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Synopsis 

SYNOPSIS 

The need for a product model which can support the modelling requirements of a broad 

range of applications leads to the application of a feature-based model. An important 

requirement in feature-based design and manufacture is that a single feature 

representation should be capable of supporting a number of different applications. The 

capability of representing products composed of assemblies is seen to be necessary to 

serve the information needs of those applications. To achieve this aim it is an essential 

prerequisite to develop a formal structure for the representation of assembly information 

in a feature-based design system. This research addresses two basic questions related to 

the lack of a unified definition for features and the problem of representing assemblies 

in a feature-based representation. The intention is to extend the concept of designing 

with features by incorporating assembly information in addition to the geometrical and 

topological details of component parts. This allows models to be assembled using the 

assembly information within the feature definitions. 

Features in this research are defined as machined volumes which are represented in a 

hierarchical taxonomy. The taxonomy includes several types and profiles of features 

which cover a general range of machined parts. A hierarchical assembly structure is also 

defined in which features form basic entities in the assembly. Each feature includes 

information needed to establish assembly relationships among features in the form of 

mating relationships. An analysis of typical assemblies shows that assembly interfaces 

occur at the face level of the mating features and between features themselves. Three 

mating relationships between pairs of features have been defined (against, fits and align) 

and are represented in the form of expressions that can be used for evaluations. Various 

sub-types of these major mating relationships can be identified (e. g. tight fit, clearance 

fit, etc. ) and represented through the use of qualifying attributes. Component Relation 

Graphs, Feature Relation Graphs and Face Mating Graphs have been developed to 

represent each level of interaction in an assembly, and assembly relationships are 

combined with knowledge on process planning into a Component Connectivity Graph. 
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Synopsis 

These graphs are used as the basis for deriving an integrated data structure which is used 

for defining classes for each level in the assembly hierarchy. 

The implementation of a prototype system has been facilitated by use of an 

object-oriented programming technique which provides a natural method of adding 

functionality to the geometric reasoning process of features and the complex 

relationships between the parts that make up the assembly. The feature-based model is 

embedded in an object-oriented solid modeller kernel, ACIS®. 

The research demonstrates the possibilities for a single feature representation to support 

multiple activities within a computer integrated manufacturing environment. Such a 

representation can form the basis of design improvement techniques and manufacturing 

planning as well as be a model to support the life cycle of the product. 
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Chapter I 

CHAPTER ONE 
INTRODUCTION 

1.1 THE NEED FOR A PRODUCT MODEL 

The need for higher productivity in manufacturing industry has grown rapidly during the 

last few years. The requirement for shorter product life cycles, increased pressure for 

shorter time to market and demand for high quality products makes it imperative for 

industry to focus on new product development strategies in design and manufacturing 

processes. In recent years, issues such as Simultaneous Engineering (or Concurrent 

Engineering) and Design for Man ufacturability andAssembiv (DFMA) have received an 

increasing amount of attention by manufacturing industries. Simultaneous Engineering 

means a way of work where the various engineering activities in the product and 

production development process, as well as the management and control of production, 

are integrated and performed as much as possible in parallel rather than in sequence 

(Sohlenius 1992). DFMA is one of the tools used to achieve the aims of Simultaneous 

Engineering, and is defined as a technique by which a product is designed for ease and 

economy of manufacturing and assembly (Boothroyd, et. al. 1994). These concepts 

attempt to address the issue of product development productivity by helping the designer 

to make early decisions that minimise costs over the life of the product, thus shortening 

the lead time both for the development of new products and for individual orders. A 

critical part of implementing these concepts is the integration of design and 

manufacturing processes which involves an efficient communication of large amounts of 

data. This is achieved through the use of computers and computerised models. 

Computer Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems 

have been key components of the automation of design and manufacturing processes. 

Since its beginning in the 60's, CAD has passed through a number of distinct phases 

(Gero 1989). It commenced with a concern for graphical representation of the objects 

being designed. In the 1970's there was an emphasis on object modelling to support 

graphical representation of geometry and topology (connectivity). CAD has been used to 
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create geometric entities, which is often called geometric modelling. However, there was 

a recognition that aspects other than geometric were also needed, so many systems 

allowed the inclusion of non-geometric attributes by attaching them to geometric 

entities. 

By the end of 1970's and early 1980's geometric modelling had reached sophisticated 

levels and at the same time engineering analysis tools were finding their way into CAD 

systems. The most prominent amongst these was the finite element analysis method. 

However, with some exceptions, CAD systems were not concerned with providing direct 

assistance to designers in their design decision making processes. Recently the need for 

the designer to consider the methods of manufacturing and assembly during the design 

process has been emphasised, and has led to the idea of a product model. 

1.2 PRODUCT MODELLING AND FEATURES 

Product modelling refers to the activities related to representing and utilising information 

related to products, their design and manufacturing processes and their production 

management (Mantyla 1989). The ultimate goal of product modelling is to be able to 

represent all this information in a way that makes it possible to capture and access the 

relevant information through the whole design-planning-manufacturing sequence with 

no loss of information at any stage. Although the definition of a product model varies 

according to the application, it should contain data, algorithms and a defined data 

structure suitable for the representation of the product. The ideal model should 

automatically generate the design, functions, service life, manufacturing methods and all 

data needed for the processing of customer orders (Rembold et. al. 1993). Due to the fast 

development of computer and information technologies and the increasing demand for 

productivity, the scope and approaches to product modelling have evolved rapidly in 

recent years (Krause et. al. 1993). Various modelling approaches have been proposed and 

implemented, but as much of the information needed in the design and manufacturing 

process deals with the geometric shape of the product, the geometric model forms the 

most important component in the representation of the product model. Mortenson (1985) 

identifies three purposes of geometric modelling in design and manufacturing -1) part 
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representation, which mandates a complete geometric definition of the part for 

manufacturing and other applications, 2) design, which allows the user to input a 

geometric specification and manipulate it and 3) rendering, which uses the geometry to 

paint a realistic picture of the object on the computer graphics output device. 

In order to manipulate data in the geometric model for design and manufacturing 

activities, various geometric reasoning techniques have been developed. Geometric 

reasoning involves the application of computer techniques to spatial problems so that 

deductions can be made from geometry (Bonney et. al. 1989). To facilitate geometric 

reasoning, part geometry must be represented by higher level entities that relate directly 

to certain design functionalities or manufacturing characteristics. This necessitates the 

use of a system that is capable of reasoning about the geometry and topology of a design. 

Conventional CAD systems allow users to draw lines, arcs and circles as geometric 

entities and store a part's geometry and topology that is used for display and geometric 

computation. There are three predominant types of geometric representations in CAD - 

wireframe, surface and solid models (Bedworth et. al. 1991). Hybrid schemes of 

representation such as combined surface and solid modelling have also been developed 

and are now becoming commercially available (e. g. Unigraphics). While conventional 

w ireframe and surface models represent only edges and envelopes of a geometry, solid 

models also precisely define the material inside a part. Most solid modellers represent 

part geometry in terms of low level geometric and topological entities. The structure and 

contents of a solid modeller database represent the most robust part description available, 

and eliminates any ambiguity in interpreting the model and provides a more complete 

database for performing a range of functions. For these reasons, solid modelling has 

become a popular choice for CAD representation and is envisaged as becoming the de 

facto 3D modeller of the 1990s (Sharp 1993). 

There are two predominant methods of representing solid objects - Constructive Solid 

Geometry (CSG) and Boundary Representation (B-Rep) (Requicha 1980, Zeid 1991). 

CSG is characterised by an internal data structure that defines solids in terms of Boolean 
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operations on solid primitives such as blocks, cylinders, cones and wedges. One 

difficulty with the usual CSG approach is that the primitives do not always have a direct 

relationship to the functional features of the part, and their sizing, position and 

orientation are usually added in a mathematical, rather than functional way (Faux 1988). 

In a B-Rep technique, solids are defined in terms of the faces, edges and vertices that 

form the boundaries of a solid object. The topology showing the relationships among 

these geometric elements provides the shape and structure of the solid. The advantages 

and limitations of each representation in design and manufacturing have been the subject 

of discussion by many authors such as Joshi et. al. (1986) and are very briefly described 

below. 

The type of representation scheme supported by a CAD system is an important 

consideration, because this has an effect on how a model can be visualised and more 

importantly, it determines which information can possibly be derived from the CAD 

database. In many manufacturing applications, B-Rep is preferred to CSG as each part 

has a unique and explicit representation and thus a B-Rep data structure directly contains 

the required information whereas a CSG model has to derive this information when 

required. The geometric domain of CSG is practically limited to the quadric surfaces 

such as planes, cylinders, cones, tori and spheres whereas, in theory, a B-Rep model has 

no such limitations. To take advantage of each representation, a hybrid CSG/B-Rep 

representation has been proposed by some authors such as Falcidieno and Giannini 

(1991). 

It has been recognised that many existing CAD systems do not provide the representation 

necessary for geometric reasoning and lack sufficient information to support 

downstream manufacturing applications. Even solid modellers do not provide higher 

level abstractions of the part that relate directly to certain design functionalities or 

manufacturing characteristics. A significant problem in the use of current CAD systems 

is the total effort required to capture the geometry of a product, which tends to limit the 

desire to make significant changes in product structure once this has been fully carried 

out (Boothroyd et. al. 1994). Consequently, the concept of features has been proposed to 

4 
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serve the geometric reasoning needs of the CAD system. Instead of using a model 

consisting of graphics primitives such as points, lines and circles as the basis of geometry 

definition, the designer uses a set of features such as holes, pockets and slots. Features not 

only describe the product but also contain implicit and explicit information (Clark and 

South 1987). In the academic and industrial environments, feature technology is viewed 

as a key technology to the next generation of computer-aided design and manufacturing 

(van Houten 1992). The growing use of features in the CAD/CAM area is due to the fact 

that features offer many advantages over conventional CAD systems. Some of the 

advantages of features are summarised below (Clark and South 1987, Shah et. al. 1988, 

Mantyla 1989, van Emmerik and Jansen 1989, Chen et. al. 1991, Gui and Mantyla, 

1994): 

i. Features provide a more natural vocabulary for expressing the designed object 

than geometric primitives. Hence they capture more of the designer's intent in the 

design object representation than plain geometric models. 

ii. Features facilitate the capture and management of parameter relationships and 

dependencies in a model and thus provide a more convenient path to fully 

parameterised design. 

iii. Features effectively divide the geometry into two levels - feature types and 

geometric attributes of features. This allows the designer to leave geometric 

details unspecified until such time as they have to be determined. 

iv. Features offer a good basis for modelling various kinds of manufacturing 

planning information, which require non-geometric data as well as geometric 

data. 

ý. It is easy to make design changes because of the associativities between 

geometric entities maintained in the data structure of feature modellers. 

vi. In manufacturing, the use of features has the additional benefits of cost reduction 

in the long term due to the development of standards which will reduce tool 
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inventories, reduce process control and material management problems, provide 

effective dimensioning and reduce errors. 

1.3 FEATURES IN APPLICATIONS 

Many manufacturing applications require non-geometric as well as geometric data. The 

information carried by features can be embedded in a product model to serve as 

information carriers that will feed downstream manufacturing processes in the 

manufacturing environment. They provide an alternative component representation that 

forms a suitable basis for a wide ranging set of activities throughout the product's life 

cycle and this facilitates the bridging of the gap between design and manufacturing. 

Because of this potential, features have been used in many CAD/CAM applications (Pratt 

1993). In design, features have been used as a fulfilment of functional requirements, for 

building of a geometric model and as preparation for design analysis activities (Case and 

Gao 1993). In manufacturing, most of the applications of features can be found in the 

process planning area, where the feature data provides a convenient way to model parts 

(Krause et. al. 1991, Gindy et. al. 1993). Applications such as casting (Corbett and 

Woodward 1991), injection moulding (Al-Ashaab and Young 1995), design for 

assembly (DeFazio et. al. 1990), assembly planning (Wang and Li 1991), inspection 

planning (ElMaraghy and ElMaraghy 1994) and manufacturing cost analysis (Nieminen 

and Tuomi 1991) have used feature representations. 

A significant aspect of the development of the above applications is that a system is 

typically only capable of supporting a specific application domain. For example a 

feature based system for process planning is intended as an input representation for use 

in process planning only and cannot be used to support other applications. This limitation 

is mainly due to the way features are defined and data is represented, as discussed in 

Chapter 2. The ability of a feature-based system to be applied to more than one 

application is important in a Simultaneous Engineering environment and to fulfil the 

requirement of a product model that can support the product development process. 
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1.4 THE ROLE OF ASSEMBLY MODELLING 

Most of the existing CAD/CAM packages can be classified as geometric modellers. Their 

data structures are designed to store and manipulate geometric data of individual parts. 

However, in most engineering design, the product of interest is a composition of parts, 

formed into an assembly. As products become more complex, the demand to pay more 

attention to the assembly process during the design phase is becoming increasingly high. 

With current CAD systems considerable time and effort is still required to enter and 

design all parts and subassemblies of a product (Boothroyd et. al. 1994). There is thus a 

need for a system that allows a designer to create individual parts, assemble them and 

then perform the necessary analysis of the assembly. Modelling and representing 

assemblies, generating assembly sequences and analysing assembly are all relevant 

issues for geometric modelling and CAD/CAM technology. 

Assembly modelling deals with the inter-relations among assembled parts rather than 

detailed shapes of each part. Functional understanding of assembly modelling is a key 

step towards a real CAD environment that can support early design (Gui and Mantyla 

1994). The capability to represent products composed of assemblies is needed to support 

further integration of manufacturing systems at a more general level as well as to serve 

the information needs of the applications at the level of the part (Usher 1993). An 

assembly model provides data for generating assembly sequences and for assembly 

analysis, as discussed in Chapter 7. The role of assembly modelling in a CAD/CAM 

environment is shown in Figure 1.1 and it forms the main focus of this research. 

A mechanical assembly can be represented by the description of its individual parts and 

their relationships in the assembly. Most of the interaction between parts occurs at mating 

surfaces- The modelling representation of these relationships and mating conditions are 

the distinguishing characteristics between modelling single parts and assemblies. Thus 

an assembly modeller can be considered as an extension of a geometric modeller where 

the data structure is extended to allow representation and manipulation of part 

relationships and mating conditions. 

7 
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CAD II Process Planning 

assembly 
product 
assembly model planning 

detailed product 
assembly plan 
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Figure 1.1: Role of Assembly Model in CAD/CAM (Lin and Chang 1993) 

Individual parts are first created with the shape information (geometry and topology) and 

are then analysed and assembled. An ideal system allows the link to be established 

between the geometric and assembly model such that designers need only to modify 

individual parts for design modification by using the geometric modeller and the 

assembly model is updated automatically (Zeid 1991). 

Due to the importance of assembly modelling, the activity has been the subject of much 

research work related to geometric modelling (Libardi et. al. 1988). Various assembly 

representation schemes and their related data structures are reviewed in Chapter 2. One 

of the significant developments in assembly modelling research in recent years is the use 

of features instead of piece parts as the lowest denomination of a product. This is because 

feature-based design has been found to facilitate assembly modelling applications by 

providing natural semantics for describing part interactions in a CAD system. 
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1.5 TOWARDS AN OBJECT-ORIENTED APPROACH 

With the continuing demand to increase competitiveness, manufacturing software is 

becoming more sophisticated and complex (Nof 1994). Computational functions are 

extended and at the same time additional information types are included. The increasing 

level of complexity is needed to provide better computational support of necessary 

manufacturing functions. Since the seventies, structured programming has been the 

preferred method for building software systems. However, in the last few years, the 

concept of Object-Oriented (00) programming has gained popularity in many 

computing areas. The 00 technology has been recognised as a very promising software 

engineering tool that will help develop application software faster, cheaper and better 

through the reuse of existing program codes (Korah 1994). Many manufacturing 

applications have been developed to take advantage of this technology and have been 

shown to offer very high potential. The 00 approach has already influenced the 

development of models for manufacturing decisions such as planning. design, control 

and simulation (Nof 1994). 

In an 00 programming environment, the basic unit of information is the object. which is 

defined by a name, a set of attributes that describe the object and methods to manipulate 

the object. A major advantage of using 00 programming is that knowledge about the part 

is easy to maintain. The information is not scattered around the program structure but can 

be stored in objects that can be inherited many times. 00 programming can improve the 

process of software development and programmer productivity. It can also result in a 

software product that is effective and flexible to subsequent modifications. These and 

other benefits, discussed in Chapter 3, have been utilised in the development of complex 

manufacturing software. To support the 00 approach for computer programming many 

00 programming languages have been developed such as Smalltalk, C++ and Object 

Pascal. 

Pressures for software to interface with other systems has forced many companies to 

consider using 00 technology as a basis for their next generation CAD systems. The 00 

technique has been shown to offer substantial help in simplifying the design and 

9 



Chapter I 

implementation of CAD systems (Warman 1990, Wolf 1991). The use of 00 for CAD 

modelling represents a means of expressing real world models and results in a design that 

is easier to maintain and extend to other applications. The Computer Aided Design 

Report (1991) suggested that the trend in the application of CAD in the next century is 

towards the use of kernel modellers using an 00 approach which will be able to improve 

programmer productivity. Currently, one such modeller which is increasingly used is 

ACIS '. This software provides a collection of reusable codes to be used in the creation of 

solid models and the development of CAD/CAM systems, and is discussed in Chapter 3. 

The 00 approach was also found to provide an effective way to conceptualise and 

manipulate features for geometric reasoning, and has been used by several researchers to 

support various manufacturing applications (e. g. Unger and Ray 1984. Latif and Hannam 

1993, Marefat et. al. 1993, Chen et. al. 1994). 

1.6 PROBLEM STATEMENT 

The overview in the previous sections shows that the integration of manufacturing 

processes through the support of CAD systems requires an efficient means of 

communicating design data to the various applications within a manufacturing 

enterprise. This requires an identification of the best means of representing design data in 

the form of a product model which can support the modelling requirements for a broad 

range of applications. The model should contain information from which all applications 

can either derive their data or access it directly. In order to fulfil these requirements, the 

trend points to the wider application of feature-based solid modelling with emphasis on 

the functionality of the product. Much previous work on feature-based design systems is 

concerned with using the method for the planning of machined and formed parts, with 

systems being dedicated to a particular application. However, an important concept in 

feature-based design and manufacture is that a single feature representation should be 

capable of supporting a number of different applications. There is a clear opportunity to 

extend the feature-based approach to other activities to verify the generic nature of the 

representation. 
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The development of a formal structure for the representation of assembly information in 

a feature-based design system is considered to be an essential prerequisite component to 

the generation of CAD/CAM systems that are capable of achieving the aims of 

optimising product design and manufacture. Such a representation can form the basis of 

design improvement techniques and manufacturing planning and help to support the life 

cycle of the product. There is a need to establish feature representations which can be an 

integrating agent across a number of manufacturing applications. The 00 approach can 

provide a natural method of handling the complex relationships between the parts and 

sub-assemblies in the product. This research thus will address two basic issues: 

1) the lack of a unified definition for features and 

2) the problem of representing assembly in a feature-based representation. 

The next section introduces the research objectives in consideration of the above stated 

problems. 

1.7 OBJECTIVES OF THE RESEARCH WORK 

The principal objective of this research work is: 

to extend the knowledge of feature-based product representations as an aid to 

the automation of various aspects of design and manufacturing and to explore 

their use as supporting tools for assembly modelling. 

To achieve the principal objective, the sub-objectives are: 

i. To devise a feature representation that is capable of defining the assembly of 

mechanical parts 

ii. To analyse typical mechanical assemblies and the interactions of features that 

constitute the assemblies 

in. To define and establish a taxonomy of assembly relationships 

iv. To specify an enhanced version of a feature-based design system which 

incorporates assembly knowledge 

11 
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v. To implement a prototype system using 00 techniques 

vi. To test the functioning of the model on typical assemblies 

1.8 RESEARCH SCOPE 

The research focuses on the static assembly of discrete mechanical components. 

Assembly parts are limited to feature types defined in this thesis. The assembly directions 

are limited to three primary axes of x. y and z. This is justified as seventy five percent of 

all products are assembled along three perpendicular directions (Delchambre 1992). The 

types of mating relationship are defined to suit the common surfaces available from the 

range of features. Other limitations are described in the relevant chapters. A simple proof 

of concept prototype feature-based assembly modeller is developed to validate the 

proposed model through testing of feature representations and profiles. The 00 

approach is employed in this research work through the use of the C++ programming 

language in a UNIX environment. 

1.9 ORGANISATION OF THE THESIS 

The thesis covers eight chapters. In the next chapter, a survey of the relevant literature is 

presented to highlight the current trends and problems of features technology and 

assembly modelling. Chapter 3 gives a general overview of the 00 concept and the main 

tools, the C++ programming language and the solid modeller kernel ACIS, used in 

developing ideas in this research. Chapter 4 details the feature representation used, 

including feature definition, feature taxonomy and the application of the 00 approach in 

representing features. In Chapter 5, the problems of assembly will be discussed through 

an analysis of assembly interactions involving typical assemblies. The definition of 

mating relationships are established and analysed with the relevant process planning 

knowledge. This results in a data structure which encompasses both types of knowledge. 
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The structure of a prototype feature-based design system is described in Chapter 6. and 

the prototype is tested on simple assemblies. A review of the approach and methodology 

used is provided in Chapter 7. Chapter 8 concludes the thesis by summarising the 

research findings, highlighting the main contributions and suggesting areas for future 

research. 
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CHAPTER TWO 
REVIEW OF FEATURES AND 

ASSEMBLY MODELLING 

2.1 INTRODUCTION 

Feature technology has been recognised as a key technology for the next generation of 

computer-aided design and manufacturing systems. Research in this area is aimed at 

providing alternative component representations which are applicable for a wide ranging 

set of activities throughout the life cycle of a product. Features are used in this research as 

the basis for the development of an assembly model. In this chapter, relevant issues 

related to the research work are outlined, covering two important areas, namely features 

and assembly modelling. Section 2.2 presents some research issues in features 

technology. The research in assembly modelling and the application of features in this 

area are discussed in Section 2.3. 

2.2 ISSUES IN FEATURES RESEARCH 

Feature modelling can be considered as a relatively new development in the CAD/CAM 

area and much research is being undertaken to resolve the problems arising from this 

technique. Among major issues discussed are the definition of features, feature 

taxonomies, modelling approaches for feature data, representation of feature knowledge, 

feature mapping, standardisation of feature data, application areas and feature-based 

design systems. These are considered as major issues which affect this research work and 

thus are highlighted in the following sections. Comprehensive reviews on research in 

features are given by Shah et. al. (1988), Shah (1991), Salomons et. al. (1993), Case and 

Gao (1993), Bronsvoort and Jansen (1993) and Allada and Anand (1995). 

2.2.1 FEATURE DEFINITIONS 

Since features are used in the reasoning processes in various activities such as design, 

analysis and manufacturing, they are frequently associated with particular application 
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domains. Each application domain has its own definition of features, which differs from 

one to another. This results in a lack of a formal definition for features which is 

universally acceptable. The same geometry may have different interpretations according 

to its application. For example, a hole feature shown in Figure 2.1 may be viewed from 

three different perspectives - as a design feature for holding a shaft, as a manufacturing 

feature to be created by a machining process or as a geometric feature created by a 

Boolean operation (Xue and Dong 1993). The discussion on the various definitions of the 

concept of a feature as outlined by Unger and Ray (1988), Case and Gao (1993), 

Salomons et. al. (1993) and Lenau and Mu (1993) reflect the different technological or 

application viewpoints considered. 

100, 

a hole design feature 

manufacturing feature geometric feature 

Figure 2.1: Feature definition from different perspectives (Xue and Dong 1993) 

Shah et. al. (1988) analysed various definitions of features and proposed that the 

definitions converged into five major disciplines - design, process planning, geometric 

modelling, expert systems and databases. In general, the classification can be converged 

into two distinct applications - design and manufacturing (Van Emmerik 1991). A design 

feature defines generic shapes or specific geometries associated with well known 

technical functionality such as chamfers and keyways. It also describes a feature as it 
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should appear in the product model. Shah (1991) differentiates between design features 

and modelling features. Modelling features are groupings of geometric and topological 

entities that need to be referenced together while design features are elements used in 

generating, analysing or evaluating designs. As the motivation for feature research came 

from a desire to devise easier ways to define the geometry needed for process planning 

and NC programming, much of the earlier work defined features from manufacturing 

perspectives (Shah et. al. 1988). A manufacturing feature represents shape and 

technological attributes associated with manufacturing operations and tools, and as such 

they are defined according to the product type, application reasoning process and level of 

abstraction (Shah 1988). In process planning, features, as identified by process planners, 

are based upon machine tool processes and can usually be directly linked to a specific set 

of machine tools (van't Erve and Kals 1987). Many features are defined specifically for 

the process. For example, features needed to define parts for casting (Luby et. al. 1986) 

are significantly different from those needed for process planning of machined parts (Juri 

et. al. 1990). An example of features defined specifically for a product is given by Jones 

et. al. (1993). who defined a set of features for the design and machining of golf clubs. 

As the need to consider the integration of design and manufacturing has become 

apparent, the application of features has been extended to cover many areas and the 

definitions tend to be stated in a broader and more general sense. An early attempt to 

define features in general terms was made by Pratt and Wilson (1985). They defined 

features as "an area of interest on the surface of a part". Luby et. at. (1986) defined a 

feature as "a geometric form or entity, whose presence or dimensions are required to 

perform at least one CIM function (e. g. graphics, analysis, process planning), and whose 

availability as a primitive permits the design process to occur". The definition given by 

Shah (1988) is more general - "information sets that refer to aspects of form or other 

attributes of a part, such that these sets can be used in reasoning about the design, 

performance or manufacture of the part or assemblies they constitute". 

In much of the literature features are frequently referred to as form features. Form 

features are simply defined as shape elements with some function or meaning 
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(Bronsvoort and Jansen 1993) or elaborately as generic shapes with which engineers 

associate certain properties or attributes and knowledge useful in reasoning about the 

product (Sreevalsan and Shah 1992). As features do not necessarily relate to form, some 

definitions of features include the concept of shape. For instance, Sakurai and Gossard 

(1990) defined a feature as a single face or a set of contiguous faces called a face set 

possessing certain characteristic facts in topology and geometry. Masuki et. al. (1989) 

defined a feature as a set of faces with a distinctive pattern. 

Other definitions emphasise the functions of features. Lenau and Mu (1993) classified 

features into functional features. Functional features represent surfaces that describe the 

different functions of the part and how they are positioned within the part, such as bearing 

and sealing surfaces. Assembly features are defined by Sodhi and Turner (1991) as form 

features that contain tolerance information and assembly functionality, and are used to 

model and create assemblies. Shah and Rogers (1993) defined an assembly feature as an 

association between two form features which are on different parts. Giacometti and 

Chang (1990) defined features used for assembly modelling as "a semantic grouping 

used to describe a part and its assembly. It groups functional, design and manufacturing 

information in a relevant manner". By grouping features into other features, design 

information is made available for mechanical, manufacturing and assembly analysis. In a 

more abstract form, the idea of fuzzy features was proposed by Clark and South (1987). 

Fuzzy features would be used in conceptual or exploratory design and would be less 

precise. For example, a designer would specify the existence of a connection, but not the 

type of connection. As the ideas firmed up, the connection would become more precise. 

Another use of fuzzy features would be to define various levels of detail depending upon 

the usage. 

In an object-oriented environment, features are modelled as objects encapsulating 

various properties coupled with dedicated procedures (Wierda 1991, Wang 1991). Any 

set of information (geometric and non-geometric) that can be formulated in terms of 

generic parameters and properties and referred to as a set in the reasoning process of some 

application is considered as a feature (Shah et. al. 1988). 

17 



Chapter 2 

All the definitions above share the idea of a geometric entity and imply that features 

provide a higher level model of the object than the conventional CAD geometric model. 

Shah et. al. (1988) defined the least requirements a feature should fulfil -a physical 

constituent of a part. be mappable to a generic shape. have engineering significance and 

have predictable properties. In order for the feature definition to be useful, one must 

provide a database that has a complete definition of the part, not just geometry and 

topology (Shah et. al. 1988). The essence of the feature concept is that a product 

description not only says what the product is, but also contains implicit and explicit 

information on how it may be transformed to or from some other state (Case and Gindy 

1991). 

The discussion highlights the different definitions of features used for various 

applications. Although the problem of a lack of a formal definition of features has been 

recognised and some attempts have been made to unify the definitions, some authors 

believe that the need to define features to suit a particular application is inevitable and that 

the use of features is application specific (Chang 1990). However, in order for the feature 

definition to be fully useful, it should be defined to include a complete definition of the 

part, not just geometry and topology, and should be applicable to a wide variety of 

applications and functions. A model should be flexible to be adapted to the different 

applications found in a concurrent engineering environment. 

2.2.2 FEATURE TAXONOMIES 

The term feature taxonomy refers to the classification of features into classes which are 

often maintained in a hierarchical structure. The primary purpose of developing a feature 

taxonomy is to structure information in a way that relates to subsequent processing for 

application to problems. The success of feature modelling is largely determined by 

whether a useful taxonomy of feature types can be identified and organised in a 

modelling system and whether application-oriented data and knowledge bases can 

conveniently be organised on the basis of the taxonomy (Mantyla 1990). Feature 

taxonomies are also useful in developing product data exchange standards (Shah 1991). 
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The way of classifying features is highly dependent on the feature representation 

methodologies and the strategies for the eventual use of the feature data (Case and Gao 

1993). Early attempts to classify manufacturing parts were addressed towards a 

geometric classification in which some typical design features were described by a 

numeric or alphanumeric code (Catania 1991). Some features are defined in terms of 

shapes, generic parameters and attributes (boss, holes), others in a variety of shapes such 

as ribs and webs. Examples of some feature taxonomies are described here. 

