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A b s t r a c t

Remote sensing is a remarkable tool for monitoring and mapping the land and ocean 

surfaces of the Earth. Recently, with the launch of many new Earth observation 

satellites, there has been an increase in the amount of data that is being acquired, and the 

potential for mapping is greater than ever before. Furthermore, sensors which are 

currently operational are acquiring data in many different parts of the electromagnetic 

spectrum. It has long been known that by combining images that have been acquired at 

different wavelengths, or at different times, the ability to detect and recognise features 

on the ground is greatly increased. This thesis investigates the possibilities for 

automatically combining radar and optical remotely sensed images.

The process of combining images, known as data integration, is a two step procedure: 

geometric integration (image registration) and radiometric integration (data fusion). 

Data fusion is essentially an automatic procedure, but the problems associated with 

automatic registration of multisource images have not, in general, been resolved. This 

thesis proposes a method of automatic image registration based on the extraction and 

matching of common features which are visible in both images. The first stage of the 

registration procedure uses patches as the matching primitives in order to determine the 

approximate alignment of the images. The second stage refines the registration results 

by matching edge features. Throughout the development of the proposed registration 

algorithm, reliability, robustness and automation were always considered priorities. 

Tests with both small images (512x512 pixels) and full scene images showed that the 

algorithm could successfully register images to an acceptable level of accuracy.
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Chapter 1 In tro d u c tio n

1.1 Data integration
Data integration is fast becoming a cornerstone of remote sensing. The ability to 

accurately recognise features on the Earth’s surface relies heavily on the quality and the 

nature of the images used to map those features. Although Earth observation sensors are 

becoming ever more sensitive, it is not always sufficient to use only one type of sensor 

to map a particular area on the ground; if all the features in that area are to be mapped 

accurately, then images from different sensors may be required. The process of 

combining images from different sensors in this way is known as data integration. A 

consequence of the integration of data sets from multiple sensors is increased spatial, 

spectral and temporal resolution, increased reliability, and reduced ambiguity (Keys et 

al., 1990; Rogers and Wood, 1990).

Nowadays, with the number of Earth observation satellites increasing at a phenomenal 

rate, the acquisition of images from a multitude of sensors is not a significant problem. 

Furthermore, developments in geographical information systems (GIS) mean that spatial 

and temporal analysis of images is becoming far easier. However, a bottleneck in the 

processing chain still exists between the acquisition and interpretation of multiple 

images -  this is the geometric and radiometric processing of images which needs to take 

place so they can be compared and analysed in a common reference frame (Dowman, 

1998).

Data integration describes the complete process of merging images from different 

sources in order to create a single data set that can be used for analysis of features in the 

merged image. Data integration does not only refer to combining data from different 

sensors -  it also covers integrating data acquired by the same sensor, but at different 

times, in other words, temporal data integration as opposed to multisensor data 

integration. The two main steps in the data integration processing chain (shown in figure 

1.1) are the registration of the images to the same reference frame (image registration),
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and the fusion of the point values in the images that correspond to the same area on the 

ground {data fusion) (Pohl and van Genderen, 1998). Although only the geometric 

correction component of the data integration procedure is relevant to this research, a 

description of some data fusion techniques have been included in this chapter for 

completeness.

Image acquisition from multiple sensors

Geometric integration: image registration

Radiometric integration: data fusion

Interpretation of merged data set

Data integration

Figure 1.1 Data integration processing chain

Data integration can have a number of applications in fields as diverse as medical 

imaging, remote sensing, and robot vision. However, since research over the years has 

often been application oriented, many of the techniques developed have become 

application specific. This study is only concerned with the merging of remotely sensed 

images (images of the Earth acquired from airborne or spacebome sensors) and 

therefore concentrates solely on research done in the field of Earth observation.

Remotely sensed Earth observation images have been available for a number of 

decades. Initially, images were acquired by cameras mounted on aircraft, but as the 

technology developed, new types of image acquisition systems were invented. Electro- 

optical devices, known as scanners, were developed, which are able to acquire optical 

images electronically without the need for photographic film -  the images being stored 

digitally in a solid state memory device. Developments in radar technology led to radar 

imaging systems such as side looking airborne radar (SLAR) and synthetic aperture 

radar (SAR). In the early 1970s many of these different sensors were taken into low 

Earth orbit on board satellites and the first spaceborne remotely sensed images were 

acquired. This wide variety of different sensors means that images of the Earth can be 

acquired in many different wavelengths. This is extremely important since atmospheric 

absorption limits^range of wavelengths of electromagnetic radiation which can be used
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to view the ground. Figure 1.2 shows a diagram of the electromagnetic spectrum and 

atmospheric absorption.
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Figure 1.2 The electromagnetic spectrum and atmospheric absorption

The left hand side of figure l.2 shows the electromagnetic spectrum split into different 

regions, and their corresponding wavelengths. The right hand side shows regions of 

high atmospheric absorption (in blue) and low atmospheric absorption, or "windows" 

(in white). Only radiation with a wavelength in the white regions is able to pass through 

the atmosphere to the sensor. It can be seen that Earth observation sensors are limited to 

acquiring data in only a few regions of the spectrum. Even so, this does give enormous 

opportunity for observing the Earth.

1.2 Image registration
Image registration is the process of geometrically transforming multiple images to the 

same reference frame. In the case where that frame of reference is a local geodetic
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system (i.e. map projection), then the process is referred to as rectification1. Figure 1.3 

shows examples of image-to-image registration, and image-to-map rectification.

Original 
rad a r  

im a g e

Registration

Original
optical
im a g e

No change

Figure 1.3 (a) Image registration

W a rp e d
rad a r

im a g e

Original
optical
im a g e

Original
r ad a r

im a g e

Rectification No change

Map d a ta

Original
optical
im a g e

Rectification

Figure 1.3 (b) Image rectification

Figure 1.3 (a) shows an example of image-to-image registration, where a SAR image is 

registered to a SPOT image. As a result, the SAR image has been displayed in the 

SPOT image internal co-ordinate system of rows and columns. Figure 1.3 (b) shows 

both a SAR image and a SPOT image being registered to a map. The pixels of the

W a rp e d
rad a r

im a g e

W a rp e d
optical
im a g e

1 A glossary  defin ing these and o ther terms is provided in § 1.8.
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transformed images are expressed in ground co-ordinates (since this is the co-ordinate 

system of the map), so in this case the images have been rectified.

Although rectification removes the geometric effects of orientation from images, this is 

not the only type of distortion present in images. Other distortions are due to sensor 

anomalies, atmospheric refraction and terrain. All these different distortions seriously 

compromise the geometry of the image, and if accurate measurements are to be made 

from the image, then these distortions have to be eliminated. The process of removing 

terrain and sensor distortions is called orthorectification (Wolf, 1983), and is described 

in more detail in § 2.2.

Not all images have to be registered with each other in order to be merged; some groups 

of multiple images are acquired in a common frame of reference. The pixels making up 

these images can therefore be merged with each other without the need for image 

registration. These are images that are simultaneously acquired by the same sensor at 

the same time, the only difference between them being that they have been acquired in 

different parts of the electromagnetic spectrum. However, this is the exception to the 

rule, and in general images that have been acquired by the same sensor but at different 

times, or by different sensors, have to be registered before pixels can be merged. The 

accuracy of that registration will directly affect the quality of the data fusion, and 

ultimately the usefulness of the final data set.

1.3 Data fusion
Data fusion is the merging of point measurements from images that are in the same 

reference frame. It is not necessary that the data points being merged have been 

acquired by different sensors, only that they come from different images. There are 

numerous different ways of combining point measurements to highlight different 

aspects of the images in the final merged data set, but three commonly used techniques 

are (Pohl, 1996):

□ arithmetic combination;

□ statistical combination; and

□ colour combination.

Arithmetic combination of data sets is simply the combination of pixel values from 

multiple input images using some function or formula to give a new output pixel value. 

Addition and multiplication operations can be used to enhance characteristics of the
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data, whereas subtraction or division operations are useful for highlighting changes 

between multiple images. An example of data fusion, using arithmetic combination and 

images which originate from the same sensor, is the calculation of the normalized 

difference vegetation index (NDVI) from advanced very high resolution radiometer 

(AVHRR) images. AVHRR data is acquired in five channels, but channels one and two 

are commonly used to calculate vegetation indices. NDVI is a parameter sensitive to 

green vegetation, and hence a useful indicator of biomass. It is calculated using the 

formula:

m v l J C H 2 - C H t )
{CH2 + C H t )

where CH| and CH t represent the reflectances of channels one and two respectively. 

Using these two quantities, the NDVI can be calculated for each pixel in the image, and 

displayed as a new image (figure 1.4). The new image is made up of data fused from the 

original input images.

Figure 1.4 NDVI image of Europe for September 1996 (Gredel and Schroter, 1997)

An example of statistical combination of point measurements is principal component 

analysis (PCA). PCA is generally used to enhance multispectral data sets for improved 

interpretation or classification by removing some of the redundancy between the images 

from successive channels. In other words, PCA aims to reduce an /?-channel data set to a 

data set containing less than n channels, or components. A detailed description of PCA 

is outside the scope of this thesis, but further details can be found in Lillesand and 

Kiefer ( 1994).

The last method of data fusion described here is colour combination, where three data 

sets are each assigned to the red, green and blue channels of a colour image, giving a
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colour composite image. An example of colour combination using Shuttle Imaging 

Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) images is shown in §1.4. A 

further method of combining point measurements using colour combination is the 

intensity-hue-saturation transform, where the different data sets are assigned to the 

intensity, hue and saturation components of a colour image. This is especially useful for 

image sharpening, an example of which is also given in §1.4.

One of the most important aspects of data fusion is that it relies heavily on the accuracy 

of the registration of the data sources being fused (Dai and Khorram, 1998). This is not 

an issue with images that come from different channels of the same sensor and have 

been acquired simultaneously (as with the AVHRR data above), but for multisensor 

images, or images from the same sensor but acquired at different times, it is essential 

that the images are accurately registered to each other in order to produce an accurate 

result. This question of accuracy can be exemplified using SPOT XS (multispectral) 

images that have been deliberately misaligned (see figure 1.5).

Figure 1.5 (a) Three channels of SPOT multispectral data

Figure 1.5 (b) Correctly aligned SPOT XS channels (left), misaligned channels (right)

Figure l .5 (a) shows three SPOT images of an airfield in Central England corresponding 

to channels l, 2 and 3. In figure l .5 (b) the image on the left shows the combined image
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with the channels correctly aligned, but the image on the right has been misaligned by 

three pixels. It can clearly be seen that although the misalignment is quite small, it 

makes a large difference to the interpretability of the image.

