55 research outputs found

    Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine

    Get PDF
    This article provides an angular-based radiometric slope correction routine for Sentinel-1 SAR imagery on the Google Earth Engine platform. Two established physical reference models are implemented. The first model is optimised for vegetation applications by assuming volume scattering on the ground. The second model is optimised for surface scattering, and therefore targeted at urban environments or analysis of soil characteristics. The framework of both models is extended to simultaneously generate masks of invalid data in active layover and shadow affected areas. A case study, using openly available and reproducible code, exemplarily demonstrates the improvement of the backscatter signal in a mountainous area of the Austrian Alps. Furthermore, suggestions for specific use cases are discussed and drawbacks of the method with respect to pixel-area based methods are highlighted. The radiometrically corrected radar backscatter products are overcoming current limitations and are compliant with recent CEOS specifications for SAR backscatter over land. This improves a wide range of potential usage scenarios of the Google Earth Engine platform in mapping various land surface parameters with Sentinel-1 on a large scale and in a rapid manner. The provision of an openly accessible Earth Engine module allows users a smooth integration of the routine into their own workflows

    Coseismic DInSAR Analysis of the 2020 Petrinja Earthquake Sequence

    Get PDF
    Interferometric SAR analysis provides an excellent opportunity to perform large-scale and rapid coseismic deformation mapping. Between December 28-30, 2020, three earthquakes with magnitudes greater than 4.3 occurred during the 2020 Petrinja Earthquake Sequence near Petrinja in Croatia, resulting in significant coseismic deformation. Considering both the available ascending and descending Sentinel-1A/B images preceding and following the Petrinja Earthquake Sequence, 2.5D differential interferometric analysis was performed to determine the resulting deformation field, which have significant importance in civil engineering related countermeasures and hazard assessment. With the applied methodology, the derived horizontal and vertical deformation fields can be characterized by a maximum of ±0.43 m local East-West, a maximum of 0.15 m local subsidence and a maximum of 0.19 m local vertical uplift near Petrinja

    High resolution radargrammetry with COSMO-SkyMed, TerraSAR-X and RADARSAT-2 imagery: development and implementation of an image orientation model for Digital Surface Model generation

    Get PDF
    Digital Surface and Terrain Models (DSM/DTM) have large relevance in several territorial applications, such as topographic mapping, monitoring engineering, geology, security, land planning and management of Earth's resources. The satellite remote sensing data offer the opportunity to have continuous observation of Earth's surface for territorial application, with short acquisition and revisit times. Meeting these requirements, the SAR (Synthetic Aperture Radar) high resolution satellite imagery could offer night-and-day and all-weather functionality (clouds, haze and rain penetration). Two different methods may be used in order to generate DSMs from SAR data: the interferometric and the radargrammetric approaches. The radargrammetry uses only the intensity information of the SAR images and reconstructs the 3D information starting from a couple of images similarly to photogrammetry. Radargrammetric DSM extraction procedure consists of two basic steps: the stereo pair orientation and the image matching for the automatic detection of homologous points. The goal of this work is the definition and the implementation of a geometric model in order to orientate SAR imagery in zero Doppler geometry. The radargrammetric model implemented in SISAR (Software per Immagini Satellitari ad Alta Risoluzione - developed at the Geodesy and Geomatic Division - University of Rome "La Sapienza") is based on the equation of radar target acquisition and zero Doppler focalization Moreover a tool for the SAR Rational Polynomial Coefficients (RPCs) generation has been implemented in SISAR software, similarly to the one already developed for the optical sensors. The possibility to generate SAR RPCs starting from a radargrammetric model sounds of particular interest since, at present, the most part of SAR imagery is not supplied with RPCs, although the RPFs model is available in several commercial software. Only RADARSAT-2 data are supplied with vendors RPCs. To test the effectiveness of the implemented RPCs generation tool and the SISAR radargrammetric orientation model the reference results were computed: the stereo pairs were orientated with the two model. The tests were carried out on several test site using COSMO-SkyMed, TerraSAR-X and RADARSAT-2 data. Moreover, to evaluate the advantages and the different accuracy between the orientation models computed without GCPs and the orientation model with GCPs a Monte Carlo test was computed. At last, to define the real effectiveness of radargrammetric technique for DSM extraction and to compare the radrgrammetric tool implemented in a commercial software PCI-Geomatica v. 2012 and SISAR software, the images acquired on Beauport test site were used for DSM extraction. It is important underline that several test were computed. Part of this tests were carried out under the supervision of Prof. Thierry Toutin at CCRS (Canada Centre of Remote Sensing) where the PCI-Geomatica orientation model was developed, in order to check the better parameters solution to extract radargrammetric DSMs. In conclusion, the results obtained are representative of the geometric potentialities of SAR stereo pairs as regards 3D surface reconstruction