The CAM-I form feature hierarchy is one of the most comprehensive classifications 

available (Butterfield et. al. 1986). It is organised in three groups: sheet, non-rotational 

and rotational features. Within these three groups, the model identifies 45 feature classes, 

161 individual features and a number of attributes, notes and miscellaneous terminology. 

The scheme also contains classification for materials on the basis of material 

composition, stock form, heat treatment and surface condition. This scheme is intended 

for use in applications such as process planning and NC programming. Pratt and Wilson 

(1985) used a taxonomy of features based on the overall shape of features and the 

assumption that features will be incorporated in solid modelling systems. They 

distinguished between explicit and implicit features and produced a general 

classification of features. Implicit features are features that are unambiguously defined, 

for example by a generic description and a number of parameters for the specific 

occurrence, but are not evaluated into an explicit geometrical description. Explicit 

feature are features whose shape is explicitly described by a geometric model. 

In Gindy's taxonomy (Gindy 1989), shown in Figure 2.2, form features are treated as 

volumes enveloped by entry/exit and depth boundaries. Feature classification is based on 

the External Access Directions (EAD) from which the feature volume could be machined 

by cutting tools. Form features are divided into three categories -protrusion, depression 

and surface. Feature geometry is described by defining the EADs, the boundary type 

(open, closed) and the exit boundary status (through/not through). The result of this 

grouping is a list of form feature classes that correspond to some common geometric 

shapes such as boss, pocket, hole, step, notch, through slot and non-through slot. The 
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scheme has been successfully used in process planning (Gindy et. al. 1993) and process 

capability modelling (Case 1994). 

Form Features 

Protrusions Depressions Surfaces 

EAD EAD EAD EAD EAD EAD EAD 
(0) (1) 2) (3) (4) (5) 6) 

closed closed closed open open open closed N/A 

I E 
thru non- o non- thru thru thru thru n no 

gin 
eary 

boss pocket hole no 
slot 

thm II 
notch 

II 
step 

(t 
freal ace 

I Iima 
a 

0 Do QD CD oD 
Figure 2.2: The form feature taxonomy used by Gindy (1989) 

The Form Feature Information Model (FFIM), one of several product-data models in the 

Standard for Exchange of Product Data (STEP), tries to provide a mechanism for 

exchanging definition data for a wide variety of products (Shah and Mathew 1991). 

FFIM treats a form feature as a portion of the skin of a shape that conforms to some 

stereotypical pattern and is considered to be a unit of some purpose. FFIM classifies 

features along similar lines to the work of Pratt and Wilson (1985) into two main types: 
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explicit and implicit, as shown in Figure 2.3. Implicit features are further divided into six 

classes of depression, protrusions, passages, deformation, transition and area. Although 

FFIM is intended to be general purpose, the representations of some common profiles are 

rather complex. Criticisms of this model are highlighted by Shah and Mathew (1991). 

Some of these are the lack of positioning information, poor representation of certain 

popular profiles and the non-unique mapping of features between FFTM and the system 

in test. Recent information (Mill et. al. 1996) indicates that these difficulties have 

resulted in the indefinite postponement of adoption of the feature aspects as a part of the 

STEP standard. 

FORM FEATURES 

EXPLICIT FEATURES IMPLICIT FEATURES 
List of dimensionality 2 

shape elements 

DEPRESSION DEFORMATIO: PROTRUSION AREA 
FEATURE PASSAGE TRANSITION 

definition TYPE: 
bend definition TYPE: 

knurl definition TYPE: end bounds 
emboss end bound 

thread end bounds 
edge blend end blends 

partial cutout end blend 
marking 

boundary 
corner bleu interruptions 

tube deform coupling 
blends 

twist interruptions 

Figure 2.3: Form feature classification in the FFIM (Shah and Mathew 1991) 

A feature taxonomy designed by Mantyla (1990) for an assembly modeller represents all 

geometric objects by means of a tree structure in which the nodes correspond to various 
kinds of volume features. The feature set includes both subtractive features that 

correspond to material removed from the parent feature (e. g. slots) and additive features 
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that represent material added to the parent (e. g. bosses). Arcs of the tree represent various 

kinds of geometric relationships between the features. 

Marefat et. al. (1993) classify features into depressions and protrusions. Depression 

features can either be prismatic or rotational. Further classification of the features is 

shown in Figure 2.4. The taxonomy is used in an object-oriented environment for an 

integrated design, process planning and inspection system. 

Pocket 

Blind 
Slot 

Prismatic Piped Slot 
Thru 
Slot 

Blind 
Depression Step Step 

Thru 

Feature Blind Step 

Hole 
Rotational Hole 

Protrusion Thru 
Hole 

Figure 2.4: Feature hierarchy (Marefat et. al. 1993) 

Although it has been argued that a general classification of features is difficult, if not 

impossible to develop (Bronsvoort and Jansen 1993), a well-defined feature taxonomy is 

an essential requirement in the object-oriented development environment, especially for 

manipulation purposes. Many taxonomies have been proposed to suit a particular feature 

representation and its eventual application. In assembly modelling, a hierarchical 

taxonomy is well-suited to the assembly structure as it allows the attributes of parts 

higher in the hierarchy to be inherited by those lower down. In this research, the 

taxonomy developed by Gindy (1989) was found to serve this purpose as it covers a good 

cross section of features involved in mechanical assembly. 
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2.2.3 FEATURE MODELLING APPROACHES 

Previous research has established two predominant methods for creating a feature 

database to represent a part or a product model -feature recognition kor extraction) and 
design by features. Feature recognition allows the design of parts using conventional 

CAD systems such as 2D drafting, wireframe and solid modelling and then features are 

extracted from the geometric model using a recogniser and are stored in a separate 

database which forms the feature model (Case and Gao 1993). The process of feature 

recognition comprises three major tasks: feature definition, in which the rules for 

recognition are specified, feature classification in which potential features are classified 

and feature extraction, in which features are extracted from a solid model and stored for 

further analysis (Prabhakar and Henderson 199_). Feature recognition can be broadly 

classified into two approaches -human assisted and automatic. The latter method, shown 

diagrammatically in Figure 2.5, has been widely used in place of the former. Various 

approaches have been developed to achieve the goal of feature recognition, depending on 

the type of geometric model used i. e. whether it is based on B-Rep or CSG model. A 

graph-based method to recognise features is the most popular technique and a typical 

example of this is described by Joshi and Chang (1988). Other techniques are based on 

syntactic pattern recognition (Choi et. al. 1984), rule-based methods (Henderson and 

Anderson 1984), a decomposition approach (Nitschke et. al. 1991, Kim 1991) and the 

application of neural networks (Prabhakar and Henderson 1992). Feature recognition of 

machining features from 2D models has been demonstrated by Meeran and Pratt (1993). 

solid IJ feature ýj feature 
features modeller ý1 ýý recognition I "ý extraction 

Figure 2.5: Automatic feature recognition 
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Feature recognition offers several potential advantages of consistency, applicability to 

different processes and a saving in manpower (Woodwark 1988). The approach is also 

seen as the most versatile for the transformation of product models between application 

domains (van Houten 1992) or it can be made application-specific allowing each 

application program to have its own recognition program (Shah et. al. 1988). These 

advantages have been utilised in a variety of applications such as part modelling 

(Nitschke et. al. 1991), process planning (Lee et. al. 1993), determination of tool 

approach directions (Karra and Phelps 1990), as input to Design for Assembly analysis 

systems (Rosario and Knight 1989), set-up planning and fixture design (Sakurai and 

Gossard 1991) and automatic dimensioning of 3D solid models (Oh and Lee 1990). 

Although much of the early work in features involved feature recognition, not much 

emphasis has been given to more development of this approach in recent years. This is 

due to the many drawbacks of the approach. It cannot retrieve information that is not in 

the CAD database such as tolerances, surface conditions and geometrical information 

(Sreevalsan and Shah 1992). Most of the systems have a restricted domain of 

recognisable features (Bronsvvoort and Jansen 1993). There are also errors caused by 

multiple translation from product model to the CAD model and then to feature 

recognition model (Chamberlain et. al. 1993). Objects such as sculptured surfaces and 

interacting features make the feature recognition task more difficult (Case and Gindy 

1991). In general, the algorithms and techniques involved in feature recognition are 

complex and require intensive programming. Above all, a technique which involves 

detecting features which are already there is considered to be redundant effort (Shah et. 

al. 1988). 

In the design by features approach shown in Figure 2.6, the designer is provided with a 

feature library. In most of the systems, the form of a feature is created within a geometric 

model by a procedure based on a given set of feature parameters. Once features have been 

created and are available in the feature model, they can be used and accessed by a variety 

of downstream applications. The approach can eliminate the need for feature recognition 

and gives a unique, pre-defined feature list with which designers may construct their 

parts and thus improve the design environment provided by CAD systems (Case and Gao 
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1993). The pre-packaged solutions to commonly occurring functional requirements in a 

product which is represented by features will simplify and standardise the processes of 
design and manufacturing (Faux 1986). The approach allows a greater depth of 

understanding of features and feature interactions to be generated, which can ultimately 
help in the identification of a combined feature pre-definition and feature analysis 

approach to manufacturing planning (Young and Bell 1993). It also offers the possibility 

of considering manufacturing and assembly concerns early in the design process 

(Salomons et. al. 1993). This will lead to lower design costs and lead times, more reliable 

cost estimating and more predictable control of manufacturing costs, times and quality 

(Faux 1986). However, there are some limitations to this approach. It assumes that the 

designer has ample manufacturing knowledge with which he/she can transform the 

design into manufacturing details. The method imposes limitations on designers due to 

the finite nature of the features library and thus not all operations are possible (Sreevalsan 

and Shah 1992). This problem can be overcome by extending the range of features for the 

application of interest or by incorporating higher level information in the features. 

user 

Many researchers believe that feature recognition or design by feature approaches on 

their own are not enough to fulfil the requirements of a flexible feature-based design 

system (Falcidieno and Giannini 1991, Sreevalsan and Shah 1992, Case and Gao 1993). 

Both should be integrated to gain the benefits of each other. An attempt to incorporate a 
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feature extraction system in the design by feature system with the purpose of extracting 

protrusion features was reported by Chamberlain et. al. (1993). Laakko and Mantyla 

(1993) designed a feature-based modelling system which implements a hybrid of design 

by feature and feature recognition techniques in a single framework. Fu et. al. (1993) 

have also combined both approaches for the transformation of feature representations. 

In this thesis, the design by feature approach is chosen as it provides the advantage of 

storing relevant information for applications during the design process, as well as 

offering the possibility for considering assembly concerns early in the design process. 

This is not possible using the feature recognition approach. 

2.2.4 REPRESENTATION OF FEATURE KNOWLEDGE 

Since features arise from the reasoning processes and languages used by humans, 

computable representations of features and feature languages have been developed 

(Rosen 1993). Features have been represented using codes. particularly based on the 

Group Technology (GT) approach in many early process planning systems. Since this is 

inefficient and more suited to a manual approach, they are no longer used. 

The application of Artificial Intelligence (Al), particularly the Expert System or 

Knonwledge-Based Systems (KBS) technique in CAD systems has been commonplace. 

Feature-based design systems have been used to provide representations which serve 

KBS that reason about the geometry and topology of designed parts. Databases built 

from features extracted from solid models can be submitted to a KBS for further analysis. 

Feature knowledge is represented using various methods such as special descriptive 

languages, frames (Joshi et. al. 1988) or rules (Henderson and Chang 1988). Most of the 

systems which integrate feature-based design and KBS are used for process planning 

where extensive data on process capabilities and material properties require an 

appropriate handling mechanism. Examples of such systems have been developed by 

Bond and Chang (1988), Unger and Ray (1988), Henderson and Chang (1988), Chung 

et. al. (1988) and Catania (1991). 
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In recent years, object-oriented (00) techniques have been used widely in many 

computer applications. 00 software seems to be able to support the feature concept as 

well as the feature taxonomy idea (Salomons et. al. 1993). Using an 00 structure 

provides a general way to think about and manipulate features for geometric reasoning 

(Chung et. al. 1988). From an 00 point of view, features are perceived as objects that 

have a name for identification, a number of attributes to describe their characteristics and 

methods to manipulate them. This information is declared and stored in an entity called a 

class, which acts as a template description for objects of a specific type. Different classes 

can be organised in a hierarchy or taxonomy which is readily extensible to include 

additional data and relationships as appropriate. Each feature is modelled as an object 

encapsulating various properties coupled with dedicated procedures (Wang 1991). An 

example of an 00 representation of an instance of a feature class (which is a face) is 

shown in Figure 2.7 (Zhang et. al. 1992). Other examples of 00 feature-based systems 

can be found in Luby et. al. (1986), Unger and Ray (1988), Kuttner (1988), Masuki et. al. 

(1989), Catania (1991), Chen et. al. (1991) and Chen et. al. (1994). 

Face01 

name type location above 

FaceO1 block surface x, O, y, O, z, O, xn, 90 B1ock01 

surface fmish tolerances direction heatTreatment 

50 flatness, 0.004 '-z', '-z, 'xy' nil 

Figure 2.7: An instance of feature class (Zhang et. al. 1992) 

There is an increasing trend in the use of the 00 approach as the rich data types of the 

representation make it possible for a feature model to capture more information on the 

applications. There are many other benefits offered by the 00 technique and this is 

discussed in Chapter 3. Because of these benefits, the 00 approach is utilised in the 
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representation of features and assembly in this research work as discussed in Chapters 4 

and 5. 

2.2.5 MANUFACTURING APPLICATION AREAS 

In the following sections, two predominant manufacturing applications that have 

employed features - process planning and assembly planning - are discussed. 

Descriptions of other manufacturing applications can be found in Shah et. al. (1994). 

2.2.5.1 PROCESS PLANNING 

Process planning is the activity to determine appropriate procedures to transform raw 

material into a finished product, as specified by the design specification. The need to 

automate this activity leads to the use of computers in systems that are generally called 

Computer Aided Process Planning (CAPP) systems. There are two approaches used in 

CAPP -variant and generative (Chang and Wysk 1985). The variant approach uses a data 

retrieval system to retrieve an existing process plan using a GT approach for 

identification. The plan is then modified (made a variant of the original) and possibly 

added to the database. A generative CAPP system synthesises process information in 

order to create a process plan for a new component automatically. For process planning, 

part dimensions and geometric tolerances need to be available, and to achieve this, the 

CAD interface must be able to convert the part description into an explanation of the 

part's features and characteristics. 

Most of the generative CAPP systems are based on the feature description of parts 

(Wierda 1991). Features provide a high-level description of the part, which is a 

fundamental requirement for reasoning to determine processes, operation sequences, 

machine and tool selections and other decisions related to the process planning activity. A 

feature can be associated with some machining operation and this makes the operation 

selection in process planning relatively easy. For example, a hole can be bored with a 

particular type of boring machine or a slot can be milled with a particular type of milling 

machine using a specific tool (Bronsvoort and Jansen 1993). The feature data also 

provides the most convenient way to model the machined surfaces in process planning. 
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Various representations and syntaxes of the feature information required for process 

planning and the sources and means to obtain it have been reviewed by Shah et. al. 

(1988). Chang (1990) summarises various work on feature recognition used in process 

planning and NC programming applications. Feature recognition has been the most 

common approach to extract manufacturing features from CAD for process planning 

application (van't Erve and Kals 1987, Bond and Chang 1988, Unger and Ray 1988, 

Henderson and Chang 1988, Krause et. al. 1991, Nitschke 1991, Young and Bell 1993). A 

number of process planning systems use a design by feature approach (e. g. Gindy et. al. 

1993). Shah et. al. (1991) uses feature databases where the user inputs feature 

information in a text format. 

The use of features in process planning has been extended to the design and planning of 

fixtures (Dong et. al. 1991, Nee et. al. 1992) and as an input to a knowledge-based cost 

analysis system (Nieminen and Tuomi 1991). 

Although features provide a natural form of representing parts for process planning, they 

are usually limited to single parts. Most of the feature-based process planning systems 

have a restricted domain of recognisable features that limits the application domain. As 

there is an increasing need to extend the manufacturing applications beyond the process 

planning domain, the way features are defined becomes important. 

2.2.5.2 DESIGN FOR ASSEMBLY AND ASSEMBLY PLANNING 

Computer support for the design and analysis of assemblies is essential since individual 

component optimisation will not necessarily mean an optimum assembly (Rosen 1993). 

The use of computers in assembly has been evident for some time (e. g. Swift 1987). More 

recently, features have been seen as a means of modelling products in a way that is 

suitable for Design For Assembly (DFA) analysis or as an input to assembly planning 

systems. 

One of the objectives of DFA is to achieve assembly through simplification and redesign 

and reduction of parts by integrating the functions of the parts. DFA analysis procedures 

require certain geometric properties for each component part and sub-assembly (Rosario 
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and Knight 1989). The main types of information needed in DFA are component 

positions and orientations, mating features, mating operations and component/feature 

geometry (Molloy et. al. 1993). A Feature-Based Design system has been integrated 

with several assembly analysis and synthesis algorithms to be used in the DFA systems 

(DeFazio et. al. 1990, Molloy et. al. 1993). In the work by DeFazio, a feature-based 

design system captures design intent in the form of assembly topology, product function 

and manufacturing or field use. The work involved identifying the information important 

to DFA tasks and how that information could be captured using feature-based design. 

The feature-based design was then integrated with assembly analysis and synthesis 

algorithms. Li and Huang (1992) developed an automatic assembly coding from a 

feature-based model and this is used for an automated DFA system. 

Assembly planning is concerned with creating steps of assembly operations based on 

connectivity relationships between component parts, from which a product is assembled 

(Wang and Li 1991). It involves the application of algorithms and heuristic rules to 

produce alternative feasible assembly plans. Five types of information are required to 

generate an assembly plan (Delchambre 1992) - component geometry, component 

attributes, final assembly information (assembly directions), topology and technological 

aspects (additional constraints). The quality of the plan generated by the assembly 

planning system depends on the representation of the parts and their relationships. Thus 

the description of an assembly to the computer in terms of geometric relationships and 

physical constraints is a critical problem and crucial for automatic assembly planning. 

The geometric input to the system can be provided by features which can identify 

connections between parts that make up the assembly. 

Many knowledge-based systems have been developed for assembly planning as they are 

suited to handling a large amount of data and the existence of insufficient or ambiguous 

information. A review of research work in computer-based environments for supporting 

the concurrent design of products and assembly is given by Lim et. al. (1995). The review 

includes detailed discussion on the roles of features and mechanical assembly modelling 

in providing an effective environment for the design of components and assemblies. The 
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different approaches for representing assembly models of parts are discussed in Section 

2.3. 

This brief overview of the application of features in DFA and assembly planning 
highlights the need for a CAD modelling system which is based on the application of 
features that can model assembly efficiently. A well defined model provides a means of 

examining complex geometric interactions before anything is built and thus will be 

useful for further analysis and planning activities. Assembly modelling is reviewed in 

Section 2.3. 

2.2.6 FEATURE MAPPING 

Most of the work in feature-based applications as described in preceding sections 

concentrates on one application and product type. In an integrated manufacturing 

environment, it is beneficial to have features that can be transformed from one 

application to another. There is a need for a system that supports multiple applications 
driven by a common or stored database (Shah et. al. 1988). Each application can have its 

own view of an object or definition of the object, with features relevant for that 

application. 

In order to integrate the various applications, features identified in a particular domain 

have to be partially or fully transformed to other domains. The desirable situation is for 

the design feature to comprise manufacturing aspects and manufacturing features to 

include information on the design intent. A feature mapping system is necessary to 

transform information in shared or neutral databases to application specific features most 

suited to a given reasoning process. Shah and Rogers (1988) define feature mapping as 

the selective extraction of relevant data by applications and transformation of this data to 

conform to the application view for use in its reasoning process. This may involve 

selective feature extraction, decomposition into lower level entities, reconstruction by 

geometric reasoning and in some cases, augmentation with the addition of new entities. 

Feature mapping is seen as a critical area for the success of feature-based design systems 

(. Shah and Rogers 1988, Shah 1991). As the discussion in Section 2.1.4 suggests, many 
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feature-based systems are confined to one application area, thus avoiding the problem of 

feature mapping. However, some attempts have been made to support multiple 

applications.. generic mapping shell has been developed as part of the feature-based 

design system based on a general theory of feature transformation between application 

specific feature spaces (Shah 1988). The shell supports three related applications -Group 
Technology classification, process selection and manufacturability evaluation. Feature 

spaces represent collections of features relevant to a specific application domain. Dong 

et. al. (1991) applied feature mapping from design features to manufacturing features for 

fixture design. Falcidieno and Giannini (1991) proposed a method which allowed the 

user to extract features from a B-Rep model and represent them in the context of multiple 

functional viewpoints like manufacturing, handling and assembly. This is done by 

mapping features into a new model called a Shape Feature Object Graph which is 

considered a neutral format description, independent of the application model. 

Most of the multiple view problems above have been solved at the single component 

level. It is useful to also take assembly relations into account when solving the problem. 

There is a need for a system that supports multiple applications driven by a common or 

shared database. 

2.2.7 STANDARDISATION OF FEATURES 

The realisation of an integrated manufacturing environment is not possible without 

powerful, widely-accepted and standardised interfaces which will contribute to 

harmonising data structures. Unless data can move freely between the various 

computer-aided systems throughout the life cycle of the product, full integration will not 

occur. In order for feature-based design to be useful in application, the feature data 

should be able to be transferred efficiently without any loss of information. An 

independent platform is required to fulfil this requirement. The need for standardisation 

of a means of defining features has been highlighted by several authors such as Pratt 

(1993). 

One of the earliest efforts to improve the data exchange and sharing process between 

functions found in a manufacturing enterprises was through the Initial Graphics 
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Exchange Specification (IGES). IGES is an engineering data exchange specification 

supported by major CAD/CAM systems. However IGES suffers from several drawbacks 

such as its limitation to the geometric data only, lack of interfaces to CAD systems and its 

lack of ability to be used with application programs (Shah 1988). As a spin-off of the 
IGES activity, the Product Data Exchange Specification (PDES) was developed with the 

aim of creating an international standard for the exchange of product model data (SN4E 

1989). In the international community, a co-ordinated effort with similar objectives is 

called STEP - Standard for the Exchange of Product Model Data. 

STEP is a CAD/CAM product data exchange standard designed to support data sharing 

through the exchange of physical files as well as common application programming 
interfaces and database implementations. It uses the EXPRESS data definition language 

as a tool for providing object-oriented, integrated views of product data (ISO 1991). The 

objective of this standard is to provide a mechanism capable of describing product data 

throughout the life cycle of a product. STEP is seen as a promising platform which can 

provide a common language for data exchange and the project represents the most 

concentrated international effort so far to meet this need. Its aim is to develop and 

standardise specifications for exchange and sharing of product life cycle data between 

heterogeneous computer systems in a Computer Integrated Manufacturing environment. 
Some parts of STEP such as the geometric modelling aspects have been adopted as 
international standards, whereas other aspects are still at the proposal stage. 

As noted before, considerable difficulty has been experienced in standardising features 

and the assembly applications. Research involving the application and examination of 
STEP has been highlighted by few researchers. An experiment to determine whether 

there was a mismatch between the Form Feature Information Model (FFIM), a product 
data model in STEP shown in Figure 2.3, and a feature-based design system was 

conducted by Shah (1991). The study involved mapping of the features of a 
feature-based system into sets of FFIM entities, inverse mapping and transferring data to 

and from the system to the FFIM format by creating models in the system. A limited 

neutral exchange structure has been developed to enable the transfer of feature-data 
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between a feature-based design system, LUT-FBDS, and the form feature 

representation schema outlined in Part 48 of the STEP standard (Smith 1993). In design 

for assembly, the STEP/EXPRESS standard has been proposed to define a product model 

(Molloy et. al. 1993). 

It is clear that standardisation in the areas of interest to this research has either not been 

established or has not reached a stage of adequate maturity. However the methods 

adopted, particularly the object-oriented programming, are believed to be useful in any 

future attempts at compatibility with standards. 

2.2.8 FEATURE-BASED DESIGN SYSTEMS 

The development of feature-based design systems is necessary to support the various 

applications discussed earlier. In order for the systems to be useful, they have to fulfil a 

number of requirements as outlined by Broonsvort and Jansen (1993), Shah and Rogers 

(1988) and Duan et. al. (1993) Among them are: 

i. The system must have an integrated data representation 

ii. Mechanisms for mapping features into application systems should be provided 

iii. The system should be interactive and graphical 

iv. There must be a mechanism to define generic descriptions of features as well as 

application-oriented features and store these in a feature library 

v. There must be a mechanism to create instances of a feature by specifying the required 

parameters 

vi. There should be the ability to carry out consistency verification of geometry and 

attributes. Constraints must be available to guarantee the validity of the features 

Many feature-based design systems have been developed in conjunction with the 

research work described in earlier sections. Examples of the systems are Casper (Luby et. 

al. 1986), DLink (Patel and McLeod 1988), CADETS (Lawlor-Wright and Hannam 

1989), ASU Features Testbed Modeller (Shah and Mathew 1991), LUT-FBDS (Case et. 

al. 1993), FSMT (Duan et. al. 1993) and DEFP (Lenau and Mu 1993). 
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A few commercial CAD systems have also incorporated a feature-based approach. Most 

recent versions of the major CAD/CAM systems (e. g. Unigraphics, Catia) have some 

claim to have the capability of design by features. Some systems, such as Pro-Engineer 

(Parametric 1993) and MicroStation2ý Modeler (Bentley 1994) are fully committed to a 

features approach. Pro-Engineer is a parametric, feature-based mechanical design 

system. Using Pro-Engineer, feature-based design can be enhanced through 

pro/FEATURE, a module which allows users to create 'user-defined' features and 

complex design features such as shells, 3D swept features, features created by blending 

non-parallel cross sections and others. 

In the main, features in the commercial systems are seen as a convenient mechanism for 

defining the parametrics of geometric primitives and simple boolean operations and can 

only be considered as design features. In general it is not possible to associate attributes 

such as surface finish, and nor is it possible to meaningfully export the feature 

descriptions to activities such as process planning. In some cases features are further 

restricted in their use to initial geometry creation and the effects of modifying the 

feature's (geometric) parameters are poorly defined and may lead to model corruption. 

The following sections describe three feature-based design systems developed mainly 

for academic and research purposes, and serve to illustrate the various approaches and 

capabilities. 

2.2.8.1 ASU Features Testbed Modeller 

The ASU (Arizona State University) Features Testbed is a proof-of-concept system that 

primarily uses the design by features approach (Shah and Mathew 1991). The system is a 

collection of modules for the design, documentation and evaluation of mechanical parts. 

It is organised into two shells, one for design (modelling shell) and the other for mapping 

and applications. The shells can be customised by various organisations to fit their needs. 

The system allows users to define their own generic features without making any changes 

to the code. The structure of the system is shown in Figure 2.8. ASU has been used for 
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manufacturability evaluation (Shah and Hsiao 1991) and for assembly modelling (Shah 

and Tadepalli 1992). 

MODELERS DATABASES 

2.2.8.2 FSMT 

FSMT is an acronym for Feature Solid Modelling Tool, developed by Duanet. al. (1993). 

It consists of seven components, as shown in Figure 2.9, a feature definition and 

management system (FDMS), a Boolean operation processor (BOP), a geometry and 
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attributes consistency checker (CVS), a knowledge base (KB), a database (DB) and a user 
interface management system (UIMS). FSMT claims to use a generalised sweeping 

method that is capable of defining all kinds of parametric features. A designer can build 

up his/her own feature library dedicated to a particular application. The system has the 

ability to solve the problem of mapping from feature definitions into Finite Element 

Mesh generation, process planning and NC programming, and has also been used for 

tolerance analysis and synthesis (Huang et. al. 1993). 

Uý 

Figure 2.9: Architecture of FS: fI' (Duan et. al. 1993) 

2.2.8.3 LUT-FBDS 

LUT-FBDS stands for Loughborough University of Technology-Feature-Based Design 

System. LUT-FBDS is a prototype feature-based design system which was developed in 

relation to research on process capability modelling for design and selection of 

processing equipment (Case et. al. 1993, Case 1994). The structure of the system is 

shown in Figure 2.10. The system consists of a design by feature user interface to a solid 

modeller (PAFEC Imaginer), a feature processor and a geometric reasoner. The design by 

features interface allows designers to create features by evaluating sets of parameters for 

feature primitives; to perform feature edit operations such as move, rotate, copy and 
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delete; and to define feature relationships such as parent-child relationships and 

tolerances between features. 

