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An Assembly-Oriented Design Framework for  

Product Structure Engineering and Assembly Sequence Planning 
_______________________________________________________________________________________________ 
Abstract: 

The paper describes a novel framework for an Assembly-Oriented Design (AOD) approach as a new functional part of the 

Product Lifecycle Management (PLM) strategy, by considering product design and assembly sequence planning phases 

concurrently. Integration issues of product lifecycle into the product development process have received much attention over 

the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly 

sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an 

assembly context for the product development process, particularly for product structuring. The proposed framework 

highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, 

engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a 

new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a 

Catalytic-Converter and Diesel Particulate Filter sub-system, belonging to an exhaust system from an industrial automotive 

supplier, is introduced to illustrate the efficiency of the proposed AOD methodology. 

Keywords: Assembly-Oriented Design, Design for Assembly, Product Structure, Assembly Sequence Planning. 
___________________________________________________________________________________________________________________________________________ 

1. Introduction 

The current ultra-competitive market in terms of Quality-Cost-Time coupled with the global financial crisis 

leads companies to set up research and development strategies in order to improve their competitiveness. 

Companies in the automotive industries are particularly facing their own industry-sector specific re-organization 

by bringing geographically distributed teams and expertise networks closer. Thus, the current industrial need 

requires the tackling of the traditional sequential engineering phases by taking concurrent engineering approach 

to overlapping lifecycle engineering activities. Indeed, the inclusion and integration of product lifecycle 

activities into the product development process have received much attention over the last two decades, 

especially at the detailed design phase. Pondering over these severe constraints, methods, tools and techniques 

for such an integration of product lifecycle activities are the focus of common research interest. One particular 

area is to research into how to undertake product design and assembly sequence planning (ASP) in a concurrent 

way [1]. The main objective of the paper focuses on the generation of assembly sequence definitions and 

applying this information as early as possible into the preliminary design stages by introducing relevant 

assembly process information in order to provide a better assembly-oriented design guidance. Therefore, 

considering assembly issues such as ASP phase in early preliminary design stages represents an emergent and 

novel research approach in the broader context of Assembly-Oriented Design (AOD). Considered as a top-down 

design methodology [2], AOD approach aims at tackling the lack of lifecycle context in the product development 

process, which is traditionally based on product functional definitions [3]. AOD is a promising approach to bring 

out an assembly context for product structuring and modelling by taking into account the resulting preliminary 

assembly sequence during the product development process. 

Based on previous work on assembly sequence definition [4], the paper describes an initial effort towards an 

AOD framework for product structure engineering using ASP information. In contrast to other work on AOD, 

this paper presents a novel approach to bringing and integrating assembly information in early design stage, so 

that product designers have all assembly related information to make informed assembly oriented design 

decisions. The proposed approach highlights a novel algorithm called ASDA (Assembly Sequence Definition 

Algorithm) and based on a mathematical model integrating boundary conditions related to DFA rules, 

engineering decisions for assembly sequence and the product structure definition. 

The paper begins by presenting in section 2 a literature survey in which current research state of the art and 

challenges in terms of ASP and DFA are depicted. In section 3, the novel methodology describes an AOD 

framework for product structure engineering and related ASP in the early product development process. The 

proposed approach is implemented in a new system called PEGASUS, which is developed as an AOD module 

for PLM system. Finally, a case study based on a Catalytic-Converter and Diesel Particulate Filter sub-system, 

which belongs to an exhaust system from an industrial automotive supplier, is introduced to evaluate the AOD 

approach and its efficiency. 

2. Literature survey 

This section gives an overview on the significant amount of published-research work on ASP and DFA. It also 

gives a conclusion of the key findings of the current research status and challenges in the fields. 
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2.1 Assembly Sequence Planning 

ASP is considered as the sub-domains of Assembly Process Planning field. Research interest on ASP has 

received much attention in manufacturing industries and research projects over the past 20 years. Such research 

has led to various approaches for assembly sequences generation through algorithms, representation using graphs 

and diagrams, and evaluation with decision criteria to reduce combinatorial complexity. Bourjault was the first to 

cover this issue through directed graphs and recurring questions [5]. In addition, De Fazio and Whitney reduced 

the number of expert questions in Bourjault‟s approach [6]. Then, Homem de Mello and Sanderson showed an 

AND/OR graph as a decomposition graph, thus giving a description of the assembly [7]. Santocchi and Dini 

analyzed subassemblies and assembly sequences based on a mathematical model of the obtained product by 

introducing three matrices, namely the interference matrix, the contact matrix and the connection matrix in the 

Cartesian coordinate system [8]. Besides, Mascle improved the functional model integrating mechanical bonds 

and related half-degree bonds [9]. More recently, Gu et al. presented an Ordered Binary Decision Diagram 

(OBDD) to represent and manipulate all the possible assembly sequences [10]. These attempts highlighted the 

added value of a graph-based and matrix-based approach only for around ten components. However, for product 

with more components, these approaches have not been tested and will increase the reasoning complexity of an 

assembly planner. 

