
Durham E-Theses

Aggregate assembly process planning for concurrent

engineering

Laguda, Alima

How to cite:

Laguda, Alima (2002) Aggregate assembly process planning for concurrent engineering, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4144/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4144/
 http://etheses.dur.ac.uk/4144/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

AGGREGATE ASSEMBLY PROCESS
PLANNING FOR CONCURRENT

ENGINEERING

by

Alima Laguda

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Durham

School of Engineering

2002

The copyright of this thesis rests with
the author. No quotation from it should
be published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

1 4 JUN 2002

University of Durham

Abstract

AGGREGATE ASSEMBLY PROCESS
PLANNING FOR CONCURRENT

ENGINEERING

by Alima Laguda

Doctor of Philosophy
Submitted December 2001

In today's consumer and economic climate, manufacturers are finding it increasingly

difficult to produce finished products with increased functionality whilst fulfilling the

aesthetic requirements of the consumer. To remain competitive, manufacturers must

always look for ways to meet the faster, better, and cheaper mantra of today's economy.

The ability for any industry to mirror the ideal world, where the design, manufacturing,

and assembly process of a product would be perfected before it is put into production,

will undoubtedly save a great deal of time and money. This thesis introduces the

concept of aggregate assembly process planning for the conceptual stages of design,

with the aim of providing the methodology behind such an environment.

The methodology is based on an aggregate product model and a connectivity model.

Together, they encompass all the requirements needed to fully describe a product in

terms of its assembly processes, providing a suitable means for generating assembly

sequences. Two general-purpose heuristics methods namely, simulated annealing and

genetic algorithms are used for the optimisation of assembly sequences generated, and

the loading of the optimal assembly sequences on to workstations, generating an

optimal assembly process plan for any given product.

The main novelty of this work is in the mapping of the optimisation methods to the

issue of assembly sequence generation and line balancing. This includes the formulation

of the objective functions for optimising assembly sequences and resource loading. Also

novel to this work is the derivation of standard part assembly methodologies, used to

establish and estimate functional times for standard assembly operations.

The method is demonstrated using CAPABLE/4ssembly; a suite of interlinked modules

that generates a pool of optimised assembly process plans using the concepts above. A

total of nine industrial products have been modelled, four of which are the conceptual

product models. The process plans generated to date have been tested on industrial

assembly lines and in some cases yield an increase in the production rate.

T A B L E O F C O N T E N T S

1 INTRODUCTION 1

1.1 BACKGROUND 1
1.2 ASSEMBLY 1

1.2.1 A brief history. 2
1.3 CURRENT TRENDS 4

1.3.1 Process Planning. 4
1.3.2 Aggregate Process Planning. 6

1.4 RESEARCH OBJECTIVES 8
1.5 THESIS STRUCTURE 10

2 L I T E R A T U R E R E V I E W 11

2.1 INTRODUCTION 11
2.2 CONCURRENT ENGINEERING 11
2.3 DESIGN FOR ASSEMBLY (D F A) 12

2.3.1 Boothroyd and Dewhurst Design For Assembly method. 14
2.4 ASSEMBLY PLANNING SYSTEMS 18
2.5 ASSEMBLY MODELLING AND SEQUENCE GENERATION 20
2.6 ASSEMBLY SEQUENCE EVALUATION AND OPTIMISATION 24
2.7 ASSEMBLY SYSTEMS 26
2.8 AGGREGATE ASSEMBLY MODELLING AND PLANNING (A A M P) 27

2.8.1 Aggregate Product Modelling. 29
2.8.2 Assembly Feature Relations and Connections 30

2.9 ASSEMBLY TIME GENERATION 31
2.9.1 Predetermined Motion Time (PMTS) 32
2.9.2 Maynard Operations Sequence Technique (MOST) 34
2.9.3 MOST System Calculations: An Example 37

2.10 CONCLUSION 37

3 C A PAUL YASSEMBL Y: S Y S T E M O V E R V I E W 39

3.1 INTRODUCTION 39
3.2 SYSTEM REQUIREMENTS 40
3.3 SYSTEM STRUCTURE 42

3.3.1 Analysis tools for Assembly 42
3.3.2 CAD: assembly modelling and database 44
3.3.3 A utomated Assembly process planning 45

3.4 CONCLUSION 47

4 A G G R E G A T E A S S E M B L Y M O D E L L I N G AND REPRESENTATION 49

4.1 INTRODUCTION 49
4.2 AGGREGATE PRODUCT MODELLING FOR ASSEMBLY 50

4.2.1 Assembly modelling and representation 51
4.2.2 Assembly feature connections 54

4.3 CONNECTIVITY MODEL 56
4.3.1 Contact Constraint Algorithm 58
4.3.2 Precedence Constraint A Igorithm 58
4.3.3 Technological Constraint Algorithm 59

4.4 ASSEMBLY TIME GENERATION ALGORITHM (A G A) 59
4.5 T H E CONCEPT OF STANDARD PARTS FOR MECHANICAL ASSEMBLIES 60

4.5.1 Definition and classification of Standard Parts 61
4.5.2 Why Create a Standard Parts Database? 61
4.5.3 Data Acquisition 63
4.5.4 Standard Parts Databases for Mechanical Assemblies (SPAD) 63
4.5.5 Fields within SPAD 65
4.5.6 Extract from SPAD 70

4.6 STANDARD PART ASSEMBLY METHODOLOGIES (S P A M) 71
4.6.1 Introduction 77
4.6.2 Standard Assembly Operations 72
4.6.3 The SPAM Methodology 73
4.6.4 Modifications to MOST & Boothroyd Dewhurst Design for Assembly
Method 78
4.6.5 Modules within SPAM 80

4.7 CONCLUSION 82

5 AUTOMATIC GENERATION OF OPTIMAL A S S E M B L Y SEQUENCES
USING SIMULATED ANNEALING 84

5.1 INTRODUCTION 84
5.2 DEFINITION OF PROBLEM 85
5.3 ASSUMPTIONS 86
5.4 OPTIMISATION: EVALUATION CRITERIA AND MATHEMATICAL MODELS 87

5.4.1 Minimisation of the number of reorientations (ci) 87
5.4.2 Maximisation of parallelism (C2) 90
5.4.3 Maximisation of the stability of intermediate subassemblies (C3) 94
5.4.4 Minimisation of assembly time; An Overall expression 96

5.5 PROPOSED METHOD FOR ASSEMBLY SEQUENCE GENERATION 97
5.5.7 System overview 97

5.6 SIMULATED ANNEALING (S A) ALGORITHM 98
5.7 ASSEMBLY SEQUENCE GENERATION; SIMULATED ANNEALING 100

5.7.7 Sequence representation: Encoding 702
5.7.2 Simulated Annealing Parameters 103
5.7.3 Pseudo-code for assembly generation sequence 104

5.8 ILLUSTRATIVE E X A M P L E 106
5.9 CONCLUSIONS 109

6 BALANCING SINGLE-MODEL ASSEMBLY LINES (SALB): A G E N E T I C
A L G O R I T H M APPROACH I l l

6.1 INTRODUCTION I l l
6.2 DEFINITION OF PROBLEM 112
6.3 ASSUMPTIONS 114
6.4 EQUATIONS FOR PERFORMANCE MEASURES OF ASSEMBLY LINES 115
6.5 PROPOSED ASSEMBLY L I N E BALANCING METHOD 118

6.5.1 System Overview 118
6.6 FACTORY MODEL 119

6.6.1 Ideal assembly line and workstation Layout 722
6.6.2 Green and Brown field assembly lines 124

6.7 GENETIC ALGORITHMS 124
6.8 GENERATION OF ASSEMBLY PLANS USING G A S 126

6.8.1 Genetic Operators 727
6.8.2 Representation 7J5
6.8.3 Encoding and decoding 757
6.8.4 Initial Population and population control 139
6.8.5 Fitness and Evaluation 141

- i i i -

6.8.6 Feasibility Checks 146
6.9 CALIBRATION OF OBJECTIVE FUNCTION 148
6.10 ILLUSTRATIVE EXAMPLE 149

6.11 CONCLUSIONS 153

7 T E S T I N G A N D V A L I D A T I O N S 154

7.1 INTRODUCTION 154

7.2 TESTING OBJECTIVES 155
7.2.7 Validity of solutions 155
7.2.2 Constraints applied 156
7.2.3 Functionality 158

7.3 VERIFICATION OF THE VARIOUS HYPOTHESIS AND ASSOCIATED MODELLING
METHODS 158

7.3.1 Assembly time evaluation 158
7.4 INDUSTRIAL CASE STUDIES 166

7.4.1 Product model 1: TwoShellMiniTrim welding 167
7.4.2 Product model 2: TwoShellMiniTrim screws 181
7.4.3 Product model 3: FourShellMiniTrim screws 185
7.4.4 Product model 4: FourShellMiniTrim welding 189
7.4.5 Analysis of Results 192

7.5 CONCLUSION 195
8 D I S C U S S I O N , C O N C L U S I O N S A N D F U R T H E R W O R K 196

8.1 DISCUSSIONS 196
8.2 CONCLUSIONS 201
8.3 FUTURE WORK AND RECOMMENDATIONS 203

9 R E F E R E N C E S 206

A P P E N D I X A : B O O T H R O Y I) A N D D E W H U R S T D F A T I M E S T A N D A R D S . 213

A P P E N D I X B : G R A P H I C A L R E P R E S E N T A T I O N O F T H E E F F E C T S O F
P A R T T H I C K N E S S A N D S I Z E O N H A N D L I N G T I M E S 217

T H E EFFECTS OF PART THICKNESS AND SIZE ON HANDLING TIME 218
T H E E F F E C T OF NUMBER OF THREADS ON TIME TAKEN PICK-UP THE TOOL, ENGAGE THE
SCREW, TIGHTEN THE SCREW, AND REPLACE THE TOOL 219

A P P E N D I X C : P A R A M E T E R I N D E X I N G F O R A S S E M B L Y O P E R A T I O N S
[M O S T & S P A M] 220

A P P E N D I X D : A C O M P R E H E N S I V E L I S T O F P R O D U C T F E A T U R E S U S E D
F O R A S S E M B L Y M O D E L L I N G 223

A P P E N D I X E : S T A N D A R D A S S E M B L Y O P E R A T I O N T I M E S 228

STANDARD ASSEMBLY OPERATIONS 229
Bolt & Nut (BN) sequences 229
Bolt, Nut, and Washer (BNW) sequences 229
Screw (SCR) Sequences - 229
Riveting (RIV) Sequences 229

A P P E N D I X F : C O M P R E H E N S I V E P A R T S L I S T O F C O M P O N E N T S W I T H I N
S P A D 240

A P P E N D I X G : P R E C E D E N C E R A T I N G (A F C R A N K I N G) O F A S S E M B L Y
O P E R A T I O N S C O N S I D E R E D 249

- iv -

I confirm that no part of the material offered has previously been submitted by me for a

degree in this or in any other University. I f material has been generated through joint

work, my independent contribution has been clearly indicated. In all cases material from

the work of others has been acknowledged and quotations and paraphrases suitably

indicated.

The copyright of this thesis rests with the author. No quotation from it should be

published without the prior written consent and information derived from it should be

acknowledged.

I f I have seen further it is by standing on the shoulders of giants.
Isaac Newton, 1676

- v -

Index of work relatedness, measure of sequenced operations on an

assembly line

Station variation index, measure of work distribution on an assembly

line

Angle through which a part must be rotated about an axis

perpendicular to the axis of insertion to repeat its orientation.

Angle through which a part must be rotated about the axis of

insertion to repeat its orientation

Defines an allele set

Overall assembly variable for minimising assembly time for a given

assembly sequence

Assembly control variable for minimising number of reorientations

for a given assembly sequence

Assembly control variable for maximising parallelism for a given

assembly sequence

Assembly control variable for maximising the stability of

intermediate subassemblies for a given assembly sequence

Transportation cost per batch

Material cost per unit production

Non operation cost (overhead, transportation, internal handling and

storage cost)

Cost rate per operator including overheads

Total assembly cost per part/product

Cooling rate, this represents the rate of change of temperature with

increasing number of cooling schedules

Cooling schedule, this represents a finite time implementation for the

simulated annealing algorithm

Balance delay (measure of inefficiency) in assembly line balancing

- vi -

E (%) Assembly line efficiency

/ Initial assembly sequence

g New assembly sequence generated from the initial assembly

sequence, in the neighbourhood of the initial assembly sequence

i Subscript used to identify the workstation in assembly line balancing

j Subscript used to identify the assembly task in line balancing

m Number of assembly tasks

Mcs Maximum number of cooling schedules

n Number of workstations in an assembly line

nej Number of workstations, using a Tej as cycle time

rihf Number of tasks with their task times greater than half Tc

rimm Theoretical minimum number of workstations

riQ Number of batches

NSol Number of new assembly sequences generated and accepted during

simulated annealing process, per cooling schedule

oy Assembly task / assigned to workstation j

PA Overall parallelism value for a given assembly sequence

pc Crossover rate

pop s Population size

ize

Rc (s~') Given production rate

RE Overall reorientation value for a given assembly sequence

rst Stability rating index

ST Overall stability value for a given assembly sequence

T Initial temperature used for the simulated annealing process

Ta+p (s) Mean handling time for the cfrfi range in question

Tc (s) Ideal or theoretical cycle time obtained using Rp

- v i i -

Tej (s) Minimum cycle time, highest 7* value

Ti (s) Assembly task time for task i

Tjj+i (s) Transfer time between workstations

Tmax (s) Mean handling time for a+/?= 720°

Tmin (s) Mean handling time for c&/3< 360°

Tp (s) Average production time per unit product/part

Ts (s) Sum of element times at a workstation on an assembly line

TSol Total number of assembly sequences generated during the simulated

annealing process per cooling schedule

Twc (s) Total assembly time on an assembly line

w Weight attached to an optimisation process

wpa Weighting factor for the effect of parallelism on a given assembly

sequence

wre Weighting factor for the effect of reorientation on a given assembly

sequence

wst Weighting factor for the effect of stability on a given assembly

sequence

Parallelism index

Xre Reorientation index

Xre Maximum possible value of RE for a given assembly sequence

Xsi Stability index

Xst Maximum possible value of ST for a given assembly sequence

- viii -

INTRODUCTION

1 Introduction
1.1 Background
Makers of manufactured goods have faced a multitude of challenges over the past 20

years. Those challenges include increased competition in the worldwide markets,

demand for more complex goods and increasing pressure from consumers for more

variety and options in the goods that are produced. To remain competitive

manufacturers, must always look for ways to meet the faster, better, and cheaper mantra

of today's economy. In order to do that, manufacturers are looking for new ideas, new

designs and new ways of doing things. To ride both the economic and product cycles

smoothly, the trick is to manage the flow of such products so that offerings in the

market-place always remain fresh, without wasting profits on excessive investment on

updates or re-designs. Increasingly, manufacturers are forced to optimise and enhance

assembly operations and minimise product cycle-time and cost.

At the same time social and economic changes in our societies and international

businesses have significantly changed the way in which production technologies are

being used. Instead of the previously dominant functionally-organised factories

operating in relative isolation from the market situation, manufacturing systems have

become more product oriented, aiming at decreased lead times, minimal work-in-

process, just-in-time flow of material, and high efficiency and flexibility of

manufacturing capacity utilisation. Such trends have led to concepts such as agile

manufacturing, concurrent life-cycle engineering, and most recently collaborative

engineering.

The average percentage of production cost attributed to assembly is quoted to be 20%

(Brown et al, 1996). Of this 20% approximately half (9.7%) has been attributed to

intermediate and final assembly operations, whilst the remaining half (10.3%) is

attributed to set-up and other assembly support functions such as material handling and

transportation. In a bid to reduce such assembly cost, a vast amount of research has

gone into the optimisation of assembly processes.

The design of a product for ease of assembly forces the integration of product and

process design, thereby creating an environment referred to as concurrent engineering.

1.2 Assembly
Assembly has two features that make it especially important. Firstly it is inherently

integrative; it is a bringing together of parts, and therefore all sectors involved in the

- 1 -

INTRODUCTION

product's lifecycle. Secondly, assembly is the moment when the product comes to life,

since a single part does not perform any functions by itself.

Assembly can be regarded at two levels; the large and small (Delchambre, 1996).

Assembly in the small deals with the details of mating regions on parts, and the physics

of joining them. Assembly in the large scale deals with logical, logistical, financial and

operational issues of making products from parts. Although this research also deals with

assembly in the "small" sense, the focal point is based on assembly in the "large" sense.

The work presented herein addresses the issue of incorporating product assembly and

assembly process planning requirements at the earliest possible stage of design. Such

considerations have proven to have greater impact on reducing assembly time and cost.

For example, the car industry makes impressive claims about the benefits of such

computer aided engineering tools. Chrysler, which has used both Tecnomatrix1 and

Dassault's2 tools, says that just over a decade ago it took five years to get from the

concept to the production of a new car; by the late 1990's, this time had been reduced to

less than half.

It is hoped that this research wil l underline the importance of continued research in a

key core of assembly support technologies and activities including assembly and

process planning.

1.2.1 A brief history
The evolution of assembly planning, as we know it today began in the late 1960s to

coincide with the advent of robots, and the possibility of robotic assembly. However,

the birth of assembly planning can be dated back to the mid-eighteenth and nineteenth

century, to the works of Taylor and Gilbert. They gave rise to the concept of work

measurements, which is defined as the dissemination of work operations to basic body

motions, the elimination of unnecessary movements, and the association of times to

basic body motions performed. Maynard Cooperation eventually introduced their ideas

to industry in the 1950s, in the form of Method-Time Measurements (Maynard,

Stegmerten, and Schwab, 1948).

The inherent limitations of robots with regards to their dexterity, and artificial

intelligence, paved the way for the onset of what is now termed assembly planning.

Assembly planning is viewed as the explicit definition of processes required when

1 Tecnomatrix Technologies, a company based in Herzlia Israel, they produce a suite of programs to
simulate factories.
2 Dassault Systemes, a French software company that produces computer aided engineering software such
as CATIA and DMAPS.

- 2 -

INTRODUCTION

building a product from a collection of individual components. These processes include

product structuring, tool selection, layout generation, and assembly time and cost

estimation and/or evaluation.

Assembly had to be planned down to the last detail in order for robotic assemblies to be

successful. Early attempts to accomplish this merely resulted in failure, and served only

to reveal how little was known or understood about assembly. Progress was eventually

made in the 1970s, spurred by the arrival of the computer age. Robotic programming,

computer aided design (CAD) models of parts, assembly constraints, machine vision,

the physics of part mating, and the understanding of other aspects of individual part

assembly actions began their evolution during this period. Design for assembly (DFA)

was also born during this decade. DFA is the systematic analysis of assembly procedure

used during the early stages of product design for assessing assembly difficulties and

estimating assembly time and/or cost (Dewhurst, 2001).

In the 1980s, the conception of Concurrent Engineering (CE) was born, arguably the

most promising approach to improve the product process time, cost of the product, and

quality of the product. CE is the establishment of cross-functional teams, which

encompass the knowledge and expertise necessary to ensure that all of the product's

requirements are addressed. These requirements are fashioned to ensure (1) the product

meets the customer performance requirements, and (2) the product should be efficient to

manufacture in order to meet cost targets.

The pressure to combine functional, and manufacturing constraints, led to the

recognition that more information was needed to help designers realise the full potential

of CE. This knowledge is needed mostly at the conceptual level of the design process,

where the product's architecture is determined, and the corresponding production

systems are planned. The 1980s saw a great increase in the capabilities of computers as

well as the software to support CAD for product design, particularly solid models. In

the late 80s, a number of these threads came together in the form of assembly sequence

analysis, and feature-based design applied to assembly modelling.

In the 1990s, assembly planning took a further step, once again supported by the ever-

increasing computing power and multimedia growth, with the introduction of artificial

intelligence (AI) for assembly planning and optimisation purposes, combining the off

line activities of design for assembly with the on-line activities of scheduling and

operating the assembly line. The dawn of internet/intranet technology, and virtual

reality has presented a new dimension for assembly design and assembly process

- 3 -

INTRODUCTION

planning. Such advancements have paved the way for more creative mediums for real

time analysis, and support tools for the product development process. The continued

evolution of such technologies has taken, and wil l continue to take, assembly design and

planning into new dimensions.

1.3 Current trends
It is safe to assume that software systems for design, production engineering, and

manufacturing in the future production paradigm will be based on four types of related

models (Mantyla and Shah, 1995):

1. Generic product knowledge: that can record generic information of products and

form a repository of basic engineering and performance information. The

knowledge should be systemized, dependable, available, understandable and

verifiable.

2. Product models: that can represent all relevant aspects of a specific product to be

manufactured while avoiding the harmful over-specification of relevant details.

In particular, it must be possible to represent incomplete or vague model data

when appropriate.

3. Generic process models: that can record the generic characteristics of

manufacturing processes in a systematic form, including the resource needs,

capability, lead time, and capacity of the process. More generally, the full range

of activities in the customer order delivery process should be covered in process

models.

4. Factory models: that record a collection of particular instances of particular

processes that constitute a particular factory. A factory model also represents the

dynamic state of the manufacturing system. Similar to the above item, the ful l

chain of processes constituting a complete customer order delivery process may

be required.

A process planning methodology that currently utilises the relational models suggested

above is the concept of Aggregate process planning, developed by Maropoulos (1995).

The concept of aggregate process planning is described in the following section.

1.3.1 Process Planning
Over the last 20 years there has been a move towards a more flexible approach to

manufacturing. Process planning has been defined "as the subsystem responsible for the

conversion of design data to work instructions, and as translating part design

- 4 -

INTRODUCTION

specifications into the manufacturing operations required to convert a part from a rough

to a finished state" (Evershim, Spur and Weil, 1991).

According to Maropoulos (1995), "process planning deals with the processes required

for generating the final shape, configuration or structure of a product when starting from

a given initial stage". It is a mixture of complex and interrelated tasks, which are

accomplished by using suitable forms of process technology and geometric reasoning.

A number of process planning problems can be solved analytically, and in those cases a

solution is obtained by applying algorithms and technology constraints. In other cases,

problems can be formulated analytically, but the number of resulting solutions (search

space) can be very large. Solutions that cannot be derived analytically can be solved

using knowledge already available within that particular domain. Both analytical and

knowledge based systems are suitable for performing various process planning tasks

(Maropoulos, 1995).

Many working and prototype systems exist that offer good geometric capability and

their operation is frequently based on the definition of "features". Other systems use

rule and knowledge-based techniques, decomposition methods, interference

mechanisms and genetic algorithms. Although currently limited to simple part

geometry, an investment in commercially available computer aided process planning

systems (fully automated) has provided returns of up to 500% (Hayes and Wright,

1989).

According to Maropoulos, Bradley and Yao (1998) in most manufacturing companies

process planning occurs after the product design stage and prior to the production

control activity. As such, it is detached from and out of step with both the design and

production control stages. Despite the fact that it is now widely accepted that a large

percentage of the product cost is/can be accounted for during the conceptual stage, the

basic anomaly of commercial process planning systems is that they are mostly used

when the design has almost been completed. There is an inherent lack of concurrency

between process planning and production control. This is despite the fact that

production control is based on the production routes devised by the process planning

activity (Maropoulos, Bradley and Yao, 1998).

The realisation of the close relationship between design, process planning and

production control instigated the development of a new process planning architecture

suitable for the concurrent engineering practice (Maropoulos, 1995). Details of the

architecture of the recently proposed process planning system are shown on Figure 1-1.

- 5 -

INTRODUCTION

The proposed process planning architecture consists of three main planning levels

namely Aggregate, Management, and Detailed (AMD). Of particular interest is the

Aggregate process planning level.

Product
Specification

Product Database

Conceptual
Design

Embodiment
Design

Technology
Requirements

Target Costs and
Lead Times

Production Routes
Generation

Make or Buy

Quality Assessor

Aggregate
Process
Models

Machining
Fabrication
Assembly j

Factory
Model

Layout
Machines

Quality
Loadings
Suppliers

Manufacturability
Assessment

Figure 1-1 - Overall Architecture of Aggregate Process Planning (Maropoulos, 1995)

1.3.2 Aggregate Process Planning
Aggregate process planning refers to the rapid conversion of initial designs into rough

cut manufacturing and assembly plans and the automatic creation of production routes.

Maropoulos defines the main objectives of the planning system as follows (Maropoulos,

Bradley and Yao, 1998):

1. Early evaluation and elimination of design constraints.

2. Rapid evaluation of alternative design configurations.

3. Process options and production routes and the creation of performance measures

using quality cost and delivery criteria.

This functionality requires a limited amount of information concerning product and

processes (see Figure 1-1) so that planning can start as early in the development cycle as

possible since then there is a wide choice of options both in terms of product

configuration and process selection.

Aggregate process planning is at the top level of the AMD structure and involves the

planning of activities to comply with the product design cycle from the initial concept to

the embodiment design. In terms of controlling cost, product development time and

quality, this top level is potentially the most important level of process planning. The

new technologies at this level are the generic and aggregate process and facility

modelling techniques which will support the conceptual and embodiment design stages

- 6 -

INTRODUCTION

by providing manufacturing and assembly feedback with regard to various product

configurations, and assist in setting realistic cost and lead time targets (Maropoulos,

Bradley, and Yao, 1998).

Conceptual
Design Aggregate

Process
Embodiment Planning

Design

Master
Production

Level

Detail
Design

Process
Planning

Management

Rough-cut
Capacity
Planning

Detailed
Process
Planning

Detailed
Capacity
Planning

Scheduling

Figure 1-2 - Aggregate Process Planning Architecture (Maropoulos, Bradley and Yao, 1998)

Essential principles, shown in Figure 1-2, that govern the specification of the new

aggregate process modelling methodology include:

1. Controlled simplification of detailed process models: Aggregate process models

are obtained by the controlled simplification of detailed process models so that

they can operate using the limited product information available during the

conceptual and embodiment design stages. Any loss in accuracy is outweighed

by the ability to rapidly evaluate alternate product configurations and processing

options at an early design stage so that the most suitable option can be adopted.

2. Limited input data requirements: Aggregate process models are configured to

function using the minimum amount of readily available product, process and

factory related information. Characteristic trends between data and relationships

between different types of data are vitally important at the aggregate level in

order to establish a basis that will allow a comprehensive comparison of

processing options and facilitate realistic decision making.

3. Utilise company specific product and process knowledge: in most cases there are

opportunities to capture company specific product and process knowledge. Such

information, together with specific material and process information, should be

incorporated within aggregate process models.

INTRODUCTION

4. Perform core technological checks concerning processes: the capability of

individual processes, production equipment, manufacturing cells and of the

manufacturing facility as a whole should be incorporated within aggregate

process models. Only essential, core constraints should be considered at this

stage and the main objectives should be to assess the generic suitability of

processes, confirm the capability of specific equipment for producing certain

parts and produce quantifiable measures of manufacturing performance at

equipment, cell, and factory levels.

5. Incorporate only the basic, overall geometry of parts and features: the basic,

overall description of parts or features should be a sufficient geometric

representation of aggregate process models. The operation of aggregate process

models using the minimum amount of geometrical information is vitally

important so that they can be used to support the early stages of design,

including conceptual design.

6. Function-Driven Operation: the members of a concurrent engineering team,

mainly design and manufacturing engineers, should have equal access to the

modelling methods and the corresponding process planning system.

7. Conformance with Standards: wherever possible the new modelling methods

should be compatible with existing international standards concerning product

design, quality and product modelling.

8. Conformance with the team-based approach: the new methods will provide rapid

decision support with respect to several aspects of product development which

currently require time consuming processing of information. In that respect

aggregate process models improve the operational inter-disciplinary, product-

based teams.

1.4 Research objectives
The initial work on aggregate process planning for assembly was undertaken by

Betteridge (2000). His work included the design, and development of the aggregate

product model for assembly process planning, it also contains elements of sequence

generation and resource loading. The work presented herein, builds on this work. The

main objective of this research is to derive a methodology to aid the generation of

optimal assembly planning process during the early design stage for a given product.

INTRODUCTION

Here, product refers to a part in its assembled state, capable of performing a predefined

function. The phrase 'optimal assembly planning process' as stated above refers to the

process of identifying the best possible approach to developing/building a product or

part, with the ultimate aim of reducing assembly times, and thus assembly cost of the

part based on available resources. The assembly planning process provides a link

between the early stages of design and assembly processes and methods. This includes

the generation of a suitable product model and the subsequent extraction of possible

assembly planning decisions from limited part information, such as the order in which

assembly operations are likely to be performed. Also, the ability to create and compare

alternative product designs and configurations based on different assembly methods,

processes, and resources is viewed an essential part of the assembly planning process.

Exactly how early during the design process an assembly process planning system as

described above is implemented depends on the structure and nature of the company

building the part. Ideally the system should be implemented at the conceptual stages of

design, when a number of design configurations are being contemplated. However, i f

the conceptual stage solely entails the creation of abstract forms of the product, typically

there is insufficient information to ascertain possible assembly features, and thus

assembly processes. In such cases the assembly process planner can be implemented at

the embodiment and/or detailed stages of design when an increasing number of features

are being added to the existing designs.

A large number of product designs performed within manufacturing industries today

involve the enhancement of a previous product design. Here, there is sufficient product

data for the use of an optimal assembly process planner during the 'conceptual' stages

of design. This is achieved by:

1. Developing a suitable means of representing a product model for assembly

representation and sequencing. The aggregate product model is insufficient for

the effective generation of feasible assembly sequences. To achieve this, a

relational model is required.

2. Standardising parts and assembly operations. This is required for rapid

modelling of products and processes. It also allows for the formulation of

standard times for assembly operations.

3. Deriving an effective and accurate means of estimating realistic assembly

operation times.

- 9 -

INTRODUCTION

4. Generating optimal assembly sequences while satisfying assembly constraints.

The assembly constraints are used to guarantee the feasibility of the sequences

generated.

5. Generating optimal assembly process plans by mapping an optimised assembly

sequences to a predefined or undefined factory model.

1.5 Thesis structure
The following chapter presents a detailed analysis of methodologies available to aid

design for assembly. A new system for generating optimal assembly process plans is

subsequently presented; CAPABLEAssembly.

Chapter 3 navigates the reader through the modules within CAPABLEAssembly prior to

presenting the main methodologies that constitute CAPABLEAssembly in chapters 4 to

6 inclusive.

The data stored within CAPABLEAssembly and the methods used to develop it have

been tested and validated, the documentation for these procedures is presented in

Chapter 7.

A discussion on the effectiveness of CAP AELEAssembly as an assembly process

planner, and the conclusions that can be drawn from this research are presented in

Chapter 8. Finally, the recommendations for future work are also provided Chapter 8.

These recommendations are of importance i f CAPABLEAssembly is to realise its full

potential.

- 10-

LITERATURE REVIEW

2 Literature review

2.1 Introduction
The highly competitive nature of today's global market coupled, with the dynamic

requirements of the consumer, drives the need within the manufacturing industry to

decrease the life-cycle of new and/or redesigned products. At the same time, these

factors also propagate the increase in complexity of the assembled products by their

enhancing personalised features. In order to shorten the time required for the

development of a product and its associated manufacturing processes in a concurrent

engineering environment, it is desirable for the process planning activity to be

automated. Furthermore, it is imperative that such process planning should be available

at the earlier stages of design, for the full potential to be realised. The ability for any

industry to simulate production in an ideal world, where the design, manufacturing, and

assembly processes would be perfected before carrying them out for real, will

undoubtedly save a great deal of time and money. The aerospace and automotive

industries, for example both attribute their success in cutting the production time from

concept to product by half within a decade to the use of such computer aided

engineering tools.

This chapter investigates the various methodologies that have been used in attempts to

optimise assembly plans at the conceptual stages of design, where product design and

assembly process planning are performed in parallel and the evaluation of a design

configuration is influenced by the performance of its related assembly plan.

2.2 Concurrent engineering
The discerning factor that has distinguished successful world-class companies from

their competitors in recent years is the way they have managed their design process to

produce manufactured goods of high quality, quickly, and on time. It is only until

recently that the majority of industrial firms have acknowledged that the most effective

way to manage the overall lifecycle cost of a product is through better concept design

rather than innovative institutional structures and procedural competence. Hence,

manufacturing companies are increasingly turning to strategic initiatives such as

concurrent engineering (concurrent design and manufacturing), total quality control and

just-in-time manufacturing.

Pahl and Beitz' (1984) visualisation of the philosophy of concurrent design and

manufacturing is to consider all aspects of product development, during the various

- 11 -

LITERATURE REVIEW

stages of design, in order to avoid costly and time-consuming correcting activities

downstream associated with design or manufacturing constraints. The objectives of

concurrent engineering are generally agreed to be (Delchambre, 1996):

1. Improving product quality; the extent to which a product satisfies customer

requirements.

2. Reducing lead times; reducing the time from product conception to successfully

bringing the product to market, that is "time to market".

3. Reducing product cost; where product cost can be defined as the level of

resources required to take the product from concept to market. This includes the

hours worked on the product, materials used in the product and any equipment

or services that are used.

The use of computer aided concurrent engineering tools can be divided into two schools

of thought that need to coexist in harmony in order to establish a successful production

ethos. There are those that seek to improve the communication between organisational

structures through teamwork, leadership, and customer understanding and those that

promote the consideration of manufacturing, quality, and assembly criteria throughout

the design process.

Of particular interest to this study is the latter; the majority of tools adopted here fall

under a suite of effective design techniques in product development. Examples include

design for manufacturing, design for assembly, design for reliability, design for

serviceability, and so on. Syan and Menon (1994) and Huang (1996) provide a

comprehensive discussion of the "Design for X" philosophy. Among them, design for

assembly has been applied in industries with most impressive achievements. The

average percentage of production cost attributed to assembly is quoted to be 20%

(Brown, et al. 1996). Other works estimate the cost of assembly to be as much as 40%

to 60% for complex products (Boothroyd and Fairfield, 1991). It follows that substantial

decreases in assembly cost will not only cause a visible reduction in product cost, but

will further serve to shrink the product time to market and can only be seen as

advantageous to any company within a competitive market.

2.3 Design for Assembly (DFA)
Automatic assembly design and planning has been recognised as an important tool for

achieving concurrent product and process development thus reducing manufacturing

cost. Research workers have focused on a number of aspects of design and planning for

- 12-

LITERATURE REVIEW

assembly. Different approaches have been taken to develop specific parts of the overall

design and planning process, these include; product and process design methodologies,

computer aided design and manufacturing (CAD/CAM), design for manufacture

(DFM), design for assembly (DFA) and computer simulation of assembly processes to

name a few.

To a design engineer the need for an efficient DFA method is two-fold. The first need is

where a designer is considering the conceptual design of a product and is attempting to

determine the trade-off between assemblies containing several parts secured together or

fewer parts manufactured by forging or casting. The second need is where the part has

been identified and considerations are being given to the various alternative

combinations of manufacturing processes and material that might be employed for its

production.

The design of products, tools and processes for ease of assembly is essential i f a

reduction in assembly cost and an increase in the effectiveness of assembly operations

are to be realised. Experiences with cost models have shown that when product

designers are given the tools necessary for making early cost estimates and trade-off

decisions (Boothroyd and Alting, 1992), considerable savings in subsequent

manufacturing and assembly cost are possible.

Techniques and methodologies to analyse products for ease of manufacture are

increasingly being adopted. Currently, the most popular DFA method is the Boothroyd

Dewhurst approach (Boothroyd and Reynolds, 1989). The Boothroyd and Dewhurst

approach is discussed in the following section, in their approach a product is analysed

with regards to various "ease of assembly" criteria such as part symmetry and mating

direction. In the original DFA method as devised by Boothroyd and Dewhurst,

estimates of assembly times are based on a group technology approach where those

design features of parts and products that affect assembly times are classified into broad

categories. For each category an average handling and insertion time estimate is

established. Clearly, for any particular assembly operation these average times can be

considerably higher or lower than the actual times. However, for assemblies containing

a significant number of parts the differences tends to cancel so that the resulting total

time is reasonably accurate.

Other design for assembly methods includes the Hitachi Assembly Evaluation Method

(AEM) method and the Lucas method. The AEM approach is based on the principle of

"one motion for one part" (Miyakawa and Ohashi, 1986). The methods consist of

- 13-

LITERATURE REVIEW

approximately 20 symbols that are used to represent assembly operations. Each symbol

has an index, which can be used to assess the assemblability of the part under

consideration. The advantages reaped from the use of this method include a reduction in

assembly labour, facilitation of factory automation, reduction in design period and

improved reliability of products and automated equipment (Boothroyd and Alting,

1992).

The Lucas method consists of three steps; firstly, a functional analysis of the part is

performed, then a handling and feeding analysis is carried out on the parts, and finally a

fitting analysis based on the assembly sequence is executed.

2.3.1 Boothroyd and Dewhurst Design For Assembly method
Since 1977 analytical methods have been developed for determining the most cost

effective assembly process for a product. The Boothroyd and Dewhurst (Boothroyd and

Dewhurst, 1987) DFA method is one such method. Boothroyd and Dewhurst consider

assembly to include all actions including part acquisition, part insertion and the securing

of the parts. The conventional definition refers to assembly plainly in terms of insertion

and fastening.

According to Boothroyd, the DFA method is defined as a structured designs analysis

method, which guides the design team towards a robust and elegant product structure.

Indeed, there have been many published examples of successes obtained by using the

Boothroyd and Dewhurst DFA method. The method was first introduced in handbook

form in 1980 and then subsequently as software packages in 1982. As it exists today the

method can be applied as a means by which the number of parts of a product can be

reduced. In a secondary mode, it can also be used for the calculation of assembly times

and identifying difficulties, which may hinder the manufacturing process or affect the

quality of the product. Of particular interest is the use of the Boothroyd Dewhurst

method to calculate estimated assembly times.

The time standards (Appendix A) developed by Boothroyd and Dewhurst are the result

of extensive experimental studies performed to measure the effect of part symmetry,

size, weight, thickness and flexibility on manual handling times (Boothroyd and

Dewhurst, 1994). Additional experiments were conducted to quantify the effect of part

thickness on the grasping and manipulation of a part using tweezers and the effect of

weight on handling time of parts. In terms of insertion, experiments performed by

Boothroyd and Dewhurst include the effects of chamfer design, part geometry,

- 14-

LITERATURE REVIEW

obstructed access and restricted vision on the insertion time of a manual assembly

operation.

To successfully extract information form the time standard sheet derived by Boothroyd

and Dewhurst, the classification system and codification (explained in Appendix A)

employed by the system needs to be understood. The classification system for manual

handling is a systematic arrangement of part features in order of increasing handling

difficulty levels. The part features that affect the handling times significantly include

(Boothroyd and Dewhurst, 1994);

1. Part specifications; part size, thickness, and weight

2. Part attributes; parts that are prone to nesting and tangling, and parts that are

fragile, flexible, and sticky.

3. Part external handling necessities; necessity for using two hands, for using

grasping tools, for optical magnification, and mechanical assistance.

The classification system for manual insertion and fastening system deals with the

interaction of mating parts. Manual insertion and fastening consist of a finite variety of

basic assembly tasks such as peg-in-hole, screw, weld and rivet. The design features that

significantly affect the manual insertion and fastening times are (Boothroyd and

Dewhurst, 1994):

1. Accessibility of assembly location.

2. Ease of operation of assembly tool.

3. Visibility of assembly location.

4. Ease of alignment and positioning during assembly.

5. Depth of insertion.

The time standard data sheet for manual insertion and fastening can be found in

Appendix A.

It can be seen from the time standard sheets in Appendix A, that for each two digit code

an average handling and insertion time is given, thus setting a time standard to be used

to estimate manual assembly times. Distinctive to the work carried out by Boothroyd

and Dewhurst is the in-depth investigations into the effects of part features on handling

and insertion times.

- 15-

LITERATURE REVIEW

1. Effects of part symmetry on handling time: One of the principal geometrical

design features that affects the time required to grasp and orient a part is its

symmetry. Assembly operations describe the mating process of at least two

parts; the part being inserted, and the part into which it is inserted. Orientation

involves the proper alignment of the part to be inserted relative to the

corresponding receptacle. The orientation process can be divided into two

groups, alignment with the axis of the part that corresponds to the axis of

insertion and rotation of the part about the axis of insertion. As a result

Boothroyd and Dewhurst defines two types of symmetry;

Alpha Symmetry; depends on the angle through which a part must be rotated

about an axis perpendicular to the axis of insertion, to repeat its orientation.

Beta symmetry; depends on the angle through which a part must be rotated

about the axis of insertion to repeat its orientation.

Examples of alpha and beta symmetry are shown in Figure 2-1.

o Axis of Insertion

\
a 0 180 90 360

P 0 0 90 360

Figure 2-1: Alpha and Beta rotational symmetry for various parts

Numerous attempts have been made to define a single parameter that would give a

satisfactory relationship between part symmetry and handling time. According to

Boothroyd and Dewhurst the simplest and most useful parameter is the

summation of alpha and beta symmetries (Boothroyd and Dewhurst, 1994).

2. Effect of part thickness and size on handling time:

a. Thickness: The thickness of a part is defined as the maximum height of

the part with its smallest dimension extending from a flat surface. The

thickness of a cylindrical part is generally defined as its diameter, as

shown in Figure 2-2. In general if the thickness of a part is greater than

2mm then the part presents no grasping or handling difficulties

- 16-

LITERATURE REVIEW

Thickness

Thickness

Figure 2-2: Examples of Part Thickness and Size

b. Size (Major Dimension): The size of a part is defined as the largest non-

diagonal dimension of the part's outline when projected from a flat

surface. This normally refers to the length of the part. Parts are divided

into four size categories. Large parts involve little or no variations in

time with changes to their size. Medium and small parts display

progressively greater sensitivity with respect to part size. Small parts

usually result in the use of tweezers. Very small parts involve the use of

optical magnification.

A graphical representation of the effects of part thickness and size on

handling time can be found in Appendix B. A numerical expression has

been obtained using curve fitting.

3. Effect of Weight on Handling Time: The effect of weight on part handling times

has been found to be a time addition to the basic time for grasping and

controlling a light part. The effect of weight on part handling can be expressed

by the following equation:

t p w = 0.01250' + 0.01 \Wth Equation 2-1

Where W (lb.) is the weight of the part and th (sec) is the basic time for handling

a light part. Average value for th is 1.13 sec.

4. Effects of Holding Down: Holding down is required when parts are unstable

after insertion or during subsequent operations. It acts as a means of maintaining

the orientation of parts, which are already in place prior to or during subsequent

operations. Boothroyd and Dewhurst have developed an expression to calculate

the basic time needed for an insertion operation where the parts are pre-aligned

and self-locating (Boothroyd and Dewhurst, 1994). The time taken to insert a

part through two or more stacked parts or assemblies can be expressed as the

- 17-

LITERATURE REVIEW

sum of the basic time tb, and tp, a time penalty. The following equations have

been extracted from Boothroyd and Dewhurst data, again by using curve fitting.

The graphs can be found in Appendix B.

tb = -0.07&JC - 0.1 + 3.7Z, + 0.15dg Equation 2-2

Other effects of part features investigated by Boothroyd and Dewhurst that are of

particular interest are tool specific. These include the effects of obstructed access and

restricted vision on bolting, screwing and riveting operations (Boothroyd and Dewhurst,

1994). Also of interest is the effect of number of threads on time to pick up the tool,

engage the screw, tighten the screw and replace the tool. The above information is

found in Appendix B.

2.4 Assembly planning systems
Until recently, much effort has been devoted to designing and producing individual

parts, whilst relatively little effort has been put towards optimising product assembly.

Hence, it is likely that an improvement in this area could yield a great reduction in both

manufacturing and assembly cost and time.

Assembly planning can be defined as "an act of preparing detailed instructions for the

assembly of a product" (Lin and Chang, 1993). The instructions specify all the details of

assembly such as mating features to be used, sequence of part mating operations,

fixtures and fixture methods, part placement methods, part alignment methods and part

insertion paths. Assembly planning activities in many manufacturing industries are still

relatively primitive when compared to advances in other computer aided engineering

sectors such as product modelling, product testing (including finite elements, fluid

dynamics, and dynamic testing), and machining. The assembly planning process is still

very much driven by the experience of process planners. However, the task is becoming

increasingly difficult due to the changing nature of the manufacturing environment

where the requirement is to produce a large variety of more complicated products with

shorter life cycles. The amount of information to be processed is therefore increasing

rapidly whilst the time available to process the information becomes shorter.

Cadwell, Ye, and Urzi (1995) analysed the use of computational tools available to

support assembly planning in the manufacturing industry. They concluded that many

manufacturing systems used by production engineers provided little support to assembly

planning. The process of generating an assembly production system from an assembly

design via an assembly plan were made manually and communicated between

- 18-

LITERATURE REVIEW

departments (such as; product design, production engineering, and manufacturing)

mostly through conventional channels rather than the electronic channel of information

sharing.

However, there are a few systems worth mentioning that offer an integrated approach to

assembly planning by linking aspects of product design, DFA, assembly planning and

production planning. The Stanford Assembly Analysis Tool (Rommey et al, 1995)

system can generate and evaluate geometric assembly sequences of complex products

containing from 20 to 40 parts and from 500 to 1500 faces. The Integrated Design and

Assembly Planning (Sediel and Bullinger, 1991) system constructs an operation

network to reflect the constraints between parts that make up the product. The network

is constructed in the form of a graph that represents the relationships among tasks and

subtasks for DFA evaluation and assembly process planning. The Concurrent Integrated

product Design and Assembly Planning (Zha, Lim and Fok, 1996) system focuses on

the integration of product design, manufacturability, assemblability, assembly process

planning and simulation with economical and ergonomic analysis and evaluation, the

developed system has been applied successfully in lighting products.

The majority of these systems, view assembly planning process in three stages, namely;

assembly modelling, assembly sequence generations and assembly sequence evaluation.

Assembly modelling addresses the problem of representing a product in its various

assembly states, providing information with regards to geometrical and technological

constraints, including mating and precedence conditions. Precedence conditions

represent the fact that some components have to be assembled before others otherwise

they will interfere with a later assembly operation. It is important to note that

precedence constraints are related to operations and not to the parts (Ben-Arieh and

Kramer, 1994). Assembly sequence generation deals with the creation of the assembly

operations and the linking of assembly operations/processes to components, taking into

consideration details of assembly data including mating features used, sequence of part

mating operations, fixtures and fixturing, part placement methods, part alignment

methods and part insertion paths.

Assembly sequence evaluation is the automatic or manual assessment and ranking of

assembly plans taking into consideration external limitations including factory layout

and assembly cost. Various models have been used for the generation of assembly

plans, including knowledge-based and expert systems, genetic algorithms, simulated

- 19-

LITERATURE REVIEW

annealing, virtual environments, petri-nets and intelligent design systems, all claiming

advantages in different aspects of assembly planning.

The majority of researchers have followed the convention of only examining the first

two stages of assembly planning. Other works that consider the final stage of assembly

planning as defined above are prone to ignoring the first two stages. This author

maintains that both these approaches are flawed as it can be argued that the optimisation

of assembly sequences is futile if it is not done in conjunction with resource limitations.

Furthermore, the majority of these works do not sufficiently address several issues,

including the generation of assembly times and factory limitations.

It is important to say that researchers have divergent ideas on both the ultimate goal of

assembly planning systems and assembly plan representation. Some seek to generate

only one assembly plan (De Fazio et al, 1990; Baldwin et al, 1991; Wo Iter, 1990),

others several plans (Henrioud, Bonneville, and Bourjault, 1991; De Me Ho and

Sanderson, 1991) and possibly a whole set of assembly plans. Some of these work with

sequences (Homem de Mello and Desai, 1990; Baldwin et al, 1991; Wo Iter, 1991;

Zhang and Zhang, 1990) others with trees (Henrioud, Bonneville, and Bourjault, 1991;

Park, Kwon, and Chung, 1991), the rest with more general graphs (Miller and Hoffman,

1989). These facts imply many variations in the methods, which change depending on

the aim of the research undertaken which varies from the generation of a set of

assembly sequences to the generation of optimal assembly plans.

In general, all methods create or use some form of a product database. This is either a

free-form database that is restricted to theoretical problems but contains all needed

features, or a CAD database, which is industrial but incomplete for running an assembly

planning system. Some researchers also use a purely geometric database or a database

also containing technological data (Mascle and Figour, 1990). Some researchers also

use bill of materials (BOM) or clusters of parts. However, one can say all these methods

have a common point; they use a "graph search" method, optionally mixed with an

evaluation of assembly plans, resulting in the elimination of assembly plans considered

worse than other ones.

2.5 Assembly modelling and sequence generation
This is probably the most researched field in the generation of optimal assembly plans.

It addresses the issue of product modelling/representation where a distinction is made

between the geometry of components and the description of relations between

-20-

LITERATURE REVIEW

components in the final assembly, that is the representation of assembly operations. The

process of assembly modelling is a precondition for further analysis of the parts and the

generation and evaluation of feasible assembly sequences, and subsequently, assembly

plans. There are various methods of representing product models and assembly

sequences; essentially they all combine information with regards to the product

structure, component features and relations between the components.

There are different approaches to the representation of assemblies, but most researchers

use mainly graph-based representation and advanced data structures. In general, the

majority of assembly systems designed by various researchers for modelling assembly

systems adopt some form of a graphical model. These "graphs" are usually constructed

from a more basic information source such as a CAD database, bill of materials (BOM)

or simply from information supplied by the user. There are numerous types of graph

models; Tree hierarchies (Bourjault and Henrioud, 1992), Diamond representation (De

Fazio and Whitney, 1987), AND/OR graphs (Homem de Mello and Sanderson, 1990),

nested list (Ben-Arieh and Kramer, 1994), precedence diagrams (Bullinger and Ammer,

1984), assembly constraints graphs (WoIter, 1989) and interference graphs (DeFloriani

and Nagy, 1990) are all used to represent feasible assembly sequences.

ABC}

Figure 2-3: The AND/OR graph for a three part assembly (Homem de Mello and Sanderson, 1991)

Approaching the issue of representation in terms of assembly as opposed to

disassembly, the procedure proposed by Bourjault obtains all the precedence knowledge

about the relations within an assembly by answering a set of structured questions based

on his proposed liaison model. De Fazio and Whitney subsequently simplified this

process; they successfully reduced the number of questions asked to (2n) against (2n).

Other methods used to represent precedence knowledge of an assembly include set

-21 -

LITERATURE REVIEW

theory, directed graphs and binary matrix method (Homem de Mello and Sanderson,

1991).

The above-mentioned methods used to represent precedence relationships of an

assembly can only represent partial assembly precedence relations. In a bid to generate

complete assembly sequences, Homem de Mello and Sanderson proposed the AND/OR

graph-representation shown in Figure 2-3 with a disassembly viewpoint. The "nodes" in

the AND/OR graph correspond to subassemblies and the "hyperarcs" correspond to

assembly tasks in which two subassemblies are joined to yield a larger and more

complex subassembly. The hyperarcs point from the node corresponding to the larger

subassembly to the nodes corresponding to smaller subassemblies (Homem de Mello

and Sanderson, 1991). According to the researchers, the model provides a compact

representation for the set of all possible plans, allowing one to traverse the space of all

possible assembly plans and therefore have an opportunity to select an optimal sequence

and dynamically adapt assembly plans to changing conditions. Gottipolu and Gosh

(1995) developed what they termed as an Assembly Sequence Graph (ASG), shown in

Figure 2-4, essentially a hybrid of both the liaison graph and the AND/OR graph

methods of representation.

Level 1
(first level)

Level 2

Level 3

Level 4
(Mh level)

Figure 2-4: Assembly Sequence Graph (Gottipolu and Ghosh, 1995)

The nodes (boxes) in the assembly sequence graph also represent subassemblies. Here

the node is made up of a number of N cells that correspond to the number of individual

parts that make up the assembly. A blank cell implies the corresponding part is not yet

assembled and a hatched cell implies the part has been assembled. At the first level

-22-

LITERATURE REVIEW

there are N boxes, each with one marked cell, and at the bottom level all cells are

hatched, indicating a complete assembly. Although these representations are complete,

the AND/OR graph is large and the number of nodes grows exponentially as the part

number in the assembly increases (Ben-Arieh and Kramer, 1994).