DESIGN BY FEATURES USER INTERFACE 

SOLID MODELLER 

BRep models of 
features, components 

FEATURE MODELLER 

Parametric 
Feature Data Model 

FEATURE PROCESSOR 

Feature-Based 
Component Data 

Model 

Figure 2.10: Structure of LUT-FBDS (Case et. al. 1993) 

Once a feature is created through the design by features interface, a B-Rep model is 

generated for the feature and stored in the Imaginer database. At the same time, 

information about the feature such as its dimensional and positional parameters, 

tolerances, surface finish and relationships with other features are stored in the 

Parametric Feature Data Model, which is then processed by the feature 

processor/geometric reasoner to generate a detailed and well structured data model, 

known as the Feature-Based Component Data Model (FBCDM). The feature processor 

contains the functions to create the data structure and to calculate implicit data such as 

access directions, imaginary face information and parent-child relationships at the face 

level. The feature processor also contains functions for communication between the 
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FBCDM and the design interface. LUT-FBDS is provided with a feature validation 

mechanism which detects exceptional situations and the consequent changes in the class, 
dimensions and relationships of all the affected features 

The review of various feature-based design systems indicates that there is still no general 

purpose system existing which is flexible and can be adapted to many types of 

application. Most of the systems also suffer from the problem of a limited number of 
features and simple shapes of features for part construction (Chen et. al. 1991). Efforts 

are required to produce a generic geometric representation method that will satisfy the 

diverse requirements of different applications. One solution suggested by Chen et. al. is 

to allow designers to create their own "user defined features" for the construction of 

complex parts. Attempts have been made to provide a system which allows user defined 

features in a feature-based modelling system (Don- and Wozny 1991). However, such 
features may bring undesirable consequences such as the inability of the system to 

support manipulation or validation of features. User-defined features may be 

unintelligible to downstream applications and could destroy or alter pre-existing 
features and the system will be unable to detect such changes or to react suitably. 

2.3 ASSEMBLY MODELLING 

Assembly modelling has been the subject of research in many areas such as kinematics, 

Al, robotics and geometric modelling. Assembly is defined as the process of creating a 

connection between components or sub-assemblies to form complex end products 
(Wang and Li 1991). To model assembly properly, it is important to represent the nature 

and structure of dependencies between parts in an assembly. As mentioned in Chapter 1, 

the modelling representation of relationships and mating conditions are the 
distinguishing characteristics between modelling individual parts and assemblies and 

consequently between geometric modellers and assembly modellers. Assembly 

modellers can be thought of as more advanced geometric modellers where the data 

structure is extended to allow representation and manipulation of hierarchical 

relationships and mating conditions. Figure 2.11 depicts the role of a geometric modeller 

as a preprocessor to the assembly modeller in the creation of an assembly model. A link is 
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established between geometric and assembly modellers such that designers need only to 

modify individual parts for design modifications using the geometric modeller, and the 

assembly model is updated automatically (Zeid 1991). 

There are three requirements for assembly modelling: the modelling of individual parts, 

specifying the hierarchical relationships between parts in the assembly and specifying the 

mating conditions between parts or specifying the locations and orientations of the parts 

in their assembled positions (Zeid 1991). These requirements are discussed in the 

following sections with the emphasis on the research work done in those areas. 

Geometric 
Modeller 

Geometric 
Model of 
part 1 

Geometric 
Model of To part 
part n analysis 

To assembly analysis 

Figure 2.11: Generation of an assembly model (Zeid 1991) 

2.3.1 MODELLING OF PARTS 

This is the first step in creating an assembly model. Individual parts can be created using a 

geometric modeller with a proper representation scheme. In most assembly operations, 

specific features of objects dictate how these objects may be assembled together. Solid 

modelling, especially B-Rep schemes, have been used for this purpose because the 
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mating conditions are related to the faces, edges and vertices of the assembled parts (Zeid 

1991). However, features are seen as a more natural method of representing the assembly 

of parts by capturing assembly mating information and enhancing the assembly design 

environment (Shah and Tadepalli 1992). Features contain information relating to the 

position and dimensions required to define the geometry and information pertaining to 

how features of a single component or assembly are positioned with respect to each other. 

The feature may be defined based on either shape or connectivity. The latter is used for 

representing a mating position in an assembly operation. Due to these factors, features 

have been used in much recent assembly modelling research work (Wang and Ozsoy 

1990, Giacometti and Chang 1990, Shah and Rogers 1993, Molloy et. al. 1993). 

2.3.2 ASSEMBLY STRUCTURE AND MATING RELATIONSHIPS 

An assembly database stores the geometric models of individual parts, the spatial 

positions and orientations of the parts in the assembly and the assembly or attachment 

relationships between parts (Zeid 1991). Some representation schemes have been 

developed, but the inherent problem that all these structures are attempting to solve is 

how to assign assembly data interactively to build or develop the assembly. The main 

difference among these schemes stems from the way the user provides the assembly data, 

that is the locations and orientations of the various parts and their hierarchical 

relationships. Some of the representations of assembly and mating relationships are 

discussed below. 

Most of the assembly systems are represented by a hierarchical structure. Wesley et. al. 

(1980) created a comprehensive engineering database to allow representation of objects 

and their inter-relationships. A graph-based structure was used to model assemblies 

where components and assemblies (parts, sub-parts and assembly) are represented by 

nodes interconnected through corresponding edges that represent relations among 

components. Four types of relationships are defined - "part-of', "attachment", 

"constraint" and "assembly". The nodes also store positional relationships between 

objects and material properties. The above relationships between parts and 

subassemblies in the data structure are modelled using a world model. A program called 
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AUTOPASS was developed using a world model which represents the above 

relationships between parts and subassemblies in the data structure. The model does not 

provide an interactive user interface and requires the transformation matrix of each 

component as an input to constrain the location and orientation of each component in an 

assembly. 

Sekiguchi et. al. (1983) divides the relationships between parts in an assembly into two 

main groups - "fit", which implies a pair of external and internal cylindrical surfaces and 

"contact" between two planar surfaces. These are classified into the relative degree of 

difficulty of assembly, which is determined by the combination of the degrees of freedom 

of motion and the required force to change the relative position of parts in assembly 

and/or disassembly, as shown in Figure 2.12. For instance, push fit is ranked lower than 

pressure fit, as the former is less difficult than the latter to disassemble. A connective 

matrix is built for each assembly direction (x, y, z) and for each type of relationship. From 

this, the rules which govern the assembly sequence is determined. 

Connective relations Code 

Pressure fit Pr 
Push fit Pu 
Screw fit Sc 
Taper fit Ta 

Fit Spline fit Sp 
Position fit Po 
Movable fit Mo 
Gear coupling Ge 
Ring fit Ri 
Key fit Ke 

Clamp contact Cl 
Taper contact Ta 

Contact Plane Contact Pl 
Gear meshing Ge 
Gap plane Ga 

Figure 2.12: Connective relations (Sekiguchi et. al. 1983) 
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To avoid the problem of using a transformation matrix, Lee and Gossard (1985) proposed 

a hierarchical tree structure as shown in Figure 2.13. This contains basic information such 

as mating features between the components, plus the concept of virtual links that are 

introduced to connect pairs of mating components or sub-assemblies. 

Assembly 

Virtual Link 1-- , Virtual Link I ----* Virtual Link 

Subassembly 

Component Component Subassembly Component Component J Component 

Virtual Link -f Virtual Link ------- Virtual Link 

Component Component Subassembly Component Component Component 

Figure 2.13: Assembly tree structure (Lee and Gossard 1985) 

A virtual link is defined as the complete set of information required to describe the type 

of attachment and the mating condition between a mating pair. Mating features are used 

to describe the mating information in detail. Two mating conditions of "against" and 

"fits" are used to describe the mating relationships between mating features. The 

"against" condition holds between planar faces of a pair of components. The "fits" 

condition holds between centrelines of a solid cylinder and a hole. Any mating pair of two 

subassemblies, two parts or one subassembly and one part is connected by one virtual 

43 



Chapter 2 

link. The transformation matrices are derived automatically from the associations 

contained in the virtual links (Lee and Andrews 1985). 

The mating conditions defined by Lee and Gossard have been used successfully by 

Rocheleau and Lee (1987) to establish the relationships between components and 

compute the location and orientation of the component. Although the two mating 

conditions can accommodate a wide range of possible assemblies, they proposed other 

mating conditions to enable thread and gear conditions and other special cases to be 

represented. Kim and Lee (1989) extended the use of the model for dynamic and 

kinematic analysis of assembly components. 

The virtual linked assembly structure cannot explicitly describe the natural structure of 

an assembly and cannot provide enough mating information to support subassembly 

instances. Ko and Lee (1987) further developed the ideas of Lee and Gossard (1985) by 

representing an assembly in a hierarchical tree. An assembly is divided into several 

subassemblies and each subassembly is divided into several groupings, which are further 

composed of several components. Any two components are in different subassemblies if 

the components have relative motion with respect to each other and any two components 

in a subassembly are in different groupings if the component do not mate directly. Two 

additional mating conditions are proposed - "tight-fit" and "contact". The "tight-fit" 

condition is a "fit" condition whereby the rotational movement is constrained. A 

"contact" condition is introduced to prevent any movement in the "against" condition. 

The approach is used to generate an assembly plan. 

The idea of representing assembly as an assembly graph was further consolidated by 

Wang and Ozsoy (1990). In this graph, shown in Figure 2.14, the assembly, its 

sub-assemblies and components are hierarchically structured as the topmost, 

intermediate and terminal nodes respectively. The concept of instance is introduced to 

accommodate more than one occurrence of a component or a subassembly at different 

locations with different orientations in an assembly. The connectivity information 

between the elements of an assembly is made available through the instances instead of 

through the components or subassemblies. The mating condition of "against" and "fit are 
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used with an additional mating condition of "parallel". "Parallel" constrains two planar 
faces to have a specified separation distance and to have their surface normals pointing in 

the same direction. The mating information between a pair of mating entities is stored as a 

set of mating links. 

Assembly 

Instance ) I. Instance )( Instance ) ..... ( Instance 

Component Subassembly Component 

Instance Instance ... Instance 

Subassembly Component Component 

Instance Instance ... Instance 

Component Component 

Figure 2.14: Assembly Graph (Wang and Ozsoy 1990) 

Mating links are created and linked together according to the user specified mating 

conditions. The position and orientation of an instance of the assembly is derived from 

the mating conditions carried by the mating links of that instance. The detailed mating 

information about where and how the mating happens is provided by mating conditions 

and mating features. Mating features contain the specific geometrical information 

referred to by mating conditions. For instance, if the mating condition is against, the two 
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mating features will be two planar faces and if the mating condition is fit, the two mating 

features will be two cylindrical faces. 

Huang et. al. (1993) also used the mating conditions of "against" and "fits" and 

developed a technique that allows a designer to interactively create an assembly of 

components by specifying the mating conditions and/or the relative location and 

orientation among the individual components in a feature-based system. A 

dimension/tolerance chain is then created automatically. Baxter et. al. (1992) proposed 

an extension of the mating conditions proposed by Lee and Gossard (1985), by writing 

rigourous definitions for a set of mating conditions, including the degrees of freedom that 

they constrain. 

Shah and Rogers (1993) distinguished between the representation of assembly and the 

derivation of assembly relationships. They claim that the hierarchical structures used in 

most assembly representation research can only model "part-of' relationships. To fully 

model assembly, many other types of relationship need to be included. To achieve this 

aim, five types of relationships between subassemblies are defined: "part-of', 

"structuring relations" (SR), "degree of freedoms" (dof), "motion limits" and "size 

constraints" applied to dimensions. The assembly structure consists of low-level 

geometric entities (axes, faces) to high-level subassemblies, as shown in Figure 2.15. 

Sub-assemblies consist of parts, and parts can be thought of as an assembly of form 

features. Form features are composed of simple volumes combined together by Boolean 

operations and feature volumes are defined by boundary entities. An assembly may 

consist of several sub-assemblies, which themselves may consist of several units, either a 

part or a sub-assembly. 

The work done at the University of Leeds on the development of a product data 

framework considers assembly as lists of parts without reference to physical or functional 

connectivity (Henson et. al. 1993). The framework considers product, assemblies, 

components and features each of which have their own set of entity attributes. A product 

description may either be a component or an assembly. An assembly description may be 

implemented as a list of parts where a part is either a component or an assembly. This 
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representation is only suitable for a limited application and is not sufficient to support 

applications which require information about the relationships between components, 

such as tolerance analysis and design for assembly. 

ASSEMBLY 

SR 
SUB A ------------ dof 

PART td PART M-I PART 

SR, Fit 

aof 
FF 

SR 
FV FV 

do f 

SR 
dof 

R_Face II Axis II Axis VFace 

Fit 

a assembly unit 

"part-of' relation 

--' other realtions 

Figure 2.15: Assembly entities and structure (Shah and Rogers 1993) 

Other forms of graphs have also been used to represent assembly and mating conditions. 

Roy and Liu (1988) proposed a semantic association model (SAM)-based assembly 

database. The components of the assembly are represented by a feature-based structural 

face adjacency graph. The required mating conditions between features of different 

components in an assembly are defined by a functional relationship graph. The assembly 

database could support further functional analysis such as assembly evaluation and 

tolerance analysis. However this is only a conceptual model. Sturges and Kilani (1992) 

use a component graph to describe the mating conditions between the features in a 

subassembly. Nodes in the graph represent either individual components, subassemblies 
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or void regions while links represent the mating conditions between the mating nodes. 
Mating consists of the faces that are shared by the two nodes concerned. Porchet and 
Zhang (1993) model an assembly by specifying parts, connection types between parts 

and the number of restricted degrees of freedom by a connection in a graph. The graph is 

used to determine tolerances of functional parts in a product at the assembly level. 

Mantyla (1990) proposed hierarchical part-of-graphs that support relationships between 

components in multiple views. An object-oriented (multi-tree) data structure was 
designed and certain consistency rules for the views were imposed. An assembly design 

system was developed that supports top-down design, multiple levels of detail, 

feature-based design of components and limited constraint-based geometric 

relationship maintenance. The system is intended to support applications such as process 

and assembly planning. However the system can only represent 2D geometry. 

The importance of Dimensioning and Tolerancing (D&T) information to support the 

assembly application has been recognised and many researchers have proposed data 

structures which include this information (Roy and Liu 1988, Sodhi and Turner 1991). 

An important aspect of tolerance design is to establish the functional relationship 

between parts. However, many tolerance design techniques attached to features are 

conceptual in nature and are not practical for application (Porchet and Zhang 1993). The 

inclusion of D&T knowledge in features is an extensive area of research and this is not 

considered in this research. 

The review on assembly modelling highlights two important aspects - the structure of the 

assembly and how relationships among parts in an assembly are defined. A hierarchical 

assembly structure has been widely adopted as it is the most natural way of representing 

assemblies. The structure represents the way in which an assembly is actually modelled 

by the designer. It also suits well with the way features are structured. This structure is 

adopted in this thesis, as described in Chapter 6. The above discussion also points out 

some common approaches in defining relationships among assembled parts. Two 

common types of mating relationship which involve contact between two planar surfaces 

and contact between a hole and a shaft have been identified by most of the researchers. 
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The differences are only in the naming of the relationships and the level of detail in 

describing the relationships among the parts. The established relationships are adopted in 

the feature knowledge in this research. 

2.4 SUMMARY 

In this chapter, several issues pertaining to the application of feature-based technology in 

manufacturing and assembly modelling of mechanical parts have been discussed. 

Although there are criticisms on the use of features in design and manufacturing (Gui and 

Mantyla 1994), features are seen to have the most potential in representing 

manufacturing knowledge efficiently. The discussion on features emphasises the need 

for a definition and taxonomy which can be used in multiple applications. To achieve this, 

features should be defined to fully incorporate the knowledge of the application domains 

and be supported by a well defined taxonomy. A design by features approach is preferable 

to the feature recognition method due to the possibility of considering manufacturing and 

assembly concerns early in the design process and the advantage of storing relevant 

information for the application, which is not possible in the latter approach. 

A single feature representation would be useful across many applications and eliminate 

the need for feature mapping. Since process planning and assembly modelling are 

frequently feature-based, it is most appropriate to use a feature-based model as the 

internal data representation for both of these applications. Assembly modelling is seen as 

a very important activity in the design process as the output from assembly modelling can 

be used in various applications such as Design For Assembly (DFA) and assembly 

planning. Several approaches in representing assembly models have been discussed. 

Research in the application of features for assembly modelling is still lacking compared 

to process planning. From this review, it is evident that little work has been done on 

integrating feature definitions to cover the two major activities of process planning and 

assembly. This research attempts to look into this problem and propose a means of 

representing features that are applicable for both applications. To achieve this aim, a 

feature-based design approach is seen as most appropriate to represent a part while an 
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object-oriented approach is deemed most suitable to represent the feature knowledge. An 

object-oriented technique is reviewed and discussed in the next chapter while Chapter 4 

describes how features are defined using this approach. 
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CHAPTER THREE 
OBJECT-ORIENTED TECHNIQUES 

3.1 INTRODUCTION 

"Object-oriented (00) models are recognised as being useful for understanding 

problems, communicating with application experts, modelling enterprises, preparing 

documentation and designing programs and databases" (Rumbaugh et. al. 1991). This 

statement highlights the capability and the importance of the 00 technique which is now 

widely used in the development of manufacturing application software. The aim of this 

chapter is to present an overview of the technique with a particular emphasis on 00 

programming. 00 concepts are explained as a basis for understanding the development 

of the feature and assembly models and the prototype feature-based assembly modelling 

system described in the following chapters. The chapter also gives an overview of the 

C++ programming language and a solid modeller kernel, ACIS`. These tools represent 

the current state of the art in developing application systems and thus a significant 

amount of time has been spent in studying and applying them to the problem of creating a 

feature-based assembly modelling system. Section 3.2 gives an overview of the 00 

programming concepts and Section 3.3 outlines the benefits of using this approach. 

Section 3.4 describes the approach to 00 design used in this research work including the 

notation used in representing objects and their relationships. The C++ programming 

language is described in Section 3.5 and Section 3.6 gives a general description of the 

ACIS® solid modeller kernel and how it is used in this research. The description of the 

main features of these tools will help in the understanding of the research work presented 

in the following chapters. 

3.2 OBJECT-ORIENTED PROGRAMMING CONCEPTS 

Approaches to programming have changed dramatically since the invention of 

computers to accommodate the increasing complexity of programs and the development 

of hardware. The language development process has passed through various phases, 
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moving from binary machine-code instructions through low-level assembly language to 

high-level languages such as Pascal, Fortran and C. However these programming 

languages do possess sufficiently powerful enough abstractions required by large and 

complex software systems (Zhou et. al. 1994). The structured programming approach 

was developed in the 60's in an attempt to solve this problem. Structured programming is 

an approach which divides systems into functional modules, so that each module is 

highly cohesive. Communication between modules is strictly controlled, thus allowing 

the program to be debugged more easily (Zhou et. al. 1994). The approach eases the 

organisation and control of the software development task, but it remains difficult to 

control a project once it reaches a certain size. There is a problem of maintenance, 

extension and integration of the system developed, and 00 programming was introduced 

to address these problems. 

00 development emphasises a number of essential concepts and principles which 

provide guidance for the construction of programs based on the ideas of objects, classes 

and class relationships. Some of the important principles involved in 00 programming 

are outlined in the following paragraphs (Rumbaugh et. al. 1991, Korah 1994). Sections 

3.5 and 3.6 provide examples of these principles applicable to the C++ language and the 

ACIS modeller. 

3.2.1 ENCAPSULATION 

The term object-oriented means that software is organised as a collection of discrete 

objects that incorporate both data structure and behaviour (Rumbaugh et. al. 1991). The 

concept of an object is the central feature of 00 programming. An object is a 

self-contained software entity that consists of both data and program code (procedures) 

to fulfil the required functions which manipulate the data. Data is information or space in 

a program where information can be stored, such as a name or a dimension. Procedures or 

methods are parts of a program that cause the computer to actually do something, such as 

display the output, perform calculations or store information on a disk. In traditional 

programming, code (sequences of computer instructions) and data have been kept apart. 

In 00 methods, code and data are merged into single indivisible entity. Within an object, 
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some data and/or methods may be private to the object and inaccessible to anything 

outside the object. In this way, an object provides a significant level of protection against 

other unrelated parts of the program. This relationship between data and function in an 

object is referred to as encapsulation or information hiding. Encapsulation supports the 

separation of the specification of the component from its implementation. It offers two 

kinds of protection - it protects an object's internal state from being corrupted by the 

program that uses it (the client program), which in turns protects the client's code from 

changes in the object's implementation. An object does not tell the outside world how it 

does an operation. This prevents a program from becoming too interdependent and eases 

the problem of maintenance (Korah 1994). 

Mitchell (1993) outlines the situations where the use of objects is necessary. Objects 

should be used in the following situations: 

i. To represent real world concepts such as animals, cars, features. 

ii. To represent well-known data structures or algorithms. For example, a feature is a 

linked list of faces and a component is a linked list of features. Thus features and 

components are objects. 

iii. To encapsulate design decisions which are difficult to make or involve machine 

dependencies. For example, a mouse, a keyboard and a screen of a computer are 

machine dependent and thus can be represented as objects. 

iv. To hide complexity to the end user, for example to handle certain types of curves such 

as Bezier curves. 

v. To create a more convenient 00 interface to existing libraries, such as a window 

object which provides an interface to the text handling and graphics library supplied 

with the compiler. 

Each object is defined by a class declaration. The class is a collection of objects sharing 

the same set of characteristics (data format) and functionality. Classes and objects are 

closely related concepts. Every object is a specific instance of a class and the class 
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definition ensures that all objects of that class will have the same structure and behaviour. 

For example, in the development of a feature-based assembly modelling system, a 

component class is developed to represent any component that makes up the assembly. 

An object called a block can be created to represent an instance of the class Component. 

Figure 3.1 illustrates the concept of class, objects and how they interact in an 00 

program. 
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Figure 3.1: Class, Object and 00 Program 
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3.2.2 POLYMORPHISM 

Polymorphism in the context of 00 is the ability to hide many different implementations 

behind a single interface or the ability to issue the same command to different objects. 

This means that the same message can be understood differently by objects of different 

classes and therefore produce a different, but appropriate result. It allows a function name 

to be shared up and down a class hierarchy. The client code can invoke an object's 

operation without knowing its type and if the implementation of the object's operation 

changes, the client code is not affected. For example, the message DrawFeature sent to a 

boss feature will result in a boss being drawn. When the same message is sent to a hole or 

slot, it would result in a hole or slot being drawn. This is referred to as dynamic binding, as 

it is the establishment at run time of an association between a method call and the code 

executed. 

Polymorphism also allows function overloading and operator overloading. By function 

overloading, it is possible to define different functions with the same name, each 

processing different data. For example, two functions of the same name could be written, 

one to move the feature using cartesian coordinates and another to execute the same 

function using polar coordinates. The arguments and return type of the function 

determine which function is used. Similarly, with operator overloading, mathematical 

operators, such as +, - and /, can be defined to operate on various data types including 

objects. 

3.2.3 INHERITANCE 

One useful property of 00 methods is that a class produced for one program may be 

usable in a new program by a slight modification and this can be achieved by defining a 

new class which inherits the properties of the existing class. 

Inheritance is the property that allows the building of objects from other objects or 

creation of new classes by extending and adapting old classes, based on hierarchical 

relationships. The class from which one inherits is called a base class (parent class) and 

the class which does the inheriting is called a derived class (child class). A derived class 

55 



Chapter 3 

may inherit all of the data formats and methods from its parent class but it has the 

opportunity to change anything it inherits by adding new data and/or methods or 

redefining inherited methods. In the last case, a method declared in a base class may have 

several definitions since it may be redefined in multiple derived classes. When the 

method is called to perform an operation on an object, the definition actually used is 

determined at execution time based on the class of the object, as explained in Section 

3.2.2. A base class may have multiple derived classes and a derived class may in turn 

serve as the base class for other derived classes, producing a tree-structured organisation 

of classes as shown in Figure 3.2. In the example, point and shape are derived classes of 

the drawing object class. The shape class in return is a base class for polygon and circle 

classes. The triangle and quadrilateral classes are derived classes of a polygon class and 

thus can inherit all data and methods from the classes higher up in the hierarchy. 

base class 

derived class 

Figure 3.2: Class hierarchy for shape (Gorlen 1987) 
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In an 00 design process, inheritance is used in the following situations (Mitchell 1993): 

i. If one class is just an extension of another, then it should inherit the parent class, for 

example a rectangle inherits a line and an arc inherits an ellipse. 

ii. If various classes have many member data or methods in common, but with some 

differences, it is worth creating a base class containing these common members and 

let other classes inherit them. For example, a line and a circle share the x, y 

coordinates. 

iii. If a group of objects share a complex algorithm, then a base object may be 

appropriate. 

iv. If a class is a specific example of a general case, create a base class for the general 

case and let the specific class inherit it. For example, a feature class described in 

Chapter 4 is a general class for all feature types and profiles. 

3.3 BENEFITS OF OBJECT-ORIENTED PROGRAMMING 

Many development benefits can be achieved using the 00 model. Most advantages come 

from the reusability of code, and the fact that analyses and designs are easier to achieve 

than with the traditional development model. For example, 00 languages have built-in 

support for reusability through classification, inheritance, information hiding and 

encapsulation. The concept of class provides the benefit of reusability by providing a 

template which programmers can use over and over again to create many objects. 

Inheritance and dynamic binding make programs easier to extend by defining classes 

which inherit the properties of other classes. Each time a new sub-class is added to the 

inheritance hierarchy, it can automatically reuse the attributes and operations defined by 

its base class, as explained in the previous section. Any inherited method can be redefined 

to perform a task more suited to the new class. This allows the customisation of existing 

parts and only the codes for the new features need to be written. Furthermore, a base class 

can be defined and only partially implemented so that it can become a generic (or 

abstract) class. The rest of the class is left to the specialised users to define and implement. 
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This idea leads to the extensive use of existing libraries of proven facilities which the 

programmer can use in the development of an application system. Classes and objects 

could become the equivalent of interchangeable, standard components, similar to 

selecting parts from a catalogue and snapping them together. The building of software 

using the concept of standard "components" or building blocks that have already been 

tested in many systems can improve the quality of the software and makes it easier to 

model complex systems. When less code is written, there is less chance of making an 

error and the task takes less time. This is the approach used in developing an application 

system using a kernel modeller such as ACIS. The 00 solution also allows the user to 

prototype portions of a problem and add to the prototype later. The result is a fast response 

to changing user requirements. 

By exploiting the concept of encapsulation, a programmer can change the 

implementation of an object and not affect any of the other objects in the system. The 

interface between the user program and the object is well-defined and localised in the 

object's class definition. A well designed implementation also hides the complexity of its 

operation from the user program, making objects easier to use. This leads to another 

benefit of modularity. Modularity makes debugging a system much easier. When the 

system is modular, it is easier to isolate the problem and identify it within a specific 

module. Programmers can change any of the object's internal algorithms without 

disturbing the system, but they may not alter the object's interfaces and services. This is 

also important during the test phases of a project because the programmer does not have 

to retest modules that have not been changed or reused without modification. 

All the benefits of 00 programming described above are relevant issues in the 

development of manufacturing applications, especially in the present competitive 

environment. For these reasons, the 00 approach has been chosen in this research for 

describing features, the feature taxonomy, representing an assembly model and 

developing a prototype feature-based system. 
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3.4 OBJECT-ORIENTED DESIGN APPROACH 

To help in the 00 design process, various guidelines have been introduced and these are 

often referred to as 00 Analysis and Design. The purpose of 00 analysis (OOA) is to 

determine which objects need to be programmed and how these objects will interrelate. 

The 00 design (OOD) process provides more details about the objects to be 

programmed, including any associated user interface objects and database architecture. 

A certain amount of OOA and OOD must be done before detailed coding can begin and 

this can be achieved by numerous different methodologies which address the analysis, 

design and implementation phases of the development. Among the methodologies are the 

Booch method (Booth 1991) and the Object Modelling Technique (OMT) (Rumbaugh et. 

al. 1991). Detailed discussion of the 00 methodology is beyond the scope of this thesis, 

but an important result of OOA and OOD is one or more object models, which are 

presented in diagram form and graphically show the objects to be programmed and the 

interactions among them. The object models also show the data and methods inside each 

object. 

The following approaches in 00 design, adapted from Mitchell (1993), are adopted in 

this research: 

i. Selection of objects. This requires determination of an appropriate class, as discussed 

in Section 3.2.1. Classes for features and assembly are defined in Chapters 4 and 5 

respectively. 

ii. Determination of the interaction between classes, that is which classes use which 

other classes. 

iii. Determination of the relationships among classes to help in their organisation. Two 

classes may be related by inheritance, one class may be a client of another (use the 

other) or there may be no relationship. An inheritance relationship is developed if 

two classes meet the criteria outlined in Section 3.2.3. Otherwise, a class will be a 

client of another class. 
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iv. Design of the system which involves making a high level decision about the overall 

structure of the program and division of the program into separate modules. 

v. Design of the contents of classes which involves determining the data and methods. 

vi. Consideration of the interface between each module. This involves specifying the 

form of all interactions and the information flow among them. 

vii. Test and develop the program. 

One of the significant aspects of the methodology presented in this thesis is the use of 

common graphical notations for defining problems and requirements related to the 

representation of objects and their relationships. This helps to define an object using 00 

programming concepts without dealing with the complexity of the programming 

language syntax. The use of graphical notation allows essential information to be 

attached to the analysis model. The main items of information of importance to this 

research are the data attributes of the class, the methods and the relationships among 

classes, as described in the following paragraph. 