Several authors proposed to work on detailed product geometry as an input for their approaches. Starting from 

a CAD (B-Rep) model, Laperrière and ElMaraghy carried out a generative assembly sequences approach from a 

geometric, stable and accessible point of view in order to improve the procedure efficiency [11]. Moreover, 

Gottipolu and Gosh described a matrix-based methodology for automatically generating assembly sequences in a 

CAD system, starting from contact and interference vectors [12,13]. On the other hand, Zhang et al. described a 

mathematical model based on connection matrix to define feasible assembly sequences for automotive parts in 

the body in white context [14]. Recently, Lin et al. proposed a contact relation matrix to generate assembly 

sequences and to aid engineers for design alternative identification [15]. In a closer connection with CAD 

system, the authors have also emphasized the importance of understanding relational information and geometry 

characteristics to optimize the assembly sequence planning. 

During the last decade, most of research work has focused on optimisation methods such as metaheuristics 

algorithms [1]. Genetic algorithms (GA) have also been used to generate various solutions, some of them being 

finely optimised. Thus, Bonneville et al. used a GA to generate and evaluate assembly plans [16]. De Lit et al. 

developed a GA to generate assembly trees, and used a system expert to choose optimal sequence [17]. In 

addition, Smith and Smith provided an automated assembly planning based on an enhanced GA which was more 

reliable and quicker than usual GA [18]. Tseng et al. used an improved GA called memetic algorithm to generate 

feasible assembly sequences with large constraints using the connector concept [19]. More recently, Su proposed 

a hierarchical ASP approach, so that geometric and engineering admissible assembly sequences could be 

reasoned out automatically and that the optimal sequences could be selected easily [20]. Although GA based 

approaches has been evaluated as more efficient methods to generate and choose assembly sequences, the global 

optimum corresponding to the best assembly sequence is not necessarily reached. 

Based on the above findings and limitations, other approaches in the field of knowledge-based engineering and 

artificial intelligence have been explored. Zha and Du promoted a knowledge-based system using Multi-Agents 

Systems (MAS) and Petri Net to support assembly design and ASP by considering a start from part relations 

information [21]. In a separate paper, Dong et al. described a knowledge-based ASP approach in which the 

assembly was modeled as a connection-semantics-based assembly tree (CSBAT) [22]. As result of these efforts, 

the introduction of semantic and knowledge in assembly model proved to provide a better integration and 

understanding of assembly intents, especially with the use of the agent-based techniques. 

Furthermore in the context of PLM, Bowland et al. integrated Computer Aided Assembly Process Planning 

(CAAPP) system functionalities into a Product Data Management (PDM) system, providing a data management 

framework and a high-level data structure system to form the basis of APP [23]. Ming et al. proposed a 

collaborative approach through process planning (CAPP) and manufacturing (CAM) in the broader context of 

PLM [24]. Starting from contact and precedence constraints in CAD models, Demoly et al. laid out a matrix-

based approach to generate feasible assembly sequences into a PLM system and simulated it into a CAD system 

[4]. 

2.2 Design for Assembly 

Dated from the seventies, Design for Assembly (DFA) approaches have required a multidisciplinary team to 

evaluate and validate product design and to make it suitable for assembly engineering process. First published 

work and contributions introduced design guidelines and heuristic rules as qualitative evaluation. In such a way, 

Andreasen et al. [25], Redford and Chal [26] framed rules as design principles for assembly process. From a 

qualitative analysis, Hitachi Company developed the Assemblability Evaluation Method (AEM) focusing mainly 

on insertion operation in which each component is allowed to have only one movement during the assembly 



 

 

process [27]. Then, Yamagiwa proposed the Sony DAC method based on design rules or requirements in order 

to adjust product for automatic assembly [28]. More recently, Stone et al. introduced a conceptual DFA method 

using a functional basis and heuristic rules in order to identify and produce modular product architecture [29]. 

Although these approaches have obtained interests from industry, subjective nature is highlighted as a potential 

hindrance because of the required user understanding. 

As a result, other approaches have been proposed and denoted formal analysis with quantitative evaluation. 

Boothroyd and Dewhurst presented their experience-based method considering systematic handling and insertion 

time from a Motion-Time-Measurement (MTM) study, for each part of the product and part-to-part difficulties in 

order to reduce part number and therefore simplifying assembly operations [30,31]. Swift proposed Lucas‟ 

procedure based on an assembly sequence flowchart and a functional analysis of the product [32]. 

Moreover, Whitney et al. introduced a strategic concept to rationalize product design by considering 

manufacturing and assembly processes [33]. This first attempt promoted “Assembly-Oriented Design” 

philosophy as it took into account assembly constraints in the product development process [34]. Lee and Shin 

defined a liaison graph to identify the merge rules for parts [35]. 