    The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation

    Get PDF
    This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector

    a Berlin case study

    Get PDF
    Durch den Prozess der Urbanisierung verändert die Menschheit die Erdoberfläche in großem Ausmaß und auf unwiederbringliche Weise. Die optische Fernerkundung ist eine Art der Erdbeobachtung, die das Verständnis dieses dynamischen Prozesses und seiner Auswirkungen erweitern kann. Die vorliegende Arbeit untersucht, inwiefern hyperspektrale Daten Informationen über Versiegelung liefern können, die der integrierten Analyse urbaner Mensch-Umwelt-Beziehungen dienen. Hierzu wird die Verarbeitungskette von Vorverarbeitung der Rohdaten bis zur Erstellung referenzierter Karten zu Landbedeckung und Versiegelung am Beispiel von Hyperspectral Mapper Daten von Berlin ganzheitlich untersucht. Die traditionelle Verarbeitungskette wird mehrmals erweitert bzw. abgewandelt. So wird die radiometrische Vorverarbeitung um die Normalisierung von Helligkeitsgradienten erweitert, welche durch die direktionellen Reflexionseigenschaften urbaner Oberflächen entstehen. Die Klassifikation in fünf spektral komplexe Landnutzungsklassen wird mit Support Vector Maschinen ohne zusätzliche Merkmalsextraktion oder Differenzierung von Subklassen durchgeführt...thesi

    New techniques for the automatic registration of microwave and optical remotely sensed images

    Get PDF
    Remote sensing is a remarkable tool for monitoring and mapping the land and ocean surfaces of the Earth. Recently, with the launch of many new Earth observation satellites, there has been an increase in the amount of data that is being acquired, and the potential for mapping is greater than ever before. Furthermore, sensors which are currently operational are acquiring data in many different parts of the electromagnetic spectrum. It has long been known that by combining images that have been acquired at different wavelengths, or at different times, the ability to detect and recognise features on the ground is greatly increased. This thesis investigates the possibilities for automatically combining radar and optical remotely sensed images. The process of combining images, known as data integration, is a two step procedure: geometric integration (image registration) and radiometric integration (data fusion). Data fusion is essentially an automatic procedure, but the problems associated with automatic registration of multisource images have not, in general, been resolved. This thesis proposes a method of automatic image registration based on the extraction and matching of common features which are visible in both images. The first stage of the registration procedure uses patches as the matching primitives in order to determine the approximate alignment of the images. The second stage refines the registration results by matching edge features. Throughout the development of the proposed registration algorithm, reliability, robustness and automation were always considered priorities. Tests with both small images (512x512 pixels) and full scene images showed that the algorithm could successfully register images to an acceptable level of accuracy

