specific geometries associated with well known

technical functionality such as chamfers and keyways. It also describes a feature as it

15

Chapter 2

should appear in the product model. Shah (1991) differentiates between design features

and modelling features. Modelling features are groupings of geometric and topological

entities that need to be referenced together while design features are elements used in

generating, analysing or evaluating designs. As the motivation for feature research came

from a desire to devise easier ways to define the geometry needed for process planning

and NC programming, much of the earlier work defined features from manufacturing

perspectives (Shah et. al. 1988). A manufacturing feature represents shape and

technological attributes associated with manufacturing operations and tools, and as such

they are defined according to the product type, application reasoning process and level of

abstraction (Shah 1988). In process planning, features, as identified by process planners,

are based upon machine tool processes and can usually be directly linked to a specific set

of machine tools (van't Erve and Kals 1987). Many features are defined specifically for

the process. For example, features needed to define parts for casting (Luby et. al. 1986)

are significantly different from those needed for process planning of machined parts (Juri

et. al. 1990). An example of features defined specifically for a product is given by Jones

et. al. (1993). who defined a set of features for the design and machining of golf clubs.

As the need to consider the integration of design and manufacturing has become

apparent, the application of features has been extended to cover many areas and the

definitions tend to be stated in a broader and more general sense. An early attempt to

define features in general terms was made by Pratt and Wilson (1985). They defined

features as "an area of interest on the surface of a part". Luby et. at. (1986) defined a

feature as "a geometric form or entity, whose presence or dimensions are required to

perform at least one CIM function (e. g. graphics, analysis, process planning), and whose

availability as a primitive permits the design process to occur". The definition given by

Shah (1988) is more general - "information sets that refer to aspects of form or other

attributes of a part, such that these sets can be used in reasoning about the design,

performance or manufacture of the part or assemblies they constitute".

In much of the literature features are frequently referred to as form features. Form

features are simply defined as shape elements with some function or meaning

16

Chapter 2

(Bronsvoort and Jansen 1993) or elaborately as generic shapes with which engineers

associate certain properties or attributes and knowledge useful in reasoning about the

product (Sreevalsan and Shah 1992). As features do not necessarily relate to form, some

definitions of features include the concept of shape. For instance, Sakurai and Gossard

(1990) defined a feature as a single face or a set of contiguous faces called a face set

possessing certain characteristic facts in topology and geometry. Masuki et. al. (1989)

defined a feature as a set of faces with a distinctive pattern.

Other definitions emphasise the functions of features. Lenau and Mu (1993) classified

features into functional features. Functional features represent surfaces that describe the

different functions of the part and how they are positioned within the part, such as bearing

and sealing surfaces. Assembly features are defined by Sodhi and Turner (1991) as form

features that contain tolerance information and assembly functionality, and are used to

model and create assemblies. Shah and Rogers (1993) defined an assembly feature as an

association between two form features which are on different parts. Giacometti and

Chang (1990) defined features used for assembly modelling as "a semantic grouping

used to describe a part and its assembly. It groups functional, design and manufacturing

information in a relevant manner". By grouping features into other features, design

information is made available for mechanical, manufacturing and assembly analysis. In a

more abstract form, the idea of fuzzy features was proposed by Clark and South (1987).

Fuzzy features would be used in conceptual or exploratory design and would be less

precise. For example, a designer would specify the existence of a connection, but not the

type of connection. As the ideas firmed up, the connection would become more precise.

Another use of fuzzy features would be to define various levels of detail depending upon

the usage.

In an object-oriented environment, features are modelled as objects encapsulating

various properties coupled with dedicated procedures (Wierda 1991, Wang 1991). Any

set of information (geometric and non-geometric) that can be formulated in terms of

generic parameters and properties and referred to as a set in the reasoning process of some

application is considered as a feature (Shah et. al. 1988).

17

Chapter 2

All the definitions above share the idea of a geometric entity and imply that features

provide a higher level model of the object than the conventional CAD geometric model.

Shah et. al. (1988) defined the least requirements a feature should fulfil -a physical

constituent of a part. be mappable to a generic shape. have engineering significance and

have predictable properties. In order for the feature definition to be useful, one must

provide a database that has a complete definition of the part, not just geometry and

topology (Shah et. al. 1988). The essence of the feature concept is that a product

description not only says what the product is, but also contains implicit and explicit

information on how it may be transformed to or from some other state (Case and Gindy

1991).

The discussion highlights the different definitions of features used for various

applications. Although the problem of a lack of a formal definition of features has been

recognised and some attempts have been made to unify the definitions, some authors

believe that the need to define features to suit a particular application is inevitable and that

the use of features is application specific (Chang 1990). However, in order for the feature

definition to be fully useful, it should be defined to include a complete definition of the

part, not just geometry and topology, and should be applicable to a wide variety of

applications and functions. A model should be flexible to be adapted to the different

applications found in a concurrent engineering environment.

2.2.2 FEATURE TAXONOMIES

The term feature taxonomy refers to the classification of features into classes which are

often maintained in a hierarchical structure. The primary purpose of developing a feature

taxonomy is to structure information in a way that relates to subsequent processing for

application to problems. The success of feature modelling is largely determined by

whether a useful taxonomy of feature types can be identified and organised in a

modelling system and whether application-oriented data and knowledge bases can

conveniently be organised on the basis of the taxonomy (Mantyla 1990). Feature

taxonomies are also useful in developing product data exchange standards (Shah 1991).

18

Chapter 2

The way of classifying features is highly dependent on the feature representation

methodologies and the strategies for the eventual use of the feature data (Case and Gao

1993). Early attempts to classify manufacturing parts were addressed towards a

geometric classification in which some typical design features were described by a

numeric or alphanumeric code (Catania 1991). Some features are defined in terms of

shapes, generic parameters and attributes (boss, holes), others in a variety of shapes such

as ribs and webs. Examples of some feature taxonomies are described here.

The CAM-I form feature hierarchy is one of the most comprehensive classifications

available (Butterfield et. al. 1986). It is organised in three groups: sheet, non-rotational

and rotational features. Within these three groups, the model identifies 45 feature classes,

161 individual features and a number of attributes, notes and miscellaneous terminology.

The scheme also contains classification for materials on the basis of material

composition, stock form, heat treatment and surface condition. This scheme is intended

for use in applications such as process planning and NC programming. Pratt and Wilson

(1985) used a taxonomy of features based on the overall shape of features and the

assumption that features will be incorporated in solid modelling systems. They

distinguished between explicit and implicit features and produced a general

classification of features. Implicit features are features that are unambiguously defined,

for example by a generic description and a number of parameters for the specific

occurrence, but are not evaluated into an explicit geometrical description. Explicit

feature are features whose shape is explicitly described by a geometric model.

In Gindy's taxonomy (Gindy 1989), shown in Figure 2.2, form features are treated as

volumes enveloped by entry/exit and depth boundaries. Feature classification is based on

the External Access Directions (EAD) from which the feature volume could be machined

by cutting tools. Form features are divided into three categories -protrusion, depression

and surface. Feature geometry is described by defining the EADs, the boundary type

(open, closed) and the exit boundary status (through/not through). The result of this

grouping is a list of form feature classes that correspond to some common geometric

shapes such as boss, pocket, hole, step, notch, through slot and non-through slot. The

19

Chapter 2

scheme has been successfully used in process planning (Gindy et. al. 1993) and process

capability modelling (Case 1994).

Form Features

Protrusions Depressions Surfaces

EAD EAD EAD EAD EAD EAD EAD
(0) (1) 2) (3) (4) (5) 6)

closed closed closed open open open closed N/A

I E
thru non- o non- thru thru thru thru n no

gin
eary

boss pocket hole no
slot

thm II
notch

II
step

(t
freal ace

I Iima
a

0 Do QD CD oD
Figure 2.2: The form feature taxonomy used by Gindy (1989)

The Form Feature Information Model (FFIM), one of several product-data models in the

Standard for Exchange of Product Data (STEP), tries to provide a mechanism for

exchanging definition data for a wide variety of products (Shah and Mathew 1991).

FFIM treats a form feature as a portion of the skin of a shape that conforms to some

stereotypical pattern and is considered to be a unit of some purpose. FFIM classifies

features along similar lines to the work of Pratt and Wilson (1985) into two main types:

20

Chapter 2

explicit and implicit, as shown in Figure 2.3. Implicit features are further divided into six

classes of depression, protrusions, passages, deformation, transition and area. Although

FFIM is intended to be general purpose, the representations of some common profiles are

rather complex. Criticisms of this model are highlighted by Shah and Mathew (1991).

Some of these are the lack of positioning information, poor representation of certain

popular profiles and the non-unique mapping of features between FFTM and the system

in test. Recent information (Mill et. al. 1996) indicates that these difficulties have

resulted in the indefinite postponement of adoption of the feature aspects as a part of the

STEP standard.

FORM FEATURES

EXPLICIT FEATURES IMPLICIT FEATURES
List of dimensionality 2

shape elements

DEPRESSION DEFORMATIO: PROTRUSION AREA
FEATURE PASSAGE TRANSITION

definition TYPE:
bend definition TYPE:

knurl definition TYPE: end bounds
emboss end bound

thread end bounds
edge blend end blends

partial cutout end blend
marking

boundary
corner bleu interruptions

tube deform coupling
blends

twist interruptions

Figure 2.3: Form feature classification in the FFIM (Shah and Mathew 1991)

A feature taxonomy designed by Mantyla (1990) for an assembly modeller represents all

geometric objects by means of a tree structure in which the nodes correspond to various
kinds of volume features. The feature set includes both subtractive features that

correspond to material removed from the parent feature (e. g. slots) and additive features

21

Chapter 2

that represent material added to the parent (e. g. bosses). Arcs of the tree represent various

kinds of geometric relationships between the features.

Marefat et. al. (1993) classify features into depressions and protrusions. Depression

features can either be prismatic or rotational. Further classification of the features is

shown in Figure 2.4. The taxonomy is used in an object-oriented environment for an

integrated design, process planning and inspection system.

Pocket

Blind
Slot

Prismatic Piped Slot
Thru
Slot

Blind
Depression Step Step

Thru

Feature Blind Step

Hole
Rotational Hole

Protrusion Thru
Hole

Figure 2.4: Feature hierarchy (Marefat et. al. 1993)

Although it has been argued that a general classification of features is difficult, if not

impossible to develop (Bronsvoort and Jansen 1993), a well-defined feature taxonomy is

an essential requirement in the object-oriented development environment, especially for

manipulation purposes. Many taxonomies have been proposed to suit a particular feature

representation and its eventual application. In assembly modelling, a hierarchical

taxonomy is well-suited to the assembly structure as it allows the attributes of parts

higher in the hierarchy to be inherited by those lower down. In this research, the

taxonomy developed by Gindy (1989) was found to serve this purpose as it covers a good

cross section of features involved in mechanical assembly.

22

Chapter 2

2.2.3 FEATURE MODELLING APPROACHES

Previous research has established two predominant methods for creating a feature

database to represent a part or a product model -feature recognition kor extraction) and
design by features. Feature recognition allows the design of parts using conventional

CAD systems such as 2D drafting, wireframe and solid modelling and then features are

extracted from the geometric model using a recogniser and are stored in a separate

database which forms the feature model (Case and Gao 1993). The process of feature

recognition comprises three major tasks: feature definition, in which the rules for

recognition are specified, feature classification in which potential features are classified

and feature extraction, in which features are extracted from a solid model and stored for

further analysis (Prabhakar and Henderson 199_). Feature recognition can be broadly

classified into two approaches -human assisted and automatic. The latter method, shown

diagrammatically in Figure 2.5, has been widely used in place of the former. Various

approaches have been developed to achieve the goal of feature recognition, depending on

the type of geometric model used i. e. whether it is based on B-Rep or CSG model. A

graph-based method to recognise features is the most popular technique and a typical

example of this is described by Joshi and Chang (1988). Other techniques are based on

syntactic pattern recognition (Choi et. al. 1984), rule-based methods (Henderson and

Anderson 1984), a decomposition approach (Nitschke et. al. 1991, Kim 1991) and the

application of neural networks (Prabhakar and Henderson 1992). Feature recognition of

machining features from 2D models has been demonstrated by Meeran and Pratt (1993).

solid IJ feature ýj feature
features modeller ý1 ýý recognition I "ý extraction

Figure 2.5: Automatic feature recognition

23

Chapter 2

Feature recognition offers several potential advantages of consistency, applicability to

different processes and a saving in manpower (Woodwark 1988). The approach is also

seen as the most versatile for the transformation of product models between application

domains (van Houten 1992) or it can be made application-specific allowing each

application program to have its own recognition program (Shah et. al. 1988). These

advantages have been utilised in a variety of applications such as part modelling

(Nitschke et. al. 1991), process planning (Lee et. al. 1993), determination of tool

approach directions (Karra and Phelps 1990), as input to Design for Assembly analysis

systems (Rosario and Knight 1989), set-up planning and fixture design (Sakurai and

Gossard 1991) and automatic dimensioning of 3D solid models (Oh and Lee 1990).

Although much of the early work in features involved feature recognition, not much

emphasis has been given to more development of this approach in recent years. This is

due to the many drawbacks of the approach. It cannot retrieve information that is not in

the CAD database such as tolerances, surface conditions and geometrical information

(Sreevalsan and Shah 1992). Most of the systems have a restricted domain of

recognisable features (Bronsvvoort and Jansen 1993). There are also errors caused by

multiple translation from product model to the CAD model and then to feature

recognition model (Chamberlain et. al. 1993). Objects such as sculptured surfaces and

interacting features make the feature recognition task more difficult (Case and Gindy

1991). In general, the algorithms and techniques involved in feature recognition are

complex and require intensive programming. Above all, a technique which involves

detecting features which are already there is considered to be redundant effort (Shah et.

al. 1988).

In the design by features approach shown in Figure 2.6, the designer is provided with a

feature library. In most of the systems, the form of a feature is created within a geometric

model by a procedure based on a given set of feature parameters. Once features have been

created and are available in the feature model, they can be used and accessed by a variety

of downstream applications. The approach can eliminate the need for feature recognition

and gives a unique, pre-defined feature list with which designers may construct their

parts and thus improve the design environment provided by CAD systems (Case and Gao

24

Chapter 2

1993). The pre-packaged solutions to commonly occurring functional requirements in a

product which is represented by features will simplify and standardise the processes of
design and manufacturing (Faux 1986). The approach allows a greater depth of

understanding of features and feature interactions to be generated, which can ultimately
help in the identification of a combined feature pre-definition and feature analysis

approach to manufacturing planning (Young and Bell 1993). It also offers the possibility

of considering manufacturing and assembly concerns early in the design process

(Salomons et. al. 1993). This will lead to lower design costs and lead times, more reliable

cost estimating and more predictable control of manufacturing costs, times and quality

(Faux 1986). However, there are some limitations to this approach. It assumes that the

designer has ample manufacturing knowledge with which he/she can transform the

design into manufacturing details. The method imposes limitations on designers due to

the finite nature of the features library and thus not all operations are possible (Sreevalsan

and Shah 1992). This problem can be overcome by extending the range of features for the

application of interest or by incorporating higher level information in the features.

user

Many researchers believe that feature recognition or design by feature approaches on

their own are not enough to fulfil the requirements of a flexible feature-based design

system (Falcidieno and Giannini 1991, Sreevalsan and Shah 1992, Case and Gao 1993).

Both should be integrated to gain the benefits of each other. An attempt to incorporate a

25

Figure 2.6: Design by features ''

Chapter 2

feature extraction system in the design by feature system with the purpose of extracting

protrusion features was reported by Chamberlain et. al. (1993). Laakko and Mantyla

(1993) designed a feature-based modelling system which implements a hybrid of design

by feature and feature recognition techniques in a single framework. Fu et. al. (1993)

have also combined both approaches for the transformation of feature representations.

In this thesis, the design by feature approach is chosen as it provides the advantage of

storing relevant information for applications during the design process, as well as

offering the possibility for considering assembly concerns early in the design process.

This is not possible using the feature recognition approach.

2.2.4 REPRESENTATION OF FEATURE KNOWLEDGE

Since features arise from the reasoning processes and languages used by humans,

computable representations of features and feature languages have been developed

(Rosen 1993). Features have been represented using codes. particularly based on the

Group Technology (GT) approach in many early process planning systems. Since this is

inefficient and more suited to a manual approach, they are no longer used.

The application of Artificial Intelligence (Al), particularly the Expert System or

Knonwledge-Based Systems (KBS) technique in CAD systems has been commonplace.

Feature-based design systems have been used to provide representations which serve

KBS that reason about the geometry and topology of designed parts. Databases built

from features extracted from solid models can be submitted to a KBS for further analysis.

Feature knowledge is represented using various methods such as special descriptive

languages, frames (Joshi et. al. 1988) or rules (Henderson and Chang 1988). Most of the

systems which integrate feature-based design and KBS are used for process planning

where extensive data on process capabilities and material properties require an

appropriate handling mechanism. Examples of such systems have been developed by

Bond and Chang (1988), Unger and Ray (1988), Henderson and Chang (1988), Chung

et. al. (1988) and Catania (1991).

26

Chapter 2

In recent years, object-oriented (00) techniques have been used widely in many

computer applications. 00 software seems to be able to support the feature concept as

well as the feature taxonomy idea (Salomons et. al. 1993). Using an 00 structure

provides a general way to think about and manipulate features for geometric reasoning

(Chung et. al. 1988). From an 00 point of view, features are perceived as objects that

have a name for identification, a number of attributes to describe their characteristics and

methods to manipulate them. This information is declared and stored in an entity called a

class, which acts as a template description for objects of a specific type. Different classes

can be organised in a hierarchy or taxonomy which is readily extensible to include

additional data and relationships as appropriate. Each feature is modelled as an object

encapsulating various properties coupled with dedicated procedures (Wang 1991). An

example of an 00 representation of an instance of a feature class (which is a face) is

shown in Figure 2.7 (Zhang et. al. 1992). Other examples of 00 feature-based systems

can be found in Luby et. al. (1986), Unger and Ray (1988), Kuttner (1988), Masuki et. al.

(1989), Catania (1991), Chen et. al. (1991) and Chen et. al. (1994).

Face01

name type location above

FaceO1 block surface x, O, y, O, z, O, xn, 90 B1ock01

surface fmish tolerances direction heatTreatment

50 flatness, 0.004 '-z', '-z, 'xy' nil

Figure 2.7: An instance of feature class (Zhang et. al. 1992)

There is an increasing trend in the use of the 00 approach as the rich data types of the

representation make it possible for a feature model to capture more information on the

applications. There are many other benefits offered by the 00 technique and this is

discussed in Chapter 3. Because of these benefits, the 00 approach is utilised in the

27

Chapter 2

representation of features and assembly in this research work as discussed in Chapters 4

and 5.

2.2.5 MANUFACTURING APPLICATION AREAS

In the following sections, two predominant manufacturing applications that have

employed features - process planning and assembly planning - are discussed.

Descriptions of other manufacturing applications can be found in Shah et. al. (1994).

2.2.5.1 PROCESS PLANNING

Process planning is the activity to determine appropriate procedures to transform raw

material into a finished product, as specified by the design specification. The need to

automate this activity leads to the use of computers in systems that are generally called

Computer Aided Process Planning (CAPP) systems. There are two approaches used in

CAPP -variant and generative (Chang and Wysk 1985). The variant approach uses a data

retrieval system to retrieve an existing process plan using a GT approach for

identification. The plan is then modified (made a variant of the original) and possibly

added to the database. A generative CAPP system synthesises process information in

order to create a process plan for a new component automatically. For process planning,

part dimensions and geometric tolerances need to be available, and to achieve this, the

CAD interface must be able to convert the part description into an explanation of the

part's features and characteristics.

Most of the generative CAPP systems are based on the feature description of parts

(Wierda 1991). Features provide a high-level description of the part, which is a

fundamental requirement for reasoning to determine processes, operation sequences,

machine and tool selections and other decisions related to the process planning activity. A

feature can be associated with some machining operation and this makes the operation

selection in process planning relatively easy. For example, a hole can be bored with a

particular type of boring machine or a slot can be milled with a particular type of milling

machine using a specific tool (Bronsvoort and Jansen 1993). The feature data also

provides the most convenient way to model the machined surfaces in process planning.

28

Chapter 2

Various representations and syntaxes of the feature information required for process

planning and the sources and means to obtain it have been reviewed by Shah et. al.

(1988). Chang (1990) summarises various work on feature recognition used in process

planning and NC programming applications. Feature recognition has been the most

common approach to extract manufacturing features from CAD for process planning

application (van't Erve and Kals 1987, Bond and Chang 1988, Unger and Ray 1988,

Henderson and Chang 1988, Krause et. al. 1991, Nitschke 1991, Young and Bell 1993). A

number of process planning systems use a design by feature approach (e. g. Gindy et. al.

1993). Shah et. al. (1991) uses feature databases where the user inputs feature

information in a text format.

The use of features in process planning has been extended to the design and planning of

fixtures (Dong et. al. 1991, Nee et. al. 1992) and as an input to a knowledge-based cost

analysis system (Nieminen and Tuomi 1991).

Although features provide a natural form of representing parts for process planning, they

are usually limited to single parts. Most of the feature-based process planning systems

have a restricted domain of recognisable features that limits the application domain. As

there is an increasing need to extend the manufacturing applications beyond the process

planning domain, the way features are defined becomes important.

2.2.5.2 DESIGN FOR ASSEMBLY AND ASSEMBLY PLANNING

Computer support for the design and analysis of assemblies is essential since individual

component optimisation will not necessarily mean an optimum assembly (Rosen 1993).

The use of computers in assembly has been evident for some time (e. g. Swift 1987). More

recently, features have been seen as a means of modelling products in a way that is

suitable for Design For Assembly (DFA) analysis or as an input to assembly planning

systems.

One of the objectives of DFA is to achieve assembly through simplification and redesign

and reduction of parts by integrating the functions of the parts. DFA analysis procedures

require certain geometric properties for each component part and sub-assembly (Rosario

29

Chapter 2

and Knight 1989). The main types of information needed in DFA are component

positions and orientations, mating features, mating operations and component/feature

geometry (Molloy et. al. 1993). A Feature-Based Design system has been integrated

with several assembly analysis and synthesis algorithms to be used in the DFA systems

(DeFazio et. al. 1990, Molloy et. al. 1993). In the work by DeFazio, a feature-based

design system captures design intent in the form of assembly topology, product function

and manufacturing or field use. The work involved identifying the information important

to DFA tasks and how that information could be captured using feature-based design.

The feature-based design was then integrated with assembly analysis and synthesis

algorithms. Li and Huang (1992) developed an automatic assembly coding from a

feature-based model and this is used for an automated DFA system.

Assembly planning is concerned with creating steps of assembly operations based on

connectivity relationships between component parts, from which a product is assembled

(Wang and Li 1991). It involves the application of algorithms and heuristic rules to

produce alternative feasible assembly plans. Five types of information are required to

generate an assembly plan (Delchambre 1992) - component geometry, component

attributes, final assembly information (assembly directions), topology and technological

aspects (additional constraints). The quality of the plan generated by the assembly

planning system depends on the representation of the parts and their relationships. Thus

the description of an assembly to the computer in terms of geometric relationships and

physical constraints is a critical problem and crucial for automatic assembly planning.

The geometric input to the system can be provided by features which can identify

connections between parts that make up the assembly.

Many knowledge-based systems have been developed for assembly planning as they are

suited to handling a large amount of data and the existence of insufficient or ambiguous

information. A review of research work in computer-based environments for supporting

the concurrent design of products and assembly is given by Lim et. al. (1995). The review

includes detailed discussion on the roles of features and mechanical assembly modelling

in providing an effective environment for the design of components and assemblies. The

30

Chapter 2

different approaches for representing assembly models of parts are discussed in Section

2.3.

This brief overview of the application of features in DFA and assembly planning
highlights the need for a CAD modelling system which is based on the application of
features that can model assembly efficiently. A well defined model provides a means of

examining complex geometric interactions before anything is built and thus will be

useful for further analysis and planning activities. Assembly modelling is reviewed in

Section 2.3.

2.2.6 FEATURE MAPPING

Most of the work in feature-based applications as described in preceding sections

concentrates on one application and product type. In an integrated manufacturing

environment, it is beneficial to have features that can be transformed from one

application to another. There is a need for a system that supports multiple applications
driven by a common or stored database (Shah et. al. 1988). Each application can have its

own view of an object or definition of the object, with features relevant for that

application.

In order to integrate the various applications, features identified in a particular domain

have to be partially or fully transformed to other domains. The desirable situation is for

the design feature to comprise manufacturing aspects and manufacturing features to

include information on the design intent. A feature mapping system is necessary to

transform information in shared or neutral databases to application specific features most

suited to a given reasoning process. Shah and Rogers (1988) define feature mapping as

the selective extraction of relevant data by applications and transformation of this data to

conform to the application view for use in its reasoning process. This may involve

selective feature extraction, decomposition into lower level entities, reconstruction by

geometric reasoning and in some cases, augmentation with the addition of new entities.

Feature mapping is seen as a critical area for the success of feature-based design systems

(. Shah and Rogers 1988, Shah 1991). As the discussion in Section 2.1.4 suggests, many

31

Chapter 2

feature-based systems are confined to one application area, thus avoiding the problem of

feature mapping. However, some attempts have been made to support multiple

applications.. generic mapping shell has been developed as part of the feature-based

design system based on a general theory of feature transformation between application

specific feature spaces (Shah 1988). The shell supports three related applications -Group
Technology classification, process selection and manufacturability evaluation. Feature

spaces represent collections of features relevant to a specific application domain. Dong

et. al. (1991) applied feature mapping from design features to manufacturing features for

fixture design. Falcidieno and Giannini (1991) proposed a method which allowed the

user to extract features from a B-Rep model and represent them in the context of multiple

functional viewpoints like manufacturing, handling and assembly. This is done by

mapping features into a new model called a Shape Feature Object Graph which is

considered a neutral format description, independent of the application model.

Most of the multiple view problems above have been solved at the single component

level. It is useful to also take assembly relations into account when solving the problem.

There is a need for a system that supports multiple applications driven by a common or

shared database.

2.2.7 STANDARDISATION OF FEATURES

The realisation of an integrated manufacturing environment is not possible without

powerful, widely-accepted and standardised interfaces which will contribute to

harmonising data structures. Unless data can move freely between the various

computer-aided systems throughout the life cycle of the product, full integration will not

occur. In order for feature-based design to be useful in application, the feature data

should be able to be transferred efficiently without any loss of information. An

independent platform is required to fulfil this requirement. The need for standardisation

of a means of defining features has been highlighted by several authors such as Pratt

(1993).

One of the earliest efforts to improve the data exchange and sharing process between

functions found in a manufacturing enterprises was through the Initial Graphics

32

Chapter 2

Exchange Specification (IGES). IGES is an engineering data exchange specification

supported by major CAD/CAM systems. However IGES suffers from several drawbacks

such as its limitation to the geometric data only, lack of interfaces to CAD systems and its

lack of ability to be used with application programs (Shah 1988). As a spin-off of the
IGES activity, the Product Data Exchange Specification (PDES) was developed with the

aim of creating an international standard for the exchange of product model data (SN4E

1989). In the international community, a co-ordinated effort with similar objectives is

called STEP - Standard for the Exchange of Product Model Data.

STEP is a CAD/CAM product data exchange standard designed to support data sharing

through the exchange of physical files as well as common application programming
interfaces and database implementations. It uses the EXPRESS data definition language

as a tool for providing object-oriented, integrated views of product data (ISO 1991). The

objective of this standard is to provide a mechanism capable of describing product data

throughout the life cycle of a product. STEP is seen as a promising platform which can

provide a common language for data exchange and the project represents the most

concentrated international effort so far to meet this need. Its aim is to develop and

standardise specifications for exchange and sharing of product life cycle data between

heterogeneous computer systems in a Computer Integrated Manufacturing environment.
Some parts of STEP such as the geometric modelling aspects have been adopted as
international standards, whereas other aspects are still at the proposal stage.

As noted before, considerable difficulty has been experienced in standardising features

and the assembly applications. Research involving the application and examination of
STEP has been highlighted by few researchers. An experiment to determine whether

there was a mismatch between the Form Feature Information Model (FFIM), a product
data model in STEP shown in Figure 2.3, and a feature-based design system was

conducted by Shah (1991). The study involved mapping of the features of a
feature-based system into sets of FFIM entities, inverse mapping and transferring data to

and from the system to the FFIM format by creating models in the system. A limited

neutral exchange structure has been developed to enable the transfer of feature-data

33

Chapter 2

between a feature-based design system, LUT-FBDS, and the form feature

representation schema outlined in Part 48 of the STEP standard (Smith 1993). In design

for assembly, the STEP/EXPRESS standard has been proposed to define a product model

(Molloy et. al. 1993).

It is clear that standardisation in the areas of interest to this research has either not been

established or has not reached a stage of adequate maturity. However the methods

adopted, particularly the object-oriented programming, are believed to be useful in any

future attempts at compatibility with standards.