Considering the interrelationships between assembly design, assembly process, and assembly operations, Su 

proposed the assembly-oriented product design and optimization approach, in which assembly structure 

evaluation, assembly process planning and assembly system design were integrated according to the principle of 

concurrent engineering [20]. Pu and Su presented an algorithm to aid designers in the design of assembly plans 

based on case-based reasoning (CBR) paradigm [36,37]. 

De Fazio et al. highlighted the weaknesses of traditional DFA approaches and proposed to consider choice and 

partitioning of sub-assemblies and assembly sequence choice in order to dwell on combinatorial aspects in DFA 

approaches [38]. Recently, Mascle proposed an approach for computer-aided assembly system using assembly 

features supported by the agent paradigm [39]. Barnes et al. highlighted the need of decision support for 

assembly sequence and product structure generation. A two-stage decision support procedure to define parts and 

their assembly sequences was introduced [40]. Coma et al. have presented a fuzzy decision support system based 

on Boothroyd and Dewhurst DFA methodology [41]. More recently, a DFA approach has been initiated based on 

SysML (System Modeling Language) paradigm in the PLM context considering an assembly-oriented product 

structure based on preliminary assembly sequence [42,43]. 

2.3 Synthesis 

Among various identified approaches in the field of ASP and DFA as summarized in section 2.1 and 2.2, the 

authors have reviewed each research work on their suitability of the engineering applications, the abstraction 

level, and the automation degree. The majority of these approaches reviewed are typically semi-generative, 

based either on heuristic rules or algorithm procedures in order to enable more assembly-friendly product design, 

and to generate all admissible assembly sequences. Integration attempts in CAD models have meant to take into 

consideration of geometric data as input for assembly sequence generation in an efficient way. However, these 

research works focused on detailed product geometry which essentially introduces combinatorial problems in 

ASP phase due to the product design complexity. Besides, traditional well-known DFA approaches can be 

considered as reactive, since they work on a detailed product geometry after all design decisions made, hence 

they lead to redesigns and delays due to late decisions changes. These approaches therefore result in late decision 

support and missing a true opportunity for an efficient product development process. 

These deficiencies point to the need of developing an emergent, proactive, generative, and Web-based 

approach to design for assembly in the broader context of PLM [44]. In such a system, it is important to 

introduce efficient assembly information based reasoning as early as possible into the preliminary product 

development process in order to define assembly sequences. At this stage, combinatorial complexity can be 

reduced by introducing assembly logical information embedded into directed graphs and related matrices to 

influence the product structuring and modeling. Studies have shown that the decisions made during the product 

development process impact the great majority of product costs and it is imperative to externalise these impacts 

as early as possible. Based on the reviews and the understanding of the problems, the main objective of this 

research is therefore to bring assembly process knowledge into early design stage by developing a concurrent 

approach taking into account assembly engineering information into preliminary design stages. This approach 

will enable significant benefits by applying AOD philosophy to entire product lifecycle, and bridging the PLM 

gaps between procedures and available company solutions, and intelligent data management framework in the 

AOD context. To become more competitive in the modern global manufacturing competition, enterprises must 

address these current identified needs and integrating new solutions to the AOD framework as PLM enablers. 

3. Assembly-Oriented Design framework 

This section presents an AOD framework by introducing a mathematical model in which boundary conditions 

related to DFA heuristic rules and assembly process engineering decisions are described. The proposed 



 

 

framework considers the dynamic aspect of the model, and provides guidance to assembly sequence planning 

and product structure engineering before product geometry being specified. The information handling during 

engineering design such as information modeling, processing, checking, and propagation are detailed starting 

from the early product development process. 

3.1 Assembly-Oriented Design methodology 

The proposed AOD methodology (Fig. 1) involves several product lifecycle stakeholders related to assembly 

considerations, which starts with a high level of abstraction into the preliminary design stage. The first step 

consists of setting up a multidisciplinary and multifunctional working team within a company integrating 

specific roles of the stakeholders, consisting of: 

- the product architect who manages product structure and modeling context for designers in consistency 

with functional requirements, 

- the designer who specifies and defines product geometric information according to product geometric 

requirements and lifecycle engineering constraints, 

- the assembly planner who plans assembly sequences, assembly operations and allocates assembly 

resources, 

- the process engineer who produces and brings out all relevant information for a specific/standard 

assembly process. 

- the ergonomist who defines and analyses the assembly operator activity during the assembly of the 

product. 

As a result, this integrated framework (Fig. 1) brings the following added value to the AOD approach: 

1. Starting from a product structure and its associated breakdown fulfilling functions and previously 

defined requirements, the product architect defines a liaison graph by describing contact relations and 

assembly pairs between product components in which estimated mass are described. 