Using this approach, which is based on OMT methodology, the class is represented by a 

rectangle divided into regions. An example of the notation for a class called Circular 

Feature is shown in Figure 3.3. The name of the class is given in the top region in bold. A 

second region is used to list data or attributes of the class. For the Circular Feature class, 

there are four items of data -a pointer to the body of the feature, the radius, height and the 

position of the feature. The third region contains a list of public members of the class 

(explained in Section 3.5). In this case, there are four public methods - Get Dimension, 

Draw, ShowRadius and Save. The objects can have physical or conceptual connections 

between them, and these are referred to as links. Various graphical notations are used to 

represent these links and Figure 3.4 shows how inheritance is represented using this 

approach for a set of classes. A triangle connects a base class to its derived class. The base 

class is connected by a line to the apex of the triangle while the derived classes are 

connected by lines to a horizontal bar attached to the base of the triangle. 
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CircularFeature 

BODY *cir 
Height 
Radius 
Position 

Get Dimension 
Draw 
ShowRadius 
Save 
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Figure 3.3: Representation of a class 
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Figure 3.4: Notation for hierarchical relationships (Rumbaugh et. al. 1991) 
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In Figure 3.4, the dimensional classes are derived from the Figure class and the 

geometrical entities (point, line, arc, spline, polygon and circle) are derived from the 

appropriate dimensional classes. 

3.5 THE C++ PROGRAMMING LANGUAGE 

There are many 00 programming languages currently in use, but two of the most popular 

are C++ and Smalltalk. The C++ language is a relatively new programming language, 

derived and enhanced from the C language (Stroustrup 1991). It contains many 

improvements and features that make it a "better C" and adds support for data abstraction 

and 00 programming techniques. 

C++ supports the three key features of the 00 concept. namely encapsulation, 

polymorphism and inheritance by means of the class declaration. A class is a data type 

defined by users to describe what sort of information it can represent and what sort of 

actions can be performed with that data. This example of the definition of a Circular 

Feature class illustrates these aspects: 

class CircularFeature: public Feature 

private 

BODY *cir, 

double radius, height, pos_x, posy, pos_z; 

public: 

CircularFeature(); 

-CircularFeature(); 

void GetDimensionO; 

void Draw(); 

void ShowRadius() (return rad; J 

void Save(); 

A data abstraction of the class is defined by the access functions. In C++ these can be 

public or private. A public member can be used by other functions that do not belong to 

the class, while a private member can be used only by other members of the class. This 
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class declares a pointer to the feature body, dimensions and the position with private 

member variables and the rest of the codes as public member functions. Since radius and 
height are private, they can be accessed only by member functions. A user program may 

read the values of radius by calling the member function ShowRadius, but may not write 
into these variables. This ability to combine data structure and functions in a single entity 

makes encapsulation cleaner and more powerful than conventional languages. 

A member function with the same name as its class such as CircularFeature() is a special 
function called a constructor. A constructor function creates a new instance of its class 

and initialises it, and is implicitly called whenever an object of its class is declared or 

allocated via the C++ new operator. A function with the same name prefixed with the 

character -- such as -CircularFeatureO is called a destructor. It is used to clean up 

memory when an object is deleted. In some classes, particularly the base class, the key 

word virtual specifies that dynamic binding is to be used for the function to which it is 

applied. The virtual function allows another class derived from the base class to provide 

alternative versions of the function. 

The notation class CircularFeature: public Feature denotes that CircularFeature is a 
derived class of a Feature class. Private members of the base class are inherited, but 

cannot be accessed by the derived class, thus preserving the encapsulation. Public 

members of the base class are inherited as private members of the derived class by 

default, but usually they are caused to be inherited as public members by qualifying the 

name of the base class with the keyword public, as in the above example. 

Some of the advantages of using the C++ programming language are good runtime 

performance, well developed supporting technology for program development in areas 

such as class libraries, domain-specific application skeletons and classes and 00 design 

techniques and tools. Due to these advantages, it is claimed to become a de facto 

programming language for software development and is adopted as the programming 
language for developing the feature-based assembly model in this research. 
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3.6 ACIS` SOLID MODELLER 

3.6.1 GENERAL DESCRIPTION 

ACIS is an 00 geometric modelling system designed for use as a "geometry engine" for 

applications that require 3-D modelling (Spatial 1993). It is a B-Rep solid modeller and 

provides an open architecture framework for wireframe, surface and solid modelling 

from a common, unified data structure. ACIS supports a wide range of geometry types 

and provides a set of geometric operators for the construction and manipulation of 

complex models. As an 00 system written in C++, ACIS provides extensive facilities 

through a set of class libraries for application development. 

Unlike other commercial solid modellers such as Unigraphics and Pro-Engineer, which 

are menu driven, the solid model can be built within ACIS using class libraries which can 

be accessed through anApplication Procedural Interface (API) or direct-object interface 

to all internal objects, classes and methods, shown in the structure of ACIS in Figure 3.5. 

Application developers can add, derive and extend classes or access the system from any 

language such as C++, C, FORTRAN, PASCAL and LISP. This approach provides 

flexibility, especially in the development of a customised application program as 

developers are not tied to the proprietary rights of other software. 

The functionality of ACIS can be enhanced through the development of 

application-specific facilities, called Kernel Extensions or Husks. Husks can be coupled 

to ACIS to provide additional application development support such as rendering, 

constraint management and feature modelling. It provides an infrastructure to allow 

system developers to manipulate and manage their applications development. Specific 

applications are then built on top of ACIS Husks and ACIS. Figure 3.6 illustrates this idea 

whereby a feature-based design system is developed as a husk and the assembly 

modelling is built on top of this husk as an application. Further applications such as 

assembly planning and Design For Assembly system can be developed on top of this and 

other husks. 

64 



Chapter 3 
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There are few commercial feature husks available, such as the Feature Management Husk 

(Spatial Europe 1993). The husk offers some standard features and at the same time 

allows application developers to provide their own definitions of features. The user- 

defined features can be described in C++ or in an external command language, such as 

Scheme, a LISP-based language. It is claimed that by using this approach, many new 

types of features can be created at a faster speed. The husk can be interfaced to an external 

constraint modeller. 

With the increasing application of 00 techniques, the use of ACIS in the development of 

manufacturing applications has increased. In the feature-based domain, ACIS has been 

used as a geometric modeller for a process planning system (Krause et. al. 1991, Wang 

1991); as a kernel for a feature recognition system for multiplying connected holes, 

pockets and islands in 2.5D objects (Corney 1991), and to extract feature model data 

from a 2.5D component (Murray 1993). ACIS has also been recommended as the 

geometric modelling kernel for feature-based design systems to alleviate some of the 

feature-geometry interfacing problems (Sreevalsan and Shah 1992). The following 

sections outline some features of ACIS utilised in this research. 

3.6.2 APPLICATION PROCEDURAL INTERFACE 

The Application Procedural Interface (API) is a collection of routines that can be called 

by applications to create, change or retrieve an ACIS class library. The advantage of the 

API interface is that all of its calls are stored in a file called a journal and thus a sequence 

of calls made exclusively through this interface can be replayed. Users can create their 

own API routines using guidelines and header files, tools, and macros provided. In this 

research, API functions are incorporated into the C++ programs which build the feature 

library and are used to create specific feature profiles and manipulate the features through 

functions such as move, draw and save. Examples on the use of API for these purposes are 

given in Section 3.6.5. 
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3.6.3 C++ CLASS STRUCTURES 

Another means of accessing internal objects, classes and methods is through the Direct 

Interface. This approach is used to make rapid and efficient inquiries of models and reads 

and changes data structure entities directly. However ACIS does not store calls to it in a 

journal and thus it cannot be replayed. It is suitable for read-only access e. g. for graphic 

output. 

ACIS provides five types of classes (as in ACIS version 1.4.1), which are briefly 

described in the following paragraphs: 

i. Mathematical 

This class represents the concepts of 3D cartesian coordinates, direction vectors, 

transformation matrices for positioning entities and general 3x3 matrices. 

ii. Geometry 

This contains various classes to define geometric curves and surfaces which are not 

retained permanently in its object data structure. The classes include curves. straight 

lines and ellipses. 

iii. Entity 

Entity is the class from which all classes representing permanent objects in the ACIS 

modeller are derived. It represents common data and functionality which must be 

contained in all classes that represent permanent objects within the modeller. The 

relationship of the model classes is illustrated in Figure 3.7. The Entity class also 

covers two categories of classes - topological and data structure. 

The above classes are utilised in the development of a feature and assembly model. For 

example, the transformation matrix from the mathematical class is used to position the 

parts in an assembly model. From the entity class, the topology part of the class is used for 

identifying the face on the feature. Two other classes which are not used in this work are 

the Miscellaneous and Utility classes. The miscellaneous class consists of two classes - 
box and interval. The box class provides a method to test the interaction between two 

entities while the interval class represents a finite range on the real line. Classes in the 
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Utility class deal with the intersection between curves and surfaces as well as the 

intersection and relation of an edge to an entity. 

All ACIS classes utilise the strength of C++ in an 00 environment. Some of these 

features are: 

i. Compile time checking. 

ii. Private data which can be accessed only by public methods, thus protecting the data 

from the application program (see Section 3.2.1). 

iii. Public methods which can be accessed by application programs. 

ENTITY 
Class 

Topology Geometry ATTRIB 

BODY 

L 

User-Defined Attributes 

LUMP System-Defined Attributes 

SHELL POINT 

SUBSHELL CURVE STRAIGHT 

FACE PCURVE ELLIPSE 

LOOP SURFACE INTCURVE 

COEDGE TRANSFORM PLANE 

EDGE CONE 

VERTEX SPHERE 

E TORUS 

SPLINE 

Figure 3.7: Relationships of the ACIS model classes 

iv. Constructors and operators are overloaded (see Section 3.2.2). For example, there 

are three versions of constructors for the position class: 

position() defines a position without initialising any coordinates. 

position(double, double, double) defines a position with coordinates 
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x, y and z of double precision. 

position(double[ J) defines a position from an array of three points with 

double precision. 

v. Functions and operators in mathematical classes are overloaded. 

vi. Virtual functions are provided. For example, the curve and surface classes each have 

virtual position and parametric-based evaluator functions. The correct evaluator 

will be used according to the type of geometric entity called. 

3.6.4 THE TEST HARNESS 

The Test Harness is a simple application program written in C++ and supports 

English-like commands entered by the user. It provides a simple vectographic and 

shaded image output and several different forms of file input and output. The test harness 

provides an interface to all features of ACIS and is used to test ACIS and for program 

proving. A model created by an application program is saved in a file and the file can be 

retrieved from the test harness. The version of the test harness used in this work does not 

provide a rendering facility, and due to its limited capability, it is not suitable as a 

Graphical User Interface tool for a professional application system. 

3.6.5 EXAMPLE OF AN ACIS PROGRAM 

The following C++ code shows an example of how API commands are used to create a 

component with two features -a base feature of rectangular profile represented by a 

cuboid of dimensions 100 x 80 x 30 units and a cylindrical boss feature represented by a 

cylinder of radius 10 units and height of 40 units. First the cuboid is created using 

api_make_cuboid and the api_find_face function finds its top face. Then a cylinder is 

created and moved by the application of a transformation function by a distance of 20 

units in the z direction. The cylinder is united with the cuboid and the resulting body is 

saved in a file "cuboid. sat" which is retrieved for display in the test harness, as shown in 

Figure 3.8. 
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api_start_modeller(TRUE, NULL, 0); 

BODY* cuboid; 

api_make_cauboid(100,80,30, cuboid); 

FACE* face; 

outcome result = apindjace(cuboid, unit vector(0,0,1), face); 

if(! result. ok( )) 

f 
cout « "failed to find face (error number)\n "; 

exit(O); 

I 

BODY* cyl; 

api_make Jrustum(40,10,10,10, cyl); 

api_apply_transf(cuboid, translate trans 

api_unite(cyl, cuboid); 

FILE` save-file = fopen("cuboid. sat ", "w "); 

api_save_body(save jile, TRUE, cuboid); 
fclose(savejile); 

Figure 3.8: Example of ACIS model 
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3.7 SUMMARY 

This chapter has discussed the basic principles of 00 programming, its benefits and the 

00 design approach adopted in this research work. The 00 technique introduces many 

new ideas and involves a different approach to programming. The three main concepts of 
00 programming - encapsulation, polymorphism and inheritance offer a new and 

powerful model for writing computer software. The technique offers benefits of faster 

development, easier maintenance, improved modifiability, more compact code and the 

opportunity to reuse and recycle large sections of the code. The modular and hierarchical 

nature of the system provides a natural way of handling the complex relationships 
between parts in an assembly of products. This justifies the use of this approach in this 

research work. 

The development of a feature-based assembly modelling system is also facilitated with 

the use of the C++ language and the solid modeller kernel ACTS. A major advantage of 

using ACTS is its extensibility. This can be done by adding attributes, deriving from the 

entity class and adding new API functions. The C++ language is a practical language and 
has the necessary facilities for 00 programming and this is utilised in ACIS to provide 
flexibility in the design. 

The next chapter discusses the application of 00 approach in the representation of 
feature while Chapter 5 describes the application in the representation of assembly 

models. 
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CHAPTER FOUR 
FEATURE REPRESENTATION 

4.1 INTRODUCTION 

An important part of this research is the development of a feature representation which is 

capable of incorporating knowledge on applications, particularly assembly modelling. 

As discussed in Chapter 2, the way a feature is defined and represented affects the scope 

of its use. The aim of this chapter is to provide a framework for the description of features, 

their classification and how they are represented in an object-oriented environment. This 

will be the basis for the subsequent work described in the following chapters. Section 4.2 

describes the features used in this research work. The feature taxonomy is discussed in 

Section 4.3. Section 4.4 describes how feature knowledge is represented in an 

object-oriented environment. Section 4.5 summarises this chapter. 

4.2 FEATURE DESCRIPTION 

An important concept in feature-based design and manufacture has been outlined in 

Chapter 1-a single feature representation should be capable of supporting a number of 

different applications. This requires that a feature should incorporate as much knowledge 

as possible which allows its use in many applications. This requirement can be achieved 

by extending the knowledge within the feature object in an object-oriented environment, 

as described later. However, as this research is focussed on the application of features in 

assembly modelling, the emphasis of knowledge in the feature will be for this application 

domain. Further, as assembly modelling and other applications such as inspection are 

carried out after the machining process, process planning knowledge must be included in 

the feature. 

The approach taken in this research is to describe features based on machined shapes, but 

in a way that is at the same time useful in the design process. Features are defined in terms 

of volumes enveloped by a set of real and imaginary faces. A real face refers to an actual 

face which exists on the feature and are typically surfaces from the original part or the 
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result of manufacturing operations. Imaginary faces can be considered as surfaces 

required together with the real faces to form an enclosed volume. Figure 4.1 shows a step 

feature formed by the removal of a volume that is in part enclosed by imaginary faces. In 

the ACIS solid modeller features are represented in a B-Rep scheme, in which faces are 

explicitly defined. Information on faces is required to determine the relationship 

between each feature in an assembly model. The real faces for each feature is shown in 

Figure 4.6. Volumes removed as a result of machining operations form depression 

features while protrusion features are volumes to be added to the part or to be left after 

machining of surrounding regions. Figure 4.2 shows a depression feature in the form of a 

pocket and a protrusion feature represented by a boss. 

real face 
imaginary face 

'A 

Figure 4.1: Imaginary and real faces of a feature 

Features are further defined in terms of dimensions such as height, width, length and 

radius, according to their geometric profiles. Each feature has its own coordinate system 

attached to it at the point of reference, as shown in Figure 4.3. The origin is at the centre of 
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the feature body, following the convention used in the ACIS modeller. The orientation of 

the feature is represented by three independent (Eulerian) angles -0 (rotation about z 

axis), tJ (rotation about y axis) and 0 (rotation about z axis). The position and orientation 

of the feature provide six degrees of freedom - three translational and three rotational 

and are used as a reference for the placement of features in an assembly as well as 

establishing positional relationships between two features. 

depression protrusion 

Figure 4.2: Depression and protrusion features 

4.3 FEATURE TAXONOMY 

The requirement for a feature taxonomy is that knowledge on the application domain can 

be structured and organised so that features can be used effectively in an application. To 

achieve this, the taxonomy should organise information on the process planning and 

assembly modelling that can be conveniently represented in an object-oriented 

environment. The most natural way is to organise features in a hierarchical structure. The 

taxonomy scheme is an extension and enhancement of the scheme developed by Gindy 

(1989) as described in Chapter 2. The scheme was found to satisfy the hierarchical 

requirements and to be well suited to object-oriented design. 
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height 

width 

Z' 

height 

Figure 4.3: Feature dimensions and orientation 

Y' 
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In this scheme, features are structured at four levels of classification, as shown in Figure 

4.4. At the top level, they are divided into three categories of protrusions, depressions and 

surfaces. Protrusions are external features of a solid and can only have closed boundaries. 

Depressions are external or internal features with closed or open boundaries. Surfaces 

occur when the feature has no depth. A surface will be real when the inside of the 
boundary is solid and imaginary when the boundary is enveloping an empty area. 
Surfaces are only included in the taxonomy for completeness of the scheme, as the mating 

surfaces that are of great significance are represented as faces of features, and not 
independent features. The next level of classification is the number of orthogonal 
directions from which the feature volume might be approached. These are known as 
External Access Directions (EADs) and all features have between 0 and 6 EADs, as 

shown in Figure 4.6. Zero EAD indicates a protrusion, one to four EADs indicate a 
depression and five and six EADs denote real and imaginary surfaces respectively. The 

EAD is used in process planning to characterise a face through which a cutting tool can 

pass in order to machine the feature volume. 

Further classification is on the basis of the nature of boundary perimeters - open or closed 

as shown in Figure 4.5. An open profile has imaginary edges (edges of imaginary faces 

such as a top face of a slot) while a closed profile has all real edges, such as a hole. The 

classification results in nine types of feature - boss, pocket, hole, non-through slot, 

through slot, notch, step, real face and imaginary face. Based on the distinctive shapes of 

many parts involved in machining and assembly, five common profile types are 
identified - rectangular, circular, triangular, oblong and semi-circular. The profile 

shapes are not limited to these five types as other shapes can be defined if necessary. For 

each feature type, a number of primitive shapes are defined, based on the geometry of the 

feature profiles as shown in Figure 4.6. 

The feature shapes defined above provide convenient building blocks for the assembly 

modelling as well as process planning applications. In general, the taxonomy provides 

the opportunity for feature profiles to be extended to suit other manufacturing 

applications. 
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Profiles 

O 0 CD 0 D 
circular triangular oblong rectangular semi-circular 

Figure 4.4: Feature hierarchy 

ý OD -1--j- open boundary closed boundary 

Figure 4.5: Open and closed boundaries 
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Type 
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Data 

Protrusion 
EAD: 0 

Profiles and Faces 

fl 

1f6 f-t 
_ f2 

fs 

ß 
fl 

f2 

f5 

fl 
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fl 
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fl 
F? 

f3 
f4 
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EAD: 1 

fz 
fl 
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B 

f5 
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Q 

ß 

fl 
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Figure 4.6: Feature classification data 
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Type Data Profiles and Faces 

NON-THROUGH 
SLOT 

HOLE 

Depresssion 
EAD: 2 

Depresssion 
EAD: 2 

f1 t2 

f4 
B 

f2 
fl 

Q 
fl 

f2 

fl 

f2 fl 

fI 

f4 
f2 

fl 
fl 

rtl 

rv- fl 

f2 

Figure 4.6: Feature classification data (continued) 
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Type Data Profiles and Faces 

THROUGH 
SLOT 

fl B fl 

f2 
Depresssion 
EAD: 3 

f2 fl 
fl 

NOTCH 
fl ft 

Depresssion 
EAD: 3 el 

2 

STEP 
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Depresssion 
EAD: 4 
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fl 

Figure 4.6: Feature classification data (continued) 
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4.4 FEATURE CLASS REPRESENTATION 

In an object-oriented approach, a feature is modelled as an object encapsulating various 

attributes and methods to manipulate the data related to the feature as described in earlier 

sections. The feature taxonomy described in Section 4.3 provides a convenient way to 

design a feature class. Using the concept of inheritance, a feature class is defined to be a 

base class for the seven types of features and five types of profiles. The other three levels 

in the feature hierarchy - categories, number of EAD's and the nature of the boundary 

perimeter are not implemented as classes. The number of EAD's, the categories and the 

nature of the boundary perimeter are attributes of the feature type. The following 

paragraphs describe the structure of each class, using the notation described in Chapter 3. 

The class name is shown in bold text such as boss. 

4.4.1 FEATURE CLASS 

All features have common attributes such as position and orientation. There are also 

common actions which features have to perform such as drawing the shape and saving the 

entity. These common attributes and methods are defined in a feature class. The object 

diagram for the feature class is shown in Table 4.1. 

The class feature has private members of a pointer to the body of the feature, a pointer to 

the next feature on the same component, the location with respect to the world coordinate 

system, the orientation, the height, the number of external access directions (EADs), 

which is a constant integer (0 to 6), a pointer to the feature face, a pointer to the feature 

type (boss, hole, etc), a pointer to feature profile and a pointer to the assembly 

relationship. The role of the pointer to the assembly relationship is elaborated in the 

following chapter. These attributes can only be accessed through the public member 

functions described in the following paragraphs. 

81 



Chapter 4 

Feature 

Pointer to feature body 
Pointer to next feature 
Location 
Orientation 
Height 
EADs 
Pointer to feature face 
Pointer to feature type 
Pointer to feature profile 
Pointer to assembly relationship 

Constructor 
Destructor 
Get Dimension 
Get Location 
Get Orientation 
Validate Input 
Create Feature 
Select Feature Type 
Select Profile Type 
Find Face 
Move 
Delete 
Save 

Table 4.1: Feature Class 

Feature Constructor 

The feature constructor creates a feature instance and initialises its parameters when a 

feature type is defined. There are three variations of constructors available and the 

right type is invoked according to the function parameters supplied: 

feature() is a default constructor and used to reserve space for a feature instance. 

feature(double &h) initialises a feature body from the dimensions provided by the 

user. The height of the feature (h) is the common dimension for 
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all types of features. Other dimensions are initialised according to the 

profile types. 

feature(feature const &) is a copy constructor which is invoked when an instance of a 

feature is copied. 

For example, a pointer to the feature instance f, with height of 50 units is created with the 

expression feature *f = new feature(50). 

Feature Destructor 

The destructor, denoted as feature() destroys the feature body at the end of the 

session, to free the memory. 

Get Dimension 

This function is required to obtain dimensions of the feature from the user. The 

function is virtual, which means that (for this class), only the height dimension is 

requested from the user and a similar function name is used by feature type and 

profile classes to get other dimensions which are specific to the profile of the feature. 

Get Location 

Get Location is used to ask the user to specify the location of the feature with respect 

to the datum of the component. In the case of a base feature (a base for the component 

in an assembly), the location is given with respect to the local coordinate system. The 

location is specified in arbitrary units along x, y and z axes. 

Get Orientation 

This function is used to initialise the orientation of the feature, which is the rotation 

about x, y and z axes, as described in Section 4.2. 

Validate Input 

This is a virtual function to validate entries on the location and dimensions of the 

feature. The function is implemented in the feature profile class. 

Create Feature 

Create Feature is a function to create an instance of the feature body. This is also a 
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virtual function which is derived by the feature type and profile classes so that an 

appropriate feature type is created. For example, when a rectangular boss feature is 

defined and its parameters are correctly entered, the function to create that particular 

boss type is invoked. The function utilises API functions from the ACIS library. 

Select Feature Type 

This function is used by the user to make a selection of a feature. A menu of feature 

types is provided and the user selects the type required. 

Select Profile Type 

After selecting the feature type, the user identifies the feature profile from a profile 

menu. The selection of a particular profile invokes appropriate functions from the 

profile class. The following expressions represent a part of the code which shows the 

choice of circular profile: 

feature* feature:: SelectProfile(component C) 

Itit ans; 

feature *f; 

ProftleMenu(); 

cin » ans; 

switch(ans) 

I 
case circ: f = new cylinder(rh); 

f-> GetLength(C)-> GetHeight(); 

f->CreateFeatureO; 

break; 

case recta ........ 

I 

Find Face 

The function is used to identify a face on the feature for the assembly. Faces are 
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identified according to the vector directions of the face in the x, y and z directions. This 

uses the ACIS direct interface function faceO. 

Move 

This is a function to move a particular feature within the base feature. The movement 

is achieved by applying the appropriate transformation function provided by an API 

from the ACIS library. For example, the following code moves a boss feature bos by 

10 units in the x direction: 

api_apply_transform(bos, translate_trans(ti"ector(10,0,0))); 

Delete 

This function deletes a feature body from a component or a subassembly. This is done 

using an API function api_delentO which deletes the entity and invokes the feature 

destructor. For example, the following code deletes a boss feature *bos: 

api_delent(*bos); 

Save 

Save is a function to save a feature to a file. This is also a virtual function, as the actual 

entity saved depends on a specified feature type and profile. 

C++ Codes for the Feature Class 

The declaration for the feature class is implemented in C++ as follows: 

class feature 

protected: 
BODY *feat; 

feature *next; 

char feature_ID [20]; 

double pos-x, posy, pos_z; 
double angleX, angleY, angleZ; 
double height; 

int EAD; 

feature *type; 
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feature *relationtype; 

public: 
feature(); 

virtual featureO; 

virtual void Get_DimQ; 

void GetLocationO; 

void GetOrientationO; 

void ValidateO; 

void SelectFeatureTypeO; 

void ProfileMenuO; 

feature * SelectProfileO; 

virtual void Create_FeatureO; 

virtual void MoveO; 

virtual void DeleteO; 

virtual void SaveEntityO; 

1; 

4.4.2 FEATURE TYPE CLASS 

Each of the seven types of feature defined in Section 4.3 is represented by a class which is 

derived from the feature class. They inherit all attributes and functions of the feature 

class. The general content of the class is shown in Table 4.2. 

The private member for this class is a pointer to the feature type body (such as *boss) and 

a feature name. The feature name identifies a feature type such as boss, pocket or hole and 

its index number such as boss 1, hole2, etc. The public member functions are described in 

the following paragraphs: 
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Feature Type 

Pointer to the feature type body 
Feature name 

Constructor 
Destructor 
Create Feature 

Table 4.2: Feature Type Class 

Feature Type Constructor 

The constructor initialises an instance of a feature type. For example, a boss feature is 

initialised by a constructor in the form of boss(double &x, double &), double &z, 

feature *ptr). The x, y, and z values denote the location of the boss. The pointer to the 

feature is needed to add the feature type to the feature list that makes up the 

component. The constructor also initial ises the feature name and the number of EAD's 

associated with it. 

Feature Type Destructor 

The destructor deletes the feature type body when its instance is deleted. For example, 

for a boss feature, the destructor is denoted by -boss(). 

Create Feature 

This function redefines the virtual function in the feature class by creating a specific 

type of feature given by the user. This ensures that the right function associated with 

the feature type is invoked whenever it is used. For example, for a boss feature, Create 

Feature will invoke the following actions: 

determine the position of the boss 

move the boss to its position 

This is represented by the following code: 
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z. pos = 0.5*height of base feature + 0. J *feature height 

api_applti_transform(boss, translate_transf(vector(xj, os, y pos, Z _pos))) 

where x-pos, ypos and zpos are the x, y and z locations of the feature and 

api_apply_transform is the API function to position the boss on the base feature. 

C++ Codes for Feature Type Class 

Taking a boss as an example, the declaration of the boss class in C++ is as follows: 

class boss: public feature j 

BODY * bos; 

char Feature Type [5]; 

public: 
boss(double &x, double &y, double &z); 

-bossO; 

void CreateFeatureO; 

4.4.3 PROFILE CLASS 

Each profile type described in Section 4.3 is defined in the profile class. It is derived from 

the feature class and thus shares common attributes and methods of the class. The general 

content of the class is shown in Table 4.3. 

The private members consist of the pointer to the profile shape (such as *rect for a 

rectangular profile) and the dimensions of the profile. The dimensions in this case are 

those required to define the profile shape, as detailed in Table 4.4. 
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Profile Type 

Pointer to profile type 
Dimensions 

Constructor 
Destructor 
Get Dimension 
Validate Input 
Create Profile 
Save 

Table 4.3: Profile Type Class 

Profile Dimensions 

Rectangular length, width 

Circular radius 

Triangular length of first side, length of second side 

Oblong length, radius 

Semi-circular length, width, radius 

Table 4.4: Dimensions of profiles 

The public methods are described as follows: 

Profile Constructor 

The constructor creates an instance of the profile and initialises its dimensions. It is in 

the form of feature_type(dimension parameters). For example, for a rectangular 

profile, the constructor takes the form of rectangle(double &l, double &w). I and w 

being the length and width of the profile respectively. 

Prof le Destructor 

The destructor deletes the profile instance when it is no longer in existence. It takes the 
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form of -profile_rype(). For example the destructor for a rectangular profile is 

-rectangleO. 

Get Dimension 

Get Dimension is a derived function from the feature class. It redefines the function 

according to the type of profile selected. Thus the selection of a rectangular profile 

ensures that the length and width are required from the user while for a circular profile, 

only a radius is solicited. 

Validate Input 

This function provides the implementation of the method defined in the feature class. 

It checks two parameters - the location of the feature and the input dimension of the 

profile against the dimension of the base feature. A user is asked to enter the value until 

it is correct. 