2.2.8 FEATURE-BASED DESIGN SYSTEMS

The development of feature-based design systems is necessary to support the various

applications discussed earlier. In order for the systems to be useful, they have to fulfil a

number of requirements as outlined by Broonsvort and Jansen (1993), Shah and Rogers

(1988) and Duan et. al. (1993) Among them are:

i. The system must have an integrated data representation

ii. Mechanisms for mapping features into application systems should be provided

iii. The system should be interactive and graphical

iv. There must be a mechanism to define generic descriptions of features as well as

application-oriented features and store these in a feature library

v. There must be a mechanism to create instances of a feature by specifying the required

parameters

vi. There should be the ability to carry out consistency verification of geometry and

attributes. Constraints must be available to guarantee the validity of the features

Many feature-based design systems have been developed in conjunction with the

research work described in earlier sections. Examples of the systems are Casper (Luby et.

al. 1986), DLink (Patel and McLeod 1988), CADETS (Lawlor-Wright and Hannam

1989), ASU Features Testbed Modeller (Shah and Mathew 1991), LUT-FBDS (Case et.

al. 1993), FSMT (Duan et. al. 1993) and DEFP (Lenau and Mu 1993).

34

Chapter 2

A few commercial CAD systems have also incorporated a feature-based approach. Most

recent versions of the major CAD/CAM systems (e. g. Unigraphics, Catia) have some

claim to have the capability of design by features. Some systems, such as Pro-Engineer

(Parametric 1993) and MicroStation2ý Modeler (Bentley 1994) are fully committed to a

features approach. Pro-Engineer is a parametric, feature-based mechanical design

system. Using Pro-Engineer, feature-based design can be enhanced through

pro/FEATURE, a module which allows users to create 'user-defined' features and

complex design features such as shells, 3D swept features, features created by blending

non-parallel cross sections and others.

In the main, features in the commercial systems are seen as a convenient mechanism for

defining the parametrics of geometric primitives and simple boolean operations and can

only be considered as design features. In general it is not possible to associate attributes

such as surface finish, and nor is it possible to meaningfully export the feature

descriptions to activities such as process planning. In some cases features are further

restricted in their use to initial geometry creation and the effects of modifying the

feature's (geometric) parameters are poorly defined and may lead to model corruption.

The following sections describe three feature-based design systems developed mainly

for academic and research purposes, and serve to illustrate the various approaches and

capabilities.

2.2.8.1 ASU Features Testbed Modeller

The ASU (Arizona State University) Features Testbed is a proof-of-concept system that

primarily uses the design by features approach (Shah and Mathew 1991). The system is a

collection of modules for the design, documentation and evaluation of mechanical parts.

It is organised into two shells, one for design (modelling shell) and the other for mapping

and applications. The shells can be customised by various organisations to fit their needs.

The system allows users to define their own generic features without making any changes

to the code. The structure of the system is shown in Figure 2.8. ASU has been used for

35

Chapter 2

manufacturability evaluation (Shah and Hsiao 1991) and for assembly modelling (Shah

and Tadepalli 1992).

MODELERS DATABASES

2.2.8.2 FSMT

FSMT is an acronym for Feature Solid Modelling Tool, developed by Duanet. al. (1993).

It consists of seven components, as shown in Figure 2.9, a feature definition and

management system (FDMS), a Boolean operation processor (BOP), a geometry and

36

Figure 2.8: Schematic diagram of ASU Features Testbed (Shah and Mathew 1991)

Chapter 2

attributes consistency checker (CVS), a knowledge base (KB), a database (DB) and a user
interface management system (UIMS). FSMT claims to use a generalised sweeping

method that is capable of defining all kinds of parametric features. A designer can build

up his/her own feature library dedicated to a particular application. The system has the

ability to solve the problem of mapping from feature definitions into Finite Element

Mesh generation, process planning and NC programming, and has also been used for

tolerance analysis and synthesis (Huang et. al. 1993).

Uý

Figure 2.9: Architecture of FS: fI' (Duan et. al. 1993)

2.2.8.3 LUT-FBDS

LUT-FBDS stands for Loughborough University of Technology-Feature-Based Design

System. LUT-FBDS is a prototype feature-based design system which was developed in

relation to research on process capability modelling for design and selection of

processing equipment (Case et. al. 1993, Case 1994). The structure of the system is

shown in Figure 2.10. The system consists of a design by feature user interface to a solid

modeller (PAFEC Imaginer), a feature processor and a geometric reasoner. The design by

features interface allows designers to create features by evaluating sets of parameters for

feature primitives; to perform feature edit operations such as move, rotate, copy and

37

Chapter 2

delete; and to define feature relationships such as parent-child relationships and

tolerances between features.

DESIGN BY FEATURES USER INTERFACE

SOLID MODELLER

BRep models of
features, components

FEATURE MODELLER

Parametric
Feature Data Model

FEATURE PROCESSOR

Feature-Based
Component Data

Model

Figure 2.10: Structure of LUT-FBDS (Case et. al. 1993)

Once a feature is created through the design by features interface, a B-Rep model is

generated for the feature and stored in the Imaginer database. At the same time,

information about the feature such as its dimensional and positional parameters,

tolerances, surface finish and relationships with other features are stored in the

Parametric Feature Data Model, which is then processed by the feature

processor/geometric reasoner to generate a detailed and well structured data model,

known as the Feature-Based Component Data Model (FBCDM). The feature processor

contains the functions to create the data structure and to calculate implicit data such as

access directions, imaginary face information and parent-child relationships at the face

level. The feature processor also contains functions for communication between the

38

Chapter 2

FBCDM and the design interface. LUT-FBDS is provided with a feature validation

mechanism which detects exceptional situations and the consequent changes in the class,
dimensions and relationships of all the affected features

The review of various feature-based design systems indicates that there is still no general

purpose system existing which is flexible and can be adapted to many types of

application. Most of the systems also suffer from the problem of a limited number of
features and simple shapes of features for part construction (Chen et. al. 1991). Efforts

are required to produce a generic geometric representation method that will satisfy the

diverse requirements of different applications. One solution suggested by Chen et. al. is

to allow designers to create their own "user defined features" for the construction of

complex parts. Attempts have been made to provide a system which allows user defined

features in a feature-based modelling system (Don- and Wozny 1991). However, such
features may bring undesirable consequences such as the inability of the system to

support manipulation or validation of features. User-defined features may be

unintelligible to downstream applications and could destroy or alter pre-existing
features and the system will be unable to detect such changes or to react suitably.

2.3 ASSEMBLY MODELLING

Assembly modelling has been the subject of research in many areas such as kinematics,

Al, robotics and geometric modelling. Assembly is defined as the process of creating a

connection between components or sub-assemblies to form complex end products
(Wang and Li 1991). To model assembly properly, it is important to represent the nature

and structure of dependencies between parts in an assembly. As mentioned in Chapter 1,

the modelling representation of relationships and mating conditions are the
distinguishing characteristics between modelling individual parts and assemblies and

consequently between geometric modellers and assembly modellers. Assembly

modellers can be thought of as more advanced geometric modellers where the data

structure is extended to allow representation and manipulation of hierarchical

relationships and mating conditions. Figure 2.11 depicts the role of a geometric modeller

as a preprocessor to the assembly modeller in the creation of an assembly model. A link is

39

Chapter 2

established between geometric and assembly modellers such that designers need only to

modify individual parts for design modifications using the geometric modeller, and the

assembly model is updated automatically (Zeid 1991).

There are three requirements for assembly modelling: the modelling of individual parts,

specifying the hierarchical relationships between parts in the assembly and specifying the

mating conditions between parts or specifying the locations and orientations of the parts

in their assembled positions (Zeid 1991). These requirements are discussed in the

following sections with the emphasis on the research work done in those areas.

Geometric
Modeller

Geometric
Model of
part 1

Geometric
Model of To part
part n analysis

To assembly analysis

Figure 2.11: Generation of an assembly model (Zeid 1991)

2.3.1 MODELLING OF PARTS

This is the first step in creating an assembly model. Individual parts can be created using a

geometric modeller with a proper representation scheme. In most assembly operations,

specific features of objects dictate how these objects may be assembled together. Solid

modelling, especially B-Rep schemes, have been used for this purpose because the

40

Geometric
Model of
part 2

Chapter 2

mating conditions are related to the faces, edges and vertices of the assembled parts (Zeid

1991). However, features are seen as a more natural method of representing the assembly

of parts by capturing assembly mating information and enhancing the assembly design

environment (Shah and Tadepalli 1992). Features contain information relating to the

position and dimensions required to define the geometry and information pertaining to

how features of a single component or assembly are positioned with respect to each other.

The feature may be defined based on either shape or connectivity. The latter is used for

representing a mating position in an assembly operation. Due to these factors, features

have been used in much recent assembly modelling research work (Wang and Ozsoy

1990, Giacometti and Chang 1990, Shah and Rogers 1993, Molloy et. al. 1993).

2.3.2 ASSEMBLY STRUCTURE AND MATING RELATIONSHIPS

An assembly database stores the geometric models of individual parts, the spatial

positions and orientations of the parts in the assembly and the assembly or attachment

relationships between parts (Zeid 1991). Some representation schemes have been

developed, but the inherent problem that all these structures are attempting to solve is

how to assign assembly data interactively to build or develop the assembly. The main

difference among these schemes stems from the way the user provides the assembly data,

that is the locations and orientations of the various parts and their hierarchical

relationships. Some of the representations of assembly and mating relationships are

discussed below.

Most of the assembly systems are represented by a hierarchical structure. Wesley et. al.

(1980) created a comprehensive engineering database to allow representation of objects

and their inter-relationships. A graph-based structure was used to model assemblies

where components and assemblies (parts, sub-parts and assembly) are represented by

nodes interconnected through corresponding edges that represent relations among

components. Four types of relationships are defined - "part-of', "attachment",

"constraint" and "assembly". The nodes also store positional relationships between

objects and material properties. The above relationships between parts and

subassemblies in the data structure are modelled using a world model. A program called

41

Chapter 2

AUTOPASS was developed using a world model which represents the above

relationships between parts and subassemblies in the data structure. The model does not

provide an interactive user interface and requires the transformation matrix of each

component as an input to constrain the location and orientation of each component in an

assembly.

Sekiguchi et. al. (1983) divides the relationships between parts in an assembly into two

main groups - "fit", which implies a pair of external and internal cylindrical surfaces and

"contact" between two planar surfaces. These are classified into the relative degree of

difficulty of assembly, which is determined by the combination of the degrees of freedom

of motion and the required force to change the relative position of parts in assembly

and/or disassembly, as shown in Figure 2.12. For instance, push fit is ranked lower than

pressure fit, as the former is less difficult than the latter to disassemble. A connective

matrix is built for each assembly direction (x, y, z) and for each type of relationship. From

this, the rules which govern the assembly sequence is determined.

Connective relations Code

Pressure fit Pr
Push fit Pu
Screw fit Sc
Taper fit Ta

Fit Spline fit Sp
Position fit Po
Movable fit Mo
Gear coupling Ge
Ring fit Ri
Key fit Ke

Clamp contact Cl
Taper contact Ta

Contact Plane Contact Pl
Gear meshing Ge
Gap plane Ga

Figure 2.12: Connective relations (Sekiguchi et. al. 1983)

42

Chapter 2

To avoid the problem of using a transformation matrix, Lee and Gossard (1985) proposed

a hierarchical tree structure as shown in Figure 2.13. This contains basic information such

as mating features between the components, plus the concept of virtual links that are

introduced to connect pairs of mating components or sub-assemblies.

Assembly

Virtual Link 1-- , Virtual Link I ----* Virtual Link

Subassembly

Component Component Subassembly Component Component J Component

Virtual Link -f Virtual Link ------- Virtual Link

Component Component Subassembly Component Component Component

Figure 2.13: Assembly tree structure (Lee and Gossard 1985)

A virtual link is defined as the complete set of information required to describe the type

of attachment and the mating condition between a mating pair. Mating features are used

to describe the mating information in detail. Two mating conditions of "against" and

"fits" are used to describe the mating relationships between mating features. The

"against" condition holds between planar faces of a pair of components. The "fits"

condition holds between centrelines of a solid cylinder and a hole. Any mating pair of two

subassemblies, two parts or one subassembly and one part is connected by one virtual

43

Chapter 2

link. The transformation matrices are derived automatically from the associations

contained in the virtual links (Lee and Andrews 1985).

The mating conditions defined by Lee and Gossard have been used successfully by

Rocheleau and Lee (1987) to establish the relationships between components and

compute the location and orientation of the component. Although the two mating

conditions can accommodate a wide range of possible assemblies, they proposed other

mating conditions to enable thread and gear conditions and other special cases to be

represented. Kim and Lee (1989) extended the use of the model for dynamic and

kinematic analysis of assembly components.

The virtual linked assembly structure cannot explicitly describe the natural structure of

an assembly and cannot provide enough mating information to support subassembly

instances. Ko and Lee (1987) further developed the ideas of Lee and Gossard (1985) by

representing an assembly in a hierarchical tree. An assembly is divided into several

subassemblies and each subassembly is divided into several groupings, which are further

composed of several components. Any two components are in different subassemblies if

the components have relative motion with respect to each other and any two components

in a subassembly are in different groupings if the component do not mate directly. Two

additional mating conditions are proposed - "tight-fit" and "contact". The "tight-fit"

condition is a "fit" condition whereby the rotational movement is constrained. A

"contact" condition is introduced to prevent any movement in the "against" condition.

The approach is used to generate an assembly plan.

The idea of representing assembly as an assembly graph was further consolidated by

Wang and Ozsoy (1990). In this graph, shown in Figure 2.14, the assembly, its

sub-assemblies and components are hierarchically structured as the topmost,

intermediate and terminal nodes respectively. The concept of instance is introduced to

accommodate more than one occurrence of a component or a subassembly at different

locations with different orientations in an assembly. The connectivity information

between the elements of an assembly is made available through the instances instead of

through the components or subassemblies. The mating condition of "against" and "fit are

44

Chapter 2

used with an additional mating condition of "parallel". "Parallel" constrains two planar
faces to have a specified separation distance and to have their surface normals pointing in

the same direction. The mating information between a pair of mating entities is stored as a

set of mating links.

Assembly

Instance) I. Instance)(Instance) (Instance

Component Subassembly Component

Instance Instance ... Instance

Subassembly Component Component

Instance Instance ... Instance

Component Component

Figure 2.14: Assembly Graph (Wang and Ozsoy 1990)

Mating links are created and linked together according to the user specified mating

conditions. The position and orientation of an instance of the assembly is derived from

the mating conditions carried by the mating links of that instance. The detailed mating

information about where and how the mating happens is provided by mating conditions

and mating features. Mating features contain the specific geometrical information

referred to by mating conditions. For instance, if the mating condition is against, the two

45

Chapter 2

mating features will be two planar faces and if the mating condition is fit, the two mating

features will be two cylindrical faces.

Huang et. al. (1993) also used the mating conditions of "against" and "fits" and

developed a technique that allows a designer to interactively create an assembly of

components by specifying the mating conditions and/or the relative location and

orientation among the individual components in a feature-based system. A

dimension/tolerance chain is then created automatically. Baxter et. al. (1992) proposed

an extension of the mating conditions proposed by Lee and Gossard (1985), by writing

rigourous definitions for a set of mating conditions, including the degrees of freedom that

they constrain.

Shah and Rogers (1993) distinguished between the representation of assembly and the

derivation of assembly relationships. They claim that the hierarchical structures used in

most assembly representation research can only model "part-of' relationships. To fully

model assembly, many other types of relationship need to be included. To achieve this

aim, five types of relationships between subassemblies are defined: "part-of',

"structuring relations" (SR), "degree of freedoms" (dof), "motion limits" and "size

constraints" applied to dimensions. The assembly structure consists of low-level

geometric entities (axes, faces) to high-level subassemblies, as shown in Figure 2.15.

Sub-assemblies consist of parts, and parts can be thought of as an assembly of form

features. Form features are composed of simple volumes combined together by Boolean

operations and feature volumes are defined by boundary entities. An assembly may

consist of several sub-assemblies, which themselves may consist of several units, either a

part or a sub-assembly.

The work done at the University of Leeds on the development of a product data

framework considers assembly as lists of parts without reference to physical or functional

connectivity (Henson et. al. 1993). The framework considers product, assemblies,

components and features each of which have their own set of entity attributes. A product

description may either be a component or an assembly. An assembly description may be

implemented as a list of parts where a part is either a component or an assembly. This

46

Chapter 2

representation is only suitable for a limited application and is not sufficient to support

applications which require information about the relationships between components,

such as tolerance analysis and design for assembly.

ASSEMBLY

SR
SUB A ------------ dof

PART td PART M-I PART

SR, Fit

aof
FF

SR
FV FV

do f

SR
dof

R_Face II Axis II Axis VFace

Fit

a assembly unit

"part-of' relation

--' other realtions

Figure 2.15: Assembly entities and structure (Shah and Rogers 1993)

Other forms of graphs have also been used to represent assembly and mating conditions.

Roy and Liu (1988) proposed a semantic association model (SAM)-based assembly

database. The components of the assembly are represented by a feature-based structural

face adjacency graph. The required mating conditions between features of different

components in an assembly are defined by a functional relationship graph. The assembly

database could support further functional analysis such as assembly evaluation and

tolerance analysis. However this is only a conceptual model. Sturges and Kilani (1992)

use a component graph to describe the mating conditions between the features in a

subassembly. Nodes in the graph represent either individual components, subassemblies

47

Chapter 2

or void regions while links represent the mating conditions between the mating nodes.
Mating consists of the faces that are shared by the two nodes concerned. Porchet and
Zhang (1993) model an assembly by specifying parts, connection types between parts

and the number of restricted degrees of freedom by a connection in a graph. The graph is

used to determine tolerances of functional parts in a product at the assembly level.

Mantyla (1990) proposed hierarchical part-of-graphs that support relationships between

components in multiple views. An object-oriented (multi-tree) data structure was
designed and certain consistency rules for the views were imposed. An assembly design

system was developed that supports top-down design, multiple levels of detail,

feature-based design of components and limited constraint-based geometric

relationship maintenance. The system is intended to support applications such as process

and assembly planning. However the system can only represent 2D geometry.

The importance of Dimensioning and Tolerancing (D&T) information to support the

assembly application has been recognised and many researchers have proposed data

structures which include this information (Roy and Liu 1988, Sodhi and Turner 1991).

An important aspect of tolerance design is to establish the functional relationship

between parts. However, many tolerance design techniques attached to features are

conceptual in nature and are not practical for application (Porchet and Zhang 1993). The

inclusion of D&T knowledge in features is an extensive area of research and this is not

considered in this research.

The review on assembly modelling highlights two important aspects - the structure of the

assembly and how relationships among parts in an assembly are defined. A hierarchical

assembly structure has been widely adopted as it is the most natural way of representing

assemblies. The structure represents the way in which an assembly is actually modelled

by the designer. It also suits well with the way features are structured. This structure is

adopted in this thesis, as described in Chapter 6. The above discussion also points out

some common approaches in defining relationships among assembled parts. Two

common types of mating relationship which involve contact between two planar surfaces

and contact between a hole and a shaft have been identified by most of the researchers.

48

Chapter 2

The differences are only in the naming of the relationships and the level of detail in

describing the relationships among the parts. The established relationships are adopted in

the feature knowledge in this research.

2.4 SUMMARY

In this chapter, several issues pertaining to the application of feature-based technology in

manufacturing and assembly modelling of mechanical parts have been discussed.

Although there are criticisms on the use of features in design and manufacturing (Gui and

Mantyla 1994), features are seen to have the most potential in representing

manufacturing knowledge efficiently. The discussion on features emphasises the need

for a definition and taxonomy which can be used in multiple applications. To achieve this,

features should be defined to fully incorporate the knowledge of the application domains

and be supported by a well defined taxonomy. A design by features approach is preferable

to the feature recognition method due to the possibility of considering manufacturing and

assembly concerns early in the design process and the advantage of storing relevant

information for the application, which is not possible in the latter approach.

A single feature representation would be useful across many applications and eliminate

the need for feature mapping. Since process planning and assembly modelling are

frequently feature-based, it is most appropriate to use a feature-based model as the

internal data representation for both of these applications. Assembly modelling is seen as

a very important activity in the design process as the output from assembly modelling can

be used in various applications such as Design For Assembly (DFA) and assembly

planning. Several approaches in representing assembly models have been discussed.

Research in the application of features for assembly modelling is still lacking compared

to process planning. From this review, it is evident that little work has been done on

integrating feature definitions to cover the two major activities of process planning and

assembly. This research attempts to look into this problem and propose a means of

representing features that are applicable for both applications. To achieve this aim, a

feature-based design approach is seen as most appropriate to represent a part while an

49

Chapter 2

object-oriented approach is deemed most suitable to represent the feature knowledge. An

object-oriented technique is reviewed and discussed in the next chapter while Chapter 4

describes how features are defined using this approach.

50

Chapter 3

CHAPTER THREE
OBJECT-ORIENTED TECHNIQUES

3.1 INTRODUCTION

"Object-oriented (00) models are recognised as being useful for understanding

problems, communicating with application experts, modelling enterprises, preparing

documentation and designing programs and databases" (Rumbaugh et. al. 1991). This

statement highlights the capability and the importance of the 00 technique which is now

widely used in the development of manufacturing application software. The aim of this

chapter is to present an overview of the technique with a particular emphasis on 00

programming. 00 concepts are explained as a basis for understanding the development

of the feature and assembly models and the prototype feature-based assembly modelling

system described in the following chapters. The chapter also gives an overview of the

C++ programming language and a solid modeller kernel, ACIS`. These tools represent

the current state of the art in developing application systems and thus a significant

amount of time has been spent in studying and applying them to the problem of creating a

feature-based assembly modelling system. Section 3.2 gives an overview of the 00

programming concepts and Section 3.3 outlines the benefits of using this approach.

Section 3.4 describes the approach to 00 design used in this research work including the

notation used in representing objects and their relationships. The C++ programming

language is described in Section 3.5 and Section 3.6 gives a general description of the

ACIS® solid modeller kernel and how it is used in this research. The description of the

main features of these tools will help in the understanding of the research work presented

in the following chapters.

3.2 OBJECT-ORIENTED PROGRAMMING CONCEPTS

Approaches to programming have changed dramatically since the invention of

computers to accommodate the increasing complexity of programs and the development

of hardware. The language development process has passed through various phases,

51

Chapter 3

moving from binary machine-code instructions through low-level assembly language to

high-level languages such as Pascal, Fortran and C. However these programming

languages do possess sufficiently powerful enough abstractions required by large and

complex software systems (Zhou et. al. 1994). The structured programming approach

was developed in the 60's in an attempt to solve this problem. Structured programming is

an approach which divides systems into functional modules, so that each module is

highly cohesive. Communication between modules is strictly controlled, thus allowing

the program to be debugged more easily (Zhou et. al. 1994). The approach eases the

organisation and control of the software development task, but it remains difficult to

control a project once it reaches a certain size. There is a problem of maintenance,

extension and integration of the system developed, and 00 programming was introduced

to address these problems.

00 development emphasises a number of essential concepts and principles which

provide guidance for the construction of programs based on the ideas of objects, classes

and class relationships. Some of the important principles involved in 00 programming

are outlined in the following paragraphs (Rumbaugh et. al. 1991, Korah 1994). Sections

3.5 and 3.6 provide examples of these principles applicable to the C++ language and the

ACIS modeller.

3.2.1 ENCAPSULATION

The term object-oriented means that software is organised as a collection of discrete

objects that incorporate both data structure and behaviour (Rumbaugh et. al. 1991). The

concept of an object is the central feature of 00 programming. An object is a

self-contained software entity that consists of both data and program code (procedures)

to fulfil the required functions which manipulate the data. Data is information or space in

a program where information can be stored, such as a name or a dimension. Procedures or

methods are parts of a program that cause the computer to actually do something, such as

display the output, perform calculations or store information on a disk. In traditional

programming, code (sequences of computer instructions) and data have been kept apart.

In 00 methods, code and data are merged into single indivisible entity. Within an object,

52

Chapter 3

some data and/or methods may be private to the object and inaccessible to anything

outside the object. In this way, an object provides a significant level of protection against

other unrelated parts of the program. This relationship between data and function in an

object is referred to as encapsulation or information hiding. Encapsulation supports the

separation of the specification of the component from its implementation. It offers two

kinds of protection - it protects an object's internal state from being corrupted by the

program that uses it (the client program), which in turns protects the client's code from

changes in the object's implementation. An object does not tell the outside world how it

does an operation. This prevents a program from becoming too interdependent and eases

the problem of maintenance (Korah 1994).

Mitchell (1993) outlines the situations where the use of objects is necessary. Objects

should be used in the following situations:

i. To represent real world concepts such as animals, cars, features.

ii. To represent well-known data structures or algorithms. For example, a feature is a

linked list of faces and a component is a linked list of features. Thus features and

components are objects.

iii. To encapsulate design decisions which are difficult to make or involve machine

dependencies. For example, a mouse, a keyboard and a screen of a computer are

machine dependent and thus can be represented as objects.

iv. To hide complexity to the end user, for example to handle certain types of curves such

as Bezier curves.

v. To create a more convenient 00 interface to existing libraries, such as a window

object which provides an interface to the text handling and graphics library supplied

with the compiler.

Each object is defined by a class declaration. The class is a collection of objects sharing

the same set of characteristics (data format) and functionality. Classes and objects are

closely related concepts. Every object is a specific instance of a class and the class

53

Chapter 3

definition ensures that all objects of that class will have the same structure and behaviour.

For example, in the development of a feature-based assembly modelling system, a

component class is developed to represent any component that makes up the assembly.

An object called a block can be created to represent an instance of the class Component.

Figure 3.1 illustrates the concept of class, objects and how they interact in an 00

program.

Object

Class) Object

Object

oe}ai

Gau...... Obj«f

onK

.. ýý. ý.. ý ý.. .. ý ,... ýý .ý .. ýýa-.., .Y
_. _ obi

,ý

Figure 3.1: Class, Object and 00 Program

54

Chapter 3

3.2.2 POLYMORPHISM

Polymorphism in the context of 00 is the ability to hide many different implementations

behind a single interface or the ability to issue the same command to different objects.

This means that the same message can be understood differently by objects of different

classes and therefore produce a different, but appropriate result. It allows a function name

to be shared up and down a class hierarchy. The client code can invoke an object's

operation without knowing its type and if the implementation of the object's operation

changes, the client code is not affected. For example, the message DrawFeature sent to a

boss feature will result in a boss being drawn. When the same message is sent to a hole or

slot, it would result in a hole or slot being drawn. This is referred to as dynamic binding, as

it is the establishment at run time of an association between a method call and the code

executed.

Polymorphism also allows function overloading and operator overloading. By function

overloading, it is possible to define different functions with the same name, each

processing different data. For example, two functions of the same name could be written,

one to move the feature using cartesian coordinates and another to execute the same

function using polar coordinates. The arguments and return type of the function

determine which function is used. Similarly, with operator overloading, mathematical

operators, such as +, - and /, can be defined to operate on various data types including

objects.

3.2.3 INHERITANCE

One useful property of 00 methods is that a class produced for one program may be

usable in a new program by a slight modification and this can be achieved by defining a

new class which inherits the properties of the existing class.

Inheritance is the property that allows the building of objects from other objects or

creation of new classes by extending and adapting old classes, based on hierarchical

relationships. The class from which one inherits is called a base class (parent class) and

the class which does the inheriting is called a derived class (child class). A derived class

55

Chapter 3

may inherit all of the data formats and methods from its parent class but it has the

opportunity to change anything it inherits by adding new data and/or methods or

redefining inherited methods. In the last case, a method declared in a base class may have

several definitions since it may be redefined in multiple derived classes. When the

method is called to perform an operation on an object, the definition actually used is

determined at execution time based on the class of the object, as explained in Section

3.2.2. A base class may have multiple derived classes and a derived class may in turn

serve as the base class for other derived classes, producing a tree-structured organisation

of classes as shown in Figure 3.2. In the example, point and shape are derived classes of

the drawing object class. The shape class in return is a base class for polygon and circle

classes. The triangle and quadrilateral classes are derived classes of a polygon class and

thus can inherit all data and methods from the classes higher up in the hierarchy.

base class

derived class

Figure 3.2: Class hierarchy for shape (Gorlen 1987)

56

Chapter 3

In an 00 design process, inheritance is used in the following situations (Mitchell 1993):

i. If one class is just an extension of another, then it should inherit the parent class, for

example a rectangle inherits a line and an arc inherits an ellipse.

ii. If various classes have many member data or methods in common, but with some

differences, it is worth creating a base class containing these common members and

let other classes inherit them. For example, a line and a circle share the x, y

coordinates.

iii. If a group of objects share a complex algorithm, then a base object may be

appropriate.

iv. If a class is a specific example of a general case, create a base class for the general

case and let the specific class inherit it. For example, a feature class described in

Chapter 4 is a general class for all feature types and profiles.

3.3 BENEFITS OF OBJECT-ORIENTED PROGRAMMING

Many development benefits can be achieved using the 00 model. Most advantages come

from the reusability of code, and the fact that analyses and designs are easier to achieve

than with the traditional development model. For example, 00 languages have built-in

support for reusability through classification, inheritance, information hiding and

encapsulation. The concept of class provides the benefit of reusability by providing a

template which programmers can use over and over again to create many objects.

Inheritance and dynamic binding make programs easier to extend by defining classes

which inherit the properties of other classes. Each time a new sub-class is added to the

inheritance hierarchy, it can automatically reuse the attributes and operations defined by

its base class, as explained in the previous section. Any inherited method can be redefined

to perform a task more suited to the new class. This allows the customisation of existing

parts and only the codes for the new features need to be written. Furthermore, a base class

can be defined and only partially implemented so that it can become a generic (or

abstract) class. The rest of the class is left to the specialised users to define and implement.