2. Based on the liaison graph defined by the product architect, the assembly planner assigns assembly 

operation for each contact relation regarding assembly pairs. As a result, the planner defines a directed 

graph by introducing the precedence constraints. 

3. Based on the directed graph defined by the product architect and the assembly planner, the ergonomist 

identifies and describes the identified assembly operations. Besides, he/she introduces component mass 

and time constraints and limitations as decision making criteria for selecting future sub-assemblies. 

4. The directed graph is converted into an adjacency matrix as relevant input information for the 

algorithm. The proposed framework is based on a mathematical model which will be described in 

section 3.2. The algorithm integrates the definition of sub-matrix types related to sub-assembly types, 

and generates several sub-assembly alternatives with several dimensions. The assembly planner 

manages sub-assembly layers by taking into account criteria related to the ergonomics and assembly 

process engineering. Once the assembly sequence is defined, the ASDA algorithm creates XML files 

for each engineering domain, namely product structure, assembly operations structure, and assembly 

activities structure. This in turn enables information propagation to others PLM systems such as CAx, 

PDM, and MPM (Manufacturing Process Management) systems. 

5. Starting from each generated structure, designers, process engineers and assembly operators can work 

concurrently on a local and single product perspective definition integrating contextualized information. 

For instance, designers could work on a skeleton geometry model which integrates geometric 

constraints related to DFA rules and assembly sequence. 

It is necessary to highlight the novel aspect of the proposed framework. Whilst the traditional approaches tend 

to perform tasks 1, 2, and 3 in sequential fashion, the novel aspect of this work lies in that a concurrent execution 

of tasks 1, 2, and 3 is fully supported as indicated by bidirectional arrows among them. This is enabled because 

all these three tasks provide inputs to the critical adjacency matrix, from which anyone of the three stakeholders 

can access lifecycle related design information at any time. The following section will describe the underlying 

ASDA algorithm which enables the above capabilities. 

 

Fig. 1. Assembly-Oriented Design framework as functional part of PLM strategy  

3.2 Mathematical Modeling for the proposed ASDA algorithm 



 

 

In the dynamic context of the suggested framework, the authors focus on the mathematical model describing 

the ASDA algorithm of generating assembly sequences for product structure engineering. This algorithm is 

considered as the body of the AOD framework by the definition of sub-assembly types, DFA heuristic rules in 

mathematical equations, and by the resulting domain-specific view generation based on the defined assembly 

sequence. A flowchart is introduced to represent the algorithm in which each step is described into the following 

sub-sections (Fig. 2). A summary of notations used in this model is given in Table 1. 

 

Fig. 2. Flowchart for the proposed ASDA algorithm  

  



 

 

 

Table 1 

Notations used in the mathematical model 

Symbol Description 

 Set of components 

 Set of a relational constraint between two components 

 Set of all positive natural numbers 

 Set of all integers 

 Directed graph 

 Adjacency matrix 

 Contracted matrix 

SA Sub-Assembly 

CMSA Companion matrix related to Sub-Assembly matrix 

cv Column vector of the matrix 

 Number of components 

m Mass of component 

To Acceptable limit of manual handling of loads for one person 

CT0 Predefined Cycle Time (expected average total production time per unit produced) 

TT Design Takt time (the rate at which the end product must be produced to meet customer demand) 

Wc Work Content 

Th Handling time for one component 

Ti Idle time (fixed assets) 

AW Available working time per day 

D Forecasted or customer demand per day 

3.2.1 Definition of directed graph and adjacency matrix (steps 1 and 2 of Figure 2) 

A directed graph model with directed edges is set up to represent the abstract information from each 

engineering domain which takes into account all the preliminary information, and is much useful for visual 

analysis. This model is converted into a matrix form called “adjacency matrix” which is used for computer 

processing in the proposed framework. The adjacency matrix of a directed graph is always anti-symmetric about 

the diagonal line running from the upper left entry to the lower right. 

Let  be the finite set of all product components with a cardinality of . Let 

 be the finite set of all relational constraints between two components with a cardinality of 

. Suppose a directed graph  where vertices or nodes represent components and ordered pairs 

of vertices called directed edges (or bonds) represent relational information. Among these relations, we define 

various abstraction levels of input information from each stakeholder‟s point of view, as described into the 

proposed framework. At first, this graph models include two types of information: 

- contact relation as a physical relation between two components (in solid line),  

- precedence relation defining an assembly logical order for two components in contact (solid arrow) and in 

non-contact (dot pattern arrow).  

Let  be the adjacency matrix defined from the directed graph  as a fixed anti-symmetric n by n matrix 

entries  (Fig. 3). 