Other methods worth mentioning include the work of Ben-Arieh and Kramer, who

presented a methodology and algorithms for the automatic generation of multiple

assembly sequences. The methodology consists of two phases of assembly analysis. In

the first phase all feasible sequences of part introduction are generated. These sequences

directly correspond to the possible combinations of assembly operations and also define

whether the assembly is of internal or external type. Secondly, the sequence from the

first phase acts as an input and generates all feasible subassembly combinations. The

feasible combinations have to conform to contact, precedence and technological

constraints. Lin and Chang (1993) used a three-layer strategy (linking design, planning

and production layout) and a complex tree structure to represent the assembly and to

generate feasible assembly sequences.

Increasingly, Petri nets are being used for modelling and control of manufacturing

systems (Chao and Sanderson, 1995; Thomas, Nissanke and Baker, 1996; Zhang, 1989).

There are many Petri net variations such as coloured Petri nets, control nets and object

nets. The approach generally includes two algorithms, one to draw and input the Petri

net graph of the assembly sequence and the other to apply the liaison matrix approach of

the Petri net to obtain the optimal assembly sequence. Zha, Lim, and Fok (1998) use the

petri net representation and apply topological, stability and security, partial precedence

constraints to generate an optimal assembly sequence. Another method is to generate

the Petri net graph based on the assembly AND/OR graph, and apply the

straightforward top-down approach to obtain the optimal assembly sequence by linear

programming.

More recently Virtual Reality (VR) (Ye, Banerjee, Banerjee and Dech, 1999) has been

used for assembly modelling and generation purposes, citing the potential to offer a

more natural, powerful, economic and flexible platform than traditional environments to

support assembly planning. The advances in the VR environment have been spurred on

by the advances in automatically loading CAD data of an assembly design into a VR

environment, enabling the rapid prototyping of an assembly and its type. These methods

still face a large number of obstacles including accounting for gravity, part weight,

irregular geometry and fixtures to name a few. Current studies do not show a significant

-23 -

LITERATURE REVIEW

advantage over the other methods discussed. However, it is still viewed as a useful tool

in supporting assembly sequence generation/planning.

The resultant assembly sequence(s) should be evaluated to identify the most suitable

sequence for the given design and assembly operations. Sequence validation generally

involves the application of suitable constraints to a set of sequences. Depending on the

number and stringency of these constraints, there are often a large number of sequences

remaining.

2.6 Assembly sequence evaluation and optimisation
Conventionally, sequence generation constructs the set of all possible assembly steps

and then validation criteria are applied to ensure a feasible sequence. The majority of

systems that claim to evaluate sequences are generally only validating the sequence for

feasibility rather than exploring the merits of different sequences. Others leave the

evaluation to the discretion of the user. It is relatively easy to optimise assembly

sequences based on a single criterion. It can be argued that sequences should be

optimised according to the most prevailing constraining factor based on the economic

and environmental situations. However a more suitable viewpoint would to be to use a

multi-criteria selection process.

Most of the research done to date deals with the automatic generation of assembly

sequences from a CAD system. Only a few researchers have considered the

optimisation of assembly sequences. Of this group an even smaller number have taken

the issue of multi-criteria optimisation into account, namely; De Mello and Sanderson

(1991b), Laperriere and ElMaraghy (1993) and Motavalli and Islam (1997).

To determine the feasibility of an assembly sequence it is necessary to analyse various

assembly constraints. These constraints can be broadly classified into two groups: hard

and soft constraints (Delchambre, 1996). Hard constraints are those imposed by the

topology and geometry of the individual components and the whole assembly. The

sequences that satisfy such constraints are deemed feasible assembly sequences. The

other group of constraints are usually independent of the geometry of the product and

specify additional precedence constraints. The nature of soft constraints is such that they

can be used by the designer in decision-making to narrow down the choice to a few

good sequences among the feasible sequences generated based on the hard constraints.

Such constraints, once numerically expressed, can be used as control parameters for

selecting and evaluating assembly sequences from a pool of feasible sequences.

-24-

LITERATURE REVIEW

There are two widely used factors for the evaluation and selection of assembly

sequences, namely qualitative and quantitative factors. Qualitative factors take into

consideration the particular states of an assembly or transitions (assembly operation) in

terms of their desirability from a manufacturing standpoint. Qualitative factors include

stability of sub-assemblies, reorientation, parallelism, modularity of sub-assemblies,

type of assembly and clustering of parts. Quantitative evaluations consider attributes

that directly influence the assembly cost and time. Quantitative factors include total

assembly time, assembly cost, number of fixtures, number of operators and number of

workstations. A detailed description of these factors can be found in 'Computer-Aided

Assembly Planning' (Delchambre, 1996).

Barnes, Jared, and Swift (2000) present the development of evaluation criteria based on

the identification of a need for metrics that can absolutely determine the suitability of a

sequence prior to completion to enable design decisions to be made interactively. The

reasoning behind this stems from the dependency of the factors described above on the

complexity of the product design. According to the researchers "a complicated design

by definition would cost more and take longer to assemble". They cite metrics such as

assembly time and assembly cost as useful comparative measures for a set of different

assembly sequences for a given design.

There are a few systems of interest that perform an evaluation process. Gottipolu and

Gosh approach the issue of evaluation by determining the shortest time or the lowest

cost path through the weighted assembly sequence graph. Deleting the unwanted

assembly states and tasks or retaining the most desirable assembly states and task then

chooses the final assembly sequence. The Zha et al approach is based on incorporation

and integration with DFA, assemblability analysis, the evaluation approach used in

ASPEN (Kanai, Takahashi and Makino, 1996) and the motion time measurement

(MTM) pre-determined motion time analysis. The researchers consider quantitative

factors by defining cost constraints for the evaluation of sequences based on assembly

cost and time. Cost constraints include, the priority index (represents the insertion

priority for each part), and the number of workstations.

Schmidt and Jackman (1995) use a multi-echelon simulated annealing procedure for the

evaluation of assembly sequences by dividing the problem into two main issues;

formulating an objective function for the assembly sequence and developing an

optimisation technique for finding the optimal. The derived objective function is based

on assembly cost and workstation performance.

-25-

LITERATURE REVIEW

Another method that has come to the forefront for assembly planning is the use of

genetic algorithms as a search method, giving rise to the possibility of generating a

series of optimal assembly sequences. Senin, Groppitti, and Wallace (2000) adopt the

AND/OR graph for representation purposes and use genetic algorithms for traversing

the graphs generated: their derivation of an objective function for evaluating assembly

sequences is based solely on the assembly time. However, the researchers do

acknowledge that assembly plans should be ranked according to multiple criteria

including resource allocation and line balancing.

The method which is most widely used for optimising assembly planning follows the

pattern of representing the assembly sequence by an AND/OR graph or a liaison graph

or a hybrid of the two forms of representation Then, heuristic search methods in

artificial intelligence (AI) such as the depth-first search, breadth-first search methods,

simulated annealing and genetic algorithms are used to obtain the optimal assembly

sequence. Recently, the concept of the intelligent design system (Daabub and Abdalla,

1999) (merging a CAD system, expert system and a database management system) has

been used to optimise the assembly plans with the aim of providing the design engineer

with the vast amounts of knowledge required to design a product that satisfies its

functional requirements and can be assembled easily at the conceptual stages of design.

2.7 Assembly systems
The development of the first real example of an assembly line can be attributed to

Henry Ford who developed such a line in 1913. But, for 40 years after that, only trial-

and-error methods were used for balancing assembly lines. Even by the early 1970s, as

revealed in a survey of 95 companies made by Chase (1974), only 5% of them were

using published techniques to balance their lines. Since then the situation has not

changed much, in a recent article Milas (1990) states that companies design assembly

lines manually or by gut-feel or historical precedent. This suggests that either the

currently available techniques are inadequate or inflexible to model the actual

conditions of assembly lines or the practitioners are unfamiliar with the published

algorithms.

The first published analytical statement of the assembly line balancing problem (ALBP)

was made by Salveson (1955) and followed by Jackson (1956), Bowman (1960), and

Hu (1961). Since then the topic of line balancing has been of great interest to

academics.

-26-

LITERATURE REVIEW

Today, there are various methods used in industry to accomplish the assembly process,

notably Manual single-stations, Manual assembly line, and Automated assembly

system. The manual single-stations method consists of a single workplace/station in

which the assembly work is performed on the product or some major subassembly of

the product; it is generally used in the production of more complex

products/components and/or when production is performed in small quantities. Manual

assembly lines consist of multiple workstations in which the assembly work is

accomplished as the product (or subassembly) is passed from station to station along a

line/U-bend. At each workstation one or more workers perform a portion of the total

assembly work on the product by adding one or more components to the existing sub

assembly. Automated assembly systems make use of automated methods at the

workstations rather than human beings. There are two basic ways in which work is

transferred between operator workstations namely non-mechanical lines and moving

conveyor lines. For the purpose of this research attention has been given to the Manual

assembly line/flow lines, using a moving conveyor/belt to move the subassemblies

between workstations at a constant speed.

2.8 Aggregate Assembly Modelling and Planning (AAMP)
Assembly modelling and planning is an important activity within a product

development environment. An aggregate assembly modelling and planning (AAMP)

method and the corresponding computer based system are being developed at Durham

University for the initial design stage of product development (Betteridge, 2000).

This computer-based system comprises aggregate assembly process models, which can

function using the overall part and feature geometry definition and uses data concerning

assembly resources and standard parts. The system selects and assesses the capability of

assembly methods and tools, identifies human resource content and estimates times and

costs. The methods and computer-based system provide a link between product design

and assembly processes and allow the rapid assessment of various design options and

the creation of aggregate assembly plans at an early stage of product development.

This system will then be integrated with the Concurrent Assembly and Process

Assessments BLocks for Engineering Manufacture (CAPABLE) (Maropoulos, Bradley

and Yao, 1998) a prototype computer-based system that aims to provide planning

support in the product development process.

-27-

LITERATURE REVIEW

Product
model

Standard
part libraries

Technical
capability data

Factory
model

Aggregate
assembly
modelling

and
planning
functions

Output
times, costs,
resources, &

assembly plans

Manual handling
and insertion

methods

Assembly tools
database

Manual assembly
methods

Figure 2-5: Architecture and Functionality of AAMP (Maropoulos and Betteridge 1996)

The Aggregate Assembly Modelling and Planning architecture and functionality is

shown in Figure 2-5. Inputs to the system include the product model, assembly process

models, manual assembly data, assembly resource models and standard part data. The

system provides as outputs assembly times, costs and resources, assembly capability

assessment and creates aggregate assembly plans.

The objectives of AAMP (Betteridge, 2000) are;

1. Provide a link between the early stages of product design and assembly

processes and methods. Also, the efficient acquisition of accurate assembly

planning decisions from limited product information.

2. Derive estimated assembly times, costs and required resources.

3. Create and compare alternative product designs and configurations and also

different assembly methods, processes and resources.

Currently the system is capable of;

1. Defining new products, assemblies, components and features. Information is

inputted at this stage with regards to parts size, symmetry and handling

difficulties.

2. Creating product models, which consist of assemblies, components and features.

Alternatively these can be loaded in from a flat file database. New rules are

-28-

LITERATURE REVIEW

included for defining features, which include options to input geometric

tolerances and capacity to change properties of features.

3. Creating assembly feature relations (AFRs). Options exist to add extra features

and redefine assembly feature relations.

4. Deriving types of assembly feature relations. Numerous types of AFRs are

supported containing unique information and executing different assembly rules.

5. Deriving information required calculating assembly times, costs and resources

dependent on each AFR.

6. Checking the initial geometry and model feasibility of the assembly feature

relations.

7. Creating assembly model incorporating the product model. This shows, in a bill-

of-material style, assembly order and will contain information with respect to

each assembly feature relation. This is defined by attaching an AFR to an

assembly node where all features coincide.

8. Definition of "main" and "moving" parts for a connection.

9. Output primary "ideal" handling and insertion assembly times using best in-

house tools. The ideal times do not include any considerations regarding

assembly area layout or utilisation.

Assembly process models are used to define and simulate the operation of assembly

methods such as fastening using screws, riveting or welding. For each assembly

operation, it is necessary to model a variety of different aspects, including the cost and

time functions, equipment and human resources as well as create precedence rules for

the scheduling of the process. A model provides information on how to calculate the

time to tighten a bolt, what quality can be achieved in a welded joint and sequences

assembly tasks using precedence relationships.

2.8.1 Aggregate Product Modelling
Product data differs in quality of information as well as quantity of detail from

conceptual to detailed design. In conceptual design, decisions are made between

alternative functional structures, which could meet the specification of the product

(Maropoulos and Bradley, 1997). This determines the basic list of components and their

principal attributes. It may be neither possible nor desirable at this stage to produce a

geometrical representation of the part, since this will depend on factors yet to be

considered. At this stage, however, the developer should be able to make some

-29-

LITERATURE REVIEW

assessment of the relative manufacturability of alternative conceptual design options in

order to select the most appropriate design solution.

The implemented aggregate product model uses an object-oriented representation of the

assemblies and components. The individual components are represented using a feature

based solid model, which is based on the concept of constructive solid geometry (CSG).

In a solid model, a part is built up by the algebraic combination of negative and positive

features. Positive features are those, which represent solid material, whilst negative

features represent volume where material has been removed, such as holes and slots.

The CSG method is more suited to the conceptual design stage, since it lends itself to

the gradual addition of more detail through the addition of more negative features to a

basic positive feature. In the aggregate product model, the component is defined as a

sum of positive and negative features.

A comprehensive list of product features for products can be found in Appendix D.

2.8.2 Assembly Feature Relations and Connections
In terms of aggregate assembly planning, the links between components are based on

their mating features. "Assembly feature connection" allows for the specification of

features, which connect components together and make a link between these features.

Assembly feature connections can be used as a basis for aggregate assembly plans.

Feature relations in general are used to represent all the characteristics of features that

may be altered during the development of the design. This includes geometrical

information that may be feature specific and connectivity information, which relates to

more than one feature.

Within the AAMP, assembly feature relations are referred to as assembly feature

connections (AFCs) and those are linked to assembly models. For each connection, an

assembly model will contain an appropriate set of assembly methods, which can

generate the specific connection.

Moreover, each assembly method requires specific tools and assembly workstation

equipment. Each assembly workstation is described by the processes that it can perform

and by specific process parameters such as torque rating of a tool or size of part on an

assembly fixture. Hence, a link is established between the assembly feature connections

of the product model and the assembly resources of the factory.

-30-

LITERATURE REVIEW

The assembly feature connections (AFCs) are also used to graphically indicate which

component features are linked together using an assembly process, as shown in Figure

2-6.

A comprehensive list of assembly feature connections has been established and methods

were developed to automate the creation of AFCs using data from the product features.

Current classifications for assembly feature connections as defined by M. Betteridge

include placement and insertion assembly operations. Placement operations take into

consideration all part handling and orientation, they consist primarily of surface and

Plug'n'Target connections. Insertion operations represent the actual assembly

operations; these have been subdivided into reversible and permanent assembly

connections. Examples of reversible connections include threaded and snap-fit AFCs.

Permanent connections include plastic deformation and chemical AFCs. Further

information can be obtained from A Methodology for Aggregate Assembly Modelling

and Planning (Betteridge, 2000).

Product

Assembly

Component Component

Feature Feature Feature

Assembly
connection

Figure 2-6: Assembly feature connections

2.9 Assembly time generation
There has been a widespread application of the DFA method during the past twenty

years and results have shown that assembly time estimations are reasonably accurate for

small to medium volume assembly manufacturers (Boothroyd and Fairfield, 1991).

However, the method needs to be refined for dealing with large assemblies or high

volume production. For example, the time estimated for acquiring, handling and

inserting a standard screw is estimated at 9.5 sec using the original DFA method. This

time includes acquisition of the screw, placing it in an assembly manually with a couple

of turns, acquiring the power tool, operating the tool and replacing it. In a high volume

-31 -

LITERATURE REVIEW

production situation, it would make more sense for the worker to insert the screw in the

power tool and use the tool to insert and drive the screw. This operation would take 7.5

sec. Another example would be i f multiple screw insertions were utilised, tool

acquisition would only occur once thereby further reducing the assembly time.

Variations in tools used to perform assembly operations will also drastically affect

assembly times obtained. According to the current Boothroyd and Dewhurst time

standards, operation such as screwing, riveting, welding and soldering, have been

assigned a single assembly time estimate. Obviously, the assembly times for such

operations are wholly dependent on the form of tooling utilised. Also, acquisition and

handling of larger products from their storage locations would adversely affect

assembly times.

The original DFA method has been extended by allowing for large assemblies

(Boothroyd and Fairfield, 1991), medium volume and high volume production and

variations with regards to available tooling data, resulting in more accurate estimates of

assembly times. However, these developments have been limited due a fear of

compromising the effectiveness of the system.

The DFA method compliments other systems currently utilised extensively within

industry such as the various forms of work-study applications, that is Predetermined

Motion Time Systems (PMTS). Specific advantages include the availability of assembly

time expressions with regards to environmental constraints of an assembly workstation

(use of fixtures), weight effects on assembly times and the effects of part symmetry. The

DFA methodology falls short in terms of its ease of adaptability.

In terms of generating assembly time expressions for particular assembly operations the

use of predetermined motion time type systems (MOST SYSTEMS, MTM) provides

more structured approach to generating and analysing assembly time expressions for the

various assembly sequences of assembly operations. The desirability of PMTS such as

MTM and MOST is that they are easy to understand and can be used quickly. PMTS

have now become a useful tool for analysing ergonomic conditions, expressing the

feasibility of design with regards to manual motions, providing a detailed process

description, enabling focused training of work situations, providing a comparison for

alternative methods and enabling costing comparisons.

-32-

LITERATURE REVIEW

2.9.1 Predetermined Motion Time (PMTS)
Predetermined motion times were initially provided following the introduction of

Segurs law (Zandin, 1980). Segurs law states that: "within practical limits, the time

required for an average trained worker to perform a basic motion, of specified distance

and control characteristics, is constant and is independent of the nature of the work".

Predetermined motion time systems use a procedure which analyses any manual

operation or method into the basic motions required to perform it, and assigning to each

motion a predetermined time standard. These so-called "basic motions" are dependent

on the system being employed.

The major limitation is the use of PMTS systems (in particular, MOST) is their inability

to specify factors for weight considerations. According to Dossett (1992), i f a person

can move a body member with and without a weight in about the same length of time,

then the weight factor can be ignored. Also, in most PMTS systems available to date,

the effect of part symmetry has not been adequately accounted for. According to

Boothroyd and Dewhurst (1996), the comparison of experimental results with MTM

shows that the parameters adopted by MTM to define object orientation do not properly

account for the symmetry of the part.

The amount of time necessary for assembling a product or component is an important

element in cost allocation, production planning and scheduling and evaluation of

alternatives. The field of work measurement was developed to establish the time needed

for suitably qualified and adequately motivated workers to perform a specified task at a

specified level of performance (Genaidy, Agrawal and Mital, 1990). Work measurement

techniques encompass time study (direct observation with performance rating), work

sampling, standard data, and predetermined motion time systems.

Predetermined motion time systems (PMTS), is a set of time values for the general

human motions (Dossett, 1992). The values are typically obtained categorising motions

then filming many humans performing these motions. The time is measured and

statistically reduced to average times. The coded times are assembled on a data card to

be used by design engineers. Data cards comprise coded motions such as reach for an

object, grasp the object, move the object, position the object and release the object.

When several PMTS time values are added to compute a total task time individual time

errors tend to cancel each other. Accuracy is not a word that can easily be applied to a

PMTS since there is no standard against which to compare; there is no standard time to

perform human motions. However, MTM-1 is generally accepted as the most

-33-

LITERATURE REVIEW

representative of average human motion times in a working environment. In terms of

accuracy, almost all PMTS compare themselves to MTM-1. Of the predetermined

motion time systems available, the system currently employed by the University of

Durham is the MOST system.

2.9.2 Maynard Operations Sequence Technique (MOST)
The MOST work measurement system was developed by Zandin (1980) and consists of

three versions namely, Basic, Mini and Maxi (Genaidy, Agrawal and Mital, 1990). For

the purpose of this research the basic version has been used.

The BasicMOST consists of three basic sequence models; general move sequence,

controlled move sequence, and tool use sequence. In addition to the three basic

sequence models, an equipment-handling sequence is available to analyse the

movements of heavy objects that require manually operated crane.

1. The general move sequence model consists of three distinct phases as shown in

Figure 2-1, which is identified by the following steps:

a. Reach with one or two hands a distance to the object(s), either directly or

in conjunction with body motions.

b. Gain manual control of the object.

c. Move the object a distance to the point of placement.

d. Place the object in a temporary or final position.

e. Return to final location.

Human Motions Code |
Get ABG

| Put ABP
| Return A

Table 2-1: General Move Sequence

2. Controlled Move Sequence describes the manual displacement of an object over

a controlled path. MOST defines a "controlled path" by the movement of an

object restricted in at least one direction by contact with or an attachment to

another object. The controlled move sequence, like the general move has three

phases, as shown in Figure 2-2:

-34-

LITERATURE REVIEW

Human Motions Code |
Get ABG
Put MXI

| Return | A

Table 2-2: Controlled Move Sequence

3. The Tool Use Sequence Model is a combination of the general move and

controlled move models describing the actions performed with tools. The tool

use sequence model follows a fixed sequence of sub-activities codified in five

main phases, as shown in Figure 2-3.

Human Motions Code |
Get object or tool ABG

Place object or tool ABP
Use tool User defined

| Aside object or tool ABP
| Return A

Table 2-3: Tool Use Model

The tools covered by MOST system data cards are listed on Table 2-4 shown

below. Although the tools listed cover a variety of applications there are

obviously a greater number of tools in use in areas where MOST is applied.

However, this problem is easily overcome by associating index numbers of

tools, which are operated using similar body motions. Otherwise, the index

values can be customised through a process of Index Value Development

(MOST SYSTEMS User Manual, 1990).
| Parameters Tools

Fasten./Loosen fingers, screwdrivers, wrenches, Allen key,
ratchet, hammer and power wrenches

Cut knife, scissors, and pliers
Surface Treat cloth/rag, brush, and air hose

Measure Profile gauge, fixed scale, veneer callipers, feeler
gauge, steel tape, and micrometers

Record pencil, pen, and chalk
Think mental process

Table 2-4: MOST: Tools covered

The details of the three sequence models are described on Table 2-5. The sequence

models, in addition to describing the motions employed, provide the total time value for

the activities by using index numbers. An index is placed after each sub-activity in the

sequence and represents the time allowed for the sub-activity. The tables provided on

Basic MOST (including mini and maxi) systems data cards serve as a reference for

identifying the appropriate index values.

-35-

LITERATURE REVIEW

Parameter Symbol 1 Description

Action Distance

I Covers all spatial movement or actions of the fingers,
^ J hand, and feet, either loaded or unloaded. Any control

I of these actions by the surroundings requires the use of
| other parameters.

Body Motion B
Refers to either vertical motions of the body or the
actions necessary to overcame an obstruction or

impairment to the body movement

Gain Control G

Covers all manual motions (mainly finger, hand, and
foot) employed to obtain complete manual control of an
object and to sequentially relinquish that control. The G

parameter can include one or several short-move
motions whose objective is to gain full control of the
object(s) before it is to be moved to another location.

Place

J Refers to actions at the final stage of an object's
p 1 displacement to align, orient, and/or engage the object

I with another object(s) before the control of the object is
| relinquished.

Move Controlled | Covers all manually guided movements or actions of an
J object over a controlled path.

Process Time X Occurs at that portion of work controlled by processes
or machines and not by manual machines.

Align I
Refers to manual actions following the controlled move

or at the conclusion of process time to achieve the
alignment of objects.

Fasten F Refers to mechanically assembling one object to another
using finger, hand, or a hand tool.

Loosen L Refers to mechanically disassembling one object to
another using finger, hand, or a hand tool.

Cut C Describes the manual actions employed separate, divide
or remove part of an object using a sharp-ended tool.

Surface Treat
j Covers the activities aimed at removing unwanted

S material or particles from, or by applying a substance,
S coating, or finish to, the surface of an object.

Measure K
Refers to the actions employed in determining a certain
physical characteristic of an object by comparison with

standard measuring device.

Record | R
Covers the manual actions performed with a pencil, pen,

chalk or any other marking device for the purpose of
recording information.

Think J T

Refers to the eye actions and the mental activity
employed to obtain information (read) or to inspect an

object.

Table 2-5: MOST Systems description

This process is referred to as parameter indexing. Adding together the index numbers,

and multiplying the sum by ten obtain the time value for each sequence. This yields the

time in TMU, the unit of time in MTM systems.

The manual application of MOST consist of the following steps:

1. Observe and document the workplace and method of application.

2. Select the sequence model.

3. Identify index values from MOST data cards.

-36-

LITERATURE REVIEW

4. Obtain the time value by adding the index number and multiplying the sum by 10.

The computerised system requires the analyst to gather work place information and key

the information into the computer database. The activity being measured is documented

in text format, starting with a key word that designates to the computer the sequence

model to be used as well as the values for selected sequence parameters. Keywords and

method description conforms to Basic English sentence structure and engineering

technology. Utilising the work area data, the computer calculates the standard time for

the activity being studied. The Basic MOST computer system is 2-5 times faster than

the manual application.

2.9.3 MOST System Calculations: An Example
An assembly worker gets a handful of bolts from a parts bin located within reach and

places a bolt through each of the six holes. The assembler puts the rest of the bolts back

in the bin. He/she then reaches a handful of washers from a parts bin located within

reach and places one on each of the six bolts located four inches apart. He/she puts the

rest of the washers' back into the bin.

Task Description MOST
sequence

Parameter index
summation

Multiply by
No. of parts

Convert to TMU
values (10)

Get a handful of bolts
form a part bin A,BoG3 4(1+3) 40

Insert through six holes
located 4" apart AiB 0P 3 4(1+3) 24 (x6) 240

Return remaining bolts
into the part bin A 0

0 0

Get a handful of
washers form a part bin AiB 0G 3 4(1+3) 40

Place on six bolts
located 4" apart A,B0P, 2(1+1) 12 (x6) 120

Return remaining bolts
into the part bin Ac 0 0

| Summation of
1 1 TMU values 440 Time in

seconds 16.1

1 If entire sequence | Summation of
1 occurs twice | TMU values 880 Time in

seconds 32.2

Table 2-6: Assembly task using MOST

The time value for the activity described is calculated by adding the time related index

numbers and multiplying by 10, as shown in 2-6. To obtain is seconds, the TMU (Time

Measured Units) values are simply divided by 27.3.

2.10 Conclusion
This thesis adopts the definition of assembly planning provided by Delchambre,

"Assembly planning outlines the nature and the succession of the operations necessary

-37-

LITERATURE REVIEW

to assemble a product", but further extends the definition of assembly planning to

include to assembly resource planning. It is the view of this author that:

• for any assembly planning system to be tangible within industry

• for the system to be functional at the earlier stages of design

• for the selection of a product design via its assembly plans

It needs to be capable of generating assembly plans that mimic economic and factory

constraints depending on the assembly system practiced. Here, assembly system refers

to the methods used in industry to accomplish assembly processes such as manual

single-station assembly, manual assembly lines and automated assembly systems. This

thesis presents an assembly planning system; CAiPABLEAssembly.

-38-

CAPABLEASSEMBLY: SYSTEM OVERVIEW

3 CAPABLEAssemfc/y: System overview

3.1 Introduction
Despite a considerable number of existing assembly planning systems; Standard

Assembly Analysis Tool (Rommey et al, 1995), Integrated Design and Assembly

Planning (Sediel and Bullinger, 1991) and Concurrent Integrated Product Design and

Assembly planning (Zha, Lim, and Fok, 1996), process engineers in industry today still

outline and route assembly sequences manually. The majority of these systems, if used

at all, are only brought in to play at the detailed stage of design, immediately prior to

production, thus defeating the objective of such computer aided engineering tools.

Although it is obvious that process designers/engineers would appreciate a dedicated,

computerised tool to speed up the design/redesign of new products (whilst decreasing

assembly time and related process cost), through the representation and handling of

assembly sequences, one has to keep in mind, the majority of companies have a large

extent of in house knowledge with respect to handling and sequencing of parts. As a

result, most companies would only be interested in systems that are easily adaptable to

processes within the company. Also, although most firms today have Computer-Aided

Design (CAD) facilities, the majority of conceptual design is still performed manually

through a series of brainstorming meetings. Indeed, CAD models of products are

predominantly created at the embodiment design stage of design.

However, for a great deal of redesign work CAD models are readily available. It is fan-

to say the lack of use of assembly planning aids is the result of inconsistency and

complexity of current planning methodologies. The challenge therefore to researchers,

lies in the development of flexible systems, and/or methodologies, for the conceptual

stages of design capable, of performing robust and comprehensive assembly planning

analysis, whilst maintaining an inherent simplicity. CAPABLE/!ssembly is a prototype

of such a system. This chapter presents an overview of CAPABLEAssembly.

CAPAELEAssembly is essentially targeted at two groups of personnel within industry,

namely the product design engineer, and the assembly process planner. Such a tool is

desirable to the product design engineer because it provides a useful means of trading-

off alternative designs in terms of assembly time and thus cost. Also, the assembly

process used to build a part is directly linked to the part's features. For example, i f a

part were to be assembled using screws, the mould used to create the shells of the part

-39-

CAPABLE/4SS£MBZ.y: SYSTEM OVERVIEW

would be different to say, if the part was to be welded together. Thus, such decisions

will have to be made by the product design engineer.

To an assembly process planner the appeal of CAPABLEAssembly is increased. The

system aims to provide the assembly processes planner with host of feasible assembly

process plans that best suits his/her available resources. It also provides a means of

providing information with regards to effects of altering available resources without

physically having to change the factory layout. For example, a brown field analysis (see

Section 6.6.2) will give the planner a series of optimal assembly process plans based on

the current/user-specified factory/shop floor layout. However, a green field analysis (see

Section 6.6.2) will provide the user with a pool of assembly process plans based on

unlimited available resources.

When designing/developing an assembly planning system (or any software), in order to

ensure its consistency and completeness, it is important to derive an ideal architecture of

modules, to act as a comprehensive and automated centre of activities, capable of

gathering relevant information of all aspects of production.

3.2 System requirements
CAPABLEAssembly is an assembly-planning tool used to provide the design/product

engineer with a series of optimised assembly plans at the conceptual stages of design.

The system addresses the issue of assembly product modelling and development,

formation and evaluation of assembly processes including assembly line balancing and

factory layout. CAPABLEAssembly describes a concurrent assembly planning system

where assembly plans are generated simultaneously as the product is being developed.

Product designers detail the geometry of the components and their relationships within

the assembly model, whilst simultaneously receiving feedback on plans originated from

the current product configuration. Each change in the product model potentially affects

the set of assembly plans that can be generated.

The majority of assembly planning systems use some form of optimisation algorithm

based on various mathematical models as described in Chapter 2 to systematically or

randomly search and analyse a predefined solution space or one initiated at runtime. The

main problem experienced by currently available assembly planning systems include:

1. Exploring a predefined or generated search space that may or may not contain

possible/feasible/optimal assembly plans.

- 4 0 -

CAPABLEASSEMBL Y: S Y S T E M O V E R V I E W

2. Minimising computational time whilst mamtaining a reasonable degree of

accuracy in results generated, independent of the number of constituting

components for a given product.

The issue of exploring the solution space generated for a given product model is further

exemplified when assembly plans are generated for products with a large number of

components with a correspondingly large solution space. The most common

compromise adopted by many systems has been to increase the number of assumptions

made, thus simplifying the problem definition and decreasing the search space. Other

methods limit the number of mathematical objectives used to explore the search space,

thus reducing the computational time by streamlining the representation of the problem

solution.

Fundamental to the ideology behind CAP' ABLEAssembly is the use of a twofold

optimisation process to handle the solution space; assembly sequence and line balancing

optimisation methods to generate optimised assembly plans. Here the generation of

optimal assembly plans has been split into two; the optimisation of assembly operations

and the loading of assembly operations to workstations. The optimisation of assembly

sequences is used to initially decrease the search space. However, the generation of

optimised assembly sequences does not in itself define an optimised assembly plan. It

provides a useful starting point and the best means of decreasing the size and

regularising the pattern of the solution space.

It is this assembly sequence that is used to generate the preceding solutions space used

for the generation of assembly plans. Here, due to the decreased solution space and

depending on the heuristic or exact methods used for optimisation, a larger number of

mathematical model objectives can be used to generate an optimised assembly plan.

Furthermore, although less important academically but justifiably more prominent in

industry, due to the optimisation algorithm adopted by CAPABLEAssembly, the system

is capable of providing a number of "good" assembly plans from a pool of feasible

assembly plans.

The planning of CAPABLEAssembly is governed by the research objectives outlined in

Chapter 1. The design specifications for CAPABLEAssembly are that the system must:

1. cater for product assembly modelling to illustrate the product modelling concept

in the assembly domain complete with facilities to respond easily to changes in

design if the system is to be used in the early stages of design.

-41 -

CAPABLE^55£Aff i / ,y: S Y S T E M O V E R V I E W

2. fully emulate assembly operations as performed on the shop floor.

3. generate optimised assembly sequences from a pool of feasible assembly

sequences

4. optimise the loading of assembly systems by analysing the possible option

sequences and factor limitations.

5. provide accurate assembly times with detailed process analysis.

3.3 System structure
The workings of C A P A B L E A s s e m b l y can fully be described under three broad

headings, (/) analysis tools for assembly, (//) assembly product modelling and product

data storage, and (//'/) automated assembly process planning. Figure 3-1 outlines the

overall structure of CAPABLEAssembly.

Product Model

I assembly data via
> system e.g Pro:

3.M
; modelling

via user input

Assembly Sequence Generation

ASSEMBLY
SEQUENCE

GENERATION

subject to mating
straints

SEMBLi
ODELLINC
Establish

ea hires

Design
Changes line/Factory Balancing

FACTO!
MODELLING
Assembly line

balancing

GREEN F I E L D
No factory constraints,

an idi

BROWN F I E L D
Factory constraints such as

number of operators
avyjabie

A L L
POSSIBLE

ASSEMBLY
SEQUENCES

AND
FACTORY
LOADING

OPTIMAL
ASSEMBLY

SEQUNCE(S)
SELECTION

Subject to factory
constraints

Factory Changes

Figure 3-1: Structure of CAPABLEAssembfy

The product model is created and stored in a flat file database format using the

N E X P E R T Object shell, which runs on a Unix/IRIX platform. The subsequent assembly

and resource planning analysis is performed using Visual C++, which uses

Windows2000. The operating system was transferred from the Unix platform to the

Microsoft windows platform to make the system more accessible, user friendly, and

portable. The switch to C++ arose when a greater degree of control over computational

methods and structures was required.

- 4 2 -

CAPABLEASSEMBLY: S Y S T E M O V E R V I E W

3.3.1 Ana lys is tools for Assembly
In traditional systems the heart of a program consists of the algorithm and data. The

execution of the program is done in a concise manner laid down by the rules of the

algorithm. In comparison the N E X P E R T Object provides an intuitive means of

representing product models by the use of objects and classes. However, these objects

need to have some form of reasoning to govern the generation of objects and object

hierarchy. A database containing explicit knowledge of assembly processes in a

specialized domain, and a reasoning or interface engine which can access the database,

is used to govern the generation of objects.

CAPABLE^ssembly uses Smart Elements, a software system that contains N E X P E R T

Objects, with a user-interface building tool, Open Editor, and a knowledge database, to

facilitate the assembly product modelling process. Knowledge with regards to the

inherent characteristics of assemblies, components, resources and AFCs , are stored in

the knowledge base. Whilst, the use of a reasoning engine proved to be more than

adequate for assembly product and process modelling purposes, it is however

inadequate for high level optimisation problems encountered when solving intractable

problems such as assembly line balancing and sequencing. As a result a different

system/language (Visual C++), which provides greater flexibility to the programmer

and is also capable of handling object-oriented programming with facilities for the

design of a user interface, was chosen for the generation and optimisation of assembly

process plans.

The aggregate product model uses an object-oriented platform for the representation and

management of assemblies, components and assembly operations where objects and

classes are used to describe assembly entities. Properties are used to describe the

characteristics of objects and classes, storing relevant information about specific objects

and classes such as assembly features and dimensions. The system creates objects

dynamically during the modelling process, allowing the creation of assembly structures

that are not yet known, by creating dynamic links between objects, classes and relevant

databases to reflect the changing relationships during the assembly modelling process.

Generic rules are used to govern and manipulate the behaviour of the objects and classes

and their associated methods.

The simplest way to tackle assembly planning is to view it in tandem with the

optimisation of assembly sequences, and loading of assembly operations on an

assembly line, with or without a pre-defined factory layout. However, both these

-43 -

C A P A B L E / 4 S S E M B L Y: S Y S T E M O V E R V I E W

problems are intractable and as such an exact solution cannot be found using exhaustive

search methods (which simply visit all points in a search space and retain the best

solution visited). Heuristic search methods in artificial intelligence (AI) such as the

depth-first search, breadth-first search methods, simulated annealing and genetic

algorithms can be used to obtain the optimal assembly sequence. Two forms of general-

purpose heuristics have been used to obtain an optimised assembly sequence and

assembly line respectively. The planning algorithms applied, simulated annealing and

genetic algorithms, provide fast recalculation times with reasonably accurate results,

providing product designers with real-time feedback about process performance.

3.3.2 C A D : assembly modelling and database

3.3.2.1 The product assembly modeller

In conceptual design, decisions are made between alternative structures, which could

meet the functional specification of the product (Bradley and Maropoulos, 1995). This

determines the basic list of components and their principal attributes. It may be neither

possible nor desirable at this stage to produce a geometrical representation of the part,

since this will depend on factors yet to be considered. At this stage, however, the

developer should be able to make an assessment of the relative manufacturability of

alternative conceptual design options in order to select the most appropriate design and

process solutions. This is important since a large proportion of life-cycle cost is

determined during conceptual design.

Assembly modelling is a procedure for describing the assembled state of a given

product model/assembly in terms of its basic assembly connections and features. An

aggregate assembly modelling and planning (AAMP) method and the corresponding

computer based system has been developed at Durham University under the supervision

of Prof. P.G. Maropoulos by Michael Betteridge (Betteridge, 2000) for the initial design

stage of product development. The starting point for the development of an aggregate

product model is obtained from a bill of materials (interactive modelling via user

interface) or a C A D product model. The aggregate product model is created by

extracting assembly features from the constituting components of the product.

Assembly feature connections (AFCs) are subsequently established between the

components assembly features. These A F C s emulate assembly processes or operations

performed on the shop floor of manufacturing firms.

- 4 4 -

CAPABLE/lSS£A/flZ.y: SYSTEM OVERVIEW

3.3.2.2 Database organisation
Conventionally, the database for C A D systems contains basic graphics elements such as

points, lines and curves. For assembly modelling purposes such information is stored

within the expert system. The databases used in CAPABLEAssembly mainly carry A F C

related information and resource model data. This includes information such as

handling and insertion times based on handling and re-orientation difficulties for all

A F C s considered and the topological position of available resources within a work

cell/workstation.

The handling databases contain basic assembly times and time penalties for handling

parts based on parameters such as the size and weight. The insertion databases store

assembly times for performing actual joining operations, such as welding and threaded

A F C . The times stored for each A F C is tool based, for example the operation time for a

riveting operation, will vary depending on whether a riveting gun or manual lever

riveter is used. The database is also used to store product models created at run-time if

desired.

3.3.2.3 User interface
The user interface used for the development of the aggregate product model is as

designed by Michael Betteridge for the existing AAMP system. The user interface is

designed using Smart Elements; based on N E X P E R T O B J E C T , which supports a range

of representation features. N E X P E R T provides the tutor interface to access the

knowledge base and interference engine used to design the user interface. The domain is

modelled in terms of objects and classes and slots (better known as properties). Slots are

used to store all the information N E X P E R T gathers from the user. The main window for

the AAMP system and detailed information can be found in Betteridge, 2000).

3.3.3 Automated A s s e m b l y p r o c e s s planning
CAPABLEAssembly is an assembly planning system used for the generation of optimal

assembly plan(s). A connectivity model derived from the product model is used to

represent the assembly sequences. Heuristic search methods namely simulated

annealing and genetic algorithms are then used to find optimal solution(s). The system

aims at providing a robust D F A tool to aid the design or redesign of a product during

the initial stages of design. It takes into consideration all the advantages and

disadvantages discussed in the previous sections. Furthermore, the system supplies a

separate module for the use of standard parts and the optimisation of standard part

- 4 5 -

CAPABLEASSEMBLY: SYSTEM OVERVIEW

handling and insertion operations. A sophisticated method for the estimation of

assembly time is inherent to the generation of assembly operations.

3.3.3.1 Resource planning
Resource planning is concerned with the selection of production means adequate for

performing all the assembly operations specified by the assembly planning (in a

sequence compatible with the assembly plan it supplies) on parts specified by the design

for assembly, while meeting the production volumes set by marketing. A production

workshop can be set up using various topologies such as a combination of assembly

lines and work-cells, and stand-alones. CAPABLEAssembly uses a resource planner to

generate a production workshop layout based on information provided by the design

engineer or stored within its database. The topology of the line connecting various

workstations is seen as a natural topological expression of the assembly process. Hence,

the resource planner provided within CAPABLE^^e/wfe/y is used to create the objects

that fully describe an assembly line for a single product. These include operators, tools,

transportation modes (typically a conveyor belt), and workstations. Each of these

objects stores characteristic properties that define the scope of their use during runtime.

For example, each workstation has a workstation cycle time, which determines the

output rate of the assembly line.

3.3.3.2 Sequencing of assembly operations
The main purpose of the research described herein is to create a system suitable for the

automatic generation of an optimal assembly sequence for a given product at the early

stages of design. The method is based on the creation of an aggregate product model

and the subsequent extraction of contact, precedence and technological relationships

from the aggregate product model to create a connectivity model. The extraction of such

relationships facilitates the generation of an initial rudimentary assembly plan, which

reduces the search space. The generated assembly plan is then refined through a series

of optimisation methods using simulated annealing. The simulated annealing algorithm

seeks to optimise an assembly rating variable, which includes functions for

reorientation, parallelism and stability.

The ability of the system developed to quickly generate and optimise assembly plans

locally as well as globally, when various criteria are enabled or their relative importance

is changed, makes it an effective tool for simultaneously considering several

manufacturing considerations at the design stage. As can be seen from Figure 3-1, the

- 4 6 -

CAPABLEASSEMBLY: SYSTEM OVERVIEW

assembly sequence generation module provides the input for the assembly line

balancing module.

3.3.3.3 Assembly Dine balancing
The system described herein uses genetic algorithms to generate optimised assembly

plans. It employs the minimisation of cycle time and number of workstations as the

basis of for the initialisation of the genetic algorithm and aims to find the best solutions

that lead to the maximum production rate and minimum workstation workload variance,

with maximum work-relatedness. The distinction between this methodology and other

techniques lies in the way the problem has been designed. It does not seek to simply

produce assembly plans based on the minimisation of cycle time or number of

workstations; rather it merely uses these parameters for the generation of the initial

population, the main interest being in the 'goodness' of the solutions/assembly plans

generated. The input to the system is an optimised assembly sequence, providing the

designer with a good visual idea as to how the assembly operations would be loaded

using a green field site, thus reducing the search space and computational time. The

system runs in two modes, green and brown field, as shown in Figure 3-1. If a green

field is employed the workstations are devoid of restrictions from operator skill, tooling

requirements and shop floor space. I f a brown field is employed the loading of assembly

operations to workstations is limited to tool availability and operator skill.

3.3.3.4 User Interface
The user interface for the optimisation modules take two formats; an executable file

generated within Visual Studio or using MS-DOS. When running in DOS the format is

quite simple; the user is presented with a menu, and depending on the choice, the user is

taken to the appropriate section of the modules.

The executable file is in essence a dialog-based project created using Visual C++. The

user is guided through a series of dialog boxes where he/she is prompted when

information from the user is required. As with the N E X P E R T system the domain is

modelled in classes, objects, and properties. Visual C++ access to time and factory

databases is maintained via Microsoft Access. The user interface is largely elementary

and has only been developed to the extent where a user can perform the analysis in what

is hoped an intuitive manner.

3.4 Conclusion

- 4 7 -

CAPABLEASSEMBLY: S Y S T E M O V E R V I E W

In this thesis, an intelligent assembly planning system is used for the generation of

optimal assembly plan(s) is presented. A connectivity model derived from the product

model is used to represent the assembly sequences. Heuristic search methods namely

simulated annealing and genetic algorithms are then used to find optimal solution(s).

The system aims at providing a robust D F A tool to aid the design or redesign of a

product during the initial stages of design. It takes into consideration all the advantages

and disadvantages discussed in the previous sections. Furthermore, the system supplies

a separate module for the use of standard parts and the optimisation of standard part

handling and insertion operations. A sophisticated method for the estimation of

assembly time is inherent to the generation of assembly operations.

- 4 8 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

4 Aggregate Assembly Modelling and Representation
4.1 Introduction

This chapter presents the building blocks of CAPABLEAssembly; the aggregate product

model, the connectivity model and the assembly time generation algorithm. The work

presented herein addresses both the complexity and incompleteness of product

data/models and resource information. This is a typical problem faced by process

engineer/designers, when drafting an assembly process plan at the earlier stages of

design.

As industry increasingly moves away from exclusive geometric modelling practices to

more process oriented modelling (a sort of feature-based modelling), the problem we

are faced with is how to economically develop a pseudo-product model that captures all

process features and relationships, whilst keeping the generic nature of the product at

the early stages of design. The aggregate product model can be viewed as the first

attempt at the derivation of such a product model. The reasoning behind the shift

towards product process modelling (Ling et al, 1999) is embodied in the ideology of a

feature-based aggregate product model.

This chapter describes the mapping of a product's assembly features onto generic

assembly processes to form a "connectivity model" of the product. The connectivity

model is used to generate feasible assembly sequences, taking into consideration

previous assembly knowledge, precedence relationships, contact relationships and

technological constraints for multiple mating conditions.

The layout of this chapter is as follows:

• Section 4.2 introduces the concept of aggregate product modelling for assembly.

It details the assembly modelling and representation method used to define

product assembly features and assembly operations.

• Section 4.3 outlines the derivation of the connectivity model, which is a

relational product model, derived from the aggregate product model for

generating feasible assembly sequences.

• Section 4.4 details the assembly time generation algorithm (A G A) , used within

both the aggregate product model and the connectivity model to estimate

assembly operation times.

- 4 9 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

• Sections 4.5 and 4.6 are subsections of Section 4.4, but as they introduce the

concept of standard parts and standard part assembly methodology respectively,

a section has been assigned to each concept in its own right. They explain the

methods used to generate standard assembly operations, and standard assembly

times used to estimate assembly operation times (employed by A G A).

• Finally, Section 4.7 pulls together all the conclusions drawn from this Chapter.

4.2 Aggregate product modelling for assembly
A product model, as vital as it is, is just one of the information resources needed to frilly

realize the integrated operation of a manufacturing company. In many manufacturing

companies, it is not uncommon to find design and process engineers working

concurrently on different aspects of a given product in different countries and/or

continents. This has driven the need to transfer product model data quickly, efficiently

and accurately through a variety of media, making the minimisation of data stored

within product models essential. To a design engineer considering the assemblability of

a given product, the need here is for a product model that contains product data

associated with the assembly process. This is done by modelling a product in terms of

its assembly features.

In conceptual design, decisions are made between alternative structures, which could

meet the functional specification of the product (Bradley and Maropoulos, 1995). This

determines the basic list of components and their principal attributes. It may be neither

possible nor desirable at this stage to produce a geometrical representation of the part,

since this will depend on factors yet to be considered. At this stage, however, the

developer should be able to make an assessment of the relative

manufacturability/assemblability of alternative conceptual design options in order to

select the most appropriate design and process solutions. This is important, since a large

proportion of life-cycle cost is determined during conceptual design.

An aggregate assembly modelling and planning (AAMP) method and the corresponding

computer-based system has been developed at Durham University under the supervision

of Prof. P.G. Maropoulos for the initial design stage of product development

(Betteridge, 2000). The AAMP system is used as the basis for product modelling

activities within CAPABLEAssembly. The starting point for the development of an

aggregate product model is obtained from a bill of materials (interactive modelling via a

user interface) or a C A D product model. In general, an aggregate product model is

created by extracting or adding assembly features from the constituent components of

- 5 0 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

the product. Assembly feature connections (AFCs) or mating relationships are

subsequently established between the components' assembly features. The hierarchical

structure of the product model is maintained in the aggregate product model. The A F C s

emulate assembly processes or operations performed on the shop floor of manufacturing

firms. The steps involved in the generation of an aggregate product model are shown in

Figure 4-1 .

a
\

BOM

<

Outline IVodurt Mxki

Aggregate Product Model

lixiemal groove

Through hole

• c
ADD ASSEMBLY

FEATURES

Blind hole Prisrnaticslot

Internal thread

1 I

Create Assembly Feature
Connections AFCs

Exanples:
Placement, Wiring, Riveting

Labelling, Packaging Threaded
Plug n 'Target, Pressure-fits

Product Model with AFCs

Times

Retrieve

Assembly
limes

Tools

Figure 4-1: Generation of aggregate product model

4.2.1 Assembly modelling and representation
Assembly modelling is a procedure for describing the assembled state of a given

product model/assembly in terms of its basic assembly connections and features. The

majority of products produced by today's manufacturing firms can be considered to

have a multi-level product structure. In such a structure, final products are composed of

subassemblies and components, and each subassembly is in turn made of subassemblies

and/or components.

The aggregate product model uses an object-oriented method for the representation and

management of assemblies, components and assembly operations, where objects and

classes are used to describe assembly entities. Properties are used to describe the

characteristics of objects and classes, storing relevant information about specific objects

and classes such as assembly features and dimensions. The system creates objects

dynamically during the modelling process, allowing the creation of assembly structures

that are not yet known by creating dynamic links between objects, classes and relevant

databases to reflect the changing relationships during the assembly modelling process.

- 51 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

Generic rules are used to govern and manipulate the behaviour of the objects and classes

and their associated methods.

There are three major types of geometric C A D models (Mantyla and Shah, 1995)

namely;

1. Graphical models, to support generation of engineering drawings. This group

includes wire-frame models. As models of 3D solids, graphical models are poor

as it is possible to make models that are valid and yet meaningless because they

have several interpretations as a solid body.

2. Surface models, to support the design and manufacture of complex surfaces,

used mostly for machining purposes.

3. Solid models, to capture completely the three-dimensional geometry of a solid

physical object in order to support higher levels of functionality and

information.

In CAPABLEAssembly, the individual components are represented using a feature-

based solid model. There are two main types of solid models of interest currently

employed within industry, boundary representation (B-rep) and constructive solid

geometry (CSG). For the purpose of this research, a solid model is based on the concept

of C S G (Mantyla and Shah, 1995).

In the feature based solid model (Bradley and Maropoulos, 1997; Yao, Bradley and

Maropoulos, 1998) the part is built up by the algebraic combination of negative and

positive features. Positive features are those that represent solid material, whilst

negative features represent volume where material has been removed, such as holes and

slots. The C S G method is more suited to the conceptual design stage, since it lends itself

to the gradual addition of more detail through the addition of more negative features to a

basic positive feature.

In the aggregate product model, the component is defined as a sum of positive and

negative features. Examples of positive features include: cylinder, prism, moulded and

sheet. Negative features are regularly updated, examples include: blind holes, external

and internal threads, external steps, through holes, external groves and V-slots. A list of

currently available assembly features can be found in Appendix D. A diagram showing

the data and hierarchal structure of an aggregate product model generated in

CAPABLEAssembly is shown in Figure 4-2.