57

Chapter 3

This idea leads to the extensive use of existing libraries of proven facilities which the

programmer can use in the development of an application system. Classes and objects

could become the equivalent of interchangeable, standard components, similar to

selecting parts from a catalogue and snapping them together. The building of software

using the concept of standard "components" or building blocks that have already been

tested in many systems can improve the quality of the software and makes it easier to

model complex systems. When less code is written, there is less chance of making an

error and the task takes less time. This is the approach used in developing an application

system using a kernel modeller such as ACIS. The 00 solution also allows the user to

prototype portions of a problem and add to the prototype later. The result is a fast response

to changing user requirements.

By exploiting the concept of encapsulation, a programmer can change the

implementation of an object and not affect any of the other objects in the system. The

interface between the user program and the object is well-defined and localised in the

object's class definition. A well designed implementation also hides the complexity of its

operation from the user program, making objects easier to use. This leads to another

benefit of modularity. Modularity makes debugging a system much easier. When the

system is modular, it is easier to isolate the problem and identify it within a specific

module. Programmers can change any of the object's internal algorithms without

disturbing the system, but they may not alter the object's interfaces and services. This is

also important during the test phases of a project because the programmer does not have

to retest modules that have not been changed or reused without modification.

All the benefits of 00 programming described above are relevant issues in the

development of manufacturing applications, especially in the present competitive

environment. For these reasons, the 00 approach has been chosen in this research for

describing features, the feature taxonomy, representing an assembly model and

developing a prototype feature-based system.

58

Chapter 3

3.4 OBJECT-ORIENTED DESIGN APPROACH

To help in the 00 design process, various guidelines have been introduced and these are

often referred to as 00 Analysis and Design. The purpose of 00 analysis (OOA) is to

determine which objects need to be programmed and how these objects will interrelate.

The 00 design (OOD) process provides more details about the objects to be

programmed, including any associated user interface objects and database architecture.

A certain amount of OOA and OOD must be done before detailed coding can begin and

this can be achieved by numerous different methodologies which address the analysis,

design and implementation phases of the development. Among the methodologies are the

Booch method (Booth 1991) and the Object Modelling Technique (OMT) (Rumbaugh et.

al. 1991). Detailed discussion of the 00 methodology is beyond the scope of this thesis,

but an important result of OOA and OOD is one or more object models, which are

presented in diagram form and graphically show the objects to be programmed and the

interactions among them. The object models also show the data and methods inside each

object.

The following approaches in 00 design, adapted from Mitchell (1993), are adopted in

this research:

i. Selection of objects. This requires determination of an appropriate class, as discussed

in Section 3.2.1. Classes for features and assembly are defined in Chapters 4 and 5

respectively.

ii. Determination of the interaction between classes, that is which classes use which

other classes.

iii. Determination of the relationships among classes to help in their organisation. Two

classes may be related by inheritance, one class may be a client of another (use the

other) or there may be no relationship. An inheritance relationship is developed if

two classes meet the criteria outlined in Section 3.2.3. Otherwise, a class will be a

client of another class.

59

Chapter 3

iv. Design of the system which involves making a high level decision about the overall

structure of the program and division of the program into separate modules.

v. Design of the contents of classes which involves determining the data and methods.

vi. Consideration of the interface between each module. This involves specifying the

form of all interactions and the information flow among them.

vii. Test and develop the program.

One of the significant aspects of the methodology presented in this thesis is the use of

common graphical notations for defining problems and requirements related to the

representation of objects and their relationships. This helps to define an object using 00

programming concepts without dealing with the complexity of the programming

language syntax. The use of graphical notation allows essential information to be

attached to the analysis model. The main items of information of importance to this

research are the data attributes of the class, the methods and the relationships among

classes, as described in the following paragraph.

Using this approach, which is based on OMT methodology, the class is represented by a

rectangle divided into regions. An example of the notation for a class called Circular

Feature is shown in Figure 3.3. The name of the class is given in the top region in bold. A

second region is used to list data or attributes of the class. For the Circular Feature class,

there are four items of data -a pointer to the body of the feature, the radius, height and the

position of the feature. The third region contains a list of public members of the class

(explained in Section 3.5). In this case, there are four public methods - Get Dimension,

Draw, ShowRadius and Save. The objects can have physical or conceptual connections

between them, and these are referred to as links. Various graphical notations are used to

represent these links and Figure 3.4 shows how inheritance is represented using this

approach for a set of classes. A triangle connects a base class to its derived class. The base

class is connected by a line to the apex of the triangle while the derived classes are

connected by lines to a horizontal bar attached to the base of the triangle.

60

Chapter 3

CircularFeature

BODY *cir
Height
Radius
Position

Get Dimension
Draw
ShowRadius
Save

Class name

Attributes

Methods

Figure 3.3: Representation of a class

Figure

colour
centre position
pen thickness
pen type

move
select
rotate
display

0 Dimensional 1 Dimensional

orientation

scale

2 Dimensional

orientatiom
fill type

scale
fill

Point Line Arc Spline II Polygon Circle

endpoints radius
start angle control pts num of sides diameter

vertices arc angle
display

display display display display display rotate

Figure 3.4: Notation for hierarchical relationships (Rumbaugh et. al. 1991)

61

Chapter 3

In Figure 3.4, the dimensional classes are derived from the Figure class and the

geometrical entities (point, line, arc, spline, polygon and circle) are derived from the

appropriate dimensional classes.

3.5 THE C++ PROGRAMMING LANGUAGE

There are many 00 programming languages currently in use, but two of the most popular

are C++ and Smalltalk. The C++ language is a relatively new programming language,

derived and enhanced from the C language (Stroustrup 1991). It contains many

improvements and features that make it a "better C" and adds support for data abstraction

and 00 programming techniques.

C++ supports the three key features of the 00 concept. namely encapsulation,

polymorphism and inheritance by means of the class declaration. A class is a data type

defined by users to describe what sort of information it can represent and what sort of

actions can be performed with that data. This example of the definition of a Circular

Feature class illustrates these aspects:

class CircularFeature: public Feature

private

BODY *cir,

double radius, height, pos_x, posy, pos_z;

public:

CircularFeature();

-CircularFeature();

void GetDimensionO;

void Draw();

void ShowRadius() (return rad; J

void Save();

A data abstraction of the class is defined by the access functions. In C++ these can be

public or private. A public member can be used by other functions that do not belong to

the class, while a private member can be used only by other members of the class. This

62

Chapter 3

class declares a pointer to the feature body, dimensions and the position with private

member variables and the rest of the codes as public member functions. Since radius and
height are private, they can be accessed only by member functions. A user program may

read the values of radius by calling the member function ShowRadius, but may not write
into these variables. This ability to combine data structure and functions in a single entity

makes encapsulation cleaner and more powerful than conventional languages.

A member function with the same name as its class such as CircularFeature() is a special
function called a constructor. A constructor function creates a new instance of its class

and initialises it, and is implicitly called whenever an object of its class is declared or

allocated via the C++ new operator. A function with the same name prefixed with the

character -- such as -CircularFeatureO is called a destructor. It is used to clean up

memory when an object is deleted. In some classes, particularly the base class, the key

word virtual specifies that dynamic binding is to be used for the function to which it is

applied. The virtual function allows another class derived from the base class to provide

alternative versions of the function.

The notation class CircularFeature: public Feature denotes that CircularFeature is a
derived class of a Feature class. Private members of the base class are inherited, but

cannot be accessed by the derived class, thus preserving the encapsulation. Public

members of the base class are inherited as private members of the derived class by

default, but usually they are caused to be inherited as public members by qualifying the

name of the base class with the keyword public, as in the above example.

Some of the advantages of using the C++ programming language are good runtime

performance, well developed supporting technology for program development in areas

such as class libraries, domain-specific application skeletons and classes and 00 design

techniques and tools. Due to these advantages, it is claimed to become a de facto

programming language for software development and is adopted as the programming
language for developing the feature-based assembly model in this research.

63

Chapter 3

3.6 ACIS` SOLID MODELLER

3.6.1 GENERAL DESCRIPTION

ACIS is an 00 geometric modelling system designed for use as a "geometry engine" for

applications that require 3-D modelling (Spatial 1993). It is a B-Rep solid modeller and

provides an open architecture framework for wireframe, surface and solid modelling

from a common, unified data structure. ACIS supports a wide range of geometry types

and provides a set of geometric operators for the construction and manipulation of

complex models. As an 00 system written in C++, ACIS provides extensive facilities

through a set of class libraries for application development.

Unlike other commercial solid modellers such as Unigraphics and Pro-Engineer, which

are menu driven, the solid model can be built within ACIS using class libraries which can

be accessed through anApplication Procedural Interface (API) or direct-object interface

to all internal objects, classes and methods, shown in the structure of ACIS in Figure 3.5.

Application developers can add, derive and extend classes or access the system from any

language such as C++, C, FORTRAN, PASCAL and LISP. This approach provides

flexibility, especially in the development of a customised application program as

developers are not tied to the proprietary rights of other software.

The functionality of ACIS can be enhanced through the development of

application-specific facilities, called Kernel Extensions or Husks. Husks can be coupled

to ACIS to provide additional application development support such as rendering,

constraint management and feature modelling. It provides an infrastructure to allow

system developers to manipulate and manage their applications development. Specific

applications are then built on top of ACIS Husks and ACIS. Figure 3.6 illustrates this idea

whereby a feature-based design system is developed as a husk and the assembly

modelling is built on top of this husk as an application. Further applications such as

assembly planning and Design For Assembly system can be developed on top of this and

other husks.

64

Chapter 3

APPLICATION PROCEDURAL INTERFACE (API)

Classes
ACIS Objects

KERNEL Methods

PARAMETRIC CURVE & SURFACE INTERFACE

PARAMETRIC
CURVE AND SURFACE

SUBSYSTEM

Applications

Husks

Figure 3.5: The structure of the ACIS solid modeller

mbly
Plan
Assembl Design For

`t
semb

Feature-Based Constraint I
Design Management """'

Rendering

r---------------

I APPLICATION PROCEDURAL INTERFACE (A? [)

*
,
C,

ýlACTS Tý KERNEL

PARAMETRIC CURVE & SURFACE INTERFACE

PARAMETRIC
CURVE AND SURFACE

SUBSYSTEM

L --------------------

Figure 3.6: Husks and applications

65

Chapter 3

There are few commercial feature husks available, such as the Feature Management Husk

(Spatial Europe 1993). The husk offers some standard features and at the same time

allows application developers to provide their own definitions of features. The user-

defined features can be described in C++ or in an external command language, such as

Scheme, a LISP-based language. It is claimed that by using this approach, many new

types of features can be created at a faster speed. The husk can be interfaced to an external

constraint modeller.

With the increasing application of 00 techniques, the use of ACIS in the development of

manufacturing applications has increased. In the feature-based domain, ACIS has been

used as a geometric modeller for a process planning system (Krause et. al. 1991, Wang

1991); as a kernel for a feature recognition system for multiplying connected holes,

pockets and islands in 2.5D objects (Corney 1991), and to extract feature model data

from a 2.5D component (Murray 1993). ACIS has also been recommended as the

geometric modelling kernel for feature-based design systems to alleviate some of the

feature-geometry interfacing problems (Sreevalsan and Shah 1992). The following

sections outline some features of ACIS utilised in this research.

3.6.2 APPLICATION PROCEDURAL INTERFACE

The Application Procedural Interface (API) is a collection of routines that can be called

by applications to create, change or retrieve an ACIS class library. The advantage of the

API interface is that all of its calls are stored in a file called a journal and thus a sequence

of calls made exclusively through this interface can be replayed. Users can create their

own API routines using guidelines and header files, tools, and macros provided. In this

research, API functions are incorporated into the C++ programs which build the feature

library and are used to create specific feature profiles and manipulate the features through

functions such as move, draw and save. Examples on the use of API for these purposes are

given in Section 3.6.5.

66

Chapter 3

3.6.3 C++ CLASS STRUCTURES

Another means of accessing internal objects, classes and methods is through the Direct

Interface. This approach is used to make rapid and efficient inquiries of models and reads

and changes data structure entities directly. However ACIS does not store calls to it in a

journal and thus it cannot be replayed. It is suitable for read-only access e. g. for graphic

output.

ACIS provides five types of classes (as in ACIS version 1.4.1), which are briefly

described in the following paragraphs:

i. Mathematical

This class represents the concepts of 3D cartesian coordinates, direction vectors,

transformation matrices for positioning entities and general 3x3 matrices.

ii. Geometry

This contains various classes to define geometric curves and surfaces which are not

retained permanently in its object data structure. The classes include curves. straight

lines and ellipses.

iii. Entity

Entity is the class from which all classes representing permanent objects in the ACIS

modeller are derived. It represents common data and functionality which must be

contained in all classes that represent permanent objects within the modeller. The

relationship of the model classes is illustrated in Figure 3.7. The Entity class also

covers two categories of classes - topological and data structure.

The above classes are utilised in the development of a feature and assembly model. For

example, the transformation matrix from the mathematical class is used to position the

parts in an assembly model. From the entity class, the topology part of the class is used for

identifying the face on the feature. Two other classes which are not used in this work are

the Miscellaneous and Utility classes. The miscellaneous class consists of two classes -
box and interval. The box class provides a method to test the interaction between two

entities while the interval class represents a finite range on the real line. Classes in the

67

Chapter 3

Utility class deal with the intersection between curves and surfaces as well as the

intersection and relation of an edge to an entity.

All ACIS classes utilise the strength of C++ in an 00 environment. Some of these

features are:

i. Compile time checking.

ii. Private data which can be accessed only by public methods, thus protecting the data

from the application program (see Section 3.2.1).

iii. Public methods which can be accessed by application programs.

ENTITY
Class

Topology Geometry ATTRIB

BODY

L

User-Defined Attributes

LUMP System-Defined Attributes

SHELL POINT

SUBSHELL CURVE STRAIGHT

FACE PCURVE ELLIPSE

LOOP SURFACE INTCURVE

COEDGE TRANSFORM PLANE

EDGE CONE

VERTEX SPHERE

E TORUS

SPLINE

Figure 3.7: Relationships of the ACIS model classes

iv. Constructors and operators are overloaded (see Section 3.2.2). For example, there

are three versions of constructors for the position class:

position() defines a position without initialising any coordinates.

position(double, double, double) defines a position with coordinates

68

Chapter 3

x, y and z of double precision.

position(double[J) defines a position from an array of three points with

double precision.

v. Functions and operators in mathematical classes are overloaded.

vi. Virtual functions are provided. For example, the curve and surface classes each have

virtual position and parametric-based evaluator functions. The correct evaluator

will be used according to the type of geometric entity called.

3.6.4 THE TEST HARNESS

The Test Harness is a simple application program written in C++ and supports

English-like commands entered by the user. It provides a simple vectographic and

shaded image output and several different forms of file input and output. The test harness

provides an interface to all features of ACIS and is used to test ACIS and for program

proving. A model created by an application program is saved in a file and the file can be

retrieved from the test harness. The version of the test harness used in this work does not

provide a rendering facility, and due to its limited capability, it is not suitable as a

Graphical User Interface tool for a professional application system.

3.6.5 EXAMPLE OF AN ACIS PROGRAM

The following C++ code shows an example of how API commands are used to create a

component with two features -a base feature of rectangular profile represented by a

cuboid of dimensions 100 x 80 x 30 units and a cylindrical boss feature represented by a

cylinder of radius 10 units and height of 40 units. First the cuboid is created using

api_make_cuboid and the api_find_face function finds its top face. Then a cylinder is

created and moved by the application of a transformation function by a distance of 20

units in the z direction. The cylinder is united with the cuboid and the resulting body is

saved in a file "cuboid. sat" which is retrieved for display in the test harness, as shown in

Figure 3.8.

69

Chapter 3

api_start_modeller(TRUE, NULL, 0);

BODY* cuboid;

api_make_cauboid(100,80,30, cuboid);

FACE* face;

outcome result = apindjace(cuboid, unit vector(0,0,1), face);

if(! result. ok())

f
cout « "failed to find face (error number)\n ";

exit(O);

I

BODY* cyl;

api_make Jrustum(40,10,10,10, cyl);

api_apply_transf(cuboid, translate trans

api_unite(cyl, cuboid);

FILE` save-file = fopen("cuboid. sat ", "w ");

api_save_body(save jile, TRUE, cuboid);
fclose(savejile);

Figure 3.8: Example of ACIS model

70

Chapter 3

3.7 SUMMARY

This chapter has discussed the basic principles of 00 programming, its benefits and the

00 design approach adopted in this research work. The 00 technique introduces many

new ideas and involves a different approach to programming. The three main concepts of
00 programming - encapsulation, polymorphism and inheritance offer a new and

powerful model for writing computer software. The technique offers benefits of faster

development, easier maintenance, improved modifiability, more compact code and the

opportunity to reuse and recycle large sections of the code. The modular and hierarchical

nature of the system provides a natural way of handling the complex relationships
between parts in an assembly of products. This justifies the use of this approach in this

research work.

The development of a feature-based assembly modelling system is also facilitated with

the use of the C++ language and the solid modeller kernel ACTS. A major advantage of

using ACTS is its extensibility. This can be done by adding attributes, deriving from the

entity class and adding new API functions. The C++ language is a practical language and
has the necessary facilities for 00 programming and this is utilised in ACIS to provide
flexibility in the design.

The next chapter discusses the application of 00 approach in the representation of
feature while Chapter 5 describes the application in the representation of assembly

models.

71

Chapter 4

CHAPTER FOUR
FEATURE REPRESENTATION

4.1 INTRODUCTION

An important part of this research is the development of a feature representation which is

capable of incorporating knowledge on applications, particularly assembly modelling.

As discussed in Chapter 2, the way a feature is defined and represented affects the scope

of its use. The aim of this chapter is to provide a framework for the description of features,

their classification and how they are represented in an object-oriented environment. This

will be the basis for the subsequent work described in the following chapters. Section 4.2

describes the features used in this research work. The feature taxonomy is discussed in

Section 4.3. Section 4.4 describes how feature knowledge is represented in an

object-oriented environment. Section 4.5 summarises this chapter.

4.2 FEATURE DESCRIPTION

An important concept in feature-based design and manufacture has been outlined in

Chapter 1-a single feature representation should be capable of supporting a number of

different applications. This requires that a feature should incorporate as much knowledge

as possible which allows its use in many applications. This requirement can be achieved

by extending the knowledge within the feature object in an object-oriented environment,

as described later. However, as this research is focussed on the application of features in

assembly modelling, the emphasis of knowledge in the feature will be for this application

domain. Further, as assembly modelling and other applications such as inspection are

carried out after the machining process, process planning knowledge must be included in

the feature.

The approach taken in this research is to describe features based on machined shapes, but

in a way that is at the same time useful in the design process. Features are defined in terms

of volumes enveloped by a set of real and imaginary faces. A real face refers to an actual

face which exists on the feature and are typically surfaces from the original part or the

72

Chapter 4

result of manufacturing operations. Imaginary faces can be considered as surfaces

required together with the real faces to form an enclosed volume. Figure 4.1 shows a step

feature formed by the removal of a volume that is in part enclosed by imaginary faces. In

the ACIS solid modeller features are represented in a B-Rep scheme, in which faces are

explicitly defined. Information on faces is required to determine the relationship

between each feature in an assembly model. The real faces for each feature is shown in

Figure 4.6. Volumes removed as a result of machining operations form depression

features while protrusion features are volumes to be added to the part or to be left after

machining of surrounding regions. Figure 4.2 shows a depression feature in the form of a

pocket and a protrusion feature represented by a boss.

real face
imaginary face

'A

Figure 4.1: Imaginary and real faces of a feature

Features are further defined in terms of dimensions such as height, width, length and

radius, according to their geometric profiles. Each feature has its own coordinate system

attached to it at the point of reference, as shown in Figure 4.3. The origin is at the centre of

73

imaginary lace

step feature

Chapter 4

the feature body, following the convention used in the ACIS modeller. The orientation of

the feature is represented by three independent (Eulerian) angles -0 (rotation about z

axis), tJ (rotation about y axis) and 0 (rotation about z axis). The position and orientation

of the feature provide six degrees of freedom - three translational and three rotational

and are used as a reference for the placement of features in an assembly as well as

establishing positional relationships between two features.

depression protrusion

Figure 4.2: Depression and protrusion features

4.3 FEATURE TAXONOMY

The requirement for a feature taxonomy is that knowledge on the application domain can

be structured and organised so that features can be used effectively in an application. To

achieve this, the taxonomy should organise information on the process planning and

assembly modelling that can be conveniently represented in an object-oriented

environment. The most natural way is to organise features in a hierarchical structure. The

taxonomy scheme is an extension and enhancement of the scheme developed by Gindy

(1989) as described in Chapter 2. The scheme was found to satisfy the hierarchical

requirements and to be well suited to object-oriented design.

74

Chapter 4

height

width

Z'

height

Figure 4.3: Feature dimensions and orientation

Y'

75

Chapter 4

In this scheme, features are structured at four levels of classification, as shown in Figure

4.4. At the top level, they are divided into three categories of protrusions, depressions and

surfaces. Protrusions are external features of a solid and can only have closed boundaries.

Depressions are external or internal features with closed or open boundaries. Surfaces

occur when the feature has no depth. A surface will be real when the inside of the
boundary is solid and imaginary when the boundary is enveloping an empty area.
Surfaces are only included in the taxonomy for completeness of the scheme, as the mating

surfaces that are of great significance are represented as faces of features, and not
independent features. The next level of classification is the number of orthogonal
directions from which the feature volume might be approached. These are known as
External Access Directions (EADs) and all features have between 0 and 6 EADs, as

shown in Figure 4.6. Zero EAD indicates a protrusion, one to four EADs indicate a
depression and five and six EADs denote real and imaginary surfaces respectively. The

EAD is used in process planning to characterise a face through which a cutting tool can

pass in order to machine the feature volume.

Further classification is on the basis of the nature of boundary perimeters - open or closed

as shown in Figure 4.5. An open profile has imaginary edges (edges of imaginary faces

such as a top face of a slot) while a closed profile has all real edges, such as a hole. The

classification results in nine types of feature - boss, pocket, hole, non-through slot,

through slot, notch, step, real face and imaginary face. Based on the distinctive shapes of

many parts involved in machining and assembly, five common profile types are
identified - rectangular, circular, triangular, oblong and semi-circular. The profile

shapes are not limited to these five types as other shapes can be defined if necessary. For

each feature type, a number of primitive shapes are defined, based on the geometry of the

feature profiles as shown in Figure 4.6.

The feature shapes defined above provide convenient building blocks for the assembly

modelling as well as process planning applications. In general, the taxonomy provides

the opportunity for feature profiles to be extended to suit other manufacturing

applications.

76

Chapter 4

Profiles

O 0 CD 0 D
circular triangular oblong rectangular semi-circular

Figure 4.4: Feature hierarchy

ý OD -1--j- open boundary closed boundary

Figure 4.5: Open and closed boundaries

77

Chapter 4

Type

BOSS

Data

Protrusion
EAD: 0

Profiles and Faces

fl

1f6 f-t
_ f2

fs

ß
fl

f2

f5

fl

R

fl

B

fl
F?

f3
f4

POCKET

Depresssion
EAD: 1

fz
fl

f-i
B

f5

fl f2

B
f4

Q

ß

fl

f2

f1

f2

Figure 4.6: Feature classification data

78

Chapter 4

Type Data Profiles and Faces

NON-THROUGH
SLOT

HOLE

Depresssion
EAD: 2

Depresssion
EAD: 2

f1 t2

f4
B

f2
fl

Q
fl

f2

fl

f2 fl

fI

f4
f2

fl
fl

rtl

rv- fl

f2

Figure 4.6: Feature classification data (continued)

79

Chapter 4

Type Data Profiles and Faces

THROUGH
SLOT

fl B fl

f2
Depresssion
EAD: 3

f2 fl
fl

NOTCH
fl ft

Depresssion
EAD: 3 el

2

STEP

fl fl

Depresssion
EAD: 4

tz
fl

Figure 4.6: Feature classification data (continued)

80

Chapter 4

4.4 FEATURE CLASS REPRESENTATION

In an object-oriented approach, a feature is modelled as an object encapsulating various

attributes and methods to manipulate the data related to the feature as described in earlier

sections. The feature taxonomy described in Section 4.3 provides a convenient way to

design a feature class. Using the concept of inheritance, a feature class is defined to be a

base class for the seven types of features and five types of profiles. The other three levels

in the feature hierarchy - categories, number of EAD's and the nature of the boundary

perimeter are not implemented as classes. The number of EAD's, the categories and the

nature of the boundary perimeter are attributes of the feature type. The following

paragraphs describe the structure of each class, using the notation described in Chapter 3.

The class name is shown in bold text such as boss.

4.4.1 FEATURE CLASS

All features have common attributes such as position and orientation. There are also

common actions which features have to perform such as drawing the shape and saving the

entity. These common attributes and methods are defined in a feature class. The object

diagram for the feature class is shown in Table 4.1.

The class feature has private members of a pointer to the body of the feature, a pointer to

the next feature on the same component, the location with respect to the world coordinate

system, the orientation, the height, the number of external access directions (EADs),

which is a constant integer (0 to 6), a pointer to the feature face, a pointer to the feature

type (boss, hole, etc), a pointer to feature profile and a pointer to the assembly

relationship. The role of the pointer to the assembly relationship is elaborated in the

following chapter. These attributes can only be accessed through the public member

functions described in the following paragraphs.

81

Chapter 4

Feature

Pointer to feature body
Pointer to next feature
Location
Orientation
Height
EADs
Pointer to feature face
Pointer to feature type
Pointer to feature profile
Pointer to assembly relationship

Constructor
Destructor
Get Dimension
Get Location
Get Orientation
Validate Input
Create Feature
Select Feature Type
Select Profile Type
Find Face
Move
Delete
Save

Table 4.1: Feature Class

Feature Constructor

The feature constructor creates a feature instance and initialises its parameters when a

feature type is defined. There are three variations of constructors available and the

right type is invoked according to the function parameters supplied:

feature() is a default constructor and used to reserve space for a feature instance.

feature(double &h) initialises a feature body from the dimensions provided by the

user. The height of the feature (h) is the common dimension for

82

Chapter 4

all types of features. Other dimensions are initialised according to the

profile types.

feature(feature const &) is a copy constructor which is invoked when an instance of a

feature is copied.

For example, a pointer to the feature instance f, with height of 50 units is created with the

expression feature *f = new feature(50).

Feature Destructor

The destructor, denoted as feature() destroys the feature body at the end of the

session, to free the memory.

Get Dimension

This function is required to obtain dimensions of the feature from the user. The

function is virtual, which means that (for this class), only the height dimension is

requested from the user and a similar function name is used by feature type and

profile classes to get other dimensions which are specific to the profile of the feature.

Get Location

Get Location is used to ask the user to specify the location of the feature with respect

to the datum of the component. In the case of a base feature (a base for the component

in an assembly), the location is given with respect to the local coordinate system. The

location is specified in arbitrary units along x, y and z axes.

Get Orientation

This function is used to initialise the orientation of the feature, which is the rotation

about x, y and z axes, as described in Section 4.2.

Validate Input

This is a virtual function to validate entries on the location and dimensions of the

feature. The function is implemented in the feature profile class.

Create Feature

Create Feature is a function to create an instance of the feature body. This is also a

83

Chapter 4

virtual function which is derived by the feature type and profile classes so that an

appropriate feature type is created. For example, when a rectangular boss feature is

defined and its parameters are correctly entered, the function to create that particular

boss type is invoked. The function utilises API functions from the ACIS library.

Select Feature Type

This function is used by the user to make a selection of a feature. A menu of feature

types is provided and the user selects the type required.

Select Profile Type

After selecting the feature type, the user identifies the feature profile from a profile

menu. The selection of a particular profile invokes appropriate functions from the

profile class. The following expressions represent a part of the code which shows the

choice of circular profile:

feature* feature:: SelectProfile(component C)

Itit ans;

feature *f;

ProftleMenu();

cin » ans;

switch(ans)

I
case circ: f = new cylinder(rh);

f-> GetLength(C)-> GetHeight();

f->CreateFeatureO;

break;

case recta

I

Find Face

The function is used to identify a face on the feature for the assembly. Faces are

84

Chapter 4

identified according to the vector directions of the face in the x, y and z directions. This

uses the ACIS direct interface function faceO.

Move

This is a function to move a particular feature within the base feature. The movement

is achieved by applying the appropriate transformation function provided by an API

from the ACIS library. For example, the following code moves a boss feature bos by

10 units in the x direction:

api_apply_transform(bos, translate_trans(ti"ector(10,0,0)));

Delete

This function deletes a feature body from a component or a subassembly. This is done

using an API function api_delentO which deletes the entity and invokes the feature

destructor. For example, the following code deletes a boss feature *bos:

api_delent(*bos);

Save

Save is a function to save a feature to a file. This is also a virtual function, as the actual

entity saved depends on a specified feature type and profile.