1.4 Applications of multi-image data sets
The product of data integration, the multi-image data set, can have many practical 

applications. It is these applications that make data integration a useful research tool, 

rather than just an interesting academic exercise. This section describes some important 

practical uses of data integration, such as image enhancement, change detection and 

improved vegetation mapping, which illustrate how multi-image data sets can be 

applied to "real world" problems.

Figure 1.6 (a) shows two SIR-C/X-SAR images of a region of the Brazilian rainforest 

near the town of Manaus. The image on the left was acquired on 12 April 1994 and the 

image on the right was acquired on 3 October 1994. The images show the Rio Solimoes 

(the main dark region) and the surrounding rainforest (the lighter regions). There are 

obvious differences in brightness between the images, which reflect changes in the 

scattering of the radar pulses. These brightness differences are indicative of flooding: a 

flooded forest has a higher backscatter than an unflooded region. The extent of the 

flooding is much greater in the April image than in the October image, and corresponds 

to the annual 10-metfcrise and fall of the Amazon River.

Figure 1.6 (b) shows the change in the April and October images and was created by 

determining which areas had significant decreases in the intensity of radar backscatter. 

These areas, which appear blue, show the increase in the extent of flooded forest, as the 

level of the Amazon River rises. Using these radar images in conjunction with ground 

surveys allows the creation of an inundation map for this region of the Amazon (figure 

1.6(c)).

Figure 1.6 (a) SIR-C/X-SAR images of Manaus, 12/04/94 & 3/10/94 respectively (© NASA)
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Figure 1.6 (b) Difference image representing changes in flooding (© NASA)
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Figure 1.6 (c) Inundation map of Manaus, Brazil (© NASA)

A second application of multi-image data sets once again uses data from the SIR-C/X- 

SAR instrument acquired over the Amazon basin. Figure 1.7 shows three images of the 

Rodonia region in western Brazil, acquired at the same time by the same instrument, but
7 . . .at different frequencies and polarizations". Figure 1.7 (a) shows an image acquired in 

the L-band with HV polarization, figure 1.7 (b) shows an image acquired in the C-band 

with HV polarization, and figure 1.7 (c) shows an image acquired in the X-band with 

VV polarization.

Figure 1.7 (a) L-band, HV polarization (© NASA)

2 Radar bands and polarizations arc described in chap te r 3.
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Figure 1.7 (b) C-band, HV polarization (© NASA)

Figure 1.7 (c) X-band, VV polarization (© NASA)

The different frequencies and polarizations make it possible to observe different types 

of features on the ground. The L-band image clearly shows vegetation patterns and it is 

easily possible to differentiate clear cut areas from virgin rainforest. The X-band image 

contains a dark feature which is an intense thunderstorm. Usually radar is able to 

penetrate cloud cover, but shorter wavelengths have more difficulty doing so. In this 

example the X-band radiation is actually being scattered by the raindrops within the 

storm, and not the cloud itself. The amount of scattering is dependent on the size of the 

drops and the intensity of the rainfall, which means that X-band images can be used for 

the estimation of rainfall rates.

These images can be combined into a single image by fusing the data into a red-green- 

blue (RGB) false colour composite (figure 1.8). The X-band image is blue in the colour 

image, the C-band image is green, and the L-band image is red. This multi-frequency 

radar image shows rapidly changing land use patterns and also demonstrates the 

capability of the different radar frequencies to detect and penetrate heavy rainstorms. 

When combined in the colour image, the rain storm appears red and yellow. The pink 

areas are virgin rainforest, and the blue and green patches are areas where the forest has 

been cleared for agriculture.
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Figure 1.8 False colour composite of Rodonia, western Brazil (© NASA)

A third application of data integration is the use of high resolution images to sharpen 

lower resolution colour (multispectral) images using the intensity-hue-saturation (IHS) 

transformation. A sharpened colour image is generated by assigning the intensity, hue 

and saturation to the data from three sources: the data from the higher resolution sensor 

replaces the intensity channel of the lower resolution image, whilst the hue and 

saturation channels of the lower resolution image remain unchanged. Figure l.9 (a) 

shows two Indian Remote Sensing Satellite (IRS-IC) images of Frankfurt airport: the 

one on the left is 5.8m resolution panchromatic and the one on the right is 23m 

resolution multispectral. The first stage of the data integration process is image 

registration, and figure l .9 (b) shows the multispectral image registered to the 

panchromatic image. In figure l.9 (c) the images have been fused to produce an 

artificially sharpened multispectral image. The intensity layer of the multispectral image 

has been replaced with the higher resolution panchromatic image.

Figure 1.9 (a) 5.8m panchromatic and 23m multispectral IRS-1 C images (© Euromap)
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Figure 1.9 (b) 5.8m panchromatic image with registered 23m multispectral image

Figure 1.9 (c) IHS merged image

1.5 Problems associated with data integration
Two major requirements associated with any use of Earth observation data are accuracy 

and speed of delivery. For any image product to be of real use to the end user, it must be 

accurate and it must be available when it is needed. These two requirements are 

especially relevant to multi-image remotely sensed data products. Integrating different 

images can slow down the delivery of the product, and if the integration is not done 

well, the final product may not be accurate enough for its intended purpose. This can be 

illustrated by two examples: crop monitoring and disaster management.

Crop monitoring is important the world over. In Europe, Earth observation data from 

satellites and aircraft is used to monitor the production of various crops from individual 

countries in order to combat agricultural fraud. In other parts of the world, remotely 

sensed images are used to assess the health of crops to improve yield. In both cases, a 

greater diversity of crops can be monitored with more accuracy if the target area is 

observed with more than one type of sensor (Schistad-Solberg et al., 1994), but this will 

only be true if the images are accurately registered (see figure 1.5 above). Inaccurate 

registration will lead to a multi-image product that would possibly be worse for 

observing crops than using a single image in isolation. With manual image registration 

(described in chapter 2) the accuracy of the final image product is very dependent on the 

time the user spends performing the registration.
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More and more nowadays, remotely sensed images are being used for disaster 

management (Buongiomo et al., 1997; Barbieri et al., 1997). Satellite images acquired 

before and after an earthquake for example, can help the rescue services on the ground 

target their efforts to where they are most needed. The same is also true for many other 

types of disasters, both manmade and natural: remotely sensed data can be used to 

measure the location and extent of oil slicks, floods, forest fires etc. The value of the 

data product will always be higher if more than one data set has been combined, since 

either more features will be visible on the ground, (see figure 1.8, above), or the images 

will accurately show changes that have taken place on the ground (see figure 1.6, 

above). However, in all cases of disaster monitoring, the value of the image product will 

decrease very quickly with time. Manual image registration is a very user-intensive and 

time consuming process which requires knowledge, skill and experience. It will slow' 

down the delivery o f the multi-image data product considerably.

The above two examples illustrate that manual image registration is an insufficient tool 

when data integration is applied to "real world" problems. Thus the challenge for the 

research community is to develop tools for integrating data sets quickly and accurately, 

which therefore means automatically.

1.6 Automatic multi-image data integration
The two reasons cited above supporting the concept of automatic image registration are 

the need for high accuracy and prompt delivery to the user. A further reason for 

researching automatic image registration concerns the shear volume of data acquired by 

Earth observation sensors. The Committee for Earth Observation Satellites has 

identified 126 current missions with 217 instruments existing or planned. By the 21st 

century it is anticipated that 20 terabits (20x1 Orbits) of data will be acquired every day 

(the equivalent of 600 000 bibles being produced every day) (Harris, 1997). The best 

way to exploit all this data to its full potential is to combine it into integrated 

multisensor data sets, but it will not be physically possible to do this without automatic 

processing techniques.

The nature of the automation will depend on the stage in the processing at which the 

integration actually takes place. There are three stages in the processing chain where 

data integration can take place:

1. the image acquisition stage, by specialized software onboard the aircraft/satellite 

(Prechtel and Bringmann, 1998);
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2. the pre-distribution stage, by trained operators; and

3. the post-distribution stage, by the end user.

If the integration of data sets takes place at the image acquisition stage, then the 

processing must be fully automatic and very robust since, due to logistics, there is no 

opportunity for human operators to intervene. Integration at the pre-distribution stage, 

however, requires far less robust procedures since trained operators are able to monitor 

the processing and correct any blunders made. In addition, the processing does not have 

to be completely automatic, since operators are available to perform some of the more 

intricate tasks that are difficult to automate. Integration at the end user stage falls 

somewhere between the two previous categories - a human operator may be available to 

correct blunders, but that operator will probably only be able to perform simple tasks. 

Therefore, when developing automatic processing algorithms it is important to define 

the level of automation required of those algorithms based on how the algorithms will 

be used.

On a more practical level, the degree of automation often depends on which steps in the 

processing chain can be automated without a loss of quality in the result. If the 

automatic processing chain produces a less accurate result, or a result that takes too long 

to achieve, then it may be better to have a manual step in that processing chain. 

Consequently, the most efficient processing (in terms of time and accuracy) may be a 

semi-automatic one, where the user is available to make some decisions, but the 

computer performs most of the complex and laborious tasks.

1.7 Discussion
This chapter has introduced the subject of data integration and illustrated its importance 

with some possible applications. The two main steps in data integration, image 

registration and data fusion, are each very active and important research topics in their 

own right. To research both of these topics in one piece of work would be far too much 

to take on, so the remainder of this thesis is concerned only with image registration: the 

geometrical and spatial issues associated with data integration. As the next chapter will 

show, image registration is a mature subject which has benefited greatly from the vast 

amount of research done over the years. However, there are still problems associated 

with image registration that have not yet been fully resolved, a particularly troublesome 

one being the automatic registration of multi-sensor data sets. Automatic registration of 

two similar images (such as a pair of aerial photographs) is a solved problem (Day and
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Muller, 1989; Heipke, 1997), but a robust method of automatically registering pairs of 

dissimilar images is far from available.

This thesis sets out to investigate the possibilities of automatically registering data from 

two very different spaceborne Earth observation sensors as accurately as possible, but 

with a minimum of human intervention. The image types that were chosen to be used in 

this study are SAR data from the sensor onboard the ERS-1 platform, and panchromatic 

SPOT images from the high resolution visible (HRV) sensor onboard the SPOT 

platform. The reason for choosing these two image types in particular is due to their 

very similar ground pixel size (12.5m for SAR and 10m for SPOT) and their very 

different methods of imaging the Earth’s surface (described in more detail in chapter 3), 

which leads to some very interesting differences in radiometry and geometry between 

the two image types. A detailed description of the work presented in this thesis is given 

at the end of the next chapter, after the subject of image registration has been described 

in more detail.