- 5 2 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

c o n , P o n e r r t s assemblies products components assemblies products

product product (assembly)
tool)

@ runtime
assembly

assembly Component motor assembly) component

A i A i 4
assembly feature
(plK.) [motor length switch depth

£T3 V 1 property (50cm) (20cm)

1 1' 1 pho length
(2cm)

Figure 4-2: Assembly modelling and representation in CAPABLE/f vvt'/wWy

The circles represent classes and subclasses, which can be viewed simply as a grouping

or generalisation of a set of objects. There are four main classes, three of which are

shown below, the fourth being that relating to assembly feature connections (covered in

the following section). The triangles represent objects and sub-objects; they are

instantiations of classes or specific members. The rectangles are the properties of the

objects and the squares can be viewed as values of properties only generated at run

time.

For instance, when a product such as a garden tool is treated as an assembly consisting

of other assemblies (e.g. motor assembly) and components (e.g. switch), both classes

and objects encompass properties that are used to describe their characteristics. The

main properties assigned to assemblies and components are shown in Table 4-1 . When

the aggregate product model is being generated (at runtime), the object properties are

assigned values stored in slots that are shown in Figure 4-2 as squares.

In CAPABLEAssembly the behaviour of the generation of the objects (components) and

their corresponding properties are governed by rules. These rules determine which type

of objects need to be created and when they are created, where the received data will be

stored, and if the data received are reasonable. They are also used to regulate the

interaction with databases. The relationship between the object plane and the rules plane

is shown in Figure 4 -3 .

- 5 3 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

Object plane

assembly
(motor assembly)

Component
(switch)

switch depth
(20cm)

motor
(50c

pho le/lgth
(2

assembly featipg
(pho)

Figure 4-3: Relationship between object plane and rule plane

| Classes Main properties
Product amount, base_part, breadth, hand diff, length, nocomps, numafcs, parent,

selfhame, typeclass, value alpha, value beta, volume, weight, width
Assemblies amount, base part, breadth, hand diff, length, no comps, numafcs, parent,

selfhame, typeclass, value alpha, value beta, volume, weight, width
Components amount, handling difficulties, material, nest/tangle, no comps, numafcs, parent,

selfhame, typeclass, value alpha, value beta, volume, weight
Assembly feature
connection

afctype, assembly, assembly children, base_part, diam max, diam min, floating,
fixed, handling time, holding, insertion time, moving part, not align,
obstr access, parallelism, parent, reorientation, restr vision, selfhame, stability,
typeclass

Table 4-1: Classes and their properties with CAPABLEAssembty

4.2.2 A s s e m b l y feature connect ions
Assembly feature connections (AFCs) refer to the type of mating relationship between

two or more assembly features. They allow for the specification of features that connect

components together as shown in Figure 4-4. For each A F C considered (see Table 4-2),

there exist a series of appropriate assembly methods including initial checks

(dimensional analysis) that facilitate the generation of the A F C . The type of A F C

generated is dependent on the assembly features used to create it. Figure 4-4 depicts a

threaded A F C ; a threaded A F C is automatically generated when two threaded features

are linked.

- 5 4 -

A G G R E G A T E A S S E M B L Y M O D E L L I N G A N D R E P R E S E N T A T I O N

Assembly Product —

Plate
•*• Prism, length

Prism

Prism.width

Internal thread (itd)

itd.length

itd.diameter

itd.pitch

Prism.depth

Bolt

Cylinder

Cylinder, length

Cylinder.diameter

Threaded A F C

External thread (etd)

Threaded A F C

etd.length

etd.diameter

etd.pitch

Figure 4-4: Assembly feature connections A F C

A F C objects also store information with regards to the mating parts and their

corresponding features, moving and base parts within the A F C , relevant dimensions and

handling and insertion data. Handling data provides information with regards to

environmental and topological restrictions likely to be experienced whilst performing a

specific A F C . Such data include

• Holding down requirements. Holding down is required if parts are unstable after

insertion or during subsequent operations.

• Visual restrictions. This applies to parts that are small and parts that are 'blind'

to the assembler. For example if one is to inset a peg into a hole that is not

within ones visual range.

• Sharp edges. Parts with sharp edges require careful handling thus increasing the

time taken to grasp and locate the part within the assembly.

• Nest and tangle. Nesting and tangling in parts occurs when parts are stored in

bulk, this increases the time taken to grasp and control the part.

• Weight, size and symmetry. Part weight and size affects the time taken to grasp,

control and locate a given part. The symmetry of a part affects the time taken to

reorient the part prior to locating the part within the assembly.

• Realignment and re-orientation of moving and base parts. Base parts usually

require some means of maintaining the position and orientation of parts already

- 5 5 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

in place, or during subsequent operations. Moving parts might require

reorientation before the can be assembled.

Insertion data solely provides information with regards to the AFCs operation time,

including tooling requirements where needed. The classification of assembly feature

connections considered during the scope of this research is shown in Table 4-2, but

these are constantly being updated.

AFCs Classifications Assembly Feature Connections Assembly Feature Connections
Sub-Type

Standard Insertion Assembly
Operations

Placement
Standard Insertion Assembly

Operations Plug 'n ' Target Cylindrical
Standard Insertion Assembly

Operations Plug 'n ' Target
Non-Cylindrical

Packaging
Pressure Fits

Reversible Insertion Assembly
operations

Threaded
Screwing

Reversible Insertion Assembly
operations

Threaded
Bolting

Reversible Insertion Assembly
operations

Tag connectors
Wiring Screw connectors

Pressure-fit connectors
Adhesives

Riveted
Permanent Insertion Assembly Ultrasonic welding

Operations
Thermoplastic Welding Spin welding Thermoplastic Welding

Hot plate welding

1 Vibration welding

Table 4-2: Classification of A F C s

The execution of each AFC requires specific tools and assembly workstation

equipment. Assembly workstations are described by the processes (AFCs) that they can

perform and by other process parameters such as RPM of tools or size of press

machines. Hence, a dynamic link is established between the AFCs stored in the

aggregate product model and the assembly resources of a factory. The factory model

used is described in detail in Chapter 6.

4.3 Connectivity Model
For a given product model, once all AFCs have been created an assembly sequence can

easily be generated from the aggregate product model and the BOM of the product

using a simple bottom-up assembly approach. That is, within each assembly level the

heaviest and/or largest part is chosen to be the base part. The remaining parts are

assembled in the order in which they are related to the preceding part within the

aggregate product model. At this stage, the assembly sequence generated using such a

crude method is at best a feasible assembly sequence.

A sequence planning system requires a model of the logical relationships (surface

contacts and attachments), as well as non-geometric information (such as attachment

- 5 6 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

forces), that are not related to part geometry, but never the less, affect assembly

methods (a relational product model). The connectivity model is used to represent

relations among the components of assembly, using the aggregate product model as the

starting-point of this relational model. The connectivity model adopts the hierarchical

representation of the product model as illustrated in Figure 4-5.

When an AFC is created in the connectivity model, two subscript indices are attached to

the assembly operation created; AFCjj. The following notation is used in the formation:

/ subscript for level at which the AFC is created.

j subscript for the ranking of AFC within the level created.

Each AFC generated within the connectivity model has the following the basic data

attached to it:

1. AFC classification. This includes information as to the AFC type, i f the AFC is

to be regarded as a fixed or a floating AFC (see Section 4.3.2), and i f the AFC is

to be regarded as a permanent or a reversible AFC (see Table 4-2).

2. Mating components. This refers to the individual components of each AFC as

shown in Figure 4-5.

3. Mating features. This refers to the positive and/or negative features attributed to

each mating components that are used in the AFC. For example, in Figure 4-4,

this would be the internal thread of the plate and the external thread of the bolt.

4. Dimensions of mating components and features. This refers to the length, dept,

and width of the mating components. This information is required to calculate

the part weight for handling purposes. Dimensions of mating features are needed

to calculate assembly variables such as number of threads on a bolt (the equation

for a threaded operation is based on the number of threads which is equivalent to

the number of turns required to tighten a bolt, see Appendix E).

5. Maximum reorientation angles (Boothroyd and Dewhurst, 1996). This refers to

the symmetry of the mating component. The handling time for each mating

component is dependent on its maximum reorientation angle, see Section 2.3.1.

- 5 7 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

Product Assembly

Product Model I
Connectivity model

Product Assembly

Comp A

Sub Ass A

Comp B

Comp C

Sub Ass B

Sub Ass A

AFC22 (Comp A + Comp B)

Comp D

Comp E

Comp F

Comp I

Comp J

Comp K

A F C 3 1 (Comp D + Comp E) A F C 3 1 (Comp D + Comp E)

A F C ^ (Comp E + Comp F) A F C ^ (Comp E + Comp F)

A F C 2 i (Comp B + Comp C)

AFC33 (Comp I + Comp J)
Sub Ass B

AFC33 (Comp I + Comp J)
Sub Ass B

AFC34 (Comp J + Comp K) AFC34 (Comp J + Comp K)

Figure 4-5: Mapping method

The connectivity model like the aggregate product model, are objects created at runtime.

Three consecutive algorithms are used to generate the connectivity model namely;

contact, precedence and technological constraint algorithms. The aggregate product

model is modified after each algorithm; the resulting product model is the connectivity

model.

4.3.1 Contact Constraint Algorithm
Contact constraints specify which parts are connected to other parts in terms of an

assembly operation, denoted as the AFC's parent. For example, i f the external thread

(etd, see Appendix D) of a screw is to mate with the internal thread (itd, see Appendix

D) of a nut to form a threaded AFC, the parents of the AFC are the screw and nut,

denoted as screw nut. Hence, it is easy to generate a list of AFCs, associated with a

given component. Such a list is generated for each component constituting the product.

A contact constraint algorithm is used to generate this list; the list is subsequently used

as one of the inputs to the precedence constraint algorithm.

4.3.2 Precedence Constraint Algorithm
Precedence constraints represent the fact that some components have to be assembled

before others. They are imposed within the hierarchical levels of the product model as

well as within subassemblies. A logical set of rules can be derived to establish an

adequate ranking system for all AFCs considered. AFCs that are restricted to

subassemblies within a given hierarchical level are called "fixed AFCs". An AFC

- 58-

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

allowed to move freely between hierarchical levels or subassemblies is deemed to be

"floating". This algorithm establishes the relative priorities of the AFCs included in the

connectivity model. The algorithm uses the contact list generated in the aggregate

product model.

4.3.3 Technological Constraint Algorithm
Technological constraints apply when multiple mating conditions occur in addition to

the regular sequential assembly processes. For example, a component may be assembled

with more than one component (multiple mating) or there may be a variety of AFCs

involved including permanent or reversible AFCs. In such cases the technological

constraints are applied to prioritise such operations. For example, permanent AFCs

(such as welding and joining using adhesives) are performed after executing all

reversible AFCs (such as placement and threaded) of the same level, for a given

component assembly. It should be noted that thus applies only to floating AFCs as

fixed AFCs maintain their relative positions, and any AFCs that do not follow this

precedence law should be made fixed.

4.4 Assembly time Generation Algorithm (AGA)
The assembly time for each AFC object generated (stored as a property of the object

subject to handling and insertion data) is calculated for every assembly sequence

generated; the summation of the operation times of all AFCs equates to the total

assembly time for a given product. The assembly time algorithm is based on the works

of Boothroyd and Dewhurst (1996) and the ideology behind Pre-determined Motion

Times Systems (PMTS) as discussed in Chapter 2.

The underlying principle in the infrastructure of PMTS is the decomposition of any

manual operation or method into the basic human motions required to perform it, and

assigning to each motion a predetermined time standard. These so-called "basic

motions" are dependent on the system being employed such as Maynard Operations

System Times (MOST) and Measured time Motions (MTM). In the original DFA

method as devised by Boothroyd and Dewhurst, estimates of assembly times are based

on a group technology approach where those design features of parts and products that

affect assembly times are classified into broad categories. For each category an average

handling and insertion time estimate is established. Clearly, for any particular assembly

operation these average times can be considerably higher or lower than the actual times.

However, for assemblies containing a significant number of parts the differences tends

to cancel so that the resulting total time is reasonably feasible.

- 5 9 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

The algorithm for the generation of assembly times used herein is an amalgamation o f

the two methods, coupled with industrial relaxation factors, resulting in the creation of

mathematical equations to estimate times for assembly operations by taking into

consideration the sequence of the assembly process and the layout of the assembly

workplace. It derives an ideal equation for a particular standard assembly operation.

These ideal equations are subsequently modified to allow for time constraints to be

taken into account. The time constraints imposed on assembly sequences are as a result

of the environmental constraints of the assembly workstation in terms of layout and

ergonomics. The basic equation for "time constraints" is compatible with experimental

data from Boothroyd and Dewhurst. Experimental validation for the method developed

is provided in Chapter 7.

A subset of AGA, Standard part assembly methodology (SPAM) can be described as a

body of methods used for calculating times for all feasible sequences for a standard

assembly operation. The method is similar to that described above, with an emphasis on

standard operations using repetitive motions. Here, standard operations are defined as

the assembly operations that involve the use of standard parts. Standard operations

considered within SPAM include bolting, screwing and riveting. A series of ideal

equations are derived for each standard operation using varying body motions and

standard part handling configurations. For a given standard assembly operation, an ideal

time expression is chosen from a pool of equations depending on time or other

environmental restrictions. Mathematical equation, shown in Appendix E, for tool use

with respect to the standard operations bolting, screwing and riveting have been

derived. These tooling equations have been incorporated in the generation of the basic

equations, which corresponds to the ideal situations.

A detailed description of the process of assembly time generation for standard parts and

standard assembly operations is presented in the following sections.

4.5 The Concept of Standard Parts for Mechanical Assemblies
The use of standard parts in engineering design has been greatly advocated both in

design textbooks (Pahl and Beitz, 1984) and by experienced design engineers within

industry. The use of common engineering components can easily be found in

mechanical assemblies such as gearboxes and engines. These include bearings, seals

and springs.

This section introduces the concept of standard parts for mechanical assemblies. It

presents the definition and classification of standard parts currently used within sectors

- 6 0 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

of industry, such as the automotive, aerospace, and electro-mechanical sectors. Also

presented is a detailed analysis of the standard part libraries currently available. The

importance and essential features required, along with the general structure for a

standard parts assembly database are subsequently discussed. Finally, an extract of the

current system is presented.

4.5.1 Definition and classification of Standard Parts
In general, standard parts can be defined by part functionality. Most common part

functions include bearings, fasteners, gears, seals, shafts, springs and wires. Within each

function there exist a range of core components that require a particular assembly

sequence or deformation during the assembly process. Such components or parts are

deemed to be standard parts.

The use of standard parts has been classified (Betteridge, 2000) within three broad types

of assembly, namely mechanical, electro-mechanical and electronics, shown in Figure

4-6. Table 4-3 shows examples of standard parts within the above-named assembly

types.

Mechanical

Standard parts Electro-mechanical Standard parts Electro-mechanical

Electronics

Figure 4-6: Classifications of Standard parts

| Classifications Examples of Standard Parts
| Electro-mechanical Motor, batteries, and generators.

Electronics Capacitor, cables wires, fuses resistive products,
and diodes.

Mechanical Bolts, screws, nuts, washers, rivets, pins, springs,
and bearings.

Table 4-3: Examples of Standard parts

4.5.2 Why Create a Standard Parts Database?
The advantages of using standard components are numerous. Pre-defined reliable

physical and performance characteristics, favourable supply conditions (which can be

set-up to aid production) and cost effectiveness are just a few of the benefits reaped

from the use of standard parts.

A standard parts database is included in CAPABLEAssembly to aid the process of

product specification and to derive accurate assembly times using as little input from the

-61 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

user as possible. The standard parts database contains information with regards to

geometric and parametric descriptions of parts, as well as other required assembly data

(e.g., manipulation data required for the calculation of assembly process times). The

objectives of creating such a database are:

1. Reduce complexity by limiting user input: an increase in the amount of

information required from the user will only serve to increase the complexity o f

a DFA system. Using standard parts wil l decrease the data required from the

user, as a selection system wil l be established. Reducing the complexity of the

system wil l increase the overall efficiency of the system. The use of stored data

lends itself to the reduction of computing time and available resources.

2. Provide a comprehensive parts list in standard format, that is, ISO, DIN and BS.

Not only do sub-assemblies have to adhere to a particular country's standard, it

is also imperative that the product specifications provided falls within the

guidelines as set by the respective standards. Al l geometric and parametric

descriptions of standard parts covered in the database are according to the well

established governing bodies namely, International standards organisation (ISO),

British standards (BS) and German standards (DIN).

3. Minimise computational time and resource requirements: The computational

time of CAPABLEAssembly wil l be greatly reduced by the adoption of a

standard part database. The database is capable of performing queries and

producing summaries on particular product groups. Such a facility can only

serve to minimise computational time as well as resources requirements.

4. Aid the calculation of realistic assembly times: The use of standard parts wi l l

ultimately result in the provision of more realistic assembly times.

When considering mechanical assemblies, the main joining operations performed

include; fastening by screw or bolt, riveting, pressing, and welding. Indeed, fastening by

screws or bolts together with riveting constitute over 60 percent of all mechanical

assembly operations. With these facts in mind, the database has been designed

specifically for the component category of FASTENERS. In the following section, the

process of deciding which parts would be included within the database, the type of

product information required and the database functionality's wil l be presented.

- 6 2 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

4.5.3 Data Acquisition
Prior to designing and setting up a database, a process of information gathering had to

be undertaken. For the product group of fasteners, a list of fasteners was initially

generated using the following paper-based components catalogues:

1. Hpc Gear, Transmission Catalogue

2. Hpc, Mechanical driver components Catalogue

3. RS Components Catalogue - Mechanical

4. SPEC, Stock Precision Engineering Components products catalogue

The referenced catalogues are non-manufacturer specific. This provided a good all-

round view of the parts and tools currently available in the targeted market.

Further investigations were made into obtainable tools and parts using manufacturer

catalogues. This was mainly done in the form of on-line company catalogues namely,

Black and Decker, Bosch, GESPIA, International Fasteners, K & L Fasteners, Lobster

Tools and SKIL Power tools. Due to the wealth of information received in terms of tool

availability, a sorting process was applied to eliminate parts and tools that were not to

be considered under the given definition and classification of standard parts within

mechanical assemblies. Furthermore, parts that were initially deemed to be standard

parts but did not met the BS, ISO, or DIN standards were identified.

With the information left, a process of compiling the data was executed. Products were

grouped according to their product type and product name, part size, and part thickness.

Possible handling times for each were also obtained for each standard part using the

Boothroyd and Dewhurst time standards, as shown in Figure 4-7. The parts are

expressed in terms of assembly modelling method described in section 4.2.1, as shown

in Figure 4-7.

Y e s

Loose Bolts
ct = 360 ;P = 0

* E G M - 1.43s

user input

1
i

user input
I

Nominal size and
thread diameter

* Do Sur face^v Nominal size and
thread diameter

2mm<Thick-
ness<80mm

6mrre sizes 15mm — c o n d i t i o n s aid J>—No-* *PHD (1) -2 .17s

M6, M8, M10

2mm<Thick-
ness<80mm

"H&M?

M12 15<size<:350mm E G M - 1 . 1 3 s M12 15<size<:350mm E G M - 1 . 1 3 s

Figure 4-7: Data acquisition

4.5.4 Standard Parts Databases for Mechanical Assemblies (SPAD)
A standard part database for mechanical assemblies, "SPAD" has been created for

CAJ'ABLEAssembly. Due to time limitations the part forms shown here have not been

- 6 3 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

integrated in CAPfiiBLEAssembly. However, the corresponding flat file database

currently used to store all the standard parts considered is accessed directly by

CAPABLEAssembly. The data currently available within SPAD has been limited to

mechanical fasteners such as bolts, nuts, washers and rivets.

The database has been specifically designed to aid a design engineer when using DFA

methods. The database has been designed for use at the aggregate level of product

design. Al l products listed within the database are stored in accordance to the aggregate

product model.

A number of computer systems for specific components have already been developed.

Most of the software packages widely available are for mechanical engineering

components. However, there are a limited number of packages becoming increasingly

available for electrical and electronic components as well as materials and adhesives. Of

the mechanical engineering components, bearings have received considerable attention.

F r e q u e n c y of types of c o n n e c t i o n s in the automot ive and mach ine tool industry .

60

5 0 . 2

50

40

• f r e q u e n c y

30

20
15 .1

8.1 10
4 9

2.8 I 8

1 1
• i rn

co CO co

a.

Figure 4-8: Frequency of types of connections in the automobile and machine tool industry (Abele,
1984; GieBner, 1975; Schweizer, 1978; Warnecke and Walther, 1984)

The basic work with regards to the development of a standard part assembly database

for mechanical assemblies is the customisation of such packages described above to suit

the needs of a design engineer using DFA tools at the conceptual stage of design.

Hence, it was decided that for the purpose of generating standard parts databases for

mechanical assemblies, fastening would undoubtedly be the most logical function to be

- 6 4 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

implemented. The frequency of such types of connections in the automobile and

machine tool industry is shown on Figure 4-8. For the purpose of this research, the

assembly connections considered are bolting, screwing and riveting. As can be seen

from Figure 4-8, this constitutes over 60% of assembly operations within the

mechanical engineering industry.

There are various methods of joining components. Assembly connections of product

components can broadly be divided into two sections, permanent joining and temporary

joining methods. Examples of permanent joining processes include welding, soldering

and use of adhesives. Temporary joining techniques comprise processes such as

screwing, bolting and riveting.

As it is now commonplace for design engineers to use advanced CAD systems, the

development of computer aided component selection system wil l prove to be a very

useful tool. The advantages of such software systems has been well documented, they

include:

1. A much-improved likelihood of identifying the best available component.

2. Speeding up of the selection procedure.

3. A l l component types and variants can be considered without prejudice.

4. A common selection procedure can be used for all available component variants

(especially true for when a windows operating environment is used).

5. The use of'standard' catalogue components is encouraged as opposed to 'specials'.

6. Accuracy and reliability of results are assured.

7. Presentation quality of calculations is improved.

4.5.5 Fields within SPAD
The standard parts gathered (see Section 4.5.3) are stored in Microsoft Access. Fields

are used to store vital information for each part. The naming conventions of Microsoft

Access were followed when naming the fields within SPAD. A field is defined as an

element of a table that contains a specific item of information, such as a product name,

supplier's names and manufacturers specifications. A field is represented as a column or

cell in a data sheet and as a control on a form. A field is defined by entering a field

name, a data type, and a description (optional). The set of data types available to choose

from for a field in Microsoft Access includes counter, currency, date/time, memo,

number, OLE Object, text, and Yes/No properties.

- 6 5 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

Fields in SPAD include; product ID, product type, product name, product features,

alpha and beta angles, and parametric definitions of parts. Other fields that wil l be

included in due course include values of pitch for threaded standard parts, weight of

standard part (this wi l l ultimately lead to the development of a linked materials

database) and the tooling resources currently available for operations concerning the use

of a particular standard part.

1. Product ID: The Identification of a product within the database is dependent on

the part function. Within mechanical assemblies, part functions include bearings,

seals, pneumatics, plumbing and pipe work. It has already been stated that

SPAD will deal with all standard parts under the part function of fasteners.

The product ID is used to define which functionality the part performs. At the

moment, all parts within SPAD fall under the part function of fasteners. In due

course the product IDs within SPAD could be extended to cover other part

functions within the mechanical assemblies. The data type input for this field

falls under the category of "Text". The product ID can be utilised as a base for

running queries and producing reports for a particular database. For example, the

database can be used to generate a summary of all parts under the product ID of

fasteners. Such a task can easily be performed using Microsoft Access. The

output of such an assignment is usually in the form of a report, which can be

exported as a text file.

2. Product Features: The product features defined utilise aspects of form features,

design features and manufacturing features. Product features are categorised

under two broad headings namely, positive and negative features. Positive

features describe a geometric shape, which encloses material volume. Examples

of positive features are cylinders and prisms. A negative feature describes a

geometric shape from where material has been extracted. An example of a

negative feature is a hole drilled through a prism.

It has already been discussed that at the aggregate level, the overall description

of parts or features should be a sufficient geometric representation of the part.

The data type allocated to this field is as above, text. Feature definitions along

with positive, negative, axisymmetrical and prism features have already been

discussed. A list of all features currently in use can be found in Appendix D.

As an example, the feature definition of a plain nut is show in Figure 4-9.

- 6 6 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

thickness

Plain Nut

+) prism

(-) hid

(-) pho

(-)pcs size

Figure 4-9: Product features of a plain nut

The positive feature of a plain nut is defined as a prism. Negative features are a

through hole and a tapered entrance. It is important to note that feature

definitions do not aim at fully defining a product, as this information is not

required for manufacturing purposes.

Product Type Classification: This refers to the general type of a standard part

found within a functionality class. For example, for the part function fasteners,

there exists a range of parts such as bolts and nuts, which can be considered as a

product type. The different product types under fasteners are shown on Figure 4-

10.

Rivets

Circlips

Studing

Figure 4-10: Fasteners; Product type Classification

It has already been stated that standard parts can be defined by their part

function. Each part consists of a range of products, which are categorised in

terms of their type. For example, the decision as to which class of parts falls

under the umbrella of fasteners was made by investigating the range of

components supplied by companies that specialised in the design, production

and retail o f fasteners. Design catalogues were also utilised. These including RS

Catalogue, K & L Fasteners, Industrial Fasteners, Lobster Tools and PM

Speciality Fasteners. For a complete selection of products and product types for

- 6 7 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

fasteners, see Appendix F. Products found in Appendix F include Bolts, Screws,

Washers, Pins, Nuts, and Rivets.

4. Product Name: Each product type may comprise several different sub-types of

standard parts associated with the particular part classification. The data type for

this field is text. The sorts of data input in this field include terms typically used

within industry when referring to different types of standard parts within a

certain class. Figure 4-11 shows the sub-class of the "bolt" class of fasteners. A

complete description for all classes of parts considered can also be found in

Appendix F.

Bolts

Nuts

Washers

Fasteners
Rivets

Roofing Bolts

Loose Bolts

|̂ Projecting Bolts

Hook and Eye

Hex. Heads

* Carriage Bolts

Anchor Bolts

"U" Bolts

Figure 4-11: Fasteners; Product Name

5. Alpha & Beta Angles: This is a direct application of Boothroyd and Dewhurst

manipulation angles. Alpha and Beta angles have already been discussed in

Section 2.3. The data type is numerical. Alpha and Beta values are typically the

same within a given product class. Maximum orientation angles refer to the

alpha and beta angles of symmetry as defined by Boothroyd and Dewhurst, for

product handling purposes. Hence, each product type has been assigned an

appropriate alpha and beta angle of symmetry.

6. Parametric Descriptions: Refer to the critical dimensions that fully describe a

standard part. Critical dimensions of interest for handling purposes include the

length/size and diameter/thickness of standard parts. The range of standard parts

covered is with accordance to suggested dimensions and material properties by

British Standards. This is a numerical data field. It will contain parametric

- 6 8 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

details defining a particular standard part. Parameters typically include thickness

and size.

Pitch

6

Pitch

Linear (Pitch)

1

0 -I 1 1 1 1 ^
0 10 20 30 40 50 60 70 80

Diameter of Bolt, mm

Figure 4-12: Relationship between bolt diameter and pitch

Linear trends were obtained using spreadsheet packages, which resulted in the

parametric descriptions for a range of standard parts. This results in a parametric

expression as a function of the parts' critical dimensions (for example the

diameter of bolts, thread size). Figure 4-12 shows the relationship between bolt

diameter and pitch size.

Where deemed necessary, the weight of parts will be represented as a function of

the parts' critical dimensions and material properties. However, it is hoped that

such data will eventually be obtained from a CAD system. Data can be stored in

two ways, in the form of a table or as a chart.

7. Tooling resources: Although not fully functional within the database, tool types

were selected to cover a wide variety of tools utilised when an assembly

operation is performed on a product type. At present, data purely consists of

fastening and loosening times and do not include handling times for the tool

depending on the assembly sequence. For example, Table 4-4 shows the

fastening times for several riveting tools. For a comprehensive list of tooling

resources and fastening data see Appendix E.

Tool Type Rundown time /Revolution
Lazy Long Type 2.06 sec/stroke
Standard Rivet Gun 1.03 sec/actuation
Hydro-pneumatic Riveter 1.33 sec/actuation
Manual Lever Riveter 1.53 sec/actuation

Table 4-4: Riveting Tools

- 6 9 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

4.5.6 Extract from SPAD
An extract of product classes "bolts" and "nuts" is shown below. The extracts are

presented in the form format. Figure 4-13 shows the sub-class of anchor bolts.

Product ID: |T

Product Type: |Anchor Bolls

'roduct Features (+ve£ | cylinder

Product Feature* [-vej: |esp, eld

Alpha Angles: [360

Beta Angles: [0~

Product Name: Mi (thickness): Size [min length Size [m< x lengtl *
• Through 8 50 105

Through 10 wr 111
Through 12 80 136
Through 16 140 220 • n a4

Ofl •

"1 i Record:|1 |ot 7

l<H | Record^ of 55 3HEE

Figure 4-13: Product Class: Bolts, Sub-class: Anchor bolts

A.
Product ID: |H

Product Type: [Plain

'roduct Features (+ve):

Product Features (-ve):

Alpha:

Beta:

htd, pho

Product Name: Mx [thickness]: | Size (min length| Size (max lengtl •
• 21 4.38 41

2.5 5.51 5.8

•

3 G.0G 6.4
• 4 7.74 ai •

Nl 4} Record: 1
• M
of 28 1—i—1 3 - 0 2

i I Record: of 1

Figure 4-14: Product Class: Nuts, Sub-class: plain nuts

Positive and negative features, alpha and beta angles can clearly be seen. The scroll

situated to the left of the sub-class allows the user access to the range of anchor bolts

stored within SPAD.

Figure 4-14 shows the sub-class "plain nuts" (belonging to the class "nuts"). Positive

and negative features, alpha and beta angles can clearly be seen. The sub-class "plain

nut" does not contain further sub-classes.

- 7 0 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

An extract of the product class "tools" is shown in Figure 4-15. The extract is presented

in the form format. Within this class, tooling information with regards to riveting and

screwing/bolting is stored. Al l tools are stored within the same class. The assembly

operation along with its respective tool can be found on each form as shown in Figure

4-15. The arrows at the bottom of each form allow the user to browse through the class.

Figure 4-15 shows the form for a riveting tool.

T o o l s

Tools

Standard operation: IRiveting

H|<|RecQtd:|1

Tools: |Lazy Long Type

Tool U i e Time: |2.06 sec/stroke

of 9

Figure 4-15: Product Class: Tools, Standard operation: Riveting

4.6 Standard Part Assembly Methodologies (SPAM)

4.6.1 Introduction
In assembly work, the efficiency of the process is greatly affected by the sequence of

assembly. With regards to assembly sequences, the number of alternatives tends to be

large. Consequently, the process of selecting the most cost-effective assembly sequence

from a large set of alternatives is a difficult and important task faced by design

engineers.

Standard part assembly methodology is used within the CAPABLEAssembly to aid the

process of assembly modelling and to derive accurate assembly times for standard

assembly operations. Mathematical expressions for estimated assembly times from

standard assembly operations are also derived.

Standard Part Assembly Methodologies (SPAM) can be described as a body of methods

used for calculating assembly times for all feasible sequences for a standard assembly

operation. It has already been stated (Figure 4-8) that manual joining tasks such as

bolting and/or screwing and riveting account for more than 60% of mechanical

assembly connections performed within the automotive, aerospace and machine-tool

industries. This indicates the importance of modelling and optimising fastening

operations. The SPAM set of techniques can be used to generate expressions to estimate

assembly times for mechanical assembly connections and evaluate various feasible

-71 -

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

sequences. Both the Standard Parts Assembly Database and the Standard Part Assembly

Methodologies are an extension of previous work done on standard parts by Betteridge

(2000) .

In this Section, the concept of standard assembly operations is presented. SPAM is

subsequently applied to chosen standard operations. An explanation of the methodology

is presented along with an explanation of the modifications to elements of the two DFA

systems utilised namely, Boothroyd and Dewhurst DFA method and Maynard

Operational Systems Technique.

Finally, an example of how the method can be used to estimate the assembly time of a

product is presented. Possible extensions of the methodology to other assembly

operations are also discussed.

4.6.2 Standard Assembly Operations
The establishment of assembly connections is one of the most common assembly tasks

in design, and the sequence of such connections a central problem which has to be

considered in assembly rationalisation.

The concept of standard assembly operations has been developed at Durham University

as a natural progression from the concept of standard part libraries (Betteridge, 2000) .

Initially, standard assembly operations were defined as operations linking together a

number of custom parts using joining methods typical of assembly processes.

Standard operations can be regarded as standard AFCs, where the assembly connection

requires the use of standard parts. The concept of standard operations is best described

using a bill of materials of an arbitrary product, as shown in Figure 4-16.

The concept of Standard assembly operations developed is now best described as

assembly operations linking together a number of custom parts by using an assembly

process which involves the use of standard parts and their respective tools. An example

of such assembly connections can be seen in Figure 4-16. The generic form that such

connections wil l take place can be described as "screwing". Other such connections

include bolting, snapping and riveting.

- 7 2 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

Product

Assembly

Component Component

Feature Feature

A s s e m b l y ^
Connect ion /

Feature

V Standard
Operation;
Screwing

CP; Custom Part
SP; Standard Part

Figure 4-16: A Standard assembly operation

4.6.3 The SPAM Methodology
The next step, the process of assembly modelling and the generation of assembly times

within CAPABLEAssembly, is to develop a method or a group of methods that can be

applied to all standard assembly operations with the ultimate aim of deriving

expressions to estimate assembly times for standard assembly operations, taking into

consideration the sequencing of the assembly process and the layout of the assembly

workplace.

At the conceptual stage of design, it is likely that there will be insufficient information

to obtain accurate assembly times. With the realisation that the majority of assembly

operations performed fall under the umbrella of standard assembly operations, it is

feasible to use SPAD to calculate times for any standard assembly operation considered.

The resulting methodology developed is an amalgamation of Boothroyd and Dewhurst

assembly times and the basic theory behind Pre-determined motion times.

The method has been applied to a number of standard operations namely bolting,

screwing and riveting to obtain varying time expressions for assembly times for the

named standard operations. The base of the methodology is an adaptation of MOST

73

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

SYSTEMS (MOST SYSTEMS, User Manual, H.B. Maynard and Company, Inc.). It

utilises the notion that basic assembly motions can be broken down and codified. The

basic difference between SPAM and MOST systems is the incorporation into SPAM of

the Boothroyd and Dewhurst time constraints on (as discussed in Section 2.3);

• Weight

• Alignment and realignment

• Holding down

• Obstructed access

SPAM utilises the time values obtained from Boothroyd and Dewhurst experimental

work to obtain modifications to the existing parameter index values provided in the

current version of MOST.

SPAM derives time expressions by breaking down the assembly actions. The

terminology (as described in Section 2.9.3) used to describe assembly task in MOST, is

adopted, and extended. SPAM derives an ideal expression for a particular assembly

operation, and time constraints are subsequently added to the basic time derived. The

time constraints are dependent on the layout of the workplace and the application.

The first step taken when developing assembly time expressions using SPAM is to

observe the entire standard operation. Once the entire operation has been observed, the

basic assembly motions are expressed using a simple flow chart like format, as shown in

Figure 4-17.

M Bolts

Insert Bolt

S_Nut

1 <

Fasten

J

Figure 4-17: Bolting; Sequence BN l

- 7 4 -

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

The entire operation is converted to a representation using an adaptation of the MOST

SYSTEM sequence models. The modifications included to the current parameter index

values of MOST are explained in the following section. SPAM currently only utilises

the General Move Sequence and the Tool Use Sequence. Each assembly time

expression for a particular sequence of a standard operation is initially generated for

ideal situations, as described in the flowcharts, as shown in Figure 4-17.

Where,

M Nut is interpreted to mean 'Collect a handful of bolts from a parts bin.

S Nut is interpreted to mean 'Collect a single of nut from a parts bin.

Repeat process n times.

A complete list of all flow charts and derived equations can be found in Appendix E.

Time penalties are subsequently added on to the basic equation. The expressions for

time penalties have been extracted from Boothroyd and Dewhurst experimental data.

The time penalties imposed on assembly sequences are as a result of the environmental

constraints of the assembly workstation in terms of layout and ergonomics.

4.6.3.1 Preliminary Activities
Three types of sequence models are needed in MOST to measure manual work, and

three additional for heavy work, using material handling equipment. Of particular

interest are the "General Move" sequence and the "Tool Use" sequence. These

sequences have already been detailed in Section 2.9.3. The general move sequence has

four sub-activities to account for distinct situations, A, B, G and P. The activity groups

along with the respective sequence models are shown in Table 4-5. Time related index

values based on the motion content of the sub-activities are placed on each sequence

model parameter. The sequence model for both the General Move Sequence and the

Tool Use Sequence is shown in Table 4-5.
1 1 ^ ^ = ^ = • • L. L L • 1

Manual Handling
Activity | Sequence Model Sub-activities
General Move ABGABPA A; action distance,

B; body motion,
G; gain control, P; Place

Tool Use ABGABP (F/L/M/R/S/T)
ABPA

F, fasten; L, loosen;
M, measure; R, record;
S, surface-treat; T, think

Table 4-5: MOST activity sequences shown with the sub-activities (MOST Systems, H.B. Maynard
and Company, Inc., User Manual).

- 7 5 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

Prior to any modifications to the M O S T system, it was deemed necessary to investigate

the correlation between M O S T and Boothroyd and Dewhurst DFA method. A simple

test would be to estimate the assembly time for a given standard operation using the two

methods. A positive result is defined as assembly times within an error margin of ±5%

for the given assembly operation.

Effect of No. Of threads on time to pick up the tool, engage the screw, tighten
the screw, and replace the tool

16

14

12
Slot Head

Phiips-Head y = 0.4333X + 3 41 10
Allen

c 8 Philips-Head (Power Ted)

a y = 0.2667X + 2 Sid-Head (Power Toon

12 16 10 14

No. of Threads

Figure 4-18: Operation times for screwing (Boothroyd and Dewhurst, 1996)

From Boothroyd and Dewhurst experimental work it is possible to obtain actual times

for a number of assembly operations, as shown in Figure 4-18.

For the purpose of this analysis, it is imperative that the sequence of the standard

operation chosen can accurately be described using both MOST and Boothroyd and

Dewhurst DFA method. Consider the following cases using both MOST and Boothroyd

Dewhurst DFA method.

4.6.3.2 Case Study 1
Estimate the time taken to fasten a slot-head screw when a screwdriver requires six

turns.

1. Using MOST System

Tool Use Sequence with associated parameter index values:

A, B 0 G, A, B 0 Pi F,6i B 0 P, Ao

(1+0+1+1+0+1+16+0+1+0) 10 = 220 TMU

Which is equivalent to 7.9 seconds.

- 7 6 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

2. Using Boothroyd and Dewhurst DFA method

From Figure 18 the time taken to pick up tool, engage screw, tighten the screw

and replace the tool is:

y = x + 15

Where y is the operation time and x is the number of threads. The number of

threads is equivalent to the number of revolutions or turns needed to tighten the

screw.

6+1.5 =7.5 seconds

4.6.3.3 Case Study 2

Another check performed involves the use of Boothroyd data to generate parameter

index values. The time values used in the Boothroyd and Dewhurst DFA method were

the result of extensive experimental work and work-study cases. MOST assign index

values by initially observing the procedure and by subsequently attaching a

corresponding index value within approved TMU intervals. Hence, i f the time or an

expression for a specific operation can be deduce using validated experimental data it

should be feasible to calculate the index value for a particular sub-activity.

Using the data presented in the case study above (case study 1), the total operation time

using a slot head is 7.5 seconds. According to Boothroyd data, 1.5 seconds of this time

is spent picking up and replacing the tool (in Figure 4-18, the tool operation time

corresponds to the slope of the graph).

Using MOST systems,

Obtain tool: A i B 0 Gi

Place tool on screw: Ai Bo Go

Relinquish tool: Ai B 0 G|

Total parameter index = 6, convert to TMU (xlO) = 50 TMU.

Convert 50 TMU to seconds 27.3) =1.8 seconds

From the results of the case study, it can be seen that the Boothroyd DFA methods gives

lower assembly time estimations when compared to the MOST system. The difference

in estimated assembly time for case study 1 is 0.4 seconds, and that of case study 2 is

0.3 seconds. As a result, for the purpose of this research, when mapping from the

- 7 7 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

Boothroyd D F A methods to M O S T , a maximum percentage difference of 5% has been

added, and vice versa.

4.6.4 Modifications to MOST & Boothroyd Dewhurst Design for
Assembly Method

The following modifications were made to the MOST system's basic sequence models:

1. The MOST SYSTEM regards part orientation as "adjustment or fumbles", and

can be found under the placement sub-activity. These adjusting motions fall

within four basic types, which are determined by the part's relationship to the

axis of insertion/placement angular, lateral, and rotational and insertion as

shown in Figure 4-19.

Adjustment
Adjustment

•

o

djustment

Axis of
placement

Angular Lateral Rotational

^Adjustment

Insertion

Figure 4-19: The four basic types of adjustments defined by object relationship with axis of
placement

In the case of Boothroyd and Dewhurst DFA method, the effects of part

orientation have been investigated. The AAMP system currently utilises

Boothroyd and Dewhurst DFA type data. In comparison, the codification for

part orientation within MOST is insufficient. For this reasons it was deemed

necessary to adopt an index value to MOST to account for time differences in

handling parts. Body motions prior to the placement of the part have been

included within SPAM. Initially, the codification of handling o f parts given the

orientations listed in Table 4-6 was Ao P3 AQ.

Orientation Angles as
defined by Boothroyd
Dewhurst

Estimated part handling time
obtained from Boothroyd
Dewhurst Time standards (Sec)

Resulting Equivalent
Index Values Utilised
within SPAM

(a+P) < 360 1.13 AoP3 AO
360 < (a+P) < 540 1.5 A , P 3 A O

540<(a+P)<720 1.8 A3P3 Ao

(a+p) = 720 1.95 A 3 P 3 Ao

Table 4-6: Modifications to part handling

2. The MOST system currently accounts for the difference in obtaining one object

from a part bin, and obtaining multiple parts from a parts bin. MOST, however

78

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

does not account for the effect of part thickness and size on handling time. From

the Boothroyd and Dewhurst work, expressions for the effect of part thickness

and size on handling times can be extracted. Also, corresponding MOST index

boundaries can be obtained from the user manual together with the equivalent

time boundaries in seconds. To obtain the different index values that were

dependent on part size and thickness the Boothroyd and Dewhurst data were

utilised. Prior to this it was checked that MOST time values were comparable to

Boothroyd and Dewhurst. Using the Boothroyd and Dewhurst handling data, the

handling time for a part that:

• presents no handling difficulties

• is easy to grasp and manipulate

• has a thickness greater than 2mm

• has a size greater than 15mm

• has an alpha1 and beta values within the range of 360° and 540°

is 1.43 seconds. The equivalent time using MOST systems is 1.43 seconds.

Again, this shows the results are within a five- percent error band. The derived

mappings is shown in Table 4-7.

1 Part Size as defined by
Boothroyd and Dewhurst

Estimated part handling time
obtained from Boothroyd
Dewhurst Time standards (Sec)

Resulting Equivalent
Index Values Utilised
within SPAM

size < 15mm 1.5 AoP3 AQ
6mm < size < 15mm 1.8 A, P3 A 0

15mm < (a+P)< 80mm 2.25 A 3 P3 Ao 1 |

Table 4-7: Modifications to MOST

3. As a result of validations performed on the derived expression using the SPAM

methodology it was found that it is necessary to include a palming action

parameter index i f more than two parts were obtained from a part bin in a single

motion. This created an additional parameter index value P3 (1.1 seconds). This

value is required when grasping and controlling multiple parts. For example, i f

an operator picks 6 bolts from a parts bin, he/she wil l require a palming action to

reorient the part before insertion.

4. SPAM includes actions that do not belong to any of the sub-activities presented

in the basic MOST, in particular run-down time for nuts. A parameter and

1 MOST as does M T M uses a maximum value for beta angles, but does not take into consideration alpha
values, hence the total angle of symmetry was chose to be between 360° and 540°.

- 7 9 -

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

suitable codification has not been allocated to these actions within MOST.

Times for such actions have been extracted from the Boothroyd and Dewhurst

experimental data. These times are simply added on once the entire sequence has

been converted from TMU to seconds.

5. Tooling Sequences: In the process of deriving time expressions using the Tool

Use sequence as presented in the MOST (basic) user manual, it was found that

there were insufficient listings of tools. Also for the tools listed, the information

presented did not fully define the basic assembly motions observed during the

validation process. For the tools listed, the development of the tool use sequence

proved to be a long-winded affair resulting in a reduction in the effectiveness

and speed of the system. For those reasons it was decided to invent new

codification as well as index values for tool use sequences. See Appendix E.

6. The index values presented in MOST for the fastening and loosening actions

(parameters F&L) proved to be insufficient with regards to the tools utilised. As

a result, the index values used in SPAM for fastening operations using tools

such as a standard rivet gun were obtained by the allocation of index values of

tools that required similar body motions and applied force.

4.6.5 Modules within SPAM
Modules within SPAM refer to sequences generated for particular standard assembly

operations namely bolting, screwing and riveting. The process of generating sequences

was initially done by utilising set theory. This method provided all permutations given a

number of custom parts, standard parts and preferred assembly order. Subsequently, the

feasible assembly sequences were extracted form the permutations obtained.

It was found during the validation process that these sequences had to be further

narrowed down as some sequences proved to be dependent on the tool used for the

operations. For example, the number of feasible sequences for a riveting operation is

reduced from six to two when using a standard rivet gun as opposed to an air gun.

Each module has been given a code and a code number. An explanation of how the

expressions have been derived is included for each of the standard assembly operations

considered.

Each module also has a graphical representation and a corresponding step-by-step

description, which allows easy comprehension by the user. This format allows the

creation of an assembly workbook or a computer based decision-making system.

- 8 0 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

4.6.5.1 Examples of sequences in SPAM

Some examples of assembly sequences derived using SPAM are presented below:

1. Sequences for Bolts, Nuts, and Washers (BNW).

Reference code: BNW_1 -

BNW l describes a simple bolting operation where all body motions are

sequential and there is an absence of complex body motions such as palming

actions. A washer is placed on the shank of the bolt before the nut is tightened.

The sequence adopted by the assembler is given below. An explanation for the

derived equation for sequence BN l is given in Table 4-8.

M S Bolt I
Insert Bolt

S Washer

Place Washer
on bolt

S Nut

Fasten

Description of process Sequence:
Collect a handful of bolts form a part
bin.

A, B 0 G3

Insert bolt through holes. Repeat
process n times.

A, Bo P3 PA3

Collect a single washer from a part bin. A, B 0 G 3

| Place washer on bolt A, B 0 P3

| Collect a single nut from a part bin. A, B 0 G 3

| Fasten with desired tool. | A] F3

| Repeat process n times. |

| Equation: j 23n*(2.78 (- |))

Table 4-8: BNW_1

2. Sequences - Riveting Sequences

Reference code: RIV 4 -

RIV 4 describes a riveting operation where all body motions are sequential.

RIV 4 is a probable sequence adopted by an assembler riveting a number of

parts (e.g. two metal sheets) together. A palming action is introduced when

- 81 -

AGGREGATE ASSEMBLY MODELLING AND REPRESENTATION

handling multiple parts. An explanation for the derived equation for sequence

BN l is given in Table 4-9.

M_Rivet

I

\W
A

I

Replace Tool

Description of process Sequence:
Collect a handful of rivets from a part J A t B 0 G 3

bin. 1
Insert rivet into the pre-drilled hole in
the material to be joined.

A, Bo P3

Repeat n times. n PA3

Insert the rivet head into the nosepiece
of the riveting tool and actuate tool.

I 4 F6 A,

Repeat n times. n
Replace tool. A,

| Equation: (l8« + 5)*(27.8')

Table 4-9: RIV 4

A ful l list of all derived standard operation times using SPAM, can be found in

Appendix E, together with a guide to reading the diagrams. SPAM.

4.7 Conclusion
The building blocks of CAPAJSLEAssembly have been presented in this chapter. The

aggregate product model used to describe the assembled state of a given product; the

connectivity model provides a relational product model for the generation of assembly

sequences; the assembly time generation algorithm shows how the times attached to

each assembly operation have been obtained.

With the requirements for the generation of assembly operations, sequences, and times

now in place;

• the aggregate product model, used to describe a product in terms of its

assembly features and assembly processes

- 8 2 -

AGGREGATE ASSEMBLY MODELLING A N D REPRESENTATION

• the connectivity model, used to provide relational data between components,

and establish assembly constraints for feasibility requirements

• the assembly time generation algorithm, used to generate estimate assembly

times for assembly operations

the scene is now set for the processes of generating optimal assembly sequences from a

product model at the aggregate level of design.

- 8 3 -

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

5. Automatic Generation of Optimal Assembly
Sequences Using Simulated Annealing

5.1 Introduction
The automatic generation of assembly sequences is recognised as an important aspect of

assembly planning and optimisation in order to streamline production and reduce lead

times and costs. It also plays an important role in designing and planning the assembly

system. The methodology presented herein uses simulated annealing to aid the process

of creation and selection of optimal assembly sequences using simulated annealing as a

search method. This methodology is centred round an object-oriented platform as a

means for managing product, topological, and resource data for assembly modelling and

reasoning purposes.

The efficiency of the method is ensured by restricting the search space to assembly

sequences that satisfy the connectivity model (discussed in Section 4.3). Since all these

sequences already satisfy feasibility criteria, the objective function used for evaluating

assembly sequences here is based on criteria that minimise assembly time. The data

stored within the connectivity model creates a knowledge base capable of evaluating

alternative models of a given product; this feature is necessary i f the method is to be of

use at the conceptual stage(s) of design.

Generally, assembly sequence generation consists of the two major activities: assembly

modelling and generation of feasible assembly sequences. In order to recommend a

good sequence of assembly operations for a new product, the process planner needs to

be able to select a number of "good" assembly sequences from a pool of feasible

options. The process of generating feasible assembly sequences is largely rudimentary

and can be performed in an efficient manner when computational methods are

employed. However, when considering the evaluation of these sequences the

complexity of the process increases exponentially. The use of general-purpose heuristics

such as tabu search, local search, simulated annealing and genetic algorithms have been

widely acknowledged as an effective method for solving such intractable problems

despite the fact that they do not guarantee attaining an optimal solution.

This chapter details the multi-criteria optimisation of feasible assembly sequences based

on a simulated annealing approach. The layout of this Chapter is as follows:

• Section 5.2 outlines the factors taken into consideration when generating optimal

assembly sequences. It also explains the reasoning behind the chosen assembly

-84-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

criteria for comparing assembly sequences and the method used to compare

assembly sequences.

• Section 5.3 details the assumptions made when deriving the objective function

used to compare the assembly sequences generated. The assumptions made for

generating assembly sequences are also documented.

• Section 5.4 explains the derivation of the objective function that the simulated

annealing algorithm uses to compare the assembly sequences. It also outlines the

evaluation criteria and mathematical models used to derive the overall assembly

time expression.

• Section 5.5 presents a system overview for the assembly sequence optimisation

module within CAPABLEAssembly. It navigates you through the entire module

depicting how the internal modules of the system are interlinked. The following

sections discuss the workings of the internal modules in detail.

• Section 5.6 gives an overview of the simulated annealing approach for solving

combinatorial optimisation problems, and shows how the method can be adapted

to the issue of assembly sequence optimisation.

• Section 5.7 describes the method used to generate an optimal assembly sequence

using simulated annealing.

• Section 5.8 presents an illustrative example detailing all the steps mentioned

above to generate an optimal assembly sequence for a given product model.

• Finally, Section 5.9 pulls together all the conclusions drawn from this Chapter.