C++ Codes for the Feature Class

The declaration for the feature class is implemented in C++ as follows:

class feature

protected:
BODY *feat;

feature *next;

char feature_ID [20];

double pos-x, posy, pos_z;
double angleX, angleY, angleZ;
double height;

int EAD;

feature *type;

85

Chapter 4

feature *relationtype;

public:
feature();

virtual featureO;

virtual void Get_DimQ;

void GetLocationO;

void GetOrientationO;

void ValidateO;

void SelectFeatureTypeO;

void ProfileMenuO;

feature * SelectProfileO;

virtual void Create_FeatureO;

virtual void MoveO;

virtual void DeleteO;

virtual void SaveEntityO;

1;

4.4.2 FEATURE TYPE CLASS

Each of the seven types of feature defined in Section 4.3 is represented by a class which is

derived from the feature class. They inherit all attributes and functions of the feature

class. The general content of the class is shown in Table 4.2.

The private member for this class is a pointer to the feature type body (such as *boss) and

a feature name. The feature name identifies a feature type such as boss, pocket or hole and

its index number such as boss 1, hole2, etc. The public member functions are described in

the following paragraphs:

86

Chapter 4

Feature Type

Pointer to the feature type body
Feature name

Constructor
Destructor
Create Feature

Table 4.2: Feature Type Class

Feature Type Constructor

The constructor initialises an instance of a feature type. For example, a boss feature is

initialised by a constructor in the form of boss(double &x, double &), double &z,

feature *ptr). The x, y, and z values denote the location of the boss. The pointer to the

feature is needed to add the feature type to the feature list that makes up the

component. The constructor also initial ises the feature name and the number of EAD's

associated with it.

Feature Type Destructor

The destructor deletes the feature type body when its instance is deleted. For example,

for a boss feature, the destructor is denoted by -boss().

Create Feature

This function redefines the virtual function in the feature class by creating a specific

type of feature given by the user. This ensures that the right function associated with

the feature type is invoked whenever it is used. For example, for a boss feature, Create

Feature will invoke the following actions:

determine the position of the boss

move the boss to its position

This is represented by the following code:

87

Chapter 4

z. pos = 0.5*height of base feature + 0. J *feature height

api_applti_transform(boss, translate_transf(vector(xj, os, y pos, Z _pos)))

where x-pos, ypos and zpos are the x, y and z locations of the feature and

api_apply_transform is the API function to position the boss on the base feature.

C++ Codes for Feature Type Class

Taking a boss as an example, the declaration of the boss class in C++ is as follows:

class boss: public feature j

BODY * bos;

char Feature Type [5];

public:
boss(double &x, double &y, double &z);

-bossO;

void CreateFeatureO;

4.4.3 PROFILE CLASS

Each profile type described in Section 4.3 is defined in the profile class. It is derived from

the feature class and thus shares common attributes and methods of the class. The general

content of the class is shown in Table 4.3.

The private members consist of the pointer to the profile shape (such as *rect for a

rectangular profile) and the dimensions of the profile. The dimensions in this case are

those required to define the profile shape, as detailed in Table 4.4.

88

Chapter 4

Profile Type

Pointer to profile type
Dimensions

Constructor
Destructor
Get Dimension
Validate Input
Create Profile
Save

Table 4.3: Profile Type Class

Profile Dimensions

Rectangular length, width

Circular radius

Triangular length of first side, length of second side

Oblong length, radius

Semi-circular length, width, radius

Table 4.4: Dimensions of profiles

The public methods are described as follows:

Profile Constructor

The constructor creates an instance of the profile and initialises its dimensions. It is in

the form of feature_type(dimension parameters). For example, for a rectangular

profile, the constructor takes the form of rectangle(double &l, double &w). I and w

being the length and width of the profile respectively.

Prof le Destructor

The destructor deletes the profile instance when it is no longer in existence. It takes the

89

Chapter 4

form of -profile_rype(). For example the destructor for a rectangular profile is

-rectangleO.

Get Dimension

Get Dimension is a derived function from the feature class. It redefines the function

according to the type of profile selected. Thus the selection of a rectangular profile

ensures that the length and width are required from the user while for a circular profile,

only a radius is solicited.

Validate Input

This function provides the implementation of the method defined in the feature class.

It checks two parameters - the location of the feature and the input dimension of the

profile against the dimension of the base feature. A user is asked to enter the value until

it is correct.

The validation of the location of a feature is done by checking the x and y positions (Fx

and Fy respectively) against the dimensions of the base feature. Referring to Figure

4.7 which shows the dimensions of the base feature, the criteria for validation are

shown in Table 4.5:

Z

maximum p
location for

h

I

Figure 4.7: Validation of feature location

90

Chapter 4

Profile Criteria

Circular Fx <_ 0.5w - radf, F-x ?-0.5w - radf
Fy <- 0.51- radf, F-y >_ -0.51-rad f

Rectangular Fx <_ 0.5w - 0.5FIW, F-x ? -0.5w -0.5FýW
Fy < 0.51 - 0.5Fjw, F-y >_ -0.51 - 0.5FýW

Triangular Fx < 0.5w - 0.5FS, F-x >_ -0.5w - 0.5FS
Fy-0.51-0.5FS, F-y? -0.51-0.5FS

Oblong Fx <- 0.5w - 0.5FS, F-x ? -0.5w - 0.5FS
Fy 5 0.51-0.5FS, F-y ? -0.51-0.5FS

Semi-circular Fx <_ 0.5w - 0.5FS, F-x >_ -0.5w - 0.5FS
Fy <_ 0.51 - 0.5FS, F-y -> -0.51 - 0.5FS

Table 4.5: Criteria for validation of profiles

In Table 4.3, Fx and Fy refer to the x and y positions of the feature, radf is the radius of

the feature, Fig� refers to the length or width of the feature and FS refers to each of the

dimensions of the triangular, oblong and semi-circular profile see Table 4.6).

The z location of the feature is determined by the type of the feature. For example the

boss feature is always on a face of the base feature, so that the z position should not be

more than the height of the base feature. This is determined by the CreateFeature

function.

The height of depression features (hf) is checked against the height of the base feature

(hc). The validation of feature height is done according to the criteria listed in Table 4.

s.

As an example, if the height of a pocket or a slot is zero or greater than the height of the

base feature, then the entry is considered as invalid and the user is asked to reenter

another value.

91

Chapter 4

Feature Type Criteria

Boss hf >0

Pocket 0< hf < he

Hole hf >0

Through Slot 0< hf < h,

Non-Through Slot 0< hf , h,

Notch 0< hf < h,

Step 0<hf< hc

Table 4.6: Validation of feature height

The validation of other dimensions such as the width, the length and diameter of the

features are done according to the criteria shown in Table 4.7.

Profile Type Criteria

Circular 0< diaf < we or Ic

Rectangular 0< wf or If < we or lc

Triangular 0<'If or 12f < we or lc

Oblong 0< If or diaf < we or Ic

Semi-circular 0< wf or if or diaf < we or lc

Table 4.7: Criteria for validation of profile dimensions

Referring to Table 4.7, dial is the diameter of feature, wf is the width of the feature, if

is the length of the feature, 1 If or 12f are the length of the sides of triangular profile, w,

the width of the base feature and lc the length of the base feature

92

Chapter 4

Create Profile

Create Profile uses API functions to create the selected profile of the feature. For

example, to create a rectangular profile, the following function is invoked:

api_make_cuboid(length, width, height, rect)

Similarly, the function to create a circular profile is:

api_makeJrustum(height, radx, rady, radt, cyl)

api_MakeJrustum is an API function to create an elliptical cylinder of given height

and three radii -x direction at base (radx), y direction at base (rady) and x direction at

top of cylinder (radt).

Save

The feature entity with the specified profile can be saved in a file by this function. For

example, to save a rectangular feature rect in a file rect. sat, the following codes are

used:

FILE*fp = fopen("rect. sat", "w");

if(j)

f
cout « "error saving feature ";

exit(]);

I

api_save_entity(fp, TRUE, rect);
fclose(fp);

C++ Codes for Profile Class

An example of the C++ implementation for the declaration of the rectangular profile type

is as follows:

class rectangle: public feature

BODY * rect;
double width, depth;

93

Chapter 4

public:

rectangle(double &w, double &d, double &h);

--rectangleO;

void Get_DimO;

void ValidateO;

void Create Pro

void SaveEntityO;

l;

4.4.4 RELATIONSHIPS AMONG CLASSES

Determining relationships among the classes defined in previous sections helps in

organising them in the program. In this case, relationships among various classes have

been described by the inheritance property of the object-oriented concept, which

involves the sharing of attributes and operations among classes based on hierarchical

relationships. The feature class is the base class for two general classes - the feature

type and profile. Each class incorporates and inherits all of the properties of its base class

and adds its own unique properties. For example, the boss class inherits the properties of

the feature class but adds a different method for drawing the boss. Figure 4.8 illustrates

the relationship among defined classes using the notation described in Chapter 3.

94

Chapter 4

Figure 4.8: Relation Among Classes

4.5 SUMMARY

In this research, a feature-based approach utilising a hierarchical structure for feature

definition and classification has been used. Features have been described in terms of

machined volumes bounded by real and imaginary faces. A feature taxonomy is adopted

and provides the basis for implementation in the object-oriented approach. The feature

class defines the attributes and functions common to both the feature types and profiles.

This class structure permits the use of inheritance between the object classes for

accessing data and using various functions. In addition to the hierarchies defined above,

the concept can be extended to create additional class hierarchies to support assembly

modelling. This is discussed in the next chapter.

95

Chapter 5

CHAPTER FIVE
EXTENDING FEATURE DEFINITIONS FOR

ASSEMBLY MODELLING

5.1 INTRODUCTION

The objective of this research is to extend the knowledge of feature-based product

representations by exploring their use as supporting tools for assembly modelling. This

is achieved by incorporating assembly knowledge into the feature-based model

established in Chapter 4. Section 5.2 discusses basic requirements of modelling an

assembly and Section 5.3 outlines the general structure of the assembly and how parts

are related in an assembly. An analysis of selected assemblies is presented in Section 5.4.

the mating relationships among features in an assembly are defined in Section 5.5 and

Section 5.6 shows the data representation in a model database. Section 5.7 outlines the

method of inferencing assembly positions from the mating relationships. Section 5.8

describes how the assembly modelling knowledge can be related with the process

planning knowledge. The assembly data structure is discussed in Section 5.9 and Section

5.10 gives the implementation of the assembly representation in an object-oriented

environment.

5.2 MODELLING REQUIREMENTS

Assembly modelling deals with the interrelations between assembled parts. The general

aims of assembly modelling have been defined in Chapter 1 and require the building of an

assembly model to describe the part geometry and to define the relationships between

parts of the final assembly. This requires a representation of the parts which captures all

the information needed for their assembly and a data structure which stores information

on how all the parts are connected in an assembly.

Zeid (1991) outlines three requirements necessary for assembly modelling: - modelling

of individual parts that make up the assembly, specification of relationships between

these parts and specification of the methods of determining the locations and orientations

96

Chapter 5

of the parts in their assembled positions. The first requirement of modelling individual

parts has been fulfilled with the use of feature-based geometric modelling as described in

Chapter 4. The structure of the relationships between assembled parts is discussed in

Section 5.3.

Determination of the correct location and orientation of each part to be assembled is

crucial for assembly models. For an assembly of N parts, the goal is to locate and

orientate N-I parts with respect to the base or reference part to arrive at the final

assembly. To do this, the position and orientation of each part in conjunction with the

other parts in an assembly must be determined. This can be achieved either by assigning a

transformation matrix to each part or by specifying mating relationships between

assembled parts.

In the first approach, a4x4 homogeneous transformation matrix can be assigned

interactively and is used as an input to constrain the location and the orientation of each

part in the assembly. The matrix transforms a reference coordinate system into a body

coordinate system attached to the part, thus specifying the location and orientation of the

part with respect to the reference coordinate system (Lee and Andrews 1985, Zeid 1991).

Although this approach has been used in many traditional CAD applications, there are a

number of difficulties. The two principal difficulties are that the assignment of

transformation matrices does not represent a natural interface for the designer, and the

explicit nature of the representation does not allow for easy manipulation of the

relationship during the interactive construction of a design. Thus for example, it is closer

to the designer's thinking processes to "insert a bolt in a hole" than it is to define a set of

constraints to the six degrees of freedom that would achieve the same result. The use of

relationships such as "bolt in hole" also allows the specific (numeric) detail of the

transformation to be implied rather than explicitly stated. This has benefits if interactive

changes to the design (a dimensional change for example) are introduced as the

relationship can remain constant while the derived transformation changes. In addition to

these significant difficulties there are many practical problems that have to be overcome.

Typical of these would be the solution of the matrix equations, the amount of time

97

Chapter 5

consumed in generating the transformation matrices and the tendency to make errors due

to the mathematical complexity (Lee and Gossard 1985).

In the second approach mating relationships between parts are defined and individual

part positions and orientations can be automatically derived from these relationships

(Lee and Andrews 1985). The orientations and positions can then be stored as

transformation matrices. The computation of the transformation matrices from the

mating parts can be used to determine whether a given assembly is possible. If no matrix

exists which satisfies the mating conditions, then the parts cannot be assembled. This

method of defining mating conditions can eliminate the problems resulting from direct

assignment of the transformation matrix. This is the approach undertaken in this research

work.

Once mating relationships are defined, the way in which the information is conveyed by

the mating parts and stored in the database is also important so that it can be useful for

later applications of the data. The following section discusses how the above

requirements are represented in the feature-based model.

5.3 ASSEMBLY STRUCTURE

The focus of this research is the modelling of mechanical products. Most of these

products are compositions of interconnected parts which are individually manufactured

components and in this context are typically machined components. The approach

adopted is to view a mechanical product as an assembly composed of one or several

subassemblies, which themselves may consist of one or more components. Each

component is made up of a base part (defined as a feature) and any number of features.

Thus from the designer's point of view a feature forms a basic entity in the assembly of

the product. In the following discussion, all assembled parts will be referred to as one of

the feature types defined in Chapter 4. Thus a shaft is referred to as a boss, a through hole

as a hole, a non-through hole as a pocket and so on.

The hierarchical structure of an assembly is represented by an Assembly Graph such as

that shown in Figure 5.1. In the figure, the assembly is at the top-most level and features

98

Chapter 5

are at the lowest level in the hierarchy. The dotted box in the figure shows that each

feature can be further represented by a series of faces (within the geometric model).

The use of a hierarchical Assembly Graph provides the most efficient means of

representation in the design of an object-oriented system, where lower levels in the

hierarchy can inherit the properties of higher levels, while adding their own properties, as

elaborated in later sections. The graph also reflects the way the designer views the

assembly process as the progressive building up of the product from subassemblies and

components comprised of individual features.

Assembly

Sub-Assembly Sub-Assembly Sub-Assembly

,.

Base Feature Base
Feature Feature

Base Feature
Feature

Base
Feature

facet face! facet facer facet facer facet facer facet faces facer facer

L--------------------------------------J

Figure 5.1: Product Assembly Graph

Figure 5.2a shows a lathe tool post assembly and illustrates the application of the

hierarchical structure to a mechanical part. The lathe tool post could be viewed as

consisting of two subassemblies (Figure 5.2b) -a post and a slide plus two components

99

Chapter 5

(a nut and a washer). The post subassembly comprises two set screws and a tool post

while the slide subassembly is comprised of two components -a tee bolt and a top slide.

Going down to the feature level, each set screw is made up of two bosses of rectangular

and circular profiles while the tool post consists of a boss, three holes and a through slot.

The tee bolt which fits the slot in the top slide and passes through the hole of the tool post

consists of a rectangular boss, two steps and a cylindrical boss. The top slide is made up of

a boss, a through slot and two triangular notches. The features that go to make up the parts

are shown in Figure 5.2c, and the Assembly Graph for the assembly is shown in Figure

5.3.

5.4 ANALYSIS OF ASSEMBLY

An analysis has been carried out to determine the type of mating relationships which

occur in mechanical assembly and to relate them to the features which constitute the

assembly. In order to achieve this, a number of typical assemblies have been selected to

exhibit a range of characteristics that are considered to be representative of assemblies

in general. The following procedures are carried out for each assembly:

1. The Assembly Graph is constructed.

2. The assembly relationships at the component level are analysed.

3. The assembly relationships at the feature level are analysed.

4. The relationships at the face level of each feature are analysed.

100

Chapter 5

Figure 5.2a: Lathe Tool Post Assembly

set screw2

er

: rewl

roipost

top slide

Figure 5.2b: Lathe Tool Post Components

101

Chapter 5

hole
boss

hole boss
bossl

bossl-e boss2

U, j hole 1
boss

holet hole3

through
slot

through
slot

notch2

boss2

step I
bossl

boss

notch l

Figure 5.2c: Lathe Tool Post Assembly (features)

102

Chapter 5

Figure 5.3: Assembly Graph for the lathe tool post

Three types of graph are used to represent the relationships at each level of interaction in

the assembly hierarchy.

1. The Component Relation Graph shows the assembly relationships at the component

level. Each component is represented by a rectangular node and a line (CR) indicates

that a relationship exists between the two components. In a particular instance of a
Component Relation Graph (e. g. figure 5.8) this single relationship is replaced by one

103

Chapter 5

or more feature-to-feature relationships Rn. An example of a relationship between a
bracket and a pulley is shown in Figure 5.4.

CR
BRACKET PULLEY

Figure 5.4: Notation for the Component Relation Graph

2. The Feature Relation Graph shows the relationship among features in their final

assembled state. The graph shows how each feature in a component. represented by a

circular node, is related to a feature or features from another component(s). The

relationship is indicated by a bold line. A rectangular shaded box shows the

components that make up the subassemblies. The thin line shows that the feature is

part of the component. Figure 5.5 shows the notation for a relationship between a boss

of a tee bolt and and the hole of a nut. Rn is the index number of the relationship.

Rn
boss l hole

TEE OUTJ NUT

Figure 5.5: Notation for Feature Relation Graph

3. The Face Mating Graph shows the interaction at the face level of each feature. A face

on a feature is represented by a small circle with a face number. A line indicates that

there exists a relationship between two faces. Only real faces are considered in this

graph and the number of faces that exist on each feature depends on the profile of the

feature, as shown in Figure 4.6. The notation for the Face Mating Graph is shown in

Figure 5.6, where face 1 of bossl has a relationship with face 2 of boss2.

104

Chapter 5

BOSS 1
Rn ýý BOSS"_'

Figure 5.6: Notation for Face Mating Graph

These graphs help to visualise the relationships for each level of the assembly hierarchy

and they also form the basis for constructing an appropriate class hierarchy and content.

Their application in the analysis of assembly interfaces are shown by the examples

described in the following sections.

5.4.1 THE LATHE TOOL POST

The lathe tool post, as shown in Figure 5.2 has been described in Section 5.3, and the

Assembly Graph is shown in Figure 5.3. The assembly involves many types of features

defined in Chapter 4 (Figure 5.2c). It also involves multiple components which results in

many assembly interactions. Figure 5.7 shows a cross sectional view of the assembly. The

existence of interactions between the parts in the assembled state are identified below and

shown in figure 5.8. These are identified in section 5.6 as feature-to-feature

relationships (illustrated in figure 5.9).

105

Chapter 5

RI

R1

R

Figure 5.7: Cross sectional view of lathe tool post assembly

R 1: step of tee bolt (right) and through slot of top slide

R?: step of tee bolt (left) and through slot of top slide

R3: vertical side of tee bolt (right) and through slot of top slide

R4: vertical side of tee bolt (left) and through slot of top slide

R5: bottom face of tool post and top face of top slide

R6: tee bolt and hole of tool post

R7: bottom face of washer and top face of tool post

R8: tee bolt and hole of the nut

R9: tee bolt and hole of the washer

RIO: top face of washer and bottom face of nut

R11: shaft of set screw 1 and hole of tool post

R12: shaft of set screw 2 and hole of tool post

R13: hole of nut and hole of washer

R14: left side of tool post and left side of top slide

R15: front side of tool post and front of top slide

R 16: back side of tool post and back of top slide

106

Chapter 5

The relationships at the component level are represented by the Component Relation

Graph as shown in Figure 5.8.

R14

TOP TOOL
SLIDE POST

R5
R1

R-' R6

R4 3

TEE R7
BOLT R12

R11

Ry R9

RIO
NUT WASHER

R13

SET 11 SET
SCREW! SCREW2

Figure 5.8: The Component Relation Graph for the lathe tool post assembly

As components are made up of features, the mating relationships at the feature level are

examined using the Feature Relationship graph, as shown in Figure 5.9. Figure 5.10

shows the Face Mating Graph determining the existence of relationships at the face level

for each interacting feature. The nature of these relationships is identified in section 5.6.

107

Chapter 5

Figure 5.9: Feature Relation Graph for lathe tool post assembly

108

Figure 5.10: Face Mating Graph for lathe tool post assembly

Chapter 5

109

Chapter 5

5.4.2 BRACKET AND PULLEY ASSEMBLY

The bracket and pulley assembly, as shown in Figure 5.11 a exemplifies the assembly of

three cylindrical components and a key (Figure 5.11 b). A shaft is assembled to a bracket

and held by a key at one end and is assembled to a pulley at the other end. The Assembly

Graph is shown in Figure 5.12.

Figure 5.11a: Bracket and pulley assembly

110

Figure 5.11b: Bracket and pulley components

Chapter 5

BRACKET AND PULLEY

bossl Lpi y boss
(web) an bos si

(0110)
boss

boss2 holes (045)

web)

hssO4

(rounds
thru part) slot
(round

(round
boss3

pal
part)

(base)
bossy

holet boss 1 (018)
hole] (base) (018)

(base)
hole3
(base) non- boss4

thru ! v25t

hole2
slot bos = boss3

(base)
(keyway) (030) (0413)

Figure 5.12: Assembly Graph for bracket and pulley

hole

The mating relationships among the parts in the assembly are shown in a cross sectional

view (Figure 5.13) and each pair of mating parts is listed in the following paragraph:

112

Chapter 5

RI

Figure 5.13: Assembly of bracket and pulley

RI: bottom face of key and keyway on shaft

R2: top face of key and keyway on bracket

R3: shaft 030 and hole of bracket

R4: flange 040 and face of cylinder 050

R5: flange 040 and face of pulley front 045

R6: shaft 025 and hole of pulley

R7: side of key and side of keyway on shaft

R8: longer side of key and side of keyway on shaft

R9: longer side of key and side of keyway on shaft

RiO: longer side of key and side of keyway on bracket

R11: longer side of key and side of keyway on bracket

The Component Relation Graph for the bracket and pulley assembly is shown in Figure

5.14, while Figures 5.15 and 5.16 show the interactions at feature and face levels

respectively.

113

Chapter 5

RI

BRACKET
R 10, R1I

KEY II PULLEY

R7

R8
R2 R5 R3 R9

R4 R6

SHAFT

Figure 5.14: Component Relation Graph for bracket and pulley assembly

114

Figure 5.15: Feature Relation Graph for bracket and pulley assembly

Figure 5.16: Face Mating Graph for bracket and pulley assembly

Chapter 5

115

Chapter 5

5.4.3 VALVE SUBASSEMBLY

Figures 5.17a and 5.17b shows a butterfly valve subassembly which consists of two

housings, body 1 and body2, fastened together by three nuts and bolts. The Assembly

Graph is shown in Figure 5.18. Each body is made up of four bosses including a base

feature of a cylindrical boss and four holes including three bolt holes. Each nut is made of

a boss and a hole feature while each bolt is made up of two cylindrical bosses.

Figure 5.17a: Valve subassembly

nut
bolt

Figure 5.17b: Valve subassembly components

116

Chapter 5

hole2

bo

holel

boss2 hole

boss

bossl

Figure 5.17c: Valve subassembly (features)

117

Chapter 5

Figure 5.18: Assembly Graph for valve subassembly

Figure 5.19 shows a cross sectional view of some of the mating interactions which occur

in the valve subassembly. The interactions are shown for the main bodies and one of the

nuts and bolts. Similar interactions are repeated for the other two nuts and bolts.

118

Chapter 5

RI R24

R1

R2

Figure 5.19: Cross sectional view of valve subassembly

The following mating relationships can be established from the above figure:

R l: face of body 1 and face of body2

R2: hole 1 of body 1 and hole 1 of body2

R3: bolt 1 and hole2 of body 1

R4: bolt2 and hole3 of body 1

R5: bolt3 and hole4 of body 1

R6: bolt 1 and holet of body2

R7: bolt2 and hole3 of body2

R8: bolt3 and hole4 of body2

R9: bolt 1 and hole of nut 1

RIO: bolt2 and hole of nut2

R11: bolt3 and hole of nut3

R12: head of boltl and face of boss2 of bodyl

R13: head of bolt2 and face of boss3 of body 1

R 14: head of bolt3 and face of boss4 of body 1

119

RI R6
_. _

Chapter 5

R15: face of nut 1 and face of boss2 of body2

R16: face of nut2 and face of boss3 of body"'

R 17: face of nut3 and face of boss4 of body2

R18: hole of nut 1 and hole2 of bodv2

R19: hole of nut2 and hole3 of body2

R20: hole of nut3 and hole4 of body2

R2 1: hole2 of body 1 and hole2 of body2

R22: hole3 of body 1 and hole3 of body. '

R23: hole4 of body 1 and hole4 of body2

R24: face of boss2 of body 1 and face of boss2 of body2

R25: face of boss3 of body 1 and face of boss3 of body2

R26: face of boss4 of body 1 and face of boss4 of body2

These relationships are shown by the Component Relation Graph in Figure 5.20. The

interactions at the feature and face levels are shown in Figures 5.21 and 5.22 respectively.

Figure 5.20: Component Relation Graph for valve subassembly

120

Chapter 5

Figure 5.21: Feature Relation Graph for valve subassembly

121

Chapter 5

BODY1

bossl boss2 boss3 E4 holel holet hole3 holed

R26

R

bossl

BODY

R1

R24 \/ R25

boss3 IA/ I boss4

R3/ R, \ R13

GOO F1 f2 ß

JOLT1 b ss2

18

Rl R9

/R1

D, GO fl

boss hole

NUTZ

R2

R7

R21/
I R22

14
181j Rj

0

sj boss

BOLT2

R10 R1

R19

OG f1

I boss hole

NUT2

E
bossl bs

BOLT

R20 11 R11

OO fl

boss hole

NUT3

Figure 5.22: Face Mating Graph for valve subassembly

122

Chapter 5

From the analysis, the following observations are made:

1. Assembly relationships exist at three levels:

i. the component level identifies assembly interactions at the highest level from

which it should be possible to determine potential methods of creating alternative

sets of subassemblies. This would be of use in assembly planning.

ii. the feature level presents a useful way for the designer to define the assembly

methods in some detail, and also provides a valuable link with feature-based

process planning. It has been shown that all features defined for process planning

(except for pocket and notch, which are not available in the examples) have

assembly interactions with other features.

iii. the face level represents the level normally contained within the geometric model

and allows sufficient information to be included to fully constrain the assembly.

2. More than one assembly interaction can occur at the component, feature and face

levels. Examples of multiple interactions for the component level are:

tool post and top slide

key and shaft

body 1 and body2

At the feature level, more than one interaction occur at the following features:

boss top slide

boss key

hole2 of body 1 of valve subassembly

At the face level, multiple interactions occur at

f2 of boss2 of tee bolt

f2 of non-through slot of bracket

f1 of boss4 of body 1

3. Assembly interactions occur at the face level as well as for two holes having collinear

centre points. The assembly analysis, as shown in Figures 5.10,5.16 and 5.22

123

Chapter 5

indicates that contacts between features involve one of the following pairs of

compatible surfaces:

" between two planar faces

" between a shaft and a hole

" between a hole and another hole

" between two planar faces aligned in the same plane

These are summarised in Figure 5.23.

RI R2
R3 R4 R5

R7 RIO

R1 R12

R13 R14 R15

R16 R17 R24

R25 R26 /

valve

lathe tool
post

RI R2
R4 R5 R7

R8 R9

bracket and
pulley

f

/ lathe tool
ost

R13 R2 R18

R19 R20 R21

R22 R23

valve

two planar faces

shaft and hole

two holes

lathe tool
8 Post
11

E

R9
R12

7
bracket an

CR8R9RI

0
Pulley

R3 R6 I\

valve /

two planar faces
(aligned in same plane)

lathe tool R 14 R 15
post R 16

Figure 5.23: Categories of assembly interactions

124

Chapter 5

The main purpose of the analysis was to categorise assembly interactions into groups

such that distinguishing characteristics of the group could be identified and used as the

basis of specifying Feature Mating Relationships. This aspect is considered in the next

section.

5.5 FEATURE MATING RELATIONSHIPS

Features in an assembly are said to have a mating relationship whenever they have one or

more faces in physical contact with another feature, although there are occasions such as

magnetic fixing where this is not strictly true but these situations are not considered here.

This requires the definition of possible mating relationships for each feature and the

representation of these relationships in a form suitable for assembly modelling.

From the analysis of Section 5.4, three basic mating relationships can be defined -

against, fits and align. These relationships are defined based on established terms used

by various researchers in assembly modelling, such as Lee and Gossard (1985) and Ko

and Lee (1987) and are explained in the following paragraphs:

i. Against

This is a mating relationship between two planar faces or between a planar face and a

cylindrical face. The condition exists when two or more features are either stacked on top

of one another or they are placed adjacent to each other with at least one of their faces

touching. The against condition can be specified along any of the three major axes (x, y

and z axes) together with the two adjoining faces and the direction of the contact. Figure

5.24a shows the against condition between two rectangular bosses placed adjacent to

each other with faces f1 and f2 to be mated. The against condition is satisfied by forcing

the normal vectors to faces to be in opposing directions and establishing contact between

the two faces. Figure 5.24b shows an against condition between a rectangular boss and a

cylindrical boss, a situation that is not commonly found but which is included to maintain

the completeness and generality of the feature representation. Examples of planar surface

against relationships are between the bottom of the tool post and the top of the top slide

125

Chapter 5

(R5) of the lathe tool post assembly and between the end face of body 1 and the end face of

body2 (R 1) of the valve subassembly.