The validation of the location of a feature is done by checking the x and y positions (Fx 

and Fy respectively) against the dimensions of the base feature. Referring to Figure 

4.7 which shows the dimensions of the base feature, the criteria for validation are 

shown in Table 4.5: 

Z 

maximum p 
location for 

h 

I 

Figure 4.7: Validation of feature location 
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Profile Criteria 

Circular Fx <_ 0.5w - radf, F-x ?-0.5w - radf 
Fy <- 0.51- radf, F-y >_ -0.51-rad f 

Rectangular Fx <_ 0.5w - 0.5FIW, F-x ? -0.5w -0.5FýW 
Fy < 0.51 - 0.5Fjw, F-y >_ -0.51 - 0.5FýW 

Triangular Fx < 0.5w - 0.5FS, F-x >_ -0.5w - 0.5FS 
Fy-0.51-0.5FS, F-y? -0.51-0.5FS 

Oblong Fx <- 0.5w - 0.5FS, F-x ? -0.5w - 0.5FS 
Fy 5 0.51-0.5FS, F-y ? -0.51-0.5FS 

Semi-circular Fx <_ 0.5w - 0.5FS, F-x >_ -0.5w - 0.5FS 
Fy <_ 0.51 - 0.5FS, F-y -> -0.51 - 0.5FS 

Table 4.5: Criteria for validation of profiles 

In Table 4.3, Fx and Fy refer to the x and y positions of the feature, radf is the radius of 

the feature, Fig� refers to the length or width of the feature and FS refers to each of the 

dimensions of the triangular, oblong and semi-circular profile see Table 4.6). 

The z location of the feature is determined by the type of the feature. For example the 

boss feature is always on a face of the base feature, so that the z position should not be 

more than the height of the base feature. This is determined by the CreateFeature 

function. 

The height of depression features (hf) is checked against the height of the base feature 

(hc). The validation of feature height is done according to the criteria listed in Table 4. 

s. 

As an example, if the height of a pocket or a slot is zero or greater than the height of the 

base feature, then the entry is considered as invalid and the user is asked to reenter 

another value. 
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Feature Type Criteria 

Boss hf >0 

Pocket 0< hf < he 

Hole hf >0 

Through Slot 0< hf < h, 

Non-Through Slot 0< hf , h, 

Notch 0< hf < h, 

Step 0<hf< hc 

Table 4.6: Validation of feature height 

The validation of other dimensions such as the width, the length and diameter of the 

features are done according to the criteria shown in Table 4.7. 

Profile Type Criteria 

Circular 0< diaf < we or Ic 

Rectangular 0< wf or If < we or lc 

Triangular 0<'If or 12f < we or lc 

Oblong 0< If or diaf < we or Ic 

Semi-circular 0< wf or if or diaf < we or lc 

Table 4.7: Criteria for validation of profile dimensions 

Referring to Table 4.7, dial is the diameter of feature, wf is the width of the feature, if 

is the length of the feature, 1 If or 12f are the length of the sides of triangular profile, w, 

the width of the base feature and lc the length of the base feature 
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Create Profile 

Create Profile uses API functions to create the selected profile of the feature. For 

example, to create a rectangular profile, the following function is invoked: 

api_make_cuboid(length, width, height, rect) 

Similarly, the function to create a circular profile is: 

api_makeJrustum(height, radx, rady, radt, cyl) 

api_MakeJrustum is an API function to create an elliptical cylinder of given height 

and three radii -x direction at base (radx), y direction at base (rady) and x direction at 

top of cylinder (radt). 

Save 

The feature entity with the specified profile can be saved in a file by this function. For 

example, to save a rectangular feature rect in a file rect. sat, the following codes are 

used: 

FILE*fp = fopen("rect. sat", "w"); 

if(j) 

f 
cout « "error saving feature "; 

exit(]); 

I 

api_save_entity(fp, TRUE, rect); 
fclose(fp); 

C++ Codes for Profile Class 

An example of the C++ implementation for the declaration of the rectangular profile type 

is as follows: 

class rectangle: public feature 

BODY * rect; 
double width, depth; 
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public: 

rectangle(double &w, double &d, double &h); 

--rectangleO; 

void Get_DimO; 

void ValidateO; 

void Create Pro 

void SaveEntityO; 

l; 

4.4.4 RELATIONSHIPS AMONG CLASSES 

Determining relationships among the classes defined in previous sections helps in 

organising them in the program. In this case, relationships among various classes have 

been described by the inheritance property of the object-oriented concept, which 

involves the sharing of attributes and operations among classes based on hierarchical 

relationships. The feature class is the base class for two general classes - the feature 

type and profile. Each class incorporates and inherits all of the properties of its base class 

and adds its own unique properties. For example, the boss class inherits the properties of 

the feature class but adds a different method for drawing the boss. Figure 4.8 illustrates 

the relationship among defined classes using the notation described in Chapter 3. 
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Figure 4.8: Relation Among Classes 

4.5 SUMMARY 

In this research, a feature-based approach utilising a hierarchical structure for feature 

definition and classification has been used. Features have been described in terms of 

machined volumes bounded by real and imaginary faces. A feature taxonomy is adopted 

and provides the basis for implementation in the object-oriented approach. The feature 

class defines the attributes and functions common to both the feature types and profiles. 

This class structure permits the use of inheritance between the object classes for 

accessing data and using various functions. In addition to the hierarchies defined above, 

the concept can be extended to create additional class hierarchies to support assembly 

modelling. This is discussed in the next chapter. 
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CHAPTER FIVE 
EXTENDING FEATURE DEFINITIONS FOR 

ASSEMBLY MODELLING 

5.1 INTRODUCTION 

The objective of this research is to extend the knowledge of feature-based product 

representations by exploring their use as supporting tools for assembly modelling. This 

is achieved by incorporating assembly knowledge into the feature-based model 

established in Chapter 4. Section 5.2 discusses basic requirements of modelling an 

assembly and Section 5.3 outlines the general structure of the assembly and how parts 

are related in an assembly. An analysis of selected assemblies is presented in Section 5.4. 

the mating relationships among features in an assembly are defined in Section 5.5 and 

Section 5.6 shows the data representation in a model database. Section 5.7 outlines the 

method of inferencing assembly positions from the mating relationships. Section 5.8 

describes how the assembly modelling knowledge can be related with the process 

planning knowledge. The assembly data structure is discussed in Section 5.9 and Section 

5.10 gives the implementation of the assembly representation in an object-oriented 

environment. 

5.2 MODELLING REQUIREMENTS 

Assembly modelling deals with the interrelations between assembled parts. The general 

aims of assembly modelling have been defined in Chapter 1 and require the building of an 

assembly model to describe the part geometry and to define the relationships between 

parts of the final assembly. This requires a representation of the parts which captures all 

the information needed for their assembly and a data structure which stores information 

on how all the parts are connected in an assembly. 

Zeid (1991) outlines three requirements necessary for assembly modelling: - modelling 

of individual parts that make up the assembly, specification of relationships between 

these parts and specification of the methods of determining the locations and orientations 
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of the parts in their assembled positions. The first requirement of modelling individual 

parts has been fulfilled with the use of feature-based geometric modelling as described in 

Chapter 4. The structure of the relationships between assembled parts is discussed in 

Section 5.3. 

Determination of the correct location and orientation of each part to be assembled is 

crucial for assembly models. For an assembly of N parts, the goal is to locate and 

orientate N-I parts with respect to the base or reference part to arrive at the final 

assembly. To do this, the position and orientation of each part in conjunction with the 

other parts in an assembly must be determined. This can be achieved either by assigning a 

transformation matrix to each part or by specifying mating relationships between 

assembled parts. 

In the first approach, a4x4 homogeneous transformation matrix can be assigned 

interactively and is used as an input to constrain the location and the orientation of each 

part in the assembly. The matrix transforms a reference coordinate system into a body 

coordinate system attached to the part, thus specifying the location and orientation of the 

part with respect to the reference coordinate system (Lee and Andrews 1985, Zeid 1991). 

Although this approach has been used in many traditional CAD applications, there are a 

number of difficulties. The two principal difficulties are that the assignment of 

transformation matrices does not represent a natural interface for the designer, and the 

explicit nature of the representation does not allow for easy manipulation of the 

relationship during the interactive construction of a design. Thus for example, it is closer 

to the designer's thinking processes to "insert a bolt in a hole" than it is to define a set of 

constraints to the six degrees of freedom that would achieve the same result. The use of 

relationships such as "bolt in hole" also allows the specific (numeric) detail of the 

transformation to be implied rather than explicitly stated. This has benefits if interactive 

changes to the design (a dimensional change for example) are introduced as the 

relationship can remain constant while the derived transformation changes. In addition to 

these significant difficulties there are many practical problems that have to be overcome. 

Typical of these would be the solution of the matrix equations, the amount of time 
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consumed in generating the transformation matrices and the tendency to make errors due 

to the mathematical complexity (Lee and Gossard 1985). 

In the second approach mating relationships between parts are defined and individual 

part positions and orientations can be automatically derived from these relationships 

(Lee and Andrews 1985). The orientations and positions can then be stored as 

transformation matrices. The computation of the transformation matrices from the 

mating parts can be used to determine whether a given assembly is possible. If no matrix 

exists which satisfies the mating conditions, then the parts cannot be assembled. This 

method of defining mating conditions can eliminate the problems resulting from direct 

assignment of the transformation matrix. This is the approach undertaken in this research 

work. 

Once mating relationships are defined, the way in which the information is conveyed by 

the mating parts and stored in the database is also important so that it can be useful for 

later applications of the data. The following section discusses how the above 

requirements are represented in the feature-based model. 

5.3 ASSEMBLY STRUCTURE 

The focus of this research is the modelling of mechanical products. Most of these 

products are compositions of interconnected parts which are individually manufactured 

components and in this context are typically machined components. The approach 

adopted is to view a mechanical product as an assembly composed of one or several 

subassemblies, which themselves may consist of one or more components. Each 

component is made up of a base part (defined as a feature) and any number of features. 

Thus from the designer's point of view a feature forms a basic entity in the assembly of 

the product. In the following discussion, all assembled parts will be referred to as one of 

the feature types defined in Chapter 4. Thus a shaft is referred to as a boss, a through hole 

as a hole, a non-through hole as a pocket and so on. 

The hierarchical structure of an assembly is represented by an Assembly Graph such as 

that shown in Figure 5.1. In the figure, the assembly is at the top-most level and features 
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are at the lowest level in the hierarchy. The dotted box in the figure shows that each 

feature can be further represented by a series of faces (within the geometric model). 

The use of a hierarchical Assembly Graph provides the most efficient means of 

representation in the design of an object-oriented system, where lower levels in the 

hierarchy can inherit the properties of higher levels, while adding their own properties, as 

elaborated in later sections. The graph also reflects the way the designer views the 

assembly process as the progressive building up of the product from subassemblies and 

components comprised of individual features. 

Assembly 

Sub-Assembly Sub-Assembly Sub-Assembly 

,. 

Base Feature Base 
Feature Feature 

Base Feature 
Feature 

Base 
Feature 

facet face! facet facer facet facer facet facer facet faces facer facer 

L--------------------------------------J 

Figure 5.1: Product Assembly Graph 

Figure 5.2a shows a lathe tool post assembly and illustrates the application of the 

hierarchical structure to a mechanical part. The lathe tool post could be viewed as 

consisting of two subassemblies (Figure 5.2b) -a post and a slide plus two components 
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(a nut and a washer). The post subassembly comprises two set screws and a tool post 

while the slide subassembly is comprised of two components -a tee bolt and a top slide. 

Going down to the feature level, each set screw is made up of two bosses of rectangular 

and circular profiles while the tool post consists of a boss, three holes and a through slot. 

The tee bolt which fits the slot in the top slide and passes through the hole of the tool post 

consists of a rectangular boss, two steps and a cylindrical boss. The top slide is made up of 

a boss, a through slot and two triangular notches. The features that go to make up the parts 

are shown in Figure 5.2c, and the Assembly Graph for the assembly is shown in Figure 

5.3. 

5.4 ANALYSIS OF ASSEMBLY 

An analysis has been carried out to determine the type of mating relationships which 

occur in mechanical assembly and to relate them to the features which constitute the 

assembly. In order to achieve this, a number of typical assemblies have been selected to 

exhibit a range of characteristics that are considered to be representative of assemblies 

in general. The following procedures are carried out for each assembly: 

1. The Assembly Graph is constructed. 

2. The assembly relationships at the component level are analysed. 

3. The assembly relationships at the feature level are analysed. 

4. The relationships at the face level of each feature are analysed. 
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Figure 5.2a: Lathe Tool Post Assembly 

set screw2 

er 

: rewl 

roipost 

top slide 

Figure 5.2b: Lathe Tool Post Components 
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hole 
boss 

hole boss 
bossl 
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U, j hole 1 
boss 

holet hole3 

through 
slot 

through 
slot 

notch2 

boss2 

step I 
bossl 

boss 

notch l 

Figure 5.2c: Lathe Tool Post Assembly (features) 
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Figure 5.3: Assembly Graph for the lathe tool post 

Three types of graph are used to represent the relationships at each level of interaction in 

the assembly hierarchy. 

1. The Component Relation Graph shows the assembly relationships at the component 

level. Each component is represented by a rectangular node and a line (CR) indicates 

that a relationship exists between the two components. In a particular instance of a 
Component Relation Graph (e. g. figure 5.8) this single relationship is replaced by one 
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or more feature-to-feature relationships Rn. An example of a relationship between a 
bracket and a pulley is shown in Figure 5.4. 

CR 
BRACKET PULLEY 

Figure 5.4: Notation for the Component Relation Graph 

2. The Feature Relation Graph shows the relationship among features in their final 

assembled state. The graph shows how each feature in a component. represented by a 

circular node, is related to a feature or features from another component(s). The 

relationship is indicated by a bold line. A rectangular shaded box shows the 

components that make up the subassemblies. The thin line shows that the feature is 

part of the component. Figure 5.5 shows the notation for a relationship between a boss 

of a tee bolt and and the hole of a nut. Rn is the index number of the relationship. 

Rn 
boss l hole 

TEE OUTJ NUT 

Figure 5.5: Notation for Feature Relation Graph 

3. The Face Mating Graph shows the interaction at the face level of each feature. A face 

on a feature is represented by a small circle with a face number. A line indicates that 

there exists a relationship between two faces. Only real faces are considered in this 

graph and the number of faces that exist on each feature depends on the profile of the 

feature, as shown in Figure 4.6. The notation for the Face Mating Graph is shown in 

Figure 5.6, where face 1 of bossl has a relationship with face 2 of boss2. 
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BOSS 1 
Rn ýý BOSS"_' 

Figure 5.6: Notation for Face Mating Graph 

These graphs help to visualise the relationships for each level of the assembly hierarchy 

and they also form the basis for constructing an appropriate class hierarchy and content. 

Their application in the analysis of assembly interfaces are shown by the examples 

described in the following sections. 

5.4.1 THE LATHE TOOL POST 

The lathe tool post, as shown in Figure 5.2 has been described in Section 5.3, and the 

Assembly Graph is shown in Figure 5.3. The assembly involves many types of features 

defined in Chapter 4 (Figure 5.2c). It also involves multiple components which results in 

many assembly interactions. Figure 5.7 shows a cross sectional view of the assembly. The 

existence of interactions between the parts in the assembled state are identified below and 

shown in figure 5.8. These are identified in section 5.6 as feature-to-feature 

relationships (illustrated in figure 5.9). 
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RI 

R1 

R 

Figure 5.7: Cross sectional view of lathe tool post assembly 

R 1: step of tee bolt (right) and through slot of top slide 

R?: step of tee bolt (left) and through slot of top slide 

R3: vertical side of tee bolt (right) and through slot of top slide 

R4: vertical side of tee bolt (left) and through slot of top slide 

R5: bottom face of tool post and top face of top slide 

R6: tee bolt and hole of tool post 

R7: bottom face of washer and top face of tool post 

R8: tee bolt and hole of the nut 

R9: tee bolt and hole of the washer 

RIO: top face of washer and bottom face of nut 

R11: shaft of set screw 1 and hole of tool post 

R12: shaft of set screw 2 and hole of tool post 

R13: hole of nut and hole of washer 

R14: left side of tool post and left side of top slide 

R15: front side of tool post and front of top slide 

R 16: back side of tool post and back of top slide 
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The relationships at the component level are represented by the Component Relation 

Graph as shown in Figure 5.8. 

R14 

TOP TOOL 
SLIDE POST 

R5 
R1 

R-' R6 

R4 3 

TEE R7 
BOLT R12 

R11 

Ry R9 

RIO 
NUT WASHER 

R13 

SET 11 SET 
SCREW! SCREW2 

Figure 5.8: The Component Relation Graph for the lathe tool post assembly 

As components are made up of features, the mating relationships at the feature level are 

examined using the Feature Relationship graph, as shown in Figure 5.9. Figure 5.10 

shows the Face Mating Graph determining the existence of relationships at the face level 

for each interacting feature. The nature of these relationships is identified in section 5.6. 
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Figure 5.9: Feature Relation Graph for lathe tool post assembly 
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Figure 5.10: Face Mating Graph for lathe tool post assembly 

Chapter 5 
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5.4.2 BRACKET AND PULLEY ASSEMBLY 

The bracket and pulley assembly, as shown in Figure 5.11 a exemplifies the assembly of 

three cylindrical components and a key (Figure 5.11 b). A shaft is assembled to a bracket 

and held by a key at one end and is assembled to a pulley at the other end. The Assembly 

Graph is shown in Figure 5.12. 

Figure 5.11a: Bracket and pulley assembly 
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Figure 5.11b: Bracket and pulley components 
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BRACKET AND PULLEY 

bossl Lpi y boss 
(web) an bos si 

(0110) 
boss 

boss2 holes (045) 

web) 

hssO4 

(rounds 
thru part) slot 
(round 

(round 
boss3 

pal 
part) 

(base) 
bossy 

holet boss 1 (018) 
hole] (base) (018) 

(base) 
hole3 
(base) non- boss4 

thru ! v25t 

hole2 
slot bos = boss3 

(base) 
(keyway) (030) (0413) 

Figure 5.12: Assembly Graph for bracket and pulley 

hole 

The mating relationships among the parts in the assembly are shown in a cross sectional 

view (Figure 5.13) and each pair of mating parts is listed in the following paragraph: 
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RI 

Figure 5.13: Assembly of bracket and pulley 

RI: bottom face of key and keyway on shaft 

R2: top face of key and keyway on bracket 

R3: shaft 030 and hole of bracket 

R4: flange 040 and face of cylinder 050 

R5: flange 040 and face of pulley front 045 

R6: shaft 025 and hole of pulley 

R7: side of key and side of keyway on shaft 

R8: longer side of key and side of keyway on shaft 

R9: longer side of key and side of keyway on shaft 

RiO: longer side of key and side of keyway on bracket 

R11: longer side of key and side of keyway on bracket 

The Component Relation Graph for the bracket and pulley assembly is shown in Figure 

5.14, while Figures 5.15 and 5.16 show the interactions at feature and face levels 

respectively. 
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RI 

BRACKET 
R 10, R1I 

KEY II PULLEY 

R7 

R8 
R2 R5 R3 R9 

R4 R6 

SHAFT 

Figure 5.14: Component Relation Graph for bracket and pulley assembly 
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Figure 5.15: Feature Relation Graph for bracket and pulley assembly 



Figure 5.16: Face Mating Graph for bracket and pulley assembly 

Chapter 5 
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5.4.3 VALVE SUBASSEMBLY 

Figures 5.17a and 5.17b shows a butterfly valve subassembly which consists of two 

housings, body 1 and body2, fastened together by three nuts and bolts. The Assembly 

Graph is shown in Figure 5.18. Each body is made up of four bosses including a base 

feature of a cylindrical boss and four holes including three bolt holes. Each nut is made of 

a boss and a hole feature while each bolt is made up of two cylindrical bosses. 

Figure 5.17a: Valve subassembly 

nut 
bolt 

Figure 5.17b: Valve subassembly components 
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hole2 

bo 

holel 

boss2 hole 

boss 

bossl 

Figure 5.17c: Valve subassembly (features) 
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Figure 5.18: Assembly Graph for valve subassembly 

Figure 5.19 shows a cross sectional view of some of the mating interactions which occur 

in the valve subassembly. The interactions are shown for the main bodies and one of the 

nuts and bolts. Similar interactions are repeated for the other two nuts and bolts. 
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RI R24 

R1 

R2 

Figure 5.19: Cross sectional view of valve subassembly 

The following mating relationships can be established from the above figure: 

R l: face of body 1 and face of body2 

R2: hole 1 of body 1 and hole 1 of body2 

R3: bolt 1 and hole2 of body 1 

R4: bolt2 and hole3 of body 1 

R5: bolt3 and hole4 of body 1 

R6: bolt 1 and holet of body2 

R7: bolt2 and hole3 of body2 

R8: bolt3 and hole4 of body2 

R9: bolt 1 and hole of nut 1 

RIO: bolt2 and hole of nut2 

R11: bolt3 and hole of nut3 

R12: head of boltl and face of boss2 of bodyl 

R13: head of bolt2 and face of boss3 of body 1 

R 14: head of bolt3 and face of boss4 of body 1 
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R15: face of nut 1 and face of boss2 of body2 

R16: face of nut2 and face of boss3 of body"' 

R 17: face of nut3 and face of boss4 of body2 

R18: hole of nut 1 and hole2 of bodv2 

R19: hole of nut2 and hole3 of body2 

R20: hole of nut3 and hole4 of body2 

R2 1: hole2 of body 1 and hole2 of body2 

R22: hole3 of body 1 and hole3 of body. ' 

R23: hole4 of body 1 and hole4 of body2 

R24: face of boss2 of body 1 and face of boss2 of body2 

R25: face of boss3 of body 1 and face of boss3 of body2 

R26: face of boss4 of body 1 and face of boss4 of body2 

These relationships are shown by the Component Relation Graph in Figure 5.20. The 

interactions at the feature and face levels are shown in Figures 5.21 and 5.22 respectively. 

Figure 5.20: Component Relation Graph for valve subassembly 
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Figure 5.21: Feature Relation Graph for valve subassembly 
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Figure 5.22: Face Mating Graph for valve subassembly 
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From the analysis, the following observations are made: 

1. Assembly relationships exist at three levels: 

i. the component level identifies assembly interactions at the highest level from 

which it should be possible to determine potential methods of creating alternative 

sets of subassemblies. This would be of use in assembly planning. 

ii. the feature level presents a useful way for the designer to define the assembly 

methods in some detail, and also provides a valuable link with feature-based 

process planning. It has been shown that all features defined for process planning 

(except for pocket and notch, which are not available in the examples) have 

assembly interactions with other features. 

iii. the face level represents the level normally contained within the geometric model 

and allows sufficient information to be included to fully constrain the assembly. 

2. More than one assembly interaction can occur at the component, feature and face 

levels. Examples of multiple interactions for the component level are: 

tool post and top slide 

key and shaft 

body 1 and body2 

At the feature level, more than one interaction occur at the following features: 

boss top slide 

boss key 

hole2 of body 1 of valve subassembly 

At the face level, multiple interactions occur at 

f2 of boss2 of tee bolt 

f2 of non-through slot of bracket 

f1 of boss4 of body 1 

3. Assembly interactions occur at the face level as well as for two holes having collinear 

centre points. The assembly analysis, as shown in Figures 5.10,5.16 and 5.22 
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indicates that contacts between features involve one of the following pairs of 

compatible surfaces: 

" between two planar faces 

" between a shaft and a hole 

" between a hole and another hole 

" between two planar faces aligned in the same plane 

These are summarised in Figure 5.23. 

RI R2 
R3 R4 R5 

R7 RIO 

R1 R12 

R13 R14 R15 

R16 R17 R24 

R25 R26 / 

valve 

lathe tool 
post 

RI R2 
R4 R5 R7 

R8 R9 

bracket and 
pulley 

f 

/ lathe tool 
ost 

R13 R2 R18 

R19 R20 R21 

R22 R23 

valve 

two planar faces 

shaft and hole 

two holes 

lathe tool 
8 Post 
11 

E 

R9 
R12 

7 
bracket an 

CR8R9RI 

0 
Pulley 

R3 R6 I\ 

valve / 

two planar faces 
(aligned in same plane) 

lathe tool R 14 R 15 
post R 16 

Figure 5.23: Categories of assembly interactions 
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The main purpose of the analysis was to categorise assembly interactions into groups 

such that distinguishing characteristics of the group could be identified and used as the 

basis of specifying Feature Mating Relationships. This aspect is considered in the next 

section. 

5.5 FEATURE MATING RELATIONSHIPS 

Features in an assembly are said to have a mating relationship whenever they have one or 

more faces in physical contact with another feature, although there are occasions such as 

magnetic fixing where this is not strictly true but these situations are not considered here. 

This requires the definition of possible mating relationships for each feature and the 

representation of these relationships in a form suitable for assembly modelling. 

From the analysis of Section 5.4, three basic mating relationships can be defined - 

against, fits and align. These relationships are defined based on established terms used 

by various researchers in assembly modelling, such as Lee and Gossard (1985) and Ko 

and Lee (1987) and are explained in the following paragraphs: 

i. Against 

This is a mating relationship between two planar faces or between a planar face and a 

cylindrical face. The condition exists when two or more features are either stacked on top 

of one another or they are placed adjacent to each other with at least one of their faces 

touching. The against condition can be specified along any of the three major axes (x, y 

and z axes) together with the two adjoining faces and the direction of the contact. Figure 

5.24a shows the against condition between two rectangular bosses placed adjacent to 

each other with faces f1 and f2 to be mated. The against condition is satisfied by forcing 

the normal vectors to faces to be in opposing directions and establishing contact between 

the two faces. Figure 5.24b shows an against condition between a rectangular boss and a 

cylindrical boss, a situation that is not commonly found but which is included to maintain 

the completeness and generality of the feature representation. Examples of planar surface 

against relationships are between the bottom of the tool post and the top of the top slide 
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(R5) of the lathe tool post assembly and between the end face of body 1 and the end face of 

body2 (R 1) of the valve subassembly. 

1ý I: 
--- (x2, y2, z2) 

Figure 5.24a: Against condition for two rectangular bosses 

Figure 5.24b: Against condition for rectangular and cylindrical bosses 

ii. Fits 

Fits is a mating relationship occurring when two features are required to fit together with 

clearance or interference. The condition holds between a shaft (boss) cylindrical face and 

a hole cylindrical face or between a polyhedral shaft (boss) and polyhedral hole. In the 

typical cylindrical case it allows both rotational and translational freedom of movement 

between the mating features. Non-cylindrical fits result in a single translational degree of 

freedom. This requires the centrelines of each feature to be collinear. The fits condition 

between a hole and a cylindrical boss is shown in Figure 5.25. 

Fits can be further classified according to the degree of difficulty of assembly and the 

method used to assemble the parts. Some of the types of fits relevant for the assembly 

examples shown in earlier sections are tight fit, which is an interference fit, screw fit 

which involves assembly of threaded items and clearance fit. For example the assembly 
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of shaft 030 and hole of bracket (R3 for pulley and bracket) can be considered as a tight 

fit. 

P2 (x2, y2, z2) 

Z 

P (x3, y3, z3) 

P4 (x4, y4, z4) 
A P1 (xl, yl, zl) 

Figure 5.25: A Fits condition for a cylindrical boss and a hole 

iii. Align 

Align is a mating relationship which exists in two situations - between two holes and 

between two planar faces. In the former situation, it requires the centre line of one hole to 

coincide with the centre line of another hole. In Figure 5.26a, in order to achieve the align 

condition, point Pl on hole 1 should be coincident with point P2 on the hole2. Examples 

of align relationships are between holes of the valve subassembly bodies (eg R2) and 

between the washer and nut holes (R13) in the lathe tool post assembly. An align 

relationship between two planar faces exists when the faces (f 1 and f2) lie on the same 

surface as shown by Figure 5.26b. An example of such a relationship is that between the 

faces of the boss of top slide and the boss of tool post (R 14, R 15 and R 16) in the lathe tool 

post assembly. 

In an assembled position, mating could occur over one or more faces that may or may not 

be adjacent. Thus each feature needs to be checked for the possibility of mating with 

every other feature. As a general guide to the possible types of mating relationship 

occurring between one feature and another, a Feature Relation Table is developed, as 
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shown in Table 5.1. In this table, each feature type is assigned a possible relationship with 

each other feature type. 

Pl P2 

Figure 5.26a: Hole alignment 

Figure 5.26b: Alignment of planar faces 

In the table, letters denote the type of relationship defined earlier: A for against, F for fits, 

and L for align. X denotes that there is no possible relationship between the feature types. 

This data is used as an input to the relationship database in the feature relationship class 

described in Section 5.10. 

The above definition of mating relationships is sufficiently general to encompass the 

class of mechanical assemblies using all types of features defined in Chapter 4. The 

inference of the location and orientation of a part in an assembly from the mating 

relationships above requires the computation of its transformation matrix from these 

conditions. The matrix relates the feature's local coordinate system to the global 

coordinate system of the assembly. The approach is to infer the position of a part in an 

assembly from a mating condition based on the work by Lee and Andrews (1985), and is 

given in Section 5.7. 

128 



Chapter 5 

boss hole pocket thru 
slot 

non- 
thru 
slot 

notch step surface 

boss A, L F F, L A A A A A 

hole F L L X X X X X 

pocket F, L L L X X X X X 

thru 
slot 

A X X L X X A A 

non- 
thru 
slot 

A X X X X X A A 

notch A X X X X A X A 

step A X X X A X A, L A, L 

surface A X X A A A A A, L 

Table 5.1: Feature Relation Table 

5.6 REPRESENTATION OF MATING RELATIONSHIPS 

In order for the information on the mating relationships to be useful in assembly 

modelling, it has to be associated with each feature and readily accessible when two 

features are to be assembled to form a component, a subassembly or an assembly. To 

achieve this, the relationships are established in the form of expressions. 