5.2 Definition of Problem
The main objective here is to reduce production lead times and consequently production

cost: in other words, to decrease the assembly time of a given product. For a given

product consisting of n parts, there are n\ possible assembly sequences assuming no

technological or geometric constraints. Among the numerous possible assembly

sequences, there are x sequences that are actually feasible, that is, would result in the

desired functional product. Within this set of feasible assembly sequences there are a

series of assembly sequences that optimise the assembly process with respect to a

predefined criteria. However, optimisation of the assembly sequence based on one

criterion wi l l more than likely be at the expense of another optimisation criterion.

Hence, a multi-criterion approach to optimising assembly sequences is required.

-85-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

There are a number of assembly constraints that can be used to achieve this. For the

purpose of this research the following criteria are considered:

• Minimisation of number of reorientations: The effects of re-orientation on the

handling time for parts and tools have been documented in Section 2.3.1. This

considered only individual parts; here, the focus is shifted to the effects of

reorientation on subassemblies.

• Maximisation of stability of intermediate subassemblies: Stability is an

important issue when considering assembly time because the presence of

unstable subassemblies at best necessitates holding down requirements and

increased reorientation problems. At worst, it may cause subassemblies to

spontaneously disintegrate.

• Parallelism: An assembly sequence that allows for parallelism can reduce the

overall assembly time for a product as it lends itself to the concurrent execution

of some assembly tasks.

These criteria were chosen because collectively they significantly affect the assembly

time for a given assembly sequence. Clustering (of similar assembly tasks, also referred

to as work relatedness) is another typical factor taken into consideration at this stage

(Laperriere and ElMaraghy, 1996). I f clustering is considered at this stage, the main

advantages are:

• Reduction in the handling time for components and their associated tooling

requirements.

• Merging of similar operations into simultaneous operations.

However, i f clustering is left until the line balancing stage, the assembly time decreases

because the operator becomes more skilled at performing the given task. More

importantly, restrictions on when certain assembly tasks are performed is relaxed. The

key priority is that all operations are loaded on the same workstation and not necessarily

at the beginning or end of the assembly sequence, thus increasing the flexibility of the

system. In this work we leave clustering considerations t i l l the line balancing stage.

5.3 Assumptions
The automatic generation of assembly sequences is not solely governed by applying

assembly constraints. In order to generate all the feasible sequences of assembly

operations the following generic assumptions are made:

-86-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

1) An assembly operation joins two or more parts and/or subassemblies.

2) The order of assembly is the reverse of the disassembly.

3) The geometric relationship between individual parts remains the same after they

are assembled.

4) Assembly time is typically regarded as a combination of set-up time and actual

assembly time. For the purpose of this research assembly time is considered to

be the summation of part handling time and the actual operation time.

Toolmg/Machine set-up time is not considered. The assumptions made for the

generation of the assembly time databases used within the assembly sequence

generation module regarding;

a. handling standard parts (SPAD)

b. custom assembly parts

c. standard assembly operations (SPAM)

d. customised assembly operations

have been discussed in detail in Chapter4, Section 4.4.

5.4 Optimisation: evaluation criteria and mathematical
models

The objective is to develop a mathematical model of the operation sequencing decision

process that captures the problems characteristics, and also the assumptions made

above. To achieve this, certain control variables or assembly criteria need to be defined.

The method approaches the issue of minimising assembly times by considering the

following three variables;

• Minimisation of the number of reorientations (c/)

• Maximisation of parallelism (02)

• Maximisation of the stability of the intermediate subassemblies (cj).

5.4.1. Minimisation of the number of reorientations (c*)
Some intermediate assembly operations require reorientation of sub-assemblies. The

issue of reorientation of components already been accounted for when estimating the

handling time for the moving part within an AFC. The objective here is to minimise the

number of times sub-assemblies are reoriented while the product is being assembled. To

- 8 7 -

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

achieve this we introduce a reorientation index, x r e . The cost function for the total

number of reorientations is shown in Equation 5-1:

n-l

RE = ^ x r e Equation 5-1

Where,

n is the total number of AFCs for a given assembly sequence.

/' is the AFC being considered

The maximum value of RE is equal to n - 1 . Assembly sequences with higher values of

RE are said to have higher instances of reorientation.

x r e is based on the time standard classification as defined by Boothroyd and Dewhurst

(see Appendix A). It is calculated by mapping the assembly time associated with each

a+P range to a sliding scale of 0 to 1 as shown in Equation 5-2

T — T
1 max 'a+8 „ ,. _ -

xre = — Equation 5-2
^max — ^min

Where;

Tmax is the mean handling time for a+P = 720°.

T m , n is the mean handling time for a+P < 360°.

T a +p is the mean handling time for the a+p range in question.

I f either the moving or stationary part in AFCy (notation explained in Section 4.3) is the

moving or stationary part in AFCy+i, then AFCy+i is viewed as a component and the net

reorientation effect is viewed as the a+P value of the moving part in AFCy+i.

Otherwise, i f neither AFCs have parts in common, both AFCy and AFCy+i are viewed

as subassemblies and maximum reorientation is imposed on the sequence. This is

because typically subassemblies can only be assembled in one direction, this

corresponds to an a+P of 720°.

jcre depends on the value of a+P of the moving part in AFCy+i. The possible values for

xK are given below:

1. a+P < 360°. x r e is set to 0.

2. 360° < a+p < 540°. xie is set to 0.5.

3. 540° < a+p < 720. jcre is set to 0.9.

-88-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

4. a+p = 720. xTe is set to 1.

Take, for example the assembly of the cutting head of a typical hedge trimmer. This

consists of the following AFQjS within the same assembly level (i = 3):

• Plug'n'Target3,9

Mating components: cuttingheadbody (stationary) and nut (moving)

a+p values: 540° and 180°

• Plug'n'Targets^

Mating components: cuttingheadbody (stationary) and spacer (moving)

a+p values: 540° and 180°

• Plug'n'Target3j

Mating components: linefeeder (stationary) and spring (moving)

a+p values: 540° and 180°

• Placement3;6

Mating components: cutting head body (stationary) and line feeder (moving)

a+p values: 540° and 540°

• Snap_fit355

Mating components: cutting head body (stationary) and eye (moving)

a+p values: 540° and 720°

• Placements^

Mating components: cutting head body (stationary) and spool (moving)

a+p values: 540° and 540°

• Snap_fit3,3

Mating components: cuttingheadbody (stationary) and cutting head cover

(moving)

a+p values: 540° and 540°

The reorientation index (xK) between Plug'n'Targets^ and Plug'n'Target3;8 is 0. Since

both AFCs have a part in common, in this case the cutting head body, Plug'n'Target3,8

is viewed as a component. The moving part in Plug'n'Targets^ is the nut with an a+p

value of 180, hence xTe = 0.

Using the same analogy, the following xre values and hence RE can be derived for the

sequence presented above:

• jcre between Plug'n'Target3,8 and Plug'nTarget3j7 = 1.

-89-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

Both AFCs have no parts in common, hence are both viewed as subassemblies,

hence a maximum xTe value.

• Jtr e between Plug'n'Target37 and Placement3;6

 = 0.9.

Both AFCs have a part in common, a+p value for the linefeeder is 540°.

• x r e between Placements^ and Snap_fit3i5 = 1.

Both AFCs have a part in common, a+P value for the eye is 720°.

• xK between Snap_fit3)5 and Placements^ = 0.9.

Both AFCs have a part in common, a+P value for the spool is 540°.

• x r e between Placements^ and Snap_fit3,3 = 0.9.

Both AFCs have a part in common, a+p value for the cuttingheadcover is

540°.

• fl£ = 0 + l + 0.9+l+0.9 + 0.9 = 4.7

5.4.2. Maximisation of parallelism (c2)
The selection of an assembly plan that allows parallelism leads to significant reduction

in the total assembly time. Assembly sequences carried out sequentially generally have

longer assembly time when compared to performing operations simultaneously.

Economically speaking, this is not directly proportional to a decrease in assembly cost,

as simultaneously operations tend to require an increased level of available resources.

At the conceptual stage of design, it is advantageous to have some means of measuring

the economic trade-off between sequential and concurrent assembly sequences. This

assembly variable provides a measure of the ability of an assembly sequence to be

carried out simultaneously. The cost associated with parallelism is as defined by

Laperriere and ElMaraghy (1992).

Laperriere and ElMaraghy determine how good a disassembly operation is with respect

to parallelism by counting the number of components in the two subassemblies, that is

the 'child' subassemblies resulting from the disassembly of the 'parent' subassembly.

The smaller the difference between the number of components in each child

subassembly, the better the operation with respect to parallelism.

I f a feasible assembly sequence exists such that every disassembly operation splits the

parent subassembly into two subassemblies with equal numbers of components, then

maximum parallelism is achieved. I f a parent subassembly has an odd number of

components, the best that can be achieved is to split this subassembly into two

subassemblies whose respective number of components differs by one. I f every

-90-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

operation in the feasible assembly sequence always consists of removing a single

component at a time the concurrency cannot exist.

To avoid making a distinction between a parent subassembly with an even or odd

number of components, Laperriere and ElMaraghy merge both possible values in the

best-case situation are into a single standard, dif. I f " d i f denotes the difference in the

component count of the two subassemblies and "n" denotes the number of components

in their parent subassembly, then the value of dif as defined by Laperriere and

ElMaraghy is given by Equation 5-3.

dif-

0 if diff = 0 and n is even

0 if diff = 1 and n is odd

dif otherwise

Equation 5-3

The maximum difference "d" between the component count of two subassemblies

resulting from splitting a parent subassembly is given by Equation 5-4:

d-n-2 Equation 5-4

The overall cost function for parallelism PA (Laperriere and ElMaraghy, 1992), is

shown in Equation 5-5:

wBa xdiff
PA = _Pf _ Equation 5-5

d

Where W p a is the relative weight of the parallelism criterion as specified by the user, dif

is the value of the difference in the component count of the two subassemblies as given

in Equation 5-3, and d is the maximum value of this difference as given in Equation 5-4.

Assembly sequences with higher values of PA are said to have more instances of

parallelism. Take, for example the assembly sequence for a trimmer assembly shown in

Table 5-1, its connectivity model is provided in Figure 5-1.

-91 -

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

No. AFCy Components within A F C
1 Wiring3j switch,capacitor
2 Wiring3,2 switch,black_wire
3 Plug'n'Targetsj line feeder,spring 1
4 Placement3,6 cuttinghead body,line_feeder I
5 Snap f i t j s cutting head body,eye
6 Plug'n'Target39 cutting_head_body,nut
7 Plug'n'Target3,8 cutting_head_body,spacer
8 Placement3,4 cutting_head_body,spool
9 Snap_fit3,3 cutting_head_body,cutting_head_cover
10 Placement2,i lower_body,motor
11 Threaded2,2 cuttingheadass, motor
12 Placement2,3 lower body,switch_ass
13 Plug'n'Target2,4 cable support,mains_cable
14 Plug'nTarget2,5 lower body,cable_support
15 Wiring2,6 switch_ass,mains_cable
16 Wiring2,7 motor,switch ass
17 Placement2,8 lower body,upper body
18 Threaded2>9 upperbody, lo wer_body,screw

Table 5-1: A feasible assembly sequence for a trimmer assembly

The disassembly of the 'parent' assembly; the trimmer assembly, results in two 'child'

assemblies; the switch assembly and the cutting head assembly, as shown in Figure 5-1.

I f the parent assembly is in Assembly level 1, Assembly level 2 is searched for the

presence of subassemblies. In this example there are two subassemblies in assembly

level 2, namely the cutting head ass and the switch ass.

The number of AFCs in the cutting head ass and the switch ass is obtained from the

connectivity model shown in Figure 5-1. Alternatively, the number of components can

be used for the analysis, accessible from the product model also shown in Figure 5-1,

but the resulting value of PA remains the same. However, for efficiency and speed,

AFCs are used, and the product model is only referenced where absolutely necessary.

-92-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

T r i m m e r a s s

P r o d u c t M o d e l

Ma ins c a b l e

L o w e r _ b o d y

U p p e r _ b o d y

C u t t i n g _ h e a d _ a s s

Motor

S c r e w

L ine feeder

Nut

C u t t i n g _ h e a d _ b o d y

S p o o l

S p a c e r

C u t t i n g _ h e a d _ c o v e r

E y e

Spr ing

C a b l e _ s u p p o r t

Swi tch a s s

I
Swi tch

C a p a c i t o r

B lack wire

C o n n e c t i v i t y m o d e l

T r i m m e r a s s

Wiring 27

W i r i n g 26

Plug'n 'Target jg Plug'n'Targetgg

P l u g ' n ' T a r g e t ^

C u t t i n g _ h e a d _ a s s

P l a c e m e n t ^

T h r e a d e d 22

Plug'n'Targetgg

P l u g ' n ' T a r g e t ^

P l a c e m

S n a p _ f i t 3 5

P l a c e m e n t ^

Snap_f i t

P l a c e m e n t 2 1

Swi tch a s s
Wi r ing ,

Wiring 3 1

Figure 5-1: Trimmer product model and generated connectivity model

For the assembly sequence in Table 5-1 PA is calculated as follows;

• number of AFCs in cuttingheadass is 7

• number of AFCs in switch ass is 2

n = 9 . This corresponds to the number of AFCs in the parent assembly, that is,

the trimmer ass.

• from Equation 5-4: d = 9 - 2 = 7

• from Equation 5-3: dif = 5

AFC difference between cutting head ass and switch ass: 7 - 2 = 5 . Since dif is

not equal to 1 or 0, dif = 5 .

-93-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

• from Equation 5-5: PA =
w__ x 5 pa = 0.1w pa

5.4.3. Maximisation of the stability of intermediate
subassemblies (c3)

The aim here is to avoid mating parts that disassemble spontaneously. An assembly

sequence that involves highly stable subassemblies increases the ease with which a

product/sub-assembly is assembled. Also, the reliability of the sequence of assembly

operations is increased resulting in reduced assembly cycle time by preventing errors

during execution by avoiding unstable subassemblies when building a product.

One of the basic concepts of good design in terms of DFA is to assemble parts which

once in place, are maintained in place by their physical contact with other parts. The

stability of an assembly/sub-assembly includes gravity stability, assembly stability and

plastic stability.

For the purpose of this research, a stability rating system has been derived, assigning all

AFCs (adhesives, plug'n'target, threaded, pressure-fits, riveted, placement, labelling,

wiring, packaging and welding) considered with a stability rating index (r^), ranked in

ascending order (Appendix G) according to the degree of permanence of the joining

methods considered in this research. In general all reversible assembly operations have

lower stability ratings, although reversible fastening operations have been assigned high

stability rating. A comparison of the joining processes employed can be found in

Delchambre (1996).

To compare the stability of two adjacent AFCs (AFCy and AFCjj+i) we introduce a

stability index, x a . I f the two consecutive AFCs do not have mating parts in common,

there is no net effect on the stability o f the system. Performing AFCy before AFCjj+i, is

as likely to stabilise the assembly as destabilise the assembly. As such no significant

information can be inferred from the stability index as the action AFCij+i does not affect

any of the parts in AFCy. Hence, xst is set to zero.

I f the two adjacent AFCs have mating parts in common, a comparison is made between

their stability-rating indices.

• I f the stability of AFCy is greater than AFCjj+i; is set to - 1 , system is

potentially unstable. I f the following assembly operation to a given operation

does not secure the relative position of one of the parts in the preceding

operation, the stability of the assembly is questionable. The mere fact the system

-94-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

could disassemble or require holding down is sufficient to impose a negative

stability index.

• I f the stability of AFCy is less than AFCy+i; x s t is set to 1, system is potentially

stable. I f the following assembly operation to a given operation secures one of

the parts in the preceding operation, the stability of the system is not guaranteed,

but the assembly might be stable. Again, this is sufficient to impose a positive

stability index.

• I f the stability of AFQj is equal to AFCy+i; x a is set to 0. Since no net effect can

be inferred from the stability rating, no statement is made with regards to

stability.

The logic described above is given in Equation 5-6.

_ i AFCj j (ra) > AFCj j + l (rst): matingpart in common

0 AFCj j (rsl) = AFCj j + , (rsl): matingpart in common

1 AFC, j (rsl) < AFCj j + , (rsl): matingpart in common

0 no mating part in common

Equation 5-6

The cost function for the maximisation of stability is:

n - l

ST = £ xsl Equation 5-7

Where,
n is the total number of AFCs

/ is the AFC being considered

Assembly sequences with high values of ST are said to have more instances o f stability.

The maximum value of ST is equal to n-l.

Take, for example the assembly sequence presented in Section 5.4.1

The stability index (xst) between Plug'n'Target3,9 and Plug'n'Target3ig is 0. Since both

AFCs have the same stability rating index (r^ = 5).

Using the same analogy, the following xst values and hence ST can be derived for the

sequence presented in Section 5.4.1:

• Xst between Plug'n'Target3 8 and Plug'n'Target3)7 = 0.

AFCs have the same stability-rating index. (r s t = 5)

• Xst between Plug'n'Target3 j and Placement3,6 = - 1 .

-95-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

AFCs have a part in common, Placement3>6 (r^ = 3) occurs after Plug'n'Targetsj

(r« = 5)

• Xgt between Placement3;6 and Snap_fit3;5 = 1.

AFCs have a part in common, Snapfitss (r^ = 6) occurs after Placements^ (r s t =

3)
• Xst between Snapfft^s and Placement^ = -1

AFCs have a part in common, Placement3,4 (rst= 3) occurs after Snap_fit3,5 (r& =

6)

• Xst between Placements^ and Snap_fit3 j3 = 1

AFCs have a part in common, Snap_fit3>3 (r^ = 6) occurs after Placements^ (r s t =

3)

• ST = 0+0+(- l)+ l+(- l)+ l = 0

5.4.4. Minimisation of assembly time; An Overall expression
An expression for the minimisation of assembly time can be defined by an overall

assembly variable (c). Since the overall operation time for each AFC within an

assembly sequence is independent of the assembly sequence, the overall expression for

the minimisation of assembly time can simply be derived by normalising the assembly

variables c i , C2, C3 (see Section 5.4) for each assembly sequence generated, and by

applying weighting factors wre, wpa, wsl respectively, see Equation 5-8.

• Ci = RE

• c2 = PA

• c3 = S T

This allows the user to define the relative priorities for analysis. Assembly sequences

with the higher values of c denote near optimal assembly sequences, with the highest

stored value indicating the most favourable assembly sequence.

X 1 \ c
c = (w«) — + ("pa)* c2 + K H r - Equation 5-8

Where;

• Xre, maximum possible value of reorientation index used to normalise ci

• Xst, maximum possible value of stability index used to normalise C2

The optimisation process is controlled by the following assembly variables: (/)

parallelism; (/'/) number of re-orientations; (»/) stability of subassemblies; (iv) 'globally'

good sequences; and (v) 'locally' good assembly sequences:

-96-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

• Globally good optimisation, i f an assembly plan is globally good, then all

assembly variables described in Section 5.5 are considered.

• Locally good optimisations, i f an assembly plan is locally good, then at least one

of the assembly variables are described in Section 5.5 has been selected.

Assembly variables can be selected or deselected by assigning their respective

weighting factor to zero.

It is important to remember the validity of an assembly sequence is different from the

feasibility of an assembly sequence. An assembly sequence is feasible i f it results in the

functional end product, as designed. The validity of an assembly sequence is subjective,

hence the provision of locally and globally optimised assembly sequences.

5.5 Proposed method for assembly sequence generation

5.5.1. System overview
The module takes as its input the connectivity model as shown in Figure 5-1. The initial

assembly sequence generated from the connectivity model (see Section 5.7.1) is the

feasible assembly sequence used as the input to the simulated annealing algorithm. The

assembly sequence is encoded using random numbers (Bean, 1994) to supply the

simulated annealing algorithm with an initial solution.

Within the simulated annealing process, an assembly sequence is generated by

randomly interchanging neighbouring AFCs. The sequences generated are decoded and

evaluated using the overall expression for minimising assembly time (Equation 5-8).

The process is repeated locally until the best solution is attained based on its objective

function value. Once the termination criterion has been attained (see Section 5.7.3), the

resulting assembly sequence is the best possible assembly sequence. It is likely the

optimal assembly sequence is the same as the initial assembly sequence. The overall

configuration of the assembly sequence optimisation module within

CAPARLEAssembly is shown in Figure 5-1. The output of the module is an optimised

assembly sequence.

-97-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

Connectivity
M odel

Initial Assembly
Sequence

A F C 3 4 - > A F C „ - > A F C 2 1

Optimal Assembly
Sequence

H

A F C „ - * A F C 3 4 - > A F C „

Contact, Precedence
and Technological

Constraint Algorithms

Outline Product
Model Structure

Aggregate
Product Model

A r t s

T imes

Tools

Encoding
Algorithm

Simulated
Annealing
Process

Decoding
Algorithm

1 t
Min of Reorientation
Max of Parallelism

Max of Stability
Algorithms

Figure 5-2: Overall module structure

5.6 Simulated Annealing (SA) Algorithm
SA algorithms have been used successfully in solving various combinatorial

optimisation problems, including VLSI design (Gerez, 1999), scheduling (Kim and

Kim, 1996), and assembly line balancing (Suresh and Sahu, 1994). The SA approach

can be viewed as an enhanced version of local optimisation or an iterative improvement,

in which an initial solution is repeatedly improved by making small local alterations

until no such alteration yields a better solution. It has already been stated that the use of

simulated annealing for sequence optimisation does not guarantee an optimal solution.

However, they generally provide a good solution and statistically guarantee finding a

close to the best possible solution.

KirkPatrick et al (1983) first developed the simulated annealing (SA) method.

Simulated annealing emulates the annealing process in thermodynamics. The essence of

the method is slow cooling to allow ample time for redistribution of energy; hence the

temperature of the system is the controlling factor. In the process concerned, a solid

material is first heated up to a temperature that allows all its molecules to move freely

(solid becomes liquid) and then is cooled very slowly until it crystallises with a perfect

lattice. The rate of cooling determines the lattice. At the end of the process, the total

energy of the material is minimal provided that the cooling is very slow.

According to Kirkpatrick et al, simulated annealing is based on the Metropolis

procedure developed in the field of statistical mechanics. The Metropolis method

-98-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

combines iterative improvement with controlled uphill moves in search of a global

optimal solution. The uphill move allows the procedure to escape local optima. A

comparison of simulated annealing with other algorithms (Johnson et al, 1989)

demonstrated that the technique performed better than other algorithms in many cases.

The basic approach of simulated annealing is to search for the optimal solution by

randomly perturbing the system from its current state to a neighbouring state.

Neighbouring states are loosely defined as those states that can be reached by random

perturbations from a given state. The perturbations must be made in such a way that the

states generated remain within the neighbourhood long enough to discover local optima

that exist within the neighbourhood. The state solution value determines whether a

solution should be accepted as a new solution or be rejected in favour of the previous

solution. When a transition is made to a new state, it is evaluated and becomes the

current state i f it has a lower state solution value than the best state found previously.

The method in which state perturbations are allowed to occur and the length of time the

states are perturbed within the neighbourhood control the likelihood of a state with a

higher value becoming the current state.

Starting from an initial solution (assembly sequence) f , the SA generates a new solution

(new assembly sequence) g in the neighbourhood of the original solution/ The change

in the objective function value, Ac = c (f) -J{g), is calculated, where c, is the objective

function. The objective function used for the purpose of this research is the overall

assembly variable given in Equation 5-8. For a minimisation problem, i f Ac < 0, the

transition to the new solution is accepted according to the negative probability

distribution expressed in Equation 5-9.

-Ac

e T Equation 5-9

Where,

c is the objective function to determine the state value; the overall assembly

variable

T is the control parameter; temperature

SA algorithms generally start at a higher temperature; at each temperature a search is

carried out on the local space for pre-specified number of iterations, that is, the epoch

length. The temperature is gradually lowered according to a given cooling rate. Higher

values of cooling rate correspond to a slower cooling process allowing the exploration

on a larger search space and thus preventing premature convergence providing a false

-99-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING S A

optimised assembly sequence. The analogy with the physical model has the following

points of correspondence with the issue of assembly sequence generation.

• The energy corresponds to the objective function used to evaluate the state

value. This research uses the overall assembly variable, c, as expressed in

Equation 5-8 as its objective function.

• The movement of the molecules correspond to the sequence of the moves in a

set feasible assembly sequences.

• The temperature corresponds to a control parameter T which controls the

acceptance probability for a move from/e Flo g e N(f).

5.7 Assembly sequence generation; Simulated Annealing
As described in Chapter 4, simple heuristics are applied to determine base and moving

parts in each AFC and the pre-determined ranking of the AFCs within assembly levels

coupled with a simple bottom-top assembly approach results in an initial assembly

sequence. A browser was designed to check the details of the generated assembly

sequence as shown in Figure 5-3.

• - C A P A B L E A s s e m b l y Connectivi ty Model->lnitial assembly s e q u e n c e browser

Assembly sequence

connection894630581 3
connection894630963
connection894G30919
connection894630817
connection894630236
connection894G30772
connection894629933
connechon894G29S34
connection894630294

lconnection894G303G3 d

AFC type

wiring

Handling time

| l .13sec

Components —| r~ Operation time

|Black_Wire and flymo_switch894620346 |3.16G7sec

Required tooling

screwdriver(slot,powertool)
|- nequirea root

|screwdriver(sl

| Display |

Assembly le

P

Display Cancel Run SA

Figure 5-3: Initial assembly sequence

This was done to ensure all the details required to ascertain the properties stored within

each AFC of an assembly sequence was sufficient to access the sequence according to

the assembly criteria listed in Section 5.4.

There are various methods used for representing solutions in sequencing and

optimisation problems when solving heuristic problems. The major difficulty is in

ensuring the feasibility of the generated solutions. Whilst this is a problem for other

heuristic methods, the issue is of little importance in the case of simulated annealing.

This is mainly due to the fact the process of generating a new solution is done by

interchanging two random components. In general, this should reduce the feasibility

-100-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

problem as only slight changes are made at a given time to ensure the new 'state' is

within the neighbourhood of the current state. Here, AFCs are used as opposed to

components, and the feasibility problem is further reduced.

As already stated, the initial sequence generated from the connectivity model is a

feasible sequence as are all sequences generated from the connectivity model. One

approach to maintain feasibility would be to generate the new solution from the

connectivity model, and subsequently encode the solution. Although this would easily

guarantee feasibility, the process is time consuming, and it does not guarantee the new

solution to be within the neighbourhood of the original solution thus the local

optimisation is redundant. To maintain feasibility, the fixed and floating AFC are used

to limit the random metamorphosis of the assembly sequences generated

It was found necessary to limit the random movement of AFCs to floating AFCs. The

rules that govern the generation of new sequence were derived through a series of trial

and error runs, gradually increasing the restrictions until almost every assembly

sequence checked using the assembly browser shown in Figure 5-3 remained within the

feasibility framework. These restrictions include:

1. Only two floating AFCs can be randomly chosen and interchanged to create a

new solution at any given time. This helps to maintain the new solution within

the neighbourhood of the current solution. It was found that freedom for all

AFCs is not conducive for feasibility.

2. The movement of floating AFCs are further restricted to a top-down motion.

That is, AFCs in level two can be moved to assembly level 3, but the reverse is

not allowed. This effectively limits the random interchanging process to within

assembly levels. I f two AFCs are chosen such that the reverse movement is

required, the AFCs in the higher assembly level is moved and the other AFC

remains in its original position. Higher assembly level refers to a higher

assembled state; AFCs in lower numbered assembly levels are regarded to be of

a higher assembly level. For example, i f A F C 2 3 is chosen to interchange with

A F C 3 2, A F C 3 2 retains its position and A F C 2 3 is placed immediately before

AFC 3 > 2.

3. Fixed AFCs are fixed with respect to their assembly level, and their

neighbouring AFCs.

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

5.7.1. Sequence representation: Encoding
For the purpose of the research it is of great importance the encoding method possess an

inherent simplicity in terms of decoding, as this wil l drastically affect the computational

time due to the number of evaluation criteria being considered. When encoding the

solution, the concept of random keys as suggested by Bean (1994) has been adopted.

The random keys representation encodes a solution with random numbers. The

assembly sequence is encoded into a string of randomly generated numbers ranging

between 0 and 1, the magnitude of these numbers representing the position of the AFCs

within a generated assembly sequence. In the encoding scheme, values of numbers in

the string are originally selected from uniform random numbers in the region [0,1].

These values are used as a sort keys to decode the solution. The primary difference

between this encoding and those in the literature is the use of random numbers as tags to

represent solutions.

For example, consider the following assembly sequence containing eight floating AFCs,

within the same assembly level:

• Placement2.i

• Threaded2,2

• Placement2,3

• Plug'n'target2,4

• Plug'n'target2j5

• Wiring2,6

• Wiring2,7

• Placement2,8

Eight real-valued random numbers between 0 and 1 are generated using a standard

random number generator, Rand(x) to represent the sequence

• Placement^ s 0.41

• Threaded2j2 = 0.18

• Placement2,3 = 0.63

• Plug'n'target2,4 = 0.26

• Plug'n'target2,5 = 0.19

-102-

AUTOMATIC GENERATION OF OPTIMAL ASSEMBLY SEQUENCE USING SA

• Wiring2,6 = 0.15

• Wiring2,7 s 0.11

• Placement^ = 0.29

Using the mapping: 0.41(0, 0.18(2), 0.63(3), 0.26(4), 0.19(f), 0.15(6), 0.11(7), 0.29(H)

This would yield the sequence: 7 - > 6 - » 2 - » 5 - > 4 - » 8 - * l -» 3, which is easily

decoded to the assembly sequence:

• Wiring2j s 0.11

• Wiring2,6 = 0.15

• Threaded2^s0.18

• Plug'n'target2,5 = 0.19

• Plug'n'target2>4 = 0.26

• Placement2,8 = 0.29

• Placement2,i = 0.41

• Placement2,3 ^ 0.63

5.7.2. Simulated Annealing Parameters
The basic parameters of the simulated annealing assembly sequence algorithm are as

follows:

1. Initial temperature T; for the purpose of this research a typical value of 100 is

used.

2. A maximum number of cooling schedules (Mcs) = 5 has been chosen for the

purpose of this study. The cooling schedules represent a finite time

implementation for the simulated annealing algorithm, cs is used to represent a

single cooling schedule.

3. The random number R (between 0 and 1), used for probability acceptance within

the SA algorithm is generated using a standard random number generator

Rand(x). The standard number generator function is 'wrapped' to ensure an

even distribution of the numbers generated. R = Random (x).

4. Interchanging two random floating AFCs generates the next assembly sequence.

-103-

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G SA

5. The cooling rate cr, is the rate of change of temperature with increasing number

of cooling schedules. A cooling rate of 0.95 is used. This means that the cooling

rate is low to allow for adequate exploration of a particular search space. This

value was established by trail and error. However, it is widely acknowledged

that a value above 0.9 will yield reasonable results.

6. At a particular temperature, if the ratio of accepted solutions to number of

solutions generated is less than a predetermined number, the cooling schedule is

increased by 1. A value of 0.1 has been adopted. This is to say the iterative

process does not leave the locality until the majority of new sequences generated

are being rejected.

7. NSol, is the number of new solutions generated.

8. TSol, is the total number of solutions accepted.

A flow chart showing the SA process presented is shown in Figure 5-4.

5.7.3. Pseudo-code for assembly generation sequence
The algorithm itself consists of an outer loop in which the temperature is gradually

lowered and an inner loop in which the assembly sequence is randomly altered by

interchanging A F C s within the assembly sequence. These newly generated assembly

sequences are either accepted or rejected based on their objective function value. The

inner loop is executed until the majority of solutions generated are largely being

rejected, at this stage thermal equilibrium is attained and the code returns to the outer

loop and the process is repeated. See pseudo code in Figure 5-5.

The strategy for accepting or rejecting assembly sequences is represented by the

function 'accept' in the pseudo code. Within the accept function, the function

' Rand(k)' generates a real-valued number between 0 and k, with a uniform

distribution. Here, k is equal to one. The function 'new temperature' computes the new

lower temperature to be used for the next execution of the inner loop. The function

'stop' finally decides whether to terminate the search.

As simulated annealing is prone to visiting the optimal solution and moving away from

it, the best solution is kept as a separate variable and is reported back at the end of the

search instead of the final value assembly sequence stored. The combination of the

thermal-equilibrium, new-temperature, and stop functions define what is known as the

cooling schedule (cs). Theoretical analysis shows that the cooling schedule can be

chosen in such a way that the probability of finding the global optimum is becomes

- 104-

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G SA

equal to one. Hajek (1988) and Van Laarhoven and Aarts (1987) discuss the conditions

necessary for convergence of the simulated annealing algorithm.

However, these schedules imply a very large number of moves before stopping. As the

primary aim is to obtain a good solution as fast as possible, a cooling schedule that does

not guarantee an optimal is used. A value of 5 was determined using a trial and error

method based on five different products consisting of varying number of AFCs . In

general, it was found that a value of five with slightly higher value for cooling rate was

sufficient to attain a near optimal solution.

Input Data:
feasible solution f \

cost function c;
cs = 0; Mcs = 5;

NSoI=0; TSol=0,

IS C S < MCSl

Generate new sequence
f e Flo g g N (f)

Sc <- c(J)~ c(g)

f ^ g
NSol = NSol + 1

TSol = TSol + 1

s NSoI> 2*n ?

T= cr*T
N S o l = 0
T S o l = 0

no report / ,
optimal solution

-de

p = e T

R = Random ()

/<- g
NSol = NSol +

acc ratio =
hi f

NSollTSol w c

Figure 5-4: Flowchart for simulated annealing algorithm for sequence optimisation

-105-

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G S A

The code used was written in C++. A pseudo code for the generation of an optimal

assembly sequence is provided in Figure 5-5.

int accept(struct feasiblesolution/, g)
{

float Sc\
&<r-c(f)- c(g);
if (<5c < 0)

return^;
else return (e T) randomy}));

}
int stop(coolingschedule cs, max_cooling_schedule Mcs,
no of accepted solutions NSol, no oftotal solutions TSol)
{

int cs;
int Mcs;
int Nsol;
int Tsol;

cs <— cs + 1;
if (cs > Mcs);

return 1;
else

T <— new temperature(T);
NSol = 0;
750/= 0;
return 0;

int thermal equilibrium(int Nsol, no of components ri)
{

if(A rsol>2*«)
return 1;

else return 0;
}
simulated annealing()
{

struct feasible solution/ g;
float temperature T;
f <- initial solution ();

do {
do {

g <— "some element of N(J), new solution":
if (accept^ g))

f g;
NSol = NSol + 1;
TSol = TSol +1;

while (Ithermal equilibrum());
T <— newtemperature (7);
NSol = 0;
TSol = 0;

while (Istop);
"report./";

Figure 5-5: Pseudo-code for generation of optimal assembly sequence

5.8 Illustrative Example
The performance of the method presented was tested on a number of products. The

example presented uses a lightweight outdoor product. A simplified product model and

the corresponding connectivity model are shown in Figure 5-1. The contact, precedence

and technological constraints algorithms were employed to generate the corresponding

connectivity model from the aggregate product model. Thereafter, a simple top down

assembly sequence generator based on the successive determination of moving parts,

base parts, part weight and part size is applied to generate an initial assembly sequence

which is in turn used as the initial solution for the S A algorithm.

-106-

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G SA

The AFCs shaded green in Figure 5-1 are fixed AFCs, all other A F C s are regarded to be

floating AFCs. Movement of A F C s are limited to a top down motion, that is, A F C s in

level 2 can move to level 3 but the reverse is not permitted. Table 5-2 shows the

sequence of A F C s generated from the top-down sequence generator; the mating

components and the encoded strings are also shown in Table 5-2 . This is the initial

solution (initial assembly sequence) fed into the simulated annealing program.

Two optimisation procedures were performed; a locally good optimisation was

performed prior to a globally good optimisation. A locally good optimisation is

achieved by applying suitable weightings to the assembly variables to effectively ignore

certain assembly variables. For example, if reorientation is to be ignored, as it was in

this case, the weighting factor for reorientation in Equation 5-4 should be wre = 0. Table

5-2 shows a locally good optimisation with; ws, = 0.5, wre = 0.0, wpa = 0.5. The

numbers chosen, as weights are arbitrary and only serve to amplify the relative

magnitude of an assembly variable.

Minimisation of assembly time (maximum c value) Minimisation of assembly time (maximum c value)

6

1

0 50 100 150 200 NSol 250

Figure 5-6: Variation of overall assembly variable

In the case of a globally good optimisation, all three assembly variables are considered.

Table 5-3 shows a globally good optimisation with; wst = 0.5, wre = 0.5, wpa = 0.5.

Figure 5-6 shows the assembly variables of each assembly sequence generated in the 5 T H

cooling schedule. The analysis used 5 cooling schedules. As can be seen from Figure 5-

6, the 5T H cooling schedule starts with a good solution shown by the high value of c,

(scale has been modified for graphical purposes). The solution then deviates, the overall

assembly variable starts to increase, and gradually the annealing process begins to finds

better solutions as the temperature is slowly decreased. Initially the solutions are

clustered a false local optimum is reached, as the temperature is decreased further, the

pattern evens out and a true optimal solution is found. The process can be speeded up, if

- 1 0 7 -

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G SA

one uses the number of solutions found as the stopping criteria. As can be seen from

Figure 5-6, the main problem with this is you do not tend to catch false local optimal

solutions. At the moment, the system stops when it continuously accepts almost all the

new sequences generated. This method of convergence generally tends to yield better

solutions. Indeed, if the number of cooling schedules were to be increased, it might yet

yield a better solution. However, when balanced against computational time, five to six

cooling schedules was found to be more than sufficient for all the case studies

considered (maximum C P U of 6 0) .

The globally good optimisation process introduced the reorientation criterion. The

general trend of the assembly sequence generated follows that of the locally good

solution, with A F C s migrating from lower levels to higher assembly levels, increasing

stability and parallelism. The effect of introducing the reorientation index is evident by

the new sequence generated for the assembly of the cutting head. The system also

suggests assembling the "cutting head" assembly prior to the switch assembly. The

optimisation processes have created what appears to be a completely top-down

assembly direction for this subassembly. This has satisfied the reorientation criterion.

The assembly sequences generated for both locally and globally optimised scenarios

were mapped to a predefined assembly line layout to establish assembly times for the

assembly plans generated. The estimated difference in total assembly time between the

locally and globally optimised scenarios is approximately 8%, with the global solution

offering the lowest time.

Both locally and globally good optimisation routines produced good results. In the case

of locally good optimisation, it can be seen from Table 5-2 that several A F C s have

moved from level 2 to level three. Notably, the mains cable and cable support are now

members of the switch assembly. Also, the motor has been included to the

cutting head ass, thus satisfying the parallelism criterion. The stability of the assembly

sequence was also increased as a result of the optimisation process. Post-optimisation,

the switch assembly is assembled and placed on the base part (that is, secured under the

influence of gravity and vibration) before other parts are attached to the switch

assembly.

- 1 0 8 -

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E USING S A

No. AFCs (afrtype) 1 Components within A F C 9
1 Wiring31 switch,capacitor I
2 Wiring switch,black_wire 1
3 Plug'n'Target^ cable_support,mains_cable J
4 Plug'n'Target25 lower_body,cable_support
5 Placement23 lower_body,switch_ass
6 Wiring26 Switch_ass,mains_cable
7 Plug'n'Target37 Line_feeder,spring
8 Placements cutting_head_body,line_feeder
9 Snap_fit35 cutting_head_body,eye
10 Plug'n'Target39 cutting_head_body,nut
11 Plug'n'Target38 cutting_head_body,spacer
12 Placement^ cutting_head_body,spool
13 Snap_fit33 cutting_head_body,cutting_head_cover
14 Threaded22 cutting_head_ass,motor
15 Placement^ lowerbody, motor
16 Wiring27 motor,switch_ass
17 Placement28 lower_body,upper_body
18 Threaded29 upper_body,lower_body,screw

Table 5-2: Results of locally good analysis

No. AFCs (afrtype) Components within A F C 1
1 Plug'n'Target39 cutting_head_body,nut I
2 Plug'n'Target3g cutting_head_body,spacer
3 Plug'n'Target37 Linefeeder,spring
4 Placeraent36 cutting_head_body,line_feeder I
5 Snap_fit35 cutting_head_body,eye 1
6 Placement^ cutting_head_body,spool 1
7 Snap_fit33 cutting_head_body,cutting_head_cover I
8 Threaded22 cutting head ass,motor
9 Placement2i lower_body,motor
10 Wirings, switch,capacitor
11 Wirings switch,black_wire
12 Plug'n'Target24 cable_support,mains_cable
13 Plug'n'Target25 lower_body,cable_support
14 Placement23 Lower_body,switch_ass
15 Wirings Switch_ass,mainscable
16 Wiring27 motor,switch_ass
17 Placement28 lower_body,upper_body
18 Threaded29 upper_body,lower_body,screw

Table 5-3: Results of globally good analysis

5.9 Conclusions
The main purpose of this research is to create a system suitable for the automatic

generation of an optimal assembly sequence for a given product at the early stages of

design. The method is based on the creation of an aggregate product model and the

subsequent extraction of contact, precedence and technological relationships from the

aggregate product model to create a connectivity model. The extraction of such

relationships facilitates the generation of an initial rudimentary assembly plan, which

-109-

A U T O M A T I C G E N E R A T I O N O F O P T I M A L A S S E M B L Y S E Q U E N C E U S I N G SA

reduces the search space, as it is a well-known fact that the simulated annealing process

benefits from a good initial solution. The generated assembly plan is then refined

through a series of optimisation methods using simulated annealing. The simulated

annealing algorithm seeks to optimise an assembly rating variable, which includes

functions for reorientation, parallelism and stability.

The ability of the system developed to quickly generate and optimise assembly plans

locally as well as globally when various criteria are enabled or their relative importance

is changed makes it an effective tool for simultaneously considering several

manufacturing considerations at the design stage. The results obtained using the method

presented have been very encouraging. Indeed, a total of four industrial products

(presented in Chapter 7) have been modelled and optimal sequences generated and

implemented, with good results.

It is important to note that the generation of an optimal assembly sequence does not in

itself imply an optimal assembly plan. An optimal assembly plan can only be realised

when the available resources, human and equipment, are taken into consideration;

assembly line balancing.

- 1 1 0 -

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

6. Balancing SingHe-Model Assembly Lines (SALB): A
genetic algorithm approach

6.1 Introduction
Ideally, a design/production engineer would prefer to be presented with a number of

'good' assembly plans that take into consideration available factory and resource

constraints and assembly line balancing. This chapter presents a computer-based

methodology for the Single-Model Assembly Line Balancing (SALB) problem using

Genetic Algorithms (GAs). It involves assigning individual assembly operations to

workstations such that certain constraints are satisfied and some specified objective

achieved. This method aims at generating a number of optimal solutions that lead to

maximum production rate, workload smoothness, work-relatedness, and worker

allocation.

The SALB problem can be seen as the minimisation of number of workstations and

cycle time for a given set of partially ordered assembly operations (Scholl, 1995;

Johnson, 1998; Hoffman, 1990; Hackman, 1989). It is only recently that the overall

'goodness' of an assembly line has been taken into consideration. Typical

measurements of the goodness of an assembly line, include workload smoothness,

work-relatedness, and optimised assembly sequences. Although these factors are now

being discussed, they are seldom optimised in a holistic manner. One of the more

holistic approaches to solving the SALB problem is offered by Ma (1997), where the

best solution is obtained by maximising production rate and minimising workload

variance. Kim, Kim, and Kim (1998) look at workload smoothing on assembly lines,

and further extend their methodology to the issue of balancing two-sided assembly lines

(Kim, Kim, and Kim, 2000). Amen (2000) present an exact method for cost-oriented

assembly line balancing based on minimising the number of workstations.

This chapter presents an algorithm for the generation of near optimal assembly plans for

a given set of optimised assembly sequences based on a series of performance measures,

namely, workload smoothness, work-relatedness (taking into consideration precedence

of loaded assembly sequence), worker allocation, and, where deemed necessary, an

estimated assembly cost. The method aims to carefully balance all performance

measures considered, by using objectives such as minimisation of number of

workstations and cycle time as initialisation parameters.

The layout of this Chapter is as follows:

-111 -

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

• Section 6.2 outlines the factors taken into consideration when solving S A L B

problems. It also explains the reasoning behind the chosen performance criteria

when evaluating the goodness of an assembly plan.

• Section 6.3 details the assumptions made for balancing assembly lines. This

includes the assumptions made for the derivation of the objective functions for

minimisation of workstations and minimisation of cycle time for a given

assembly plan. Assumptions with regards to the factor model are also detailed.

• Section 6.4 outlines the evaluation criteria and mathematical models used to

measure the performance of assembly lines. It also explains the derivation of the

objective function the genetic algorithm uses to compare the assembly plans.

• Section 6.5 presents a system overview for the assembly planning optimisation

module within CAPABLEAssembly. It navigates you through the entire module

depicting how the internal modules of the system are interlinked. The following

sections discuss the workings of the internal modules in detail.

• Section 6.6 describes the types of factory models used for loading assembly

sequences to generate the optimised assembly plans.

• Section 6.7 gives an overview of the genetic algorithm approach for solving

combinatorial optimisation problems (NP-hard class), and shows how the

method can be adapted to the issue of assembly line balancing.

• Section 6.8 describes the genetic algorithm-method used to balance assembly

lines, and thus generate optimal assembly plans.

• Finally, Section 6.9 pulls together all the conclusions drawn from this Chapter.

6.2 Definition of Problem
The assembly line balancing problem entails assembly operation assignment in an

ordered sequence, to a set of workstations, such that the precedence relations among the

assembly operations are satisfied, and some assembly line performance measure(s)

optimised. When considering such problems, the conventional objectives to achieve are:

• Minimise the number of workstations for a given cycle time. This leads to a

decrease in the human and technical resources required for operating the

assembly line. Thus, it decreases the operational cost of an assembly line.

-112-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

» Minimise the cycle time for a given number of workstations. A decrease in the

cycle time for each workstation results in an over all decrease in the assembly

time. This corresponds to a decrease in production cost.

• Minimise the difference amongst workstation times. This involves balancing the

workload distribution with respect workstations in use. It improves and/or

maintains the workflow on an assembly line by decreasing the idle time on any

one workstation. Also, a sense of equality amongst workers on the assembly line

is promoted if the workload is evenly distributed throughout the line. This aids

the development of a steady and/or increased production rate for a given

assembly line.

For the purpose of this research, the analysis of the assembly line used is based on a

conveyor based manual assembly line (see Section 2.7). The performance measures

considered for a manual assembly line include;

1. Workload smoothness; refers to the comparative workload distribution amongst

workstations. The use of the number of assembly operations assigned to each

workstation as a measure of the workload smoothness is inaccurate as different

operations have different handling and insertion times. A better measure for

workload distribution is the "station variation index"; the workload smoothness

is estimated by deriving an estimated variance by taking into account the idle

time on each workstation. The aim here is to minimise the idle time on each

workstation.

2. Work relatedness; refers to the comparative analysis of the types of operations

performed on each workstation. Clearly, the handling time for tools and

components is reduced if all operations requiring a particular tool are performed

at the same workstation, thus further increasing the skill level of the operator.

3. Precedence relations; refers to the technological sequencing requirements or

constraints as the order in which the assembly operation can be performed is

limited. Floating and fixed A F C s are used to denote the relative possible

positions of assembly operations. In addition to technological constraints, zoning

constraints are also considered. A positive zoning constraint means that certain

assembly operations are to be performed close together, preferably on the same

workstation. A negative zoning constraint indicates that assembly operation

-113-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

might interfere with one another and should therefore not be located in close

proximity.

Whilst this issue has already been taken into consideration when generating the

optimal assembly sequence (which is loaded on an ideal assembly line to create

the ideal assembly plan used as the input for the optimisation process using

genetic algorithms), the feasibility of the assembly plans generated has to be

maintained through out the optimisation. Hence this check is preformed again.

As the pattern of a near optimal assembly sequence is already know, it is easier

to recognize when a near optimal assembly plan has been attained.

4. Worker allocation; refers to the effects of adding an operator to an existing

workstation. Whilst operation-sharing encourages simultaneous execution of

assembly operation and thus overcoming to a certain extent the problem of

workload distribution in an assembly, this could also lead to increased idle time

on a given workstation.

5. Assembly line flexibility; an assembly system has a high level of flexibility

when balance delay, workload relatedness, and workload smoothness are all

taken into account when balancing an assembly line. All these three factors

increase the capabilities of assembly lines.

6.3 Assumptions
This chapter presents a method for balancing single-model (one product) assembly lines

based on the optimisation of the derived functions for the above performance measures.

The analysis is performed with the following assumptions made:

1. Unless otherwise stated all assembly operations are performed sequentially.

Simultaneously loading of assembly operations are only considered when

investigating the possible merits of worker allocation on a given assembly line.

2. An optimised assembly sequence has been generated and is used as the input

sequence for the analysis. The optimised assembly sequence is loaded on an

ideal assembly line. This acts as the initial assembly plan loaded used as the

input to the genetic algorithm.

3. All operators have the same skill level.

4. Unless otherwise stated each workstation is assigned one operator.

-114-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

6.4 Equations for performance measures of assembly lines
The following terms and functions are used to define line balancing terminology and

objective functions respectively for the optimisation of assembly lines.

1. Total assembly time; total time required to assemble the product, it includes

transportation time between workstations.

m

Twc =^Tt Equation 6-1
i=i

Where,

Twc is the total assembly time on an assembly line

Tj is the assembly task time for task /

m is the number of assembly tasks

i is the number of an assembly task

2. Theoretical cycle time; as derived using the ideal production rate.

Tc = — Equation 6-2

Where,
Tc is the ideal or theoretical cycle time

Rc is the given production rate, supplied by the user

3. Theoretical minimum number of workstations nmin, is obtained from a possible

set of minimum number of workstations {nej, nc, nhf}, given by Equation 6-3.

The theoretical minimum number of workstation is calculated by first

evaluating, and selecting the largest possible workstation cycle time from the set

{ T e j , T c , Thf} (Equation 6-7 and 6-8), and then, using this value to divide the

total assembly operation time (Equation 6-4 and 6-5).

= m i n [n e J , n w c , n h f \ Equation 6-3

nej = Equation 6-4
«j

nwc = Equation 6-5

T
nhf = number of assembly tasks for which Tj > Equation 6-6

TeJ = max(7;) + TJ j + x Equation 6-7

T
Thf = Equation 6-8

-115-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

Where,

Twc is the total assembly time on an assembly line

Tc is the ideal cycle time, calculated from the production rate

Tej is the minimum cycle time

Thf is half the total assembly time of an assembly line

Tj is the assembly task time for task /

Tjj+i is the transfer time between workstations j and j+1

nmin is theoretical minimum number of workstations

riy is the number of workstations, using a Tej as cycle time

rihf is the number of tasks with their task times greater than half Tc

4. Balance delay d, measured as a percentage, is a measure of the line inefficiency,

which results from the idle time due to imperfect allocation of work among

stations (Groover, 1987).

d = n T c ~ T w c

 x 100 Equation 6-9

5. Station variation index <x, measured in seconds, is described as the standard

deviation of workstation times; it measures the degree of variation between

workstations (Groover, 1987).

Where,
n is the number of workstations in an assembly line

Tc is the ideal or theoretical cycle time

Twc is the total assembly time on an assembly line

n
Y (T S - T c f

n
Equation 6-10

Where,
n is the number of workstations in an assembly line

Ts is the sum of element times at a workstation on an assembly line

Tc is the ideal or theoretical cycle time

-116-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

6. Index of work relatedness 8, work relatedness requires finding an assignment of

operation such that interrelated operations are allocated to the same workstation

as much as possible (Groover, 1987).

S = -
" number of sequenced tasks

Where,

total number of tasks

Equation 6-11

n is the number of workstations in an assembly line

number of sequenced tasks refers to the number of identical assembly

operations type assigned sequentially to a given workstation. For

example, three threaded A F C s loaded sequentially on workstation /'.

total number of tasks refers to the total number of assembly task assigned

to workstation /'.