 

Fig. 3. Directed graph  and related adjacency matrix  

Described in the directed graph , a comprehensive product lifecycle relationships can be defined into an 

adjacency matrix. These relations about the contact and precedence information are defined as follows: 

 where the entries in row i and column j are: (1) 
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In this framework, the adjacency matrix is decomposed into three layers with different information from a 

stakeholder‟s point of view. The first layer contains contact relation information, the second one defines 

precedence relations and assembly operation time related to assembly operations, and the third describes work 

content of activities. Assembly operation time and work content are associated to each  from the first 

layer. The following sections detail the algorithm proposed and implemented in this research. 

3.2.2 Sub-Assembly identification rules (steps 3 to 6 of Figure 2) 

Starting from the previous adjacency matrix, it is important to identify possible sub-assemblies with the 

definition of assembly types. As a result, four kinds of assemblies can be identified, and directed graph, matrix 

form, pseudo-vector, assembly time and work content are listed in Table 2. For each type, a pseudo-vector can 

be generated to represent the assembly sequence. The authors use a “,” between two components to describe a 

serial assembly operation and a “-“ for parallel assembly operation. Assembly time and work content are 

associated to each directed edges and therefore computed for each kind of assembly. For instance, a serial 

assembly will have one contact relation between two consecutive components only, whereas a parallel assembly 

will have all other components connected only to a base component. 

 

Table 2 

Assembly Types of three components and related relevant information for computer processing 

Assembly type 
Directed 

graph 

Adjacency  

matrix 

Pseudo- 

vector 

Assembly 

time 

Work 

Content 
Example 

Constrained

Serial (3)

1 2

3

t12

t13 























0λ1

λ01

110

1          2         3

1

3

2 [1, 2, 3] t12 + t13 wc12 + wc13

1

2

3

Parallel

(4)
2 3

1t12 t13

























001

001

110

1          2         3

1

3

2 [1, 2-3] Max(t12, t13) wc12 + wc13 1

2 3

Interconnected

Serial (1)

1 2

3

t12

t23
t13

























011

101

110

1          2         3

1

3

2
[1, 2, 3] t12 + t23 wc12 + wc23

3

2

1

Serial

(2)
1 2 3

t12 t23

























010

101

010

1          2         3

1

3

2 [1, 2, 3] t12 + t23 wc12 + wc23

1

2

3

 

A mathematical expression for each kind of assembly is described in Table 3 to be used in an algorithm: 



 

 

Table 3 

Mathematical description of each kind of assembly matrix 

Assembly type matrix Mathematical description  

Interconnected serial 

matrix   
(2) 

Serial 

matrix 

 
(3) 

Constrained serial 

matrix  
(4) 

Parallel 

matrix  
(5) 

For each assembly, the ASDA algorithm generates all the permutations in order to facilitate sub-matrices 

recognition from the adjacency matrix . This approach avoids time-consuming process mainly by investigating 

subassemblies through simplified and smaller sub-matrices as shown in Table 2. 

Let  be the set of all combinations of each matrix related to assembly types: 

 (6) 

Let  be the set of all combinations of sub-assembly matrix variants: 

 (7) 

Once the definition and generation of assembly variants are completed, the total number of valid matrix 

combinations to be tested is described below.  here represents the set of all combinations of k elements taken 

from n elements of  in order to represent combinations of k by k matrices into . 

 (8) 

Let  be the set of candidate sub-assemblies matrices of k dimension in : 

 

 

(9) 

As soon as the full match is found, each sub-matrix representing possible SA can be tested in order to check 

the engineering feasibility through interference with the remaining components. 

3.2.3 Sub-Assembly validation rules (steps 7 to 9 of Figure 2) 

For each identified SA from the generated adjacency matrix, a companion matrix CM is associated and 

extracted regarding the relations between SA components and the remaining components of the product in order 

to determine if the SA is feasible from an interference point of view (Fig. 4). As a result, a rule must be applied 

with the associated companion matrix (10). Let  be the set of companion matrices related to 

candidate sub-assemblies of k dimension in . Let  be the set of fixed anti-symmetric k by k matrix in 

 related to feasible sub-assemblies. 



 

 

 (10) 

 

(a) Directed graph (b) Adjacency matrix 

Fig. 4. Sub-assembly SA identification and related companion matrix CMSA 

So if the signs of non-zero elements in k
th

 column are neither all positive nor all negative, there are 

interferences between the sub-assembly matrix set and other remaining components. Therefore, this set cannot 

be considered as a feasible sub-assembly from an engineering point of view. Once the engineering feasible sub-

assemblies identified, further decision supports based on specific criteria such as stability, mass and so on, can 

be used to provide guidance to choose suitable sub-assemblies. 

3.2.4 Decision support (step 10 of Figure 2) 

In order to provide a decision support for the sub-assembly selection, an initial assembly context previously 

defined by the assembly planner will have to be taken into account. Starting from the forecast (or customer) 

demand per day and the available work time per day, the design Takt time  is defined to indicate the assembly 

frequency of sold product and is calculated automatically. 