The general form of the expression representing the mating relationship between two 

features is created by specifying the two features that mate and the mating, condition type 

in a relation, as follows: 
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component] featurel, t - mating relationship - component2. feature2n 

where n denotes the feature index number in the assembly. For example, using the above 

expressions, the assembly relationships for the lathe tool post can be represented in the 

following forms: 

RI: tee-bolt. step I-against-top-slide. thrti-slot 

R2: tee_bolt. step2-against-top_slide. thru_slot 

R3 : tee-bolt. step 1-against-top_slide. thru_slot 

R4: tee_bolt. step2-against-top_slide. thru_slot 

R5: tool post. boss-against-top_sl ide. boss 

R6: tee_bolt. boss2 fits-tool post. hole3 

R7: tivasher boss-against-tool-post. boss 

R8: tee_bolt. boss2fits-nut. hole 

R9: tee_bolt. boss2 fits-washer hole 

RIO: washer boss-against-nut. boss 

R11: setscrew 1. boss 1-fits-tool-post. hole I 

R12: setscrew2. bossl fits-tool post. hole2 

R13: nut. hole-align-washer hole 

R14: tool-post. boss-align-top-slide. boss 

R15: tool-post. boss-align-top-slide. boss 

R16: tool-post. boss-align-top-slide. boss 

The relationship expressions for the bracket and pulley assembly are as follows: 

R 1: key. boss-against-shaft. non_thru_slot 

R2: key. boss-against-bracket. thru_slot 

R3: shaft. boss2 -fits-bracket. hole5 

R4: shaft. boss3-against-bracket. boss4 

R5: shaft. boss3-against-pulley. boss2 

R6: shaft. boss4 fits pulley. hole 

R7: key. boss-against-shaft. non_thru_slot 
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R8: key. boss-against-shaft. non_thruslot 

R9: key. boss-against-shaft. non_thru_ slot 

R10: key. boss-against-bracket. thruslot 

R11: key. boss-against-bracket. thru-slot 

The expressions for the valve subassembly are as follows: 

R 1: bodyl. boss l -against-body2. boss] 

R2: body]. holel-align-body2. hole I 

R3: bolt]. boss2 fits-body]. hole2 

R4: bolt2. boss2 fits-body]. hole3 

R5: bolt3. boss2 fits-body]. hole4 

R6: bolt]. boss2fits-bodv2. hole2 

R7: bolt2. boss2-fits-body2. hole3 

R8: bolt3. boss2fits-bodv2. hole4 

R9: bolt]. boss2fits-nut]. hole 

RIO: bolt2. boss2 boss2-fits-nut2. hole 

R11: bolt3. boss2 fits-nut3. hole 

R12: bolt]. boss l-against-body1. boss2 

R13: bolt2. boss] -against-body 1. boss3 

R14: bolt3. boss ]-against-bod_v1. boss4 

R15: nut]. boss-against-bodv2. boss2 

R16: nut2. boss-against-body2. boss3 

R17: nut3. boss-against-body2. boss4 

R18: nut]. hole-align-body2. hole2 

R19: nut2. hole-align-body2. hole3 

R20: nut3. hole-align-body2. hole4 

R2 1: body]. hole2-align-body2. hole2 

R22: bodv]. hole3-align-body2. hole3 

R23: bodyl. hole4-align-body2. hole4 

R24: bodyl. boss2-against-body2. boss2 
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R25: bodyl. boss3-against-body2. boss3 

R26: body]. boss4-against-body2. boss4 

In a feature-based design system, these expressions can be automatically derived for 

each pair of features, based on the data in the Feature Relation Table. 

5.7 INFERENCE OF POSITIONS 

The inference of the location and orientation of a part in an assembly from mating 

relationships requires the computation of its transformation matrix from these 

conditions. The matrix relates the part's local coordinate system to the global coordinate 

system of the assembly. 

For the against condition shown in Figure 5.24a, each face where the two parts mate is 

specified by a unit normal vector (n) and a point (x, y, z) described in the local coordinate 

system of its corresponding part. To satisfy the against condition, the normals are 

constrained to be parallel and point in opposite directions. Also, the points are required 

to lie in the same plane. The numerical values of the normals and the points are stored 

with respect to the body coordinate systems attached to the corresponding parts. Before 

the against equations can be written, the values of the points and the normals must be 

transformed to a reference coordinate system. This creates a group of secondary variables 

which can then be used to construct the against equations. 

To create the secondary variables, let [T1] and [T, ] be the transformation matrices from 

the XIY1Z1 and X? Y2Z2 coordinate systems respectively to the global coordinate system 

of the assembly. The unit normals and the two points specifying the mating conditions 

can be expressed in terms of the XYZ system as follows: 
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nla 
x 

nix 

n1Y 
= [TiI my 

n1a 
z 

nlz 

0 0 

x? X1 

a yl = [T, ] Yl 
Zl ZI 

1 1 

na 2x n2x 
a n2Y 

= [T_] n2y 

a n2z n2z 

0 0 

x x2 

Y2 = [7' ] Y2 
Z2 z2 

1 1 

(Eq 1) 

(Eq 2) 

(Eq 3) 

(E9 4) 

In the above equations, nI, and n2x are the normal vectors of the planar faces and (x I. yI, 

z 1) and (x2, y2, z2) are the points on the planar faces with respect to each body coordinate 

system. The superscript a indicates assembly. The against condition requires the 

directions of the two unit normals to be equal and opposite as expressed by these 

equations: 

na a (Eq 5) 1, = -n2x 

n ly = -nay (Eq 6) 

nlz = -naz (Eq 7) 

and the two points to lie in the same plane, expressed in the following equation: 
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aaa nlx my nlz ýý 

x xa 

Yi Y" 

zi za 

11 

=0 
(Eq 8) 

Hence four equations (5 - 8) are required for each against condition. 

The fits condition requires that the centrelines of the boss and the hole be co-linear, as 

shown in Figure 5.25. The equations of the centrelines, of say the hole can be written as: 

x -xi y -yý z-zl 
__ (Eq 9) 

aaaaaa x, -xl y2-y1 z2-z1 

If the shaft axis is co-linear with the hole centreline, points P3 and P4 defining the axis 

should satisfy equation 9. The points must first be transformed using [T2] to the assembly 

global coordinate system. The constraint equations required for each firs condition can 

be written as: 

x3-x1 
_y3- 

y1 
_ 

z3-z1 (Eg10) 
aa Y2xl a y2- aaa y1 Z2-ZI 

x4 - x1 
_y- 

y1 
_ 

z4 - zý (Eq 11) 
aa x2-x1 a y2- aaa yl z2 -Z1 

Each of the above equations yields three combinations of equations resulting in a total 

of six equations for each fits condition. In general, two of these equations are redundant 

because equations 10 and 11 each yields only two independent equations instead of three. 

However, it is necessary to carry all three to cover the case where the centreline passing 

134 



Chapter 5 

through points PI and Pz is parallel to any of the global coordinate axes. For example, 

if the centreline is parallel to the X axis as shown in Figure 5.5, equation 10 becomes: 

xa_xa 1= yu Ya za_Za 33_31 (Eq 12) 

Xa - xl 00 

which gives the following two equations only: 

(Y3-Yi )(X2-Xi )=0 (Eq 13) 

(z3-zi )(x2-X1 )=0 (Eq 14) 

Hence, it can be seen that all three equations must be carried so that at least two 

independent equations can be written for all cases, although this introduces redundancy 

in the system of equations. 

The determination of transformation for the align mating relationship are very similar to 

the centreline coincidence used in the fit of a boss into a hole. 

For each against condition, 16 equations can be written, 12 are provided by equations 

1-4 and the other four are equations 5-8. For each fits condition, 18 equations can be 

written, 12 are provided by equations 1 -4 and the other six are equations 10 and 11. 

Additional constraint equations are needed for free rotation bodies such as bolts and pins 

and other parts where it is not desired to fully describe the mechanism which constraints 

rotation (such as a key and keyway). If the rotation axis to be constrained is coincided 

with an axis of the part's local coordinate system, the additional constraint equations can 

be written as: 

oZ = ay =0 for a component rotating around its x axis 

nz, = ax =0 for a component rotating around its y axis 

ny, = o, =0 for a component rotating around its z axis 
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Thus there are two equations generated for each rotational part. 

Because the 12 elements in a transformation matrix are treated independently of each 

other, the following equations have to be included to satisfy the properties of a 

transformation matrix. To satisfy the unit length requirement on the rotation axis, the 

following equations are required: 

nX + ny + n1 =i (Eq 15) 

oX +0 y +0 Z=1 
(Eq 16) 

To satisfy orthogonality of the rotation axes, four additional equations are needed: 

nxox + nyoy + nzoz =0 (Eq 17) 

a, = nyoz - nzoy (Eq 18) 

ay = o, nz - nxoz (Eq 19) 

aZ = nXoy - nyo, (Eq 20) 

The unit length measurement of (ax. a, a, ) is automatically satisfied by equations 18 -20. 

The number of equations generated for an assembly of N components (RP rotational 

components), with MA against condition and MF fits conditions, is given by the 

following formula: 

Number of equations 

=6(N-1) 

+ 16 MA 

+18MF 

+2RP 

from matrix properties 

from against equations 

from fits equations 

from rotational parts 

The number of variables for the assembly is: 

= 12 (N - 1) transformation matrix elements 

+ 12 (MA + MF) secondary variables 
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In the above equations, the number of equations is always equal to or larger than the 

number of variables. 

The method used to remove the redundant equations is to solve the equations with a 

Newton-Raphson iteration method and the use of an algorithm to search for groups of zzý 
equations which contain a linear dependency. This will result in an equal number of 

equations and variables. The remaining equations will be a linearly independent set and 

the Newton-Raphson iteration method can be used in the normal way. 

The ACIS modeller gives access to these transformation matrices through the 

Application Procedural Interface (API) and this facility has been utilised in the assembly 

relationship class described later in the chapter. 

5.8 ASSEMBLY AND PROCESS PLANNING FEATURES 

Three types of mating conditions have been identified in Section 5.5. These mating 

conditions associate pairs of machining features. As features presented in this research 

are machining features that have been used for process planning (Gindy et. al. 1993), 

knowledge on process planning has been associated with each feature. In order to find the 

relation between the assembly relationships and the process planning information, 

assemblies at the face level for selected parts in the three products described in Section 

5.4 are re-examined, but before doing so a brief description of the aims of process 

planning is given. 

The overall objective of process planning is to devise a method of manufacture that is 

optimal with respect to a set of criteria. Typically these criteria will be concerned with 

the economy and quality of manufacture and the optimisation takes place with a 

knowledge of the capability and availability of appropriate manufacturing processes. 

There is much discussion as to exactly what constitutes process planning and what might 

be considered to be in other fields of manufacturing engineering such as production 

planning and NC part programming. However, some of the key aspects can be stated as: 
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1. Overall Process Selection i. e. is the component to be machined, formed or fabricated. 

It could be argued that these decisions are taken at the design rather than process 

planning stage, but in any case this work is focussed upon machined components. 

2. Specific Machining Process Selection. Many geometric forms can be generated by a 

variety of machining processes (turning, milling, grinding, etc) and the choice will be 

made on the differing processes' capabilities in quality terms (precision, surface 

finish, etc) taking into account availability and relative costs. 

3. Machine Selection. Machines of the same general type (lathes for example) have 

different capabilities and associated costs. There is also a connection here with 

production planning as a machine has to be available at the required time of 

manufacture. 

4. Set-up Determination. The number of set-ups required to machine a component is a 

very significant determinant of the total cost of manufacture, and can also have 

technological implications in terms of maintenance of tolerances, etc. 

5. Operations Sequence Planning. Within a particular set-up it is necessary to determine 

the sequence in which manufacturing operations will be carried out. Partly this is 

concerned with the feasibility of different sequences (it may be necessary to machine 

one feature to give access for machining a subsequent feature) and partly it is 

concerned with optimising machining time through minimising tool changes and 

non-cutting motions. 

6. Detailed Process Planning. This involves the determination of cutter paths, selection of 

tools, fixturing, feeds, speeds etc and is more normally considered as NC part 

programming rather than process planning. 

Thus the process planning task requires a considerable amount of information about the 

parts to be manufactured. In a feature-based process planning system, information is 

inferred from the feature model data. The process planning information which is required 

for each feature and relevant to this work is listed in the following paragraphs: 
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1. The dimensional and geometric tolerances are important to ensure that parts will 

function correctly, be interchangeable and can be manufactured economically. 

Dimensional tolerances, marked d in the subsequent diagrams, are used to 

communicate ranges of dimensions that are acceptable in meeting functionality. 

Geometric tolerances, such as parallelism (marked // in the diagrams), circularity (C) 

and flatness (F) further refine the specification for manufacturing to meet functional 

requirements. 

2. The imaginary faces, represented as in determine the external access directions 

(EAD's) as explained in Chapter 4. These are potential tool approach directions in 

machining, and can be used in set-up determination. 

3. The surface finish attribute can be used in determining suitable manufacturing 

process. In the three examples shown in Figures 5.27,5.28 and 5.29, the surface finish 

for the mating parts is not critical in assembly. 

4. The parent-child relationship determines the machining precedence. It also affects the 

tool access directions, operation sequencing and set-up strategy. A parent-child 

relationship exists if one feature can be defined with respect to another feature. The 

former is called a child while the latter is a parent feature. For example, with 

countersunk hole, the hole might be the child of the countersink. 

These items of information are added to the selected parts in each assembly and its 

relation with the assembly relationship is examined. These are shown in the Component 

Connectivity Graphs shown as Figures 5.26,5.27 and 5.28. 

In Figure 5.27, there is an interaction between the base of tee bolt and the through slot 

of the top slide. From Figure 5.7, faces f 1, f2 of step 1 and step2 of the tee bolt and faces 

f 1, f2, f6 and f7 of the through slot of top slide are critical in the assembly. These surfaces 

are required to be parallel and should have dimensional tolerances. The step can be 

assembled to the imaginary faces 11 and i3 and these can be considered as potential 

assembly directions (PAD). 
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The assembly of a key to a shaft is shown in Figure 5.28. For this assembly, the edges 

of the key (f2 and f4) are critical and should have parallelism and dimensional tolerances. 

Faces f1 and f3 of the non-through slot of the shaft should have similar requirements. 

The imaginary faces of the non-through slot form the potential assembly directions to 

the key, as shown. 

Figure 5.29 shows the interactions between four parts in the valve subassembly. The two 

faces of the bosses (f3 of body 1 and face 1 of body2) must be flat and the holes should 

be defined with a cylindricity tolerance. Other dimensions and tolerances are not critical. 

The imaginary faces of the nut and body holes (il) become the potential assembly 

directions for the face of the bolt. 

From the above analysis, the following observations are inferred and summarised in 

Figure 30: 

1. The External Access Direction (EADs) of each feature can be viewed both as a 

potential machining direction and a potential direction in which another feature can be 

assembled to it. The latter direction is referred to as Potential Assembly Direction 

(PAD) and occurs between an imaginary face of one feature and a real face of a mating 

feature. 

2. Each mating face has its own process planning data attached to it. This data either 

relates to the feature itself, such as the cylindricity of a hole or it is a relationship 

between two features such as the parallelism of the sides of the features. 

3. Some of the process planning data are relevant to the assembly modelling. For 

example, the dimensional tolerance will determine the type of fit between two 

features. For example, the parallelism of the faces are important if two faces are to 

have sliding contact, as shown by the example of the assembly of steps to the through 

slot in the lathe tool post assembly. Other information such as parent-child 

relationships are not relevant to the assembly modelling, and are only used to 

determine intermediate configurations of the component during machining. 
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4. The Component Connectivity Graphs show a clear relationship between process 

planning and assembly information. Thus for example the functional assembly 

requirement of the Tee Bolt to mate with the through slot of the Top Slide (Figure 5.27) 

generates the assembly information describing against conditions between the faces 

of the components. Process planning information in the form of dimensional and 

geometrical tolerances on the faces of individual features of each component are then 

required to ensure this assembly functionality. 

To realise the benefits of combined assembly and process planning knowledge it is 

necessary to represent it by a data structure in a feature-based model, and this is discussed 

in the next section. 
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i -- ý 

Figure 5.27: Component Connectivity Graph for Lathe Tool Post Assembly 
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F2 

Figure 5.28: Component Connectivity Graph for Key and Keyway 
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Figure 5.29: Component Connectivity Graph for Valve Subassembly 
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mating face of feature 1 

mating face of feature2 
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EADs 

surface finish 
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Figure 5.30: Relation between assembly and process planning knowledge in a feature 

5.9 ASSEMBLY DATA STRUCTURE 

Data structure is a very important aspect of a database and an assembly data structure 

provides a link between the assembly database and the database of its assembled parts so 

that when any part (a feature, a component or a subassembly) is modified, the 

corresponding instance in the assembly is updated automatically. Linked lists are one of 

the basic elements of C++ programming and offer several advantages over other 

structures such as arrays. Lists do not have predefined size and they can be formed, 

reorganised or destroyed dynamically, object by object using defined pointers. This is 

useful in modelling the assembly situation where features are added, moved or deleted 

from the components or subassemblies. Lists are also claimed to be fast and fit the 

object-oriented way of thinking (Soukup 1994). 

Using the hierarchical data structure of Section 5.3, an assembly can be considered as a 

list of sub-assemblies. Each sub-assembly is a list of components, a component is a list 

of features and a feature is a list of faces in the geometric model. This implies the use of 
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linked lists to represent each level of the assembly. A data structure of the assembly is 

shown in Figures 5.31 and 5.32. Figure 5.33 shows the assembly parts in a linked list 

structure. In this case, a forward pointer ring structure is used in which the last element in 

the list points back to the first element of the next highest level of assembly, instead of 

being a NULL pointer. 

i"i 
Asseinbl' 

tri ný 

attributes 

location and location and orientation orientation 

list of Pointer to subassemblies next subassy 

tolerance 
I List of 

components 

component 

Figure 5.31: Data structure for assembly and subassembly levels 

A general representation of a structure for the assembly as shown in Figure 5.31 consists 

of the following information: 

Name of assembly (such as the lathe tool post) 

Product attributes, which could be the the mass of the assembly or other relevant 
information 

Location and orientation of the assembly with respect to the World Coordinate 

System 

Pointer to a list of subassemblies 
Overall product tolerance 
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Figure 5.32: Data structure for component and feature levels 
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Figure 5.33: Assembly Data Structure 
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The data for the subassembly consists of the following information: 

Name of subassembly (such as top slide) 
Location and orientation of the subassembly with respect to the World Coordinate 

System 

Pointer to the next subassembly that is also part of the assembly 
Pointer to a list of components that constitute the subassembly 

Referring to Figure 5.32, the data structure for the Component consists of the following 

information: 

Component name (such as bolt) 

Component attributes (such as mass, material) 
Overall dimensions of the component 
Location and orientation with respect to the World Coordinate System 

Pointer to next component in the assembly 
Pointer to list of features that constitute the component 
Pointer to tolerance relationships 
Pointer to parent-child relationships 

For an individual feature, the parameters refer to the dimensions and the number of 

EADs. The face list refers to the list of mating faces which is accessible from the 

geometric model created in ACIS. 

The data structure for the mating relationships contains the following information: 

pointer to feature 1 

pointer to feature 2 

type of mating relationship (mating feature) 

relationship attributes (a refinement of the mating relationships described 

in Section 5.5. Examples of such attributes are screw fit and sliding fit). 

pointer to the mating face of feature 1 

pointer to the mating face of feature 2 

In the above structure, a mating between a pair of features is represented by a pointer to 

the feature and a pointer to the mating face. In the event of one feature being removed 
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from the assembly or a new feature being added to mate with an existing feature, the 

pointer will be reset to point to the new object. 

This data structure is implemented in a feature-based environment using an 

object-oriented approach as described below. 

5.10 IMPLEMENTATION 

The application of the object-oriented approach to the modelling of assembly involves 

combining the information in the data structure with the appropriate methods to 

manipulate each part within the assembly. Using this approach, each level in the 

assembly hierarchy is defined in a class with the assembly class as the base feature. Other 

classes inherit the attributes of the class that is immediately above it. The feature class 

which is a base class for feature type classes and profile classes, has been discussed in 

Chapter 4. The following sections describe the assembly, subassembly, component and 

feature relationship classes. The declarations for classes described in this chapter can be 

found in Appendix A. 

5.10.1 ASSEMBLY CLASS 

The assembly class, shown in Table 5, represents the assembly of parts which is the 

highest level in the assembly hierarchy. It contains attributes and methods for the product 

assembly. The class has the following attribute data - the name of the assembly which is 

the product name, a pointer to the body of the assembly, the body's location and 

orientation and a pointer to a list of subassemblies. The location and orientation of the 

assembly corresponds to the world coordinate system and becomes the reference 

coordinate system for other assembled parts. 

The methods for the assembly class are described in the following paragraphs: 

Assembly Constructor 

The constructor function creates a new instance of assembly object and initialises its 

parameters whenever the object is declared. An instance of assembly, assy is created 

by the following expression: 
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assembly *assy = new assembly(assyname, x, y, z, angleX, angleY, angleZ) 

where assyname is the name of the assembly; x, y and z are the location of the assembly 

and angleX, angleY and angle Z are its orientation. 

Assembly 

Name of assembly 
Pointer to Body 
Location 
Orientation 
List of subassemblies 

Constructor 
Destructor 
Add Subassembly 
Draw 
Save 

Table 5.2: Assembly Class 

Assembly Destructor 

The destructor deletes the assembly body when it is no longer in use or at the end of the 

modelling session. This is denoted by -assembly( ). 

Add Subassembly 

This method adds a subassembly to the list of subassemblies that make up the 

assembly. A subassembly is assembled to another subassembly by the process of 

matching features which mate with one another. This is described in Section 6.6. 

Draw 

The assembly can be displayed on the screen using this method by recalling all entities 

that have been created and saved in the modelling process. 
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Save 

This method saves an instance of assembly body in a file, to be retrieved for display. 

5.10.2 SUB ASSEMBLY CLASS 

The subassembly class, presented in Table 5.3 defines the attributes and methods for the 

subassembly level. The class inherits properties of the assembly class. The types of 

attributes of the class are similar to those in the assembly class, except that the class also 

contains a list of components that makes up the subassembly as well as a pointer to the 

next subassembly. The methods of the class are explained as follows: 

Sub-Assembly I 

Name of Subassembly 
Pointer to sub assy Body 
Location 
Orientation 
List of Components 
Pointer to next subassembly 

Constructor 
Destructor 
Add Component 
Draw 
Save 

Table 5.3: SubAssembly Class 

Subassembly Constructor 

The constructor function creates a new instance of subassembly class and initialises its 

parameters. An instance of subassembly, subassy is created by the following 

expression: 

subassembly *subassy = new subassembly(z, y, z) 
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where x, y and z are the location of the subassembly 

Subassembly Destructor 

The destructor releases the memory occupied by the subassembly body when it is 

deleted or at the end of the modelling session. It is denoted by -subassembly( ) 

Add Component 

This method adds a component to the list of components that makes up the 

subassembly. The process of joining two components is similar to the process of 

building up the assembly which is described in Section 6.6. 

Draw 

This method draws the subassembly body on the screen. This is done by recalling all 

entities that have been created and saved in the modelling process. 

Save 

This method saves an instance of a subassembly body in a file. 

5.10.3 COMPONENT CLASS 

The component class, presented in Table 5.4 describes the component level in the 

assembly hierarchy. The class contains a pointer to the component body, the component 

name, its dimensions, location, orientation, a pointer to the next component in the 

subassembly and a pointer to a list of features. The dimensions of the component in this 

case are the dimensions of the base feature since one of the criteria for choosing the base 

feature is to select the largest feature (see Section 6.5). 

The methods for the class are described as follows: 

Component Constructor 

The constructor function creates a new instance of component and initialises its 

parameters. An instance of the component is created by the following expression: 

component *comp = new component( compname, 1, w, h) 
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where cornprname is the component name, l is the length, w the width and h the height 

of the component. 

Component 

Pointer to component body 
Component name 
Dimensions 
Location 
Orientation 
Pointer to next component 
Pointer to list of features 

Component Constructor 
Component Destructor 
Get Dimension 
Add Feature 
Draw 
Save 

Table 5.4: Component Class 

Component Destructor 

The destructor, denoted by -component() releases the memory when the component 

body is deleted or at the end of the modelling session. 

Get Dimension 

This method is used to get dimensions of the component. Since the component is 

assumed to be a rectangular block, dimensions required from the user are the length, 

width and height. 

Add Feature 

This method is called to add a feature to the list of features that makes up the 

component. The user identifies the feature type and profile and this generates 
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functions associated with the particular feature such as Get Location, Get Orientation, 

and Save Entity. 

b= new boss(x, y, z, b) 

b->SelectProfileQ->GetLocationQ->GetOrientationO; 

b-> DrawBoss-> SaveEntity() 

Draw 

This method is used to draw the component by recalling all the features that have been 

created and saved for the particular component. 

Save 

A component is saved in a file using this method. 

5.10.4 FEATURE RELATIONSHIP CLASS 

The feature relationship class, listed in Table 5.5 is created to hold the information that 

defines a relationship between two features. The class has five attributes - the name of 

mating relationship (against, fits and align), pointers to the first and second features and 

pointers to mating faces of both features. Methods for this class are: 

Input Feature 

The method Input Feature is invoked to ask the user to input two features to be mated. 

The user enters the names of the feature to be mated such as boss1 for the first feature 

and holel for the second feature. These input are validated with the list of features in 

the database and an invalid input will be notified. 

Find Mating Relation 

This method is used to identify a suitable mating relationship when two mating 

features are identified from the Input Feature method. For example, when a boss 

feature is instanced and it is to be assembled to a hole, the function searches for a 

suitable mating relationship from a database, which is an input from the Feature 

Relation Table. In this case a fit or tight-fit relationship is identified. If no mating 
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condition exists, the function returns a NULL pointer and indicates that the assembly 

is not possible. 

Feature Relationship 

Pointer to first mating feature 
Pointer to second mating feature 
Name of Relationship 
Relationship attributes (type) 
Pointer to mating face of first feature 
Pointer to mating face of second feature 

Input Feature 
Find Mating Relation 
Transform 
List Relation 

Transform 

Table 5.5: Feature Relationship Class 

The transform function is used to locate a feature (existing in a component or a 

subassembly) in the assembled position. The function uses a transformation matrix 

that defines the relationship between the feature's coordinate system and the world 

coordinate system. The method uses an API function which can be expressed as 

follows: 

api_apply_transform(feature, translate_trans(vector(O, O, dist))) 

dist is the distance the feature is moved to its assembled position. 

List Relation 

This method lists the relationship(s) for the identified pair of features and displays it 

on the screen. 
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5.10.5 LINK CLASS 

The link class consists of two classes, objectlink which defines the nature of the objects 

that are stored in the list and assylist which implements the linked list mechanism. This is 

implemented as a template class which is a generic class that can take as input any type of 

data. In this case, the data is in the form of objects from feature type, profile, 

component, subassembly and assembly classes. The use of a template class is 

advantageous as the same codes can be used for different data without having to create 

new functions or separate classes. The generic class decouples the algorithms that 

maintain a linked list from the data actually stored in the list. 

5.10.5.1 OBJECTLINK CLASS 

The class defines the nature of each element in the list. All members are defined as public 

and are described in the following paragraphs and shown in Table 5.6. 

Objectlink 

Data type 
Pointer to next object 
Pointer to previous object 
Constructor 
Get Next Object 
Get Previous Object 

Table 5.6: Content of objectlink class 

Data Type 

This is the generic data type which is used as the type specifier for data stored in the 

objectlink class. The data can be a feature or a component. This type is replaced by the 

actual type specified when an object is created. 

Constructor 

The constructor initialises the pointer to the next and previous objects to NULL. 
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Get Next Object 

This function is used to return the next object in the list. 

Get Previous Object 

This function return previous object in the list. 

5.10.5.2 ASSYLIST CLASS 

Assylist class implements the linked list mechanism. It inherits the objectlink class and 

operates on the object of the type held by the objectlink class. The data members of the 

class are shown in Table 5.7. It contains two pointers - one to the start of the list and 

another to the end of the list. The public members of this class are described in the 

following paragraphs: 

Assylist 

Pointer to the start of the list 
Pointer to the end of the list 

Constructor 
Store 
Remove 
Display Forward 
Display Backward 
Get Start 
Get End 

Table 5.7: Content of assylist class 

Constructor 

The constructor initialises the pointer to the start of the list and the pointer to the end of 

the list to NULL, when the list is first created. 

Store 

This function stores an item such as a feature or a component in the list. 
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Remove 

This function removes an item from the list. 

Display Forward 

This function displays the list from the beginning. 

Display Backward 

This function displays the list from the end. 

Get Start 

Returns a pointer to the start of the list. 

Get End 

Returns a pointer to the end of the list. 