Total production cost per unit, CPC, is given by Equation 6-12. It is assumed that

one of the key deciding factors in the design/redesign of a product is based

around the cost per unit. It takes into consideration the material, labour and non-

operation cost. Here, non-operation cost takes into account factory (and other

overhead cost) and transportation cost only. Other external factors that affect the

total assembly cost that are not accounted for include external factors such as

holding and transportation cost. The equation presented below (Groover, 1987)

has been adapted to suit S A L B problems. For the purpose of this research, the

material costs has been reduced to zero as the labour cost and other overhead

cost are significantly higher than material cost in the case of the product used for

the analysis, as discussed in Chapter 7. For the purpose of this research the cost

is measured in pounds (£).

Cpc =Cm +n(C0Tp +Cno) Equation 6-12

Cno = Factory cost + {ngCBT) Equation 6-13

T

P = frc J e j , T h f \ Equation 6-14

Where,

CBT is the transportation cost per batch

no is the number of batches

CM is the material cost per unit production

-117-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

C„0 is the non-operation cost (overhead, transportation, internal handling

and storage cost)

C0 is the cost rate per operator including overheads

CPC is the total assembly cost per part/product

Tp is the average production time per unit product/part. This value is

equivalent to the cycle time for a given assembly line. For the purpose of

this analysis, the cycle time can be calculated using Equations 6-2 (Tc),

Equation 6-7 (Tej), and Equation 6-8 (ThJ). The decision as to which cycle

time is used in equation is user dependent.

6.5 Proposed Assembly Line Balancing Method

6.5.1. System Overview
The structure of the assembly line balancing module is shown in Figure 6-1. The aim is

to generate optimal assembly plans based on a set of pre-defined performance criteria.

The system takes as its input an assembly plan, which is generated by loading the

optimised assembly sequence (obtained from the simulated annealing optimisation

module) on a manual assembly line. The manual assembly line is created using the

green or brown field factory data (see Section 6.6), stored within CAPABLEAssembly

as flat file databases.

The assembly plan is encoded using a hybrid of the sequence and workstation oriented

representation schema (see Section 6.7.1). Through a process of mutation and crossover

(see Section 6.7.5), an initial population of assembly plans is created. Each assembly

plan in the initial population fitness is evaluated using an objective function (see Section

6.9), which comprises all the performance measures given above (Equations 6-1 - 6-

14), to optimise the assembly plans generated based on minimum cycle time, maximum

workload relatedness, and maximum workload smoothness, as shown in Figure 6-1.

Each assembly plan is analysed to see if the mutation and crossover process has yielded

any assembly plans containing an unfeasible assembly sequence, using some

performance test, as shown in Figure 6-1. The best individual in the population, that is

the assembly plan with the highest objective function value, is used to create the new

population. The process is repeated for a predefined number of generations, or until a

convergence is noticed, that is, each individual in the population yields the same

objective value.

-118-

B A L A N C I N G S I N G L E M O D E L A S S E M B L Y L I N E S

The assembly plan with the highest objective score, belonging to the final generation

population, is the optimal assembly plan. However, all members of the population

represent optimised assembly plans, thus providing the assembly planner with a pool of

well-optimised assembly plans.

Assembly Plans \
Including p

Factory Data /

Decoding
Algorithm

Final
Population Initial

Sequence

Sequence
Oriented

Representation
gonthm

Generate
New

Population

Generate
Initial

Population

Evaluate
Fitness

Performance
checks

Best
Solution

Encoding
Algorithm

Oriented

Factory Da
Green/Brown Workstation feasibility Check

Algorithm
Sequence feasibility Check

Algorithm

Mutation
a n d

Crossover
Algorithms

Cost & Lead Time
'Efficiency Objective functions

Min workstations
•Min cycle time

•Max Work relatedness
Max Workload smoothness

Figure 6-1: Overall module structure

6.6 Factory model
The term factory model here is used to describe cells consisting of workstations, tools,

and people stored using an object-oriented database. These cells are used to represent

manufacturing processes such as machining and assembly.

In the case of assembly, these cells take two formats, cellular assembly units and single

model flow lines. For the purpose of this research, mixed model assembly flow lines

have not been considered. As with the product model, the factory model is created using

an object-oriented method (C++).

A diagram showing the data and hierarchal structure of the factory model generated in

CAPABLEAssembly is shown in Figure 6-2 . As before, the circles represent classes and

subclasses. The four main classes used to create the factory model are:

• Factory cells. A factory cell comprises of one or more single model flow lines

(assembly lines), and cellular assembly units. The main properties associated to

this class include; the number of assembly flow lines in the factory, number of

cellular units in the factory, the x and y coordinates of the factory, the x and y

-119-

BALANCING SINGLE MODEL ASSEMBLY LINES

coordinates of the assembly flow lines and cellular units, the number of

available assembly flow lines and cellular units available at any given time, and

the names of product(s) assembled in the factory.

Assembly lines. An assembly line comprises one or more workstations. I f the

assembly line created consists of one assembly workstation, a cellular assembly

unit is generated at runtime. I f the assembly line consists of two or more

assembly workstations, an assembly flow line is generated. The main properties

of this class include; the number of workstations assigned to the assembly flow

line and cellular unit, the number of available workstations at any given time,

the transfer type used to move components and subassemblies between

workstations, the transfer rate between the workstations, the x and y coordinates

of the assembly line, and the x and y coordinates of the workstations.

Workstations. A workstation comprises of all the available resources required to

carry out an assigned assembly operation. The main properties of this class

include; the type of workstation (cellular unit or a flow line workstation), the x

and y coordinates of the workstation, and the available resources at the

workstation.

Resources. This class stores all the resources available to workstations within an

assembly line. Available resources include tooling requirements, people,

machines, stand-alone jigs, fixture information, and storage bins.

-120-

BALANCING SINGLE MODEL ASSEMBLY LINES

factory cells assembly lines workstations resources

product (factory cell)

A

resources

resources workstations

a
property

@Runtime

factory cells assembly l i n e s workstations

rden tool (factory cell)

Ultrasonic welder (resources)

operationtime (property)

wks21
(workstations)

max breadth = 2m (property)

Figure 6-2: Factory model

The triangles represent objects and sub-objects; they are instantiations of classes or

specific members. The rectangles are the properties of the objects and the squares can

be viewed as values of properties only generated at run-time. When the factory model

- 121 -

BALANCING SINGLE MODEL ASSEMBLY LINES

is being generated, that is at runtime, the object properties are assigned values stored in

the slots shown in Figure 6-2 as squares.

For instance, a product such as a garden tool wil l have a cell designated for its

production with a number of available workstation from a pool of workstations assigned

to an assembly flow line. The assembly line wil l be located within the coordinates set

by the product's factory cell and are assumed to be of moving conveyor type. Assembly

lines generated within CAPABLEAssembly can have continuous, synchronous or

asynchronous transfer types.

In assembly lines using a continuous transfer system, the conveyor belt moves

continuously at a predetermined speed, stopping for a fixed length of time at each

workstation on the assembly line. The operators working on the line have no means of

altering the speed or stopping the conveyor belt. Asynchronous assembly lines have

predetermined transfer rates between workstations, but the operators on the lines have

some means of stopping the conveyor belt. Typically, such systems are fitted with foot

pedals or stop/start buttons on the frame of the conveyor belt.

Although continuous transfer is the most common in manual assembly lines, the

majority of lines modelled have been assigned asynchronous as they avoid typical

problems that are inherently hard to model associated with continuous transfer. This

includes incomplete parts when an operator is unable to finish a current part and the

next part travels across the conveyor. Each workstation assigned to an assembly line has

been allocated a limited amount of resources, unless a green-field (see following

section) factory has been generated.

6.6.1. Ideal assembly line and workstation Layout
The assembly lines modelled within CAP ABLEAssembly are representative of typical

assembly lines in industry. The transfer rate from one workstation to another was

presumed to be 4.5m/s, in line with the majority of manual assembly lines in industry.

The optimised modelled exhibits a buffer system see Figure 6-3. It should be noted that

in an ideal assembly system, a buffer system would not be needed, as a more

streamlined design would be preferred. However, in practice, a buffer system has been

proven to be more efficient for high volume production.

-122-

BALANCING SINGLE MODEL ASSEMBLY LINES

|« Buffer »|

: Workstation 1 : Workstation 2 Optimised layout

Figure 6-3:Current and optimised buffering systems

The assembly workstations have been designed using ideal space, tooling and

ergonomic conditions. The estimated part handling times are greatly dependent on the

layout of the assembly workstations. The first step in designing a new workstation is to

determine the physiological area of reach for an operator, see Figure 6-4.

y-directior1 k

r. x-direction

d M : distance between shoulder joints
d : distance between shoulder joints and the table in y-direction
ra: range of arms

Figure 6-4:Representation of physiological area of reach (view from the top)

CAPAiBLEAssembly uses the dimensions of the fifth percentile of women. They are

with reference to Figure 6-4 (see DIN 33402 part 2, 1986; DIN 33406 1988; DIN 33416

1985):

1. d s s = 307mm

2. dstjy = 119mm

3. r a = 582mm

The values are used as a guide for the choosing and placing the workstation elements

(bins and tools). To achieve a reduction in the operation time of standard assembly

operations (especially the grasping of parts) performed with each workstation the

following strategies were used:

1. Small parts should be placed in the optimal visual area.

2. Parts needed several times should be provided together.

-123-

BALANCING SINGLE MODEL ASSEMBLY LINES

3. Al l parts are placed within 60% of the maximum area of reach (arms reach, r a) .

Other assumptions made in the optimisation of assembly workstations include

1. Consideration of the visual field when positioning small or difficult to handle parts,

that is a time penalty is added on the basic time to perform an assembly operation i f

the part is deemed to be small or posses handling difficulties such as sharp edges.

2. Same or similar parts are provided together.

3. Simultaneous work of both hands is assumed.

4. A l l operators are skilled.

5. A l l operators maintain an upright position.

6.6.2. Green and Brown field assembly lines
All assembly lines generated within CAJ'ABLEAssembly can be done in two modes

namely brown and green field. Brown field refers to assembly lines generated based on

a set of pre-defined available resources. This information is stored in databases and is

automatically loaded when a specific product assembly line is generated. Limiting

available resources include; number of operations per workstation and workstations that

are tool specific. When a brown field assembly line is used assembly operations can

only be loaded on workstations capable of performing the operation and have enough

space to hold the mating parts.

Green field models refer to assembly lines with no given limitations on resources and

space, the system effectively creates a new assembly line. Resources, human and

otherwise are loaded as needed and the spatial and geometrical limitations are modified

as the operations are loaded on workstations.

6.7 Genetic algorithms
The use of genetic algorithms to solve combinatorial optimisation problems has been

developed over the last forty years, notably by Goldberg et al, (1989). Genetic

algorithms seek to breed good solutions to the complex problems by a paradigm that

mimics evolution. The process is characterised by the initial construction of a

population of initial solutions. Solutions in the population mate and bear offspring

solutions in the next generation. These reproduction and crossover operations are

programmed to replicate the paradigm of survival-of-the-fittest. Over many generations,

the solution of the individual members of the population improves; the genetic

algorithm terminates when a preset condition (usually a given maximum number of

-124-

BALANCING SINGLE MODEL ASSEMBLY LINES

generations, goodness-of-best-solution, convergence-of-population or any problem

specific criterion) has been met and the final population generated should hopefully

comprise near optimal solutions. It is important to note that genetic algorithms do not

guarantee that optimal solutions are attained.

Over the past four decades the issue of single-model assembly line balancing has been

researched extensively using various computational methods (Talbot et al, 1986; Ghosh

and Gagnon, 1989; Anderson and Ferris, 1994, Leu et al, 1994 and Suresh et al, 1996).

Such methods can broadly be categorised into two groups; those that seek to solve the

problem exactly, such as exhaustive search methods (this includes backtracking and

branch-and-bound methods), and approximation algorithms (Gerez, 1999). Typically,

such methods are applied to situations where the problem size is small or the nature of

the solution space is known or can be derived. Both techniques (exhaustive search and

approximation algorithms) are particularly problem specific and require a great deal of

design and manufacturing information. Such information may or may not be available at

the earlier stages of design. Consequently, the robustness of such systems is

questionable.

In choosing the most appropriate method to solve intractable problems one of the most

important factors is the solution representation. In the case of SALB problems, a simple

linear formation (which can be easily represented using genetic algorithms), capable o f

storing more complex structures is sufficient. Methods such as backtracking and

branch-and-bound typical use task trees, to perform a depth and breadth search

exhaustively. For the purpose of this research it was deemed imperative to be able to

keep the format of the AFCs loaded on the workstations, when encoding the solution.

Each AFC is directly liked to the connectivity model and the product model, which

simplifies (and speeds ups) the process of decoding and evaluating a feasible solution.

Standard schema, inherent to genetic algorithms, can be used to intuitively map the

SALB problem. For example, a chromosome can be used to represent an assembly line

and the gene the assembly operation assigned to a workstation, in genetic terms an

allele.

For the problem at hand, exhaustive searches are not the most efficient method of

finding an optimal solution. Branch-and-bound and backtracking methods typically start

with a partial solution in which as many variables as possible are left unspecified;

values are then systematically assigned to each variable until a fully specified solution

(feasible solution) is obtained. Although the cost function or goodness of each solution

-125-

BALANCING SINGLE MODEL ASSEMBLY LINES

is only evaluated for feasible/fully specified solutions, a large degree of fruitless search

is still performed; this is expensive in computational terms. Genetic algorithms are good

at identifying the aspects of a good solution using tools such as partial match cross over,

where patterns/themes are effectively transferred to subsequent generations. Exhaustive

methods are simply good at spotting good solutions; this does ensure the best possible

solution is eventually attained.

The other group of computational methods is that of general-purpose heuristics, which

do not guarantee an optimal solution, but they do however yield near optimal solutions.

Genetic algorithms fall into this group of computational methods. The appeal of genetic

algorithms lies in the fact it does not require a multitude of mathematical stipulations

about the optimisation problem. Due to its evolutionary nature, genetic algorithms wi l l

search for solutions without regard to the specific inner workings of the problem. It is

capable of handling any objective function (linear or non-linear) and any number of

problem specific applied constraints. Thus, genetic algorithms can be used to facilitate

the generation of optimal/good assembly plans at the aggregate level of design

(Maropoulos, 1995).

Genetic algorithms also have other distinct advantages over the other computational

methods within its group, such as simulated annealing and tabu search. These include

the effectiveness o f genetic algorithms to perform a global search over the solution

space due to the ergodicity of the genetic operators (see Section 6.7.5). Methods such as

simulated annealing, as discussed in chapter 5, perform convergent stepwise procedures

comparing the value of nearby solutions and move to the relative optimum solution. The

flexibility of genetic algorithms can be capitalised by using domain-specific heuristics

for the effective solution of a specific problem.

6.8 Generation of assembly plans using GAs
The logic of genetic algorithms can be applied to the generation and optimisation of

assembly plans. For a given population size (number of individuals in a population)

each gene (assembly operation) within the genome (assembly plan) uses the allele1 set

to ascertain its value, each gene is randomly assigned (using a random number

generator) an allele from the allele set (set of workstation). Each genome has a length

equal to the number of objects stored within the array, that is the number of assembly

operations to be assigned to the workstations. The fitness of each genome (assembly

' As with genetics, an allele refers to the value assigned to an element/gene within a chromosome. See
Section 6.8.2.

-126-

BALANCING SINGLE MODEL ASSEMBLY LINES

plan) is evaluated using an objective function. Depending on the chosen genetic

operators (see Section 6.8.1), the best genomes are used to create the next population.

The process is repeated until convergence is attained resulting in a final population

consisting of only genomes (assembly plans) with high objective scores. The genome

(assembly plan) with the highest objective score is deemed to be the best solution

(optimal assembly plan).

Two types of genetic algorithms namely, simple and steady state genetic algorithms

were used to solve a simple SALB problem, with minimal restrictions consisting of only

ten assembly operations. The difference between the types of genetic algorithms lies in

the generation of subsequent populations. Steady state genetic algorithms utilise

overlapping populations; a clone of the initial population is generated, for each

generation a temporary population is then created. These two populations are then

added together, the worst members of the resulting population are removed in order to

return the population to its original size. Simple genetic algorithms do not involve

overlapping populations; and for each generation the new population is created by

mating members of the initial population. The results obtained showed that the simple

genetic algorithm, although capable of finding optimal solutions, took longer to

converge and was not consistent in finding an optimal solution. As there was no reason

to believe this pattern would only be limited to simple product models, the steady state

genetic algorithm is used for all simulations. Hence, for the purpose of this research the

steady state genetic algorithm is used for all analysis performed.

6.8.1. Genetic Operators

6.8.1.1 Crossover

Crossover is the main genetic operator; it operates on two chromosomes (solutions) at a

time and generates an offspring by combining both chromosomes' features. The

crossover rate is defined as the ratio of the number of offspring produced in each

population to the population size. The ratio controls the expected number o f

chromosomes to undergo the crossover operation. A high crossover rate allows the

exploration of more of the solution space and thus reduces the chances of converging at

a false optimum (Gen and Cheng, 1997). However, i f the value is too high it leads to a

waste of computation time.

To ascertain the behaviour of the crossover operators considered, a set of standard

crossover operators traditionally used for combinatorial optimisation was used initially

to solve a simple assembly line balancing problem. As before, the operation considered

-127-

BALANCING SINGLE MODEL ASSEMBLY LINES

consisted of ten assembly operations performed on three workstations. The optimisation

of the assembly line is based on Equation 6-9 (balance delay, this is also the line

efficiency), Equation 6-10 (station variation index), and Equation 6-11 (work

relatedness). The cycle time is calculated by dividing the total assembly time by the

number of workstations (Equation 6-4).

Crossover operators used includes:

• Partial match crossover (PMX): This operation was suggested by Goldberg and

Lingle (1995), and is aimed at maintaining inheritance of adjacency and relative

order of elements in the solution structure. An illustration of how the operators

considered work is shown in Figure 6-5. A sub-string from Parent 1 is first

selected and copied to the same positions in Parent 2, creating Proto-child 2

(shown red in Figure 6-5). Similarly, a sub-string of Parent 2 is copied to the

same positions in Parent 1 to create Proto-child 1 (shown in green in Figure 6-5).

A pair-wise exchange (Step 3 in Figure 6-5) between the selected sub-strings is

performed to obtain a mapping relationship between Parent 1 and Parent 2. This

mapping is used to legalise Proto-child 1 and Proto-child 2 to make an exact

copy of Parent 1 and Parent 2.

Step l
Select sub-string at random

Parent 1

Parent 2

12 3 4 5 6 7 8 9

Step 2
Exchange sub-string between parents

Proto-child 1 1 2 6 9 2 1 7 8 9

5 4 6 9 2 1 7 8 3 Proto-child 2 5 4 3 4 5 6 7 8 3

Step 3 Determine mapping relationship

6 9 2 1

3 4 56 9++

6-«-*3
5
4

Step 4 Legalise offspring with mapping relationship

Offspring 1 2 9 3 4 5 6 7 8 1

Offspring 2 35 6 9 2 1 7 8 4

Figure 6-5: Illustration of PMX operator (Gen and Cheng, Genetic algorithms and
engineering design, John Wiley & Sons, 1997)

Uniform crossover. Initially proposed by Syswerda (1989), an offspring is

created by randomly selecting an element from each parent. The decision as to

which parent the element belongs to is based on the probability of the element

coming from each parent. I f Pe is the probability of selecting the element from

-128-

BALANCING SINGLE MODEL ASSEMBLY LINES

Parent 1 , then (l - Pc) is the probability of selecting the element from Parent 2. A

random number is generated x, using a random number generator from the range

0 - 1 . I f JC is less than Pe (also randomly generated) then the element comes form

Parent 1, otherwise the element comes from Parent 2. The element assumes the

position in the offspring genome corresponding to its position in its parent

genome. This process is repeated until the parents become empty. This operator

can be used on genomes of different lengths, but the crossover is truncated to the

shorter of the parents and child.

The key benefit of this method is the scope of the solution space it generates,

and thus evaluates. However, this approach to generating offspring means it is

hard to ensure feasibility o f the offspring generated.

One point crossover. This method of crossover creates an offspring by selecting

a crossover point common to both parents and swapping the tail end of each

parent as shown in Figure 6-6. In Figure 6-6 a parent genome is made of a

sequence of assembly operations assigned to a workstation. Each square

represents a gene (assembly operation), which has an allele value (workstation

assembly operation has been assigned to). The crossover point is chosen by

searching both parent genomes for coinciding gene values (alleles). I f such a

position cannot be found the mid point of the genome is used as the crossover

point. The genes in the tail end of Parent 2 are randomly deleted from the Parent

1 genome. The remaining genes in Parent 1 are used to create the head of

Offspring 1 as shown in Figure 6-6. The genes of the tail end of Parent 2 are

used to f i l l up the empty slot lefts in the Offspring 1 genome. The reverse

process is repeated to create Offspring 2.

This type of crossover is useful because it allows for both local search and the

exploration of new solutions space. I f the crossover point is close to the last gene

in the genome, a local search is performed, as the majority of genes within the

offspring will retain their original position. I f the crossover point is moved

towards the first gene, the offspring created wil l have little resemblance to its

parents, thus, providing a new search space. However, this advantage is also its

disadvantage, as the methods will be prone finding regions of local optima.

-129-

BALANCING SINGLE MODEL ASSEMBLY LINES

Crossover point
I

• • • • • • • DOtHfl l
Head 1

10

Tail 1

6 9
Head 2

1
Head 1

10
Head 2

2 | 4 | 5 | 6 | 7 | 9 |10
Head 3

Head 4

11 1

Parent 1

Parent 2
Tail 2

I Delete genes from tail of Parent 1 (Tail I)
^ in Parent 2 genome, and vice versa

8 | 9 110 11 Intermediate offspring 1
Tail 1

111 8 | 1 3 Intermediate offspring 2
Tail 2

I Use remaining genes in Parent 1 to define the
^ head of Offspring 1 (Head 3), and vice versa.

Swap tail of each parent to complete offspring.

11 1 Offspring

101111 Offspring 2

Tail 2

Tail 1

Figure 6-6: Illustration of one point crossover

Two point crossover. The two point crossover attempts to reduce the probability

of getting trapped in the local optima, whilst maintaining the advantage of the

one point crossover. The generation of offspring in two point crossover follows

the same pattern as the one point crossover, described in Figure 6-6. In this case

a second crossover point is also introduced, using the same methods as described

above. As before, i f coinciding alleles cannot be found, the genome is split

evenly to determine the two crossover points. In this case each genome has two

tail ends and one central head, as shown in Figure 6-7. The genes in the tail ends

of Parent 2 are removed from Parent 1, and the remaining genes are used to

create the head of Offspring 1. The tail ends of Parent 2 are used to fill the tail

ends of Offspring 1 genome as shown in Figure 6-7. The same process is used to

create Offspring 2.

Whilst this methods does not significantly decrease the probability of finding

local optima, it significantly increases the chances of getting out of local optima

and thus has a relatively smaller convergence time when compared to the one

point crossover. This approach has a greater probability of generating solutions

that are not feasible, compare to the one point crossover.

- 130-

BALANCING SINGLE MODEL ASSEMBLY LINES

Crossover points

! | 2 | 3 • • • a n
Tail 1 Head 1 Tail 2

10 5 4 6 9 2 7 11 8 1 3
Tail 3

10 5 4
Tail 3

i
Parent 1

Parent 2
Head 2 Tail 4

Delete genes from tails of Parent 1 (Tail 1 & Tail 2)
in Parent 2 genome, and vice versa

• • I 4 | 5 \6TT\« H» I f Intermediate offspring 1
Tail 1 Head 1 Tail 2

10 5 4 6 9 2 7 11 8 1 3 Intermediate offspring 2
Tail 3 Head 2 Tail 4

Use remaining genes in Parent 1 to define the
head of Offspring 1 (Head 3), and vice versa.
Swap tails of each parent to complete offspring.

6 H 9 i i
Head 3

Tail 1 Head 4

8 1
Tail 4

10
Tail 2

Offspring 1

| Offspring 2

Figure 6-7:lllustration of two point crossover

• Even and Odd crossover. For even crossover, the 0 t h gene and every other one

after that is taken from Parent 1 genome, the 1 s t and every other gene thereafter

is taken from Parent 2 genome to create Offspring 1. Likewise, for odd

crossover, the 0 t h gene and every other one after that is taken from Parent 2, the

1 s t gene and every other gene thereafter is taken from Parent 1, to create

Offspring 2.

As with the Uniform crossover, although this method does not ensure feasibility

in the offspring produced, it does generate and evaluates a large solution space.

The major defect of all the operators considered, excluding the partial match operator,

were their tendencies to get trapped in local optimums, hence reducing their reliability.

Also, their inability to improve the mean objective score of the individuals within

successive populations, and increasing generations resulting lower mean scores for the

best population.

- 131 -

BALANCING SINGLE MODEL ASSEMBLY LINES

Comparisons of Operators (using Gaussian Mutator)

- EvenOdd Mean TwoPoint Mean Uniform Mean Partial Match Mean OnePoint Mean

GO

Generations

Figure 6-8: Comparison of genetic operators; crossover

The mean values over five separate runs for all the crossover operators used for the line

balancing problem is shown in Figure 6-8. The result clearly identifies the partial match

operator as superior to all other operators tested, the quality of the successive

generations (higher mean objective score values) improves to a greater extent with

increasing number of generations and the operator does not appear to exhibit an affinity

for immature convergence. The slope of the partial match operator rises steadily and

does not continuously generate individuals of similar objective score for more than

approximately five generations. Al l other operators, once in local optima have found it

difficult to generate better individuals with higher objective score. The two point

crossover does begin to find better individuals after approximately 40 generations. I f

left to run for sufficient length of time the two point crossover does eventually begin to

generate better individuals, although the objective scores were not as high as that

attained with the partial match operator. The test was performed over 500 generations,

the graph presented in Figure 6-8 have been truncated to reveal the behaviour of the

operators when developing earlier generations. The uniform, one point, and even and

odd operators did not produce better individuals within this length of time.

The results obtained proved to be consistent with other research (Kim et al, 1996)

performed on assembly line balancing. Consequently, the P M X operator was used for

the purpose of this research.

-132-

BALANCING SINGLE MODEL ASSEMBLY LINES

6.8.1.2 Mutation
Mutation is a background operator, which produces spontaneous random changes in the

population. It operates on one parent, and creates an offspring that is different from the

parent. The offspring generated does not normally represent a feasible sequence.

Typically, two genes within the genome are randomly selected and swapped to create an

offspring, this is known as swap mutation.

The mutation rate is a percentage of the total number of genes in the population. The

mutation rate controls the rate at which new genes are introduced to the population for

trial. I f low, many genes that may have been useful would have never been tried out, but

higher values lead to too much random perturbation, in which case the offspring wil l

start losing resemblance to the parents, and the algorithm wil l cease to learn from the

history of the search operator (Gen and Cheng, 1997).

As before, the simple assembly line balancing problem comprising ten assembly

operations and three workstations was used for this analysis. In a bid to retain some

form of feasibility, two different extensions of the swap mutation were investigated to

determine which operator would yield better results, namely:

• Gaussian mutation. Gaussian mutation creates a new offspring genome from a

parent genome by assigning a new allele value (workstation number) for a

randomly selected gene (assembly operation) within the parent genome. The

new allele value is obtained from an allele set of all possible allele values (a set

of all possible assembly workstations) using a gaussian distribution based

around the current value.

For example, i f the allele set contains 5 workstations {0,1,2,3,4}, and the gene

randomly selected [for mutation] has an allele value of 3, its new value is more

likely to be 2 or 4, as opposed to 1 or 5.

• Inversion mutations. A description of inversion mutation is shown in Figure 6-9.

The operator works by randomly selecting a sub-sting of genes within the parent

genome, shown in yellow in Figure 6-9. The allele values of these genes are

simply inverted to create the offspring. This form of mutation is possible when

using real number allele genomes. In Figure 6-9, the each gene represents an

assembly operation, the allele value stored within each gene corresponds to the

workstation number the assembly operation has been assigned. It is these values

that are swapped. Hence, the third assembly operation (red square in Figure 6-9)

-133-

BALANCING SINGLE MODEL ASSEMBLY LINES

originally assigned to workstation number 0, in the offspring generated is

assigned to workstation number 2, as shown in Figure 6-9.

Select a set of consecutive workstations

1 1 1 (I I l 0 Parent 1

V
Invert the selected workstations

0 |o 1 0 2 2 2 1 1 1 1 Offspring 1

Figure 6-9: Inversion Mutation

A significant difference between the two operators in terms of the objective score was

not noticed, as shown in Figure 6-10. However, inversion mutation appeared to produce

slightly better results with regards to consistency and objective scores. The preliminary

trials showed that a maximum value for the mutation rate was 0.3; higher rates of

mutation severely decreased the objective scores of successive populations, increasing

the computational time before convergence was attained. In cases of mutation rates

above 0.5, convergence was not achieved in 500 generations.

The results obtained are not explicitly consistent with other research in assembly line

balancing/assembly planning, as detailed comparison of the mutation operator has not

been performed to the same extent as the crossover operator. However, it does attest the

well-accepted view that the mutation operator has a somewhat secondary role in genetic

algorithms (Goldberg, 1989). Indeed some research (Roach and Nagi, 1996) chooses to

ignore this operator.

Comparison of mutation operators (Uniform Crossover)

nversion Mean Gaussian Mean

0 20 40 Generations QQ

Figure 6-10: Comparison of genetic operators; mutation

-134-

80 100

BALANCING SINGLE MODEL ASSEMBLY LINES

Based on the results obtained, an inversion mutation was used with the mutation rate set

to 0.3. This was to preserve and increase the diversity of solutions evaluated, without

significantly hampering the computational time and feasibility of offspring generated.

6.8.2. Representation
Essentially, genetic algorithms work on the coding and solution space alternately; the

genetic operators work on the coding space that is chromosomes/genomes, while

evaluation and selection is performed on the solution space as shown in Figure 6-11.

Hence a form of representation (encoding and decoding) is required to create a link

(mapping) between the two spaces.

S O L U T I O N S P A C E
C O D I N G S P A C E

(Engineering world) (Genetic Algorithm)

valuation and Genetic operators
Selection (crossover & mutation

Figure 6-11: Coding and solution space

The first step in constructing a genetic algorithm is the definition of a genetic

representation (encoding) of a good solution to the defined problem. Having a good

representation that well describes the problem is crucial. Indeed, the representation is

required to hold all the information that completely describes a solution. Adopting the

basic terminology of genetics: a chromosome (genome) is an encoding of a solution and

is a vector in coding space 9?"; a gene is an element of the chromosomes (vector); an

allele is a value taken by that element. For example, x e 9 i 9 might be a chromosome, X5

one of its genes, i f x5 = 6 then the fourth gene has allele value of 6.

Representation can take many formats, such as strings, arrays, binary, random keys and

trees. There are numerous methods of representation that are applicable to the assembly

line balancing problem. Those of interest are:

1. Random keys (Bean, 1994). The random keys representation encodes a solution

with random numbers. These values are used as sort keys to decode the solution.

2. Workstation based representation (Anderson and Ferris, 1994). In this case, a

genome is constructed such that the number of genes required to build the

genome is equivalent to the total number is assembly operations. I f an assembly

operation in the i * position of the genome is assigned to workstation j, the allele

-135-

BALANCING SINGLE MODEL ASSEMBLY LINES

value of the gene (assembly operation) in the / , h position is the workstation

number j.

3. Sequence based representation (Leu et al, 1994). Here, all assembly operations

are sequentially listed in the order that the operations are assigned to the

workstations.

4. Precedence-list-based representation (Davis, 1985), originally designed for

scheduling problems, can be adapted for assembly line balancing problems. For

an n operation, m workstation assembly line balancing problem, a chromosome

consisting of m sub-chromosomes is formed for each workstation, each sub-

chromosome consisting of a string of length n.

When considering the possible representations of solutions it is important to

acknowledge the following aspects:

1. Lamarckian property. The Lamarckian property of a chromosome concerns the

issue of whether the chromosome can pass on its merits to a future population

through a common genetic operation. Of the three modes of representation

considered, random keys have no Lamarckian property that is; an offspring

inherits nothing from its parent. Sequence/job-based representations have

Lamarckian property that is; an offspring can inherit goodness from its parent.

Machine/workstation based representation and precedence-list-based

representations have half Lamarckian property that is; part of the segments

inherited from parents refers to the same things as the parents while the

remaining part refers to different things.

2. Complexity of the decoder. The complexity of the decoder required for the

modes of representation described herein, can be classified into the following

levels;

a. Simple Mapping Relation. Operation/sequence based representation and

random keys representation, belong to this class.

b. Simple Heuristic. Precedence-list-based representation belongs to this

class.

c. Complex Heuristic. Machine/workstation based representation belong to

this class.

-136-

BALANCING SINGLE MODEL ASSEMBLY LINES

Each workstation stores the assembly sequences it is to perform. Similarly, each AFC

stores the workstation number it has been assigned. The encoding format in terms of

computer simulation is described in section 6.8.2.

6.8.3. Encoding and decoding
This chapter uses a workstation-based representation, with a real number genome of

length equal to the number of assembly operations to be loaded on the workstations and

employs the use of allele sets. As already explained in section 6.8.2, alleles are values

adopted by genes constituting a given genome. An allele set is the set of all possible

values a gene may assume. For example, using a workstation representation, i f the total

number of workstations available is 5, the allele set 9i, for any given genome is =

{0,1,2,3,4}. A gene within the genome may be assigned an allele value corresponding a

workstation number between 0 and 4. The allele set is stored using an array format.

The decision to use this method of encoding was based on the flexibility it provides in

the design of the genetic algorithm in terms of linking the specific objective functions to

derived objects (workstations and assembly operations) for evaluation purposes. The

other attractive qualities that are inherent in the other methods (namely, sequence and

precedence-list-based representation), in particular precedence of assembly operations,

can easily be coded as part of the evaluation process whilst still maintaining a high

degree of flexibility in the design of the workstations and the allocation of assembly

operation to workstations.

It has been argued (Kim et al, 1996) that workstation-based representation can only be

used for problems dealing with minimisation of cycle time and workload smoothness

where the number of workstations is pre-specified and not for the minimisation of the

number of workstations. This, of course, is based on the mode of implementation, and

the assumption that the number of workstation needs to be specified by the user, which

may not necessarily be the case.

The issue of minimisation of the number of workstations cannot be dealt with as a

singular issue (neither can cycle time) with regards to optimisation of assembly lines, an

optimal assembly plan needs to be purpose specific. For example, an assembly line can

be balanced using three or five workstations both providing acceptable workload

smoothness, cycle time and efficiency levels. The question as to whether an assembly

plan is optimised using a three or five-workstation assembly line is therefore based on

other limitations and restrictions supplied by the user, such as space and cost.

-137-

BALANCING SINGLE MODEL ASSEMBLY LINES

The use of a workstation-based representation can be used to enhance the characteristics

of the issue of minimisation of the number of workstations, and is made more

favourable with the adaptations of allele set arrays, as this greatly simplifies the issue of

decoding. Decoding heuristics are simplified due to the knowledge that the sequence of

the operations used is already optimised, thus reducing the search space as well as

providing a good idea with regards to a 'good' solution. Relevant workstation data are

stored in workstation objects (which are stored as allele sets), so the decoding issue can

now be solved using a simple mapping method as shown in Figure 6-12.

Allele set container holds the workstation
object for each gene in the genome

Assembly line balancing problem
• 13 assembly operations
o 3 available workstations

(Wks/), where / is the
workstation number

• Allele set, <R = {0,1,2}

Encoding

Real number genome array holds assembly
operation object. Position of the assembly
operation in the array is equivalent to its
position in the assembly sequence.

Each gene in genome = AFCy

Decoding 0 0 ! 0 1 0 2 2 2 2 1 1 1 1 ;

=> Allele value = 0; Loaded on WksO
AFCij+i => Allele value = 0; Loaded on WksO

•
AFCy+5 => Allele value = 2; Loaded on Wks2

•
AFCij +i 2=> Allele value = 1; Loaded on Wks/

Figure 6-12: Representation for encoding and decoding format

The encoding format is based on the use of allele set arrays using a real number

genome. Allele sets 9t, can be viewed as containers for different values that a gene can

assume, it can contain objects of any kind. For the purpose of this research the allele set

contains workstation objects as described in Section 6.6. This genome uses an

enumerated list of alleles. Each allele is explicitly added to the allele set and any

element (gene) of the genome may assume the value of any member of the allele set. In

using allele sets as the encoding format, the value of an element corresponds to the

workstation the element/assembly operation has been loaded on. Each gene, shown in

Figure 6-12 as a green box, in the real number genome represents an AFC object with

its own private properties including operation times, precedence ratings and fixed or

floating assembly operations, as described in Chapter 4.

For example, i f four workstations, 9i={0,1,2,3}, are required for a given assembly line,

each workstation object (allele) is explicitly added to an allowable set of workstations

-138-

BALANCING SINGLE MODEL ASSEMBLY LINES

(allele set), any assembly operation (gene) may be assigned to any workstation (subject

to precedence constraints) belonging to the set of workstations generated.

6.8.4. Initial Population and population control
Genetic algorithms are not influenced by the search start point or by the continuity of

the search space or by assumptions about convexity. As crossover and mutation

operators are controlled by probabilistic parameters, there is no guarantee of finding the

same solution in each run. Hence, there is no reason to assume that the performance of a

genetic algorithm is enhanced or hindered by using a reselected starting populations or

randomly generated starting population. However, some literature (Anderson and Ferris,

1994) advocates the use of random starting population citing improved genetic

algorithm performances. For the purpose of this research the initial population of

genomes/chromosomes is generated randomly.

As already stated, the approach adopted uses a steady state genetic algorithm for the

generation of assembly plans. Here, a certain number of individuals from the

initial/current population are passed on to the next population via a selection process.

Ideally, the selection process directs the genetic algorithm search towards promising

regions of the search space. It is based primarily on the sampling space and the

sampling mechanism. The selection method employed for this research is based on a

regular sampling space. An in depth discussion of sampling space can be found in

'Genetic Algorithms and Engineering Design' (Gen and Cheng, 1997).

The selection of a member of the current population for migration between generations

was initially performed using three sampling methods, namely tournament, roulette

wheel, and deterministic sampling, to ascertain the best sampling approach for the

analysis. The tournament sampling that gave bad results (low mean objective scores),

roulette wheel gave slightly better results (slightly higher mean objective scores), and

deterministic sampling generated the best assembly plans (highest mean objective

scores obtained). Hence, deterministic sampling is used for selection purposes; it is

based on a two-staged selection process. In the first stage, each individual's

representation is calculated. The individuals' representation within a population may be

obtained from the raw objective scores or from a scaled value based on the objective

score. A scaled objective (fitness f) score has been used to calculate an individual's

representation, expressed in Equation 6-15 (Goldberg, 1989).

/ = °bj' __ score - [pbj _ ave - c * obj _ dev) Equation 6-15

Where;

-139-

BALANCING SINGLE MODEL ASSEMBLY LINES

obj score is the raw objective score

obj ave is the average objective score for the population

c is a small number, used for scaling. The value of c is left to the discretion of

the programmer. I f the apparent difference between individuals with higher and

lower objective scores is to be magnified, this value needs to be greater than 1.

For the purpose of this research a value of 1.2 is used.

objdev is the objective score standard deviation of the population.

A temporary population is filled using the individuals with the highest expected

numbers (fitness scores above the average objective score). Any remaining positions are

filled by first sorting the original individuals according to the decimal part of their

expected representation, then selecting those highest in the list. The second stage is a

uniform random selection from the temporary population. Elitist selection is also

utilised, it ensures that the best chromosomes are passed onto the new generation i f they

are not already selected.

The initial assembly process plan is generated by randomly loading assembly operations

from the optimised assembly sequences obtained using the simulated annealing

algorithm on workstations of a given assembly line. I f the design of the assembly line is

not known a green site assembly line is used as described above.

• - CAPABLEAssembly Optimal assembly sequence browser

AFC type Assembly sequence

LowCostTrimmet
connection953753307
connection953753419
connection953751129
connection953753483
connection953753450
connection953753388
. connection953/ 52541
connection953752067
connection953752153
connection953752111
connection953752353
connection953751033
connection953752009
connection953751984
connection953751282
connection953751935
connection953751959
connection953751313 zl

| T hermoplastic_ welding

Parent assembly
|LowCostTrimmer

Components
|lower_base_shell and lower_top_shell

Required tooling
|Ultrasonic_welder

Moving Part
|tawer_base_shell

Stationary Part
|N0NE->T00LUSE

Figure 6-13: Optimal assembly sequence from SA algorithm

Handling time

|1.95sec

Operation time
|9.6sec

P
Assembly level

Total Assjime

Il2.13sec

Display

Cancel

RunGA

- 140-

BALANCING SINGLE MODEL ASSEMBLY LINES

6.8.5. Fitness and Evaluation
The fitness of an individual (solution) is equivalent to its objective score derived from

the objective function/performance measures. It signifies the ability for a particular

individual to survive between generations. The objective score can be used directly as

the fitness of an individual. However, it is better to use some form of scaling

mechanism to maintain a reasonable differential between relative fitness ratings of

chromosomes and to prevent a too-rapid takeover by some super chromosomes.

Different scaling methods (Gen and Cheng, 1997) can be applied depending on the

problem and the type of values expected. For the purpose of this research, a "sigma

truncation" scaling probability has been applied. I f the fitness of the individual being

evaluated is less than zero, the fitness of the truncated, that is, set to zero. This method

was used to deal with negative objective values and to incorporate the problem-

dependent information into the mapping process. The mapping from objective score to

fitness score for each individual is given by Equation 6-15.

Although all the performance measures listed are considered in the generation of

optimal assembly plans, the genetic algorithm is guided essentially by two objective

functions, minimisation of number of workstations (Section 6.8.5.1) and minimisation

of the cycle time (Section 6.8.5.2). Other factors including balance delay, workload

smoothness, work-relatedness and worker allocation are all optimised with every

genetic algorithm plan generated.

6.8.5.1 Minimisation of number workstations
The minimisation of the number of workstation is controlled by Equation 6-2. A set of

possible values for the minimum number of workstation is calculated using Equations

6-4, 6-5, and 6-6, nejt nwc, and «hf respectively. The genetic algorithm is looped to

generate assembly plans for each value of the theoretical minimum number of

workstations from the highest to the lowest within the set. In each case, the result is the

best individual (individual with highest objective score) in the final population. This

best individual (optimal assembly plan) generated in each genetic algorithm run for each

minimum number of workstation over a given number of generations (a value of 500

generations is used for this analysis) is stored, to create a set of optimal assembly plans.

This set contains an optimal assembly plan for each number of workstations optimised.

For each assembly plan within this set, a total assembly cost per unit is calculated using

Equation 6-12. Although all data is provided to the user, the suggested optimal

-141 -

BALANCING SINGLE MODEL ASSEMBLY LINES

assembly plan is based on the optimal assembly plan with the least estimated total

assembly cost.

Figure 6-14 shows the route and decisions made during the optimisation process.

The GA takes as its input:

• Basic line balancing data; production rate, number of shifts per day, number of

hours per shift.

• Total product assembly time. The total product assembly time can be supplied

by the user, or is calculated within the algorithm as the summation of assembly

operation (AFC) process time. A relaxation factor is also added to the overall

assembly time to cater for external factors (such as rejects and human error)

encountered when dealing with manual assembly lines. This value is supplied by

our industrial collaborator, and is based on the type of operation being

performed. Within the algorithm this value is calculated as a percentage

(maximum of 4%) of a given assembly operation (AFC).

• Transportation time. This is the time taken to move a subassembly between

workstations. A default speed of 4.5m/s, consistent with industry is provided.

With the above input data the algorithm calculates a set of possible minimum number of

workstations, as shown in Figure 6-14.

-142-

BALANCING SINGLE MODEL ASSEMBLY LINES

Obtain assembly line balancing data;
production rate, number of shifts,
number of hours per shift, total

product assembly time, transport
time between workstations

Calculate
W»tnin{lW »hf %)
nm a x=max{n l l c, nh/ neJ)

I
Set Parameters; NWks = n^

create genome, population size, number
of generations, scaling and selection
mechanism, crossover and mutation
operator ratios and replacement ratio

^ferminate^

NWks-NWks-1

[sNWks>/i m n ?

Store best
individual

Is no. of generations
Max no. 01 generations?

Selecti

terministic
sampling

Initialise population;
Add workstations to the genome

if(NWks!=0)
for (int i=0; i<NWks; i++)

allelesl.add(i);

Partial Match Crossover
operator rate= 0.6

Inversion mutation
operator rate= 0.3

genomes

1 decoding

Fitness and Evaluation
for (int i=0; i<population size; i++)

value+=w*Xcr)
value+=w^/(8)

value+=w^precedence)
value+=>ey(cycle time)

genome (i).objective score+=value
fitness ;/(sigma truncation(objective score))

Figure 6-14: Minimisation of number of workstations

The genome is created by loading AFC objects sequentially from the optimised

assembly sequence obtained using simulated annealing into each gene of the genome.

The number of AFCs within the assembly sequence determines the genome length.

-143-

BALANCING SINGLE MODEL ASSEMBLY LINES

Next, the allele set is generated from the greatest value of the three possible values of

minimum number of workstations. For example, i f nej, = 6, « w c = 4, and «hf = 2, the

allele set is generated by loading 6 workstation objects into an allele set array for the

first GA run. The workstations are obtained from the factory database and the type of

workstation loaded is based on whether the assembly line is deemed green or brown

field (see Section 6.6.2). This means any AFC can be loaded on a workstation stored in

the allele set array.

Once the genome and allele set is created the population can be initialised and the

natural selection process begins. The partial match and inversion operators as used as

the preferred genetic operators for creating subsequent populations.

Each genome is decoded to calculate its objective score and thus, its fitness. The

objective score is calculated using an accumulative process. Each genome starts with a

'value' of zero, the station variation index <T, for each workstation is calculated using

Equation 6-10 and added to this value. The index of work relatedness for each

workstation is calculated using Equation 6-11 and added to the current value.

The feasibility checks (see Section 6.8.6) are also taken into account when evaluating

the objective score for each genome. Two functions,/(precedence) and/(cycle time) are

used to ensure assembly operations comply with precedence rules (as described in

Section 4.3.2), and that operations loaded on specific workstations can be performed on

the assigned workstation respectively. The result of both functions is added to the

current value of the genome. The total value of the genome is stored as the objective

score of each genome, as shown in Figure 6-14.

The fitness of each genome in a population is calculated using Equation 6-15; the

genomes with high fitness scores are used to create successive populations. A check is

made to see i f we are in the final generation, i f not the next generation is created from

the current final population, and the process is repeated (as shown in Figure 6-14). I f we

are in the last generation, the best genome in the final population is stored, and a check

is made to see i f the analysis was based on the lowest number of workstations from the

possible three values of minimum number o f workstations. I f not, the current number of

workstations is decreased by 1, and the GA is run again, as shown in Figure 6-14,

otherwise the GA is terminated. This process results in a set of stored genomes each

representing the optimal assembly plans for a given number of workstations.

-144-

BALANCING SINGLE MODEL ASSEMBLY LINES

The total assembly cost for the stored genomes (optimal assembly plans) is calculated

using Equation 6-12. The optimal assembly plan is deemed to be the assembly plan with

the lowest associated total assembly cost.

6.8.5.2 Minimisation of cycle time
The minimisation of cycle time is controlled by Equation 6-2, by calculating the

minimum cycle time Tc, using a given production rate. However, i f this information is

not available, the minimum cycle time is then calculated as the maximum assembly

operation time associated with a single AFC plus the transport time between

workstations, Tej. The genetic algorithm follows a similar route to that shown in Figure

6-15. The result in this analysis is the best individual (equivalent to the assembly plan

with the highest fitness score) along with the best population. The fitness score of each

individual in of a population are stored in order of magnitude from the highest to lowest

of the fitness score. For example, the best ten assembly plans would equate to the first

ten individuals in the final population.

The flow of the algorithm (shown in Figure 6-15) is described in the preceding section.

This algorithm only calculates one value for number of workstations based on the

calculated cycle time, Twc or Tej. The objective score for each genome in the population

is calculated as described in the preceding section. The genetic algorithm terminates

after a pre-specified number of generations, and the total assembly cost is evaluated for

the genome (assembly plan) with the highest objective score.

6.8.5.2.1 Worker Allocation
The maximisation of worker allocation is activated when minimisation of cycle time is

selected. The system searches for the existence of non-related assembly operations

(obtained from the connectivity network) in each workstation. In such cases an

additional operator is added to the workstation in question and a new cycle time is

calculated. The process is repeated for all workstations, the maximum estimated (with

or without an additional operator) cycle time is used as the new cycle time of the SALB

problem and the assembly line is balanced using the new cycle time.

- 1 4 5 -

BALANCING SINGLE MODEL ASSEMBLY LINES

Obtain assembly line balancing data;
production rate, number of shirts,
number of hours per shift, total

product assembly time, transport
time between workstations

Calculate min cycle time;
NWks;

Store best
individual

Store final
population

^ Terminate ^ Selection

igh fitness
score

eterministic
sampling

Set Parameters; NWks,
create genome, population size, number

of generations, scaling and selection
mechanism, crossover and mutation
operator ratios and replacement ratio

Initialise population;
Add workstations to the genome

if (NWks != 0)
for (int i=0; i<NWks; i++)

alleles l.add(i);

enerations
generati

Partial Match Crossover
operator rate= 0.6

I
Inversion mutation
operator rate= 0.3

I
genomes

I decoding

Fitness and Evaluation
for (int i=0; i<population size; i++)

value+=w^/(a)
value+=H,^8)

value+= w ̂ /(precedence)
value+=w*/"(cycle time)

genome (i).objective score+=value
fitness=/(sigma truncation(objective score))

Figure 6-15: Minimisation of cycle time

6.8.6. Feasibility Checks
Each genome undergoes a series of feasibility checks to ensure the feasibility of the

assembly plan obtained. These include a workstation feasibility check and a sequence

feasibility check.

- 1 4 6 -

BALANCING SINGLE MODEL ASSEMBLY LINES

1. Workstation feasibility check, f{cycle_time). The workstation feasibility check

ensures the assembly operations loaded on a particular workstation are within

the maximum allowable time per workstation. It also ensures the assembly

operation loaded on each workstation can be performed on its designated

workstation by checking tool type availability.

Equation 6-16 gives the function for 'cyc leJ ime\ The total assembly time for

all the assembly operations loaded on a given workstation is evaluated. The

workstation is assigned a cycle time index (C7) of +1 i f this value is less than

the workstation cycle time, or -1 i f it is greater. The ''cycle time'1 variable of the

genome is then the sum of each of these time indices divided by the total number

of workstations,as shown in Equation 6-16. This variable has a maximum value

of 1.

±CT,
f {cycle _ time) = — Equation 6-16

n

Where, n is the total number of workstations.

2. Sequence feasibility check, /{precedence). This ensures the assembly sequence

loaded on particular workstations is feasible. That is, it checks the relative

position of fixed and floating assembly operations and the precedence ratings of

the assembly operation assigned to a particular workstation. It also ensures the

work-relatedness (Equation 6-11) of assembly operations loaded on each

workstation.

Equation 6-17 gives the function for ''precedence\ The precedence rating

already stored in the AFC object (as a result of the sequence optimisation using

SA) is compared for all AFC loaded on a workstation. I f two consecutive AFCs

follow the rules of precedence (see Section 4.3.2), a value of 1 is added to the

'precedence'' variable o f each genome. Otherwise a value o f - 1 is added to the

''precedence'' variable of the genome. I f all assembly operations are in feasible

positions within the genome, the maximum possible value for precedence is

equal to the total number of AFCs in the assembly sequence. Once a value for

precedence is calculated, it is divided by the total number of AFCs, this gives

Equation 6-17 a maximum value of 1.

-147-

BALANCING SINGLE MODEL ASSEMBLY LINES

m

y {precedence)

/(precedence)
m

Equation 6-17

Where, m is the total number of AFCs.