1.8 Glossary of terms
Table 1.1 gives the definitions of a number of terms used in this thesis. There is some 

discussion about the exact definitions of some of the terms, so in this study the terms are 

used according to how they are defined in this table. Cross references to other 

definitions are indicated with italics.

Term Definition

Accuracy

Accuracy is the relationship of a set of features to a defined 

reference system and is expressed as the rms error of a set of 

derived points.

Blunder See Error

Check Point

A well-defined ground reference point used for checking the 

accuracy of a geometrically corrected image or image mosaic. 

Check points must not be the same as GCPs. Adapted from Wolf 

(1983).

Digital Elevation 

Model (DEM)

A digital, raster representation of land surface elevation above sea 

level. DEM is used in preference to digital terrain model (DTM) 

because the term ‘terrain’ implies attributes of the landscape other 

than elevation. Adapted from Burrough (1986)

27



Discrepancy

A discrepancy is the linear distance between a point on the image 

and a check point. A discrepancy is not the same as a residual, 

because a discrepancy is an error at each point measured using a 

reference point known to a higher order of accuracy.

Error

Three classes of error are commonly recognised:

A random error is not predictable at any given location but the 

population of random geometric errors commonly follows a normal 

(Gaussian) probability distribution. If random errors are normally 

distributed the mean error is zero for a large sample of points.

A systematic error is predictable at any given location once it has 

been identified and its pattern of variation is understood. For a large 

sample of points, a mean error that is not zero usually indicates the 

presence of a systematic error.

A blunder is a (large) error at one location arising from an observer 

error or equipment fault whilst marking the location or recording its 

co-ordinates.

Geocoding
Synonym for orthorectification, but more commonly used when 

discussing SAR data.

Geometric

correction

Informal term for rectification or orthorectification.

Ground control 

point (GCP)

A well-defined point used for orientation and rectification. The 

position of a GCP is known both in ground reference co-ordinates 

and in the co-ordinates of the image to be corrected. If 2D (x,y) 

ground reference co-ordinates are given, it is a horizontal or 

planimetric GCP; if the height (z co-ordinate) is known, the point is 

a vertical GCP.

Ground Reference

The source used to obtain ground reference co-ordinates for a 

ground control point or check point. May be a topographic map, a 

field survey by triangulation, a geodetic bench mark, a field survey 

by GPS, or a geocoded image. The ground reference will provide 

co-ordinates in the national map projection.
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Interpolation

Method used to estimate a pixel value for a corrected image grid, 

when resampling from pixel values in the original grid. Common 

methods are nearest neighbour, bilinear interpolation and cubic 

convolution.

Orientation

Orientation can have three components.

Interior orientation establishes precise relationships between a real 

image and the focal plane of a perfect imaging system.

Relative orientation establishes precise relationships between the 

focal planes of a perfect stereopair to establish a precise 

stereomodel.

Exterior orientation establishes precise relationships between the 

focal plane co-ordinates of an image (or stereomodel) and a 

geographic co-ordinate system (map projection).

Orthorectification

(orthocorrection)

Rectification of an image (or image stereo pair) using 3D ground 

reference and a DEM to position all image features in their true 

orthographic locations. The process eliminates displacements due to 

image geometry and topographic relief, and results in an image 

having the same geometric properties as a map projection (Wolf, 

1983).

Pixel size

Distance represented by each pixel in an image or DEM in x  and y 

components. Pixel size can be expressed as a distance on the ground 

or a distance on scanned hardcopy (e.g. microns). It is not a measure 

of resolution.

Polynomial

rectification

Rectification of an image to a ground reference using horizontal 

ground control points. It assumes that the local distortion of the 

image is uniform and continuous since it ignores effects of terrain.
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Precision

The precision of a GCP or check point is the standard deviation of 

its position (in x, y and z) as determined from repeated trials under 

identical conditions.

Precision indicates the internal consistency of a set of data and is 

expressed as the standard deviation (o).

Note: Data can be precise yet inaccurate; precision is not used when 

comparing a set of data to an external reference, RMSE is used to 

express this.

Rectification

The process of resampling pixels of an image into a new grid which 

is referenced to a specific geographic projection, using a spatial 

transformation (matrix). The resampling is achieved through 

interpolation.

Registration Rectification of an image to conform to another image.

Residual

A residual is the linear distance between a fixed reference point 

[ground control point] and the position determined by the 

transformation applied to the observed data to give a best fit to the 

reference points.

Note: This is not the same as a discrepancy because the computed 

error of a residual is based only on the internal (statistical) 

consistency of a set of points and not on comparison to independent 

locations known to higher accuracy.

Resolution 

(resolving power)

The smallest visible separation between similar objects that can be 

clearly reproduced by a remote sensing system -  usually expressed 

as the maximum number of line pairs per unit length (Light, 1993).

Root mean square 

error (RMSE)

The square root of the average of the squared discrepancies or 

residuals: where d is the measured discrepancy or 

residual in x, y or z. Adapted from ASPRS (1988).

RMSE (Absolute)
RMSE based on check points obtained from a ground reference of 

recognised higher accuracy (EC, 1997).
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RMSE (Relative)

RMSE based on check points extracted from another geocoded 

image. In practice the RMSE of the GCP residuals is also used as a 

measure of relative error (EC, 1997).

Standard 

Deviation (o)

The square root of the variance of n observations, where the 

variance is the average of the squared deviations about the estimate 

of the true mean value.

Tie points
Points that appear on the overlap area of adjacent images. They are 

used for orientation and aerotriangulation.

Tolerance

The tolerance is the permissible degree of error in a geometrically 

corrected image or mosaic as determined using a well distributed set 

of check points. Tolerance is specified with two values: a) the 

maximum allowable RMS error of all check points b) the maximum 

allowable discrepancy at any check point.

Table 1.1 Definitions of some terms used in this thesis
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Chapter 2 Image r e g is t r a t io n

2.1 Introduction
Chapter 1 introduced the subject of data integration and explained why it is a two stage 

procedure (image registration and data fusion). The aim of this chapter is to explain the 

subject of image registration in more detail. However, in order to get a better 

understanding of image registration, this chapter begins with a description of rigorous 

geometric correction of remotely sensed images. It then goes on to describe the process 

of manual image registration, followed by automatic image registration. After the 

introduction and description of these concepts, a detailed outline of the proposal of this 

thesis is presented.

2.2 Rigorous geometric correction of images

2.2.1 Introduction
This section describes the orthorectification of remotely sensed images. The first part 

describes the photogrammetric techniques used to correct optical images (those images 

acquired in the visible or infrared part of the electromagnetic spectrum) whilst the 

second part describes the correction of radar images. Historically, the accurate 

geometric correction of radar images is referred to as geocoding rather than 

orthorectification, but in general these two terms are synonymous.

2.2.2 Orthorectification of optical images
To orthorectify optical images, it is essential to know:

□ the geometry of the imaging system;

□ the position and attitude of the imaging system in relation to the ground; and

□ the shape of the ground.

Sensor geometry

The geometry of the imaging system is defined by the type of sensor used. In optical 

remote sensing there are generally three groups of imaging systems: a frame camera, a
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pushbroom scanner and a whisk-broom scanner. Frame cameras, used in aerial 

photography, acquire the whole of the image in a single exposure (there is no time 

element involved in the acquisition) and the image acquisition can be modelled by a 

central projection. A pushbroom scanner acquires one line of the image at a time, and 

builds the image by combining numerous lines. Each line is time independent, but a 

time factor must be considered between subsequent lines. An example of a pushbroom 

scanner is the HRV sensor on the SPOT satellite. A whisk-broom scanner records each 

pixel in the image at a different time, and therefore is the most difficult to model 

mathematically. An example of a whisk-broom scanner is the Thematic Mapper (TM) 

instrument of the Landsat series of satellites. The frame camera will be used throughout 

the rest of this section to illustrate the orthorectification processing chain since it is the 

simplest to describe, but the same procedures can be applied to the other types of 

sensors, albeit with more difficulty.

Platform position and attitude

The position and attitude of the imaging system in relation to the ground can be 

determined by either using GCPs, or data from a combined global positioning system 

(GPS) inertial navigation system (INS) onboard the platform. The traditional method of 

determining position and attitude using GCPs is more precise than using GPS/INS since 

the latter is still in the research stage, and at present limited by technology. By simply 

locating points in the image which represent known points on the ground and using 

knowledge of the sensor geometry, it is possible to determine a precise location for the 

sensor in space.

Shape o f the ground

The shape of the ground is defined by a DEM, a representation of the ground that uses a 

grid of points. A DEM can be determined from a number of different methods, but the 

most commonly used methods are stereo photography or ground survey.

Using these three pieces of information (sensor details, position of sensor and shape of 

terrain) it is possible to correct for distortions in an aerial photograph caused by viewing 

angle, inconsistencies in the shape of the lens, and relief. The lens distortions are 

corrected using information from a camera calibration certificate, which gives details of 

inconsistencies in the camera lens. The cause for the distortions due to relief is shown in 

figure 2.1.
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Figure 2.1 Distortion due to relief in aerial photographs

In figure 2.1, the point A on the ground is represented by point a on the image. 

However, the true orthographic location of A should be represented by a \ hence there is 

a radial displacement of A in the image from a ’ to a by a distance dr, where dr is given 

by:

f -hdr = —  (2.1)
H

where r is the radial distance of a from the principal point, H  is the altitude of the sensor 

and h is the height of the terrain at A. For an image acquired by a camera at an altitude 

of 10km, and a point on the ground 500m above the datum and 4km from the nadir, dr 

(in ground units) is 200m, which is obviously a significant amount that has to be 

corrected. Figure 2.2 shows how these displacements can be removed.

n
Film

Orthoimage

Terrain

Datum

N

Figure 2.2 Orthoimage production

Using the DEM, the height for every point on the ground, Aif is known, so the 

displacement due to terrain of each point on the image can be calculated. Therefore,
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for all A,-, the location of <z, ’, the true orthographic location of A,-, can be determined. 

When a,i’ is reprojected onto the orthoimage, the points A,- are represented by a ”. Thus 

the orthoimage shows the true orthographic locations of all the points in the original 

image.

pfecdu/e'
The same can be applied to the correction of satellite images as well as aerial

photographs. However, for satellite data, the precision and accuracy of the DEM and the 

GCPs does not have to be quite as high, since (up to now) the resolution of the satellite 

sensor is much lower than an aerial camera.