1ý I:
--- (x2, y2, z2)

Figure 5.24a: Against condition for two rectangular bosses

Figure 5.24b: Against condition for rectangular and cylindrical bosses

ii. Fits

Fits is a mating relationship occurring when two features are required to fit together with

clearance or interference. The condition holds between a shaft (boss) cylindrical face and

a hole cylindrical face or between a polyhedral shaft (boss) and polyhedral hole. In the

typical cylindrical case it allows both rotational and translational freedom of movement

between the mating features. Non-cylindrical fits result in a single translational degree of

freedom. This requires the centrelines of each feature to be collinear. The fits condition

between a hole and a cylindrical boss is shown in Figure 5.25.

Fits can be further classified according to the degree of difficulty of assembly and the

method used to assemble the parts. Some of the types of fits relevant for the assembly

examples shown in earlier sections are tight fit, which is an interference fit, screw fit

which involves assembly of threaded items and clearance fit. For example the assembly

126

Chapter 5

of shaft 030 and hole of bracket (R3 for pulley and bracket) can be considered as a tight

fit.

P2 (x2, y2, z2)

Z

P (x3, y3, z3)

P4 (x4, y4, z4)
A P1 (xl, yl, zl)

Figure 5.25: A Fits condition for a cylindrical boss and a hole

iii. Align

Align is a mating relationship which exists in two situations - between two holes and

between two planar faces. In the former situation, it requires the centre line of one hole to

coincide with the centre line of another hole. In Figure 5.26a, in order to achieve the align

condition, point Pl on hole 1 should be coincident with point P2 on the hole2. Examples

of align relationships are between holes of the valve subassembly bodies (eg R2) and

between the washer and nut holes (R13) in the lathe tool post assembly. An align

relationship between two planar faces exists when the faces (f 1 and f2) lie on the same

surface as shown by Figure 5.26b. An example of such a relationship is that between the

faces of the boss of top slide and the boss of tool post (R 14, R 15 and R 16) in the lathe tool

post assembly.

In an assembled position, mating could occur over one or more faces that may or may not

be adjacent. Thus each feature needs to be checked for the possibility of mating with

every other feature. As a general guide to the possible types of mating relationship

occurring between one feature and another, a Feature Relation Table is developed, as

127

Chapter 5

shown in Table 5.1. In this table, each feature type is assigned a possible relationship with

each other feature type.

Pl P2

Figure 5.26a: Hole alignment

Figure 5.26b: Alignment of planar faces

In the table, letters denote the type of relationship defined earlier: A for against, F for fits,

and L for align. X denotes that there is no possible relationship between the feature types.

This data is used as an input to the relationship database in the feature relationship class

described in Section 5.10.

The above definition of mating relationships is sufficiently general to encompass the

class of mechanical assemblies using all types of features defined in Chapter 4. The

inference of the location and orientation of a part in an assembly from the mating

relationships above requires the computation of its transformation matrix from these

conditions. The matrix relates the feature's local coordinate system to the global

coordinate system of the assembly. The approach is to infer the position of a part in an

assembly from a mating condition based on the work by Lee and Andrews (1985), and is

given in Section 5.7.

128

Chapter 5

boss hole pocket thru
slot

non-
thru
slot

notch step surface

boss A, L F F, L A A A A A

hole F L L X X X X X

pocket F, L L L X X X X X

thru
slot

A X X L X X A A

non-
thru
slot

A X X X X X A A

notch A X X X X A X A

step A X X X A X A, L A, L

surface A X X A A A A A, L

Table 5.1: Feature Relation Table

5.6 REPRESENTATION OF MATING RELATIONSHIPS

In order for the information on the mating relationships to be useful in assembly

modelling, it has to be associated with each feature and readily accessible when two

features are to be assembled to form a component, a subassembly or an assembly. To

achieve this, the relationships are established in the form of expressions.

The general form of the expression representing the mating relationship between two

features is created by specifying the two features that mate and the mating, condition type

in a relation, as follows:

129

Chapter 5

component] featurel, t - mating relationship - component2. feature2n

where n denotes the feature index number in the assembly. For example, using the above

expressions, the assembly relationships for the lathe tool post can be represented in the

following forms:

RI: tee-bolt. step I-against-top-slide. thrti-slot

R2: tee_bolt. step2-against-top_slide. thru_slot

R3 : tee-bolt. step 1-against-top_slide. thru_slot

R4: tee_bolt. step2-against-top_slide. thru_slot

R5: tool post. boss-against-top_sl ide. boss

R6: tee_bolt. boss2 fits-tool post. hole3

R7: tivasher boss-against-tool-post. boss

R8: tee_bolt. boss2fits-nut. hole

R9: tee_bolt. boss2 fits-washer hole

RIO: washer boss-against-nut. boss

R11: setscrew 1. boss 1-fits-tool-post. hole I

R12: setscrew2. bossl fits-tool post. hole2

R13: nut. hole-align-washer hole

R14: tool-post. boss-align-top-slide. boss

R15: tool-post. boss-align-top-slide. boss

R16: tool-post. boss-align-top-slide. boss

The relationship expressions for the bracket and pulley assembly are as follows:

R 1: key. boss-against-shaft. non_thru_slot

R2: key. boss-against-bracket. thru_slot

R3: shaft. boss2 -fits-bracket. hole5

R4: shaft. boss3-against-bracket. boss4

R5: shaft. boss3-against-pulley. boss2

R6: shaft. boss4 fits pulley. hole

R7: key. boss-against-shaft. non_thru_slot

130

Chapter 5

R8: key. boss-against-shaft. non_thruslot

R9: key. boss-against-shaft. non_thru_ slot

R10: key. boss-against-bracket. thruslot

R11: key. boss-against-bracket. thru-slot

The expressions for the valve subassembly are as follows:

R 1: bodyl. boss l -against-body2. boss]

R2: body]. holel-align-body2. hole I

R3: bolt]. boss2 fits-body]. hole2

R4: bolt2. boss2 fits-body]. hole3

R5: bolt3. boss2 fits-body]. hole4

R6: bolt]. boss2fits-bodv2. hole2

R7: bolt2. boss2-fits-body2. hole3

R8: bolt3. boss2fits-bodv2. hole4

R9: bolt]. boss2fits-nut]. hole

RIO: bolt2. boss2 boss2-fits-nut2. hole

R11: bolt3. boss2 fits-nut3. hole

R12: bolt]. boss l-against-body1. boss2

R13: bolt2. boss] -against-body 1. boss3

R14: bolt3. boss]-against-bod_v1. boss4

R15: nut]. boss-against-bodv2. boss2

R16: nut2. boss-against-body2. boss3

R17: nut3. boss-against-body2. boss4

R18: nut]. hole-align-body2. hole2

R19: nut2. hole-align-body2. hole3

R20: nut3. hole-align-body2. hole4

R2 1: body]. hole2-align-body2. hole2

R22: bodv]. hole3-align-body2. hole3

R23: bodyl. hole4-align-body2. hole4

R24: bodyl. boss2-against-body2. boss2

131

Chapter 5

R25: bodyl. boss3-against-body2. boss3

R26: body]. boss4-against-body2. boss4

In a feature-based design system, these expressions can be automatically derived for

each pair of features, based on the data in the Feature Relation Table.

5.7 INFERENCE OF POSITIONS

The inference of the location and orientation of a part in an assembly from mating

relationships requires the computation of its transformation matrix from these

conditions. The matrix relates the part's local coordinate system to the global coordinate

system of the assembly.

For the against condition shown in Figure 5.24a, each face where the two parts mate is

specified by a unit normal vector (n) and a point (x, y, z) described in the local coordinate

system of its corresponding part. To satisfy the against condition, the normals are

constrained to be parallel and point in opposite directions. Also, the points are required

to lie in the same plane. The numerical values of the normals and the points are stored

with respect to the body coordinate systems attached to the corresponding parts. Before

the against equations can be written, the values of the points and the normals must be

transformed to a reference coordinate system. This creates a group of secondary variables

which can then be used to construct the against equations.

To create the secondary variables, let [T1] and [T,] be the transformation matrices from

the XIY1Z1 and X? Y2Z2 coordinate systems respectively to the global coordinate system

of the assembly. The unit normals and the two points specifying the mating conditions

can be expressed in terms of the XYZ system as follows:

132

Chapter 5

nla
x

nix

n1Y
= [TiI my

n1a
z

nlz

0 0

x? X1

a yl = [T,] Yl
Zl ZI

1 1

na 2x n2x
a n2Y

= [T_] n2y

a n2z n2z

0 0

x x2

Y2 = [7'] Y2
Z2 z2

1 1

(Eq 1)

(Eq 2)

(Eq 3)

(E9 4)

In the above equations, nI, and n2x are the normal vectors of the planar faces and (x I. yI,

z 1) and (x2, y2, z2) are the points on the planar faces with respect to each body coordinate

system. The superscript a indicates assembly. The against condition requires the

directions of the two unit normals to be equal and opposite as expressed by these

equations:

na a (Eq 5) 1, = -n2x

n ly = -nay (Eq 6)

nlz = -naz (Eq 7)

and the two points to lie in the same plane, expressed in the following equation:

133

Chapter 5

aaa nlx my nlz ýý

x xa

Yi Y"

zi za

11

=0
(Eq 8)

Hence four equations (5 - 8) are required for each against condition.

The fits condition requires that the centrelines of the boss and the hole be co-linear, as

shown in Figure 5.25. The equations of the centrelines, of say the hole can be written as:

x -xi y -yý z-zl
__ (Eq 9)

aaaaaa x, -xl y2-y1 z2-z1

If the shaft axis is co-linear with the hole centreline, points P3 and P4 defining the axis

should satisfy equation 9. The points must first be transformed using [T2] to the assembly

global coordinate system. The constraint equations required for each firs condition can

be written as:

x3-x1
_y3-

y1
_

z3-z1 (Eg10)
aa Y2xl a y2- aaa y1 Z2-ZI

x4 - x1
_y-

y1
_

z4 - zý (Eq 11)
aa x2-x1 a y2- aaa yl z2 -Z1

Each of the above equations yields three combinations of equations resulting in a total

of six equations for each fits condition. In general, two of these equations are redundant

because equations 10 and 11 each yields only two independent equations instead of three.

However, it is necessary to carry all three to cover the case where the centreline passing

134

Chapter 5

through points PI and Pz is parallel to any of the global coordinate axes. For example,

if the centreline is parallel to the X axis as shown in Figure 5.5, equation 10 becomes:

xa_xa 1= yu Ya za_Za 33_31 (Eq 12)

Xa - xl 00

which gives the following two equations only:

(Y3-Yi)(X2-Xi)=0 (Eq 13)

(z3-zi)(x2-X1)=0 (Eq 14)

Hence, it can be seen that all three equations must be carried so that at least two

independent equations can be written for all cases, although this introduces redundancy

in the system of equations.

The determination of transformation for the align mating relationship are very similar to

the centreline coincidence used in the fit of a boss into a hole.

For each against condition, 16 equations can be written, 12 are provided by equations

1-4 and the other four are equations 5-8. For each fits condition, 18 equations can be

written, 12 are provided by equations 1 -4 and the other six are equations 10 and 11.

Additional constraint equations are needed for free rotation bodies such as bolts and pins

and other parts where it is not desired to fully describe the mechanism which constraints

rotation (such as a key and keyway). If the rotation axis to be constrained is coincided

with an axis of the part's local coordinate system, the additional constraint equations can

be written as:

oZ = ay =0 for a component rotating around its x axis

nz, = ax =0 for a component rotating around its y axis

ny, = o, =0 for a component rotating around its z axis

135

Chapter 5

Thus there are two equations generated for each rotational part.

Because the 12 elements in a transformation matrix are treated independently of each

other, the following equations have to be included to satisfy the properties of a

transformation matrix. To satisfy the unit length requirement on the rotation axis, the

following equations are required:

nX + ny + n1 =i (Eq 15)

oX +0 y +0 Z=1
(Eq 16)

To satisfy orthogonality of the rotation axes, four additional equations are needed:

nxox + nyoy + nzoz =0 (Eq 17)

a, = nyoz - nzoy (Eq 18)

ay = o, nz - nxoz (Eq 19)

aZ = nXoy - nyo, (Eq 20)

The unit length measurement of (ax. a, a,) is automatically satisfied by equations 18 -20.

The number of equations generated for an assembly of N components (RP rotational

components), with MA against condition and MF fits conditions, is given by the

following formula:

Number of equations

=6(N-1)

+ 16 MA

+18MF

+2RP

from matrix properties

from against equations

from fits equations

from rotational parts

The number of variables for the assembly is:

= 12 (N - 1) transformation matrix elements

+ 12 (MA + MF) secondary variables

136

Chapter 5

In the above equations, the number of equations is always equal to or larger than the

number of variables.

The method used to remove the redundant equations is to solve the equations with a

Newton-Raphson iteration method and the use of an algorithm to search for groups of zzý
equations which contain a linear dependency. This will result in an equal number of

equations and variables. The remaining equations will be a linearly independent set and

the Newton-Raphson iteration method can be used in the normal way.

The ACIS modeller gives access to these transformation matrices through the

Application Procedural Interface (API) and this facility has been utilised in the assembly

relationship class described later in the chapter.

5.8 ASSEMBLY AND PROCESS PLANNING FEATURES

Three types of mating conditions have been identified in Section 5.5. These mating

conditions associate pairs of machining features. As features presented in this research

are machining features that have been used for process planning (Gindy et. al. 1993),

knowledge on process planning has been associated with each feature. In order to find the

relation between the assembly relationships and the process planning information,

assemblies at the face level for selected parts in the three products described in Section

5.4 are re-examined, but before doing so a brief description of the aims of process

planning is given.

The overall objective of process planning is to devise a method of manufacture that is

optimal with respect to a set of criteria. Typically these criteria will be concerned with

the economy and quality of manufacture and the optimisation takes place with a

knowledge of the capability and availability of appropriate manufacturing processes.

There is much discussion as to exactly what constitutes process planning and what might

be considered to be in other fields of manufacturing engineering such as production

planning and NC part programming. However, some of the key aspects can be stated as:

137

Chapter 5

1. Overall Process Selection i. e. is the component to be machined, formed or fabricated.

It could be argued that these decisions are taken at the design rather than process

planning stage, but in any case this work is focussed upon machined components.

2. Specific Machining Process Selection. Many geometric forms can be generated by a

variety of machining processes (turning, milling, grinding, etc) and the choice will be

made on the differing processes' capabilities in quality terms (precision, surface

finish, etc) taking into account availability and relative costs.

3. Machine Selection. Machines of the same general type (lathes for example) have

different capabilities and associated costs. There is also a connection here with

production planning as a machine has to be available at the required time of

manufacture.

4. Set-up Determination. The number of set-ups required to machine a component is a

very significant determinant of the total cost of manufacture, and can also have

technological implications in terms of maintenance of tolerances, etc.

5. Operations Sequence Planning. Within a particular set-up it is necessary to determine

the sequence in which manufacturing operations will be carried out. Partly this is

concerned with the feasibility of different sequences (it may be necessary to machine

one feature to give access for machining a subsequent feature) and partly it is

concerned with optimising machining time through minimising tool changes and

non-cutting motions.

6. Detailed Process Planning. This involves the determination of cutter paths, selection of

tools, fixturing, feeds, speeds etc and is more normally considered as NC part

programming rather than process planning.

Thus the process planning task requires a considerable amount of information about the

parts to be manufactured. In a feature-based process planning system, information is

inferred from the feature model data. The process planning information which is required

for each feature and relevant to this work is listed in the following paragraphs:

138

Chapter 5

1. The dimensional and geometric tolerances are important to ensure that parts will

function correctly, be interchangeable and can be manufactured economically.

Dimensional tolerances, marked d in the subsequent diagrams, are used to

communicate ranges of dimensions that are acceptable in meeting functionality.

Geometric tolerances, such as parallelism (marked // in the diagrams), circularity (C)

and flatness (F) further refine the specification for manufacturing to meet functional

requirements.

2. The imaginary faces, represented as in determine the external access directions

(EAD's) as explained in Chapter 4. These are potential tool approach directions in

machining, and can be used in set-up determination.

3. The surface finish attribute can be used in determining suitable manufacturing

process. In the three examples shown in Figures 5.27,5.28 and 5.29, the surface finish

for the mating parts is not critical in assembly.

4. The parent-child relationship determines the machining precedence. It also affects the

tool access directions, operation sequencing and set-up strategy. A parent-child

relationship exists if one feature can be defined with respect to another feature. The

former is called a child while the latter is a parent feature. For example, with

countersunk hole, the hole might be the child of the countersink.

These items of information are added to the selected parts in each assembly and its

relation with the assembly relationship is examined. These are shown in the Component

Connectivity Graphs shown as Figures 5.26,5.27 and 5.28.

In Figure 5.27, there is an interaction between the base of tee bolt and the through slot

of the top slide. From Figure 5.7, faces f 1, f2 of step 1 and step2 of the tee bolt and faces

f 1, f2, f6 and f7 of the through slot of top slide are critical in the assembly. These surfaces

are required to be parallel and should have dimensional tolerances. The step can be

assembled to the imaginary faces 11 and i3 and these can be considered as potential

assembly directions (PAD).

139

Chapter 5

The assembly of a key to a shaft is shown in Figure 5.28. For this assembly, the edges

of the key (f2 and f4) are critical and should have parallelism and dimensional tolerances.

Faces f1 and f3 of the non-through slot of the shaft should have similar requirements.

The imaginary faces of the non-through slot form the potential assembly directions to

the key, as shown.

Figure 5.29 shows the interactions between four parts in the valve subassembly. The two

faces of the bosses (f3 of body 1 and face 1 of body2) must be flat and the holes should

be defined with a cylindricity tolerance. Other dimensions and tolerances are not critical.

The imaginary faces of the nut and body holes (il) become the potential assembly

directions for the face of the bolt.

From the above analysis, the following observations are inferred and summarised in

Figure 30:

1. The External Access Direction (EADs) of each feature can be viewed both as a

potential machining direction and a potential direction in which another feature can be

assembled to it. The latter direction is referred to as Potential Assembly Direction

(PAD) and occurs between an imaginary face of one feature and a real face of a mating

feature.

2. Each mating face has its own process planning data attached to it. This data either

relates to the feature itself, such as the cylindricity of a hole or it is a relationship

between two features such as the parallelism of the sides of the features.

3. Some of the process planning data are relevant to the assembly modelling. For

example, the dimensional tolerance will determine the type of fit between two

features. For example, the parallelism of the faces are important if two faces are to

have sliding contact, as shown by the example of the assembly of steps to the through

slot in the lathe tool post assembly. Other information such as parent-child

relationships are not relevant to the assembly modelling, and are only used to

determine intermediate configurations of the component during machining.

140

Chapter 5

4. The Component Connectivity Graphs show a clear relationship between process

planning and assembly information. Thus for example the functional assembly

requirement of the Tee Bolt to mate with the through slot of the Top Slide (Figure 5.27)

generates the assembly information describing against conditions between the faces

of the components. Process planning information in the form of dimensional and

geometrical tolerances on the faces of individual features of each component are then

required to ensure this assembly functionality.

To realise the benefits of combined assembly and process planning knowledge it is

necessary to represent it by a data structure in a feature-based model, and this is discussed

in the next section.

141

Chapter 5

i -- ý

Figure 5.27: Component Connectivity Graph for Lathe Tool Post Assembly

142

Chapter 5

F2

Figure 5.28: Component Connectivity Graph for Key and Keyway

143

Chapter J

fl

R
(hole)

B (nut)
f2

f2 (bolt)

K f2 (nut)
fl (nut)

f3 fl (hole)

Figure 5.29: Component Connectivity Graph for Valve Subassembly

144

Chapter 5

FEATURE

Assembly
Modelling

mating relationships
potential assembly direction

relationship attributes
mating face of feature 1

mating face of feature2

tolerances

Process
Planning

parent-child relationships
EADs

surface finish

geometrical tolerance
dimensional tolerance

Figure 5.30: Relation between assembly and process planning knowledge in a feature

5.9 ASSEMBLY DATA STRUCTURE

Data structure is a very important aspect of a database and an assembly data structure

provides a link between the assembly database and the database of its assembled parts so

that when any part (a feature, a component or a subassembly) is modified, the

corresponding instance in the assembly is updated automatically. Linked lists are one of

the basic elements of C++ programming and offer several advantages over other

structures such as arrays. Lists do not have predefined size and they can be formed,

reorganised or destroyed dynamically, object by object using defined pointers. This is

useful in modelling the assembly situation where features are added, moved or deleted

from the components or subassemblies. Lists are also claimed to be fast and fit the

object-oriented way of thinking (Soukup 1994).

Using the hierarchical data structure of Section 5.3, an assembly can be considered as a

list of sub-assemblies. Each sub-assembly is a list of components, a component is a list

of features and a feature is a list of faces in the geometric model. This implies the use of

145

Chapter 5

linked lists to represent each level of the assembly. A data structure of the assembly is

shown in Figures 5.31 and 5.32. Figure 5.33 shows the assembly parts in a linked list

structure. In this case, a forward pointer ring structure is used in which the last element in

the list points back to the first element of the next highest level of assembly, instead of

being a NULL pointer.

i"i
Asseinbl'

tri ný

attributes

location and location and orientation orientation

list of Pointer to subassemblies next subassy

tolerance
I List of

components

component

Figure 5.31: Data structure for assembly and subassembly levels

A general representation of a structure for the assembly as shown in Figure 5.31 consists

of the following information:

Name of assembly (such as the lathe tool post)

Product attributes, which could be the the mass of the assembly or other relevant
information

Location and orientation of the assembly with respect to the World Coordinate

System

Pointer to a list of subassemblies
Overall product tolerance

146

Chapter 5

Cornponenf
type

attributes IF profile

dimension
face list

location and
orientation parameters

pointer to location &
next componen orientation

feature r(
relationship list

to

tolerance

parent-child
relationships

relation

parent
feature

parent
face

child
feature

child
face

toleranced
feature

pointer to
feature 2

toleranced
entity

mating
feature

datum
feature mating

attributes

datum
entity

pointer to
mating face(s)
feature 1

type pointer to
mating face(s)

value
feature 2

upper
limit

lower
limit

Figure 5.32: Data structure for component and feature levels

147

Chapter 5

Figure 5.33: Assembly Data Structure

148

Chapter 5

The data for the subassembly consists of the following information:

Name of subassembly (such as top slide)
Location and orientation of the subassembly with respect to the World Coordinate

System

Pointer to the next subassembly that is also part of the assembly
Pointer to a list of components that constitute the subassembly

Referring to Figure 5.32, the data structure for the Component consists of the following

information:

Component name (such as bolt)

Component attributes (such as mass, material)
Overall dimensions of the component
Location and orientation with respect to the World Coordinate System

Pointer to next component in the assembly
Pointer to list of features that constitute the component
Pointer to tolerance relationships
Pointer to parent-child relationships

For an individual feature, the parameters refer to the dimensions and the number of

EADs. The face list refers to the list of mating faces which is accessible from the

geometric model created in ACIS.

The data structure for the mating relationships contains the following information:

pointer to feature 1

pointer to feature 2

type of mating relationship (mating feature)

relationship attributes (a refinement of the mating relationships described

in Section 5.5. Examples of such attributes are screw fit and sliding fit).

pointer to the mating face of feature 1

pointer to the mating face of feature 2

In the above structure, a mating between a pair of features is represented by a pointer to

the feature and a pointer to the mating face. In the event of one feature being removed

149

Chapter 5

from the assembly or a new feature being added to mate with an existing feature, the

pointer will be reset to point to the new object.

This data structure is implemented in a feature-based environment using an

object-oriented approach as described below.

5.10 IMPLEMENTATION

The application of the object-oriented approach to the modelling of assembly involves

combining the information in the data structure with the appropriate methods to

manipulate each part within the assembly. Using this approach, each level in the

assembly hierarchy is defined in a class with the assembly class as the base feature. Other

classes inherit the attributes of the class that is immediately above it. The feature class

which is a base class for feature type classes and profile classes, has been discussed in

Chapter 4. The following sections describe the assembly, subassembly, component and

feature relationship classes. The declarations for classes described in this chapter can be

found in Appendix A.

5.10.1 ASSEMBLY CLASS

The assembly class, shown in Table 5, represents the assembly of parts which is the

highest level in the assembly hierarchy. It contains attributes and methods for the product

assembly. The class has the following attribute data - the name of the assembly which is

the product name, a pointer to the body of the assembly, the body's location and

orientation and a pointer to a list of subassemblies. The location and orientation of the

assembly corresponds to the world coordinate system and becomes the reference

coordinate system for other assembled parts.

The methods for the assembly class are described in the following paragraphs:

Assembly Constructor

The constructor function creates a new instance of assembly object and initialises its

parameters whenever the object is declared. An instance of assembly, assy is created

by the following expression:

150

Chapter 5

assembly *assy = new assembly(assyname, x, y, z, angleX, angleY, angleZ)

where assyname is the name of the assembly; x, y and z are the location of the assembly

and angleX, angleY and angle Z are its orientation.

Assembly

Name of assembly
Pointer to Body
Location
Orientation
List of subassemblies

Constructor
Destructor
Add Subassembly
Draw
Save

Table 5.2: Assembly Class

Assembly Destructor

The destructor deletes the assembly body when it is no longer in use or at the end of the

modelling session. This is denoted by -assembly().

Add Subassembly

This method adds a subassembly to the list of subassemblies that make up the

assembly. A subassembly is assembled to another subassembly by the process of

matching features which mate with one another. This is described in Section 6.6.

Draw

The assembly can be displayed on the screen using this method by recalling all entities

that have been created and saved in the modelling process.

151

Chapter 5

Save

This method saves an instance of assembly body in a file, to be retrieved for display.

5.10.2 SUB ASSEMBLY CLASS

The subassembly class, presented in Table 5.3 defines the attributes and methods for the

subassembly level. The class inherits properties of the assembly class. The types of

attributes of the class are similar to those in the assembly class, except that the class also

contains a list of components that makes up the subassembly as well as a pointer to the

next subassembly. The methods of the class are explained as follows:

Sub-Assembly I

Name of Subassembly
Pointer to sub assy Body
Location
Orientation
List of Components
Pointer to next subassembly

Constructor
Destructor
Add Component
Draw
Save

Table 5.3: SubAssembly Class

Subassembly Constructor

The constructor function creates a new instance of subassembly class and initialises its

parameters. An instance of subassembly, subassy is created by the following

expression:

subassembly *subassy = new subassembly(z, y, z)

152

Chapter 5

where x, y and z are the location of the subassembly

Subassembly Destructor

The destructor releases the memory occupied by the subassembly body when it is

deleted or at the end of the modelling session. It is denoted by -subassembly()

Add Component

This method adds a component to the list of components that makes up the

subassembly. The process of joining two components is similar to the process of

building up the assembly which is described in Section 6.6.

Draw

This method draws the subassembly body on the screen. This is done by recalling all

entities that have been created and saved in the modelling process.

Save

This method saves an instance of a subassembly body in a file.

5.10.3 COMPONENT CLASS

The component class, presented in Table 5.4 describes the component level in the

assembly hierarchy. The class contains a pointer to the component body, the component

name, its dimensions, location, orientation, a pointer to the next component in the

subassembly and a pointer to a list of features. The dimensions of the component in this

case are the dimensions of the base feature since one of the criteria for choosing the base

feature is to select the largest feature (see Section 6.5).

The methods for the class are described as follows:

Component Constructor

The constructor function creates a new instance of component and initialises its

parameters. An instance of the component is created by the following expression:

component *comp = new component(compname, 1, w, h)

153

Chapter 5

where cornprname is the component name, l is the length, w the width and h the height

of the component.

Component

Pointer to component body
Component name
Dimensions
Location
Orientation
Pointer to next component
Pointer to list of features

Component Constructor
Component Destructor
Get Dimension
Add Feature
Draw
Save

Table 5.4: Component Class

Component Destructor

The destructor, denoted by -component() releases the memory when the component

body is deleted or at the end of the modelling session.

Get Dimension

This method is used to get dimensions of the component. Since the component is

assumed to be a rectangular block, dimensions required from the user are the length,

width and height.

Add Feature

This method is called to add a feature to the list of features that makes up the

component. The user identifies the feature type and profile and this generates

154

Chapter 5

functions associated with the particular feature such as Get Location, Get Orientation,

and Save Entity.

b= new boss(x, y, z, b)

b->SelectProfileQ->GetLocationQ->GetOrientationO;

b-> DrawBoss-> SaveEntity()

Draw

This method is used to draw the component by recalling all the features that have been

created and saved for the particular component.

Save

A component is saved in a file using this method.

5.10.4 FEATURE RELATIONSHIP CLASS

The feature relationship class, listed in Table 5.5 is created to hold the information that

defines a relationship between two features. The class has five attributes - the name of

mating relationship (against, fits and align), pointers to the first and second features and

pointers to mating faces of both features. Methods for this class are:

Input Feature

The method Input Feature is invoked to ask the user to input two features to be mated.