6.9 Calibration of objective function
The objective score is the summation of the station variation index (a), index of work

relatedness (8) , balance delay (d), and feasibility checks (cycle Jime and precedence).

Ideally, one would like to normalise each variable (as done with the simulated annealing

algorithms objective function) and equate the sum to the objective score. Unfortunately,

due to the nature of the equations used, the variations cannot be mapped quite so easily

as it is not possible to estimate the maximum values for a, and d. The issue is further

complicated by the variations between each variable considered.

Take for example the station variation index (Equation 6-10) provided below;

For good solutions, the difference between the total assembly operation time on a

workstation, and the workstation cycle time (Ts-Tc), will be very small, possibly < 0. As

this value is squared, and divided by the number of workstations, even though the

square root of this value is eventually obtained, the numerical magnitude of sigma is

still very small. When inverted, the result is a relatively [to the other variables

considered] large number of good solutions [as desired]. However, this value tends to be

too large, and there is a tendency to dwarf the other variables considered, especially the

variables for feasibility; cycle Jime and precedence.

The solution to the problem is to formulate expressions for each variable in relation to

the station variation index. The station variation was chosen for the two reasons:

1. The station variation index is the most volatile of all the variables.

2. A good (low) value for station variation index, infers a low value for the balance

decay wi l l be obtained (Equation 6-9). This in turn indicates the efficiency of the

line wi l l be high (balance delay is a measure of the inefficiency of an assembly

In its simplest form, the objective score is expressed as shown in Equation 6-18. The

function for balance delay and station variation index is inverted to assign higher values

to better solutions.

n l

n <=

line).

-148-

BALANCING SINGLE MODEL ASSEMBLY LINES

obj _ score = — + — + /(s)+ /{cycle_ time)+f {precedence) Equation 6-18
f \ d) a

On inspection of Equation 6-11, the maximum value for the index of work relatedness is

equal to 1. This occurs i f all the assembly operations assigned to each workstation are of

the same or similar type.

Since the maximum value for /(cycle time), /{precedence), and/[S) is 1, we can use an

alternative definition for the objective function, expressed with respect to the station

variation index by Equation 6-19. The values generated for balance decay are of

sufficient magnitude not to require representation in terms of the station variation index,

i f it is not expressed as a percentage.

100 1 S /(cycle time) /(precedence) _ . ,
obj score = + — + —++-^ -— = L+l^iL '- Equation 6-19

d a a a a

Equation 6-19 can be further condensed, but has been left in the format above to mimic

the computational process. Also, this format allows users to impose weights on

certain/all variables i f one feels insufficient emphasis is being place on a specific

variable.

6.10 Illustrative example
A number of products were used for testing the feasibility of the method and accuracy

of the system. The examples presented herein are in relation to an outdoor, lightweight

product. Only the result of the analysis is presented. A detailed step-by-step guide can

be found in the following Chapter.

The contact, precedence and technological constraints algorithm were used to generate

the corresponding connectivity model from the aggregate product model. The

connectivity model was used to generate an initial assembly sequence. This acts as the

initial assembly sequence for the simulated annealing algorithm.

An optimal assembly sequence is obtained using the simulated annealing algorithm as

described in the preceding Chapter. The analysis was performed using a steady state

genetic algorithm with deterministic sampling for population selection, using the

following genetic and line balancing parameters:

1. Population size: 110

2. Number of generations: 1000

3. Convergence criteria: Number of generations = 500

4. Genome length: 27

-149-

BALANCING SINGLE MODEL ASSEMBLY LINES

5. Crossover rate: 0.6

6. Mutation rate: 0.3

Assembly line balancing data are:

1. Production rate: 1500

2. Number of shifts per day: 2

3. Number of hours per shift: 8

The two modes of optimisation, minimisation of number of workstations and

minimisation of cycle time were performed

1. Minimisation of number of workstations. This section uses a product assembled

using 18 AFCs to illustrate this optimisation process.

a. Number of workstations estimated using production rate (Tc) = 3, cycle

time = 38 sec.

b. Number of workstations estimated using highest single assembly

operation time + transfer rate = 6, cycle time = (10.5+4.5) =14.9 sec.

c. Number of workstations estimates using number of single assembly

operations with an operation time of > half total assembly time = N/A

The route followed by the genetic algorithm is as discussed in Section 6.8.5.1.

The result of genetic algorithm is shown in on Table 6-1. The assembly plan

generated is a sequence of numbers, each number represent an allele value

(workstation) for a gene (an assembly operation) from the genome (assembly

plan). Hence, in the six-workstation set-up, the first six AFCs are loaded on

workstation 2, the next three AFCs are loaded on workstation 0, and so on. With

the six-workstations set-up, the cycle time per workstation is significantly less

than that of the three-workstation set-up, yielding a lower value for the

percentage inefficiency {d) of the line. However, although the standard deviation

of the line of the six-workstation set-up is higher than that of the three-

workstation set-up, it is still within an acceptable realm. However, in today's

economy the overriding factor is cost, and unfortunately the six-workstation set

up wil l prove to be too expensive once shop floor space, labour cost and other

overhead cost (including tools) are taken into consideration. The assembly cost

per unit is evaluated using Equation 6-12. The three-workstation set-up,

-150-

BALANCING SINGLE MODEL ASSEMBLY LINES

although it provides the lowest distribution of assembly operations in terms of

operation times (a=l .32239) , results in a relatively high degree of inefficiency.

Assembly plans generated
Sigma
(a) sec

No.
Wks

% Balance
delay (d)

Assembly Cost
per unit CPL (£)

2 2 2 2 2 2 0 0 0 5 5 5 2 1 1 4 1 0 1 3 1 3 3 3 5 3 4 5.8 | 6 wks 3.4 9.81
1 l i 1 4 4 14 4 4 4 3 3 3 3 3 3 0 3 3 2 2 2 2 2 2 0 15.9 5 wks 62.3 8.32
1 1 1 1 1 3 1 3 3 3 0 0 0 0 0 0 0 0 2 3 2 2 2 2 1 0 2 10.3 4 vvks 29.9 6.66
2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 0 0 0 1 0 0 1.3 3 wks 10.1 4.99

Table 6-1: Results for minimisation of number of workstations

2. Minimisation of cycle time: This section uses a product assembled using 2 7

AFCs to illustrate this optimisation process.

The result of the genetic algorithm is shown in Figure 6-16.

- example

I Auto zl • ^ fe Ejjjljg g AJ
: 1
Enter production rate per day: 1500
Enter nunber of s h i f t s worked per day: 2
Enter nunber of hours per s h i f t : 8

Enter nunber of workstations on assenbly l ine (enter 0 i f not known): 0
Enter to ta l assembly t ine for the product: 103.22

running ga number 1 . . .
the ga generated:
2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 2 0 1
33.996*1
print ing f i n a l population to f i l e . . .

The standard deviation of the assenbly l ine i s : 1.184<t7

I n e f f i c i e n c y of assenbly l ine i s : 10.1277/

(1) To enter assenblyl ine balance data.
(2) To n i n i n i s e cycle t ine without a qiwen production r a t e .
(3) To n i n i n i s e nunber of workstat ions.
CO Quit.

Figure 6-16: Result of minimisation of cycle time

The assembly line balancing data is shown in Figure 6-16. As the system is

capable of calculating the number of workstations required, a value of zero can

be entered, i f the number of workstations is not known. With the line balancing

data presented, the cycle time is 38.4 seconds, and the number of workstations =

1 0 3 - 2 2 = 2 .69 = 3 workstations.
38.4

The route followed by the genetic algorithm is as discussed in Section 6.8.5.2.

As before, the assembly plan generated is a sequence of numbers, each number

represent an allele value (workstation) for a gene (an assembly operation) from

the genome (assembly plan). Hence, for the results displayed in Figure 6-16, the

- 1 5 1 -

BALANCING SINGLE MODEL ASSEMBLY LINES

first twelve AFCs are loaded on workstation 2, the next five are loaded on

workstation 0, and so on.

From the results presented in Figure 6-16, the suggested assembly plan has a

low standard deviation, depicting a satisfactory level of workload distribution

between the workstations. The low level of inefficiency shows a solution with

minimal idle time across all workstation has been achieved for the assembly

plan generated. The precedence relations between assembly operations are also

maintained, the majority of operations adhere to the original optimised assembly

sequence. The overall objective score of the final population of solutions is

shown in Figure 6-17. It can be seen from Figure 6-17, that the solution has

converged, with the majority of individuals in the population attaining a high

objective score. However, only a few members represent optimal assembly

plans.

Final Population

-10

i t :

I
o to 0

3
15

10 - —

5 —

0 -I 1 1 1 , 1

0 20 40 60 80 100 120
Population Size

Figure 6-17: Final population

The variables namely the station variation index, the index of work relatedness,

precedence, and cycle time, had to be rebalanced during the course of this analysis. It

was found that for assemblies with larger number of operations, the station variation

index appeared to swamp both the precedence the cycle time variable. This lead to the

derivation of Equation 6-19, initially, the precedence and cycle time variables were

balanced with respect to the variance on each of the assembly workstations (the station

variation index, is essentially the standard deviation on each workstation).

- 152-

BALANCING SINGLE M O D E L ASSEMBLY LINES

6.11 Conclusions
A system for the generation of optimal assembly sequences has been presented. The

distinction between this system and other methods lies in the way the problem has been

designed. It does not seek to simply produce assembly plans based on the minimisation

of cycle time or number of workstations, rather it merely uses these parameters for the

generation of the initial population, the main interest lies in the 'goodness' of the

solutions/assembly plans generated.

The two modes of operation are independent; they use the same genetic algorithm, but

are based on two distinct objective functions. The module has been designed through a

series of trial and error experimental runs using a large number of products. The system

has been balanced in such a way to give significantly higher objective scores to

solutions with low station variation index and high values of kept precedence relations.

This is achieved by mapping derived weighted power functions to the calculated sigma

and delta values giving each performance measure equivalent ratings for similar values.

Other measures used including precedence rating and workstation times are

subsequently matched to the existing pattern by estimating their respective maximum

values and deriving appropriate mapping functions. The result is a well-balanced means

of evaluating the 'goodness' of any assembly plan for both initialisation methods (cycle

time and number of workstations) of the genetic algorithm.

Ideally, an optimal assembly plan is the result of loading the optimised assembly

sequence obtained from the simulated annealing algorithm sequentially on a series of

workstations. Hence, an ideal optimal assembly plan is known prior to the optimisation

process using genetic algorithms. Whilst the assembly sequence is not altered, the

workstations the assembly operations are assigned to changes during the course of the

optimisation process. This indirectly changes the assembly sequence, hence feasibility

checks, which to some degree overlap with the work already done in generating an

optimal assembly sequence, were introduced.

This does not lessen the importance of the simulated annealing algorithm. With the

knowledge of an ideal optimised assembly plan, it is easier to see if the genetic

algorithm has converged and if, indeed the result is an optimised assembly plan.

-153-

TESTING AND VALIDATIONS

7 Test ing a n d Val idat ions

7.1 Introduction
This chapter presents the various scenarios used to test the applicability and validity of

CAPABLEAssembly based on a series of predefined environmental, logistical, and

computational constraints. The aim here is to prove that the basic hypothesis, and logic,

behind the methods presented are feasible, and potentially have significant industrial

applications.

The evaluation and validation of the concepts proposed in this work is carried out in

three stages. Firstly, we conduct a series of experiments to confirm the accuracy of the

assembly times that are used to estimate assembly operation times. Next, a series of

aggregate assembly process planning tasks are performed using a simplified model of

an industrial product. Finally, a significant industrial case study is carried out to

demonstrate the effectiveness of the methods developed in theories of product Design

for Assembly.

This chapter has the following layout:

• Section 7.2 presents the testing criteria used to verify the validity of the

solutions obtained using the methods presented in the preceding Chapters. This

includes assembly time generation, assembly sequence generation, and assembly

line balancing problems.

• Section 7.3 presents the various experiments used to validate the assembly times

used within CAVABLEAssembly.

• Section 7.4 sets out a series of industrial case studies using the modelling

methods described in Chapter 4, and the optimisation methods put forth in

Chapters 5 and 6 to derive optimised assembly plans for four conceptual designs

of a given product. The industrial case studies are used to verify the various

hypotheses and associated modelling in accordance to the testing objectives

documented in Section 7.2.

• Section 7.5 pulls together the possible conclusions that can be drawn from the

results of the experiments/scenarios, and the industrial case studies. It presents a

critical analysis of the advantages and limitations of the methodology when

applied to industrial product Design of Assembly.

- 154-

TESTING AND VALIDATIONS

7.2 Testing objectives

7.2.1 Validity of solutions
The solutions are tested against the following criteria

1. Engineering terms. In this category of criteria, we assess whether the modelling

technique (Aggregate product modelling), and the optimisation algorithms

(Genetic algorithms and Simulated annealing) presented are:

a. easily applied to a variety of product model configurations.

b. suitable for selecting and evaluating assembly processes.

c. capable of generating assembly sequences and routings that are

technically feasible, and realistic.

d. capable of generating alternative assembly process plans.

e. capable of producing reasonably accurate estimated assembly times and

thus, assembly cost.

f. easily employed at the conceptual stages of design.

2. Computing terms. It is important to note that the requirements in terms of

aesthetics, and user interface are not crucial. CAPABLEAssembly was

essentially produced as a means for testing the algorithms and methods

proposed. The development of an integrated system, was beyond the scope of

this research. However, the system is required to be suitably robust and

reasonably user friendly, providing a detailed assessment of the results of the

evaluation. Aggregate assembly process plans are produced within an acceptable

time span, and the computational methods used must also converge in an

acceptable length of time. Otherwise, the system must fail gracefully. The

system is portable, easy to use and understand. The computational methods used

are applied within acceptable boundaries. In computing terms the system

requires:

a. communication between software modules, with quick and easy transfer

of information to any module.

b. operation of modules with only partial result. This means that the

activities of a module can be started before the completion of the activity

of another module (parallel processing). Therefore the interaction

- 155-

TESTING AND VALIDATIONS

between modules can be really effective, taking advantage of the

provision of early feedback.

c. data coherence between different modules. All modules have common

user interfaces, data structures and information semantics to avoid errors

and inefficiencies.

d. operation of modules by non-experts. All designers must be able to use

(albeit in a non-optimised way) the modules where collaborations could

influence their specifications, for example a mechanical design engineer

must be able to use the assembly planning module to obtain time and

cost estimates.

7.2.2 Constraints applied
CAPABLEAssembly broadly comprises three main computing functional modules,

aggregate product modelling, assembly planning and resource planning. Each module is

subject to a series of constraints.

1. Aggregate product modelling; constraints here are imposed to aid the generation

of a product model suitable for assembly planning and optimisation. It makes

basic assumptions on the shape and structure and composition of the

components modelled. Constraints include;

a. The products are derived principally from prisms, moulds, cylinders and

wires.

b. Assembly features modelled are limited to the assembly features

considered for the purpose of this research. These assembly features have

been detailed in Appendix D.

c. Standard assembly operations modelled are limited to 'threaded' (bolts

and screws), 'riveting' assembly operations, labelling, pressure fits,

packaging, placement, and welding assembly operations.

d. Derivation of weight of components is performed within the system. The

weights are estimated from the positive features used and where

applicable negative features have also been taken into consideration. The

user can also input the actual weight of the product in the product

database.

- 156-

TESTING AND VALIDATIONS

e. The assembly times associated with the aggregate product model are

ideal assembly times for handling and insertion assembly operations.

Relaxation values can subsequently be used to modify the assembly

times, as has been done during the course of this research. Relaxation

values are obtained from the industrial collaborators.

2. Assembly planning. This generates an optimum assembly plan for geometrical,

technical and topological information obtained from the aggregate product

model. Constraints include:

a. CAPABLEAssembly only takes into consideration reorientation,

parallelism and stability of components and subassemblies for assembly

sequence generation.

b. The influence of tolerance on the generation of assembly plans is

currently not considered. The product model does not currently have any

tangible 3D representation for tolerances.

c. The estimates for assembly cost are entirely based on the data supplied

by the company. This includes data such as production rates and labour

cost.

3. Resource planning. This helps the user to produce a logical factory or cell layout

by regrouping the operation on cells or workstations, attributing sets of

equipment to each of them, while being constrained by a given target cycle time.

a. CAPABLEAssembly solely caters for assembly lines using conveyor

belts moving at constant speed between a pre-specified number of

manual assembly workstations. The system can be adapted to act as a

cellular assembly line.

b. CAPABLEAssembly methods at present do not cover the planning of

mixed-model assembly lines. The system is incapable of performing

parallel assembly planning and optimisation.

c. Machine operation times have to be provided by the user. All other

assembly operation and handling times are stored in operation-specific

databases.

- 157-

TESTING AND VALIDATIONS

7.2.3 Functionality
It is the belief of the author that computer systems such as CAPABLEAssembly should

be used to support decision-making rather than try to automate everything, since

humans are still better in decision making than computer systems. The main objectives

of CAP ABLEAssembly with respect to concurrent engineering are generally aimed at:

1. Improving product quality; or the extent to which a product satisfies customer

requirements. This has both objective and subjective attributes.

2. Reducing lead times; that is, reducing the time from product concept to

successfully bringing the product to the market. This is often termed "time to

market".

3. Reducing product cost; where cost can be defined as the level of resources

required taking the product from concept to market. This includes the hours

worked on the product, materials used in the product and any equipment or

services that are used.

7.3 Verification of the various hypothesis and associated
modelling methods

7.3.1 Assembly time evaluation
The following series of assembly tasks were devised to examine the accuracy of the

resulting assembly time expressions generated by SPAM. These tasks will allow for

assembly actions to be scrutinised, increasing the ability to better gauge the associated

index value for basic assembly motion. It is hoped that body motions or slight variations

in body motions that were previously not considered, or overlooked will be brought to

light.

The assembly task devised to test the assembly time expressions derived using SPAM

required the following characteristics to simulate an actual assembly situation;

1. The assembly task needed to be simple enough to produce learning in a short

period of time (approximately 15 minutes) with initially naive operators.

2. The potential to check different assembly sequences.

3. The assembly task had to replicate real industrial operations.

In order to test SPAM two simple assembly tasks were designed. These involved the

manual assembly of a pseudo-flange assembly and riveting of thin metal sheets in

- 158-

TESTING AND VALIDATIONS

simulation of real assembly task. The workplace layout and assembly tasks are

described in the following sections.

7.3.1.1 Pseudo-Flange Assembly
Apparatus: The following equipments were used to perform this experiment.

• Two circular wooden discs with six pre-drilled holes

• Three part bins consisting of ten bolts (M10), ten washers (M10) and ten nuts

(M10).

• One closed end spanner

• One engineer's vice

• One G-clamp

• Stopwatch

The parts for two pseudo-flange assemblies were laid out using an ergonomic design

(Braun, Rebollar, and Schiller, 1996). All components were within the zone of

convenient reach and in locations that allowed maximum use of simultaneous motions.

The general layout of the workplace is shown in Figure 7-1. The construction of the jig

for the pseudo-flange assembly is shown in Figure 7-2. The author demonstrated the

desired method of assembly. The assembly sequences tested include codes BN l ,

BN 2, BNW 4, and BNW_6, as described in Appendix E.

tools

bolts washers nuts bolts washers nuts

Figure 7-1: General layout of manual assembly workplace

For BN l these were; (1) Reach to the part bin containing bolts and collect a handful of

bolts from the bolt bin with the right hand. (2) Insert bolt through holes of the pseudo-

flange, repeat process until six bolts have been placed in position. Return remaining

bolts to part bin if necessary, and this action should be a toss1 action. (3) Reach for a

single nut with the right hand from the nut bin, engage and rundown nut using the

The toss action as defined by MOST system has a placement (P) parameter (see Chapter 2) index value of 0. A time
penalty will not be incurred if the remaining parts are tossed into the respective part bins.

- 159-

TESTING AND VALIDATIONS

closed-end spanner to tighten the nut using a single wrist2 action. Repeat process for

each bolt.

G-cramp *~~h i J

circular disc
.1..

Vice

»• -..pi
~ - 0-

bencn t3Tmmm^m^mmmmmTO^mmm^
Figure 7-2: Jig set-up for pseudo-flange assembly

For the BN 2 (Bolts and Nuts sequence 2) sequence, these were; (1) reach to the bolt

bin and collect a single bolt from a part bin using the right hand. (2) Insert bolt through

holes on the pseudo-flange. (3) Reach for a single nut from the nut bin with the right

hand. (3) Engage nut with bolt and rundown. (4) Tighten nut with a closed-end spanner

using a single wrist action. (5) Repeat the entire process for each of the six holes on the

flange.

For the BNW 4 (Bolts, Nuts and Washers sequence 4) sequence, these were; (1)

simultaneously reach for the bolt and washer bins using both left and right hands to

collect a single washer and bolt from their respective bins place washer on bolt. (2)

Insert bolt through holes on the pseudo-flange repeat for all six holes on the pseudo-

flange. (3) Get a nut from the nut bin engage and rundown nut. Tighten using a closed-

end spanner with a single wrist action. Repeat process for all bolts.

For BNW 6 (Bolts, Nuts, and Washers sequence 6) sequence, these were; (1)

simultaneously reach for a handful of bolts and washers from their respective part bins.

(2) Place washer on bolt and insert bolt through holes on the pseudo-flange, repeat for

all holes on pseudo-flange return all remaining parts to their respective bins using a toss

action. (3) Get a nut from the nuts bin engage and rundown nut. Tighten using the

closed-end spanner with a single wrist action. Repeat process for all bolts.

7.3.1.2 Pseudo-Riveting Assembly (PRA)

Apparatus: The following equipments was used to perform this experiment.

• Two sheets of metal with pre-drilled holes.

2The wrist is rotated through 90°.

- 160-

TESTING AND VALIDATIONS

• One part bin consisting of blind rivets.

• Riveting tool

• Vice / Clamping device

Two thin metal sheets were to be riveted together using a hand held riveting tool. The

dimensions of the sheets of metal are thickness: 3mm, length 30mm and height 15mm.

The sheets of metal have six holes drilled lengthwise and three holes breadthwise as

shown in Figure 7-3. The holes diameters were 3.3 mm in accordance to the

recommended clearance hole diameter from the product catalogue (RS Speedriv

Riveting System).

Starting position
>o o o o o o

o o
Metal sheet

o ,n o o o
Vice

3_
h—'Bench y j U-U

Figure 7-3: Jig set-up for riveting

The RS Speedriv Riveting System, which consists of aluminium alloy blind rivets, and a

riveting tool (light duty manual tool for blind rivets), was used for the riveting process.

The general layout of the workplace follows the layout shown in Figure 7-1. The

construction of the jig for the PRS is shown in Figure 7-3. The author demonstrated the

desired method of assembly. The assembly sequences tested include codes R I V l and

RIV 2.

For the case of RIV l (Rivets sequence 1) assembly operation sequence, these were; (1)

with the riveting tool in the right hand, reach to the rivet bin and collect a single rivet

from the rivet bin using the left hand. (2) Insert the shank of the rivet into the nose of

the riveting tool. (3) Insert the head of the rivet into the hole on the top left of the metal

sheet as shown in Figure 7-3. (4) Actuate the riveting tool using one working stroke. (5)

Repeat the process (1) to (4) for the six holes.

For the case of R I V 2 these were; (1) reach to the rivet bin and collect a single rivet

from the rivet bin using the right hand. (2) Insert rivet through holes on metal sheet. (3)

Reach for the riveting tool with the right hand. (4) Insert the rivet mandrel into the nose

of the riveting tool. (5) Actuate the riveting tool. (6) Repeat process (1) to (5) for six

holes of the metal sheets.

- 161 -

TESTING AND VALIDATIONS

The B N l , BN_2, BNW 4, BNW_6, RIV l , and RIV 2 assembly operation sequences

are typical of assembly operations found in high volume production industries, such as

the automotive, aeronautical, household and outdoor appliances industries. The

derivation and subsequent analysis of such sequences can aid the development and

training of assembly workers, increase reliability by reducing mistakes and hence rejects

on manual assembly lines. They also provide a more accurate means of measuring,

predicting, and attaining production rates.

7.3.1.3 Operators
Three male operators assembled the pseudo-flange and pseudo riveting assemblies six

times per session over a period of one day, three sessions per day. The operators were

engineering students between the ages of 24 and 30 who volunteered to do the

experiments. No operators had previous experience in assembly work. They all reported

good health and had no physical disabilities, such as impaired vision or restricted

mobility.

7.3.1.4 Procedure
The method of assembly was demonstrated twice and the operators were instructed to

use the exact method demonstrated. The operators were informed that their learning and

performance was to be recorded. The main instructions were to concentrate on the task

and to work at maximum speed.

It was suggested that the operators were to be seated in an upright position and their

chairs adjusted so that their elbows were 50-100mm above the working surface of the

table. Operators were however given the opportunity to attain their most "natural"

assembly position. It was found that all operators preferred to perform the assembly

sequences in an upright standing position. Operators were allowed four practices run on

each assembly before the start of each experiment. The operators were timed on the

construction of two pseudo-flange/riveting assemblies. No rest periods were provided

during the construction of the pseudo-flange or pseudo-riveting assemblies but a five-

minute rest period was allowed between the completion of the pseudo-flange and/or

riveting assembly and before the beginning of the next assembly.

7.3.1.5 Results

Pseudo-flange Assembly

The mean assembly times for each trial were calculated and are given in Table 7-1.

Each operator had six trials at each assembly task; a mean time for each trial was then

- 162-

TESTING AND VALIDATIONS

calculated. An average for each assembly task is subsequently generated, and these

results are also shown in Table 7-1.

| Mean Assembly Times (seconds) I
Ass Task I Mean time 1 Mean time
Code | for Trial 1 | for Trial 2

Mean time
for Trial 3

Mean time
for Trial 4

Mean time | Mean time | Average j
for Trial 5 j for Trial 6 I time |

Bn 1 | 37 | 34 32 31 28 26 131 |

1 Bn 2
48 | 47 | 44 42 | 40 40 I 44

1 Bn 3
40 | 37 37 I 36 J 34 33 | 36

| Bnw_4 41 40 | 39 | 38 I 36 34 I 38
| Bnw_6 40

40 1 39 1 35 1 32 37 j 37
Table 7-1: Mean assembly times for pseudo flange assembly

Pseudo-Riveting Assembly
The mean assembly times for each trial were calculated and are given in Table 7-2.

Each operator had six trials at each assembly task; a mean time for each trail was then

calculated. An average time for each assembly task is subsequently generated these

results are also shown in Table 7-2.

1 Mean Assembly Times
1 Ass Task
1 Code

Mean time
for Trial 1

Mean time
for Trial 2

Mean time
for Trial 3

| Mean time
i for Trial 4

| Mean time
| for Trial 5

| Mean time
J for Trial 6

Av. Time

Riv 1 29 28 28 126 124 (2 4 25
Riv 2 36 34 33 B 32 J30 II 30 33

Table 7-2: Mean times for pseudo-riveting assembly

The maximum percentage deviation in the results was found to be approximately eight

percent. There appears to be a systematic offset between calculated times and actual

assembly task times as shown in Figure7-4. Figure 7-4 also shows a comparison

between the assembly times calculated using SPAM, the actual assembly times, and

MOST systems. The times calculated using MOST were obtained using methods as

described in Section 2.9.4.

7.3.1.6 Analysis of results
On analysis, the results of both experiments shows there is a constant difference (see

Figure 7-4) between the experimental assembly times and the times obtained using

SPAM, of ±5%. This margin is estimated, taking into consideration the operator used in

this experiment are not skilled operators. It is already known from pervious analysis of

predetermined motion times systems (Gendaidy et al, 1990; Kanai et al.) that assembly

times obtained using pre-determined motion times have an inherent error margin of

approximately 5% when compared to times obtained in industry. Industrial times tend to

be significantly higher which is consistent with the results presented. Therefore, it is to

be expected that assembly task times obtained using SPAM would yield magnitude

similar to MOST systems. The results show a higher degree of consistency in SPAM

- 163-

TESTING AND VALIDATIONS

compared to MOST systems relative to the actual assembly times. This is due to the

classification of index parameters within MOST systems. As the size of objects is not

dealt with in as much detail, and the orientation of parts is less accurately defined, the

scope for errors at the boundaries of each given class is more evident.

Variations between SPAM (green), Actual Task Times (red), and MOST systems(blue) Variations between SPAM (green), Actual Task Times (red), and MOST systems(blue) 50

45

3!

30

25

j 20

15

10

RIV_1 BN_1 RIV_2 BNW_6 BNW_4 BN_2
Codes of assembly operations

Figure 7-4: Comparison of SPAM, MOST, and Actual assembly operation times

The difference incurred is largely due to the assumptions made to cater for lack of

information and level of accuracy desired. These assumptions include;

1. All parts are within arms reach that is the arc of an out stretched arm.

2. Parts present no handling difficulties, such as in slippery surfaces or parts less

than 2 mm in thickness and 15 mm in size.

3. For the BN and BNW assembly sequences, the nut is initially rundown the shaft

of the bolt. The spanner is only required for tightening purposes. Hence, the

number of revolutions requires to securely fasten the bolt using a spanner is one.

4. The order to which the bolts are inserted into the holes is irrelevant, as each hole

on the disc is situated less than two inches apart, and is equidistant.

5. All assemblers are not skilled workers in the associated experimental fields.

6. For fastening purposes, the action of a manual lever rivet gun is mimicked as

that of clippers.

- 164-

TESTING AND VALIDATIONS

7. After each sequence has been performed, the holes need to be drilled out. The

effect of this was deemed insignificant.

Initially, some assembly task times were considerably higher than that of the calculated

times. These inconsistencies were only prominent in the assembly task that involved the

use of multiple part handling and fastening motions involving an arm motion, i.e.

riveting.

In situations where a handful of parts were obtained from a part bin by the assembler for

both bolting and riveting, a significantly lower assembly time was noticed. The

operators subsequently performed these assembly tasks again. The emphasis here was

on the allocation of index parameter values for body motions. As a result a "palming

action" was introduced (see section 4.6.4).

However, discrepancies in riveting times were still prominent in addition to the changes

explained above. Again, the relevant task had to be performed again. It was noticed that

for the case of a thin metal sheet, the assembler required more than one working stroke

and applied a greater force when riveting. Parameter index values were subsequently

calculated to allow for "thin metal" sheets.

The number of riveting sequences used for the purpose of these validations is

significantly less than that used for bolting sequences. This is due to tool availability.

The majority of sequences derived are suitable for other hand held tools such as the air-

riveting gun. Sequences as code R I V 5 , which is shown in Appendix E , proved

impossible to execute using a lever riveter.

It was hoped to achieve a fairly constant deviation between assembly task times and

calculated times. The calculated times were expected to be lower (maximum of ±5%)

than the measured times as this would be consistent with other findings. The results

shown in Figure 7-5, demonstrate that there is a consistent difference between actual

assembly times and times calculated using SPAM of around 5%.

A more complex and extended assembly process could be designed to observe body

motions in more detail and in varying situations. In this study, the significant learning

period was short and the analysis was therefore limited. This period should also be

extended, as PMTS do not attempt to model novice and transition to an expert.

Based on the results of the experiments described above the following conclusions can

be drawn:

- 165-

TESTING AND VALIDATIONS

1. SPAM can be used to derive expressions and/or values for the calculation of

assembly times for standard assembly operations.

2. Assembly times obtained using SPAM have an expected maximum deviation of

approximately ±4%.

3. Assembly operations with higher TMU (time measured units, as defined in MOST

systems) values generally have a higher degree of accuracy in results obtained.

4. These experiments have served to prove the validity of SPAM. More experiments

are required to fully validate the method.

Errors in the initial codification of basic assembly motions have been noted and

rectifications have been made where deemed necessary. Various synthetics were

subsequently derived for multiple tool use and part handling (see Appendix E).

7.4 Industrial case studies
The industrial case study was undertaken in collaboration with a well-known

manufacturer of lightweight garden tools. The four conceptual designs were constructed

with the aid of the industrial designer in the manufacturers research and design

department. A foam model of the product was used to obtain external dimensions and

assembly features. All other part data (dimensions, assembly features, part weight), with

regards to internal components such as switches, wires, and motors, were obtained from

previous designs of the low cost trimmer. In-house jigs/fixtures were also modelled.

The standard part database was also updated to reflect components regarded as standard

parts within this industry; typical custom standard parts include motors, and switches.

The naming convention for the product models uses capitalisation to differentiate

between variables. For example, TwoShellMiniTrim screws identifies a product whose

main body is made of two main body moulded shells that are screwed together prior to

product testing.

The aim of the case study is to generate optimal assembly plans for four conceptual

designs of a low cost trimmer, given the manufacturer's current factory layout. The four

conceptual designs use different assembly processes to assemble the trimmer. As the

final product design will have to be designed with specific assembly processes in mind

(the design of the moulds of the main body shells will depend on whether the shells are

to be welded together or screwed), it is desirable to have comparative data on the

possible effects of the different assembly processes used to assemble the product on

assembly time, and thus cost.

- 166-

TESTING AND VALIDATIONS

A detailed explanation of the generation of the assembly plans for one product model

(TwoShellMiniTrimwelding) is initially presented, showing the routes taken from the

product model to the generation of an optimal assembly plan using the hypothesis and

methods discussed in the preceding Chapters.

Subsequently, the assembly plans for the remaining three conceptual designs are

presented, followed by a discussion and the conclusions that can be drawn as a result of

the analysis.

7.4.1 Product model 1: TwoShellMiniTrim_welding
TwoShellMiniTrim welding describes a low cost trimmer where the main body is

formed by joining two main body moulded shells. Once all components have been

assembled the main body shells are welded together before testing and packaging

processes are performed. The product model is shown in Figure 7-5. Distinguishing

product features of interest include:

1. Welding features

2. 2 main body shells

3. Pressure fit connection between mains wire and switch

Trimmer

Box

Orange wire

Label

Label

• Lower Shell 4

Cutting head
assembly

Motor

Cable support

Eye

Cutting head body

Line feeder

Nut

Spring

Spool

Spacer

Guar, label

Cutting Head cover

Safety label

Switch
assembly

* Upper shell 1

Capacitor

Black wire

Switch

Box label

Figure 7-5: Product model for TwoShellMiniTrimscrews

An aggregate product model is constructed by extracting relevant assembly features

such as blind hole, v slots, external and internal threads, from each component of the

product model TwoShellMiniTrim welding. The structure of the product model is

167

TESTING A N D VALIDATIONS

imposed on the aggregate product model. The components of the conceptual mini trim

are made-up from existing models of trimmers currently in production. The dimensions

for all the components shown in Figure 7-5 were obtained from engineering drawings of

the existing components. Once the dimension of the component is obtained, an estimate

of the component's weight is calculated based on its positive feature. For complex

bought-in subassemblies, such as the motors used, the component weight is obtained

using weighing scales.

The assembly features, both positive and negative, of individual components are linked,

emulating assembly operations. Within CAPABLEAssembly, this process creates an

AFC. Each AFC contains the following inherent data:

1. Assembly operation type; examples covered include adhesive, thermoplastic

welding, threaded, placement, pressure-fits packaging, and riveting assembly

operations.

2. Mating components. These are the components being assembled.

3. Assembly operation time. The assembly operation times stored in the AFC are

obtained from operation-specific databases, Boothroyd and Dewhurst part

handling times, and, where possible, using SPAM, via the assembly time

generation algorithm AGA, see Section 4.4.

4. Floating AFC. This field is set in the generation of the connectivity model. It is

stored as a logical. It determines i f the AFC is free to move between/within

assembly levels.

5. Fixed AFC. Also stored as a logical and set during the course of generating the

connectivity model. It determines i f the AFC is restricted to its current assembly

level, and fixed with respect to its neighbouring AFCs.

6. Assembly operation precedence rating. The precedence rating is set using the

precedence constraints algorithm (Section 4.3.2). The type of AFC determines

the precedence rating of an AFC. Generally, permanent AFCs have higher

precedence rating compared to reversible AFCs (see Table 7-2).

7. Assembly tool type required. Stores the tool or machine required to perform the

AFC, i f any.

The aggregate product model is used to create the connectivity model shown in Figure

7-6, hence the connectivity model inherits its structure from the product model. The

- 168-

TESTING A N D VALIDATIONS

connectivity model is generated using the contact, precedence and technological

constraints algorithms. These algorithms are used to ensure the feasibility of the

assembly sequences obtained from the aggregate product model. It [connectivity model]

includes restrictions as to when assembly operations can be performed. The AFCs

shown in green represent fixed AFCs, which are assembly operations restricted to a

given assembly level. As a result of the precedence, contact, and technological

constraints used for the generation of the connectivity mode, any assembly sequence

generated from the connectivity is a feasible assembly sequence.

Trimmer

threadedj 1

placement2,

wiring 2 5

wiring 2 6

Cutting head
Assembly

placement; 7

ultrasonic_
welding 2 1 1

labelling 2,12

placement, 1 3

testing 2 1 4

packaging 2,9

placement^ 8

labelling.,.,.

switch Assembly

plug_n_target2.

placement^ 1 C

plug_n_target,,

piacement3

plug_n_target32

snap_

plug_n_target3,

plug_n_target3 5

placement 3 6

plug_n_target3 7

snapjitg,

| wiring 3 1 0

w i n n g 3 , n |

placemen^ 1 2

Figure 7-6: Connectivity model of TwoShellMiniTrim_welding.

- 169-

TESTING AND VALIDATIONS

The initial assembly sequence derived from the connectivity model is shown in Table 7-

3. The initial assembly sequence is obtained using a simple bottom-top assembly

approach. The algorithm starts with the largest part in the highest assembly level and

assembles the trimmer based on the introduction of the mating parts in successive

AFCs. The mating parts of each AFC are also shown in Table 7-3.

| Initial assembly A F C type Mating Parts
sequence

1 placement^ fl stand alone,cutting_head base

2 plug n targetj^ cutting head base îut
3 snap_fit33 cutting head base,eye
4 plug n targets 4 cutting_head_base,spacer
5 plug n target^ spring,line feeder
6 placemen^ 6

cutting_head base,line feeder
7 plug n_target3,7 cutting head_base,spool
8 snap_fit3,8

cutting head base,cutting_head cover
9 placement^ fixture,lower_shell
10 wiring,, 1 0

flymo_switch,flymo_capacitor953506932
wiring,,,, flymo_switch,black_wire

12 | placement3i 12 lower_shell,switchass

13 wiring2,i switch_ass,orangej3lug wire
14 | wiring2,2

flymo_motor953491634,switch_ass
15 | threaded2,3 flymo motor953491634,cutting head ass
16 plug n_target2,4 cable_support,orange_plug wire
17 placement2,5 lower_shell,flymo_motor953491634
18 plug_n_target26 lower shell.cable support
19 placement^ upper shell,lower shell
23 testing2,8 test_mc,lower shell
20 ultrasonic_welding2,9 upper_shell,lower_shell
21 labelling^ upper_shell,fiymo label
22 placement^ parts_pack,gtee_label
24 packaging2)2 box, lower shell
25 labelling, i 3 upper_shell,serial_label
26 placement^ H box,guard
27 placement2,i5 box,parts_pack

Table 7-3: Initial assembly sequence

The initial assembly sequence starts by assembling the cutting head assembly

(placements The main body of the cutting head is first placed in a stand-alone fixture;

all other components in contact with the cutting head main body are then sequentially

assembled. The switch assembly is subsequently assembled.

Next, the lower shell is placed onto a fixture (placements^), which is fitted to a

conveyor belt controlled by the operator at the designated workstation. Theoretically

(and in practice), this AFC can occur before the cutting head assembly is assembled.

However, this AFC (placements^) occurs as late as possible within level 3 because:

• There are more components in contact with the cutting head assembly within

level 3.

- 170-

TESTING AND VALIDATIONS

• The cutting head does not have any direct links to AFCs in assembly level 2.

• The lower shell is constrained (directly linked) to an AFC in level 2

(placement2,5), a lower assembly level.

The information with regards to components in contact with each other, and their

relation in terms of ordering AFC is obtained from the contact and precedence

constraint algorithms.

The switch assembly is then attached to the motor and the remaining components

attached to the main body shell of the trimmer. The top shell is placed on the lower shell

and the whole assembly is tested to ensure the product meets all functional and quality

requirements before the two halves are ultrasonic welded together. The assembled

product is packed and the assembly process is complete.

The initial assembly sequence is encoded as discussed in Section 5.8.2; this is used as

the input to the simulated annealing optimisation process. The simulated annealing

algorithm attempts to find an optimal assembly sequence based on minimum assembly

time (c) by minimising the number of reorientations of mating components (Section

5.5.1), maximising parallelism (Section 5.5.2), and maximising the stability of

intermediate subassemblies (Section 5.5.3). Equation 5-8 gives the overall expression

for minimising assembly time. The weightings for all the assembly variables in this

formula are set to 1.

(wre) — + ("pa)* C2 + fast H;
st

Equation 5-8

For the purpose of this analysis the following simulated annealing parameters were used

to generate the globally optimised assembly sequence:

1. Initial temperature of the system is 100°C.

2. Maximum number of cooling schedules = 5.

3. A cooling rate of 0.95.

4. The ratio of accepted solutions to the number of solutions generated is 0.9. This

is the termination criterion. In other words, the algorithm wil l terminate when it

starts accepting almost every solution it randomly generated, indicating an

optima has been found.

The result of the simulated annealing algorithm has been truncated in Figure 7-7. This is

to show the behaviour of the system at the beginning of the optimisation process.

- 171 -

TESTING AND VALIDATIONS

Although the number of AFCs is large the algorithm appears to find good solutions

relatively quickly. It was expected that a larger number of solutions would be visited

before the solution began to converge, due to the number of AFCs considered.

Graph of lumber of Solutions vs. Overall asserrtty variable

110

r
100

90

BO

8 ra 70

5

60

50

40-1 1 1 1 1 1 \

0 100 200 300 400 500 600
Nurrber of solutions (NSd)

Figure 7-7: Minimisation of assembly time; Graph of number of solutions visited vs. overall
assembly variable

Furthermore, the optimisation process was completed in 38 seconds. Based on previous

analysis, a CPU time of at least 80 seconds was expected in accordance with smaller

preliminary trials. The reason for this can be associated to the number of fixed AFCs in

the assembly sequence (11 of the 27 AFCs in the assembly sequence are fixed), limiting

the number of solutions that would be deemed feasible and thus evaluated. Such a large

number of AFCs could be classified as fixed due to large amount of in-house

knowledge of the product design available at the onset of this case study. This serves to

prove how useful such a system could be to a design engineer as such data would be

readily available.

The system does display a tendency to get stuck in local optima, shown by the steps in

Figure 7-6. Whilst the system is able to eventually start finding better solutions, it does

leave open the question i f the true optimum solution has been found. Whether or not the

true optimum has been found is irrelevant, the aim here is to generate an optimal

- 172-

TESTING AND VALIDATIONS

solution, of which there are a few. Convergence within the simulated annealing

algorithm is achieved when the majority of the new solutions evaluated are not rejected

by the algorithm (acceptance ratio = 0.1). I f the acceptance ratio is decrease the

simulated annealing algorithm continues (sooner or later) to find better solutions.

However, the improvement in the sequences generated offer little benefit, especially

when compared with the CPU time sacrificed; takes an average of 32 seconds to

improve the overall assembly variable by approximately 1.6 units, a total of 204

solutions were evaluated before a better solution was found, as shown in Table 7-4.

Number of solutions evaluated (NSol) Overall assembly variable (c)

278 100.175

280 101.382

282 101.382

480 101.382

482 101.382

484 102.95

Table 7-4: Extract of simulated annealing results

Optimal
assembly
sequence

AFC type Mating Parts

1 placement^. stan d a 1 one,curting head base
2 plug n target^ cutting_head_base,nut
3 snap_fit 3j cutting_head_base,eye
4 plug_n_target3,4 cutting_head_base,spacer
5 plug_n_target3i5 spring,line feeder
6 placement^ cuttingheadbase, 1 inefeeder
7 plug_n_target3 7 cuttingJhead_base,spool
8 snap_fit 3 8 cutting_head_base,cutting_head_cover
9 threaded > ; llvmo motor953491634,cutting head ass
10 placement^ fixturejower shell
11 pin • .ii|ipor(.orange_plug wire
12 plug_n_target:/, f Jh II , it'll !•.•!'•.)
13 w i r i n g ^ flymo_switch,flymo_capacitor953506932
14 wiring 3 J , flymo switch,black wire
15 wiring: ; flymo motor9S3491634.switch ass
16 placement 12 1 owershel 1, s witchass
18 wiring 2,i switch ass,orange_plug wire
17 placement2.s lower_shell,flymo_motor953491634
19 placement2,7 upper shell,lower shell
20 testing2,g test mc,lower shell
21 ultrasonic_welding2,9 upper shell,lower shell
22 labelling2 io upper shell,flymo label
23 placement2,ii parts_pack,gtee_label
24 packaging2,i2 box,guard
25 Iabelling2,i3 upper_shell,serial label
26 placement^ box,lower shell
27 placement^ 15 box,parts_pack

Table 7-5: Optimal assembly sequence

- 173-

TESTING A N D VALIDATIONS

The optimal assembly sequence, shown in Table 7-5, initially follows the same path as

the initial assembly sequence. The cutting head is assembled using exactly the same

assembly sequence, followed by the switch assembly. This pattern is not surprising

considering all the AFCs (placements, i -> placements, 12) in level 3 are fixed AFCs.

The assembly sequence in level 3 has been altered, with three AFCs (plug_n_target2,4,

plug_n_target2,5, and wiring2,2), from level 2 being assembled in level 3 (shown in red in

Table 7-5). The cable support used to secure the mains wire (orange_plug_wire) to the

main body shell, is now assembled in level 3. This is done prior to attaching the mains

wire to the switch assembly (wiring2,i), which is still performed in level 2. This move

increases the stability of the assembly. Also, the motor is now attached to the switch

assembly (wiring 2,2) before the two parts are fixed to the lower shell (placements, 12 and

placement2,5). This move is due to minimising reorientation of mating components,

rather than stability. The assembly would be just as stable (and perhaps more stable) i f

the two components were secured to the lower shell, before they were assembled.

The optimal assembly sequence is used as the input to genetic algorithm. The plan of

assembly line provided by the manufacturers that will be used to assemble the low cost

trimmer is shown in Figure 7-9. As the limitations of the assembly line is known, a

brown field assembly line is generated. The assembly line is modelled by creating the

workstation objects, at runtime (as described in Section 6.6). The available resources

associated with each workstation such as tool availability and labour, are stored in

databases. Such information is obtained and added to the workstation object when a

workstation object is created. Workstation numberings (Wks(number)) start from 0 to 3,

for four workstations. The assembly starts at WksO and is completed in Wksi. Each

workstation has the following properties:

1. Workstation number. The workstation number is used to identify a given

workstation.

2. Workstation cycle time. The workstation cycle time is calculated when

generating optimal assembly plans as part of the assembly line balancing

module.

3. Workstation idle time. This difference between the total assembly time of

assembly operations loaded on a workstation, and the workstation cycle time.

4. Assembly tool types. This refers to the assembly tools and/or machines loaded

on a given workstation.

- 174-

TESTING AND VALIDATIONS

5. Workstation assembly task. Holds all assembly operations assigned to the

workstation.

To pallet

Work
S u r f a c e

1
i works ta t i on 3

workstation 2

workstation 1

1

4 f
workstation 0

Stand
A one

opera to r

screwdriver ^

Figure 7-8: Assembly line layout for TwoShellMiniTrim welding

For the purpose of this analysis the following genetic algorithm parameters were used to

generate an optimal assembly sequence.

1. Population size is 110

2. Number of generations is 1000

3. The convergence criterion is based on the number of generations.

4. Genome length is 27

5. Crossover rate s 0.6

6. Mutation rate is 0.3

Table 7-6 shows the assembly data used to generate the optimal assembly sequence

based on minimising cycles time. The number of workstations used is as specified by

the manufactures.

- 175-

TESTING A N D VALIDATIONS

TwoShellMiniTrim welding
Factory loaded | Pseudo Mini Trim
Total assembly time 121.47 seconds
Production rate 1500
Production rate per Day
Number of shifts 2
Length of shifts 8hrs
Maximum workstation cycle time 38 seconds
Number of workstations loaded 4
Number of operators 4

Table 7-6: Assembly line balancing data for TwoShellMiniTrim welding

The genome length is set to 27, generating a genome with 27 genes, each representing

an AFC object. The position of the AFC within the genome is set to correspond to its

position in the optimal assembly sequence. The genetic algorithm never alters this

position. An allele set containing all four workstations is generated and randomly

loaded on each gene (AFC object). This generates the initial assembly plan used to

create the initial population.

As discussed in Section 6.8, sigma truncation is used to calculate the fitness of each

genome in a population. Deterministic sampling is used to determine which genomes

within a population are passed on to the next generation.

The procedure for generating optimal assembly plans based on the minimisation of

cycle time is shown in Figure 6-15 (Section 6.8). The fitness score and objective score

of each individual in a population is calculated using Equation 7-1 (see Section 6.8.4),

and 7-2 (see Section 6.9) respectively.

/ = °bj' _ score - (obj _ ave -c*obj dev) Eq uation 7-1

100 1 8 f (cycle time) f (precedence) „ _ _
obj _ score = + — + — + — = '- + Equation 7-2

d a a a er

The result of the genetic algorithm is shown in Figure 7-10. The mapping of the genetic

algorithm result to the optimal assembly sequence is shown in Table 7-7.

- 176-

TESTING AND VALIDATIONS

~ example

i - ^ 3 r\\ jg] a J

E n t e r product ion r a t e per day: 1B00
E n t e r number of s h i f t s worked per day: 2
E n t e r number of hours per s h i f t : 8

| E n t e r number of works ta t ions on assembly l i n e Center 0 i f not known>: 4

punning ga number 1 . . .
the <j« generated:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 1 2 3 3 3 3 2 3 2 2
124.839

p r i n t i n g f i n a l populat ion to f i l e . . .

The s t a n d a r d d e v i a t i o n of the assembly l i n e i s : 7.82655

I n e f f i c i e n c y of assembly l i n e i s : 19.079>c

» » » " Menu M M » M

<1> To e n t e r assembly1ine halance d a t a .
<2> To minimise c y c l e time without a giuen product ion r a t e .
<3> To minimise number of w o r k s t a t i o n s .
<4> Q u i t .

Figure 7-9: Result of genetic algorithm; An optimal assembly plan

Optimal A F C type Mating Parts Workstation 1
assembly loading
sequence (Wks)

1 placement^. stand alone,cutting headbase WksO
2 plug_n_target3 2 cutting head base,nut WksO

3 snap_fit 3 3 cutting head base,eye WksO

' plug_n_target3>4 cutting head base,spacer WksO
plug n target,. spring,line feeder WksO

6 placement^ cutting head_base,line_feeder WksO

7 plug_n_target3,7 cutting_head_base,spool WksO

8 snap_fit3,8 cuttingheadbase.cuttingheadcover WksO

9 threaded2,3 flymo_motor953491634,cutting_head_ass WksO
10 placement39 fixture,lower shell WksO " plug_n_target2,4 cabl esupport, orange_p 1 ugwire Wksl

plug_n_target26 lower_shell,cable support Wksl
13 wi r ing 3 J 0 flymo switch,flymo capacitoi'953506932 Wksl
14 wirings,,, flymo switch,black wire Wksl
15 wi r ing 2 2 flymo motor953491634,switch_ass Wksl
16 placement3i2 lower_shell,switch_ass Wksl
18 wiring, j switch ass,orange_plug_wire Wks2
17 placement's lower shell,flymo_motor953491634 Wksl
19 placement^ upper_shell,lower_shell Wks2
20 ultrasonic_welding2 9 upper_shell,lower_shell Wks3
20 testing^ test mc,lower_shell Wks3
21 labelling2 io upper_shell,flymo_label Wks3
23 placement ii parts_pack,gtee_label Wks3
24 packaging,, 12 box,guard Wks2
25 placement2j4 boxjower shell Wks3
26 labelling; | ; upper shell,serial label Wks2

| 27 placement2,i5 box,parts_pack Wks2

Table 7-7: Mapping of genetic algorithm result to optimal assembly sequence

As the position of the AFCs within the genome never changes, the result presented in

Figure 7-10 can easily be decoded; each AFC is loaded on the workstation number

currently occupying its position within the genome, as shown in Table 7-6. The optimal

- 177-

TESTING AND VALIDATIONS

assembly plan generated has an Objective score of 124.839 (shown in Figure 7-10), the

final population for the genetic algorithm is shown in Figure 7-11. As in the illustrative

example presented in Chapter 6, the objective score of individuals in the final

population has a wide range (from 88.373 to 124.839), as shown in Figure 7-11, with

only a few individuals having an objective score over 100. This can be controlled by the

population size, as it limits the number of individuals used in creating subsequent

generations. However, the large population size does ensure a wider range of results.