2.2.3 Geocoding of SAR images
The term geocoding is synonymous with orthorectification, although where 

orthorectification is generally used to refer to the correction of optical images, 

geocoding is used with radar images. Therefore, the term geocoding describes the 

process of removing terrain induced errors from radar images, and resampling those 

images to a geodetic frame of reference. This procedure is described has been described 

by a number of researchers, but a clear and concise summary is given by Curlander et 

al. (1987).

To geocode any SAR image, the supplementary information required is a DEM, the 

state vectors (position and velocity vectors) of the sensor at the time of image

acquisition, and a couple of GCPs. As with orthorectification, the final geometric

quality of the geocoded image will depend directly on the precision and accuracy of this 

supplementary information. If the state vectors are of a high enough quality (as is the 

case with ERS-1/2) no GCPs are required for the processing, unlike orthorectification of 

optical images where GCPs are essential in determining the location of the sensor. For 

other SAR sensors, such as Radarsat or JERS-1, one or two GCPs are required -  still far 

fewer than for orthorectification of optical data. Using this information, it is possible to 

determine the absolute position (x, y, z in global co-ordinates) of all of the pixel values 

in the corresponding SAR image. This is done by solving three simultaneous equations 

(Curlander et al., 1987):
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1. The Earth model equation,3

(2 .2)

where (x, y, z) is the location of the target on the ground, Re is the mean 

equatorial Earth radius and Rp = (1 - 1 If) Re where f is a flattening factor.

2. The SAR Doppler equation,

(2.3)

where/d is the Doppler parameter, X is the radar wavelength, R is the sensor to 

target slant range, V s and V t are the sensor and target velocity vectors, and R s 

and R t are the sensor and target position vectors.

3. The SAR range equation,

where Rij is the slant range from sensor to target for pixel (i ,j).

The fact that GCPs are not usually needed for ERS images means that the geocoding of 

these images is essentially an automatic procedure.

2.2.4 Conclusions
This section has given a brief overview of the fundamental principles of rigorous 

geometric correction of aerial and satellite remotely sensed images. It is important to 

note that the methods presented require either very accurate supplementary data, or 

human intervention, or both. The next section now goes on to describe the simplest 

method of registering a pair of images: manual image registration.

2.3 Two dimensional image registration

2.3.1 Introduction
Image registration (introduced in section 1.2) is a well defined procedure, and an 

example is shown in figure 1.3 (a). The processing chain of manual image registration is 

shown in figure 2.3. The next four sections of this chapter describe each of these four 

steps in more detail.

3 The Earth model equation represents an oblate ellipsoid, which is modified during the processing using 
the DEM to generate a more realistic model of the Earth’s surface.

(2.4)
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Select tie points from each image

Select transformation function

Use tie points to determine parameters 
of transformation function

Resample slave image to master image 
using transformation function

Figure 2.3 Manual image registration processing chain

2.3.2 Tie point selection
The first step in the processing chain is to manually select tie points from each image. A 

tie point is a point that can be explicitly and accurately identified in both images, and 

therefore used to ‘tie’ the two images together at that point. The minimum number of tie 

points required depends upon the type of transformation function which is being used to 

register the images.

2.3.3 Transformation functions
Selection of the transformation function is the second step in the processing chain, and 

depends on the types of distortions present in the images that are being registered. For 

Earth observation images, the transformation function is a two dimensional polynomial; 

the simplest is the similarity transformation, which is a polynomial of order one and 

with only four unknowns. The similarity transformation will only correct for differences 

in rotation, scale (which must be equal in both dimensions) and translation between 

the two images. Therefore, in the transformation process, angles and parallel lines are 

preserved. The transformation can be expressed as two simultaneous equations:

X  = ax + by + c (2.5a)

Y = bx - ay + d (2.5b)

where x  and y represent the co-ordinate system for image 1, X  and Y the co-ordinate 

system for image 2, and a, b, c, d are the parameters of the transformation function.

Solution of these equations for a, b, c, d requires two values of each of X, Y, x, y, which

is the same as two tie points, (Xi,Yi) and (xi,yO, and (X2 , Y2) and (X2 , y2 ).
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The next simplest transformation, and the one most used in registering Earth 

observation images is the general first order polynomial transformation, the affine 

transformation. This transformation corrects for differences in rotation, scale (which 

may be different in each dimension) and rotation. Parallelism is preserved in the affine 

transformation, but angles are not. The two simultaneous equations for the affine 

transformation are:

X  = ax + by + c (2.6a)

Y = d x  + e y + f  (2.6b)

To solve for the six unknowns (a to f) a minimum of three tie points are required. 

Another polynomial transformation of relevance to Earth observation image registration 

is the general second order polynomial transformation. Since with this transformation 

neither parallelism nor angles are preserved, it is sometimes known as rubber-sheeting. 

The two simultaneous equations for the second order transformation are:

X = a + bx + cy + dxy + ey2 + fx2 (2.7a)

Y = g + hx + iy + jxy + ky2 + lx2 (2.7b)

These equations contain twelve unknowns, and therefore require a minimum of six tie 

points to solve them. The minimum number of tie points, «min, required to solve any 

polynomial transformation function of order t is given by the equation:

» „ „ = (f +  *  +  2) (2-8)

However, using only the minimum number of tie points is unwise, since it allows no 

room for error. If one of the tie points is measured wrongly (known as a blunder) then 

there is no way of knowing this. If more than the minimum number of tie points are 

used to solve the equations (using a least squares method) then any blunders will be 

obvious in the result. Although there are no hard and fast rules, it is good practice to 

select as many tie points as possible, and make sure they are well distributed across the 

images.

To help decide which is the best transformation to use in a particular situation, or which 

combination of tie points will give the best result, it is necessary to have some indicator 

of registration accuracy. The indicator used in image registration is known as the
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residual. A residual is defined as being the distance between where a transformed point 

would be expected to be found, and where it is actually found. Very often, the residuals 

of the tie points are used to assess the quality of the transformation (so long as more 

than the minimum required number of tie points are used in the calculation), but as will 

be shown below, this is not reliable test - instead the residuals of check points must be 

calculated. A check point has two properties: firstly, it is a point which can be 

accurately identified in both the images that are being registered, and secondly, it is not 

used in the calculation of the parameters of the transformation. As with the selection of 

tie points, it is good practice to select a large and well distributed set of check points. If 

the images have been registered well (i.e. a good selection of tie points have been used 

to generate the parameters of the correct transformation function) , then the residuals 

will be low. However, if the tie points were not selected well, or the wrong 

transformation function was used, then the residuals will be much higher. In addition to 

using the magnitudes of the residuals to quantify the quality of the registration, the 

vector component of the residuals can be used to detect systematic errors in the 

transformation. This is done by plotting the residuals and observing the distribution of 

their directions. In general, the distribution of directions would be expected to be fairly 

random, but if this is not the case (i.e. many of the residuals are aligned in a particular 

direction) then there may be a systematic error in the transformation. A systematic error 

could be due to the incorrect use of a particular transformation function, or a blunder in 

the processing, neither of which would necessarily be apparent by observing the 

magnitude of the residuals alone.

The importance of using check point residuals rather than tie point residuals when 

assessing the accuracy of a transformation can be illustrated with an example of image 

mosaicing using manual image registration. Figure 2.4 shows two images of Lake 

Kariba on the Zimbabwe-Zambia border acquired by a handheld camera onboard the 

Space Shuttle in 1991.
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Figure 2.4 Space Shuttle handheld camera images of Lake Kariba (© NASA)

The two im ages, acquired a few m om ents apart, have about 40%  overlap. Since no 

supplem entary inform ation (such as cam era orientations) is available it is not possible to 

use photogram m etric techniques to mosaic these im ages. Therefore im age registration 

has to be used. A total o f seven tie points were selected in the area of overlap betw een 

the two im ages. These tie points w ere used to determ ine the param eters o f an affine 

transform ation, w hich in turn was used to register the im age on the right to the im age on 

the left. The resulting m osaic is shown in figure 2.5.

Figure 2.5 Mosaic created using affine transformation

Figure 2.5 shows that the registration has been fairly successful, and this is borne out by 

the RM S residual o f the tie points: the RM S residual in the x direction is 0.55 pixels, 

w hilst the RM S residual in the y  direction is 0.42 pixels. If the registration is repeated 

using a second order (quadratic) transform ation function, the tie point residuals can be 

dram atically im proved: the RM S residual in the x direction becom es 0.22 pixels, w hilst 

the RM S residual in the y  direction becom es 0.01 pixels. The mosaic created using the 

quadratic transform ation function is shown in figure 2.6.
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Figure 2.6 Mosaic created using quadratic transformation

It can be seen from figure 2.6 that even though the tie point residuals are far better, the 

resulting mosaic looks very different to the previous one. Check point residuals spread 

across the images would reveal that the registration was in fact far worse -  contrary to 

what is suggested by the tie point residuals.

This example also illustrates well the importance of selecting the correct transformation 

function. Using exactly the same tie points, but a different transformation functions 

leads to a very different result. An obvious point which is very clear is the rate of 

degradation of the higher order polynomials. In figure 2.6, a close examination of the 

area of overlap shows the registration to be very good (better than that in figure 2.5), but 

as the distance from the tie points increases, the quality of the registration degrades very 

fast. Higher order polynomial transformations (third and fourth order) would show this 

effect even more. For lower order polynomials (first and zero order) this is not the case 

(see figure 2.5). This can also be illustrated with a one dimensional curve fitting 

example. Figure 2.7 shows three curves. The red curve represents the function:
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—  Original function

—  4th order polynomial

—  8th order polynomial

♦ Points used for curve fitting

Figure 2.7 Non-linear function (red curve) with 4th and 8th order best fit polynomials
(green and blue curves respectively)

This curve has been approximated by two ‘best fit’ polynomial curves: a 4th order

polynomial (shown in green) and an 8lh order polynomial (shown in blue). The

parameters of these two polynomials have been generated by using a least squares fit to

the nine black points on the curve. The 8lh order polynomial gives the best fit to the data

points, shown by the fact that the blue curve passes exactly through eight of the nine

points. However, it can be seen that this curve does not represent the original curve very

well at all, since between the points it diverges from the original curve quite

considerably. Conversely, the 4th order polynomial represents the original curve much

better, but it does not pass through the points nearly as accurately. If only the residuals

at the points were considered as a measure of accuracy of fit, the 8th order curve would

appear to fit much better than the 4lh order curve, but by looking at the regions between

the points, it can be seen that the 4th curve fits much better. This reiterates the need for

independent check points when assessing the accuracy of fit.