The user enters the names of the feature to be mated such as boss1 for the first feature

and holel for the second feature. These input are validated with the list of features in

the database and an invalid input will be notified.

Find Mating Relation

This method is used to identify a suitable mating relationship when two mating

features are identified from the Input Feature method. For example, when a boss

feature is instanced and it is to be assembled to a hole, the function searches for a

suitable mating relationship from a database, which is an input from the Feature

Relation Table. In this case a fit or tight-fit relationship is identified. If no mating

155

Chapter 5

condition exists, the function returns a NULL pointer and indicates that the assembly

is not possible.

Feature Relationship

Pointer to first mating feature
Pointer to second mating feature
Name of Relationship
Relationship attributes (type)
Pointer to mating face of first feature
Pointer to mating face of second feature

Input Feature
Find Mating Relation
Transform
List Relation

Transform

Table 5.5: Feature Relationship Class

The transform function is used to locate a feature (existing in a component or a

subassembly) in the assembled position. The function uses a transformation matrix

that defines the relationship between the feature's coordinate system and the world

coordinate system. The method uses an API function which can be expressed as

follows:

api_apply_transform(feature, translate_trans(vector(O, O, dist)))

dist is the distance the feature is moved to its assembled position.

List Relation

This method lists the relationship(s) for the identified pair of features and displays it

on the screen.

156

Chapter 5

5.10.5 LINK CLASS

The link class consists of two classes, objectlink which defines the nature of the objects

that are stored in the list and assylist which implements the linked list mechanism. This is

implemented as a template class which is a generic class that can take as input any type of

data. In this case, the data is in the form of objects from feature type, profile,

component, subassembly and assembly classes. The use of a template class is

advantageous as the same codes can be used for different data without having to create

new functions or separate classes. The generic class decouples the algorithms that

maintain a linked list from the data actually stored in the list.

5.10.5.1 OBJECTLINK CLASS

The class defines the nature of each element in the list. All members are defined as public

and are described in the following paragraphs and shown in Table 5.6.

Objectlink

Data type
Pointer to next object
Pointer to previous object
Constructor
Get Next Object
Get Previous Object

Table 5.6: Content of objectlink class

Data Type

This is the generic data type which is used as the type specifier for data stored in the

objectlink class. The data can be a feature or a component. This type is replaced by the

actual type specified when an object is created.

Constructor

The constructor initialises the pointer to the next and previous objects to NULL.

157

Chapter 5

Get Next Object

This function is used to return the next object in the list.

Get Previous Object

This function return previous object in the list.

5.10.5.2 ASSYLIST CLASS

Assylist class implements the linked list mechanism. It inherits the objectlink class and

operates on the object of the type held by the objectlink class. The data members of the

class are shown in Table 5.7. It contains two pointers - one to the start of the list and

another to the end of the list. The public members of this class are described in the

following paragraphs:

Assylist

Pointer to the start of the list
Pointer to the end of the list

Constructor
Store
Remove
Display Forward
Display Backward
Get Start
Get End

Table 5.7: Content of assylist class

Constructor

The constructor initialises the pointer to the start of the list and the pointer to the end of

the list to NULL, when the list is first created.

Store

This function stores an item such as a feature or a component in the list.

158

Chapter 5

Remove

This function removes an item from the list.

Display Forward

This function displays the list from the beginning.

Display Backward

This function displays the list from the end.

Get Start

Returns a pointer to the start of the list.

Get End

Returns a pointer to the end of the list.

5.10.6 RELATIONSHIPS AMONG CLASSES

Figure 5.34 shows the relationships among classes described above. The subassembly

class inherits the properties of the assembly class and in turn becomes a base class for the

component class. The feature class is derived from the component class and thus

inherits the properties of all classes above its hierarchy. The feature relationships class

and the link class use data from the assembly, subassembly and component classes. The

link class also uses data from the feature relationships class and they are linked to each

other as shown in the diagram.

159

Chapter 5

Figure 5.34: Relationship among classes

160

Chapter 5

5.11 SUMMARY

In this chapter, the concept of designing with features for the purpose of process planning

has been extended to incorporate the specification of an assembly. An assembly is

modelled as an Assembly Graph that captures the hierarchy of subassemblies,

components and features. Features form basic entities in the assembly, and the Feature

Relation Graph forms a basis for representing and modelling the mating relationships

among the features. Effective data representation requires that the interactions between

the faces of two mating features be modelled and this is achieved through the Face Mating

Graph. The Component Connectivity Graph unites the assembly information with

process planning information and highlights areas of interdependency between the two.

Analysis of typical assemblies shows that feature interactions occur in three situations.

Three mating relationships have been defined and implemented - against, fits and align.

Each feature is assigned a possible type of mating relationship with each other feature

type. This is then represented in an expression that describes the relationship between the

two assembled features. A Feature Relation Table has been established to provide an aid

in identifying mating relationships occurring among the features in an assembly. The

assembly data structure provides links between the assembly database and the feature

database. Each assembly level is implemented as a class in an object-oriented system.

These classes are further supported by relationships and linked list classes.

The assembly model described in this chapter is implemented in a feature-based design

system that supports the interactive modelling of assemblies. The application of this

approach is discussed in Chapter 6.

161

Chapter 6

CHAPTER SIX
IMPLEMENTING A FEATURE-BASED

ASSEMBLY MODELLING SYSTEM

6.1 INTRODUCTION

Representations for features and assemblies have been presented in previous chapters. In

this chapter the implementation of a feature-based modelling system and the procedures

for modelling assemblies are described. A prototype system is developed as a proof of the

concept presented in this thesis and used as an example to illustrate how the ideas

mentioned previously can be put together. The design of the system, its structure and the

implementation are addressed. Section 6.2 describes the overall design of a prototype

feature-based modelling system. Section 6.3 describes an overall approach to the

creation of the assembly model. Sections 6.4 and 6.5 discuss procedures for creating

individual features and forming them into a component. Section 6.6 discusses the

procedure for creating an assembly model. Section 6.7 describes how assembly data is

presented. To illustrate the above procedures, examples involving simple mechanical

products are included in Sections 6.8 and 6.9.

6.2 A PROTOTYPE FEATURE-BASED DESIGN SYSTEM

One of the requirements of a system to support the design of mechanical assemblies is the

availability of methods that allow designers to work with abstract conceptual levels and

geometry, specify functions in terms of relationships and define a system hierarchy. A

design by features modelling approach can provide the platform to achieve these aims by

storing assembly information during the design process so that the application can be

considered from the early stages of the design process. This capture of design intent is not

possible using the alternative method of feature recognition, and hence a design by

features approach is adopted in this research. A prototype feature-based design system

(FBDS) is developed to provide a platform for modelling individual features and an

assembly. Features defined in Chapter 4 are stored in a library to be instanced during the

162

Chapter 6

modelling process. The emphasis of the implementation is on the assembly modelling

and thus some of the structures presented in Chapter 5 such as the tolerance and

parent-child relationships are not implemented. They have been implemented in the

process planning work (Case et. al. 1993)

FBDS is a prototype system aimed at testing the ideas proposed in this research. The

structure of the system, shown in Figure 6.1 is designed to fulfil the requirement for an

integrated data representation. The main engine of the system is the ACIS solid modeller

(the version used in this research is 1.4.1) which provides methods and classes for

creating and manipulating features, through a direct interface and the API functions, as

described in Chapter 3. These are accessed by the methods in the feature and assembly

classes defined in earlier chapters. The utility class consists of a collection of supporting

programs which provide facilities such as the main menu and the manipulation of files.

The application program, listed in Appendix B is the main program which creates and

connects objects in various class libraries as well as acting as an interface to the ACIS test

harness. The latter acts as a platform for testing and validating the program by providing

an interface to all features of ACIS and provides a wireframe display of the model created

during a session with the user. There are two types of files created by the system, an ACIS

file format (an example for the pin and block assembly is shown in Appendix C) which is

used by the test harness and a file used to store data once an assembly is created. The user

interacts with the system through the application program. The operating environment

for the system is UNIX running on a Sun workstation.

The system offers four options in the main menu:

1 Create Feature/Component

This option is used to invoke the creation of an individual feature or a component.

20 Create Assembly

This option allows the user to find mating relationships between two features and

to invoke the assembly operations.

163

Chapter 6

M Test Harness

The test harness option allows the user to test the model created using option 1 or

2, by retrieving an ACIS file to be displayed on the screen.

® Print Data

This option is used to display the data on the assembly, as mentioned in Section 6.7.

3] Quit

This option ends the modelling session and quits the system.

User

I
ACIS
kernel

Objects
Classes
Methods

ACIS

I API

Figure 6.1: Structure of Feature-Based Design System

6.3 MODEL CREATION PROCEDURES

The general approach used to derive an assembly model is a bottom up approach that

involves building up the assembly from individual features, as outlined in the following

steps:

164

Chapter 6

i. Create individual features, starting with a base feature

ii. Assemble features to form a component

iii. Specify all pairs of features to be mated

iv. Identify if relationships exist between the feature pairs

v. Assemble components to form a subassembly

vi. If more than one subassembly exists, repeat steps iii to v

vii. Combine subassemblies to form a final assembly

The steps are shown diagrammatically in Figure 6.2 and elaborated in the following

sections.

Create Individual
Features

one
component

Assemble a
Component

Pairing of
Features

More than
one

subassy Find Feature

Relationships

Assemble
Subassembly

Assembly

Figure 6.2: Model creation procedures

165

Chapter 6

6.4 FEATURE CREATION

An individual feature is created in an interactive session with the system. The user inputs

the type of feature, the profile type for that particular feature, the dimensions, and the

location and orientation of the feature with respect to the base feature. Each input for the

dimension and location is validated against the dimensions of the base feature. If there is

an incorrect entry, the user is asked to re-enter the value. All options are presented in a

form of a menu, as shown in Figure 6.3.

Choose Feature Type
1 *0

1. Boss

2. Pocket

3. Hole
Choose Profile

4. Quit I. Rectangular

2. Cylindrical
Enter Dimensions

3. Triangular

depth
width
height Enter Position

x:

Y" I z:

4*

Enter Orientation

AngleX:

AneleY:
AngleZ:

Figure 6.3: Menu for creation of a feature

6.5 COMPONENT MODEL

A component is made up of a base feature plus any number of other features. The process

of creating a component model is shown in Figure 6.4 and described as follows:

i. An instance of a base feature is created. The criteria for choosing a base feature can

either be the largest feature, the easiest to fix or the feature which provides the most

assembly points. These criteria are based on heuristics and concur with the common

166

Chapter 6

practice in assembly. The user gives the name of the component to be developed,

its dimensions, position and orientation.

ii. Other features that make up the component are created one at a time according to the

procedures described in Section 6.4. They are positioned and orientated with respect

to the base feature.

iii. Using the Boolean operations provided by ACIS, the feature is either united to or

subtracted from the base feature to form a component model. For example, the boss

feature is united with the base feature while the hole or pocket feature is subtracted

from it.

iv. The resultant component is saved in an ASCII file which has the suffix sat, to

indicate that it is an ACIS file.

ltvý Position and
Orientate
Feature

Boolean
Operation

It4ý
Save
Model

Figure 6.4: Steps in the creation of components

167

Chapter 6

6.6 CREATION OF AN ASSEMBLY MODEL

The final assembly is made up of one or more subassemblies. The creation of a

subassembly involves joining two or more components. This is done according to the

following procedures and shown in Figure 6.5:

i. Identify a feature on the first component and a mating feature on the second

component.

ii. Check for the existence of a mating relationship defined for the features.

iii. Validate dimensional and shape compatibility between the two features.

iv. If all conditions are met, the assembly is recognised to be valid and related functions

to assemble the feature are generated.

v. Steps 1 to 4 are repeated until all features are assembled to form a subassembly.

vi. The final assembly is created by the same procedures, except that pairs of features

within the subassemblies are checked for mating relationships.

Identify mating
Features

Find
relationship

Geometrical
compatibilty

Subassembly

Assembly

Figure 6.5: Steps in the creation of assembly

168

Chapter 6

6.7 ASSEMBLY DATA

The assembly data provides information on the assembly, based on the Assembly Graph

presented in Section 5.3. This is generated by the system after the creation of the

assembly and stored in a file. The contents of the assembly data are:

name of assembly
location

orientation

list of subassemblies

list of components

list of features

For example the assembly data for the lathe tool post assembly illustrated in Figure 5.2 is

as follows:

lathe tool post
0,0,0

0,0,0

post, pin, tool-post

slide, top-slide, tee-bolt-pin

pin, boss, boss

tool-post, hole, hole, hole, thru_slot

top-slide, thru_slot, notch, notch

tee_bolt_pin, boss, step, step

6.8 EXAMPLE 1- PIN AND BLOCK

In this section, the FBDS is used to model a simple assembly which consists of two

components -a pin and a block, illustrated in Figure 6.6 with the dimensions of each

feature. The assembly involves a mating process between two pairs of features -a boss

and a hole and two faces of the rectangular bosses. The Assembly Graph is shown in

Figure 6.7. The creation of the assembly follows the procedures described in earlier

sections. Letters in italics denote data input by the user.

169

Chapter 6

Pin

i0
40 boss3

boss2

-rad=15

Block hold
II

Ibossl
40

120

1 -1 100

Figure 6.6: A pin and block assembly

Figure 6.7: Assembly structure for pin and block

170

Ri iý
\ß`_`R2

/ý/

Chapter 6

The first step is to create each component of the assembly. The block consists of a base

feature which is a rectangular boss and a cylindrical hole is attached to it. The input data

for the boss is shown in Figure 6.8:

Component Name: block
Location x: 0

y: 0
z: 0

Orientation: 0,0,0
Feature type: boss
Profile: rectangular

Length: 100
Width: 120
Height: 40

Figure 6.8: Input for a rectangular block component

A hole feature is then created and attached to the base feature. The input for the hole

feature is shown in Figure 6.9.

Feature type: hole
Profile: circular

Radius: 15
Height: 40
Location x: 0

y: 0
Orientation: 0,0,0

Figure 6.9: Input for a cylindrical hole feature

The hole feature is then subtracted from the base feature to create the block component.

Next, the pin component is created in the same manner. First, a rectangular boss is created

as a base feature and then a cylindrical boss is attached and united to form the pin

171

Chapter 6

component. The data for these features are shown in Figures 6.10 and 6.11.

Component Name: pin
Location: x: 0

y: 0
z: 150

Orientation: 0,0,0

Feature Type: boss
Profile: rectangular

Length: 50
Width: 50
Height: 10

Figure 6.10: Input for a pin component

Feature type: boss
Profile: circular

Radius: 15
Height: 40
Location x: 0

y: 0

z: 150
Orientation: 0,0,0

Figure 6.11: Input for a cylindrical boss

To confirm the model created so far, the user goes to the test harness and views the model.

This is shown in Figure 6.12.

To assemble a boss feature to a hole feature, the user goes to the Create Assembly option.

The inputs to the system are shown in Figure 6.13 and the assembled model is viewed in

the test harness and shown in Figure 6.14.

172

Chapter 6

Figure 6.12: ACIS model for pin and block

Features to assemble:
Feature 1: hole
Feature 2: boss3

The system responds:

pin. boss3-fits-block. hole 1

Other features to assemble y/n. y

Feature 1: boss l
Feature 2: boss2

The system responds:

pin. boss 1-against-block. boss2

Other feature to assemble y/n: n

Create assemble y/n? y

Figure 6.13: Input for assembly relationship

173

Chapter 6

Figure 6.14: Model of pin and block assembly

In this assembly, the component and the subassembly are the same. The assembly data for

the example is as follows:

pinblock

0,0,0

0,0,0

block, pin

block, boss, hole

pin, boss, boss

The data structure for the block and pin assembly is shown in Figure 6.15.

174

Chapter 6

Figure 6.15: Data structure for the block and pin assembly (abbreviated)

6.9 EXAMPLE 2- EJECTOR PLATE ASSEMBLY

Figure 6.16 illustrates ejector parts of a typical injection mould assembly. The ejector

plate is assembled to the rear clamping plate. An ejector retainer plate is assembled on top

of the ejector plate. The ejector plate and the retainer plate are held against each other by

four pins which pass through the respective holes. The dimensions of each part are given.

Other features present on the plates such as threaded holes are omitted. The aim of this

exercise is to show an assembly process which involves the simultaneous interaction of

more than one pair of features.

175

Chapter 6

4 holes 0
radius ejector 6mm

retainer plate 150 x 100 x 12mm
plate

4 pins radius 6mm
length 35 mm

plate 150 x 150 x 15 mm

Figure 6.16: Ejector plate assembly

The assembly consists of seven components each of which consists of one or more

features, as shown in Figure 6.17. The rear clamping plate is simply made up of a

rectangular boss, while the ejector plate and ejector retainer plate each has a rectangular

boss as its base feature and four holes as additional features. The four pins are simply

cylindrical boss base features. The rear clamping plate is created first and its location and

orientation become a reference for subsequent components. The pins are first assembled

to the holes of the ejector plate and then to the holes of the ejector retainer plate. The

process of creation of the assembly is shown in Figure 6.18. The ACIS model for the

components created by the system is shown in Figure 6.19.

176

Chapter 6

ejector plate assy

rear clamping ejector retainer pin pin pin pin
plate plate

buss l` `f

I1 L_
(ejector plate I(,

LL _ -I

Iý

ý, _
11

RI We M) : II

- -- -- --
J1I

11

R7 L-- ---I----ý---aJ I
R8 L--L---1---ý-

R9
Rio I rr

I :: hole ý ýý'
oter

(

R6
ý- --+---I---I ----------------J R2

-J
---- ------------------- R4 R I----------------------

Figure 6.17: Assembly Graph for ejector plate assembly

177

Chapter 6

component: clamping
plate

feature: boss
profile: rectangular
width 150
depth 150
height 15
position: 000
orientatio n: 000

component: ejector
plate

feature: boss feature: hole

profile: rectangular
profile: circular

width 150 radius: 6

depth 100 height: 15

height 15 position: 65 -15 50

position 00 50 orientation: 000

orientation 000

repeat
f or

component: ejector pin
3 other
i

feature: boss ns p

profile: circular
radius: 6
height 35
position 65 -15 100 U j i
orientation 000

component retainer
plate

feature: boss feature: hole

rectangular
file: circular profile:

width 150 radius: 6

depth 100 height: 12

height 12 position: 65 -15 150

position: 00 150 orientation: 000

orientation: 000

Figure 6.18: Data input for ejector plate assembly

repeat
for
3 other
holes

repeat
for
3 other
holes

178

Chapter 6

boss3

holes

boss4

boss2

hole 1

I

Figure 6.19: Model of ejector plate features

The assembly procedure involves the pairing of features which mate with each other.

There are ten pairs of features to be mated. The ejector plate, represented by boss2 mates

with the clamping plate (bossl) and the retainer plate (boss3). Each pin has a fit

relationship with two holes, one on the ejector plate (holes 1 to 4) and another one on the

retainer plate (holes 5 to 8). The mating data for some of these features are shown in

Figure 6.20.

The relationship expressions are generated as shown:

rear_clamp_plate. boss 1-against-eject_plate. boss2

eject_plate. hole 1-fits-pin. boss4

eject_plate. hole2-fits-pin. boss5

eject_plate. hole3-fits-pin. boss6

eject_plate. hole4-fits-pin. boss7

eject_plate. boss2-against-retain_plate. boss3

retain_plate. hole5-fits-pin. boss4

retain_plate. hole6-fits-pin. boss5

179

Chapter 6

retain_plate. hole7-fits-pin. boss6

retain_plate. hole8-fits-pin. boss7

Mating Features:
Feature 1: boss]
Feature 2: boss2

Feature 1: hole]
Feature 2: boss4

Feature 1: boss2
Feature 2: boss3

Feature 1: boss4
Feature 2: holes

Figure 6.20: Input for mating features

The assembled model is shown in Figure 6.21.

Figure 6.21: Assembly model for the ejector plate

180

Chapter 6

The data for the assembly is as follows:

ejector plate assembly

000

000

clamping-plate, ejector_plate, pin, pin, pin, pin, retainer_plate

clamping plate, boss

ejector-plate, boss, hole, hole, hole, hole

pin, boss

pin, boss

pin, boss

pin, boss

retainer-plate, boss, hole, hole, hole, hole

The data structure for the ejector plate assembly is shown in Figure 6.22.

181

Chapter 6

Figure 6.22: Data structure for ejector plate assembly (abbreviated)

6.10 SUMMARY

A prototype feature-based assembly modelling system has been presented which is

based on the design by features approach. The system consists of a library of features

which interface with ACIS methods and classes for the generation of models. The system

provides interactive input of the feature data as well as features to be mated. The

procedures for creating features, components, subassemblies and an assembly have been

described, and the applicability of the approach has been tested by modelling two

examples of mechanical assembly. The outputs from the modelling session have been

presented. The outcome of this exercise and the limitations of the system are discussed in

the next chapter.

182

Chapter 7

CHAPTER SEVEN
DISCUSSION

7.1 INTRODUCTION

This chapter reviews work on feature representations, assembly representations and the

implementation described in the three preceding chapters. The overall approach adopted

is critically analysed and the limitations are identified. Section 7.2 summarises the

research methodology. Discussions on the representation of features and assembly are

covered in Sections 7.3 and 7.4 respectively. Comments on the use of an object-oriented

approach are given in Section 7.5. Section 7.6 discusses the practical implementation of

the system, with regards to the development of a prototype feature-based modelling

system.

7.2 REVIEW OF THE METHODOLOGY

This thesis has described the methodology for representation of assembly modelling in a

feature-based environment using an object-oriented approach. The methodology starts

with the creation of features which form basic entities in the assembly. The fundamental

approach has focussed on: -

i. Defining a set of features within a suitable taxonomy.

ii. Analysing typical assemblies to identify the assembly interactions and incorporating

the knowledge on assembly representation into the feature representation.

iii. Establishing techniques for the representation and modelling of a range of features

and assembly knowledge.

iv Incorporating process planning knowledge into the assembly representation.

v. Applying object-oriented concepts of abstraction, encapsulation and inheritance to

significantly reduce the quantity of software and the creation time while at the same

time allowing the knowledge and domain to be extensible and flexible.

183

Chapter 7

vi. Designing a Design by Feature system that allows incremental construction and

evolution.

The intention has been to establish a data model for features that is capable of

representing assembly and process planning information in addition to the geometrical

and topological details and which also handles information concerning the functional

requirements of related features in an assembly of parts.

7.3 FEATURE REPRESENTATION

There is no doubt that the feature-based approach provides a very convenient way of

representing geometrical as well as non-geometrical information. However, for features

to be useful in the integration of product life cycle activities, it is preferable to have a

single unified representation. It is envisaged that this aim can be achieved by defining a

generic feature. However, in practice this is not possible due to the range of complexity of

products such as sculptured and sheet metal products. Thus the approach taken in this

research of defining a range of the most common shapes of machined features is more

practical and supports many applications such as process planning, assembly planning

and inspection. The taxonomy established is comprehensive enough to include most

shapes used in the process planning and assembly of machined parts. This is justified

since a large part of components machined in industry consists of simple shapes produced
by operations such as milling, turning and drilling (HMSO statistics reported in Case and
Acar 1989).

A feature representation which is based on a similar approach has proved to be effective
in the process planning and process capability modelling applications (Case 1994). In

this work, features were defined in a feature library and implemented in a B-Rep solid

modeller, Imaginer. A design by feature user interface to the solid modeller was
developed to allow designers to generate components using feature primitives and to

store attributes in a feature-based data structure, which is separate from the database of

the geometric modeller. The way in which features relate to each other on the same

component have been defined for this purpose. This earlier work has been incorporated

184

Chapter 7

into an overall scheme of data representation that includes assembly knowledge to

establish that a single feature representation can be useful across a range of key

manufacturing applications. The feature representation not only covers a single

component, as in the process planning work, but also supports interaction between

components at the assembly level. The process planning knowledge can be redesigned

using the object-oriented approach and combined with the assembly knowledge in the

feature to provide a multiple representation within a single feature definition.

The feature model defines representations for various items of knowledge that have not

been fully implemented in the prototype system. In particular, Geometric and

Dimensional Tolerances are excluded whereas they clearly have an important role to play

in assembly modelling. This deliberate omission was a consequence of the scale and the

complexity of the tolerances issue that it was felt could eclipse the main issue of

representing assembly knowledge within the feature. However, it is felt that the use of

object-oriented concepts and techniques has provided a framework for the future

inclusion of tolerance aspects.

7.4 ASSEMBLY REPRESENTATION

The representation of the assembly focuses on the role of the feature as the basic unit in

the assembly and emphasises the relationships between features. This is consistent with

the goal of the design by feature approach and the way in which designers visualise

mechanical assemblies. The hierarchical model organises the relationships in the

assembly and provides a more realistic representation of the role of the features in the

assembly, since many assemblies are designed sequentially. Assembling in this way can

confine attention to relationships between a pair of features at one time. The hierarchical

structure fits well with the object-oriented approach.

Much research in assembly modelling and assembly planning utilises the mating

relationship approach to specify spatial relationships among assembled parts. The three

mating relationships defined in this research represent the most common types and they

are the most suitable for the range of features used and the static nature of the assembly,

185

Chapter 7

where components are assembled onto a static base feature. These mating conditions are

well suited to the types of features defined. A possible criticism of using this approach is

that these mating conditions may not fully represent the assembly, as highlighted by Shah

and Rogers (1993) and Baxter et. al. (1992). Thus it is possible to define mating

conditions for specific applications in the way for example that Baxter et. al. (1992)

proposed conditions which accommodate the mating of two gears.

Certain limitations are a natural consequence of the way in which geometric models are

constructed in solid modelling CAD systems (feature-based or otherwise). Hence

fastening details such as threads are usually considered as secondary features that can

only exist on a base feature, and do not normally have a direct representation in the

geometric modeller. This type of attachment is used only to modify the type of

relationships defined and can be incorporated in the assembly knowledge of the feature

by the inclusion of appropriate attributes without disturbing the basic structure of the

information.

Another issue is that a single feature may mate with more than one feature in general

orientations within the assembly and not just along the three major axes. However, the

mating relationship expressions are independent of this factor, and mating is restricted to

the linear orientation only so as not to complicate the prototype implementation with

well-known but mathematically complex methods. Furthermore there is some practical

justification for this as seventy five percent of assembly involves only linear assembly

(Delchambre 1991) and it is in line with the objectives of Design for Assembly

techniques of reducing occurrences of non-orthogonal assembly directions.

7.5 USE OF THE OBJECT-ORIENTED APPROACH

The advantage of using 00 data models for building the knowledge environment for

assembly is the straightforward integration with 00 programs. The power of the 00

technique, as outlined in Chapter 3 is in the knowledge representation and manipulation.

The 00 approach was found to be more capable than the conventional method of

addressing the problems of representation of features. The hierarchical nature of the

186

Chapter 7

feature taxonomy and the assembly structure is well-suited to an 00 implementation. It

also allows effective manipulation of features, by providing convenient ways to extend

feature functionalities as well as feature types and profiles. The approach provides easy

maintenance of the system through its modular design and the addition of attributes and

functions which are independent of each other.

In this case, the feature library is defined independently of the solid modeller. This allows

for future expansion of the system or the transfer of the feature library into another solid

modeller.

The flexibility of the system is enhanced by the use of the inheritance approach where a

derived class can share the common methods of the base class while at the same time

define its own set of attributes and methods. This is found to be useful in extending the

program to provide additional features and functionalities.

The use of the C++ programming language is also well-suited to the whole framework of

the system by providing a convenient method of programming, and it is envisaged that

the task would have been more time-consuming using a more conventional approach.

7.6 PRACTICAL IMPLEMENTATION ISSUES

The design of the prototype feature-based design system presented in Chapter 6 had the

aim of testing the idea presented for a small range of feature types. As a prototype system,

it has limited practical application. The base feature is limited to a rectangular shape. A

more practical system should address a wide range of possible shapes for a base feature

and a complete set of feature types and profiles. In order to achieve this goal, large

resources in terms of programming times and skills are required.

In implementing the system, two approaches of creating solid models are possible - using

a solid modeller or a kernel modeller. The former method involves using a CAD/CAM

system such as Unigraphics, whereby features are defined and stored in a library and

called during the design session. The advantage of using this approach is the availability

of a good user interface and powerful graphics on a single system. The system is usually

easy to use and the user interface can be customised. However, depending on the

187

Chapter 7

language with which the software is developed, the programming may be difficult and

limited and frequently does not allow adequate access to low level entities. Usually a

program is required to interface the feature library and the solid model. Further

development may also be restricted by the proprietary nature of the system, and there is

also a likely problem in extending the system for other applications such as assembly

planning, due to difficulties encountered in accessing low levels of the (topological) data

structure.

The second approach of using an open architecture kernel modeller, which is the basis of

this research, offers a more flexible approach. ACIS provides a library of functions which

act as building block components which can be used by application developers. The user

has to choose the right function to integrate with the feature library. A major advantage of

using ACIS is its extensibility. Any further development of the system such as

developing a fully-fledged assembly modelling system or design for assembly system is

relatively easier, as discussed in Chapter 3. The capability of the system can be enhanced

by creating new API functions to complement the available ones. This can provide a

consistent interface with ACIS.