 (11) 

Decision support variables and the procedure use information that have been modeled into the several graph 

layers, as described in the proposed AOD framework. Firstly, predetermined mass of product components and 

assembly time associated to assembly operation are used as decision making criteria. In addition, criterion 

related to assembly stability with kinematics pairs is explored. The processing rules to establish these 

engineering criteria are described below. 

Let m be the predetermined mass associated to each product component. Let To be the acceptable limit of 

manual handling of loads for one person. For each engineering feasible sub-assembly, the mass (12) and the 

acceptable limit of manual handling of loads limitations (13) are calculated automatically and limited by 

predetermined constraints such as  and  defined in the system complying with NF X35-109 and NF EN 

1005-5 ergonomics standards [45,46]. 

 (12) 

 (13) 

Concerning assembly operation, the authors have defined for each assembly type a calculated and 

predetermined cycle time  using standard assembly operation time , idle time  and work content . 

 (14) 

 (15) 

 (16) 

For the stability criteria, the main rule defines a SA stable if no mobility exists between its own components, 

in other words, if all its components are held in position.  

3.2.5 Adjacency matrix concatenation (step 11 of Figure 2) 



 

 

Once the assembly planner has chosen engineering feasible sub-assemblies in the first procedure cycle, the 

ASDA algorithm processes each selected SA as a single component to be reintroduced in the adjacency matrix 

. Based on , a new smaller adjacency matrix called contracted matrix  is generated (Fig. 5). Thus, others 

sub-assemblies can also be detected and selected in another assembly layer. This matrix  depends on the k by k 

selected SA matrices, and the size of  is: n – k + 1. To build , several rules regarding SA matrix and related 

companion matrix must be followed in order to assign entries. These rules describe how SA inherits the 

relational information of its internal components with the remaining components. 

If (all elements in the j
th

 columns of companion matrix = 0)  

Then pSA,j = 0 

If (all non zero elements in the j
th

 columns of companion matrix > 0 and = )  

 Then pSA,j =   

 Otherwise pSA,j = 1 

If (all non zero elements in the j
th

 columns of companion matrix < 0 and = - )  

 Then pSA,j = -   

 Otherwise pSA,j = -1 

 

(17) 

 

(a) Contracted graph (b) Contracted matrix 

Fig. 5. Contracted graph and related contracted matrix 

3.2.6 Assembly sequence and resulting information (step 12 of Figure 2) 

At the end of the procedure, an assembly sequence is computed as a master result for specific product structure 

for each engineering domain. Consequently, the setup product structure (Fig. 6) based on the assembly sequence 

will be considered as a core contextual support for AOD in which several elements are highlighted including: 

- Sub-Assembly: this is the sub-assembly selected by the assembly planner regarding assembly type, 

assembly time, work content, mass and stability, 

- Skeleton: describing, for each assembly level, the context in which parts are assembled, 

- Part: elementary component composing the sub-assembly, e.g. base part, fastener, etc., 

- Assembly parameters: managing assembly data in the local view. 

 

Fig. 6. Setup product structure defined by the assembly sequence 

At each SA level in the product structure, a base part will be identified according to the SA pseudo-vector 

previously defined. The base part is considered as the reference component for the SA, that is to say the 

component on which the other components will be assembled. 

4. Case study in an industrial application 

The above concurrent approach has real industrial relevance, as manufacturing companies have a real need in 

integrated methods for product design and assembly process engineering, especially at their interfaces. This 

approach has been applied to a company as a case study. The chosen part is a Catalytic-Converter and Diesel 

Particulate Filter sub-system (Cat-Converters & DPF) belonging to an exhaust system from an industrial 

automotive supplier and this case study is designed to illustrate the efficiency of the proposed AOD 

methodology. 

4.1 Case study: Catalytic Converters and Diesel Particulate Filter and their design problem definition 

Catalytic Converters and Diesel Particulate Filter sub-assembly is located at the exhaust system hot end. It 

includes 8 sub-assemblies and additional 3 parts (Table 4) in order to fulfill two main functions: minimising gas 

emissions by redox and eliminating particles by filtration and combustion (Fig. 7). The authors have chosen to 

implement the AOD framework into an AOD system called PEGASUS (Product dEsign enGineering based on 

Assembly SeqUenceS Planning) in connection with other related systems as described in Fig. 1. 



 

 

The company is an automotive supplier working on exhaust system development for car manufacturers. 

Engineering departments are facing information exchange issues, mainly between engineering design and 

assembly process engineering departments, because of the numerous information systems implemented in the 

company and the lack of information integration at the various design stages. Assembly issues are often 

identified in the prototype phases in which the detailed design is finalised and to be validated. As a result of such 

a design approach, several problems have been highlighted: 

- ASP phase is performed in a sequential way and therefore introducing rework in the product development, 

- Numerous BOM (Bill of Materials): E-BOM (Engineering), CAD-BOM (CAD), M-BOM 

(Manufacturing) defined in a sequential and independent way into various systems (CAD, PDM, MPM, 

ERP, etc.), 

- Assembly issues are often neglected during the design process, especially at the preliminary design stage. 