It can also be seen from figure 2.7 that neither of the two best fit polynomials fit the 

original very well at all. With image registration it is generally accepted that high order 

polynomials will not improve registration accuracy - in fact anything above a second 

order polynomial will probably give a less accurate result than anything below a second 

order. High order polynomials should only be used in image registration when it is clear 

that a polynomial function is causing the distortion, and its order is known. Thus there 

exists an interesting dichotomy: low order polynomials do not necessarily register 

images well, but increasing the order of the polynomials only makes things worse. A
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possible solution is to use functions other than polynomials to correct the distortions, or 

to use the polynomials in a more ingenious way.

The similarity and affine transformation functions described above are very useful for 

registering images which are acquired from a similar viewpoint and have a scene-to- 

sensor distance which is much greater than variations of terrain in the scene. It is when 

these two points are not satisfied that higher order polynomials are used. However, if 

the terrain is flat, but the sensor locations are very different, the perspective 

transformation will model the geometry well (Peet, 1975). The perspective 

transformation function can be expressed as:

X j a x  + by + c) (21Qa)
{dx + ey + 1)

Y = { f x+gy + h) (210b)
{dx + ey + 1)

Although parallelism and angles are not preserved in the transformation, straight lines 

remain straight. This function requires a minimum of four tie points to evaluate the 

parameters of the transformation.

All of the transformation functions described above are global transformation functions, 

meaning they perform the same transformation on the entire image. The other group of 

transformation functions are local transformation functions, which apply a slightly 

different transformation function to different parts of the image. Local transformation 

functions can be further split into two groups: surface fitting functions and piecewise 

polynomials. Both of these are described below.

Surface fitting functions are functions which can be used to fit a surface to a set of 

points. Consider the set of tie points {(jc„y,), (X,-,Yi): i=l,...,n}. These can be rearranged 

into two sets:

{(Xi,yi,Xi) :i= l,...,n} (2.11a)

{(jc/, y/ fy/) : i = l , . ( 2 . 1 1 b )

Two surface functions f x and f y can now be defined which interpolate the sets of 3D 

points given above. In the special case of the affine transformation (equations 2.6a and 

2.6b), these surfaces are planes. Three methods of interpolating the surfaces from the
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sets of points are surface splines, multiquadratics, and sum of Gaussians. Surface 

splines are defined by the function:

f { x , y )  = a0 + a lx + a2y + ^ F id f  Ind f (2 .12)

The parameters of this function are determined by using a set of tie points to generate a 

set of simultaneous equations, as with the polynomial transformation function, and by 

setting specific boundary conditions. Multiquadratics are defined by the function:

Once again, a set of tie points are used to generate a set of simultaneous equations in 

order to solve for the parameters (%. The parameter r, which controls the smoothness of 

the surface, has to be set manually. Sum of Gaussian surfaces are defined by the 

function:

As with the two previous examples, a set of tie points are used to generate a set of 

simultaneous equations, which in turn are used to solve for the parameters V,. As with 

the parameter r in the multiquadratic function, G gives a measure of the smoothness of 

the surface, and has to be set manually.

Although the above three functions are very good at interpolating a smooth surface 

through a set of points, there are some problems with applying this to image 

registration. Firstly, the number of tie points has to be relatively small (less than fifty). 

For each pair of tie points, two simultaneous equations are generated. All these 

equations have to be solved to determine the parameters of the transformation function, 

but this becomes computationally impractical for large numbers of equations. Secondly, 

since the surface is fitted to all the tie points it is very difficult determine if there are any 

blunders in the set of tie points by looking at the transformation function alone. Both of 

these issues have been addressed by Satter and Goshtasby (1997), who suggest using an 

approximation rather than an interpolation for the surface fitting (hence reducing the 

number of equations to be solved), and displaying the transformation functions to 

highlight any blunders. A final problem of using surface fitting functions as

(2.13)

n

f { x< y ) = ' Y y iGi{x,y) (2.14)
1=1
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transformation functions in image registration is that they do not really reflect the 

physical situation. Therefore care must be taken when using these types of functions, 

and checks should be built into the processing to ensure the result is accurate. This is 

similar to the situation with high order polynomials - the functions may provide an 

apparently better fit, but care must be taken to ensure this is so.

The second group of local transformation functions are piecewise polynomials. As the 

name suggests, different transformation polynomials are applied to different parts of the 

image in the registration process. For example, if two images that are being registered 

feature an area of flat terrain and an area of mountains, then a low order polynomial 

would be used to register the flat areas, and a higher order polynomial or a surface 

fitting function would be used to register the mountainous areas. The image is 

effectively split up into a number of sub-regions, each of which have their own 

transformation function. Although this may seem like a reasonably good way of 

registering two images with varying distortions which cannot be modelled explicitly, 

there are a number of issues which have to be addressed, such as:

□ the strategy for splitting up the image into separate tiles to be registered;

□ the selection of the transformation function for each of those tiles; and

□ the method dealing with boundaries between adjacent tiles.

The solutions to these issues are very much dependent upon the type of imagery being 

registered, and therefore cannot be solved in general. Other problems also exist, such as 

the large number of tie points required, the large computation time and the increased 

validation of the transformation functions.

2.3.4 Calculation of transformation parameters
In a study of rectification accuracy, Mather (1995) describes two algorithms (matrix 

inversion and orthogonal polynomials) for determining the parameters of second order 

polynomial transformation functions. It is not clear which of these algorithms was used 

for determining the parameters in the examples presented in this thesis since that 

information was not supplied with the software. However, this was not considered to be 

an important issue since the same software was used throughout this thesis, so the 

results presented in the later chapters are consistent with each other.
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2.3.5 Resampling
The last step in the image registration procedure is the resampling of the slave image to 

the master image. Image resampling involves the reformation of an image to a new grid, 

and comes about because a digital image has pixel values at discreet locations - the 

image does not represent a continuous distribution of values. Figure 2.8 shows two grids 

overlaid on top of each other. The master image is represented by the black grid, and the 

slave image is represented by the blue grid. Pixel values in the slave image (the blue 

grid) need to be expressed in the co-ordinate system of the master image, the black grid. 

A number of different resampling schemes can be used to determine the pixel value of 

the grey shaded square in the master grid. These include:

□ nearest neighbour;

□ bilinear interpolation; and

□ cubic convolution.

With nearest neighbour resampling, the nearest pixel in the slave image is assigned to 

the grey square in the master grid. In figure 2.8, the nearest pixel is denoted by the letter 

a. Bilinear interpolation interpolates a value for the pixel using the nearest four pixel 

values in the slave image, represented by the letters a and b. Cubic convolution uses the 

nearest sixteen pixels to determine the new value for the pixel in the master grid 

(represented by the letters a , b, c).

Figure 2.8 Resampling schemes

Nearest neighbour resampling is the quickest to perform of the three schemes, but 

generally gives the coarsest result. Cubic convolution usually gives the smoothest result, 

but is most computationally expensive. In the past, bilinear interpolation was seen as a 

good balance between quality of result and computing time. However, the rapidly 

increasing power of modern computers means that CPU time is not really a major 

processing problem, so cubic convolution can be seen as the best resampling method.
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2.3.6 Conclusions
This section has described the four main steps of manual image registration. The next 

section illustrates how some of these steps can be automated, in order to remove the 

human operator from the processing chain. It also illustrates some of the problems 

associated with automatic image registration, in addition to presenting a review of 

previous research.

2.4 Automatic image registration

2.4.1 Introduction
It is generally accepted that there are two methods which can be used to match portions 

of an image automatically (Heipke, 1996):

□ area based matching; and

□ feature based matching.

Area based matching works by extracting a small area (image chip) from the master 

image and scanning the slave image in order to find a similar area (Gruen, 1986; Otto 

and Chau, 1989). Areas are matched by maximizing a cross correlation function. 

Although very successful in certain situations, this method suffers from a number of 

limitations. The images to be matched have to be radiometrically very similar, 

preferably imaged by the same sensor. In addition, the camera model for the sensor 

needs to be known in order to ensure the images have minimal differences in scale and 

azimuth. Furthermore, the success of matching can depend on external influences, such 

as lighting conditions and cloud contamination. For these reasons area based matching 

is, in general, only applicable to single source image registration. Day and Muller 

(1989) describe a procedure which successfully registered a pair of SPOT images using 

area based matching. This procedure can also be used to generate DEMs from a stereo 

pair of images, and therefore orthorectify those images, when ground control data is 

available. However, since it is difficult to apply area based matching to multisensor data 

sets, the remainder of this section describes techniques for feature based matching.

As with manual image registration, there are four main steps that make up automatic 

feature based image registration (Brown, 1992). These are:

1. extraction of primitives from each image;

2. matching of corresponding primitives from each image;

3. determination of the transformation function; and
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4. transformation of the image.

Steps 1 and 2 of the feature based registration procedure (extraction and matching of 

primitives) are analogous to step 1 of the manual registration procedure (selection of tie 

points). With manual image registration the tie points are identified in one step, but 

automation of this task requires it to be split into two distinct processes. The first 

process is the extraction of a large number of features (known as primitives), and the 

second is the matching of those primitives to give a useful set of tie points. Step 3 of the 

feature based registration procedure (determination of the transformation function) is 

analogous to steps 2 and 3 of the manual registration procedure (selection of the 

transformation function and determination of the parameters of that function). In the 

automatic procedure, the decision of which transformation function to use has to be 

made automatically. This is one of the more difficult tasks to automate because there is 

not necessarily a right or wrong answer. The final steps of both the automatic and 

manual registration procedures are the same as each other: registration of the slave 

image to the master image, using a the transformation function and a resampling 

scheme. The next three sections describe these steps in more detail.

2.4.2 Extraction of primitives
The types of primitives to be used in the registration procedure are selected by 

examining the images to be registered, and considering any supplementary data that 

may be available (such as topographic data sets) which may help the extraction. It is not 

necessarily possible to extract all types of primitives from a particular image, so in this 

processing step a decision has to be made as to which primitives are used, based on the 

image type and the image content. It is important that the same primitive is used for 

each image that is being registered since it is usually not possible to match one type of 

primitive extracted from one image with a different type extracted from the second 

image (for example, it is not possible to match patches with point features). However, 

there is no need to limit the matching to only one type of primitive. If both linear 

features and regions can be extracted from the images which are being registered, then 

both sets of primitives can be used.