    Radar Backscatter Modeling Based on Global TanDEM-X Mission Data

    Get PDF
    Radarrückstreuung bezeichnet den Teil eines ausgesendeten elektromagnetischen Signals, der von einem Ziel am Boden wieder zurück zur Antenne gerichtet ist. Die Eigenschaften des zurückgestreuten Signals ändern sich in Abhängigkeit von Frequenz und Polarisation des Radarsignals, der Aufnahmegeometrie, sowie vom Zustand des Erdbodens und der Art der Bodenbedeckung. Informationen über das Radarrückstreuverhalten sind von höchster Wichtigkeit für die Auslegung von SAR-Missionen und werden verbreitet zur Entwicklung wissenschaftlicher Modelle genutzt, beispielsweise bei der Erforschung der Biosphäre und Kryosphäre. Hauptziel dieser Arbeit ist die Auswertung und Nutzung des globalen TanDEM-X-Datensatzes zur Modellierung der Radarrückstreuung im X-Band unter Berücksichtigung unterschiedlicher Aufnahmeparameter und Landnutzungsarten, sowie die Bereitstellung einer Reihe von globalen Rückstreumodellen, die auf aktuellen Daten basieren, für die wissenschaftliche Gemeinschaft. Es wurde ein neuer Ansatz zur statistischen Modellierung der Rückstreuinformation entwickelt, der die Qualität der zugrunde liegenden Messungen berücksichtigt. Daraus ergeben sich gewichtete polynomiale Modelle für die verschiedenen Landnutzungsarten, wie sie in der GlobCover-Karte der ESA definiert sind. Darüber hinaus wird ein eigener Validierungsansatz vorgestellt, mit zusätzlicher Betrachtung der saisonalen Variation der Rückstreuung und einer separaten Analyse des Rückstreuverhaltens des Tropischen Regenwaldes. Der nächste Schwerpunkt ist die Betrachtung des Grönländischen Eisschildes, das gekennzeichnet ist durch das Vorhandensein verschiedener Arten von Schneebedeckung, die von trockenem bis hin zu sehr feuchtem Schnee variiert. Der begrenzte Detailgrad, den die GlobCover Karte in Grönland aufweist (nur eine Klasse für das gesamte Eisschild), erlaubt dort keine verlässliche Modellierung der Rückstreuung. Diese Schwierigkeit lieferte die Motivation für die Entwicklung eines neuen Ansatzes zur Analyse des Informationsgehalts der interferometrischen TanDEM-X-Daten mit dem Ziel, unterschiedliche Schnee-Fazien mit Hilfe des sog. C-Means Fuzzy Clustering Algorithmus zu lokalisieren. Aus dieser Untersuchung konnte die Existenz von vier unterschiedlichen Klassen von Schnee-Fazien abgeleitet werden, deren Eigenschaften anschließend mit Hilfe externer Referenzdaten interpretiert wurden. Die daraus entstandene Karte wurde zur Erstellung eines einfallswinkelabhängigen Rückstreumodells genutzt, separat für jede der vier Klassen, wobei eine modifizierte Version des entwickelten Algorithmus zur Generierung globaler Rückstreumodelle eingesetzt wurde. Darüber hinaus wurde als Nebenprodukt zusätzlich die Eindringtiefe von TanDEM-X in die Eisschicht geschätzt, durch Inversion des von Weber Hoen und Zebker vorgeschlagenen "Ein-chicht Volumendekorrelationsmodells". Die Ergebnisse wurden mit dem Höhenunterschied zwischen dem globalen TanDEM-X-DEM und ICESat-Messungen verglichen. Abschließend wird ein neu entwickelter Algorithmus zur Generierung von Rückstreukarten großer Gebiete vorgestellt. Dieser erlaubt unter Verwendung von Rückstreumodellen das Angleichen der erstellten Karten anhand eines Referenzeinfallswinkels, was dann das Füllen verbleibender Lücken ermöglicht, die aufgrund fehlender Eingangsdaten vorhanden sind

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies

    Get PDF
    This paper presents a burned area mapping algorithm based on change detection of Sentinel-1 backscatter data guided by thermal anomalies. The algorithm self-adapts to the local scattering conditions and it is robust to variations of input data availability. The algorithm applies the Reed-Xiaoli detector (RXD) to distinguish anomalous changes of the backscatter coefficient. Such changes are linked to fire events, which are derived from thermal anomalies (hotspots) acquired during the detection period by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Land cover maps were used to account for changing backscatter behaviour as the RXD is class dependent. A machine learning classifier (random forests) was used to detect burned areas where hotspots were not available. Burned area perimeters derived from optical images (Landsat-8 and Sentinel-2) were used to validate the algorithm results. The validation dataset covers 21 million hectares in 18 locations that represent the main biomes affected by fires, from boreal forests to tropical and sub-tropical forests and savannas. A mean Dice coefficient (DC) over all studied locations of 0.59±0.06 (±confidence interval, 95%) was obtained. Mean omission (OE) and commission errors (CE) were 0.43±0.08 and 0.37±0.06, respectively. Comparing results with the MODIS based MCD64A1 Version 6, our detections are quite promising, improving on average DC by 0.13 and reducing OE and CE by 0.12 and 0.06, respectively.European Space AgencyMinisterio de Educación, Cultura y Deport

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen
    corecore