Objective score of final population

140

•20

\i I)

Hi

3 60

0 20 40 60 80 100 120

Generations

Figure 7-10: Objective score of final population

The station variation index (given by Equation 6-9) for the optimised assembly plan is

7.84 seconds. The station variation index is a measure of the degree of variation in total

assembly operation time per workstation. A low value, as in this case, shows the

workload has been evenly distributed between workstations, satisfying the criterion of

workload smoothness. The balance delay of the assembly plan generated is 19.079%.

The balance delay is a measure of the idle time on each workstation of an assembly line.

This indicates that whilst the assembly line is efficient (~81%), there is still scope for

improving the efficiency of the assembly line. Based on the balance delay and the

station variation index, the manufacturers can afford to decrease the cycle time by

increasing the production rate i f desired. The issue of work-relatedness has also been

addressed. Where possible the similar assembly operations and/or mating components

have been loaded on the workstation (wiring3,io, wirings,n,and wiring2,2).

- 178-

TESTING AND VALIDATIONS

The loading of assembly operations on workstations is restricted by the feasibility

checks (see Section 6.8.6) performed by the genetic algorithm. The checks ensure the

appropriate tool in available for a workstation is to be assigned to an AFC. As a result,

the assembly operation requiring the stand-alone unit (placement3;i) is loaded on WksO.

Similarly, the process of welding the two main body shells (ultrasonic_welding2,9) is

assigned to Wksi. The feasibility checks also ensure all AFCs allocated to a

workstation can be performed within the given/evaluated workstation cycle. The

maximum workstation time for this assembly plan is 33.84 seconds Wks/.

The genetic algorithm takes slightly longer to converge (CPU time of 91 seconds) when

compared to the simulated annealing algorithm. This time can be reduced by decreasing

the number of generations or by using the value of the objective score as the bases for

convergence. Here, the genetic algorithm wil l converge i f successive objective scores

are within a predefined percentage. This method is susceptible to artificial convergence.

A detailed assembly plan is presented below.

Wks0

The assembly sequence for the operations loaded on workstation 0 is shown in Table 7-

8. Total workstation assembly operation time - 32.40 sec
Available resources: Operator, 1 stand-alone unit

| Identification code A F C type Mating parts Operation time (sec)
| connection953747873 placement stand_alone,cutting_head_base \ 2.63
j connection953747924 plugntarget cutting head_base,nut 3.23

connection953747895 snap fit cutting_head_base,eye 3.83
connection953747945 plugntarget cutting_head_base,spacer 3.23 |
connection953747972 plugntarget spring,line_feeder 2.93

| connection953748038 placement cutting head base,line feeder 3.45 J
connection953748065 plug n target J cutting_head_base,spool 2.93 _ J

| connection953748130 snap fit cutting head base,cutting head cover 3.01 |
connection953748230 [threaded flymo_motor953491634,cutting head ass 3.71
connection953747763 placement fixture,lower shell | 3.45

Table 7-8: Assembly operation loaded on Wks0

- 179-

TESTING A N D VALIDATIONS

Wksi

The assembly sequence for the operations loaded on workstation 1 is shown in Table 7-

9. Total workstation assembly operation time - 33.84 sec

Available resources: Operator

| Identification code A F C type Mating parts Operation time (sec) |
connection953748475 plugntarget cable_support,orange_plugwire 3.23 |
connection953748424 plug n target lower shell,cable_support 3.23 |
connection953747844 wiring flymo_switch,flymo_capacitor953506932 4.35 |
connection953747810 wiring flymo_switch,black wire 3.53 |
connection953748376 wiring flymo_motor953491634,switch_ass 5.55

| connection953748348 placement lower shell,switch ass 3.45
| connection953748293 placement lower_shell,flymo_motor953491634 10.5

Table 7-9: Assembly operation loaded on Wks/

W k s 2

The assembly sequence for the operations loaded on workstation 2 is shown on Table 7-

10. Total workstation assembly operation time - 32.36 sec

Available resources: Operator,

Identification code A F C type Mating parts Operation time (sec) 1
connection953747633 wiring switch_ass,orange_plug_wire 3.53 1
connection953748523 placement uppershelljowershell 3.45
connection953 74763 packaging box,guard 18.93 J
connection953748889 labelling upper_shell,seriallabel 3.63 |
connection953749032 placement box,partsj)ack 3.45 I
Table 7-10: Assembly operation loaded on Wks2

W k s i

The assembly sequence for the operations loaded on workstation 3 is shown on Table 7-

11. Total workstation assembly operation time - 30.39 sec

Required resources: Operator, Product testing Machine, and Ultrasonic welder

Identification code || A F C type Mating parts || Operation time (sec) 1
[connection953748555 || ultrasonic welding upper_shell,lower_shell I 11-55

connection953748775 [testing test_mc,lower shell II 8-95
j connection953748814 f labelling upper shell,flymo label I 3.63 |
| connection953748937 f placement box,lowershell |3 .0 I
| connection953749010 J placement parts_pack,gtee_label I 2.63 I

Table 7-11: Assembly operation loaded on Wks3

Percentage loading for each workstation is shown in Figure 11.

- 180-

TESTING AND VALIDATIONS

Workstation utilisation

mi

70

5 f

40

10

10

1 u

Figure 7-11:Workstation loading for TwoShellMiniTrim_welding assembly line

The results show a large degree of adherence with the optimised assembly sequence.

Although the assembly sequence has been slightly altered by loading AFCs on different

workstations, it is debatable whether the resulting assembly sequence is less optimised.

The assembly plan generated successfully distributes the workload evenly between all

workstations. It maintains a feasible assembly sequence, and a high degree of

efficiency. Whilst this assembly plan may not the "best" assembly plan, it its an optimal

assembly plan for the given product model based on the given assembly line layout.

7.4.2 Product model 2: TwoShel lMiniTrim_screws

TwoShellMiniTrimscrews describes a low cost trimmer where the main body is

formed by joining two main body moulded shells. Once all components have been

assembled the main body shells are screwed together before testing and packaging

processes are performed. The product model of TwoShellMiniTrim screws is similar to

that of TwoShellMiniTrimwelding, shown in Figure 7-5. Distinguishing product

features of interest include:

1. 9 screws

2. 2 main body shells

3. Wiring connection between mains wire and switch assembly

The layout of the assembly line used for the analysis is shown in Figure 7-12. It is

constructed as discussed in Section 6.6, for brown field assembly lines.

- 181 -

TESTING AND VALIDATIONS

4

Stand
Alone

operator

screwdriver

Figure 7-12: Assembly line layout for TwoShellMiniTrim screws

As with the TwoShellMiniTrim welding, an aggregate product model is first generated

using CAPABLEAssembly, this model is use to create the connectivity model for

TwoShellMiniTrim screws. An initial assembly sequence is generated from the

connectivity model. This sequence is used as the initial solution for generating an

optimal assembly sequence using simulated annealing. The optimal assembly sequence

is used to create an initial assembly plan. The generation of an optimal assembly plan is

done using genetic algorithms.

The simulated annealing and genetic algorithm parameters used for the analysis are as

described in Section 7.4.1. Table 7-12 shows the assembly data used to generate the

optimal assembly plan using CAPABLEAssembly.

| 1 woShellMiniTrim screws
factory loaded Pseudo Mini Trim

| Total assembly time 134.24 seconds
| Maximum workstation cycle time 38 seconds
| Production rate 1 500

Production rate per 1)av
Number of shifts 2
Length of shifts 8hrs
Number of workstations loaded 4
Number of operators 4

Table 7-12: General assembly data for TwoShellMiniTrim screws

- 182-

TESTING AND VALIDATIONS

The optimal assembly plan for TwoShellMiniTrim screws is presented below:

Wks0

The assembly sequence for the operations loaded on workstation 0 is shown on Table 7-

13. Total workstation assembly operation time - 35.48 sec

Available resources: Operator, 1 stand-alone unit

Identification code A F C type Mating parts Operation time (sec) |
connection953722603 placement stand_alone,cutting_head base 2.63
connection953723062 plug n target cutting head base,nut 3.23
connection953723168 plugntarget cutting head base, spacer. 3.23
connection953723204 plug n target line_feeder,spring 2.93
connection953723250 placement cutting_head base,line feeder 3.45
connection953723031 snapfit cutting head base,eye 3.83
connection953723285 placement cutting head base,spool 2.63
connection953723370 snap fit cutting head base,cutting_head_cover 3.01

_
| connection953725734

threaded nut,axle953491634 4.46
[connection953723679 placement lower_sheU,flymo motor953491634 10.5
| connection953722472 placement fixture,lower shell 3.45 |

Table 7-13: Assembly operations loaded on Wks0

Wks/
The assembly sequence for the operations loaded on workstation 1 is shown on Table 7-

14. Total workstation assembly operation time - 33.66 sec

Available resources: Operator, Screwdriver

Identification code A F C type f Mating parts Operation time (sec)
connection953722503 wiring flymoswitchjblackwire 3.53
connection953722552 wiring flymo_switch,flymo_capacitor953506932 4.35
connection953723731 placement lower shell,switch ass 3.45 J
connection953723964 plugntarget cable_support,orange_plug_wire 3.23 |
connection953723861 plugntarget lower shell,cable_support 3.23 |
connection953722440 wiring switch_ass,orange_plug_wire 3.42
connection953723780 wiring flymo_motor953491634,switch_ass 5.55
connection953724050 placement upper_shell,lower shell 3.45

Table 7-14: Assembly operations loaded on Wks/

- 183-

TESTING AND VALIDATIONS

Wks2
The assembly sequence for the operations loaded on workstation 2 is shown on Table 7-

14. Total workstation assembly operation time - 27.69 sec

Available resources: resources: Operator Screwdrivers

Identification code A F C type Mating parts Operation time (sec)
connection953726017 threaded lower_shell,screw 3 2.27
connection953725924 threaded Iower_sheli,screw 5 2.27

j connection953725887 threaded lower shell,screw 6 2.27
| connection953725853 threaded. lower shell,screw 7 2.27

connection953725817 threaded. lower shell,screw 8 2.27
connection953725785 threaded lower shell.screw 9 2.27
connection953726097 threaded lower shell.screw l 2.27
connection953725963 threaded lower shell,screw_4 2.27

| connection953726061 threaded lower_shell,screw_2 J 2.27
connection953726280 labelling upper shell,flymo label 3.63
connection953726540 labelling guard,safety_label 3.63

Table 7-15: Assembly operations loaded on Wks2

Wksi
The assembly sequence for the operations loaded on workstation 3 is shown on Table 7-

16. Total workstation assembly operation time - 33.59 sec

Available resources: Operator, Screwdrivers, Product testing Machine

Identification code A F C type | Mating parts Operation time (sec)
connection953726203 testing | test_mc,lower_shell 20.88
connection95372868 packaging | lower_shell,Box 18.93
connection953726336 labelling [upper shell,serial_label 3.63
connection953726610 placement | Box,guard 3.0
connection953726685 placement | parts_pack,gtee_label 2.63
connection953726714 placement | Box,parts_pack 3.45

Table 7-16: Assembly operations loaded on Wks3

Percentage loading for each workstation is shown in Figure 7-13. The balance delay for

this assembly line is 14.208%, the station variation index 8.30083 seconds. This shows

that although the efficiency of this assembly line is greater than the previous product

model (TwoShellMiniTrimwelding) (balance delay -19%), the workload distribution

is not as high. Whilst the majority of workstations are assigned a similar workload, the

operator based on Wksi clearly has less assembly operations assigned to him/her.

The issue of work-relatedness is more relevant in the product model. The algorithm

successfully loads all threaded operations on the same workstations (Wks2). Thus,

algorithms for multiple parts handling can be used to obtain assembly times. This

decreases the time penalties imposed on the sequence of operations. This time can be

further decreased if worker skill is taken into consideration. An operator working on

- 184-

TESTING AND VALIDATIONS

Wks2, over time, will become skilled in handling the parts in question and handling the

appropriate tools. This is a practice commonly used in industry.

Workstation utilisation

100

f)0

HCJ

70

60

. i 0

4a

10

2C

10

0

Figure 7-13: Workstation loading for TwoShellMiniTrimscrews assembly line

7.4.3 Product model 3: FourShellMiniTrim_screws
FourShellMiniTrim screws describes a low cost trimmer where the main body is

formed by joining four main body moulded shells. Once all components have been

assembled the main body shells are screwed together before testing and packaging

processes are performed. The product model is shown in Figure 7-14. The low cost

trimmer is viewed primarily as one assembly. Distinguishing product features of interest

include:

1. 9 screws

2. 4 main body shells

3. Screw type connection between mains wire and switch

- 185-

TESTING AND VALIDATIONS

Trimmer

Box

Orange wire

Lower shell
assembly

Cable support

Guar, label

* Safety label

> Flymo label

• Tester label

Cutting head
assembly

Lower Shell 4

• Lower Shell 3

Motor

Screws

Upper shell
assembly

Box label

*• Upper Shell 2

Eye

Cutting head body

Line feeder

Nut

Spring

Spool

Spacer

Cutting head cover

Upper shell l

Switch
assembly

Capacitor

Black wire

Switch

Figure 7-14:Product Model for FourShellMiniTrim_screws

The layout of the assembly line used for the analysis is shown in Figure 7-15. It is

constructed as discussed in Section 6.6, for brown field assembly lines.

To pallet

workstation 1

Stand
Alone

Work

workstation 3 E

workstation 2 £j

screwdriver

operator
t

Figure 7-15:AssembIy line layout for FourShelllVIiniTrimscrews

As before, an aggregate product model is created by extracting assembly features from

the product model. The connectivity model is created using the aggregate product

model; it acts as a liaison graph, providing relational and technical data for the assembly

operation created. This model is used to create a feasible assembly sequence, which is

optimised using a simulated annealing algorithm, with the aim of minimising the overall

- 186-

TESTING AND VALIDATIONS

assembly time. The generated optimal assembly sequence is used as the input to the

genetic algorithm. The genetic algorithm is used to generate an initial assembly plan by

encoding the optimised assembly sequence using genetics, and assigning workstations

to each AFC (assembly operation) randomly. The system is optimised using natural

selection, whereby the fittest individual in a population survives, and is passed onto/and

used to create the next generation. The best individual in the final population represents

the optimised assembly plan.

The simulated annealing and genetic algorithm parameters used for the analysis is as

described in Section 7.4.1. Table 7-17 shows the assembly data used to generate the

optimal assembly plan using CAPAJiLEAssembly.

FourShellMiniTrim screws
Factory loaded Pseudo Mini Trim
Total assembly time 118.54 seconds
Maximum workstation cycle time 38 seconds
Production rate 1500
Production rate per Da)
Number of shifts 2
Length of shifts 8hrs
Number of workstations loaded 3
Number of operators 3

Table 7-17: General assembly data for FourShellMiniTrimscrews

Wks0
The assembly sequence for the operations loaded on workstation 0 is shown on Table 7-

18. Total workstation assembly operation time - 37.96 sec

Available resources: Operator, 1 stand-alone unit

Identification code A F C type Mating parts Operation time (sec)
connection953751129 placement fixture,lower shell ass 2.63
connection953751282 placement stand_alone,cutting_head_base 2.63
connection953751313 snapfit cutting head base,eye 3.83
connection953751908 plugntarget cutting_head_base,nut 3.23
connection953751935 plugntarget cutting_head_base,spacer 3.23
connection953751959 plugntarget 1 ine_feeder,spring 2.93
connection953751984 placement cutting head base,line feeder 3.45
connection953752009 placement cutting_head_base,spool 2.63
connection953752036 snapfit cutting_head_base,cutting_head_cover 3.01
connect ion953752067 threaded cutting_head_ass,flymo_motor953597243 3.71
connection953752111 placement lower_base_shell,flymo_motor953597243 3.45
connection953752353 plugntarget orange_plug wire,cable support 3.23

Table 7-18: Assembly operations loaded on Wks0

Wks/
The assembly sequence for the operations loaded on workstation 1 is shown on Table 7-

19. Total workstation assembly operation time - 35.99 sec

- 187-

TESTING AND VALIDATIONS

Available resources: Operator, Screwdriver

| Identification code A F C type f Mating parts Operation time (sec)
[connection953752491 plug n target | uppercase sheII,cable_support 3.23

j connection953751215 wiring flymo switch,flymo_capacitor953598210 3.53
| connection953751180 wiring flymo switch,black wire 3.53
| connection953751033 | wiring switch ass,orange_plug_wire 2.27

| connection953752153 j placement upper_base_shell,switch_ass 3.45
connection953752189 | wiring lower_sheU_ass,upper_shell_ass 3.73 |

connection953753263 jj labelling lower_shell_ass,flymo label 2.63 |

connection953752541 J placement upper shell_ass,lower_shell_ass 2.63 |
connection953752757 threaded lowershell_ass,screw_2 2.27 |
connection953752600 threaded lower_shell_ass,screw 1 2.27

| connection953753123 threaded upper_shell_ass,screw 9 2.27 |
| connection953753011 threaded upper_shell_ass,screw_7 2.27 |
| connection953753059 threaded upper_shell_ass,screw_8 2.27

j connection953752884 threaded upper shell_ass,screw_6 2.27

Table 7-19: Assembly operations loaded on Wks/

Wks2
The assembly sequence for the operations loaded on workstation 2 is shown on Table 7-

20. Total workstation assembly operation time - 37.58 sec

Available resources: Operator, Screwdriver, Product testing Machine

Identification code A F C type Mating parts Operation time (sec)
connection953752847 threaded lower_shell_ass,screw_5 2.27
connection953752784 threaded lower_shell_ass,screw_3 2.27
connection953752818 threaded lower_shell_ass,screw_4 | 2.27
connection953753188 testing test_mc,lower_shell_ass 15.88
connection953757688 packaging Box, lower shell 13.56
connection953753307 labelling upper_shell_ass,serial_label 2.63
connection953 753357 labelling guard, safetylabel 3.63
connection953753388 placement Box,guard 3.0
connection953753450 placement parts_pack,gteejabel 2.63
connection953 753483 placement Box,partsjack 3.0

Table 7-20: Assembly operations loaded on Wks2

Percentage loading for each workstation is shown in Figure 7-16. The balance delay for

this assembly line is 2.1836 %, the station variation index 1.81226 seconds. The

efficiency of the assembly lines for the four shell low cost trimmer is significantly

higher than both two-shell trimmers. The workload distribution is also a lot better than

in the previous cases. Whilst this is a good point, such a line will be susceptible to

external factors such as rejects, and human errors. The flow of assembly line can easily

be disturbed, as there is little room for manoeuvre. As before, where possible, similar

AFCs have been assigned to the same workstation. The assembly time on each

workstation is less than the workstation cycle time.

- 188-

TESTING AND VALIDATIONS

Workstat ion util isation

100

:)0

,11

7 0

I d

30

1 C

0 1 2

Figure 7-16: Workstation loading for FourShellMiniTrim screws assembly line

7.4.4 Product model 4: FourShellMiniTrim_welding
FourShellMiniTrimwelding describes a low cost trimmer where the main body is

formed by joining four main body moulded shells. Once all components have been

assembled the main body shells are welded together before testing and packaging

processes are performed. The product structure is as shown in Figure 7-14, excluding

screws. The low cost trimmer is viewed primarily as one assembly. Distinguishing

product features of interest include:

1. Welding features

2. 4 main body shells

3. Pressure fit connection between mains wire and switch

The layout of the assembly line used for the analysis is shown in Figure 7-17. It is

constructed as discussed in Section 6.6, for brown field assembly lines.

The process of generating the optimal assembly plan follows the same route as the

preceding product models. An aggregate product model is generated, creating the AFCs

used to assemble the product. The connectivity model, created from the aggregate

product model provides vital assembly information in terms of precedence, contact and

technological data. The initial assembly sequence is derived from the connectivity

model using a simple bottom-up approach. This sequence is encoded using random

numbers, and is the input to the simulated annealing algorithm. This algorithm attempts

to find an assembly sequence with the smallest assembly time; an optimal assembly

sequence. The optimised assembly sequence is used to create an initial assembly plan.

- 189-

TESTING AND VALIDATIONS

This assembly plan is created and encoded within the genetic algorithm, which uses

natural selection to find the optimal assembly plan.

workstation 1

Stand
Alone

To pal let

Work
Surface

ff

workstation 3

workstation 2

h •
operator *

Figure 7-17: Assembly line layout for FourShellMiniTrimwelding

The simulated annealing and genetic algorithm parameters used for the analysis are as

described in Section 7.4.1. Table 7-21 shows the assembly data used to generate the

optimal assembly plan using CAPABLEAssembly.

FourShellMiniTrim welding
Factory loaded Pseudo Mini Trim
Total assembly time 103.22 seconds
Maximum workstation cycle time 38 seconds
Production rate 1500
Production rate per Day
Number of shifts 2
Length of shifts 8hrs
Number of workstations loaded 3
Number of operators 3

Table 7-21: General assembly data for FourShellMiniTrimwelding

Wks0

The assembly sequence for the operations loaded on workstation 0 is shown on Table 7-

22. Total workstation assembly operation time - 35.1 sec

Available resources: Operator, 1 stand-alone unit

- 190-

TESTING AND VALIDATIONS

Identification code A F C type || Mating parts Operation time (sec)
connection953751282 placement stand alone,cutting_head base 2.63
connection953751908 plugntarget cutting head base,nut 3.23
connection953751935 plugntarget cutting head base,spacer 3.23
connection953751959 plug n target linefeeder,spring 2.93
connection953751984 placement cutting head_base,line_feeder 3.45
connection953751313 snapfit cuttinghead_base,eye 3.83
connection953752009 placement cutting head_base,spool 2.63
connection953752036 snapfit cutting_head_base,cuttinghead_cover 3.01
connection953752067 threaded cutting head ass,flymo_motor953597243 3.71
connection953752111 placement lower base shell,flymo_motor953597243 3.45
connection953751129 placement fixture,lowershelI ass 2.63
connection953752353 plugntarget orange_plug_wire,cable_support 3.23

Table 7-22: Assembly operations loaded on Wks0

Wks/
The assembly sequence for the operations loaded on workstation 1 is shown on Table 7-

23. Total workstation assembly operation time - 36.0 sec

Required resources: Operator, Ultrasonic welder

Identification code A F C type Mating parts Operation time
(sec)

connection953752491 plug n target upper_base_shell,cable support 3.23
[connection953751215 wiring flymo switch,flymo_capacitor953 598210 3.53
| connection953751180 wiring flymo_switch,black wire 3.53

connection953752153 placement upper_base_shell,switch_ass 3.45
[connection953751033 wiring | switch_ass,orange_plug_wire 3.53
] connection953752189 wiring lower_shell_ass,upper_shell_ass. 3.73

connection953752541 placement upper_shell_ass,lower_shell_ass 3.45
connection953756620 ultrasonicwelding lower_base_shell,lower top shell 11.55

Table 7-23: Assembly operations loaded on Wks/

Wks2
The assembly sequence for the operations loaded on workstation 2 is shown on Table 7-

24. Total workstation assembly operation time - 37.4 sees

Required resources: Operator, Product testing Machine

Identification code A F C type I Mating parts Operation time (sec)
connection953753263 labelling 1 lower_shell_ass,flymo_label 2.63
connection953753188 testing | test_mc,lower_shell_ass 8.95
connection953757683 packaging | box,guard. 13.56
connection953753307 labelling | upper shell_ass,serial_label 3.63
connection953753388 placement | box, lower shell 3.0
connection953753450 placement | parts_pack,gtee_label 2.63
connection953753483 placement J box,parts_pack 3.0

Table 7-24: Assembly operations loaded on Wks2

Percentage loading for each workstation is shown in Figure 7-18. The balance delay for

this assembly line is 4.8249%, the station variation index 3.08851 seconds. As with the

FourShellMiniTrim screws, the efficiency of the assembly line is less than that of both

- 191 -

TESTING AND VALIDATIONS

two-shell trimmers. In this case, the workstations are not as severely loaded compared

to the FourShellMiniTrim screws. as with all other assembly plans generated, where

possible similar operations have been loaded on the same workstations, operations have

only been assigned to workstations with the appropriate tooling requirements, and the

assembly time on each workstation is less than allowed workstation cycle time.

W o r k s t a t i o n u t i l i s a t i o n

•i i:

J X
W o r k s t a t i o n N u m b e r

Figure 7-18: Workstation loading for FourShellMiniTrim welding assembly line

7.4.5 Analysis of Results
The optimised assembly plans generated offer a direct comparison between the two

basic designs (two shells main body and four shell main body) of the new low cost

trimmer, as shown in Table 7-25.

1 Assembly Data TwoShellMiniTrim
(screws)

TwoShellMiniTrim
(welding)

FourShellMiniTrim 1 FourShellMiniTrim I
(welding) (screws)

Production rate 1500 1500 1500 1500
Production time Day Day Day Day

| Number of shifts 2 2 2
| Number of hours 8 8 8 8

Assembly cycle
time (sec) 38 38 38 38

Workstations
loaded 4 4 3 3

Station variation
index (sec) 8.3 7.8 3.11 1.8

Balance delay (%) 19 14 2
Assembly time 134.24 sec 121.47 sec 103.22 sec 118.54 sec

Table 7-25: Comparison of general assembly data

As a result of the analysis the following conclusions can be drawn:

In engineering terms:

1. Whilst the system is reasonably reliable, consistently generating feasible

assembly plans with little input from the user, the system remains more tangible

to persons with some knowledge of the product design. Such a user can impose

- 192-

TESTING AND VALIDATIONS

more restrictions on the movement of AFCs generated, this tends to create more

consistent and reliable results. The CPU time is also reduced.

2. The simulated annealing algorithm creates an optimised assembly sequence. In

an ideal world, the AFCs within the sequence would be sequentially loaded on

workstations without altering the assembly sequence. This knowledge provides

the user with a good idea of whether or not the optimised assembly plan is

'good'. I f the assembly sequence has been severely altered, by misallocating

workstations, the designer can easily spot this.

3. Using the total assembly time as a guide the assembly cost of the four shell low

cost trimmer is less than that of the two shell low cost trimmer for both welding

and screwing scenarios. There is approximately 18 seconds difference between

the total assembly time when welded models are considered and 16 seconds

difference when the low cost trimmer body shells are screwed together.

Whilst it would be informative to perform a direct comparison with assembly

times derived from the Boothroyd and/or MOST systems, technical details place

it beyond the scope of this work, as such an analysis would require an adaptation

of the Boothroyd and Dewhurst method on a similar scale as in this case study.

This has not been undertaken due to the large extent of abstract information

specific to CAPABLEAssembly, including relaxation values (supplied by the

industrial collaborator) used in creating the assembly time database for assembly

processes, as well as standard parts, and factory data. To implement a

comparative Boothroyd and Dewhurst method would require some means of

extrapolating such data, and mapping the estimated times and/or patterns to the

Boothroyd and Dewhurst structure.

4. Welding the main body of the low cost trimmer significantly reduces the total

assembly time by approximately 14 seconds (12.77 seconds in the case of two

shells and 15.32 seconds in the case of four shells). The efficiency of the

assembly line (balance delay) is also reduced by approximately 10 %. However,

when comparing welding and screwing operations the advantage of using an

ultrasonic welder is dependent on the number of screw used. This advantage is

lost i f less than 4 screws are used

5. The four shell low cost trimmer as opposed to the two shell low cost trimmer

incurs lesser time penalties in terms of assembly, due to relatively smaller parts.

- 193-

TESTING AND VALIDATIONS

Hence part handling time and placement operation times are reduced especially

where placement aids and/or guides are provided.

6. The percentage workstation loading (balance delay) of all product models are

high. As the results presented represent an ideal situation (although relaxation

values have been included, it is unlikely that all assembly operators will be

skilled and the layout of workstations are optimised) it is safe to assume that the

implementation of the assembly lines would require five workstations for the

two shell low cost trimmer which resembles the current set up of the assembly

lines. However, the redesign of the assembly line for the four shell low cost

trimmer decreases the number of workstations required and hence, the four shell

low cost trimmer will result in a reduction in the direct labour cost.

7. In general, the screw product models result in better assembly line efficiency.

This is because of the smaller chunks of assembly time, which can be distributed

along the assembly line. The welding models are restricted, as the entire

operation needs to be performed at the same workstation.

8. The critical path lies along the path of the production of the cutting head

assembly for all product models considered. In terms of redesign, a simpler

cutting head with fewer components would greatly reduce the overall assembly

time. While the design of the current cutting head is good in terms of general

assembly as it adopts a top-down assembly direction, the number and size of

components within the subassembly results in time penalties being imposed on

the standard assembly operation time.

9. All assembly plans generated start by creating the cutting head assembly. I f a

green field assembly plan is used it, is possible to obtain assembly plan which

starts by creating the switch assembly. All assembly plans generated start with

the cutting head assembly because the stand-alone unit used for assembling the

cutting head is situated in WksO.

10. It is advisable to run the system a number of times, and compare the results of

each run. Due to the nature of the problem being addressed (assembly sequence

optimisation and assembly line balancing), and the optimisation methods used

(simulated annealing and genetic algorithms), it is very unlikely each run will

produce the same result.

In computing terms:

- 194-

TESTING AND VALIDATIONS

1. The four optimal assembly plans generated for this analysis show that

CAPABLEAssembly is capable of producing consistently reliable results,

advocating the robustness of the current system.

2. The computation time for the entire process is not high, typically, less than 15

minutes (provided an aggregate product model already exist). The majority of

this time is spent reading the various files required for each module. This occurs

because the system was designed such that each optimisation process can be

performed separately, thus each module writes its results to a file (Microsoft

Access or Excel file), which can easily be read by the next module.

3. The system will fail gracefully, and quickly if for example the aggregate product

model cannot be filtered by any of optimisation modules, or an option that

doesn't exist is selected. However, the system is not capable of spotting

incoherent data. I f the user enters invalid assembly data, the results obtained will

reflect the data entered. The user will have to wait until the process is computed

before any changes can be made.

4. The system has only been tested on one platform, Windows 2000. Whilst there

is no reason to presume any major behavioural changes of the system, the use of

standard random generators, and differences in the resolution of operating

platforms might alter results obtained from the optimisation modules.

7.5 Conclusion
The fundamental methods that comprise CAPABLEAssembly have all been tested and

validated. The results of experimental validations proved to be very encouraging. The

positive feedback from the industrial case study, and the subsequent adaptation of one

of the assembly process plans, show that CAPABLEAssembly can be used to aid

assembly process planning and to some extent, product design for assembly, at the

conceptual stages of design. In particular, a significant reduction in the assembly time

was noted on certain product models when assembly sequences were changed to mimic

those generated by CAPABLEAssembly. Also, altering assembly lines to use the layout

found with CAPABLEAssembly (in terms of buffers and placement of part bins) led to

an increase in the workflow. However, it was found that once an assembly line had been

optimised based on a given product, the format could not be easily transferred to other

product models. This suggests that work is required to generate optimal assembly plans

for mixed-model assembly lines.

- 195-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

8 Discussion, Conclusions and Further Work
A discussion on the methods and results of the work presented is given in this Chapter.

This is followed by the conclusions that can be drawn as a result of this research. To

conclude, recommendations for further work required to fully exploit the potential of

CAP ABLEAssembly are subsequently presented.

8.1 Discussions
The purpose of this research is to create an intrinsically simple method for the

generation of optimal assembly process plans during the conceptual stages of design. A

system, CAPABLEAssembly was developed to demonstrate and validate the method.

CAP ABLEAssembly achieves its simplicity by adopting a 'black box' approach to

generating and evaluating assembly process plans. Whilst the computational methods

used within CAP ABLEAssembly, namely simulated annealing and genetic algorithms,

are tried and tested methods, the mode of implementation within CAP ABLEAssembly

presents an innovative approach to the issue of sequence generation, and assembly line

balancing. In particular, defining and coding the problem to be solved using simulated

annealing, and genetic algorithms is the key novel part of this research.

The method is based on three basic building blocks:

• The aggregate and connectivity product models.

• The assembly time generation methods; standard parts database and standard

part assembly methodology.

• The optimisation methods; simulated annealing and genetic algorithms.

The aggregate product model is an ideal choice for modelling products at the conceptual

stages of design where designers and process engineers do not yet have definitive

geometrical data. The creation of a product model based on the extraction of a part's

assembly features presents a simple and concise way of representing a product or

component. This makes it possible to reconstruct a product based on the mating

relationships (AFCs) between its constituting parts. This greatly reduces the size of the

product model used for analysis, which is important in today's CAD/CAM industry for

product data transfer requirements. The issue of CPU is of less importance as computers

become increasingly faster.

The backbone of the aggregate product model is a feature-based solid model; this

encourages a speedy assembly modelling process, and aids the generation of a

- 196-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

connectivity model. The connectivity model was created to certify the feasibility of the

assembly sequences created from the aggregate product model, which initially could not

be ensured. This is because the aggregate product model does not give adequate

information in terms of relational data between mating components. For example, the

aggregate product model tells you Part A is joined to Part B, but does not tell you how

many other parts are linked (and how they are linked) to Parts A and B. The aggregate

product model is also incapable of providing information with regards to whether

assembled parts' dimensions will have an adverse effect on performing an assembly

operation further down the sequence. The connectivity model is created by establishing

contact, precedence and technological constraints of an assembly. This facilitates the

generation of an initial rudimentary assembly plan, which not only ensures a feasible

assembly plan is generated, but also reduces the search space when generating assembly

sequences.

Another advantage of aggregate product modelling is that it allows for the quick

modelling of products from a simple sketch or engineering drawing, making such

modelling a powerful tool at the conceptual stages of design. Whilst the structure and

design of the aggregate product model was presented by in part, in Betteridge (2000),

here, the aggregate product model has been extended to cater for a wider range of

assembly operations. Formerly, assembly operations such as packaging, labelling, and

welding could not be modelled. Also, the standard parts database has been updated to

reflect a wider range of motors, switches, and industry specific standard parts. The

assembly times stored within the databases have been modified to reflect the work done

on assembly time generation with respect to predetermined motion times (PMTS), and

standard part assembly methodologies (SPAM). This vastly improved the reliability of

the assembly times generated by the system when compared to assembly times

achieved on the shop floor. This was one of the main hurdles that had to be overcome

before the optimisation process could begin, as direct comparison with data from

industry could not be made until a consistent and reliable agreement was attained. The

two methods agreed to a level of 25%, which is reasonable considering other external

factors not take into consideration during this research, such as the skill level of the

operators, noise and other environmental factors. However, further test are required to

firmly establish a more robust means of attaining assembly times.

The generated assembly plan is refined using simulated annealing. The simulated

annealing algorithm seeks to generate an optimised assembly sequence by maximising

- 197-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

an assembly rating variable. The formulated assembly variable (Equation 5-8), in

Chapter 5, Section 5.4.4, is based on the reduction of reorientations of mating

components, maximisation of parallelism, and maximisation of stability of intermediate

subassemblies, and is novel to this research. Each variable has been normalised to

enable weighting values to be applied. This allows the system to quickly develop, and

optimise assembly plans locally as well as globally. This is also novel to this research.

Local optimisation occurs when at least one of the assembly variables mentioned above

is ignored. Global optimisation occurs when all the assembly variables are enabled,

and/or their relative importance changed. Hence, it is possible to optimise an assembly

sequence based on one or more of the assembly variables. The advantage of this is that

it gives the process/design engineer the freedom to investigate the assemblability of a

product based on a number of criterions. He/she can make a targeted comparison, as to

whether it is the stability of the intermediate subassemblies that increases the total

assembly time, or if it is the fact that the products requires a lot of reorientations, and

the introduction of some form of a jig to decrease the handling operations would be of

benefit. This makes CAPABLEAssembly an effective tool for simultaneously

considering several manufacturing constraints at the design stage.

CAPABLEAssembly runs in two modes, green and brown field. I f a green field is

employed, the workstations are devoid of restrictions from operator skill, tooling

requirements and shop floor space. I f a brown field is employed the loading of assembly

operations onto workstations is limited by tool availability and operator skill. The model

uses genetic algorithms to generate optimised assembly workstation loadings,

employing the minimisation of cycle time, and number of workstations as the basis for

the optimisation of the genetic algorithm. It aims to find the best solutions that lead to

the maximum production rate and minimum workstation workload variance with

maximum work-relatedness. The system has been designed through a series of trial and

error experimental runs using a large number of products. The system has been balanced

in such a way to give significantly higher objective scores to solutions with low station

variation index and high values of kept precedence relations

The distinction between this system and other methods lies in the way the problem has

been defined. It does not seek to simply produce assembly plans based on the

minimisation of cycle time or number of workstations, rather it uses these parameters

for the generation of the initial population. The main interest lies in the 'goodness' of

the solutions/assembly plans generated. The goodness of an assembly plan refers to the

- 198-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

fact that the minirnisation of cycle time and number of workstations takes into

consideration not only work-relatedness, which advocates skill development in workers,

and workload smoothness, which improves the flow and efficiency of an assembly line,

but also promotes a sense of equality amongst assembly workers by distributing the

workload evenly between workstations. It also uses an optimised assembly plan as a

guide to loading assembly operations on workstations. The use of an optimised

assembly plan provides the designer with a good visual idea as to how the assembly

operations would be loaded using a green field site, and this can be used as an ideal

assembly plan. Thus, the designer can quickly tell if/when a good enough solution has

been attained. The use of an optimised assembly plan also reduces the search space (and

computational time) of the optimisation process since more restrictions can be placed on

the loading of assembly operations.

It has been argued (Nagi and Roach, 1996) that simulated annealing is better at fine-

tuning a result and as such, the genetic algorithms should be used before simulated

annealing to solve optimisation problems, This has been applied to the issue of just-in-

time scheduling of multi-level assemblies. While it is true that the simulated annealing

expertise lies in local optimisation, the gains in applying these methods in this context

are limited. The application of these methods should be problem specific. I f the aim is

to produce a single optimised solution, then simulated annealing is adequate. However,

if the aim is to generate a pool of optimised assembly plans (as is the case of

CAPABLrL4^e/«Z)/y), then simulated annealing becomes less attractive. As with the

other local optimisation methods, simulated annealing works by repeatedly

transforming the current solution to the next one, by the application of one move. The

genetic algorithm works by keeping track of a set of feasible solutions. Furthermore, for

the problem being addressed (assembly sequence generation and assembly line

balancing), i f the genetic algorithm were to be applied first, the assembly operations

would be assigned to workstations without any idea of an optimal assembly sequence.

Even i f an optimal assembly sequence was to be obtained, it is still impractical to

optimise each workstation locally, as this would require the operations to be

independent of all assembly operations loaded on other workstations. Also, an attempt

to optimise the assembly plan generated by the genetic algorithm using simulated

annealing would be equally as futile. This would probably at best result in the initial

assembly plan, as the local optimisation search space would probably resemble the final

population of the genetic algorithm.

- 199-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

The use of simulated annealing for assembly line balancing would only serve to

increase the complexity of CAPABLEAssembly, which would defeat one of the main

assets of the current system. One of the keys to the successful exploitation of general-

purpose heuristics is to choose the heuristic method that most naturally lends itself to

the problem at hand, based on the adopted mapping method. The use of random

numbers is akin to assembly sequence generation due to the way random numbers are

decoded. Elements are ordered in accordance with their relative magnitude, and the

overall sequence is evaluated. The modification applied to random numbers used here,

lies in the use of array of objects (AFCs), identifiable by the random number stored as a

property within the AFC. This simplifies the decoding of the generated sequence

immensely.

I f the assembly line balancing problem is to be tackled using simulated annealing, it

would require the comparison of two distinct objects, the assembly operation, and the

workstation, which would be difficult for the more traditional methods of encoding

representation, such as tree, and binary representations, with a large chunk of CPU

spent on encoding and decoding for evaluation. On the other hand, the nature of genetic

algorithms offers a direct mapping to the assembly line balancing problem, without

wasting time deriving complex representation schema to hold all the information

required. The separate entities (genes and alleles) that constitute a genome can be

directly mapped to the entities (assembly operations and workstations) that constitute an

assembly line.

The results of the industrial study shows the system is capable of producing optimised

assembly plans regardless of the complexity of the problem. The magnitude of assembly

operations does however hamper the computational time. In general it was found that

products with up to forty assembly operations has a total computational time of less

than fifteen minutes. While this is quite high, the analysis was performed using a

Pentium, 32MB RAM, and 6GB hard disk. The majority of this time is spent

transferring product models (reading and writing files); the actual modelling time

(creation of connectivity model, and optimisation using simulated annealing and genetic

algorithms) in total is less than seven minutes.

For all product models tested, solutions wi l l converge within one thousand generations.

This time is further reduced i f more restrictions can be imposed on the derivation of an

optimal assembly sequence by using fixed AFCs. The need for a higher number of

generations is increased as the number of assembly operations is increased to ensure a

-200-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

global optimum has been reached and the system is not currently trapped in a local

optimum. However, for large product models containing more than forty assembly

operations the system has not been tested sufficiently to make any firm statements of

with regards to the number of generations required for convergence or the CPU time for

the total process.

8.2 Conclusions
There has been a considerable growth of interest in recent years in developing

computer-aided assembly planning for mechanical and electro-mechanical products.

The reasoning behind this is mainly due to the complexity of the process involved in

generating optimal assembly sequences and process plans for both complex and simple

products. With the trend in industry showing a marked increase in personalised features

in many products today, the need for such a system is mounting.

Computer aided assembly process planning is mainly concerned with the automatic or

interactive generation of feasible and cost effective assembly process plans. The results

of the industrial case studies performed shows that CAPABLEAssembly has the

potential to produce optimised assembly plans regardless of the complexity of the

product at the conceptual stages of design. At the onset of this research the objectives

set out to be accomplished include:

1. Developing a suitable means of representing a product model for assembly

representation and sequencing. This has been achieved by the extensions made

to the current aggregate product model and the fabrication of the connectivity

model.

2. Standardising parts and assembly operations. This has been achieved by

developing a standard assembly parts database, and by the creation of standard

part assembly methodologies.

3. Deriving an effective and accurate means of estimating realistic assembly

operation times. This has been achieved by the development of the assembly

time generation algorithm, based of the amalgamation of two proven methods o f

assembly time generation, pre-determined motion times and Boothroyd and

Dewhurst DFA method.

4. Generating optimal assembly sequences while satisfying assembly constraints.

This has been achieved by formulating an overall assembly variable expression

for the minimisation of assembly time, taking into consideration reorientation,

-201 -

DISCUSSION, CONCLUSIONS AND FURTHER WORK

parallelism and stability. The optimisation process is performed using simulated

annealing, and is based on maximising the overall assembly variable.

5. Generating optimal assembly process plans by mapping assembly sequences to a

predefined or undefined factory model. This has been optimising the loading of

assembly operation on brown or green field assembly lines/factory layout. An

objective score for each assembly plan is accumulated based on workload

smoothness, work-relatedness, and the optimal assembly sequence. The

optimisation process applied using genetic algorithms, and is based on the

maximisation of the objective score.

CAPABLEAssembly benefits from the following features:

1. The process of generating assembly process plans within CAPABLEAssembly is

governed by heuristic search methods. This ensures that, at worst, a near optimal

solution is obtained.

2. The final stage of optimisation (SALB) is performed using genetic algorithms,

thus presenting the design engineer with a pool of near optimal/optimal

assembly process plans.

3. The ease o f the product modelling methods used within CAPABLEAssembly

allows for an inherent simplicity of the system, as the generation of the

relational model (connectivity model) used in both optimisation modules is

derived within CAPABLEAssembly and not provided by the user. This

encourages the user to view the system as a 'black box'.

4. The abstraction of the product model to generate an aggregate product model

and connectivity model limits the size of the relational model used for

optimisation. This allows the computational time for the optimisation modules to

be kept at reasonable levels.

5. The heuristic methods chosen for the generation and evaluation of assembly

sequences and process plans within CAPABLEAssembly allow for multi-criteria

optimisation, hence the process plans can be evaluated in a holistic manner.

Al l the factors mentioned above have been used to produce CAPABLEAssembly; the

results obtained using CAPABLEAssembly have been very encouraging. Indeed, a total

of nine industrial products have been modelled, four of which are the conceptual

product models presented in the industrial case study (Chapter 7). The remaining

products were current designs, and redesigns of products. The process plans generated

-202-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

to date have been tested on industrial assembly lines and in some cases yield a

significant increase in the production rate. In such cases, modifications to the existing

assembly lines and assembly sequences have been made to reflect some of the findings

in this research.

8.3 Future work and recommendations
Whilst the industrial case study outlined in Chapter 7 advocates the use of

CAP ABLEAssembly as an effective means for generating optimal assembly process

plans, it also bring to light certain shortcomings of the system as it currently stands. In

particular, it demonstrates the inability of the system to cater for logistical planning and

detailed economic evaluation for the process plans generated. The following

recommendations for future work will have to be implemented i f the ful l potential of

CAPABLEAssembly is to be realised:

1. Mixed and batch model assembly lines: At present, CAP ABLEAssembly only

caters for single model assembly lines. The introduction of modules to deal with

the production of two or more product models on a given assembly line can

serve to strengthen the CAPABLEAssembly's industrial applicability, as it is

common practice within industry to produce models in batches i f the models

require similar sequences of processing or assembly operations. Saker and Pan

(1998) provide a method for designing mixed-model assembly lines to minimise

costs and idle time Automobile and truck assemblies are good examples of

industries that would benefit from such analysis. This can also be done using

genetic algorithms (Kim et al, 2000). The current algorithm can perhaps be

modified such that each gene within a genome contains two allele-set objects,

one denoting the assembly product model object, and the other the assembly

operation being loaded. Here, a gene within a genome would represent a

workstation.

2. Economic evaluations: Whilst an attempt has been made to include a cost

evaluation on the process plans generated using CAPABLEAssembly, the

method is largely rudimentary and has not been tested to a sufficient degree.

CAP ABLEAssembly would benefit from a knowledge base of economic analysis

to enable trends to be found. For example, the industrial case study showed that

unless a certain number of screws was exceeded, the use of an ultrasonic welder

would not necessarily yield a higher production rate. However, the system is

-203 -

DISCUSSION, CONCLUSIONS AND FURTHER WORK

incapable of ascertaining how long it would take for the ultrasonic welder to

prove viable when used on a product with sufficiently large number of screws.

3. Design for logistics: Research looking into the planning for logistics support at

the early stages of the assembly planning and design is desirable. This involves

the determination of supply, transportation and maintenance of assembly support

systems. The basic considerations within logistics planning are in the

development of effective planning procedures that will include reductions in

lead-times, limitation of resources, determination of critical shortages and

increased flexibility. A knowledge-based economic analysis for DFA should

include elements such as assembly technology selection modules, economic

evaluations of alternative assembly technology considered for acquisition or

replacement and general design modules including workstation selection,

capacity analysis and workstation site selection.

4. Enhanced product and factory models: Further work is required to enhance

assembly representation and reasoning heuristics to further speed up the analysis

of more complex products. Further advantages can be gained from creating a

link between the assembly modelling processes and costing methodologies,

increasing the accuracy of the estimation of costing parameters such as material

cost. Also, the system wil l benefit from providing an advanced user interface,

making the system more user friendly.

5. Creation of dynamically linked libraries (dlls): CAPABLEAssembly has been

designed in a modular format. As a DFA tool, the current modules can be

compiled to create a dynamically linked library. This facilitates an easy means

of increasing the functionalities within CAP ABLEAssembly. Other modules that

could be written and dynamically linked include improvements mentioned above

such as a costing module, a mixed-model and two sided assembly line balancing

module, and an enhanced factory modelling module. As the system is written in

C++, the dlls can subsequently be attached to different user interfaces. The main

benefit of this is that individual combinations of modules can be developed and

distributed independently.

6. It would be useful to have a more effective means of testing the validity of the

process plans generated by CAP ABLEAssembly. As the system currently uses

an optimised assembly sequence as a stating point for the generation of process

plan, it is fairly easy to ascertain i f an optimal or near optimal solution has been

-204-

DISCUSSION, CONCLUSIONS AND FURTHER WORK

reached. Also, the process plans generated to date have been tested on industrial

assembly lines and in some cases yield a very significant increase in the

production rate. However, a more academic means of checking the validity of

the solutions obtained could eventually leave the simulated annealing algorithm

redundant, as genetic algorithms, for balancing assembly lines does not demand

an optimal solution as an initial solution; in contrast, the opposite is slightly

preferred.

- 205 -

REFERENCES

9 References
Amen, M. , An exact method for cost-oriented assembly line balancing, International

Journal of Production Economics, Vol. 64, pp. 187-195, 2000.

Anderson, E.J. and Ferris, M.C., Genetic algorithms for combinatorial optimisation, the

assembly line balancing problem. ORSA Journal on Computing Vol. 6, No. 2, pp.

161-173,1994.

Baldwin, D.F., Abell, T.E., Lui, M.C.M., DeFazio, T.L., and Whitney D. E., An

integrated computer aid for generating and evaluating assembly sequences for

mechanical products, IEEE Trans. Robotics and Automation, Vol. 7, No. 1, pp. 78-

94, 1991.

Barnes, C.J., Jared, G.E. and Swift, K.G., Evaluation of assembly sequences in an

assembly-oriented design environment, Proceedings of the Institution of Mechanical

Engineers, Vol. 214, Part B, pp. 89-93, 2000.

Bean, J., Genetic algorithms and random keys for sequencing and optimisation, ORSA

Journal on Computing, Vol. 6, No. 2, pp 154-160,1994.

Ben-Arieh, D. and Kramer, B., Computer-aided process planning for assembly:

generation of assembly operations sequence, International Journal of Production

Research, Vol. 32, No. 3, pp. 643-656, 1994.

Betteridge, M. J., 'A methodology for Aggregate Assembly Modelling and Planning',

PhD Thesis, University of Durham, Durham, United Kingdom, 2000.

Boothroyd, G., and Alting, L., Design for Assembly and Disassembly, Annals of the

CIRP, Vol. 41, No.2, pp. 625-634,1992.

Boothroyd, G., Dewhurst, P., and Knight, W., Product Design for Manufacture and

Assembly, Marcel Dekker, Inc., 1994.

Boothroyd, G. and Dewhurst, P., Product Design For Assembly, Designers Handbook,

Boothroyd Dewhurst Inc., Kingston, 1987.

Boothroyd, G. and Fairfield, M.C., Assembly of Large Products, Annals of the CIRP,

Vol. 40, No. l ,pp. 1-4, 1991.

Boothroyd, G. and Reynolds, C , Approximate Cost Estimates for Typical Turned Parts,

Journal of Manufacturing Systems, Vol. 8, No. 3, pp. 189-194, 1989.

Bourjault, A. and Henrioud, J.M., Computer aided assembly process planning. Journal

of Engineering Manufacture (Part B), Vol. 206, pp. 61-66, (1992).

Bowman, E.H., Assembly line balancing by linear programming, Operations research,

pp. 385-389, 1960.

-206-

REFERENCES

Bradley, H.D. and Maropoulos, P.G., 'A Concurrent Engineering Support System for

the Assessment of Manufacturing Options at Early Design Stages', Proceeding of

the Thirty-first International Matador Conference, pp. 485-492, 1995.

Bradley, H.D. and Maropoulos, P.G., A Concurrent Engineering Support System for the

Assessment of Manufacturing Options at Early Design Stages, Proceeding of the

Thirty-first International Matador Conference, pp. 485-492, 1995.