Supplementary data is very useful for improving the accuracy and efficiency of feature 

extraction algorithms since it can be useful for highlighting particular types of 

primitives. For example, a topographic map of field boundaries can help to segment an 

optical image of an agricultural area (Li and Muller, 1991).
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2.4.3 Matching of primitives
The matching process takes the primitives that have been extracted from the images and 

generates from these a set of tie points (i.e. points which can be identified in both 

images). There has to be a one to one correspondence between tie points, so each point 

in the master image can only be matched with one point in the slave image, and vice 

versa. Primitives are matched based on some or all of their attributes, such as size, 

shape or radiometry. When two corresponding primitives are matched they may 

generate one pair of tie points, or numerous pairs, depending on the type of matching 

algorithm used. For example, if a pair of regions are matched, a single pair of tie points 

could be generated from the centroids of the regions, or numerous pairs could be 

generated from the pixels which make up the edges of the regions. Figure 2.9 shows two 

matched polygons (in grey). A single tie point could be defined, based on the centroids 

of the polygons (blue diamonds) or multiple tie points could be defined, based on salient 

points on the perimeters on the polygons (red crosses).

Figure 2.9 Tie point extraction from matched polygons

2.4.4 Determination of the transformation function
Selection of the transformation function depends on all the data available: image types, 

sensor geometry, match point distribution, supplementary data etc. When the 

transformation function has been selected its parameters are determined using the tie 

points extracted from the images. The final steps of the automatic registration procedure 

(image transformation and resampling) can easily be performed automatically and 

requires no further discussion here.

2.4.5 Review of automatic registration techniques

A recent survey of current image registration techniques was given by Fonseca and 

Manjunath (1996), which covered area and feature based matching in both the spatial 

and frequency domain. An earlier survey by Brown (1992) was far more wide-ranging 

and compared numerous different applications of image registration, including machine 

vision and medical imaging. A summary of registration techniques applicable to the 

photogrammetric processes of interior, relative and absolute orientation were given by 

Heipke (1996). This section will be limited to reviewing relevant research on feature
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based matching only. The research described in this section is listed under author in 

alphabetical order.

Abbasi-Dezfouli and Freeman (1994)

Abbasi-Dezfouli and Freeman (1994) used patches as matching primitives to register 

SPOT stereo pairs. The aim was to register the images fully automatically and 

determine the terrain height across the region of interest. The primitives were extracted 

by searching the image for patches of uniform colour and matched using several criteria 

corresponding to the patch, such as area, dimensions of bounding rectangle, perimeter, 

linearity, concavity and relative geometry. After the patches had been matched, tie 

points were generated by matching significant points on the boundaries of 

corresponding patches with each other using a correlation method. Results showed that 

tie points were generated from both correctly and incorrectly matched patches, leading 

to a tie point file containing some false points. No mention is made of how the match 

points would be used to register the images and create a terrain model. The test images 

used were of the order of 500x500 pixels.

Dowman, Boardman and Newton (1996)

The method described by Dowman et al. (1996) aims to register large same sensor 

images (SPOT stereo pairs) fully automatically. The matching primitives are significant 

points that are extracted from the images using the Forstner interest operator (Forstner 

and Gulch, 1987). An approximate initial affine transformation is used to register the 

images. The interest points are projected from the slave image into the master image to 

be matched. Generally a one to one match can be made based on location in the image 

alone, but where the match is ambiguous a cross correlation is applied to an area around 

the points, the result of which is used to select or reject a match. After all possible 

matches have been completed a final test is carried out with intensity based matching. 

The resulting tie points are used to generate the parameters of an affine transformation, 

which in turn is used to register the images. For large images a pyramid structure is 

used. Results showed an RMS error of 2 pixels (approximately 20m on the ground) 

from images of 1024x1024 pixels.

Flusser and Suk (1994)

Flusser and Suk (1994) used patches as matching primitives to register SPOT and 

Landsat TM images. The primitives were extracted using a segmentation technique that 

worked by applying an edge detection algorithm to the image and thresholding the

50



result. Patches with perimeter lengths between 10 and 100 pixels were extracted before 

being refined using a contour tracing technique in the original image. The patches were 

represented by affine moment invariants (AMIs), which are moment based descriptors 

of planar shapes invariant under the affine transformation. The patches were matched by 

comparing the AMIs of all the patches in both images, and selecting the three best 

matches. The co-ordinates of the centroids of these matched patches gave three tie 

points that were used to determine the parameters of an affine transformation. The slave 

image was then registered to the master image and a region to region correspondence 

was established using a nearest neighbour scheme. When all patches had been matched, 

the co-ordinates of all the conjugate patches were used to generate tie points, which in 

turn were used to generate the parameters of an affine transformation, based on a least 

squares method.

Flusser (1992)

The technique described by Flusser (1992) attempts to simplify the processing problems 

associated with surface splines (see Goshtasby (1988) below) by using an adaptive 

mapping (AM) algorithm. The number of calculations needed to solve the two surface 

spline functions increases very quickly with increasing numbers of tie points and larger 

images. The AM algorithm splits the image up into smaller tiles and uses a much 

simpler equation to represent the surface spline function. Four different types of 

equation were tested on two different images and sub-pixel accuracy was achieved each 

time. The method relies on a number of correctly identified tie points being selected in 

advance.

Goshtasby (1988)

Goshtasby (1988) describes a technique for registering images with geometric 

distortions using two surface splines which represent the x and y components of a 

mapping function (see § 2.3.3 above). The method relies on a number of correctly 

identified tie points to solve the two equations. Examples of registering a Landsat MSS 

scene to a simulated TM image gave an RMS error of 0.63 pixels, compared to 1.9 

pixels when a polynomial and least squares techniques was used. This technique does 

have its drawbacks: it cannot be used for a large number of tie points (in this case large 

means greater than 50), and the mathematical model does not reflect the physical 

situation very well.
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Goshtasby, Stockman and Page (1986)

Goshtasby et al. (1986) proposed a registration technique where patches were extracted 

as matching primitives using image segmentation. Corresponding patches were matched 

with each other using a clustering technique involving the centroids of the patches (see 

Stockman et al., 1982 below). The result of the clustering is an approximation of the 

scale factor, rotation and translation required to register the images. By registering the 

images, corresponding patches can be identified and their edges refined so that they 

become optimally similar. The centroids of the patches are then re-determined to an 

anticipated higher degree of accuracy. The co-ordinates of these centroids are then used 

to determine the parameters of a polynomial transformation, which is in turn used to 

register the images. Sub-pixel accuracy was achieved when this procedure was tested on 

Landsat MSS and simulated TM data.

Li, Manjunath and Mitra (1995)

Li et al. (1995) proposed two similar methods for registering (i) Landsat and SPOT 

images, and (ii) Landsat and Seasat SAR images. The first method is a contour 

matching scheme where both open and closed contours are extracted from the pair of 

images as matching primitives. Closed contours are matched by comparing attributes 

such as chain codes and invariant moments. Open contours are matched by detecting 

salient points such as comers and using the contour segments around these points as 

templates that are matched between the images. Centroids of closed contours and salient 

points of open contours were used as tie points. The parameters of an affine 

transformation were determined from the tie points using a least squares technique.

The second method for registering optical to SAR data is based on an active contour 

model, where the edges extracted from optical data are used to help locate the edges in 

the SAR data. To do this the images have to be pre-registered to an accuracy of 

approximately 5 pixels, which can be done by either using ephemeris data or manually 

selected control points. When the contours have been extracted from the SAR image, 

the registration algorithm proceeds as described above. An RMS error of 1 to 2 pixels 

was achieved for a selection of test images.

Morgado and Dowman (1997)

Morgado and Dowman (1997) registered aerial photographs to a map using patches as 

the matching primitives. A coarse registration is generated by matching patches on the 

basis of attributes such as size, shape and perimeter length. The coarse registration is
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then refined using a technique based on dynamic programming. Tie points are generated 

from the pixels that make up the edges of the patches. The image is registered to the 

map using an affine transformation, the parameters of which were determined from the 

tie points using a least squares technique. An RMS error of approximately 7m (2 pixels) 

in the x-y plane and 1.2m in the z direction were obtained. This method is very similar 

to that used by Newton et al. (1994).

Stockman, Kopstein and Benett (1982)

The method described by Stockman et al. (1982) uses a clustering technique to generate 

tie points. Point features are extracted using straight edge detectors, curved edge 

detectors, circle detectors and intersection detectors, and paired up to form vectors. 

These vectors are used as the matching primitives. Each primitive from the master 

image is matched with a primitive from the slave image and the rotation, scale and 

translation components of the transformation required to register these primitives are 

determined. This is repeated for all possible combinations of master and slave 

primitives and the results are plotted in rotation-scale-translation (RST) space. By 

identifying clusters of points in RST space it is possible to determine the parameters of 

the transformation required to register the slave image to the master image.

Tseng, Tzen, Tang and Lin (1997)

The method described by Tseng et al. (1997) matches the closed boundaries of regions 

to determine the parameters of the transformation function. Areas of homogeneous grey 

level which are greater than a specific size are extracted from the images, after which 

their boundaries are encoded using Fourier descriptors. The boundaries can then be 

matched in the frequency domain and the relative orientation of the images can be 

determined. The system was implemented using a neural network.

Ventura, Rampini, Schettini (1990)

Ventura et al. (1990) describe a method of automatic image registration using attributes 

of structures (ellipticity, inclination and thinness) extracted from the images which are 

invariant under scaling, rotation and translation. The structures are extracted from the 

image by applying a segmentation algorithm after which an algorithm based on fuzzy 

logic is used to compare and match similar patches. Tests with Landsat TM and SPOT 

data gave an RMS error of 2.5 pixels.
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This completes the review of automatic image registration techniques. The next section 

introduces some problems associated with automatic image registration, but before this, 

table 2.1 summarizes the work described above.

Authors Matching
primitive

Matching technique Transformation
function

Abbasi-Dezfouli & 
Freeman (1994)

Patches of uniform 
grey level

Comparison of size, shape, 
and relative geometry

Affine

Dowman et al. 
(1996)

Interest points Relative geometry and 
cross correlation

Affine

Flusser and Suk 
(1994)

Patches Comparison of AMI and 
relative geometry

Affine

Flusser (1992) Manually selected 
points

Manual matching Simplified surface 
splines

Goshtasby (1988) Patches Clustering in RST space Surface splines

Goshtasby et al. 
(1986)

Patches Clustering in RST space Polynomial
function

Liet al. (1995) Open and closed 
contours

Comparison of invariant 
moments and chain codes

Affine

Morgado and 
Dowman (1997)

Patches Comparison of size, shape, 
and relative geometry

Affine

Stockman et al. 
(1982)

Vectors connecting 
interest points

Clustering in RST space Similarity

Tseng et al. (1997) Fourier transform 
of closed boundary

Comparison of Fourier 
transforms

Affine

Ventura et al. 
(1990)

Patches Comparison of ellipticity, 
inclination, thinness

Affine

Table 2.1 Summary of automatic registration techniques

2.4.6 Difficulties associated with automatic image registration
The previous sections have given a description of how images can be automatically 

registered to each other and presented some of the current techniques available, but it 

should be remembered that there are still a number of problems which need to be 

overcome before a fully automatic and accurate image registration system becomes 

realistic. Three problems which are discussed in this section are:
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□ the difficulty of recognizing features acquired from multiple sensors;

□ application of image registration algorithms to numerous different types of 

images; and,

□ the need for an intelligent system to select which algorithms to use in particular 

situations.