5.10.6 RELATIONSHIPS AMONG CLASSES 

Figure 5.34 shows the relationships among classes described above. The subassembly 

class inherits the properties of the assembly class and in turn becomes a base class for the 

component class. The feature class is derived from the component class and thus 

inherits the properties of all classes above its hierarchy. The feature relationships class 

and the link class use data from the assembly, subassembly and component classes. The 

link class also uses data from the feature relationships class and they are linked to each 

other as shown in the diagram. 
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Figure 5.34: Relationship among classes 
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5.11 SUMMARY 

In this chapter, the concept of designing with features for the purpose of process planning 

has been extended to incorporate the specification of an assembly. An assembly is 

modelled as an Assembly Graph that captures the hierarchy of subassemblies, 

components and features. Features form basic entities in the assembly, and the Feature 

Relation Graph forms a basis for representing and modelling the mating relationships 

among the features. Effective data representation requires that the interactions between 

the faces of two mating features be modelled and this is achieved through the Face Mating 

Graph. The Component Connectivity Graph unites the assembly information with 

process planning information and highlights areas of interdependency between the two. 

Analysis of typical assemblies shows that feature interactions occur in three situations. 

Three mating relationships have been defined and implemented - against, fits and align. 

Each feature is assigned a possible type of mating relationship with each other feature 

type. This is then represented in an expression that describes the relationship between the 

two assembled features. A Feature Relation Table has been established to provide an aid 

in identifying mating relationships occurring among the features in an assembly. The 

assembly data structure provides links between the assembly database and the feature 

database. Each assembly level is implemented as a class in an object-oriented system. 

These classes are further supported by relationships and linked list classes. 

The assembly model described in this chapter is implemented in a feature-based design 

system that supports the interactive modelling of assemblies. The application of this 

approach is discussed in Chapter 6. 
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CHAPTER SIX 
IMPLEMENTING A FEATURE-BASED 

ASSEMBLY MODELLING SYSTEM 

6.1 INTRODUCTION 

Representations for features and assemblies have been presented in previous chapters. In 

this chapter the implementation of a feature-based modelling system and the procedures 

for modelling assemblies are described. A prototype system is developed as a proof of the 

concept presented in this thesis and used as an example to illustrate how the ideas 

mentioned previously can be put together. The design of the system, its structure and the 

implementation are addressed. Section 6.2 describes the overall design of a prototype 

feature-based modelling system. Section 6.3 describes an overall approach to the 

creation of the assembly model. Sections 6.4 and 6.5 discuss procedures for creating 

individual features and forming them into a component. Section 6.6 discusses the 

procedure for creating an assembly model. Section 6.7 describes how assembly data is 

presented. To illustrate the above procedures, examples involving simple mechanical 

products are included in Sections 6.8 and 6.9. 

6.2 A PROTOTYPE FEATURE-BASED DESIGN SYSTEM 

One of the requirements of a system to support the design of mechanical assemblies is the 

availability of methods that allow designers to work with abstract conceptual levels and 

geometry, specify functions in terms of relationships and define a system hierarchy. A 

design by features modelling approach can provide the platform to achieve these aims by 

storing assembly information during the design process so that the application can be 

considered from the early stages of the design process. This capture of design intent is not 

possible using the alternative method of feature recognition, and hence a design by 

features approach is adopted in this research. A prototype feature-based design system 

(FBDS) is developed to provide a platform for modelling individual features and an 

assembly. Features defined in Chapter 4 are stored in a library to be instanced during the 
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modelling process. The emphasis of the implementation is on the assembly modelling 

and thus some of the structures presented in Chapter 5 such as the tolerance and 

parent-child relationships are not implemented. They have been implemented in the 

process planning work (Case et. al. 1993) 

FBDS is a prototype system aimed at testing the ideas proposed in this research. The 

structure of the system, shown in Figure 6.1 is designed to fulfil the requirement for an 

integrated data representation. The main engine of the system is the ACIS solid modeller 

(the version used in this research is 1.4.1) which provides methods and classes for 

creating and manipulating features, through a direct interface and the API functions, as 

described in Chapter 3. These are accessed by the methods in the feature and assembly 

classes defined in earlier chapters. The utility class consists of a collection of supporting 

programs which provide facilities such as the main menu and the manipulation of files. 

The application program, listed in Appendix B is the main program which creates and 

connects objects in various class libraries as well as acting as an interface to the ACIS test 

harness. The latter acts as a platform for testing and validating the program by providing 

an interface to all features of ACIS and provides a wireframe display of the model created 

during a session with the user. There are two types of files created by the system, an ACIS 

file format (an example for the pin and block assembly is shown in Appendix C) which is 

used by the test harness and a file used to store data once an assembly is created. The user 

interacts with the system through the application program. The operating environment 

for the system is UNIX running on a Sun workstation. 

The system offers four options in the main menu: 

1 Create Feature/Component 

This option is used to invoke the creation of an individual feature or a component. 

20 Create Assembly 

This option allows the user to find mating relationships between two features and 

to invoke the assembly operations. 
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M Test Harness 

The test harness option allows the user to test the model created using option 1 or 

2, by retrieving an ACIS file to be displayed on the screen. 

® Print Data 

This option is used to display the data on the assembly, as mentioned in Section 6.7. 

3] Quit 

This option ends the modelling session and quits the system. 

User 

I 
ACIS 
kernel 

Objects 
Classes 
Methods 

ACIS 

I API 

Figure 6.1: Structure of Feature-Based Design System 

6.3 MODEL CREATION PROCEDURES 

The general approach used to derive an assembly model is a bottom up approach that 

involves building up the assembly from individual features, as outlined in the following 

steps: 
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i. Create individual features, starting with a base feature 

ii. Assemble features to form a component 

iii. Specify all pairs of features to be mated 

iv. Identify if relationships exist between the feature pairs 

v. Assemble components to form a subassembly 

vi. If more than one subassembly exists, repeat steps iii to v 

vii. Combine subassemblies to form a final assembly 

The steps are shown diagrammatically in Figure 6.2 and elaborated in the following 

sections. 

Create Individual 
Features 

one 
component 

Assemble a 
Component 

Pairing of 
Features 

More than 
one 

subassy Find Feature 

Relationships 

Assemble 
Subassembly 

Assembly 

Figure 6.2: Model creation procedures 
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6.4 FEATURE CREATION 

An individual feature is created in an interactive session with the system. The user inputs 

the type of feature, the profile type for that particular feature, the dimensions, and the 

location and orientation of the feature with respect to the base feature. Each input for the 

dimension and location is validated against the dimensions of the base feature. If there is 

an incorrect entry, the user is asked to re-enter the value. All options are presented in a 

form of a menu, as shown in Figure 6.3. 

Choose Feature Type 
1 *0 

1. Boss 

2. Pocket 

3. Hole 
Choose Profile 

4. Quit I. Rectangular 

2. Cylindrical 
Enter Dimensions 

3. Triangular 

depth 
width 
height Enter Position 

x: 

Y" I z: 

4* 

Enter Orientation 

AngleX: 

AneleY: 
AngleZ: 

Figure 6.3: Menu for creation of a feature 

6.5 COMPONENT MODEL 

A component is made up of a base feature plus any number of other features. The process 

of creating a component model is shown in Figure 6.4 and described as follows: 

i. An instance of a base feature is created. The criteria for choosing a base feature can 

either be the largest feature, the easiest to fix or the feature which provides the most 

assembly points. These criteria are based on heuristics and concur with the common 
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practice in assembly. The user gives the name of the component to be developed, 

its dimensions, position and orientation. 

ii. Other features that make up the component are created one at a time according to the 

procedures described in Section 6.4. They are positioned and orientated with respect 

to the base feature. 

iii. Using the Boolean operations provided by ACIS, the feature is either united to or 

subtracted from the base feature to form a component model. For example, the boss 

feature is united with the base feature while the hole or pocket feature is subtracted 

from it. 

iv. The resultant component is saved in an ASCII file which has the suffix sat, to 

indicate that it is an ACIS file. 

ltvý Position and 
Orientate 
Feature 

Boolean 
Operation 

It4ý 
Save 
Model 

Figure 6.4: Steps in the creation of components 
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6.6 CREATION OF AN ASSEMBLY MODEL 

The final assembly is made up of one or more subassemblies. The creation of a 

subassembly involves joining two or more components. This is done according to the 

following procedures and shown in Figure 6.5: 

i. Identify a feature on the first component and a mating feature on the second 

component. 

ii. Check for the existence of a mating relationship defined for the features. 

iii. Validate dimensional and shape compatibility between the two features. 

iv. If all conditions are met, the assembly is recognised to be valid and related functions 

to assemble the feature are generated. 

v. Steps 1 to 4 are repeated until all features are assembled to form a subassembly. 

vi. The final assembly is created by the same procedures, except that pairs of features 

within the subassemblies are checked for mating relationships. 

Identify mating 
Features 

Find 
relationship 

Geometrical 
compatibilty 

Subassembly 

Assembly 

Figure 6.5: Steps in the creation of assembly 
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6.7 ASSEMBLY DATA 

The assembly data provides information on the assembly, based on the Assembly Graph 

presented in Section 5.3. This is generated by the system after the creation of the 

assembly and stored in a file. The contents of the assembly data are: 

name of assembly 
location 

orientation 

list of subassemblies 

list of components 

list of features 

For example the assembly data for the lathe tool post assembly illustrated in Figure 5.2 is 

as follows: 

lathe tool post 
0,0,0 

0,0,0 

post, pin, tool-post 

slide, top-slide, tee-bolt-pin 

pin, boss, boss 

tool-post, hole, hole, hole, thru_slot 

top-slide, thru_slot, notch, notch 

tee_bolt_pin, boss, step, step 

6.8 EXAMPLE 1- PIN AND BLOCK 

In this section, the FBDS is used to model a simple assembly which consists of two 

components -a pin and a block, illustrated in Figure 6.6 with the dimensions of each 

feature. The assembly involves a mating process between two pairs of features -a boss 

and a hole and two faces of the rectangular bosses. The Assembly Graph is shown in 

Figure 6.7. The creation of the assembly follows the procedures described in earlier 

sections. Letters in italics denote data input by the user. 
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Pin 

i0 
40 boss3 

boss2 

-rad=15 

Block hold 
II 

Ibossl 
40 

120 

1 -1 100 

Figure 6.6: A pin and block assembly 

Figure 6.7: Assembly structure for pin and block 
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The first step is to create each component of the assembly. The block consists of a base 

feature which is a rectangular boss and a cylindrical hole is attached to it. The input data 

for the boss is shown in Figure 6.8: 

Component Name: block 
Location x: 0 

y: 0 
z: 0 

Orientation: 0,0,0 
Feature type: boss 
Profile: rectangular 

Length: 100 
Width: 120 
Height: 40 

Figure 6.8: Input for a rectangular block component 

A hole feature is then created and attached to the base feature. The input for the hole 

feature is shown in Figure 6.9. 

Feature type: hole 
Profile: circular 

Radius: 15 
Height: 40 
Location x: 0 

y: 0 
Orientation: 0,0,0 

Figure 6.9: Input for a cylindrical hole feature 

The hole feature is then subtracted from the base feature to create the block component. 

Next, the pin component is created in the same manner. First, a rectangular boss is created 

as a base feature and then a cylindrical boss is attached and united to form the pin 
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component. The data for these features are shown in Figures 6.10 and 6.11. 

Component Name: pin 
Location: x: 0 

y: 0 
z: 150 

Orientation: 0,0,0 

Feature Type: boss 
Profile: rectangular 

Length: 50 
Width: 50 
Height: 10 

Figure 6.10: Input for a pin component 

Feature type: boss 
Profile: circular 

Radius: 15 
Height: 40 
Location x: 0 

y: 0 

z: 150 
Orientation: 0,0,0 

Figure 6.11: Input for a cylindrical boss 

To confirm the model created so far, the user goes to the test harness and views the model. 

This is shown in Figure 6.12. 

To assemble a boss feature to a hole feature, the user goes to the Create Assembly option. 

The inputs to the system are shown in Figure 6.13 and the assembled model is viewed in 

the test harness and shown in Figure 6.14. 
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Figure 6.12: ACIS model for pin and block 

Features to assemble: 
Feature 1: hole 
Feature 2: boss3 

The system responds: 

pin. boss3-fits-block. hole 1 

Other features to assemble y/n. y 

Feature 1: boss l 
Feature 2: boss2 

The system responds: 

pin. boss 1-against-block. boss2 

Other feature to assemble y/n: n 

Create assemble y/n? y 

Figure 6.13: Input for assembly relationship 
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Figure 6.14: Model of pin and block assembly 

In this assembly, the component and the subassembly are the same. The assembly data for 

the example is as follows: 

pinblock 

0,0,0 

0,0,0 

block, pin 

block, boss, hole 

pin, boss, boss 

The data structure for the block and pin assembly is shown in Figure 6.15. 
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Figure 6.15: Data structure for the block and pin assembly (abbreviated) 

6.9 EXAMPLE 2- EJECTOR PLATE ASSEMBLY 

Figure 6.16 illustrates ejector parts of a typical injection mould assembly. The ejector 

plate is assembled to the rear clamping plate. An ejector retainer plate is assembled on top 

of the ejector plate. The ejector plate and the retainer plate are held against each other by 

four pins which pass through the respective holes. The dimensions of each part are given. 

Other features present on the plates such as threaded holes are omitted. The aim of this 

exercise is to show an assembly process which involves the simultaneous interaction of 

more than one pair of features. 
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4 holes 0 
radius ejector 6mm 

retainer plate 150 x 100 x 12mm 
plate 

4 pins radius 6mm 
length 35 mm 

plate 150 x 150 x 15 mm 

Figure 6.16: Ejector plate assembly 

The assembly consists of seven components each of which consists of one or more 

features, as shown in Figure 6.17. The rear clamping plate is simply made up of a 

rectangular boss, while the ejector plate and ejector retainer plate each has a rectangular 

boss as its base feature and four holes as additional features. The four pins are simply 

cylindrical boss base features. The rear clamping plate is created first and its location and 

orientation become a reference for subsequent components. The pins are first assembled 

to the holes of the ejector plate and then to the holes of the ejector retainer plate. The 

process of creation of the assembly is shown in Figure 6.18. The ACIS model for the 

components created by the system is shown in Figure 6.19. 
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ejector plate assy 

rear clamping ejector retainer pin pin pin pin 
plate plate 
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Figure 6.17: Assembly Graph for ejector plate assembly 

177 



Chapter 6 

component: clamping 
plate 

feature: boss 
profile: rectangular 
width 150 
depth 150 
height 15 
position: 000 
orientatio n: 000 

component: ejector 
plate 

feature: boss feature: hole 

profile: rectangular 
profile: circular 

width 150 radius: 6 

depth 100 height: 15 

height 15 position: 65 -15 50 

position 00 50 orientation: 000 

orientation 000 

repeat 
f or 

component: ejector pin 
3 other 
i 

feature: boss ns p 

profile: circular 
radius: 6 
height 35 
position 65 -15 100 U j i 
orientation 000 

component retainer 
plate 

feature: boss feature: hole 

rectangular 
file: circular profile: 

width 150 radius: 6 

depth 100 height: 12 

height 12 position: 65 -15 150 

position: 00 150 orientation: 000 

orientation: 000 

Figure 6.18: Data input for ejector plate assembly 

repeat 
for 
3 other 
holes 

repeat 
for 
3 other 
holes 
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boss3 

holes 

boss4 

boss2 

hole 1 

I 

Figure 6.19: Model of ejector plate features 

The assembly procedure involves the pairing of features which mate with each other. 

There are ten pairs of features to be mated. The ejector plate, represented by boss2 mates 

with the clamping plate (bossl) and the retainer plate (boss3). Each pin has a fit 

relationship with two holes, one on the ejector plate (holes 1 to 4) and another one on the 

retainer plate (holes 5 to 8). The mating data for some of these features are shown in 

Figure 6.20. 

The relationship expressions are generated as shown: 

rear_clamp_plate. boss 1-against-eject_plate. boss2 

eject_plate. hole 1-fits-pin. boss4 

eject_plate. hole2-fits-pin. boss5 

eject_plate. hole3-fits-pin. boss6 

eject_plate. hole4-fits-pin. boss7 

eject_plate. boss2-against-retain_plate. boss3 

retain_plate. hole5-fits-pin. boss4 

retain_plate. hole6-fits-pin. boss5 
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retain_plate. hole7-fits-pin. boss6 

retain_plate. hole8-fits-pin. boss7 

Mating Features: 
Feature 1: boss] 
Feature 2: boss2 

Feature 1: hole] 
Feature 2: boss4 

Feature 1: boss2 
Feature 2: boss3 

Feature 1: boss4 
Feature 2: holes 

Figure 6.20: Input for mating features 

The assembled model is shown in Figure 6.21. 

Figure 6.21: Assembly model for the ejector plate 
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The data for the assembly is as follows: 

ejector plate assembly 

000 

000 

clamping-plate, ejector_plate, pin, pin, pin, pin, retainer_plate 

clamping plate, boss 

ejector-plate, boss, hole, hole, hole, hole 

pin, boss 

pin, boss 

pin, boss 

pin, boss 

retainer-plate, boss, hole, hole, hole, hole 

The data structure for the ejector plate assembly is shown in Figure 6.22. 
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Figure 6.22: Data structure for ejector plate assembly (abbreviated) 

6.10 SUMMARY 

A prototype feature-based assembly modelling system has been presented which is 

based on the design by features approach. The system consists of a library of features 

which interface with ACIS methods and classes for the generation of models. The system 

provides interactive input of the feature data as well as features to be mated. The 

procedures for creating features, components, subassemblies and an assembly have been 

described, and the applicability of the approach has been tested by modelling two 

examples of mechanical assembly. The outputs from the modelling session have been 

presented. The outcome of this exercise and the limitations of the system are discussed in 

the next chapter. 
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CHAPTER SEVEN 
DISCUSSION 

7.1 INTRODUCTION 

This chapter reviews work on feature representations, assembly representations and the 

implementation described in the three preceding chapters. The overall approach adopted 

is critically analysed and the limitations are identified. Section 7.2 summarises the 

research methodology. Discussions on the representation of features and assembly are 

covered in Sections 7.3 and 7.4 respectively. Comments on the use of an object-oriented 

approach are given in Section 7.5. Section 7.6 discusses the practical implementation of 

the system, with regards to the development of a prototype feature-based modelling 

system. 

7.2 REVIEW OF THE METHODOLOGY 

This thesis has described the methodology for representation of assembly modelling in a 

feature-based environment using an object-oriented approach. The methodology starts 

with the creation of features which form basic entities in the assembly. The fundamental 

approach has focussed on: - 

i. Defining a set of features within a suitable taxonomy. 

ii. Analysing typical assemblies to identify the assembly interactions and incorporating 

the knowledge on assembly representation into the feature representation. 

iii. Establishing techniques for the representation and modelling of a range of features 

and assembly knowledge. 

iv Incorporating process planning knowledge into the assembly representation. 

v. Applying object-oriented concepts of abstraction, encapsulation and inheritance to 

significantly reduce the quantity of software and the creation time while at the same 

time allowing the knowledge and domain to be extensible and flexible. 
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vi. Designing a Design by Feature system that allows incremental construction and 

evolution. 

The intention has been to establish a data model for features that is capable of 

representing assembly and process planning information in addition to the geometrical 

and topological details and which also handles information concerning the functional 

requirements of related features in an assembly of parts. 

7.3 FEATURE REPRESENTATION 

There is no doubt that the feature-based approach provides a very convenient way of 

representing geometrical as well as non-geometrical information. However, for features 

to be useful in the integration of product life cycle activities, it is preferable to have a 

single unified representation. It is envisaged that this aim can be achieved by defining a 

generic feature. However, in practice this is not possible due to the range of complexity of 

products such as sculptured and sheet metal products. Thus the approach taken in this 

research of defining a range of the most common shapes of machined features is more 

practical and supports many applications such as process planning, assembly planning 

and inspection. The taxonomy established is comprehensive enough to include most 

shapes used in the process planning and assembly of machined parts. This is justified 

since a large part of components machined in industry consists of simple shapes produced 
by operations such as milling, turning and drilling (HMSO statistics reported in Case and 
Acar 1989). 

A feature representation which is based on a similar approach has proved to be effective 
in the process planning and process capability modelling applications (Case 1994). In 

this work, features were defined in a feature library and implemented in a B-Rep solid 

modeller, Imaginer. A design by feature user interface to the solid modeller was 
developed to allow designers to generate components using feature primitives and to 

store attributes in a feature-based data structure, which is separate from the database of 

the geometric modeller. The way in which features relate to each other on the same 

component have been defined for this purpose. This earlier work has been incorporated 
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into an overall scheme of data representation that includes assembly knowledge to 

establish that a single feature representation can be useful across a range of key 

manufacturing applications. The feature representation not only covers a single 

component, as in the process planning work, but also supports interaction between 

components at the assembly level. The process planning knowledge can be redesigned 

using the object-oriented approach and combined with the assembly knowledge in the 

feature to provide a multiple representation within a single feature definition. 

The feature model defines representations for various items of knowledge that have not 

been fully implemented in the prototype system. In particular, Geometric and 

Dimensional Tolerances are excluded whereas they clearly have an important role to play 

in assembly modelling. This deliberate omission was a consequence of the scale and the 

complexity of the tolerances issue that it was felt could eclipse the main issue of 

representing assembly knowledge within the feature. However, it is felt that the use of 

object-oriented concepts and techniques has provided a framework for the future 

inclusion of tolerance aspects. 

7.4 ASSEMBLY REPRESENTATION 

The representation of the assembly focuses on the role of the feature as the basic unit in 

the assembly and emphasises the relationships between features. This is consistent with 

the goal of the design by feature approach and the way in which designers visualise 

mechanical assemblies. The hierarchical model organises the relationships in the 

assembly and provides a more realistic representation of the role of the features in the 

assembly, since many assemblies are designed sequentially. Assembling in this way can 

confine attention to relationships between a pair of features at one time. The hierarchical 

structure fits well with the object-oriented approach. 

Much research in assembly modelling and assembly planning utilises the mating 

relationship approach to specify spatial relationships among assembled parts. The three 

mating relationships defined in this research represent the most common types and they 

are the most suitable for the range of features used and the static nature of the assembly, 
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where components are assembled onto a static base feature. These mating conditions are 

well suited to the types of features defined. A possible criticism of using this approach is 

that these mating conditions may not fully represent the assembly, as highlighted by Shah 

and Rogers (1993) and Baxter et. al. (1992). Thus it is possible to define mating 

conditions for specific applications in the way for example that Baxter et. al. (1992) 

proposed conditions which accommodate the mating of two gears. 

Certain limitations are a natural consequence of the way in which geometric models are 

constructed in solid modelling CAD systems (feature-based or otherwise). Hence 

fastening details such as threads are usually considered as secondary features that can 

only exist on a base feature, and do not normally have a direct representation in the 

geometric modeller. This type of attachment is used only to modify the type of 

relationships defined and can be incorporated in the assembly knowledge of the feature 

by the inclusion of appropriate attributes without disturbing the basic structure of the 

information. 

Another issue is that a single feature may mate with more than one feature in general 

orientations within the assembly and not just along the three major axes. However, the 

mating relationship expressions are independent of this factor, and mating is restricted to 

the linear orientation only so as not to complicate the prototype implementation with 

well-known but mathematically complex methods. Furthermore there is some practical 

justification for this as seventy five percent of assembly involves only linear assembly 

(Delchambre 1991) and it is in line with the objectives of Design for Assembly 

techniques of reducing occurrences of non-orthogonal assembly directions. 

7.5 USE OF THE OBJECT-ORIENTED APPROACH 

The advantage of using 00 data models for building the knowledge environment for 

assembly is the straightforward integration with 00 programs. The power of the 00 

technique, as outlined in Chapter 3 is in the knowledge representation and manipulation. 

The 00 approach was found to be more capable than the conventional method of 

addressing the problems of representation of features. The hierarchical nature of the 
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feature taxonomy and the assembly structure is well-suited to an 00 implementation. It 

also allows effective manipulation of features, by providing convenient ways to extend 

feature functionalities as well as feature types and profiles. The approach provides easy 

maintenance of the system through its modular design and the addition of attributes and 

functions which are independent of each other. 

In this case, the feature library is defined independently of the solid modeller. This allows 

for future expansion of the system or the transfer of the feature library into another solid 

modeller. 

The flexibility of the system is enhanced by the use of the inheritance approach where a 

derived class can share the common methods of the base class while at the same time 

define its own set of attributes and methods. This is found to be useful in extending the 

program to provide additional features and functionalities. 

The use of the C++ programming language is also well-suited to the whole framework of 

the system by providing a convenient method of programming, and it is envisaged that 

the task would have been more time-consuming using a more conventional approach. 

7.6 PRACTICAL IMPLEMENTATION ISSUES 

The design of the prototype feature-based design system presented in Chapter 6 had the 

aim of testing the idea presented for a small range of feature types. As a prototype system, 

it has limited practical application. The base feature is limited to a rectangular shape. A 

more practical system should address a wide range of possible shapes for a base feature 

and a complete set of feature types and profiles. In order to achieve this goal, large 

resources in terms of programming times and skills are required. 

In implementing the system, two approaches of creating solid models are possible - using 

a solid modeller or a kernel modeller. The former method involves using a CAD/CAM 

system such as Unigraphics, whereby features are defined and stored in a library and 

called during the design session. The advantage of using this approach is the availability 

of a good user interface and powerful graphics on a single system. The system is usually 

easy to use and the user interface can be customised. However, depending on the 
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language with which the software is developed, the programming may be difficult and 

limited and frequently does not allow adequate access to low level entities. Usually a 

program is required to interface the feature library and the solid model. Further 

development may also be restricted by the proprietary nature of the system, and there is 

also a likely problem in extending the system for other applications such as assembly 

planning, due to difficulties encountered in accessing low levels of the (topological) data 

structure. 

The second approach of using an open architecture kernel modeller, which is the basis of 

this research, offers a more flexible approach. ACIS provides a library of functions which 

act as building block components which can be used by application developers. The user 

has to choose the right function to integrate with the feature library. A major advantage of 

using ACIS is its extensibility. Any further development of the system such as 

developing a fully-fledged assembly modelling system or design for assembly system is 

relatively easier, as discussed in Chapter 3. The capability of the system can be enhanced 

by creating new API functions to complement the available ones. This can provide a 

consistent interface with ACIS. 

The disadvantage of this approach is the programming aspect. The capability of the 

prototype system can be greatly enhanced by good programming skill. Although the use 

of 00 has alleviated the programming aspect, the experience of this research shows that 

the level of programming knowledge required to produce an application system is very 

high and much of the time is required for programming. 

The role of the user interface to the system is very important in the assembly modeller. 

The aim is to minimise the interaction with the user and provide an interactive display of 

the model being assembled. In this system, the user interacts with the system by inputting 

the data on the screen, and the use of the ACIS test harness provides only a limited user 

interface An improvement to the system could be made if data on the dimensions, 

location and orientation of the feature could be automatically generated when the feature 

is created and if the user could click on the pair of features to be mated, with the system 

identifying the consequent mating relationships. These kinds of interaction may be 
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possible using a more powerful graphical user interface engine such as MOTIF (OSF 

1989), but were not considered to be an essential research aspect of this work. 

During the course of this work substantial improvements have been made to kernel 

modellers in general and ACIS in particular. It is not possible to track all developments as 

they occur, and thus more recent versions of ACIS (version 1.6) offer many additional 

features which enhance the modelling and the user interface in ways that are important to 

assembly modelling. Similarly, the last few years has seen the development of a number 

of husks which, had they been available at the start of the research, would have proved 

useful. A partial solution to this problem is to utilise an ACIS-based solid modeller such 

as Bentley's MicroStation (Bentley 1995), whereby the user is presented with a user 

interface system and at the same time can develop feature and application libraries using 

ACIS functions. 

7.7 SUMMARY 

This chapter has highlighted some salient points in the whole framework of the thesis, 

especially on the feature representation, the assembly representation, the use of the 

object-oriented approach and the design of a feature-based design system. Limitations 

of the system have also been discussed. This work is significant as the approach can be 

extended to other upstream applications such as assembly planning and Design for 

Assembly. The summary of the work covered in this thesis and how it contributes to 

manufacturing knowledge are outlined in the next chapter. 
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CHAPTER EIGHT 
SUMMARY AND CONCLUSIONS 

8.1 INTRODUCTION 

This chapter concludes the thesis by summarising discussions in previous chapters, 

outlining the contributions to the research area and proposing further work that can be 

pursued in this area. Section 8.2 summarises the work discussed in previous chapters. The 

research contributions is discussed in Section 8.3. Potential areas for future research are 

discussed in Section 8.4. Section 8.5 concludes the thesis. 

8.2 SUMMARY OF THE THESIS 

This research set out to address the problem of the lack of a unified definition for features 

and to determine an assembly representation as an integral part of a feature-based 

representation. These issues have been highlighted by a review of relevant literature on 

features and assembly modelling. The problems arising from a feature being defined for a 

specific application have been recognised by various researchers, and current trends in 

the development of feature-based systems have been identified. The need to arrive at a 

single feature definition for multiple applications has been recognised and in this context, 

assembly modelling is deemed important as a complement to the well-established 

process planning activity. 

The focus of this research is on the representation of assembly knowledge within a 

feature-based model in order to show that a single feature representation can support 

multiple applications, particularly process planning and assembly modelling. 

Features used in this research have been defined as machined volumes and a suitable 

hierarchical taxonomy has been defined in detail to cover common feature types and 

profiles that represent the general machined features used for assembly. A feature class 

hierarchy has been established that uses the concept of inheritance for ease of 

development and maintenance of the system. Some typical assemblies have been 
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analysed to identify mating relationships which occur among features. This results in the 

definition of three mating relationships of against, fits and align. The knowledge on these 

relationships are combined with the process planning data to identify common 

information in the feature. 