Bradley, H.D. and Maropoulos, P.G., A Relation Based Product Model for Computer

Supported Early Design Assessment, Journal of Materials Processing Technology,

Vol. 76, No. 1-3, pp. 88-95,1997.

Braun, R.W. and Schiller, E.F., Computer Aided Planning and Design of Manual

assembly systems, International journal of production research, Vol. 34, No. 8, pp.

2317-2333, 1996.

Brown, H.K., Martin-Vega, L.A., Thomas, J.S., and Wade, H.S., Industrial Perspective

on Research Needs and Opportunities in Manufacturing Assembly, Journal of

Manufacturing Systems, Vol. 14, No. 1, pp. 45-58,1996.

Bullinger, H.J. and Ammer, E.D., Computer aided depicting of precedence diagrams: a

step towards efficient planning in assembly, Computing and Industrial Engineering,

Vol. 18, No. 3/4, pp. 165-169, 1984.

Caldwell, R.D., Ye, n., and Urzi, D.A., Re-engineering the product development cycle

and future enhancements of computer-integrated manufacturing environment,

International Journal of Computer Integrated Manufacturing, Vol. 8, No. 6, pp. 441-

447, 1995.

Chao, T.H. and Sanderson, A.C., Task sequence planning with fuzzy Petri nets, IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 25, pp. 755-768, 1995.

Chase, R.B., Survey of paced assembly lines, Industrial engineering, Vol. 6, pp. 14-18,

1974.

Daabub, A.M., and Abdalla, H.S., A Computer-based intelligent system for design for

assembly, Computers and Industrial Engineering, Vol. 37, pp.111-115, 1999.

Davis, L., Job shop scheduling with genetic algorithms, Proceedings of the first

international conference on genetic algorithms, Lawrence Erlbaum Associates,

Hillsdale, NJ, pp. 136-140, 1985.

De Fazio, T.L. and Whitney, D.E., Simplified generation of mechanical assemblies,

IEEE Journal of Robotics and Automation, Vol. 3, No. 6, pp. 640-658, 1987.

-207-

REFERENCES

De Fazio, T.L., Abell, T.E., Amblard, G.P. and Whitney, D.E., Computer aided

assembly sequence editing and choice: editing criteria, bases, rules and techniques',

IEEE Intl. Conf. Robotics and Automation, pp. 416-422, 1990.

De Floriani, L. and Nagy, G., A graph model for face-to-face assembly. Proceedings of

the IEEE International Conference on Robotics and Automation, Vol. 1, pp. 75-78,

1990.

Delchambre, A., CAD Method for Industrial Assembly: concurrent design of products,

equipment and control systems, John Wiley & Sons, 1996.

Delchambre, A., Computer-Aided Assembly Planning, Chapman & Hall, 1992.

Dewhurst, P., Design for Assembly, Maynard's Industrial Engineering Handbook, John

Wiley & Sons, 2001.

Dossett, R., Computer Application of a Natural Language, Predetermined Motion Time

System, Computer and Industrial Engineering Vol. 23, No. 1-4, pp. 319-322, 1992.

Evershiem, Spur, and Weil, Tool management: the present and the future, key note

paper, CIRP, General Assembly, 1991.

Gen, M. and Cheng, R., Genetic algorithms and engineering design, John Wiley &

Sons, INC., 1997.

Genaidy, A.M., Agrawal, A., and Mital, A., Computerised Predetermined Motion Time

Systems in Manufacturing Industries, Computers and Industrial Engineering, Vol.

18, No. 4, pp. 571-584, 1990.

Gerez, S.H., Algorithms for VLSI design automation, John Wiley & Sons Ltd., 1999.

Ghosh, S., and Gagnon, R.J., A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems, International Journal of

Production Research, No. 27, pp. 637-670, 1989.

Goldberg, D., and Lingle, R., Alleles, loci, and the travelling salesman problem,

Proceedings International Conference of Genetic Algorithms and their Applications,

1995

Goldberg, D.E., Genetic algorithms in search, optimisation, and machine learning,

Addison-Wesley, Reading, MA, 1989.

Goldberg, D.E., Korb, B., Deb, K., Messy genetic algorithms: motivation, analysis, and

first results, Complex systems, No. 3, pp. 493-530, 1989.

Gottipolu, R.B. and. Gosh, K., An integrated approach to the generation of assembly

sequences, International Journal of Computer Applications in Technology, Vol. 8,

No. 3/4, pp. 125-138,1995.

- 208-

REFERENCES

Groover, M.P., Automation Production System and Computer Integrated

Manufacturing, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

Hackman, S.T., Magazine, M.J., and Wee, T.S., Fast, effective algorithm for simple

assembly line balancing problems. Operational Research, Vol. 37, pp. 916-924,

1989.

Hajek, B., Cooling schedules for optimal annealing, Mathematics of Operations

Research, Vol.13, pp. 311-329 1988.

Hayes, P., and Wright, Automating Process Planning: Using Feature Relations, Journal

of Manufacturing Systems, Vol. 6, No. 1, pp. 1-16,1989.

Henrioud, J.M., Bonneville, F., and Bourjault, A., Evaluation and selection of assembly

plans, Advances in Production Management Systems, pp. 489-496 1991.

Hoffman, T.R., Assembly line balancing: a set of challenging problems, International

Journal of Production Research, Vol. 28, 1990, pp 1807-1815.

Homem de Mello L.S. and Desai R.S., Assembly planning for large truss structures in

space, IEEE Transaction on Robotics and Automation, pp.404-407, 1990.

Homem de Mello L.S. and Sanderson A.C., A correct and complete algorithm for the

generation of mechanical assembly sequences, IEEE Transactions on Robotics and

Automation, Vol. 7, No. 2, pp. 228-240, 1991.

Homem de Mello L.S. and Sanderson A.C., Two criteria for the selection of assembly

plans: maximizing flexibility of sequencing assembly task and minimizing the

assembly time through parallel execution of assembly task, IEEE Transactions on

Robotics and Automation, No. 7, No. 5, pp. 626-633, 1991b.

Homem de Mello, L.S., and Sanderson, A.C., AND/OR graph representation of

assembly plans, IEEE Transactions on Robotics and Automation, No. 6, No.2, pp.

188-199, 1990.

Hu, T.C., Parallel sequencing and assembly line problems, Operations research, Vol. 9,

pp. 841-849, 1961.

Huang, G.Q, Design for X —Concurrent Engineering Imperatives, Chapman and Hall,

London, 1996.

Jackson, J.R., A computing procedure of a line balancing problem, Management

science, Vol. 3, pp. 261-271, 1960.

Johnson, D. S., Aragon, C.R., McGeoch, L.A., and Schevon, C , 'Optimisation by

simulated annealing: an experimental evaluation; part 1, graph portioning',

Operations Research, 1989, Vol.13, pp. 865-892

-209-

REFERENCES

Johnson, R.V., Optimally balancing large assembly lines with FABLE, Management

Science, Vol. 34, pp 240-253, 1998.

Kanai, S., Takahashi, H., and Makino H., ASPEN: Computer-aided assembly planning

and evaluation system based on pre-determined motion time standard' Annals of the

CIRP, Vol. 45, pp. 35-39, January, 1996.

Kim, J.U. and Kim, Y.D., Simulated Annealing and Genetic Algorithms for Scheduling

Products with Multi-level Product Structure, Computer and Operational Research,

Vol.23, No. 9, pp. 857-868, 1996.

Kim, Y.J., Kim, Y.K., and Cho, Y., A heuristic-based genetic algorithm for workload

smoothing in assembly lines, Computers in Operational Research, Vol.25, No.2, pp.

99-111, 1998.

Kim, Y.K., Kim, Y., and Kim, Y.J., Two-sided assembly line balancing: a genetic

algorithm approach, Production Planning and Control, Vol. 11, No. 1, pp. 44-53,

2000.

Kim, Y.K., Kim, Y.J., and Kim. Y., Genetic algorithms for assembly line balancing

using various objectives, Computer and Industrial Engineering, Vol. 30, No. 3, pp.

397-409, 1996.

Kirkpatrick, S., Gelatt, C D . and Vecchi, M.P., 'Optimisation by Simulated Annealing',

Science, 1983, 220, pp. 671-680

Laperriere, L., and ElMaraghy, H. A., GAPP: A Generative Assembly Process Planner,

Journal of Manufacturing Systems Vol. 15, No. 4, pp. 282-293, 1996.

Laperriere, L., and ElMaraghy, H. A., Planning of product assembly and disassembly,

Annals of CIRP, Vol.41, No. 1, pp. 5-9, 1992.

Leu, Y.Y., Matheson, L.A. and Rees, L.P., Assembly line balancing using genetic

algorithms with heuristics-generated initial population and multiple evaluation

criteria, Decision Science, Vol. 25, pp. 581-606, 1994.

Lin, S. and Chang, T.C., An Integrated approach to automated assembly planning for

three-dimensional mechanical products, International Journal of Production

Research, Vol. 31, Nos. 5, pp. 1201-1227, 1993.

Ling, Z., Eng, T., Olson, W., and McLean C , (1999) 'Feature-based assembly

modelling and sequence generation', Computers and Industrial Engineering, Vol.36,

pp 17-33.

Ma, X., Finding the best possible solutions to simple assembly line balancing problems,

Proceedings of the Institution of Mechanical Engineers, Vol.211, Part B, pp. 53-61,

1997.

-210-

REFERENCES

Mantyla, M and Shah, J.J., Parametric and Feature-Based CAD/CAM: concepts,

techniques and applications, John Wiley and & Sons, INC, 1995

Maropoulos, P., Bradley, H., and Yao, Z., CAPABLE: An Aggregate Process Planning

Tool-kit for Integrated Product Development, Journal of materials processing

technology, Vol. 76, No. 1-3, pp. 16-22, April 1998.

Maropoulos, P.G., A Novel Process Planning Architecture for Product-based

Manufacture, Proceedings of the IMechE, Part B: Journal of Engineering

Manufacture, Vol. 209, pp. 267-276, 1995.

Mascle, C and Figour, J., Methodological approach to sequences determination using

the disassembly method, Proceedings of 2 n d international conference computer

integrated manufacturing, IEEE Robotics and Automation, pp. 483-490, 1990.

Maynard, H., Stegmerten, G., and Schwab, J., Methods Time Measurement, McGraw

Hill, New York, 1948.

Milas, G., Assembly line balancing...Let's move the mystery, Industrial engineering,

Vol. 22, pp. 31-36, 1990.

Miller, J. and Hoffman, R., Automatic assembly planning with fasteners, Proceedings of

IEEE international conference on robotics and automation, pp. 69-74, 1989.

Miyakawa, S. and Ohashi, T., The Hitachi Assembly Evaluation Method, Proceedings

International Conference on Product Design For Assembly, 1986.

Motavalli, S. and Islam, A., Multi-Criteria Assembly Sequencing, Computers and

Industrial Engineering, Vol. 32, No. 4, pp. 743-751, 1997.

Nof, S.Y., Wilhem, W.E., and Warnecke, H., Industrial Assembly, Chapman & Hall

1997.

Pahl, G. and Beitz, W., Engineering Design, The Design Council, Springer, 1984.

Park, J.H. Kwon, D.G. and Chung, M.J., Framework for the evaluation and selection of

assembly plans, IEEE, Proc. Intl. Conf. Industrial electronics, Control and

Instrumentation (IECON), pp. 1215-1221, Kobe, Japan, October, 1991.

Roach, A. and Nagi, R., A hybrid GA-SA algorithm for just-in-time scheduling o f

multi-level assemblies, Computers and industrial engineering, Vol. 30, No.4, pp.

1047-1060, 1996.

Rommey, B., Godard, M. , Goldwasser, M . and Ramkumar, G., An efficient system for

geometric assembly sequence generation and evaluation, Proceedings of the ASME

International Computers in Engineering Conference, pp. 669-712, 1995.

Saker, B.R. and Pan, H.X., Integrated knowledge-based assembly sequence planning,

Computers and industrial engineering, Vol. 34, No. 3, pp. 609-628, 1998.

-211 -

REFERENCES

Salveson, M.E, Assembly line balancing problem, Journal of industrial engineering, vol.

6, pp. 18-25, 1955.

Schmidt, L.C. and Jackman, J., Evaluating assembly sequences for automatic assembly

systems, HE Transactions, Vol. 27, pp. 23-31, 1995.

Scholl, A., Balancing and sequencing of assembly lines, Physica, Heidelbrg, 1995

Sediel, U.A. and Bullinger, H.J., Assembly sequence planning using operation

networks, Production research: approaching the 21 s t Century, Taylor & Francis,

London, pp. 495-503, 1991.

Senin, N. , Groppetti, R. and Wallace, D.R., Concurrent assembly planning with genetic

algorithms, Robotics and Computer Integrated Manufacturing, Vol. 16, pp. 65-72,

2000.

Suresh, G. and Sahu, S., 'Stochastic assembly line balancing using simulated

annealing', International Journal of Production Research, 1994, 32, pp. 1801-1810.

Suresh, G., Vinod, V.V., and Sahu, S.A., A genetic algorithm for assembly line

balancing, Production Planning and Control, No. 7, pp. 38-46, 1996.

Syan, C.S, Menon U, Concurrent Engineering: Concepts, Implementation and Practice,

Chapman and Hall, London, 1994.

Syswerda, G., Uniform crossover in genetic algorithms, Proceedings of the 3 r d

International Conference on Genetic Algorithms, Morgan Publishers, Los Altos,

CA,pp. 2-9, 1989.

Talbot, F.B., Patterson, J.H., and Gehrlein, W.N., A comparative evaluation of heuristic

line balancing techniques, Management Science, No. 32, pp. 430-454, 1986.

Thomas, J.P., Nissanke, N . , and Baker, K.D., A hierarchical Petri net framework for the

representation and analysis of assembly, IEEE Transactions on Systems, Man., and

Cybernetics, Vol. 12, No. 2, pp. 268-279, 1996.

Van Laarhoven, P.J., and Aarts, E, H., 'Simulated annealing theory and applications',

D. Reidel Publishing, Boston, 1987

Wolter, J.D. A combinatorial analysis of enumerative data structures for assembly

planning, IEEE Intl. Conf. Robotics and Automation, pp. 611-618, April, 1991.

Wolter, J.D., A constraint-based approach to planning with subassemblies, IEEE

International Conference on Robotics and Automation, pp. 412-215, May 1990.

Wolter, J.D., On the automatic generation of assembly plans, Proceedings of the IEEE

International Conference on Robotics and Automation, Vol. 1, pp. 62-68,1989.

Yao, Z., Bradley, H.D and Maropoulos, P.G., A Concurrent Engineering Approach for

Supporting Weld Product Design at Early Stages of the Design Process, 5th

-212-

REFERENCES

International Conference on Artificial Intelligence in Design, July 20-23, Lisbon,

641-660, 1998.

Ye, N. , Banerjee, P., Banerjee A., and Dech, F., A Comparative Study of Assembly

Planning in Traditional and Virtual Environments, IEEE Transactions on Systems,

Man, and Cybernetics, 29(4), pp. 546-555, 1999.

Zandin, K., MOST: Work measurement systems, Dekker, New York, 1980.

Zha, X.F., Lim, S.Y.E. and Fok, S.C., Concurrent integrated design and assembly

planning, Proceedings of the 4 t h International Conference on Robotics, Automation

and Computer, Singapore, 1996.

Zha, X.F., Lim, Samuel, Y.E., and Fok, S.C, Integrated knowledge-based assembly

sequence planning, International Journal of Advanced Manufacturing Technology,

pp. 50-64, 1998.

Zhang B. and Zhang L., The automatic generation of mechanical assembly plans,

PRICAI, pp. 668-672,1990.

Zhang, W., Representation of assembly and automatic robot planning by Petri net, IEEE

Transactions on Systems, Man., and Cybernetics, Vol. 29, No. 2, pp. 418-422, 1989.

-213 -

Appendix A: Boothroyd and Dewtiurst DFA time
standards
The classification system for manual handling processes, along with its associated

definitions and corresponding time standards, is presented in the following pages. The

classification consists of two digits; each digit is assigned one of ten numerical symbols

(0 to 9). The first digit of the coding system is divided into the following four main

groups:

I . First digit of 0-3 Parts of nominal size and weight that are easy to

I I . First digit of 4-7 Parts that require grasping tools to handle because of

their small size

Groups I and I I are further subdivided into categories representing the amount of

orientation required, based on the symmetry of the part.

The second digit of the handling code is based on flexibility, slipperiness, stickiness,

fragility, and nesting of a part. The second digit also depends on the group divisions of

the first digit in the following manner:

I . First digit of 0-3 The second digit classifies the size and thickness of

grasp and manipulate with one hands (without the aid

of tools)

I I I . First digit of 8 Parts that severely nest or tangle

IV. First digit of 9 Parts that require two hands, two persons, or

mechanical assistance in handling

the part.

I I . First digit of 4-7 The second digit classifies the part thickness, type of

tool required for handling the part, and the necessity

for optical magnification during the handling process.

I I I . First digit of 8 The second digit classifies the size and symmetry of a

part.

IV. First digit of 9 The second digit classifies the symmetry, weight, and

interlocking characteristics of parts in bulk.

-214-

Parts are easy to grasp and manipulate Parts present handling difficulties

Thickness S 2 mm Thickness > 2 mm Thickness > 2 m Thickness £ 2 mm

6 mm s b mm s
Site

S1S mm

Sue
>b mm

Size
36 mm

Size
>15 mm

Size
< 6 mm

Size
< 6 mm

Size
>6 mm

Size
£6 mm >15 mm S15 mm ONE HAND

(a+0) < 360

360° < +
< 540°

540° < (a+0)

< 720°

(a+0) = 720°

0 180 180 90 360 360

a 0 0 90 180 0 360

Part and associated tool
(including hands) can
easily reach the desired
location and the tool
can be operated easily

> ° Due to c — o — •* > obstructed
~Q il 0 -

•D = - -C

i 5 3 i
•9 o o «

access or
restricted
vision

Due to
4,

TJ ~ i l
c =0t3 _
« C 0

obstructed
access and
restricted
vision

No screwing opera
t i o n or plast ic
d e f o r m a t i o n im
mediately after in
sertion (snap/press

Plastic deformation immediately after insertion No screwing opera
t i o n or plast ic
d e f o r m a t i o n im
mediately after in
sertion (snap/press

Plastic bending
or torsion

Rivetting or similar
operation

screw iigmening
immediately
after insertion

fits, circlips, spire
nuts, etc.)

-a
Not easy to align or
position during
assembly

Not easy to align or
position during
assembly

Ea
sy

 t
o

al
ig

n
an

d
po

si
ti

on
 w

it
h

no

re
si

st
an

ce
 t

o
in

se
rt

io
n

al
ig

n
lu

ri
ng

d/

or

ig
n

an

du
ri

ng

Not easy to align or
position during
assembly s »

" .£
5, 5 ^

Not easy to align or
position during
assembly

an
d

no

ta
nc

e

c 0

i

Ea
sy

 t
o

al
ig

n
an

d
po

si
ti

on
 w

it
h

no

re
si

st
an

ce
 t

o
in

se
rt

io
n

N
ot

 e
as

y
to

or

 p
os

it
io

n
d

as
se

m
bl

y
an

re

si
st

an
ce

 t
o

in
se

rt
io

n

Ea
sy

 t
o

al

po
si

tio
n

as
se

m
b

N
o

re
si

st
an

ce

to
 i

ns
er

ti
on

R
es

is
ta

nc
e

to

in
se

rt
io

n

Ea
sy

 t
o

al
i

po
si

tio
n

(
as

se
m

bi

N
o

re
si

st
an

ce

to
 i

ns
er

tio
n

R
es

is
ta

nc
e

to

in
se

rt
io

n

Ea
sy

 t
o

al
ig

n
po

si
ti

on
 w

it
h

to
rs

io
na

l
re

si
s

N
ot

 e
as

y
to

 a

or
 p

os
it

io
n

ai

to
rs

io
na

l
re

si
st

an
ce

0 1 2 3 4 5 6 7 8 9

3 2 5 4 5 6 7 8 9 6 8

4 4.5 7.5 6.5 7.5 8.5 9.5 10.5 11.5 8.5 10.5

5 6 9 8 9 10 11 12 13 10 12

© 1982, 1985, 1989 Boothroyd Dewhurst Inc.

PARTSECURED
IMMtDIA I ELY

From
vert ical ly
above

Not
from
vertical ly
above

Insertion not
straight line
mot ion

No screwing opera
tion or plastic
deformat ion
immediate ly atter
insertion (snap or
press tits, etc I

c = o
20 _

m O
Ul -

1.2

1.3

2.4

W f- _ i -- 5 ; S
£ - 5
4 i o - £

1.9

2.1

3.8

Plastic deformation immediate ly alter insertion

Plastic bending

a o

1.6

2.1

3.2

Not easy to align
or position (no
features provided
tor the purpose)

Z 5 S S

2.4

3.2

4.8

3.6

4.8

7.2

Rivetting or similar
plastic deformation

3 O ~ a >-

0.9

1.8

Not easy to align
or position Ino
features provided
for the purpose)

1.4

1.5

2.8

2.1

2.3

4.2

Screwing
immediately
atter
insertion

" , -
c r = =

t S r. ~
u j = . = 7.

0.8

1.3

1.6

— ^ si C

? ! f p
i : o ;

1.8

3.6

Using motion along
or about the vertical

axis

Using motion along
or about a non-

vertical axis

Involving motion
along or about more

than one axis

Force or torque levels within robot capability

Part can be gripped and inserted using
standard gripper or gripper used lor
previous pan

Part requires change
lo special gripper

Special
workhead
operation

Snap or push fit
Push and twist or

other simple
manipulation

Snap or push fit
or simple

manipulation

Screw fastening or
nut running Robot

positions

Self-
aligning

Not easy
lo align

Self-
aligning

Not easy
lo align

Sell-
aligning

Not easy
to align

Self-
aligning

Not easy
to align

pad

0 1 2 3 4 5 6 7 8

1.0 0.55 1.0 0.6 1.0 0.7 1.0 0.75 1.0 0.6 1.0 0.65 1.0 0.7 1.0 0.8 1.0 1.15

3
0 0 0 0 0 0 0 0 1.5 0.7 1.5 0.7 1.5 0.7 1.5 0.7 4.0 0.7

1.5 0.55 1.5 0.6 1.5 0.7 1.5 0.75 1.5 0.6 1.5 0.65 1.5 0.7 1.5 0.8 1.5 1.15

4
0 0 0 0 0 0 0 0 1.5 0.7 1.5 0.7 1.5 0.7 1.5 0.7 4.0 0.7

5
1.5 1.05 1.5 1.1 1.5 1.15 1.5 1.2 1.5 1.05 1.5 1.1 1.5 1.6

5
0 0 0 0 0 0 0 0 1.5 0.7 1.5 0.7 4.0 0.7

© 1989 Boothroyd Dewhurst Inc.

Appendix B: Graphical representation of the effects of
part thickness and size on handling tomes.

The following data s presented in Appendix B:

1. The effects of part thickness, and part size on handling time

2. The effect of number of threads on time taken pick-up the tool, engage the screw,

tighten the screw, and replace the tool.

-217-

The effects of part thickness and size on handling time
The effect of part thickness on handling time is shown below. From the graph, it can be

seen that parts with a "thickness" greater than 2mm, have no grasping or handling

problems. For long cylindrical parts, this critical value occurs at 4mm.

Effect of Part Thickness on Handling Time

Handling time, long 0.9
cylinders, if

not thin thin thickness=diameter 0.8
Handling time,
cylindrical

& 0.6 Handling time, non
cylindrical

y = 0.1188X 2 - 0.9296X + 1.8193

0.1 y = 0.1293x 2 -0.6351x + 0.75

15 1.0
0.1

Thickness, mm

The effect of part size on handling time is shown below. From the graph, it can be seen

that parts with a "size" greater than 15mm, have no grasping or handling problems. The

handling time for small and medium parts shows progressively greater sensitivity with

respect to part size.

Effect of Part Size on Handling Time

3 T

hand, times, C

• — h a n d , times, NC

Expon. (hand, times, C)

Expon. (hand, times, NC)

E 1.5 ylindrical parts

- 0 . 2 4 1 4 X y = 2.5872e

0.5
-0 1666X y = 0.8248e

I !

0 2 4 6 8 10 12 14 16

Size, mm

-218-

The effect of number of threads on time taken pick-up the tool,
engage the screw, tighten the screw, and replace the tool.
The effect of number of threads on the total time for a screwing operation, based on a

variety of screw-head designs, and using both hand-operated, and power tools, is shown

below. There are no restrictions on tool operation for any of the situations shown below.

Effect of No. Of threads on time to pick up the tool, engage the screw, tighten the
screw, and replace the tool

16

14 Slot Head

Philips-Head
12

A en

Philips-Head (Power Tool) y = 0.4333X + 3 at 10
Slot-Head (Power Tool)

c 8

y = 0.2667X + 2
G

y = 0.1667x+ 1

• • I I

("i 8 10 12 14 16

ad (Power Tool)

(Power Tool)

No. of Threads

-219-

Appendix C: Parameter index for assembly operations
[MOST & SPAM]
The following pages show the parameter indexing currently used in MOST and SPAM

-220-

3 | 5" I s § " ° S' c
.oo &?
• ^ cr Co CD

T 3

3
CD

3
CO

CD

CD

CD

O
2
Q)
3 '

73
<p_
5"
. 0
c
co"

>
H
3
CD

Z ^

o o
3
CO

a
CD P 5 ^
6: 8 CD

X I
c
—!
CD
Q.
a>

CO

ft
0) co
CD

w - sr
> !T cp T]

0)
CO
CD-

ID

CD

5T §
Q) Q_

I - o
i n CO <5- CD

0)
O
CD

3
CD
3

co 3

CD
CO c/> c
CD
T J CO
0)

o
CD

3
CD
3

co ->•
i i
O U.
CD cQ
5' 3
o o
§ ^
3 - CD

3 a
— CO

o ~~
=?CO
c? »•
< •<
—\ o o
CO
V

CO o
CD
O
CO
CO

3'
0)

CD
O
c
co_
*<

3 CD
8 - 1

ffi CD

< 3'

CO J

3

Z 5" CD
O Q. I
~ CD CD
" X o
§
co m ^
9- c §
CD CD O

CO

o o
3

3
o

CD
O .

3 .o
—5
CD
Q.
0)

CO
co i—+-
0)

CQ
CD

O '
3

I I o a % ft
3 0)

CD
3" CO
CD CO

3 n>

3
O
3 -
CD
CO

3 i > a. i
CD i » x o

s s

CD
c

&
o
5"
3
CD
CD
- i
3"

I
3 '

CQ

C/>

c
CD
3
O
CD

O
O

c
CO
CD

0)
3

3

0)
3
o c
ft 3 o
3"
CD
Q.
3"
Q>
3
Q_

CO O > 33 OSO H
—i J— ' — ft. r \
(D m -
< TO co

d . Co 51
3> cb

5 "O co §

en

a>

a
3 (A

co

o en o

o o

co o>
co
CD
CD

co
CD
CO

CD

Q

CD

n •o
9
B)
« • *
<D

a

?l
c
CO
CD •a

CD

33
!L
5'

-Q
c
co'
H o o

—I

c
>
CO
CO

3

>
CO co

w 5" CD

HI x

-K < 3'
=r F O
Q) a> o
3 CO 3

Q- 5"

X I
Q)
3-
cn
—1»

o
3
cr
3 '

o
9L

CQ
c

0)
o
03

3

Cfl
ffi

CD

•o
CD
0>
<?
Q.

—1 s ^ - J
CD § W (D

CQ <Q

3
CD

O

o
CD 2.
CD C -> (0
3 »
f •
3'

CQ

CO CO

CO CO CO

CD

o
cr
ST
5"
o o

CD

O
O

CD

XI
(D

5'
c
co'
3 -

cn o
>
CO
CO o
3
CD

Appendix D: A comprehensive list of product features
used for assembly modelling.
The following pages depict diagrammatically, the available product features used for

aggregate product modelling.

-223-

code

Feature Class

description

Diagram Parent
classes

Minimum
Feature
Relations

Optional
Feature
Relations

bho blind hole

- * f

\ dtpth

prismatic,
holes

diameter,
length

est closed slot

$ f « # * o |
width

prismatic,
slots

length,
width,
depth

radius,
angle

ecy external cylindrical
surface

longt h

i
diameter

axi-
symmetric,
external

length,
diameter

efa end face on a
cylindrical part

l ength D
material

removed

axi-
symmetric,
external,
face

length,
diameter,
internal
diameter

egv external groove on
a cylindrical part

tengt

L
h

J
\ diameter

axi-
symmetric,
external,

length,
diameter

epf external profile on
a cylindrical shape tonglh^

j * * * ^ >• - ^ j
& m i n i m u m
: d lanwtar

axi-
symmetric,
external,

length,
minimum
diameter

erg circular groove on
the face of a
cylindrical part

lane

[

j t h

—1 diameter

l i i
Idlamotor

axi-
symmetric,
external,
face

length,
diameter,
internal
diameter

esp external step on a
cylindrical part length

1

, ,
* 1 dlamator

axi-
symmetric,
external,

length,
diameter

pcf prismatic chamfer prismatic,
face

length,
width
angle

pes coimtersink: a
chamfer around a
hole r ~

prismatic,
hole

length,
angle

pfa prismatic face: any
flat surface

prismatic,
face

length,
width,
depth

Pgv cylindrical groove
in a hole r t—

r*

prismatic,
hole

length,
diameter

pho through hole prismatic,
hole

length,
diameter

ppk pocket

AcS*/
prismatic,
hole

length,
width,
depth

psd shoulder on a
prismatic part

' \

prismatic,
face

length,
width,
depth

pst slot
t

fepth

4
& /r-—

WMOl

prismatic,
slot

length,
width,
depth

radius,
angle

ptd thread on a
cylindrical section
of a prismatic part

* . l L
prismatic,
face

length,
diameter,
pitch

sf2 prismatic curved
surface with fixed
profile

prismatic,
face

length,
width,
depth

minimum
radius

sf3 prismatic curved
surface

prismatic,
face

length,
width,
depth -

minimum
radius

etd external thread on
a cylinder

l ength

• « « !««»•
A A A A A A

p i t c h 1

axi-
symmetric,
external,

length,
diameter,
pitch

etp external taper on a
cylinder

\

| ~ £ M i g l Q

l ang th

axi-
symmetric,
external,

length,
diameter,
angle

htd thread on a non-
axial hole

n
prismatic,
hole

length,
diameter,
pitch

icy internal cylindrical
surface on a
cylindrical part

SS»-! length

k
diameter

axi-
symmetric,
internal,

length,
diameter

igv internal groove on
a cylindrical part

length

[diameter
1

. — i — — — • — . —

axi-
symmetric,
internal,

length,
diameter

ipf axi symmetrical
internal profile . length

m a x i m u m ;
d iameter ;

axi-
symmetric,
internal,

length,
maximum
diameter

isp internal cylindrical
step

1

d

^ ' langth

lamater

axi-
symmetric,
internal,

length,
diameter

itd axi symmetrical
internal thread l eng th

H» 5s«-j

; pi tch

axi-
symmetric,

. internal,

length,
diameter,
pitch

itp axi symmetrical
internal taper

N

^ diameter

I engle £

• l ength 1 .

axi-
symmetric,
internal,

length,
diameter,
angle

pcb counterbore: a
square depression
around a hole

a»pth. *
prismatic,
hole

length,
diameter

radius

pky keyway prismatic,
slot

length,
width,
depth

pky keyway prismatic,
slot

length,
width,
depth

vst v-slot prismatic,
slot

length,
angle,
depth

Appendix E: Standard assembly operation times
The information presented in Appendix E, include:

1. Equations for Standard assembly operations, derived using SPAM

2. Representations of SPAM sequences

-228 -

Standard assembly operations

Bolt & Nut (BN) sequences

BN_1 -(4 + 6«) * (2.78 (- ,)j + nf(N)

BN_2-in * (2.78 (_ l) j + »(/(A r) + g(Ne))

BN_3 -(4 + 8«)*(2.78^ 1)) + n(f(N) + g(Ne))

Bolt, Nut, and Washer (BNW) sequences

B N W l -12« * (2.78 (_ ,)) + nf(N)

BNW2 -(8 + 8«) * (2.78 (- 1) J + nf(N)

BNW_3 -(12 + 6n) * (2.78 (_ ,)) + nf(N)

BNW_4 -1On * (2.78 (_ 1)) + nf(N)

B N W J (8 + 6n) * (2.78 (_ 1)) + nf{N)

BNW.6 -(12 + 4«) * (2.78 (_ 1)) + nf(N)

BNW_7 -(4 + 8«) * (27.8 (_ 1)) + n/(n)

BNW_8 -(4 + 10M)*(27.8 (_ 1)) + nf(n)

Screw (SCR) Sequences -

SCR_1 - (4 + 6n) * (2.78(- 1)) + n(f(N) + g(Ne))

SCR2 - 8n *(2.78 (_ 1)) + n(f(N) + g(Ne))

SCR_3 -(4 + 8n) *(2.78 (_ ,)) + n{f(N) + g{Ne))

Riveting (RIV) Sequences

RIV_1-(10H + 1)*(2.78 (_ ,))

Rrv_2-(12« + 1)*(2.78 (_ ,))

RIV_3 -(10« + 11)*(2.78{ _ 1))

RTV_4 -(1 In +11) * (2.78 (_ 1))

RIV_5-(14n + 19)*(2.78 (_ ,))

RTV_6 -(17« + 21)*(2.78 (_ 1))

Socket ratchet wrench- y = 1.7 x TV
Ring/Box end wrench y - 3 x N
Nut Driver y = 0.8 x N
Open-end wrench y = 3.2 x N

N, number of revolutions / threads
y, /(AO

Allen y = 0.2667x + 2
Slot Heady = x + 1.5
Philips-Head y = 0.4333x + 3
Philips-Head (Power Tool) y = 0.1667x + 1.5
Slot-Head (Power) Tool) y = 0.1667x + 1

x, number of revolutions / threads

y. { f (N) + g{Ne))

-229-

INDEX

Collect a handful of bolts from a parts bin

Inset a single bolt through holes. Repeat process n times.

Collect a single nut form a part bin and fasten using desired
tooling. Repeat process n times.

Collect a single bolt from a part bin.

Insert a single bolt through holes.

Collect a single nut from a part bin.

Fasten using desired tool.

Repeat the process n times.

Collect a single washer from a part bin.

Collect a handful of washers from a part bin.

Place a single washer on a single bolt and insert bolt
through holes.

Collect a handful of nuts from a part bin.

Fasten n times using desired tool.

Collect a single bolt and a single washer from seperate
part bins simultaneously.

Collect a handful of bolts and a handful of washers from
seperate bins simultaneously.

INDEX

Collect a single bolt and a single washer from seperate
part bins. Place the washer on the bolt and insert the bo

through holes. Repeat the processn t imes

Place washer on bolt. Collect a single nut from a part bi i
and fasten. Repeat processn t imes.

B N Systems -

M Bolls

> Insert Boll

S.Nut

Fasten

T

BN_1 -
• Collect a handful of bolts form a part bin.
• Insert bolt through holes. Repeat process n times.
• Collect a single 'nut from a part bin and fasten with desired tool.

Repeat process n times.

Equation: (4 + 6n) * (2 . 7 8 H)) + nf(N)

S . B o l t

Insert Bolt

S . N u t
<3>

Fasten

B N _ 2 -
• Collect a single bolt from a part bin.
• Insert bolt through holes
• Collect a single nut from a part bin.
• Bolt and nut are fastened together using desired tool.
• Process is repeated n times.

Equation: 8H*(2 .78 (_ 1)) + I I / (A O

Insert Bolt

1
M.Nuts

\ ^ n'Fifsten /

B N _ 3 -
• Collect a handful of bolts f rom a part bin.
• Insert bolt through holes. Repeat process n times.
• Collect a handful of nuts form a part bin.
• Place and fasten nuts with desired tool.

Equation: (4 + 8«) * (2 .78 (_ 1)) + nf(N)

B N W Systems - P . T . O

1 The initial engagement time for placing the nut on the bolt has been included with the calculation of
fastening times.

f\ S . B o l l

Insert Boll

S Washer

i = 3
Place Washer

on bolt

| S,Nut |

Fasten / i -

BNW_1 -
• Collect a handful of bolts from a part bin.
• Insert bolt through holes.
• Collect a single washer from a part bin.
• Place washer on bolt.
• Collect a single nut from a part bin.
• Fasten with desired tool.
• Repeat process n times.

Equation: \2n * (2 .78 (_ 1)) + nf{N)

M.Bolts

M Washers

place washer
on boll

Insert Bolt

S_Nut

B N W _ 2 -
• Collect a handful of bolts from apart bin.
• Collect a handful of washers from a part bin.
• Place washer on bolt and insert bolt through holes. Repeat process n

times.
• Collect a single nut from a part bin and fasten nut using desired tool.

Repeat process n rimes.

Equation: (8 + In) * (2 .78 (- 1)) + nf(N)

i
I M ,Washers |

place washer
on bolt

Insert Bolt

M_Nul

\ n 'Fasten /

B N W _ 3 -
• Collect a.handful of bolts from a part bin.
• Collect a handful of washers from a part bin.
• Place washer on bolt and insert bolt through holes. Repeat process n

times.
• Collect a handful of nuts from a part bin.
• Place and fasten nuts using desired tool.

Equation: (12 + 6«) * (2.78 (~ 1 }) + nf(N)

Place w a s h e r
on bolt

Insert Bolt

Nut

BNW_4 -
• Collect a single bolt and a single washer f rom separate part bins. Place

washer on bolt and insert bolt through holes. Repeat process n times.
• Collect a single nut from a part bin. Fasten nut with desired tool,

repeat process n times.

Equation: 10M * (2 .78 (_ 1)) + nf{N)

F a s t e n

Place washer
on bolt

X
\ n'Faslen /

BNW_5 -
• Collect a single bolt and a single washer from separate part bins

simultaneously. Place washer on bolt and insert bolt through holes.
Repeat the process n times.

• Collect a handful of nuts f rom a part bin.
• Place and fasten nuts with desired tool.

Equation: (4 + 8«) * (2 .78 (_ 1)) + nf{N)

Place washer
on boil

- | Insert Boll

<\ S_Nut

- X ^ Fasten y

BNW_6 -
• Collect a handful of bolts and a handful of washers f rom separate part

bins simultaneously.
• Place washer on bolt and insert bolt through holes. Repeat process n

times.
• Collect a single nut from a part bin and fasten with desired tool. Repeat

process n times.

Equation: (4 + 8«) * (2 .78 (- 1)) + nf(N)

Place washer
on boll

Insert Boll

M_Nul

\ n 'Faslen /

BNW_7 -
• Collect a handful of bolts and handful of washers f rom separate part

bins simultaneously.
• Place bolt on washer and insert bolt through holes. Repeat process n

times.
• Collect a handful of nuts from a part bin.
• Place and fasten nuts with desired tool.

Equation: (8 + 6/i) * (2 .78 (- 1)) + nf(N)

M Bolls

_Washef L

Place washer
on boll <e>

ln»»n Bolt j * - 1

I M.Nuls I

' r '
\ ^ f i 'Fasten /

BNW_8 -
• Collect a handful of bolts from a part bin.
• Collect a single washer from a part bin and place on a bolt. Insert bolt

through holes. Repeat process n times.
• Collect a handful of nuts from a part bin.
• Place and fasten nuts with desired tool.

Equation: (8 + 8n) * (2 .78 (_ 1)) + nf(N)

M.Bol ts

S . W a s h e r

P lace w a s h e
on bolt

Insert Bolt

S Nut

\ F a s t e n / <

<$>

BNW_9 -
• Collect a handful of bolts from a part bin.
• Collect a single washer from a part bin. Place washer on bolt and

insert bolt through holes. Collect a single nut from a part bin and
fasten with desired tool.

Equation: (4 +10«) * (2 .78 (_ 1)) + nf{N)

M.Bol ts

I M . W a s h e r s

Place w a s h e r
on b

I Z 3
bolt """l

I F a s t e n

BNW_10 -
• Collect a handful of bolts from a part bin.
• Insert bolt through holes.
• Collect a handful of washers from a part bin.
• Place washer on bolt. Collect a single nut f rom a part bin and fasten

with desired tool. Repeat process n times.

Equation: (12 + An) * (2 .78 (_ 1)) + nf(N)

±
Place washer

on boll

S_Nut

BNW_11 -
• Collect a handful of bolts and a handful of washers f rom separate part

bins simultaneously.
• Insert bolt through holes. Repeat process n times.
• Place washer on bolt. Collect a single nut f rom a part bin and fasten.

Repeat process n times.

Equation: (4 + 8 n) * (2 7 . 8 (_ 1)) + « / («)

M Bolts

i
. W a s h e r L

Place washer
on boll

Insert Bolt

—r
S Nut

I
— \ ^ Fasten

BNW_12 -
• Collect a handful of bolts from a part bin.
• Collect a single washer from a part bin and place washer on bolt.

Insert bolt through holes. Repeat process n times.
• Collect a single nut from a part bin and fasten using desired tool.

Repeat process n times.

Equation: (4 + 10n) * (27.8 (_ 1)) + «/(«)

INDEX

s_ .Rivet

M. .Rivet

n

t r-= — J

\ ,—

t r

Collect a single rivet from a part bin.

Collect a handful of rivets from a parts bin

Insert a single rivet through the pre-drilled hole in the
materials to be joined.

Rivet Mandrel is inserted into the riveting tool.

The nose piece of the riveting tool is fitted onto the rivet
mandrel.of a pre-positioned rivet.

Rivet (mandrel already inserted in the riveting tool) is
inserted into the pre-drilled holeof the materials to be
joined.

Repeat process n times.

Insert a single rivet through the pre-drilled hole in the
materials to be joined. Repeat the process n times.

S Rivet

Collect a single rivet from a part bin. Insert a single rivet
through the pre-drilled hole in the materials to be joined.
Repeat the process n times.

INDEX

The tool is actuated (the mandrel is gr ipped,mandre
expands and breaks at a pre-determind point).

The nose piece of the riveting tool is fitted onto the rivet
mandrel.of a pre-positioned rivet. The riveting tool is
actuated. Repeat the process n times.

Rivet Mandrel is inserted into the riveting tool. Rivet head
is placed in the pre-dri l led hole of the materials to b«
joined. The riveting tool is actuated. Repeat the process n
times.

Insert a single rivet through the pre-dri l led hole in the
materials to be joined. Rivet mandrel is inserted in the
nosse piece of the riveting tool. Riveting tool is actuated.
Repeat the process n times.

Replace riveting tool to orignal position.

R IV _1! -
• Collect a single rivet from a part bin
• Insert rivet in riveting tool
• Insert rivet through the pre-drilled hole in the materials to be

joined.
• Actuate riveting tool.
• Repeat the process n times.
• Replace tool

Equation: (\0n +l)*(2.78(_1))

R I V _ 2 -
• Collect a single rivet from a part bin
• Insert rivet into the pre-drilled hole in the materials to be

joined together.
• Insert the rivet mandrel in the riveting tool.
• Actuate riveting tool.
• Repeat process n times,
• Replace tool

Equation: (l2« + l) * (2 . 7 8 (_ u)

R I V _ 3 -
• Collect a single rivet from a part bin and insert into the pre-

drilled hole in the materials to be joined. Repeat n times.
• Insert rivet mandrel into the nose piece of the riveting tool

and actuate riveting tool. Repeat n times.
• Replace tool

Equation: (10/i + l l) * (2 . 7 8 (_ 1))

R I V _ 4 -
• Collect a handful of rivets from a part bin
• Insert rivet into the pre-drilled hole in the material to be

joined. Repeat n times.
• Insert rivet mandrel into the nose piece of the riveting tool

and actuate tool. Repeat n times.
• Replace tool

Equation: (17» + 11)*(2.78 (_ 1))

R I V _ 5 -
• Collect a handful of rivets from a part bin.
• Insert rivet into the pre-drilled hole in the material to be

joined together. Insert rivet mandrel into the riveting tool and
actuate tool.. Repeat n times

• Replace tool

Equation: (14« + 19)*(2.78 (_ 1))

R I V _ 6 -
• Collect a handful of rivets from a part bin
• Insert rivet into riveting mandrel into riveting tool. Insert

rivet head into the pre-drilled hole of the material to be joined
and actuate tool. Repeat n times.

• Replace tool

Equation: (17« + 21)*(2.78 (_ 1))

S Screw

I N D E X

Collect a single screw from a part bin.

M Screw Collect a handful of screws from a parts bin

Engage Screw Insert a single screw through holes and engage threads with
custom parts.

I * Engage Screw

Engage Screw

Fasten

Engage screw threads. Repaeat the process n times.

Enage screw threads with custom parts and fasten with
desired tool.

n'Fasten Fasten n times using desired tool.

Repeat the process n times.

Fasten Fasten using desired tool.

Screw Sequences

S _ S c r e w

E n g a g e S c r e w

F a s t e n

S C R _ 1 -
• Collect a single screw from a part bin.
• Insert screw through holes. Engage screw thread with custom parts
• Fasten with desired tool.
• Repeat process n times.

'Equation: (4 + 6n)*(2J&^) + n(f{N) + g{Ne))

M Screws

* Engage Screw

\ n 'Fasten /

S C R _ 2 -
• Collect a handful of screws from a part bin.
• Insert screw through holes. Engage screw threads with custom parts.
• Repeat the process n times.
• Fastened with desired tool.
• Process is repeated n times.

Equation: 8/1 * (2 .78 (_ 1)) + n (f (N) + g(Ne))

M . S c r e w

* E n g a g e S c r e w

F a s t e n

S C R _ 3 •
• Collect a handful of screws from a part bin.
• Insert screws through holes. Engage screw threads with custom parts

and fasten with desired tool.
• Repeat n times

Equation: (4 + 8«)* (2 . 7 8) + n{f (AO + g{Ne))

1 / (AO; Function used to calculate fastening time using desired tool. Expressed as a function of time and
revolutions.
g(Ne); Function used to calculate engagement time that is, initial rundown time b/4 tool is applied to secure
parts.

Appendix F: Comprehensive parts list of components

within SPAD

- 2 4 2 -

Bolts

Carriage Bolts

cylinder

(•) esp, eld

Anchor Bolts

(+)Cylinder

Through (-)esp Through (-)esp

(-)etd

(+)Cylinder

Sleeve (-)esp Sleeve (-)esp

\ ! (-)etd

(-)egv

Hexagonal Head Bolts

Cylinder

(-)esp, etd

Hook and Eye Bolts

Cylinder

(-)esp, etd

Hook and Eye Bolts

Cylinder

(-)esp etp

Loose Bolts

Cylinder

(-)htd [phoj

Projecting Bolts

Cylinder

(-)esp, etd

Roofing Bolts

Cylinder

•)esp, etci

Through! Bolt Anchor

Cylinder

(-)esp etd

Screws & Studding

Black Steel

cylinder

(-)esp, etd

Cap Screws

Cylinder

(-)esp, etd

Masonry Screws

Cylinder

Machine Screws

Plastite Screws

Cylinder

(-)esp, etd

Cylinder

(-)esp, etd

Self-Dilling Screws

Cylinder

Self-Tapping Screws

Cylinder

(-)esp, etd

Socket Screws

Cylinder

Tamperprool Screws

Cylinder

Taptite Screws

Cylinder

(-)esp, etd

Wood Screws

Studding

Cylinder

(-)esp, etd

prism

Nuts

Aerotight-slilf Nut

prism

(-)htd [pho]

Dome Nut

prism

(-)htd (bho)

Flange Nut

prism

(-)htd [pho]

(+) prism

Plain Nut Lr » (-) hid Plain Nut (-) hid

(-) Pho

(-) P «

Caged Nut

prism

(-)htd [pho]

Captive Nut

Sheet

(-)htd [pho]

Sell-locking Nuts

prism

(-)htd [pho]

Self-Clinching Nut

prism

(-)htd [pho]

Channel Nut

prism

(-)htd [pho]

Wing Nut

prism

(-)hld (pho)

Pins

Clevis Pin

Cylinder

(-)ecy [esp]

Dowel Pins

Parallel

tapered

(-)ecy [itdj

(-)ecy [etd]

(-)etp [itd]

(-)etp [etd]

Split Cotter Pins

Plain Nut

Caged Nut

Captive Nut

Sell-locking Nuts

Self-Clinching Nut

Channel Nut

Wing Nut

Cylinder

(-)htd [pho]

prism

(-)htd [pho]

prism

(-)htd [pho]

Sheet

(-)htd [pho]

prism

(-)htd [pho]

prism

(-)htd [pho]

prism

(-)htd [pho]

prism

Rivets

(+) cylinder

Solid Rivels (-)ecy Solid Rivels (-)ecy

(-)esp

(+) cylinder

Blind / Pop Rivets (-)ecy Blind / Pop Rivets (-)ecy

(-)esp

(+) cylinder

Shoulder Rivets (-)ecy Shoulder Rivets (-)ecy

(-)esp x2

Tubular Rivets

(+) cylinder

(-)ecy (-)ecy

(-)esp

Cross Drilled Rivets

(+) cylinder

(-)ecy (-)ecy

(-)esp

(+) cylinder

Collar Rivets <r * (-)ecy Collar Rivets (-)ecy

(-)esp

Appendix G: Precedence rating (AFC ranking) of
assembBy operations considered
The data presented in the following page details the precedence rating and/or AFC

ranking of all assembly operations considered during the course of this research.

-249-

The precedence ranking of the assembly operations (AFCs) considered within

CAPAELEAssembly are given below. The ranking of an AFC type/sub-type denotes the

preferred order of AFCs where technologically possible, within a given assembly level.

AFCs Classifications
Assembly Feature

Connections

Assembly Feature

Connections Sub-Type

AFC |

Ranking

1 Standard Placement 1

Insertion Non-Cylindrical 1 2

Assembly 1 Plug 'n' Target

Operations
Cylindrical 3

Packaging 15

Reversible Insertion

Assembly operations

Pressure Fits 9

Reversible Insertion

Assembly operations

Threaded
Screwing (Power tool) 7

Reversible Insertion

Assembly operations

Threaded
Bolting 8

Reversible Insertion

Assembly operations

Wiring

Screw connectors 4

Reversible Insertion

Assembly operations

Wiring Tag connectors

Reversible Insertion

Assembly operations

Wiring

Pressure-fit connectors 6

Permanent Insertion

Assembly Operations

Adhesives
Gluing 13

Permanent Insertion

Assembly Operations

Adhesives
Labelling 14

Permanent Insertion

Assembly Operations

Riveted
Power tool (Air gun) 10

Permanent Insertion

Assembly Operations

Riveted
Manual (Lever) 11 Permanent Insertion

Assembly Operations

Thermoplastic Welding

Ultrasonic welding 12

Permanent Insertion

Assembly Operations

Thermoplastic Welding
Spin welding 12

Permanent Insertion

Assembly Operations

Thermoplastic Welding
Hot plate welding 12

1
Thermoplastic Welding

Vibration welding 12

To calculate the AFC ranking for each AFC type a total of six products supplied by the

industrial collaborator was used. The original assembly process used by the collaborator

to build each product is initially broken down into assembly levels, and assembly

processes that represent AFCs considered with CAPABLEAssembly. This essentially

creates the connectivity model of each product. The relative positions of each AFC type

within corresponding assembly levels for each product was then established. This

information was used to infer an average order of precedence for each AFC type at each

assembly level for each product. A total of 15 different types of AFCs were used for this

research.

-250-

When ranking the AFCs the following factors were also taken into consideration:

1. The ranking of AFCs requires both placement operations be performed prior to

the threaded operation i f possible.

2. Although the rankings are hard-coded in the algorithm, the flexibility of the

system can be increased by altering the default ranking of chosen AFCs.

3. The ranking of sub-types are based on the relative ease of performing the
reversible operation. For example, within the wiring class of AFCs the screw
connector is the most easily reversible, as screwdrivers (power tool) can easily
be set to reverse motion.