The problem of recognizing similarities between pairs of images is fundamental to 

automatic image registration and perhaps the most difficult problem to solve. The 

problem is twofold: firstly, if the approximate alignment of the images is not known 

then the spatial distribution of features will be different, and secondly, if the images are 

acquired by different sensors then corresponding features will have different radiometric 

properties. These two aspects of the problem of feature recognition are illustrated with 

some examples below.

Figure 2.10 shows two images that correspond to the same region in Death Valley, 

USA, but which are not aligned to each other. The image on the left was acquired by the 

SIR-C/X-SAR sensor whilst the image on the right was acquired by the SPOT sensor. 

Although the images show the same region it is impossible to recognise any common 

features with any degree of certainty. If it is not possible for the human visual system to 

recognise features in pairs of images, then it will be extremely difficult to develop a 

computer algorithm which can do this automatically. If the images were approximately 

aligned, then the possibilities of recognizing common features is greatly increased, but 

if the images cannot be approximately aligned, then it may not be possible to use 

automatic image registration algorithm based on feature matching.

Figure 2.10 Radar and optical images of Death Valley, USA (© NASA)
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Figure 2.11 shows two images of the same region in Southern France. The image on the 

left is a SPOT panchromatic image and the image on the right is an ERS-1 SAR image. 

In this example there are one or two features that can be recognised in both images, but 

since the images have different projections the corresponding features have different 

sizes and shapes. Furthermore, since the images were acquired using different sensors 

the grey values of common features are also quite different. Therefore, although in this 

case it is possible for the human visual system to recognise common features it is still 

very challenging to develop computer algorithms that can perform a similar task.

Figure 2.11 Radar and optical images of Southern France

Even when a pair of images are aligned fairly well it can still be difficult to recognise 

common features. Figure 2.12 shows regions extracted from the above pair of images of 

Southern France. The figure on the left is a SPOT panchromatic image with a pixel size 

of approximately 10m whilst the figure on the right is an ERS-1 SAR image with a 

pixel size of approximately 12m. The SPOT image has been registered to the SAR 

image using four manually selected tie points. Even though the images have the same 

projection and cover the same area, there are few features that can clearly be identified 

in both images. Once again, if the human visual system cannot recognise pairs of 

corresponding features, then developing a computer algorithm to perform this task will 

be very difficult.
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Figure 2.12 Registered radar and optical images of Southern France ( rc*f>-)

The pairs of images shown above highlight some of the difficulties of matching features 

in pairs of multisensor images. The problems persist at both small scales (for 

approximate alignment of large images) and large scales (for accurate registration of 

smaller scenes).

The second difficulty introduced above is that of global application of algorithms. Many 

of the automatic image registration algorithms described in § 2.4.5 perform very well 

with the test data sets provided by the authors, but often these algorithms will fail when 

used with different types of data sets. The problem that has to be overcome is the 

development of algorithms that can be applied to almost any data set and still produce 

useful and accurate results. To do this, the automatic image registration system will 

have to be able to solve practical problems, such as multisensor feature recognition 

described above, as well as more fundamental problems, such as intelligent decision 

making, described below.

The third difficulty mentioned above is that the method of automatically registering two 

images is not well defined. The review of recent image registration research in § 2.4.5 

above shows that there are a number of different algorithms which can be used at each 

stage in the processing, and it is often far from clear which is the best one to use. A 

challenge to researchers of automatic image registration is the development of an 

intelligent system that can make wise choices as to which algorithms to use and when.

Until the implementation of such a system is realised, there will always be the need for 

human intervention in automatic image registration software to ensure a satisfactory 

result.

2.4.7 Conclusions

This section has described in detail the subject of automatic image registration -  it has 

been presented in some depth since it is fundamental to the work of this thesis. The
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initial sections introduced the theory of automatic image registration and described how 

it can be implemented using a four stage procedure. This procedure has been well 

documented by a number of researchers (Brown, 1992; Fonseca and Manjunath, 1996) 

and is generally accepted as the standard approach to take for automatic image 

registration. However, the actual algorithms which can be used at each stage of the 

procedure can vary considerably; a number of different combinations of algorithms 

were presented in the review in § 2.4.5. Some of the authors of the work described in 

this section claimed to achieve certain accuracies in terms of RMS errors, but without 

knowing exactly how they arrived at their results, it is difficult to know how reliable 

these claims actually are. Therefore, it seems more reasonable to judge the work on the 

actual methods presented rather than on the results. The range of matching primitives 

employed is extremely varied, as are the techniques for matching these primitives. Most 

of the methods described use polynomial transformation functions to register the pair of 

images, except for Flusser (1992) and Goshtasby (1988), whose transformation 

functions based on surface splines. It is not possible to select particular methods as 

being any better than any of the others, but the comparison of techniques does illustrate 

well how varied image registration algorithms can be.

The final section highlighted three difficulties associated with automatic image 

registration: recognition of features in dissimilar images, application of algorithms to a 

wide range of images, and choice of algorithms. It may not be possible to resolve these 

difficulties with current techniques, but these are issues that must be taken into 

consideration in the development of an automatic image registration system.

Chapter 1 introduced image rectification: the registration of an image to a map, resulting 

in an image which can be expressed in ground co-ordinates, but with no correction 

made for terrain and sensor induced distortions. Automatic image rectification has not 

been described in detail in this thesis, but it deserves a mention since it is very similar to 

automatic image registration. A lot of the techniques associated with automatic 

rectification are the same as those for automatic registration: images are rectified by 

extracting features from the image and the map and matching them with each other. 

However, automatic rectification experiences other problems which are not encountered 

in automatic registration, such as those caused by generalisation of features in the map 

data, or the recognition of corresponding features in both the image and the map. More 

details about automatic rectification of aerial photography and satellite data can be
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found in Dowman (1998), Morgado and Dowman (1997), Vohra and Dowman (1997) 

and Vohra et al. (1996).

This concludes the discussion of automatic image registration. The next section explains 

how the work presented in this thesis attempts to solve some of the problems associated 

with the automatic registration of SAR and SPOT images.

2.5 Proposal of this thesis

2.5.1 Introduction
The first chapter of this thesis introduced the concept of data integration and explained 

its importance. This chapter has described in more detail the issues associated with the 

geometric aspects of data integration. This section will now describe how the work 

presented in the remainder of this thesis proposes to solve some of the problems 

encountered with the automatic registration of multisource remotely sensed images. The 

overall aim of this study is the development of a fully automatic system for registering 

SAR and SPOT images. However, this would be too large an undertaking for a study of 

this nature, so therefore only a few key elements of such a system have been researched. 

Before the details of these key elements are discussed, the concept of an "ideal" 

automatic image registration scheme is proposed.

2.5.2 The "ideal" automatic image registration system
The basic theory of automatic image registration has now been described. Using this 

structure it is possible to define an ideal automatic image registration system. Many 

other researchers have also proposed ideas for automatic image registration systems, 

such as Dowman (1998), Dowman et al. (1996), Le Moigne et al. (1997) and Rignot et 

al. (1991), but the concept presented here takes into account factors such as robustness, 

reliability and practicality of implementation. Very often these factors are ignored in 

favour of other details such as accuracy of registration results.

Although not described in the processing chain presented in § 2.4.1, the first step in any 

automatic image registration system is the preprocessing step, which is concerned with 

preparing the images for registration. The procedures involved include:

□ importing and formatting the data:

reading the images; reading the ephemeris data; reading the 

supplementary data; converting all data to a standard format.

□ preprocessing the data:
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approximate alignment; geocoding and resampling (if necessary).

□ user validation.

The ideal system would have to be able to recognise and read numerous data formats. 

The preprocessing step would convert all of the data to a standard format and then 

ensure it is suitable for feature based matching. That suitability will depend on the 

percentage overlap and the content of the images. Approximate alignment calculated 

from the ephemeris data can be used to determine the percentage overlap, but it is much 

more difficult to automatically assess the suitability of the image content for matching. 

No suggestions for performing this task are offered here.

Next, the supplementary data sets must be considered, which can include DEMs, 

topographic data, GCPs or ephemeris data. Using this supplementary data, and 

knowledge of coverage of the images, it must be decided if any preprocessing is 

possible, such as geocoding, resampling to similar grid size, or performing any 

geometric corrections. If very little is known about the images, or there is no 

supplementary data, then the preprocessing will be rather limited. It would be desirable, 

however, to carry out as much preprocessing as possible in order to increase the success 

of the feature extraction and feature matching algorithms.

The final stage of the preprocessing is the user validation. The system would provide 

the user with details of all the tasks performed to ensure it was prudent to continue to 

the next step of the registration.

In the primitive extraction step of the processing, as many primitives need to be 

extracted as possible, but an automatic validation step would have to be included to 

filter out as many false primitives as possible. At this stage, supplementary data such as 

topographic data or change detection information would be very useful. Topographic 

data could be used as a priori knowledge for high level feature extraction algorithms, 

and change detection data would help guide those algorithms away from areas in the 

image where changes may confuse the matching process. An automatic test of the 

quantity and distribution of the primitives across the image would show whether the 

extraction process had been successful or not. If it was found that two few primitives 

had been extracted from the images, then the process of primitive extraction would have 

to be repeated.

60



As with the previous step, the matching step would be greatly improved by 

incorporating a validation procedure. This is required to ensure there are a large number 

of match points with a good distribution across the whole image. If it appears there are 

insufficient match points, it may be necessary to return to the previous stage and extract 

more matching primitives. It may be possible to improve the matching of primitives by 

using the matching results generated at this stage to align the images more closely. 

Hence, an iterative procedure could be set up between primitive extraction and 

matching. It may also be possible to generate information on changes that may have 

taken place between the acquisition of the images from the match point data. This could 

also be used as a guide for extracting primitives in the previous stage if it were used in 

an iterative structure.