The disadvantage of this approach is the programming aspect. The capability of the

prototype system can be greatly enhanced by good programming skill. Although the use

of 00 has alleviated the programming aspect, the experience of this research shows that

the level of programming knowledge required to produce an application system is very

high and much of the time is required for programming.

The role of the user interface to the system is very important in the assembly modeller.

The aim is to minimise the interaction with the user and provide an interactive display of

the model being assembled. In this system, the user interacts with the system by inputting

the data on the screen, and the use of the ACIS test harness provides only a limited user

interface An improvement to the system could be made if data on the dimensions,

location and orientation of the feature could be automatically generated when the feature

is created and if the user could click on the pair of features to be mated, with the system

identifying the consequent mating relationships. These kinds of interaction may be

188

Chapter 7

possible using a more powerful graphical user interface engine such as MOTIF (OSF

1989), but were not considered to be an essential research aspect of this work.

During the course of this work substantial improvements have been made to kernel

modellers in general and ACIS in particular. It is not possible to track all developments as

they occur, and thus more recent versions of ACIS (version 1.6) offer many additional

features which enhance the modelling and the user interface in ways that are important to

assembly modelling. Similarly, the last few years has seen the development of a number

of husks which, had they been available at the start of the research, would have proved

useful. A partial solution to this problem is to utilise an ACIS-based solid modeller such

as Bentley's MicroStation (Bentley 1995), whereby the user is presented with a user

interface system and at the same time can develop feature and application libraries using

ACIS functions.

7.7 SUMMARY

This chapter has highlighted some salient points in the whole framework of the thesis,

especially on the feature representation, the assembly representation, the use of the

object-oriented approach and the design of a feature-based design system. Limitations

of the system have also been discussed. This work is significant as the approach can be

extended to other upstream applications such as assembly planning and Design for

Assembly. The summary of the work covered in this thesis and how it contributes to

manufacturing knowledge are outlined in the next chapter.

189

Chapter 8

CHAPTER EIGHT
SUMMARY AND CONCLUSIONS

8.1 INTRODUCTION

This chapter concludes the thesis by summarising discussions in previous chapters,

outlining the contributions to the research area and proposing further work that can be

pursued in this area. Section 8.2 summarises the work discussed in previous chapters. The

research contributions is discussed in Section 8.3. Potential areas for future research are

discussed in Section 8.4. Section 8.5 concludes the thesis.

8.2 SUMMARY OF THE THESIS

This research set out to address the problem of the lack of a unified definition for features

and to determine an assembly representation as an integral part of a feature-based

representation. These issues have been highlighted by a review of relevant literature on

features and assembly modelling. The problems arising from a feature being defined for a

specific application have been recognised by various researchers, and current trends in

the development of feature-based systems have been identified. The need to arrive at a

single feature definition for multiple applications has been recognised and in this context,

assembly modelling is deemed important as a complement to the well-established

process planning activity.

The focus of this research is on the representation of assembly knowledge within a

feature-based model in order to show that a single feature representation can support

multiple applications, particularly process planning and assembly modelling.

Features used in this research have been defined as machined volumes and a suitable

hierarchical taxonomy has been defined in detail to cover common feature types and

profiles that represent the general machined features used for assembly. A feature class

hierarchy has been established that uses the concept of inheritance for ease of

development and maintenance of the system. Some typical assemblies have been

190

Chapter 8

analysed to identify mating relationships which occur among features. This results in the

definition of three mating relationships of against, fits and align. The knowledge on these

relationships are combined with the process planning data to identify common

information in the feature.

The representation of assembly knowledge as part of a feature model has been defined

and detailed. Feature definitions have been substantially enhanced to include knowledge

on assembly in the form of the logical position of features within an assembly structure

and the interactions between pairs of features. The interactions have been defined in

terms of mating relationships which are represented by binary expressions with mating

conditions as operators and features as operands. Using the inheritance concept of the

object-oriented technique, classes for assembly and feature relationships have been

defined. The class definitions also include the process planning knowledge.

The essential development tools for the research and the benefits of using them have been

identified. The tools, in the form of the C++ programming language and the ACIS kernel

modeller, are based on the technique of object-orientation which is currently seen as

being the most appropriate and effective method for handling the complexities found in

modern CAD/CAM systems. This methodology has been used to implement and test a

simplified prototype feature-based system that combines the feature and assembly

classes with existing ACIS classes to create the model. Two examples involving a simple

two-part product and a more complicated multi-part one have been presented for

verification in the modelling environment. Although the prototype system can

successfully model the assembly, it requires some improvements in the form of a better

user interface.

8.3 RESEARCH CONTRIBUTIONS

The representation of assembly information is considered to be an essential prerequisite

to the generation of CAD/CAM systems that are capable of optimising product design.

Such a representation can form the basis of design improvement techniques such as

design for assembly (DFA) and manufacturing planning such as assembly planning. It

191

Chapter 8

can also be used to support other related applications such as tolerance analysis of

assemblies and inspection planning.

The main objective of assembly planning is to improve the efficiency of the assembly

process in terms of time to assemble, cost and quality of finished products. One of the

outputs of assembly planning is the generation of assembly sequences. These sequences

are determined by various factors, the mating relationships being the most important. The

mating conditions can be organised in the form of a mating graph which is similar to the

Feature Relationship Graph described in Chapter 5. The assembly sequence is generated

with the aid of interference checking between mating features.

This research has provide several contributions to the area of CAD/CAM, in particular to

features technology and in general to the Computer Integrated Manufacturing

environment. These are outlined below:

i. An object-oriented representation of a set of features which comprise knowledge

useful for multiple applications such as process planning and assembly modelling

has been developed. The design of the knowledge in the features allows appropriate

extensions to be provided within the features, through the inheritance property of

object-oriented technique, to support the needs of other applications.

ii. A hierarchical feature taxonomy has been adopted which caters for a range of feature

types and profiles useful for manufacturing applications. The hierarchy is

particularly suited to implementation using the object-oriented methodology.

iii. Effective representation of assembly knowledge in the feature data has been

achieved, with the use of mating relationships between features. The data has been

combined with relevant process planning knowledge and this provides a high level

interface with the designer for the creation and modelling of assemblies. The

representation is considered to be useful for assembly modelling and for other

subsequent tasks such as assembly planning.

192

Chapter 8

iv. An assembly data structure based on a linked list of subassemblies, components and

features has been established and implemented and is considered to be useful for

extended applications such as assembly planning and design for assembly.

v. A prototype feature-based modelling system has been implemented based on the

ideas and methodologies presented in the thesis. This implementation uses an

object-oriented kernel modeller, which is extensible and allows future development

by adding appropriate functions to the existing classes or by the development of new

classes.

8.4 RECOMMENDATIONS FOR FUTURE WORK

There are several areas where further investigations can be pursued, based on the ideas

presented in this research and the discussion in Chapter 7. These are outlined in the

following paragraphs:

8.4.1 ADDITION OF FEATURE ATTRIBUTES

The possibility of extending the feature definition to include feature attributes such as

threads is deemed important as most mechanical assemblies include these parts. The

approach proposed is to include an additional attribute in the class definition of the

features. This can be in the form of a Boolean representation such as (thread, no_thread).

A thread would be further defined by additional attributes such as the thread pitch and

type. Thus a boss and a hole can be threaded to represent a bolt and a nut respectively.

The inclusion of additional attributes is also necessary for the feature-based system to be

used in a wider product modelling environment. An example of this would be the

inclusion of locations on the feature that could be used as inspection points. The approach

of defining attributes separately from the feature prevents the feature from being

associated with a particular application. This is consistent with the concept of defining

features for multiple applications.

193

Chapter 8

8.4.2 APPLICATION IN ASSEMBLY PLANNING

The logical extension to this work is to investigate the practicality of the approach in

assembly planning, particularly in assembly sequencing. This requires the acquisition

and processing of assembly knowledge. The data on the mating relationships could be

used as input to this application and there are various approaches available to achieve this

aim. One approach deemed suitable for the representation used in this thesis is to use an

assembly graph which shows the connections between all features, in a way that is similar

to the Feature Relationship Graph introduced in Chapter 5. With the help of the graph,

assembly could be split into autonomous sub-assembly groups by decomposing the

graph into smaller parts. The algorithm proposed by Wang and Li (1991) could be used to

group the features and components. Further algorithms and heuristics would be required

to order the components and features to generate a list of ordered pairs of features in an

assembly. The mating relationships data could then be transformed into a connectivity

matrix, as shown in Figure 8.1. Each entry in the matrix shows whether the features are

connected and other algorithms proposed by Wang and Li (1991) could then be used to

sequence the features in the assembly.

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 0 0 0 0

3 1 0 0 1 0 0

4 0 0 0 0 1 0

5 0 0 0 0 0 1

6 1 0 0 0 0 0

Figure 8.1: Mating Relationship Matrix

8.4.3 VALIDITY CHECKING

The representation of assembly knowledge in features has been tested on simple

products. In order to be fully confident that this representation is applicable in

manufacturing environments, the validity of the approach needs to be checked. This

could be achieved by testing the approach on a range of real products which consist of

194

Chapter 8

parts within the domain of the features described in this research. A product would be

modelled and then assembled according to the procedures described in Chapter 6

The approach could also be tested for its applicability in a manufacturing environment by

conducting controlled experiments involving use of the system by designers and

engineers. Objective measures of performance in terms of time, accuracy and quality of

assembly information could be obtained and compared with similar data from manual or

alternative computer approaches. At the same time subjective measures of the suitability

and acceptability of the method could be obtained using survey and observational

techniques. However, for such studies to be meaningful there would be a need to develop

the prototype system to a level where its user interface was comparable with commercial

systems. This case study could also form the basis for the improvement of the system or

the general approach.

8.4.4 INTEGRATION WITH CAD/CAM SYSTEMS

An assembly modelling system will be useful if it can be integrated with other

CAD/CAM systems. The use of ACIS has made it possible to transfer files to many

popular CAD/CAM systems or to use data translators to import from or export to other

systems. Many CAD/CAM systems such as the recent versions of AutoCAD solid

modeller and Microstation can read files from ACIS. ACIS can also be interfaced to

many other CAD/CAM systems using IGES or STEP translators which are commercially

available.

Data transfer could be an alternative to the development of a graphical user interface

within the feature-based modelling system. Models created by the system could be

transferred to the CAD/CAM system for further analysis and manipulation, and thus

enhance the capability of the feature-based assembly modelling system. Transfer of data

between a general CAD/CAM system and an assembly modelling system could be

beneficial, and imitates the way in which many design systems gain access to design

analysis methods. However, true integration can only be achieved by implanting the data

structure and methods of assembly modelling within a general CAD/CAM system. The

195

Chapter 8

use of ACIS, a commonly used kernel, and the object-oriented technique makes this a

feasible approach.

8.4.5 OTHER MANUFACTURING APPLICATIONS

There are opportunities to extend the object-oriented features approach to other

manufacturing applications such as inspection planning. To achieve this, features in an

assembly can be created and then analysed using a CAD/CAM system which can

communicate information to a Coordinate Measuring Machine. Feature attributes

required for inspection planning include the geometry and topology, shape and precision

attributes, relations between features in the assembly hierarchy and relevant

technological data (ElMaraghy and ElMaraghy 1994). With the exception of the

precision attributes (tolerance information), this information is available in the feature

representation presented in this thesis.

The application of the features to other manufacturing areas should provide further

evidence of the extensibility of the object-oriented approach and that the feature

representation can support multiple applications.

8.5 CONCLUSIONS

The potential application of features in geometric modelling has been demonstrated by

much research and industrial work. The research presented here reinforces the idea that

features can be used in multiple applications and that the object-oriented approach assists

in moving towards a unified definition for features. Features which have previously been

used for process planning have been used in an enhanced form to represent an assembly.

The use of features for assembly modelling provides a natural representation, since in

assembly operations it is the feature that dictates the way in which parts are assembled.

Features technology, combined with the object-oriented technology form a powerful

means to represent manufacturing knowledge.

The approach adopted provides a design tool for designers by allowing them to create a

mechanical assembly in terms of features, which is applicable for subsequent

196

Chapter 8

manufacturing planning activities. The feature representation methodology

implemented is suitable for the concurrent representation of knowledge on process

planning and assembly modelling. Clearly, this does not conclusively establish that all

aspects of design and manufacturing can be encapsulated in a single representation, but it

goes some way to confirm the feasibility of the idea.

Future CAD/CAM systems will be more heterogeneous in nature. A number of database

requirements must be considered to control and support design, manufacturing, assembly

and related applications. This research shows that features have much to offer in

effectively fulfilling the requirements of a Simultaneous Engineering environment.

197

References

REFERENCES

AL--ASHAAB, A. H. S. and YOUNG, R. I. M., Design for Injection Moulding in a

Manufacturing Model Environment, Journal of Design and Manufacturing, No 5,1995,

pp 45 - 54

ALLADA, V. and ANAND, S., Feature-Based Modelling Approaches For Integrated

Manufacturing: State-of-the-Art Survey and Future Research Directions, Int Journal

Computer Integrated Manufacturing, Vol. 8, No. 6,1995, pp 411 - 440

BAXTER, J. E., JUSTER, N. P. and de PENNINGTON, A., An Assessment of

Assembly Mating Conditions In the Context of a Product Model, Computers in

Engineering, Vol 1, ASME, 1992, pp 421 - 428

BEDWORTH, D. D., HENDERSON, M. R. and WOLFE, P. M.,

Computer-Integrated Design and Manufacturing, McGraw-Hill International Editions,

1991

BENTLEY SYSTEMS, INC., MicroStation Modeler, Product Summary Brochure,

1994

BOND, A. H. and CHANG, K. J., Feature-Based Process Planning for Machined

Parts, Proc ASME Computers in Engineering Conf, S. Fransisco, Jul/Aug 1988, pp 571-

576

BONNEY, M. C., TAYLOR, N. K. and CASE, K., Using Computer-Aided Design and
Expert Systems for Human Workplace Design, in Geometric Reasoning, Woodwark, J.

(ed), Clarendon Press, Oxford, 1989, pp 269 - 282

BOOCH, G., Object-Oriented Design With Applications, Benjamin/Cummings,

California, 1991

BOOTHROYD, G. DEWHURST, P. and KNIGHT, W., Product Design for

Manufacture and Assembly, Marcel Dekker, Inc., New York, 1994

198

References

BROONSVORT, W. F. and JANSEN, F. IM, Feature Modelling and Conversion-Kev

Concepts to Concurrent Engineering, Computers in Industry, vol 21,1993, pp 61 -86

BUTTERFIELD, W. R., GREEN, M. K., SCOTT, D. C. and STOKER, «'. J., Part

Features for Process Planning, Report C-85-PPP-03, CAM-I Inc, Arlington, Texas,

1986

CASE, K. and ACAR, B. S., Learning Studies in the Use of Computer Aided Design

Systems for Discrete-Parts Manufacture, Behaviour and Information Technology, Vol 8,

No 5,1989, pp 353 - 368

CASE, K. and GINDY, N., Future Directions in Features Research, Internal Document,

LUT, Nov 1991

CASE, K. and GAO, J., Feature Technology - An Overview, Int Journal Computer

Integrated Manufacturing, Vol. 6, No 1&2,1993, pp 2 -12

CASE, K., GAO, J. and GINDY, N., LUT-FBDS: A Feature-Based Design System,

Project Final Report, SERC Grant No: GR/G 35657, Dept of Manufacturing Eng, LUT.

1993

CASE, K., Using a Design by Features CAD System for Process Capability Modelling,

Computer Integrated Manufacturing Systems, Vol 7, No 1 1994, pp 39 - 49

CATANIA, G., Form Features for Mechanical Design and Manufacturing, Journal of

Engineering Design, Vol 2, No 1,1991, pp 21- 43

CHAMBERLAIN, M. A., JONEJA, A. and CHANG, T. C., Protrusion-Features

Handling in Design and Manufacturing Planning, Computer-Aided Design, Volume 25,

Number 1, January 1993, pp 19 - 28

CHANG, T. C., Expert Process Planning For Manufacturing, Addison Wesley, USA,

1990

CHANG, T. C. and WYSK, R. A., An Introduction to Automated Process Planning

Systems, Prentice-Hall, Inc, New Jersey, 1985

199

References

CHEN, Y. M., MILLER, R. A. and VEMURI, K. R., A Framework for Feature-Based

Part Modelling, Computers in Engineering - Vol. 1, ASME 1991, pp 357 - 365

CHEN, C., SWIFT, F., LEE, S., EGE, R. and SHEN, Q., Development of a

Feature-Based and Object-Oriented Concurrent Engineering System, Journal of

Intelligent Manufacturing, No. 5,1994, pp 23 -31

CHOI, B. K., BARASH, M. M. and ANDERSON, D. C., Automatic Recognition of

Machined Surfaces From a 3D Solid Model, Computer Aided Design, Vol 16, No 2,1984

CHUNG, J. C. H., COOK, R. L., PATEL, D. and SIMMONS, M. K., Feature-Based

Geometry Construction for Geometric Reasoning, Proc ASME Computers in

Engineering Conf, S. Fransisco, Jul/Aug 1988, pp 497 - 504

CLARK, A. L. and SOUTH, N. E., Feature-Based Design of Mechanical Parts,

Proceedings, AUTOFACT '87, Michigan, SME, 1987

COMPUTER AIDED DESIGN REPORT, CAD/CAM Publishing Inc, San Diego,

USA, Vol 11, NO. 4, April 1991

CORBETT, J. and WOODWARD, J. P. J., A CAD-Integrated Knowledge-Based

System for the Design of Die Cast Components, Annals of the CIRP, Vol 40/1/91,1991,

pp 103 - 105

DeFAZIO, T. L., ei al., A Prototype of Feature-Based Design for Assembly, Advances

in Design Automation - Volume 1, DE-Vol 23-1, ASME, 1990, pp 9- 16

DELCHAMBRE, A., Computer-Aided Assembly Planning, Chapman and Hall, Great

Britain, 1992

DONG, X. and WOZNY, M. J., Instantiation of User Defined Features on a Geometric

Model, Product Modelling for Computer-Aided Design and Manufacturing, Turner et.

al. (eds), Elsevier Science Publishers, IFTP, 1991 pp 183 - 195

DONG, X., DeVRIES, W. R. and WOZNY, M. J., Feature-Based Reasoning in Fixture

Design, Annals of the CIRP, Vol 40/1/91,1991, pp 111 - 114

200

References

DUAN, W., ZHOU, J. and LAI, K., FSMT: A Feature Solid Modelling Tool for

Feature-Based Design and Manufacturing, Computer-Aided Design, Volume 25,

Number 1, Jan 1993, pp 29 - 38

ELMARAGHY, H. A. and ELMARAGHY, W. H., Computer-Aided Inspection

Planning (CAIP), in Advances in Feature-Based Manufacturing, Shah, J. J., Mantyla,

M. and Nau, D. S. (eds), Elsevier, 1994, pp 363 - 396

FALCIDIENO, B. and GIANNINI, F., Neutral Format Representation of

Feature-Based Models in Multiple Viewpoint Context, Product Modelling for

Computer Aided Design and Manufacturing, Turner et. al. (eds), Elsevier Science

Publishers, IFIP, 1991 pp 165 - 182

FAUX, I. D., Reconciliation of Design and Manufacturing Requirements For Product

Description Data Using Functional Primitive Part Features, Final Report,

Computer-Aided Manufacturing-International, Inc, Texas, 1986

FU, Z., De PENNINGTON, A. and SAIA, A., A Graph Grammar Approach to Feature

Representation and Transformation, Int Journal Computer Integrated Manufacturing,

Vol 6, Nos 1&2,1993, pp 137 - 151

GERO, J. S., Knowledge-Based Computer-Aided Design, Computer Applications in

Production and Engineering, Kimura F. and Rostaldas A. (eds), Elsevier Science

Publishers, IFIP11989, pp 13 - 20

GIACOMETTI, F. and CHANG, T. C., Object-Oriented Design for Modelling Parts,

Assemblies and Tolerances, Proceedings, Second International TOOLS 2, Bezivin, J. et.

al. (eds), Paris, 1990

GINDY, N. N. Z., A Hierarchical Structure For Form Features, lnt Journal of Production

Research, Vol 27, No. 12,1989, pp 2089 - 2103

GINDY, N. N. Z., HUANG, X. and RATCHEV, T. M., Feature-Based Component

Model For Computer-Aided Process Planning Systems, Int Journal Computer

Integrated Manufacturing, Vol 6, Nos 1&2,1993, pp 20 - 26

201

References

GORLEN, K. E., An Object-oriented Class Library for C++ Programs,

Software-Practice and Experience, Vol 17, NO. 12,1987, pp 899 - 922

GUI, J. K. and MANTYLA, M., Functional Understanding of Assembly Modelling,

Computer Aided Design, Vol 26, No. 6,1994, pp 435 - 451

HENDERSON, M. R. and ANDERSON, D. C., Computer Recognition and Extraction

of Form Features: a CAD/CAM Link, Computers in Industry, Vol 5,1984, pp 329 - 339

HENDERSON, M. R. and CHANG, G. J., FRAPP: Automated Feature Recognition

and Process Planning From Solid Model Data, Proc ASME Computers in Engineering

Conf, S. Fransisco, Jul/Aug 1988, pp 529 - 536

HENSON, B. W., BAXTER, J. E. and JUSTER, N. P., Assembly Representation

Within a Product Data Framework, Proceedings, ASME Design and Technical

Conference, Sept 1993

HUANG, T., XIANG, W., ZHOU, J. and YU, J., Tolerance Analysis and Synthesis

Based on Feature Modeling, Proceedings, International Conf on Engineering Design

ICED93, The Hague, August 1993

ISO 10303: Product Data Representation and Exchange - Part 41: Integrated Generic

Resources: Fundamentals of Product Description and Support

JONES, R., MITCHELL S. and NEWMAN, S., Feature-Based Systems for the

Design and Manufacture of Sculptured Products, lnt Journal Production Research, Vol

31, No. 6,1993, pp 1441 - 1452

JOSHI, S. and CHANG, T. C., Graph-Based Heuristics For Recognition of Machined

Features From a 3D Solid Model, ComputerAided Design, Vol 20, No 2,1988, pp 58 -66

JOSHI, S., VISSA, N. N. and CHANG, T. C., Expert Process Planning System With

Solid Model Interface, lnt Journal of Production Research, Vol 26, No 5,1988, pp 863 -

885

JOSHI, S., CHANG, T. C. and LIU R., Process Planning Formalisation in an Al

Framework, Artificial Intelligence, Vol 1, No 1,1986, pp 45 -53

202

References

JURI, A. H., SAIA, A. and DE PENNINGTON, A., Reasoning About Machining

Operations Using Feature-Based Models, Jut Journal Production Research, Vol 28, No.

1,1990, pp 153 - 171

KARRA, C. and PHELPS, T. A., Tool Approach Directions For Machining Protrusion

and Depression Features In An Object, Advances in Design Automation, Vol 1,1990,

ASME, pp 193 - 200

KIM, Y. S., Form Feature Recognition by Convex Decomposition, Computers in

Engineering, Vol 1, ASME, 1991, pp 61 - 69

KIM, S. H. and LEE, K., An Assembly Modelling System For Dynamic and Kinematic

Analysis, Computer Aided Design, Vol 21, No 1,1989, pp 2- 11

KO, H. and LEE, K., Automatic Assembling Procedure Generation From Mating

Conditions, Computer Aided Design, Vol 19, No 1,1987, pp 3- 10

KORAH, J., Object-Oriented Methodology: A Primer, SME Blue Book Series,

CASA/SME, Michigan, 1994.

KRAUSE, F. L., ULBRICH, A. and VOSGERAU, F. H., Feature-Based Approach for

the Integration of Design and Process Planning Systems, Product Modelling for

Computer-Aided Design and Manufacturing, Turner et. al. (eds), Elsevier Science

Publishers, IFIP, 1991

KRAUSE, F. L., KIMURA, F., KJELLBERG, T. and LU, S. C. Y., Product Modelling,

Annals of the CIRP, Vol 42/2/1993, pp 695 - 706

KUTTNER, B., Manufacturing Expert System. An Object-Oriented Approach to

Feature Driven Process Automation, Journal of Manufacturing Systems, Vol 7, No 1,

1988

LAAKKO, T. and MANTYLA, M., Feature Modelling By Incremental Feature

Recognition, Computer Aided Design, Vol 25, No 8,1993, pp 479 - 492

203

References

LATIF, M. N. and HANNAM, R. G., An Investigation of Object-Oriented Concepts in

Feature-Based Design, Proceedings, 29th International MATADOR Conference,

Manchester, April 1992, pp 3 -11

LA`VLOR-WRIGHT, T. and HANNAM, R. G., A Feature-Based Design for

Manufacture: CADCAM Package, Computer-Aided Engineering Journal, Dec 1989, pp

215 - 220

LENAU, T. and MU, L., Features in Integrated Modelling of Products and Their

Production, Int Journal Computer Integrated Manufacturing, Vol 6, Nos 1&2,1993, pp

65 - 73

LEE, I. B. H., LIM, B. S. and NEE, A. Y. C., Knowledge-Based Process Planning

System For The Manufacture of Progressive Dies, Int Journal of Production Research,

Vol 31, No 2,1993, pp 251 - 278

LEE, K. and GOSSARD, D. C., A Hierarchical Data Structure For Representing

Assemblies: Part 1, Computer Aided Design, Vol 17, No 1,1985, pp 15 - 19

LEE, K. and ANDREWS, G., Inference of the Positions of Components in an

Assembly: Part 2, Computer Aided Design, Vol 17, No 1,1985, pp 21 - 24

LI, R. K. and HUANG, C. L., Assembly Code Generation From a Feature-Based

Geometric Model, Int Journal of Production Research, Vol 30, No. 5,1992, pp 627 - 646

LIBARDI, E. C., DIXON, J. R. and SIMMONS, M. K., Computer Environment For

the Design of Mechanical Assemblies: A Research Review, Engineering With

Computers, No 3,1988, pp 121 - 136

LIM, S. S., LEE, I. B. H., LIM, L. E. E. and NGOI, B. K. A., Computer-Aided

Concurrent Design of Product and Assembly Processes: A Literature Review, Journal of

Design and Manufacturing, No 5,1995, pp 67 - 88

LIN, A. C. and CHANG, T. C., An Integrated Approach to Automated Assembly

Planning for Three-Dimensional Mechanical Products, Int Journal of Production

Research, Vol 31, No. 5,1993, pp 1201 - 1227

204

References

LUBY, S. C., DIXON, J. R. and SIMMONS, M. K., Creating and Using a Features Data

Base, Computers in Mechanical Engineering, Vol 5, no 3, November 1986, pp 25 - 33

MANTYLA, M., Directions for Research in Product Modelling, ComputerApplications

in Production and Engineering, Kimura F. and Rostaldas A. (eds), Elsevier Science

Publishers, IFIP, 1989

MANTYLA, M., A Modeling System For Top-Down Design of Assembled Products,

IBM Journal of Research and Development, Vol 34, No. 5,1990, pp 636 - 658

MAREFAT, M., MALHOTRA, S. and KASHYAP, R L., Object-Oriented Intelligent

Computer-Integrated Design, Process Planning and Inspection, Computer, March 1993,

pp 55 - 65

MASUKI, H., NOMURA, N., IMAMURA, S. and KOJIMA, T., Object-Oriented

Modelling to Grasp Form Features, Computer Applications in Production and

Engineering, Kimura F. and Rostaldas A. (eds), Elsevier Science Publishers, IFIP, 1989,

pp 87-94

MEERAN, S. and PRATT, M. J., Automated Feature Recognition From 2D Drawings,

Computer-Aided Design, Volume 25, Number 1, January 1993, pp 7- 17

MILL, F., RIEKEN, H. R., SALMON, J. C. and WARRINGTON, S. W., Feature

Oriented Engineering in UK Industry and Academia, Report, Manufacturing Planning

Group, Department of Mechanical Engineering, Univ of Edinburgh, April 1996

MITCHELL, R. J., C+ + Object-Oriented Programming, MacMillan, Gt. Britain, 1993

MOLLOY, E., YANG, H. and BROWNE, J., Feature-Based Modelling in Design for

Assembly, lnt Journal Computer Integrated Manufacturing, Vol 6, Nos 1&2,1993, pp

119-125

MORTENSON, M. E., Geometric Modeling, John Wiley, N. York, 1985

NEE, A. Y. C. et. al., Feature-Based Classification Scheme for Fixtures, Annals of CIRP,

Vol 41/1/1992, pp 189 - 192

205

References

NIEMINEN, J. and TUOMI, J., Design With Features for Manufacturing Cost

Analysis, Product Modellingfor Computer Aided Design and Manufacturing, Turner et.

al. (eds), Elsevier Science Publishers, IFIP, 1991 pp 317 - 330

NITSCHKE, D. R., CHEN, Y. M. and MILLER, R. A., A Feature Extraction Interface

for CAD Part Models, Computers in Engineering, Vol 1, ASME 1991

NOF, S. Y., Critiquing The Potential of Object Orientation in Manufacturing, Int J.