Table 4 

Parts list for the case study 

No. Name Type No. Name Type 

1 DPF Sub-Assembly 7 Bracket right Sub-Assembly 

2 Cat-Converter Sub-Assembly 8 Bracket left Sub-Assembly 

3 Insulating right Sub-Assembly 9 Pressure bracket Part 

4 Insulating left Sub-Assembly 10 Left Half-shell link Part 

5 Inlet Sub-Assembly 11 Right half-shell link Part 

6 Outlet Sub-Assembly    

 

 
(a) ISO view (b) Exploded view 

Fig. 7. Catalytic-Converters and Diesel Particulate Filter 

4.2 The approach based on the framework 

The authors focus on three roles: the product architect, the assembly planner and the ergonomist working into 

different departments of the company. Various initial conditions must be introduced in order to launch the 

ASDA algorithm. First of all, the company applies a “one piece flow” strategy to achieve just-in time 

manufacturing. As a result, the design Takt time  was calculated with a forecast demand of 500 units per day 

and 450 min of available working time in order to limit each predetermined cycle time  as follows: 

D = 500 units, 

AW = 1 shift/day = 8.5 hrs – 0.5 hr (lunch) – 0.5hr (breaks) = 450 mins. 

 

 

Next, the ergonomist also introduces mass and the acceptable limit of loads for manual handling for one 

person in the reference condition for manual assembly according to [45]: 

 

 

All these initial conditions are considered as decision making support constraints for sub-assemblies selection. 

A directed graph and the corresponding adjacency matrix including three layers have been generated into 

PEGASUS (Fig. 8). These ones integrate all relevant input information from all stakeholders involved for 

assembly sequence and product structure definition. 

 
(a) Directed graph (b) Adjacency matrix 

Fig. 8. Directed graph  and related adjacency matrix  defined for the industrial case study 



 

 

4.3 System execution 

With relevant information as inputs for the algorithm of assembly sequences definition, the assembly planner 

introduces assembly time regarding assembly operation for each contact relation in a second layer. The third 

layer integrates work content related to assembly time. Indeed, work content is defined by the ergonomist to 

bring required time to perform other related operations such as handling, insertion and inspecting operations. For 

the proposed experimentation, the authors focus on sub-assembly identification with  in order to have a 

fine granularity level for the assembly sequence definition. Once all these initial conditions and relevant 

information identified, the assembly sequence of the product will be defined. The ASDA algorithm computed 3 

cycles, therefore representing 3 assembly layers in order to assemble all the product components shown in 

PEGASUS (Fig. 9). The result for the case study is presented below (Fig. 10): 

Assembly sequence = {(((2,5,10),11,3),((4,1,6),7,8),9)} 

with 5 serial sub-assemblies:  SA1 = (2,5,10), 

SA2 = (4,1,6), 

SA3 = (SA2,7,8) = ((4,1,6),7,8), 

SA4 = (SA1,11,3) = ((2,5,10),11,3), 

SA5 = (SA4,SA3,9) = (((2,5,10),11,3),((4,1,6),7,8),9). 

The component 2, 4, SA2, SA1, and SA4 are considered as base part in each generated SA. 

 

Fig. 9. Assembly planner view integrating directed graph and choice of feasible sub-assemblies 

 

Fig. 10. Representation of the resulting assembly sequence 

Using the PEGASUS system, the product and the assembly operation structures are automatically generated. 

The resulting information of the product structure and assembly structure could also be used by other related 

systems such as PDM, MPM, and CAD system through XML files. Fig. 11 shows a setup product structure 

defined in CATIA v5 through an import of CATscript file automatically generated from PEGASUS. 

 

 

Fig. 11. Assembly-oriented product structure based on the previous assembly sequence and defined by a CATscript file into 

CATIA v5 

 

Fig. 12. Functional skeleton model of the Catalytic-Converters and Diesel Particulate Filter considered for the 

experimentation 

To illustrate the approach to concurrently generate design solution and assembly sequence, this paper uses a 

past design solution by the company shown in Figure 7, as the original design requirements. A new design has 

been undertaken to demonstrate the potential benefits. The functional requirements of the design are the same. 

Figures 9 and 10 show the partial assembly sequence generated by the PEGASUS system during the design 

process when a partial design definition is completed as shown in Figure 12. From the assembly functional axes 

defined in the figure, it is clear that there are at least four such axes and this violates the assembly principle of 

minimum assembly axes. Based on the assembly sequence defined, from which four assembly axes can be 

identified, applying this assembly information to design and design for assembly principle, the PEGASUS 

system points to a suggestion of eliminating some of the assembly axes, in particular that original top and bottom 

parts of the cover only have one part each to be assembled and they are good candidates to be eliminated. Based 

on this suggestion, the designer can then explore the feasibility of merging these two cover parts together to 

realise the same function. Based on the material used and manufacturing technique available, it is possible to 

merge these two cover parts together and this leads to a simplified and assembly-oriented design. Current design 

requires significant effort in welding these two cover parts together and the new design applying assembly 

information has significantly reduced this effort. 