The representation of assembly knowledge as part of a feature model has been defined 

and detailed. Feature definitions have been substantially enhanced to include knowledge 

on assembly in the form of the logical position of features within an assembly structure 

and the interactions between pairs of features. The interactions have been defined in 

terms of mating relationships which are represented by binary expressions with mating 

conditions as operators and features as operands. Using the inheritance concept of the 

object-oriented technique, classes for assembly and feature relationships have been 

defined. The class definitions also include the process planning knowledge. 

The essential development tools for the research and the benefits of using them have been 

identified. The tools, in the form of the C++ programming language and the ACIS kernel 

modeller, are based on the technique of object-orientation which is currently seen as 

being the most appropriate and effective method for handling the complexities found in 

modern CAD/CAM systems. This methodology has been used to implement and test a 

simplified prototype feature-based system that combines the feature and assembly 

classes with existing ACIS classes to create the model. Two examples involving a simple 

two-part product and a more complicated multi-part one have been presented for 

verification in the modelling environment. Although the prototype system can 

successfully model the assembly, it requires some improvements in the form of a better 

user interface. 

8.3 RESEARCH CONTRIBUTIONS 

The representation of assembly information is considered to be an essential prerequisite 

to the generation of CAD/CAM systems that are capable of optimising product design. 

Such a representation can form the basis of design improvement techniques such as 

design for assembly (DFA) and manufacturing planning such as assembly planning. It 
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can also be used to support other related applications such as tolerance analysis of 

assemblies and inspection planning. 

The main objective of assembly planning is to improve the efficiency of the assembly 

process in terms of time to assemble, cost and quality of finished products. One of the 

outputs of assembly planning is the generation of assembly sequences. These sequences 

are determined by various factors, the mating relationships being the most important. The 

mating conditions can be organised in the form of a mating graph which is similar to the 

Feature Relationship Graph described in Chapter 5. The assembly sequence is generated 

with the aid of interference checking between mating features. 

This research has provide several contributions to the area of CAD/CAM, in particular to 

features technology and in general to the Computer Integrated Manufacturing 

environment. These are outlined below: 

i. An object-oriented representation of a set of features which comprise knowledge 

useful for multiple applications such as process planning and assembly modelling 

has been developed. The design of the knowledge in the features allows appropriate 

extensions to be provided within the features, through the inheritance property of 

object-oriented technique, to support the needs of other applications. 

ii. A hierarchical feature taxonomy has been adopted which caters for a range of feature 

types and profiles useful for manufacturing applications. The hierarchy is 

particularly suited to implementation using the object-oriented methodology. 

iii. Effective representation of assembly knowledge in the feature data has been 

achieved, with the use of mating relationships between features. The data has been 

combined with relevant process planning knowledge and this provides a high level 

interface with the designer for the creation and modelling of assemblies. The 

representation is considered to be useful for assembly modelling and for other 

subsequent tasks such as assembly planning. 
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iv. An assembly data structure based on a linked list of subassemblies, components and 

features has been established and implemented and is considered to be useful for 

extended applications such as assembly planning and design for assembly. 

v. A prototype feature-based modelling system has been implemented based on the 

ideas and methodologies presented in the thesis. This implementation uses an 

object-oriented kernel modeller, which is extensible and allows future development 

by adding appropriate functions to the existing classes or by the development of new 

classes. 

8.4 RECOMMENDATIONS FOR FUTURE WORK 

There are several areas where further investigations can be pursued, based on the ideas 

presented in this research and the discussion in Chapter 7. These are outlined in the 

following paragraphs: 

8.4.1 ADDITION OF FEATURE ATTRIBUTES 

The possibility of extending the feature definition to include feature attributes such as 

threads is deemed important as most mechanical assemblies include these parts. The 

approach proposed is to include an additional attribute in the class definition of the 

features. This can be in the form of a Boolean representation such as (thread, no_thread). 

A thread would be further defined by additional attributes such as the thread pitch and 

type. Thus a boss and a hole can be threaded to represent a bolt and a nut respectively. 

The inclusion of additional attributes is also necessary for the feature-based system to be 

used in a wider product modelling environment. An example of this would be the 

inclusion of locations on the feature that could be used as inspection points. The approach 

of defining attributes separately from the feature prevents the feature from being 

associated with a particular application. This is consistent with the concept of defining 

features for multiple applications. 
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8.4.2 APPLICATION IN ASSEMBLY PLANNING 

The logical extension to this work is to investigate the practicality of the approach in 

assembly planning, particularly in assembly sequencing. This requires the acquisition 

and processing of assembly knowledge. The data on the mating relationships could be 

used as input to this application and there are various approaches available to achieve this 

aim. One approach deemed suitable for the representation used in this thesis is to use an 

assembly graph which shows the connections between all features, in a way that is similar 

to the Feature Relationship Graph introduced in Chapter 5. With the help of the graph, 

assembly could be split into autonomous sub-assembly groups by decomposing the 

graph into smaller parts. The algorithm proposed by Wang and Li (1991) could be used to 

group the features and components. Further algorithms and heuristics would be required 

to order the components and features to generate a list of ordered pairs of features in an 

assembly. The mating relationships data could then be transformed into a connectivity 

matrix, as shown in Figure 8.1. Each entry in the matrix shows whether the features are 

connected and other algorithms proposed by Wang and Li (1991) could then be used to 

sequence the features in the assembly. 

1 2 3 4 5 6 

1 0 1 0 0 0 0 

2 0 0 0 0 0 0 

3 1 0 0 1 0 0 

4 0 0 0 0 1 0 

5 0 0 0 0 0 1 

6 1 0 0 0 0 0 

Figure 8.1: Mating Relationship Matrix 

8.4.3 VALIDITY CHECKING 

The representation of assembly knowledge in features has been tested on simple 

products. In order to be fully confident that this representation is applicable in 

manufacturing environments, the validity of the approach needs to be checked. This 

could be achieved by testing the approach on a range of real products which consist of 
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parts within the domain of the features described in this research. A product would be 

modelled and then assembled according to the procedures described in Chapter 6 

The approach could also be tested for its applicability in a manufacturing environment by 

conducting controlled experiments involving use of the system by designers and 

engineers. Objective measures of performance in terms of time, accuracy and quality of 

assembly information could be obtained and compared with similar data from manual or 

alternative computer approaches. At the same time subjective measures of the suitability 

and acceptability of the method could be obtained using survey and observational 

techniques. However, for such studies to be meaningful there would be a need to develop 

the prototype system to a level where its user interface was comparable with commercial 

systems. This case study could also form the basis for the improvement of the system or 

the general approach. 

8.4.4 INTEGRATION WITH CAD/CAM SYSTEMS 

An assembly modelling system will be useful if it can be integrated with other 

CAD/CAM systems. The use of ACIS has made it possible to transfer files to many 

popular CAD/CAM systems or to use data translators to import from or export to other 

systems. Many CAD/CAM systems such as the recent versions of AutoCAD solid 

modeller and Microstation can read files from ACIS. ACIS can also be interfaced to 

many other CAD/CAM systems using IGES or STEP translators which are commercially 

available. 

Data transfer could be an alternative to the development of a graphical user interface 

within the feature-based modelling system. Models created by the system could be 

transferred to the CAD/CAM system for further analysis and manipulation, and thus 

enhance the capability of the feature-based assembly modelling system. Transfer of data 

between a general CAD/CAM system and an assembly modelling system could be 

beneficial, and imitates the way in which many design systems gain access to design 

analysis methods. However, true integration can only be achieved by implanting the data 

structure and methods of assembly modelling within a general CAD/CAM system. The 
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use of ACIS, a commonly used kernel, and the object-oriented technique makes this a 

feasible approach. 

8.4.5 OTHER MANUFACTURING APPLICATIONS 

There are opportunities to extend the object-oriented features approach to other 

manufacturing applications such as inspection planning. To achieve this, features in an 

assembly can be created and then analysed using a CAD/CAM system which can 

communicate information to a Coordinate Measuring Machine. Feature attributes 

required for inspection planning include the geometry and topology, shape and precision 

attributes, relations between features in the assembly hierarchy and relevant 

technological data (ElMaraghy and ElMaraghy 1994). With the exception of the 

precision attributes (tolerance information), this information is available in the feature 

representation presented in this thesis. 

The application of the features to other manufacturing areas should provide further 

evidence of the extensibility of the object-oriented approach and that the feature 

representation can support multiple applications. 

8.5 CONCLUSIONS 

The potential application of features in geometric modelling has been demonstrated by 

much research and industrial work. The research presented here reinforces the idea that 

features can be used in multiple applications and that the object-oriented approach assists 

in moving towards a unified definition for features. Features which have previously been 

used for process planning have been used in an enhanced form to represent an assembly. 

The use of features for assembly modelling provides a natural representation, since in 

assembly operations it is the feature that dictates the way in which parts are assembled. 

Features technology, combined with the object-oriented technology form a powerful 

means to represent manufacturing knowledge. 

The approach adopted provides a design tool for designers by allowing them to create a 

mechanical assembly in terms of features, which is applicable for subsequent 
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manufacturing planning activities. The feature representation methodology 

implemented is suitable for the concurrent representation of knowledge on process 

planning and assembly modelling. Clearly, this does not conclusively establish that all 

aspects of design and manufacturing can be encapsulated in a single representation, but it 

goes some way to confirm the feasibility of the idea. 

Future CAD/CAM systems will be more heterogeneous in nature. A number of database 

requirements must be considered to control and support design, manufacturing, assembly 

and related applications. This research shows that features have much to offer in 

effectively fulfilling the requirements of a Simultaneous Engineering environment. 
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APPENDIX A 
ASSEMBLY CLASS DECLARATIONS 

/*The following codes represent declarations of classes defined in Chapter 5. */ 

#ifndef FBDC H 
#define 

_FBDC_H #include <fstream. h> 
#include <string. h> 

class feature; 

class component; 
class subassy; 

//ASSEMBLY CLASS 
//Declaration for assembly class 

class assembly { 
BODY *assy; 

char assy_name[20]; 
assembly *next; 

subassy *s; 
double assy_posX; 
double assy_posY; 
double assy_posZ; 
double assy_AngleX; 
double assy_AngleY; 
double assy_AngleZ; 

public: 
assemblyO; 
-assemblyO; 
void addsubassyO; 
virtual void drawO; 

void saved; 
}; 

//SUBASSEMBLY CLASS 
//Declaration for subassembly class 

class subassy { 
BODY *subaO; 
char subassy_name[20]; 
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face *subassyface; 

subassy *next; 

component *Comp; 
double sub_posX; 
double sub_posY; 
double sub_posZ; 
double subassy_AngleX; 
double subassy_AngleY; 
double subassy_AngleZ; 

public: 
subassyO; 
-subassyü; 
void addcomponentO; 
void findface(); 

void draw(); 

void saveO; 

//COMPONENT CLASS 
//Declaration for component class 

class component { 

protected: 
BODY* comp; 
FACE* compface; 
char comp_name[20]; 
component *next; 
feature *ft; 
double comp_width; 
double comp_length; 
double comp_height; 
double comp_posX; 
double comp_posY; 
double comp_posZ; 
double comp_angleX; 
double comp_angleY; 
double comp_angleZ; 

public: 
componentO; 
component(char* cn, double &w, double &l, double &h); 

virtual -componentO; 
void GetDimension(); 
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void GetPositionO; 

void GetOrientationü; 

char CNameO { return comp_name[20]; ) 
double CWidthQ; 
double CLengthO; 
double CHeightO; 
double CPosX() { return comp_posX; } 
double CPosY() {return comp_posY; } 
double CPosZQ {return comp_posZ; ) 

void Draw_CompO; 

void FindFaceO; 

void SaveBodyQ; 

void AddFeature(component &comp); 

}; 
#endif /* FBDC H */ 

II ASSEMBLY RELATIONSHIP CLASS 

class relations: { 

char mating_relation[8]; 
feature *first; 
feature *second; 
face *facel; 
face *face2; 

public: 
void AssyUserlnputO; 

char IdentifyRelation(char fea1[5], char fea2[5]); 

void Transform(component *c); 

void ListRelationO; 

}; 
//LINK CLASS 
//this class defines the nature of the objects that will be stored in the list 

//OBJECTLINK CLASS 

template <class DataT> class objectlink 
{ 

public: 
DataT type; //type of data 

objectlink<DataT> *next; 

objectlink<DataT> *prior; 

objectlinkO; 
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objectlink<DataT> *getnext() { return next; } 
objectlink<DataT> *getprior() { return prior; } 

}; 

//ASSYLIST CLASS 
//this class inherits the above class 
//actually implements the double linked list mechanism 

template <class DataT> class assylist: public objectlink 

objectlink<DataT> *start, *end; 
public: 

assylist() { start= end = NULL; } 
void store(DataT *c); 
void remove(objectlink<DataT> *ob); //delete entry 
void fiwdlistQ; //display list from beginning 
void bkwdlist(); //display list from the end 
objectlink<DataT> *getstart() { return start; } 
objectlink<DataT> *getend() { return end; } 

}; 
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APPENDIX B 
APPLICATION AND MAKE FILES 

//Partial listing for main file fbds. cc 

#include <iostream. h> 
#include <stdio. h> 
#include <stdlib. h> 
#include <logical. h> 
#include <string. h> 

//Include ACIS class files 

#include "acis. hxx" 
#include "vector/transf. hxx" 

#include "vector/vector. hxx" 
#include "vector/unitvec. hxx" 
#include "data/debug. hxx" 
#include "data/entity. hxx" 
#include "top/alltop. hxx" 

#include "top/body. hxx" 
#include "top/face. hxx" 

#include "api/api. hxx" 
#include "api/journal. hxx" 
#include "api/routines. lixx" 

#include "fbdclass. cc" 
#include "comp. cc" 
#include "save. cc" 
#include "dblink. cc" 
#include "relation. cc" 
#include "utility. cc" 

//Path for the Test Harness 
char path[80] = "/home/samson/acis_1.4/acis1.4/acis1.4_x_demo. sun4"; 

void Create_Components; 

void WelcomeO; //Welcome message - defined in utility. cc 
void UserInput(); 

void MainMenu(); //Displays main menu 
void AssyO; //Interface with functions in relation. cc 
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void OutputO; //Outputs data - defined in utility. cc 

main() 

WelcomeO; 
MainMenu(); 

} 

void MainMenu() 

int mchoice; 

cout « "\n\n SYSTEM MENU \n"; 
cout «" ===_=======\n"; 
cout « "fin [1] CREATE FEATURE/COMPONENT\n"; 

cout «"\n [2] CREATE ASSEMBLY\n"; 
cout « "\n [3] TEST HARNESS\n"; 

cout « "\n [4] PRINT DATA\n"; 
cout « "\n [5] EXIT\n"; 

cout « "\nEnter selection [ 1-5] 

cin » mchoice; 
while(mchoice != 6) 
1 

switch(mchoice) 
{ 

case 1: UserlnputO; 
break; 

case 2: AssyO; 
break; 

case 3: system(path); 
break; 

case 4: OutputO; 
break; 

case 5: cout « "\nExit FBDS\n\n"; 

exit(O); 

default : cout « "\nError. Enter Selection [I - 5]\n"; 
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MainMenu(); 

cin » mchoice; 

void Userlnput() 

char ans; 
Create_Componento ; 
cout « "\nCreate another component? (y/n) "; 
cin » ans; 
if (ans =='y') 

UserlnputO; 

else 
( cout « "Back to Main Menu\n"); 

void Create_Component() 

char name[20]; 
double 11, wl, h1; 
dllist list; 

outcome result = api_start_modeller(TRUE, "journal", 0); 

outcome_check(result, "error initialising modeler"); 

//component is actually a base feature 

component *comp = new component(name, 11, wl, hl); 
comp->GetPositionO; 
comp->GetOrientation(); 
comp->GetWorkSize(); 
comp->Draw_Compo ; 
comp-->FindFaceo ; 
comp->AddFeature(*comp); 
list. store(comp); 
comp->PrintDataO; 
comp->SaveBodyO; 
combine_file(comp); 
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MAKE FILE 

//This is the makefile for compiling FBDS. CC 

model: fbds. o 
CC -g -ofbds\ 
fbds. o \ 
/home/samson/acis_ 1.4/acis 1.4/error/obj. sun4/find_message. o 
-L/home/samson/acis 1.4/acis 1.4/lib. sun4 \ 

-lspline -Isg_husk -ikernel -lspline -lkernel -Ispline \ 
/home/sanison/acis_1.4/aglib 1.5/lib. sun4/libaglib. a \ 

-lm 

fbds. o: fbds. cc comp. cc fbdclass. cc relations. cc save. cc 
CC-c-g\ 

-I/home/samson/acis 1.4/acis 1.4 \ 

-I/home/samson/acis 1.4/acis 1.4/kernel \ 

-1/home/samson/acis_1.4/acis1.4/spline \ 
fbds. cc 
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APPENDIX C 
SAMPLE ACIS FILE 

This file contains data generated from the pin and block assembly shown in Figure 6.6. 
The file is retrieved in the Test Harness to display the model, as shown in Figure 6.12. 

//Data for boss feature of the block 
1048600 
body $-1 $1 $-1 $2 # 
lump $-1 $-1 $3 $0 # 
transform $-1 1 000 10 00 10 00 10 00 # 

shell $-1 $-1 $-1 $4 $1 # 
face $-1 $5 $6 $3 $-1 $7 0# 
face $-1 $8 $9 $3 $-1 $10 1# 
loop $-1 $-1 $11 $4 # 

plane-surface $-10 0 20 001 10 0 0# 
face$-1 $12$13$3$-1 $141# 
loop $-1 $-1 $15 $5 # 

plane-surface $-i00-20001 10 0 0# 

coedge $-1 $16 $17 $18 $19 0 $6 $-1 # 
face $-1 $20 $21 $3 $-1 $22 1# 
loop $-I $-1 $23 $8 # 

plane-surface $-1 0 -50 001 -0 -0 0 10 # 

coedge $-1 $24 $25 $26 $27 0 $9 $-1 # 

coedge $-1 $28 $11 $29 $30 0 $6 $-1 # 

coedge $-1 $11 $28 $31 $32 0 $6 $-1 # 

coedge $-1 $33 $34 $11 $19 1 $35 $-1 # 

edge $-1 $36 $37 $18 $38 0# 
face $-1 $39$40$3$-1 $41 1# 
loop $-I $-1 $42 $12 # 

plane-surface $-1 -60 00 10 000 -10 # 

coedge $-1 $43 $31 $44 $45 0 $13 $-1 # 

coedge $-1 $46 $15 $43 $47 0 $9 $-1 # 

coedge $-1 $15 $46 $48 $49 0 $9 $-1 # 

coedge $-1$34 $33 $15 $27 1 $35 $-1 # 

edge $-1 $50 $51 $26 $52 0# 

coedge $-1 $17 $16 $53 $54 0 $6 $-1 # 
coedge $-1 $55 $56 $16 $301 $40 $-1 # 
edge $--1 $37 $57 $29 $58 0# 
coedge $-1 $23 $59 $17 $321 $13 $-1 # 
edge $-1 $60 $36 $31 $61 0# 
coedge $-1 $26 $18 $59 $62 0 $35 $-1 # 
coedge $-1 $18 $26 $55 $63 1 $35 $-1 # 
loop $-1 $-1 $33 $39 # 
vertex $-1 $19 $64 # 

vertex $-1 $19 $65 # 

straight-curve $-160 0 20 0 10 # 
face $-1 $--1 $35 $3 $-1 $66 1# 
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loop $-I $-1 $55 $20 # 

plane-surface $-10 5000-1 000-10 # 
coedge $-I $67 $53 $56 $68 0 $21 $-1 # 
coedge $-i $59 $23 $24 $47 1 $13 $-1 # 
coedge $-1 $53 $67 $23 $45 1 $21 $-1 # 
edge $-1 $60 $69 $44 $70 0# 
coedge $-1 $25 $24 $67 $71 0 $9 $--1 # 

edge $-1 $51 $69 $43 $72 0# 

coedge ä-1 $56 $55 $25 $49 1 $40 $-1 # 

edge $-1 $73 $50 $48 $74 0# 

vertex $-1$27 $75 # 
vertex $-1 $62 $76 # 
straight-curve $-160 0 -20 0 -10 # 

coedge $-1 $42 $44 $28 $54 1 $21 $-1 # 

edge $-1 $57 $60 $53 $77 0# 

coedge $-1 $48 $29 $34 $63 0 $40 $-1 # 

coedge $--1 $29 $48 $42 $68 1 $40 $-1 # 

vertex $-1 $30 $78 # 

straight-curve $-10 50 20 -10 0# 

coedge $-1 $31 $43 $33 $62 1 $13 $-1 # 

vertex $-1 $54 $79 # 

straight-curve $-10 -50 20 10 0# 

edge $-1 $36 $51 $33 $80 0# 

edge $-1 $37 $50 $34 $81 0# 

point $-1 60 -50 20 # 

point $-160 50 20 # 
plane-surface $-160 00 -10 0 0-0 10 # 

coedge $-1 $44 $42 $46 $71 1 $21 $-1 # 

edge $--1 $57 $73 $56 $82 0# 

vertex $-1 $71 $83 # 

straight-curve $-1-60 -50 000 -1 # 

edge $-1 $69 $73 $67 $84 0# 

straight-curve $-10 -50 -20 -10 0# 

vertex $-1 $49 $85 # 

straight-curve $-10 50 -20 10 0# 
point $-160 50 -20 # 
point $-160 -50 -20 # 
straight-curve $-1-60 0 20 0 -10 # 
point $-1 -60 50 20 # 
point $-1 -60 -50 20 # 
straight-curve $-160 -50 000 -1 # 
straight-curve $-160 50 000 -1 # 
straight-curve $-1-60 50 000 -1 # 
point $-1 -60 -50 -20 # 
straight-curve $-1-60 0 -20 0 10 # 
point $-1-60 50 -20 # 

//Data for hole feature of block 
1042600 
body $-l $1 $-1 $2 # 
lump $-1 $-1 $3 $0 # 
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transform $-1 1000100010001000# 

shell $-I $-I $-1 $4 $1 # 
face $-1 $5 $6 $3 $-i $7 0# 
face $-1 $8 $9 $3 $-1 $10 0# 
loop$-1 $11 $12$4# 

cone-surface $-10 00001 15 00101 0# 
face $-I $-1 $13$3$-1 $140# 
loop $-I $-1 $15 $5 # 

plane-surface $-10 0 -20 00 -1 -10 0 0# 
loop $-1 $-1 $16 $4 # 

coedge $-1 $12 $12 $15 $17 1 $6 $-1 # 
loop $-1 $-I $18 $8 # 

plane-surface $-10 0 20 001 10 0 0# 

coedge$-1 $15 $15 $12$170$9$-1 # 

coedge $-1 $16 $16 $18 $19 1 $11 $-1 # 

edge$-1 $20$20$15 $210 # 

coedge $-1 $18 $18 $16 $19 0 $13 $-1 # 

edge $-1 $22 $22 $18 $23 0# 

vertex $-1 $17 $24 # 

ellipse-curve $-10 0 -20 00 -1 15 001# 

vertex $-1 $19 $25 # 

ellipse-curve $-10 0 20 001 1500 1# 

point $-1 15 0 -20 # 

point $-1 15 0 20 # 

//Data for rectangular boss feature of the pin 
1048600 
body $-1 $1 $-1 $2 # 
lump $-1 $-1 $3 $0 # 
transform $-1 1 000 1 000 100 100 1000# 

shell $-1 $-1 $-1 $4 $1 # 
face $-1 $5 $6 $3 $-1 $7 0# 
face $-1 $8 $9 $3 $-1 $10 1# 
loop $-I $-1 $11 $4 # 

plane-surface $-10 05001 10 00# 
face-1$12$13$3$-1$141# 
loop $-1 $-1 $15 $5 # 

plane-surface $-10 0 -5 001 1000# 

coedge $-1 $16 $17 $18 $19 0 $6 $-1 # 
face $-1 $20 $21 $3 $-1 $22 1# 
loop $--1 $-1 $23 $8 # 
plane-surface $-10 -25 0 01-0 -0 01 0# 
coedge $-1 $24 $25 $26 $27 0 $9 $-1 # 
coedge $-1 $28 $11 $29 $30 0 $6 $-1 # 
coedge $-1 $11 $28 $31 $32 0 $6 $-1 # 
coedge $-1 $33 $34 $11 $19 1 $35 $-1 # 
edge $-1 $36 $37 $18 $38 0# 
face $-1 $39 $40 $3 $-1 $41 1# 
loop $-1 $-I $42 $12 # 

plane-surface $-1 -25 00 10 000 -10 # 
coedge $-1 $43 $31 $44 $45 0 $13 $-1 # 

222 



Appendix C 

coedge $-1 $46 $15 $43 $47 0 $9 $-1 # 

coedge $-1 $15 $46 $48 $49 0 $9 $-1 # 

coedge $-1 $34 $33 $15 $27 1 $35 $-1 # 

edge $-I $50 $51 $26 $52 0# 

coedge $-1 $17 $16 $53 $54 0 $6 $-1 # 

coedge $--1 $55 $56 $16 $30 1 $40 $-1 # 

edge $-1 $37 $57 $29 $58 0# 

coedge $-1 $23 $59 $17 $32 1 $13 $-1 # 

edge $-1 $60 $36 $31 $610 # 

coedge $-1 $26 $18 $59 $62 0 $35 $-1 # 

coedge $-1 $18 $26 $55 $63 1 $35 $-1 # 
loop $--1 $-1 $33 $39 # 

vertex $-1 $19 $64 # 

vertex $-1 $19 $65 # 

straight-curve $-12-5 050 10 # 
face $-1 $-1 $35 $3 $-1 $66 1# 
loop $-I $-i $55 $20 # 

plane-surface $-10 25 00 -10 00 -10 # 

coedge $-1 $67 $53 $56 $68 0 $21 $-1 # 

coedge $-1 $59 $23 $24 $47 1 $13 $-1 # 

coedge $-1 $53 $67 $23 $45 1 $21 $-1 # 

edge $-1 $60 $69 $44 $70 0# 

coedge $-1 $25 $24 $67 $71 0 $9 $-1 # 

edge $-1 $51 $69 $43 $72 0# 

coedge $-1 $56 $55 $25 $49 1 $40 $-1 # 

edge $-1 $73 $50 $48 $74 0# 

vertex $-1 $27 $75 # 

vertex $-1 $62 $76 # 

straight--curve $-1 25 0 -5 0 -10 # 

coedge $-1 $42 $44 $28 $54 1 $21 $-1 # 

edge $-1 $57 $60 $53 $77 0# 

coedge $-1 $48 $29 $34 $63 0 $40 $-1 # 

coedge $-1 $29 $48 $42 $68 1 $40 $-1 # 

vertex $-1 $30 $78 # 

straight-curve $-10 25 5 -10 0# 
coedge $-1$31 $43 $33 $62 1 $13 $-1 # 
vertex $--1$54 $79 # 
straight-curve $-10 -25 5 10 0# 
edge $-1 $36 $51 $33 $80 0# 
edge $-1 $37 $50 $34 $81 0# 
point $-125 -25 5# 
point $-125 25 5# 
plane-surface $-125 00 -10 00 -0 10 # 

coedge $-1 $44 $42 $46 $71 1 $21 $-1 # 

edge $-1 $57 $73 $56 $82 0# 

vertex $-1 $71 $83 # 
straight-curve $-1 -25 -25 000 -1 # 

edge $-1 $69 $73 $67 $84 0# 

straight-curve $-10 -25 -5 -10 0# 

vertex $-1 $49 $85 # 

straight-curve $-10 25 -5 10 0# 

223 



Appendix C 

point $-1 25 25 -5 # 

point $-125 -25 -5 # 

straight-curve $--1 -25 050 -10 # 

point $-i -25 25 5# 

point $-I -25 -25 5# 

straight-curve $-1 25 -25 000 -1 # 

straight-curve $-1 25 25 000 -1 # 

straight-curve $-1 -25 25 000 -1 # 

point $-1 -25 -25 -5 # 

straight-curve $-1 -25 0 -5 0 10 # 

point $--1 -25 25 -5 # 

//Data for circular boss feature of the pin 
1042600 
body $-1 $1 $-1 $2# 
lump $-1 $-1 $3 $0 # 

transform $-1 1 000 10 00 10 0 125 10 00# 

shell $-1 $-1 $-1 $4 $1 # 
face $-1 $5 $6 $3 $-1 $7 0# 
face $-1 $8 $9 $3 $-1 $10 0# 
loop $-1 $11 $12 $4 # 

cone-surface $-10 00001 15 00 10 10 # 
face $-1 $-1 $13 $3 $-1 $14 0# 
loop $-I $-1 $15 $5 # 

plane-surface $-10 0 -20 00 -1 -1 00 0# 
loop $-1 $-1 $16 $4# 

coedge$-1 $12 $12 $15 $17 1 $6S-1 # 
loop $-I $-1 $18 $8# 

plane-surface $-10 0 20 001100 0# 

coedge$-1 $15$15$12$170$9$-1# 

coedge $--1 $16 $16 $18 $19 1 $11 $-1 # 

edge $-1 $20 $20 $15 $210 # 

coedge$-1 $18$18$16$190$13 $-1 # 

edge S--1 $22 $22 $18 $23 0# 

vertex $-1 $17 $24 # 

ellipse-curve $-10 0 -20 00 -1 15 00 1# 

vertex $-1 $19 $25 # 

ellipse-curve $-10 0 20 001 15 001# 
point $-1 15 0 -20 # 
point $-1 15 0 20 # 
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