Computer Integrated Manufacturing, Vol. 7, No. 1,1994, pp 3- 16

OH, J. H. and LEE, K., Automatic Dimensioning From 3D Solid Model With Feature

Extraction, Advances in Design Automation, Vol 1, ASME, 1990, pp 115 -119

OPEN SOFTWARE FOUNDATION, OSF/Motif, Programmer's Reference, Release

1.2, Prentice Hall, USA, 1989

PARAMETRIC TECHNOLOGY CORPORATION, Pro/Engineer Product

Brochure, USA, 1993

PATEL, R. M. and McLEOD, A. J., The Implementation of a Mechanical Engineering

Design Interface Using Engineering Features, Computer-Aided Engineering Journal,

Dec 1988, pp 241- 246

PORCHET, M. and ZHANG, G., Assembly Modeling For Tolerancing In CAD: An

Approach of Oriented Functional Relationship Graph, Proceedings, International Conf

on Engineering Design ICED93, The Hague, August 1993

PRABHAKAR, S. and HENDERSON, M. R., Automatic Form Feature Recognition

Using Neural Network Based Techniques on Boundary Representations of Solid Model,

Computer Aided Design, Volume 24, Number 7, July 1992 pp 381 - 392

PRATT, M. J. and WILSON, P. R., Requirements For Support of Form Features In a

Solid Modeling System, Final Report, Computer-Aided Manufacturing-International,

Inc, Texas, June 1985

PRATT, M. J., Application of Feature Recognition in the Product Life-Cycle, Int

Journal Computer Integrated Manufacturing, Vol 6, Nos 1&2,1993, pp 13 - 19

206

References

REMBOLD, U., NNAJI, B. O. and STORR, A., Computer Integrated Manufacturing

and Engineering, Addison-Wesley, 1993

REQUICHA, A. A. G., Representations for Rigid Solids: Theory, Methods and

Systems, ACM Computing Surveys, 12(4), 1980, pp 437 - 464

ROCHELEAU, D. N. and LEE, K., System for Interactive Assembly Modelling,

Computer Aided Design, Vol 19, No 2,1987, pp 65 - 72

ROSARIO, L. M. and KNIGHT, W. A., Design for Assembly Analysis: Extraction of

Geometric Features From a CAD System Data Base, Annals of the CIRP, Vol 38/1,1989,

pp 13 - 16

ROSEN, D. W., Feature-Based Design: Four Hypotheses for Future CAD System,

Research in Engineering Design, No 5,1993, pp 125 - 139

ROY, U. and LIU, C. R., Feature-Based Representational Scheme of a Solid Modeler

for Providing Dimensioning and Tolerancing Information, Robotics and

Computer-Integrated Manufacturing, Vol 4, Nos 3/4,1988, pp 335 - 345

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F. and LORENSEN,

W., Object-Oriented Modeling and Design, Prentice Hall, New Jersey, 1991

SAKURAI, H. and GOSSARD, D. C., Recognising Shape Features in Solid Models,

IEEE Computer Graphics and Applications, Sept 1990, pp 22 - 32

SAKURAI, H. and GOSSARD, D. C., Geometric Modelling in Setup Planning and
Fixture Design, Product Modelling for Computer-Aided Design and Manufacturing,

Turner et. al. (eds), Elsevier Science Publishers, IFIP, 1991 pp 299 - 313

SALOMONS, O. W., van HOUTEN, F. J. A. M. and KAIS, H. J. J., Review of
Research in Feature-Based Design, Journal of Manufacturing Systems, Vol 12, No 2,

1993, pp 113 - 132

SEKIGUCHI, H., KOJIMA, T. and INOUE, K., Study on Automatic Determination of

Assembly Sequence, Annals of CIRP, Vol 32, No 1,1983, pp 371 - 374

207

References

SHAH, J. J., Feature Transformations Between Application-Specific Feature Spaces,

Computer-Aided Engineering Journal, December 1988, pp 247 - 255

SHAH, J. J., Assessment of Features Technology, Computer-Aided Design, Volume 23,

Number 5, June 1991, pp 331 - 343

SHAH, J. J. and HSIAO, D. W. C., A Meta Knowledge Base For Machining Process

Selection, Computers in Engineering, Vol 1, ASME, 1991, pp 77 - 84

SHAH, J. J., MANTYLA, M. and NAU, D. S., (eds) Advances in Feature Based

Manufacturing, Elsevier, 1994

SHAH, J. J. and MATTHEW, A., Experimental Investigation of the STEP Form

Feature Information Model, Computer Aided Design, Volume 23, number 4, May 1991,

PP 282 - 296

SHAH, J. J. and ROGERS, M., Functional Requirements and Conceptual Design of the

Feature-Based Modelling System, Computer Aided Engineering Journal, Vol 5, No 1,

1988, pp 9- 15.

SHAH, J. J. and ROGERS, M., Assembly Modeling as an Extension of Feature-Based

Design, Research in Engineering Design, No 5,1993, pp 218 - 237

SHAH, J. J., SREEVALSAN, P., ROGERS, M., BILLO, R. and MATHEW, A.,

Current Status of Features Technology, Revised Report, Computer-Aided

Manufacturing-International, Inc, Texas, Nov 1988

SHAH, J. J. and TADEPALLI, R., Feature-Based Assembly Modeling, Computers in

Engineering, Vol 1, ASME, 1992, pp 253 - 260

SHARP, R., A Solid Future, CADCAM, October 1993, p 15

SMITH, N., The Design of a Feature-Based Pre-Processor, M. Eng Thesis, LUT, April

1993

SME (Society of Manufacturing Engineers), PDES: The Enterprise Data Standard,

SME Blue Book Series, CASA/SME, 1989

208

References

SODHI, R. and TURNER, J. U., Representing Tolerance and Assembly Information In

a Feature-Based Design Environment, Advances in Design Automation - Vol 1, ASME,

1991 pp 101- 108

SODHI, R. and TURNER, J. U., Towards Modelling of Assemblies for Product Design,

Computer Aided Design, Volume 26, No. 2,1994, pp 85 - 97

SOHLENIUS, G., Concurrent Engineering, Annals of the CIRP, Vol 41/2/1992 pp 645 -
655

SOUKUP, J., Taming C++, Pattern Classes and Persistence for Large Projects,

Addison Wesley Publishing Co, 1994

SPATIAL TECILNOLOGY INC, ACIS Geometric Modeler, Programmers Manual,

1993

SPATIAL TECHNOLOGY EUROPE, News Notes, Vol 1, No 1,1993

SREEVALSAN, P. C. and SHAH, J. J., Unification of Form Feature Definition

Methods, in Intelligent ComputerAided Design, Brown et. al. (eds), Elsevier, IFIP 1992,

pp 83 - 106

STROUSTRUP, B., The C++ Programming Language, 2nd Edition, Addison Wesley,

New Jersey, 1991

STURGES, R. H. and KILANI, M. I., Towards an Integrated Design For An Assembly

Evaluation and Reasoning System, ComputerAided Design, Vol 24, No. 2,1992, pp 67 -

79

SWIFT, K. G., Knowledge-Based Design for Manufacture, Kogan Page, 1987

UNGER, M. B. and RAY, S. R., Feature-Based Process Planning in the AMRF, Proc

ASME Computers in Engineering Conf, S. Fransisco, Jul/Aug 1988, pp 563 - 569

USHER, J. M., An Object-Oriented Approach to Product Modelling for Manufacturing

Systems, Computers and Industrial Engineering, Vol 25, Nos 1-4,1993, pp 557 - 560

209

References

VAN EMMERIK, M. J. G. M., An Interactive Graphical Approach to Feature

Modeling Using Halfspaces and Geometric Constraints, Advances in Design Automation

- Volume 1, DE-Vol 32-1, ASME 1991, pp 97 - 105

VAN EMMERIK, M. J. G. M. and JANSEN, F. W., User Interface for Feature

Modelling, Computer Applications in Production and Engineering, Kimura F. and

Rostaldas A. (eds), Elsevier Science Publishers, IFIP, 1989, pp 625 - 632

VAN HOUTEN, F. J. A. M., Manufacturing Interfaces, Annals of the CIRP, Vol

41/2/1992, pp 699 - 710

VAN'T ERVE, A. H. and KALS, H. J. J., XPLANE, A Knowledge-Based Driven

Process Planning System, Proc. 2nd Int Conf on Computer-Aided Production

Engineering, 1987

WANG, H. P. and LI, J. K, Computer-Aided Process Planning, Elsevier, Netherlands,

1991

WANG, M. T., An Object-Oriented Feature-Based CAD/CAPP/CAM Integration

Framework, Advances in Design Automation - Volume 1, DE-Vol 32-1, ASME 1991,

pp 109-116

WANG, N. and OZSOY, T. M., Automatic generation of Tolerance Chains From Mating

Relations Represented in Assembly Models, Advances in Design Automation, Vol 1,

1990, ASME, pp 227 - 233

WARMAN, E. A., Object-Oriented Programming and CAD, Journal of Engineering

Design, Vol 1, No. 1,1990, pp 37 - 46

WESLEY, M. A., LOZANO-PEREZ, T., LIEBERMAN, L. I., LAVIN, M. A. and
GROSSMAN, D. D., A Geometric Modeling System for Automated Mechanical

Assembly, IBM Journal of Research and Development, Vol 24, No 1,1980, pp 64 - 74

WIERDA, L. S., Linking Design, Process Planning and Cost Information by

Feature-Based Modelling, Journal of Engineering Design, Vol 2, No 1,1991, pp 3 -19

210

References

WOLF, W., Object-Oriented Programming for CAD, IEEE Design & Test of

Computers, Vol 8, No 1,1991, pp 35 - 42

WOODWARK, J. R., Shape Models in Computer-Integrated Manufacture, Computer

Integrated Manufacturing, NATO ASI Series F49, Turksen, B. (ed), Springer-Verlag,

1988

XUE, D. and DONG, Z., Automated Concurrent Design Based on Combined Feature,

Tolerance, Production Process and Cost Models, Advances in Design Automation,

AS ME, Vol 2,1993, pp 199 - 210

YOUNG, R. I. M. and BELL, R., Design by Features: Advantages and Limitations in

Machine Planning Integration, lnt Journal Computer Integrated Manufacturing, Vol 6,

Nos 1&2,1993, pp 105 - 112

ZEID, I., CAD/CAM Theory and Practice, McGraw-Hill, USA, 1991

ZHANG, Y., GU, P. and NORRIE, D. H., Object-Oriented Product Model for

Integrated Manufacturing, Proc, International Conf on Object-Oriented Manufacturing

Systems (ICOOMS '92), May 1992, Alberta, Canada

ZHOU, M., GREENWELL, R. and TANNOCK, J., Object-Oriented Methods for

Manufacturing Information Systems, Computer Integrated Manufacturing Systems, Vol

7, No 2,1994, pp 113 - 121

211

Appendix A

APPENDIX A
ASSEMBLY CLASS DECLARATIONS

/*The following codes represent declarations of classes defined in Chapter 5. */

#ifndef FBDC H
#define

_FBDC_H #include <fstream. h>
#include <string. h>

class feature;

class component;
class subassy;

//ASSEMBLY CLASS
//Declaration for assembly class

class assembly {
BODY *assy;

char assy_name[20];
assembly *next;

subassy *s;
double assy_posX;
double assy_posY;
double assy_posZ;
double assy_AngleX;
double assy_AngleY;
double assy_AngleZ;

public:
assemblyO;
-assemblyO;
void addsubassyO;
virtual void drawO;

void saved;
};

//SUBASSEMBLY CLASS
//Declaration for subassembly class

class subassy {
BODY *subaO;
char subassy_name[20];

212

Appendix A

face *subassyface;

subassy *next;

component *Comp;
double sub_posX;
double sub_posY;
double sub_posZ;
double subassy_AngleX;
double subassy_AngleY;
double subassy_AngleZ;

public:
subassyO;
-subassyü;
void addcomponentO;
void findface();

void draw();

void saveO;

//COMPONENT CLASS
//Declaration for component class

class component {

protected:
BODY* comp;
FACE* compface;
char comp_name[20];
component *next;
feature *ft;
double comp_width;
double comp_length;
double comp_height;
double comp_posX;
double comp_posY;
double comp_posZ;
double comp_angleX;
double comp_angleY;
double comp_angleZ;

public:
componentO;
component(char* cn, double &w, double &l, double &h);

virtual -componentO;
void GetDimension();

213

Appendix A

void GetPositionO;

void GetOrientationü;

char CNameO { return comp_name[20];)
double CWidthQ;
double CLengthO;
double CHeightO;
double CPosX() { return comp_posX; }
double CPosY() {return comp_posY; }
double CPosZQ {return comp_posZ;)

void Draw_CompO;

void FindFaceO;

void SaveBodyQ;

void AddFeature(component &comp);

};
#endif /* FBDC H */

II ASSEMBLY RELATIONSHIP CLASS

class relations: {

char mating_relation[8];
feature *first;
feature *second;
face *facel;
face *face2;

public:
void AssyUserlnputO;

char IdentifyRelation(char fea1[5], char fea2[5]);

void Transform(component *c);

void ListRelationO;

};
//LINK CLASS
//this class defines the nature of the objects that will be stored in the list

//OBJECTLINK CLASS

template <class DataT> class objectlink
{

public:
DataT type; //type of data

objectlink<DataT> *next;

objectlink<DataT> *prior;

objectlinkO;

214

Appendix A

objectlink<DataT> *getnext() { return next; }
objectlink<DataT> *getprior() { return prior; }

};

//ASSYLIST CLASS
//this class inherits the above class
//actually implements the double linked list mechanism

template <class DataT> class assylist: public objectlink

objectlink<DataT> *start, *end;
public:

assylist() { start= end = NULL; }
void store(DataT *c);
void remove(objectlink<DataT> *ob); //delete entry
void fiwdlistQ; //display list from beginning
void bkwdlist(); //display list from the end
objectlink<DataT> *getstart() { return start; }
objectlink<DataT> *getend() { return end; }

};

215

Appendix B

APPENDIX B
APPLICATION AND MAKE FILES

//Partial listing for main file fbds. cc

#include <iostream. h>
#include <stdio. h>
#include <stdlib. h>
#include <logical. h>
#include <string. h>

//Include ACIS class files

#include "acis. hxx"
#include "vector/transf. hxx"

#include "vector/vector. hxx"
#include "vector/unitvec. hxx"
#include "data/debug. hxx"
#include "data/entity. hxx"
#include "top/alltop. hxx"

#include "top/body. hxx"
#include "top/face. hxx"

#include "api/api. hxx"
#include "api/journal. hxx"
#include "api/routines. lixx"

#include "fbdclass. cc"
#include "comp. cc"
#include "save. cc"
#include "dblink. cc"
#include "relation. cc"
#include "utility. cc"

//Path for the Test Harness
char path[80] = "/home/samson/acis_1.4/acis1.4/acis1.4_x_demo. sun4";

void Create_Components;

void WelcomeO; //Welcome message - defined in utility. cc
void UserInput();

void MainMenu(); //Displays main menu
void AssyO; //Interface with functions in relation. cc

216

Appendix B

void OutputO; //Outputs data - defined in utility. cc

main()

WelcomeO;
MainMenu();

}

void MainMenu()

int mchoice;

cout « "\n\n SYSTEM MENU \n";
cout «" ===_=======\n";
cout « "fin [1] CREATE FEATURE/COMPONENT\n";

cout «"\n [2] CREATE ASSEMBLY\n";
cout « "\n [3] TEST HARNESS\n";

cout « "\n [4] PRINT DATA\n";
cout « "\n [5] EXIT\n";

cout « "\nEnter selection [1-5]

cin » mchoice;
while(mchoice != 6)
1

switch(mchoice)
{

case 1: UserlnputO;
break;

case 2: AssyO;
break;

case 3: system(path);
break;

case 4: OutputO;
break;

case 5: cout « "\nExit FBDS\n\n";

exit(O);

default : cout « "\nError. Enter Selection [I - 5]\n";

217

Appendix B

MainMenu();

cin » mchoice;

void Userlnput()

char ans;
Create_Componento ;
cout « "\nCreate another component? (y/n) ";
cin » ans;
if (ans =='y')

UserlnputO;

else
(cout « "Back to Main Menu\n");

void Create_Component()

char name[20];
double 11, wl, h1;
dllist list;

outcome result = api_start_modeller(TRUE, "journal", 0);

outcome_check(result, "error initialising modeler");

//component is actually a base feature

component *comp = new component(name, 11, wl, hl);
comp->GetPositionO;
comp->GetOrientation();
comp->GetWorkSize();
comp->Draw_Compo ;
comp-->FindFaceo ;
comp->AddFeature(*comp);
list. store(comp);
comp->PrintDataO;
comp->SaveBodyO;
combine_file(comp);

218

Appendix B

MAKE FILE

//This is the makefile for compiling FBDS. CC

model: fbds. o
CC -g -ofbds\
fbds. o \
/home/samson/acis_ 1.4/acis 1.4/error/obj. sun4/find_message. o
-L/home/samson/acis 1.4/acis 1.4/lib. sun4 \

-lspline -Isg_husk -ikernel -lspline -lkernel -Ispline \
/home/sanison/acis_1.4/aglib 1.5/lib. sun4/libaglib. a \

-lm

fbds. o: fbds. cc comp. cc fbdclass. cc relations. cc save. cc
CC-c-g\

-I/home/samson/acis 1.4/acis 1.4 \

-I/home/samson/acis 1.4/acis 1.4/kernel \

-1/home/samson/acis_1.4/acis1.4/spline \
fbds. cc

219

Appendix C

APPENDIX C
SAMPLE ACIS FILE

This file contains data generated from the pin and block assembly shown in Figure 6.6.
The file is retrieved in the Test Harness to display the model, as shown in Figure 6.12.

//Data for boss feature of the block
1048600
body $-1 $1 $-1 $2 #
lump $-1 $-1 $3 $0 #
transform $-1 1 000 10 00 10 00 10 00 #

shell $-1 $-1 $-1 $4 $1 #
face $-1 $5 $6 $3 $-1 $7 0#
face $-1 $8 $9 $3 $-1 $10 1#
loop $-1 $-1 $11 $4 #

plane-surface $-10 0 20 001 10 0 0#
face$-1 $12$13$3$-1 $141#
loop $-1 $-1 $15 $5 #

plane-surface $-i00-20001 10 0 0#

coedge $-1 $16 $17 $18 $19 0 $6 $-1 #
face $-1 $20 $21 $3 $-1 $22 1#
loop $-I $-1 $23 $8 #

plane-surface $-1 0 -50 001 -0 -0 0 10 #

coedge $-1 $24 $25 $26 $27 0 $9 $-1 #

coedge $-1 $28 $11 $29 $30 0 $6 $-1 #

coedge $-1 $11 $28 $31 $32 0 $6 $-1 #

coedge $-1 $33 $34 $11 $19 1 $35 $-1 #

edge $-1 $36 $37 $18 $38 0#
face $-1 $39$40$3$-1 $41 1#
loop $-I $-1 $42 $12 #

plane-surface $-1 -60 00 10 000 -10 #

coedge $-1 $43 $31 $44 $45 0 $13 $-1 #

coedge $-1 $46 $15 $43 $47 0 $9 $-1 #

coedge $-1 $15 $46 $48 $49 0 $9 $-1 #

coedge $-1$34 $33 $15 $27 1 $35 $-1 #

edge $-1 $50 $51 $26 $52 0#

coedge $-1 $17 $16 $53 $54 0 $6 $-1 #
coedge $-1 $55 $56 $16 $301 $40 $-1 #
edge $--1 $37 $57 $29 $58 0#
coedge $-1 $23 $59 $17 $321 $13 $-1 #
edge $-1 $60 $36 $31 $61 0#
coedge $-1 $26 $18 $59 $62 0 $35 $-1 #
coedge $-1 $18 $26 $55 $63 1 $35 $-1 #
loop $-1 $-1 $33 $39 #
vertex $-1 $19 $64 #

vertex $-1 $19 $65 #

straight-curve $-160 0 20 0 10 #
face $-1 $--1 $35 $3 $-1 $66 1#

220

Appendix C

loop $-I $-1 $55 $20 #

plane-surface $-10 5000-1 000-10 #
coedge $-I $67 $53 $56 $68 0 $21 $-1 #
coedge $-i $59 $23 $24 $47 1 $13 $-1 #
coedge $-1 $53 $67 $23 $45 1 $21 $-1 #
edge $-1 $60 $69 $44 $70 0#
coedge $-1 $25 $24 $67 $71 0 $9 $--1 #

edge $-1 $51 $69 $43 $72 0#

coedge ä-1 $56 $55 $25 $49 1 $40 $-1 #

edge $-1 $73 $50 $48 $74 0#

vertex $-1$27 $75 #
vertex $-1 $62 $76 #
straight-curve $-160 0 -20 0 -10 #

coedge $-1 $42 $44 $28 $54 1 $21 $-1 #

edge $-1 $57 $60 $53 $77 0#

coedge $-1 $48 $29 $34 $63 0 $40 $-1 #

coedge $--1 $29 $48 $42 $68 1 $40 $-1 #

vertex $-1 $30 $78 #

straight-curve $-10 50 20 -10 0#

coedge $-1 $31 $43 $33 $62 1 $13 $-1 #

vertex $-1 $54 $79 #

straight-curve $-10 -50 20 10 0#

edge $-1 $36 $51 $33 $80 0#

edge $-1 $37 $50 $34 $81 0#

point $-1 60 -50 20 #

point $-160 50 20 #
plane-surface $-160 00 -10 0 0-0 10 #

coedge $-1 $44 $42 $46 $71 1 $21 $-1 #

edge $--1 $57 $73 $56 $82 0#

vertex $-1 $71 $83 #

straight-curve $-1-60 -50 000 -1 #

edge $-1 $69 $73 $67 $84 0#

straight-curve $-10 -50 -20 -10 0#

vertex $-1 $49 $85 #

straight-curve $-10 50 -20 10 0#
point $-160 50 -20 #
point $-160 -50 -20 #
straight-curve $-1-60 0 20 0 -10 #
point $-1 -60 50 20 #
point $-1 -60 -50 20 #
straight-curve $-160 -50 000 -1 #
straight-curve $-160 50 000 -1 #
straight-curve $-1-60 50 000 -1 #
point $-1 -60 -50 -20 #
straight-curve $-1-60 0 -20 0 10 #
point $-1-60 50 -20 #

//Data for hole feature of block
1042600
body $-l $1 $-1 $2 #
lump $-1 $-1 $3 $0 #

221

Appendix C

transform $-1 1000100010001000#

shell $-I $-I $-1 $4 $1 #
face $-1 $5 $6 $3 $-i $7 0#
face $-1 $8 $9 $3 $-1 $10 0#
loop$-1 $11 $12$4#

cone-surface $-10 00001 15 00101 0#
face $-I $-1 $13$3$-1 $140#
loop $-I $-1 $15 $5 #

plane-surface $-10 0 -20 00 -1 -10 0 0#
loop $-1 $-1 $16 $4 #

coedge $-1 $12 $12 $15 $17 1 $6 $-1 #
loop $-1 $-I $18 $8 #

plane-surface $-10 0 20 001 10 0 0#

coedge$-1 $15 $15 $12$170$9$-1 #

coedge $-1 $16 $16 $18 $19 1 $11 $-1 #

edge$-1 $20$20$15 $210 #

coedge $-1 $18 $18 $16 $19 0 $13 $-1 #

edge $-1 $22 $22 $18 $23 0#

vertex $-1 $17 $24 #

ellipse-curve $-10 0 -20 00 -1 15 001#

vertex $-1 $19 $25 #

ellipse-curve $-10 0 20 001 1500 1#

point $-1 15 0 -20 #

point $-1 15 0 20 #

//Data for rectangular boss feature of the pin
1048600
body $-1 $1 $-1 $2 #
lump $-1 $-1 $3 $0 #
transform $-1 1 000 1 000 100 100 1000#

shell $-1 $-1 $-1 $4 $1 #
face $-1 $5 $6 $3 $-1 $7 0#
face $-1 $8 $9 $3 $-1 $10 1#
loop $-I $-1 $11 $4 #

plane-surface $-10 05001 10 00#
face-1$12$13$3$-1$141#
loop $-1 $-1 $15 $5 #

plane-surface $-10 0 -5 001 1000#

coedge $-1 $16 $17 $18 $19 0 $6 $-1 #
face $-1 $20 $21 $3 $-1 $22 1#
loop $--1 $-1 $23 $8 #
plane-surface $-10 -25 0 01-0 -0 01 0#
coedge $-1 $24 $25 $26 $27 0 $9 $-1 #
coedge $-1 $28 $11 $29 $30 0 $6 $-1 #
coedge $-1 $11 $28 $31 $32 0 $6 $-1 #
coedge $-1 $33 $34 $11 $19 1 $35 $-1 #
edge $-1 $36 $37 $18 $38 0#
face $-1 $39 $40 $3 $-1 $41 1#
loop $-1 $-I $42 $12 #

plane-surface $-1 -25 00 10 000 -10 #
coedge $-1 $43 $31 $44 $45 0 $13 $-1 #

222

Appendix C

coedge $-1 $46 $15 $43 $47 0 $9 $-1 #

coedge $-1 $15 $46 $48 $49 0 $9 $-1 #

coedge $-1 $34 $33 $15 $27 1 $35 $-1 #

edge $-I $50 $51 $26 $52 0#

coedge $-1 $17 $16 $53 $54 0 $6 $-1 #

coedge $--1 $55 $56 $16 $30 1 $40 $-1 #

edge $-1 $37 $57 $29 $58 0#

coedge $-1 $23 $59 $17 $32 1 $13 $-1 #

edge $-1 $60 $36 $31 $610 #

coedge $-1 $26 $18 $59 $62 0 $35 $-1 #

coedge $-1 $18 $26 $55 $63 1 $35 $-1 #
loop $--1 $-1 $33 $39 #

vertex $-1 $19 $64 #

vertex $-1 $19 $65 #

straight-curve $-12-5 050 10 #
face $-1 $-1 $35 $3 $-1 $66 1#
loop $-I $-i $55 $20 #

plane-surface $-10 25 00 -10 00 -10 #

coedge $-1 $67 $53 $56 $68 0 $21 $-1 #

coedge $-1 $59 $23 $24 $47 1 $13 $-1 #

coedge $-1 $53 $67 $23 $45 1 $21 $-1 #

edge $-1 $60 $69 $44 $70 0#

coedge $-1 $25 $24 $67 $71 0 $9 $-1 #

edge $-1 $51 $69 $43 $72 0#

coedge $-1 $56 $55 $25 $49 1 $40 $-1 #

edge $-1 $73 $50 $48 $74 0#

vertex $-1 $27 $75 #

vertex $-1 $62 $76 #

straight--curve $-1 25 0 -5 0 -10 #

coedge $-1 $42 $44 $28 $54 1 $21 $-1 #

edge $-1 $57 $60 $53 $77 0#

coedge $-1 $48 $29 $34 $63 0 $40 $-1 #

coedge $-1 $29 $48 $42 $68 1 $40 $-1 #

vertex $-1 $30 $78 #

straight-curve $-10 25 5 -10 0#
coedge $-1$31 $43 $33 $62 1 $13 $-1 #
vertex $--1$54 $79 #
straight-curve $-10 -25 5 10 0#
edge $-1 $36 $51 $33 $80 0#
edge $-1 $37 $50 $34 $81 0#
point $-125 -25 5#
point $-125 25 5#
plane-surface $-125 00 -10 00 -0 10 #

coedge $-1 $44 $42 $46 $71 1 $21 $-1 #

edge $-1 $57 $73 $56 $82 0#

vertex $-1 $71 $83 #
straight-curve $-1 -25 -25 000 -1 #

edge $-1 $69 $73 $67 $84 0#

straight-curve $-10 -25 -5 -10 0#

vertex $-1 $49 $85 #

straight-curve $-10 25 -5 10 0#

223

Appendix C

point $-1 25 25 -5 #

point $-125 -25 -5 #

straight-curve $--1 -25 050 -10 #

point $-i -25 25 5#

point $-I -25 -25 5#

straight-curve $-1 25 -25 000 -1 #

straight-curve $-1 25 25 000 -1 #

straight-curve $-1 -25 25 000 -1 #

point $-1 -25 -25 -5 #

straight-curve $-1 -25 0 -5 0 10 #

point $--1 -25 25 -5 #

//Data for circular boss feature of the pin
1042600
body $-1 $1 $-1 $2#
lump $-1 $-1 $3 $0 #

transform $-1 1 000 10 00 10 0 125 10 00#

shell $-1 $-1 $-1 $4 $1 #
face $-1 $5 $6 $3 $-1 $7 0#
face $-1 $8 $9 $3 $-1 $10 0#
loop $-1 $11 $12 $4 #

cone-surface $-10 00001 15 00 10 10 #
face $-1 $-1 $13 $3 $-1 $14 0#
loop $-I $-1 $15 $5 #

plane-surface $-10 0 -20 00 -1 -1 00 0#
loop $-1 $-1 $16 $4#

coedge$-1 $12 $12 $15 $17 1 $6S-1 #
loop $-I $-1 $18 $8#

plane-surface $-10 0 20 001100 0#

coedge$-1 $15$15$12$170$9$-1#

coedge $--1 $16 $16 $18 $19 1 $11 $-1 #

edge $-1 $20 $20 $15 $210 #

coedge$-1 $18$18$16$190$13 $-1 #

edge S--1 $22 $22 $18 $23 0#

vertex $-1 $17 $24 #

ellipse-curve $-10 0 -20 00 -1 15 00 1#

vertex $-1 $19 $25 #

ellipse-curve $-10 0 20 001 15 001#
point $-1 15 0 -20 #
point $-1 15 0 20 #

224