 

 

4.3 Discussions 

ASP is a crucial step to enable feasible engineering product solutions. The authors have focused on extracting 

and applying assembly sequence definition at the preliminary design stage to generate an assembly-oriented 

product structure solution by constraining the product design with assembly process information. This approach 

differs significantly from the traditional engineering design approaches that define assembly sequence after the 

detailed design stage. In addition, the proposed approach offers a gain in productivity and efficiency by avoiding 

rework caused by a lack of consideration of assembly, as the preliminary design decisions are made based on 

assembly considerations and requirements. The AOD framework takes into account the management of 

information status, relationships and changes in order to keep traceability and consistency of decision making to 

meet the overall PLM requirements and challenges [47]. 

Traditional design process doesn‟t support the designer to have access to information of the assembly process. 

For life-cycle oriented design, this is critical to help designer‟s decision making. Such unavailability of assembly 

information can be avoided by creating a link between the product development process and the ASP phase and 

this case study demonstrated such a feasible and effective approach. 

5. Conclusion and future work 

Current status and challenges in DFA and ASP approaches have been highlighted in this paper. Build on these, 

an Assembly-Oriented Design framework based on a rigorous and novel mathematical model capturing DFA 

rules and engineering decision making process is proposed and implemented in a Web-based PEGASUS system. 

The framework approach enables the concurrent generation of preliminary design solution information and the 

assembly sequence information. Such an approach hence follows a designer to access to this critical assembly 

information ever at the preliminary design stage and consequently enable the designer to make assembly oriented 

and informed decisions. Design decisions made in such a manner allow the designer to foresee any potential 

assembly difficulties and issues at much early stage, hence avoiding any rework. This is the fundamental 

difference of the proposed work to other design for assembly work and this is also where the authors argue the 

key contribution this work made to the field. The above idea has been proved and demonstrated through an 

industrial automotive supplier case study which has been implemented to evaluate the proposed approach and 

address advantages and drawbacks of the AOD framework. 

Considering product design and assembly sequence planning in a concurrent way is a huge challenge as there 

are challenges to be addressed in providing right information of different life-cycle phase at right time from 

different stakeholders. It is important to focus on several strategic and tactical aspects of the product that the 

issue can be used as a natural launch pad for integrated product-process design in PLM context. This work paved 

the way for future research and development in this field by providing a framework and associated Web-based 

tool, however the authors will need to address further research issues. One area of future research is to enable 

proactive support feature of the framework further by providing timely assembly relevant guidelines and 

heuristics knowledge into the preliminary design process at the right time [48]. Another aspect is to improve the 

robustness of assembly sequence generated concurrently during the early design as there is certain information 

missing and this may be addressed by deploying full product functional definition and introducing assembly 

functional axis. The future work will also support the product modeling phase by introducing the definition of 

geometric skeletons related to the assembly sequence. A multiple-view model will also be implemented into 

PEGASUS in order to manage information and knowledge throughout the product lifecycle and from various 

identified views according to stakeholders‟ concerns. 
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then the designers should be explicit of this in their abstract and 

introduction, and be more descriptive about how it relates to future work. 

It is intended that the body of the contribution in the 

paper is the proposed model. The authors have 

modified abstract and introduction section in order 

to consistent with the main objective of the paper. 

Abstract 

Sections 1 

and 5 

15 

The conclusions state that '[A] case study has been proposed to identify 

significant results and limits of the AOD framework.'   However, the 

authors do not appear to actually identify results from the case study, but 

again make vague statements about the method in the discussion section.  

Relational information embedded into the directed 

graph and adjacency matrix gives an assembly 

logical order and therefore precedence information 

at high abstraction level of the product. The 

Sections 4.3., 

4.4., and 

Conclusion 

 



Additionally, only weak statements about the uncertainty of preliminary 

design information are made about the limits of the framework.  

Additional limits should be examined and documented.  For example, it 

seems obvious that the process can only be used if the designer already 

knows how the parts can be assembled.  This indicates that some level of 

detailed design must be performed before the process can be utilized, 

reducing the possibility that design and assembly planning can be done 

concurrently. 

discussion section has been clarified with new 

statements to highlight the concurrent approach. 

16 The authors' review of the literature appears to be sufficiently broad and 

detailed. However, as with much of the paper, the grammatical style 

could be improved.  The authors string together lengthy clauses 

repeatedly, which makes it difficult to follow their ideas. 

Information flow into section 2 has been improved 

and modified by a native speaker 

Section 2 
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Fig. 11. Setup product structure based on the previous assembly
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