The ideal automatic image registration system would have to be able to select the most 

appropriate transformation function from a library of functions. Although selection 

would be aided by analysis of the supplementary data, it is likely that a number of 

different functions would have to be tested to see which would give the best result.

Figure 2.13 shows a flow diagram of the ideal automatic image registration system. The 

important points to highlight are that there are numerous validation steps and feedback 

loops, ensuring that errors should not be propagated through the system, and there is 

plenty of opportunity for the system to adapt itself to the data being used. If no match 

points can be found using one particular set of algorithms, then the system recognizes 

this, and repeats the process with a different set of algorithms, until a final result is 

obtained. The key is to utilize libraries containing many different algorithms, therefore 

guaranteeing a large redundancy of processing techniques.
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Figure 2.13 The ideal automatic image registration system

This section has outlined the components of an ideal automatic image registration 

system. The next section explains which of these components are research in detail in 

this thesis.

2.5.3 Elements of automatic registration researched in detail
The previous section has illustrated that there are a number of aspects of automatic 

image registration that need to be researched. Firstly, the specific algorithms for 

performing tasks at each stage of the processing need to be developed, and secondly, 

those algorithms need to be combined together into a single automatic system. It seems 

reasonable that the development of specific algorithms should take precedence over the 

development of the system as a whole. It was therefore decided that this thesis would 

investigate and develop algorithms for automatically registering SAR and SPOT images 

based on patch matching, with emphasis placed on the extraction and matching steps in
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the processing chain. After an examination of different feature based image registration 

techniques, it was decided that the processing chain depicted in figure 2.14 would be 

researched.

-------------------------------------------
Image acquisition

Approximate alignment using ephemeris 
data or manually selected tie points

Automatic tie point selection using patch 
matching

Image registration

Refined tie point selection using edge 
matching

Refined image registration

Figure 2.14 Flow chart of proposed image registration procedure based on patch and
edge matching

The proposed registration procedure consists of three registration steps. The first step is 

an approximate alignment of the images using either a few manually selected tie points, 

or tie points determined from the ephemeris data. The precision of the registration does 

not have to be high at this stage -  misalignments of up to 100 pixels are acceptable at 

this point in the processing. However, it is important that large rotation and scale 

differences are eliminated so that the second stage of the processing chain, the 

automatic selection of tie points using patch matching, is able to locate corresponding 

features in the pair of images. As a result of matching corresponding patches it should 

be possible to register the images to a precision of less than a few pixels (depending on 

the number and distribution of matched patches and the choice of polynomial 

transformation function). The final stage in the processing uses edge matching to refine 

the registration results. An edge matching algorithm is employed which can locate a 

large number of common points between a pair of images, but in order to do so, the 

images have to be registered to a precision of less than a few pixels. This registration 

procedure relies on each processing step being able to align the images more precisely 

than the previous one, and then passing its results on to the next one. Therefore, the
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structure of the processing chain is a result of the way in which the individual 

algorithms operate.

The literature review of § 2.4.5 showed that a number of algorithms already exist for 

extracting patches from pairs of images. However, the usefulness of these algorithms 

when applied to pairs of SAR and SPOT images is unclear. Therefore, they will be 

review and tested with SAR and SPOT data so that methods can be defined for 

extracting similar patches from both images.

The literature review also showed that there are a number of techniques for matching 

patches. It is not clear if any of these techniques would produce reliable results when 

applied to patches extracted from SAR and SPOT images. Since matching techniques 

are far less well documented than extraction techniques, and to ensure accurate 

registration results, it is proposed that a new patch matching algorithm is developed, 

with emphasis placed on automation and reliability.

Edge extraction and edge matching algorithms have also been described in § 2.4.5. Edge 

extraction is well documented (Pratt, 1991; Gonzalez and Woods, 1992) and requires no 

further research in this study. A reliable method of edge matching has been described by 

Maitre and Wu (1989) and implemented successfully my many other researchers 

(Newton et al., 1994; Morgado and Dowman, 1997; Vohra et al., 1996). Therefore, 

research into the refinement of the registration using edge matching will be limited to 

the testing of the algorithms to determine the optimum method of implementation.

2.5.4 Conclusions
Automatic image registration is a huge subject which would benefit from research in 

almost any area. After considering an ideal system of automatic registration it was 

decided that this study would concentrate on the development of new, robust and 

reliable algorithms for extracting and matching features extracted from SAR and SPOT 

images. The development of the whole system, including decision making and 

validation algorithms, would make an interesting project for future work, but has not 

been included in this thesis. Consequently, the main aims of this study are:

1. to investigate and develop automatic feature extraction algorithms for use with 

SAR and SPOT data;

2. to develop an automatic patch matching algorithm for use with features 

extracted from SAR and SPOT data;
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3. to integrate the patch extraction and patch matching procedures;

4. to investigate the possibilities of registration of both small and large images 

using the patch matching results; and,

5. to investigate the possibilities of extending the matching results to allow for full 

orthocorrection of the data sets.

As a result, the layout of the remainder of this thesis is as follows: chapter 3 describes 

the acquisition of SAR and SPOT data; chapter 4 describes radiometric preprocessing of 

the images; chapter 5 investigates feature extraction; chapter 6 investigates patch 

matching; chapter 7 investigates edge matching; and chapter 8 applies the techniques 

developed to full scene images.

65



Chapter 3 D a ta  a c q u is itio n  and image 
SELECTION

3.1 Introduction
This chapter describes in detail the systems that acquired the data used in this thesis: the 

SAR sensor onboard the ERS-1 satellite, and the optical linescanner on the SPOT 

platform. It is important to know how images are generated in order to be able to 

process them in an accurate and intelligent manner. For example, knowledge of image 

formation leads to an understanding of the geometric properties of the image, which is 

essential when applying geometric correction algorithms. Similarly, details of the 

imaging system can be used to determine the radiometric properties of the image, and 

hence increase interpretability. Without sensor information, it becomes much more 

difficult to understand the exact geometric and radiometric properties of an image, and 

therefore more difficult to model and correct the inherent inaccuracies. The importance 

of sensor modelling in image registration is discussed further in McGlone (1994).

3.2 Acquisition and properties of SAR data

3.2.1 Introduction
Radar remote sensing is a comparatively new remote sensing tool which comprises a 

number of different sensors and data products. Some of the microwave sensors are 

active, which mean they image the target by illuminating it with radiation, whilst others 

are passive, just measuring the extremely small amounts of microwave radiation emitted 

by the objects being imaged. Products derived from data acquired by radar sensors come 

in different forms, such as images, interferograms, or elevation models. In this project, 

the only relevant data product is image data acquired by an active microwave sensor, 

namely synthetic aperture radar, or SAR.

SAR images have been in use for many years. Early SAR sensors were mounted on 

aircraft, but since the launch of Seasat-1 in 1978 civilian spaceborne SAR data has been 

available. SAR is an active sensor, which means the sensor provides its own source of



energy, or illumination. This leads to a number of advantages over conventional optical 

remote sensing systems, the two main advantages being the ability of the sensor to 

acquire images at night, and the ability of the microwave radiation to penetrate through 

most types of atmospheric conditions. These factors mean that SAR data can be 

acquired at any time, leading to more continuous cover than can be provided with 

optical sensors. A further benefit of radar remote sensing is that the images are acquired 

in the microwave region of the electromagnetic spectrum, complementing images 

acquired in the optical and infrared regions, and thus giving the end user a wider range 

of wavebands to choose from when selecting imagery.

As mentioned above, the first civilian spacebome SAR sensor was Seasat-1. This was 

followed by the experimental Soviet sensor Cosmos-1870 and the ‘commercial’ Soviet 

sensor Almaz-1. Data from Cosmos was not generally available, but Almaz provided 

eighteen months worth of data before returning to Earth. Soon after the launch of 

Almaz, the European Space Agency launched ERS-1 on the 17th July 1991, which 

operated successfully well beyond its intended lifetime of three years. In fact, so 

successful was ERS-1 that it was still operating normally when its successor ERS-2 was 

launched on the 21st April 1995. This gave ESA the opportunity to operate both systems 

in tandem, which proved enormously useful for sensor calibration and interferometric 

studies. The most advanced SAR sensor launched to date is on board the Canadian 

Radarsat platform. This sensor can operate in numerous different modes, giving 

different ground coverages and resolutions, and different polarities. It remains to be 

seen whether or not ESA’s next generation remote sensing platform, Envisat, will be 

able to better the sensors that have come before.

Although SAR images are of enormous value to the Earth observation community, their 

use is not as widespread for land application as optical images. This can be put down to 

a number of reasons, such as:

□ low signal to noise ratio;

□ lack of familiarity; and

□ lack of continuity of acquisition.

Low signal to noise ratio

Due to the way in which the SAR sensor operates, described in more detail in the 

following sections, SAR image products are corrupted by speckle: a noise-like effect
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that compromises the radiometric quality of the image and hence reduces the signal to 

noise ratio. This low signal to noise ratio means that objects are harder to resolve in a 

SAR image than in an optical image of similar pixel size. This immediately limits the 

possible uses of SAR images and users wishing to exploit remote sensing data will 

naturally choose types of imagery that give the best imaging potential; more often than 

not, this will not be SAR data.

Lack of familiarity

The acquisition and properties of SAR images are more complicated than those for 

optical images, and for the end-user perhaps a little bit further detached from reality. 

With optical data the user is familiar with the image product; firstly the image is similar 

to a photograph, with which all users would be familiar, and secondly it is generally 

possible to recognise features as if the observer were on board the platform and looking 

down at the Earth. This is not the case with SAR images, which do not have the same 

appearance as photographs, and also perhaps require a further quantum leap of the 

imagination to envisage how the sensor actually "sees" the ground. This lack of 

familiarity with SAR data has certainly led to people choosing to use optical rather than 

SAR data.

Lack of continuity of acquisition
Seasat was launched on 27th June 1978, but failed after only 100 days in orbit. Although 

it returned in excess of 100 million square kilometres of imagery, it was to be 9 years 

before the next civilian SAR 5aVeUilt(Cosmos-1870) was put into orbit. However, during 

this same period of time, optical remote sensing made huge advances and became the 

well-established tool of Earth observation. Perhaps if there had been a more continuous 

supply of spacebome SAR data during this important period, SAR imagery would now, 

be far more ubiquitous than is actually the case.

Due to the way in which the SAR sensor operates, SAR images have a number of 

interesting geometric and radiometric properties. An understanding of these properties 

should lead to the development of better processing algorithms, such as feature 

extraction algorithms or geometric correction algorithms. The next two sections 

describe the principo\\ geometric and radiometric properties of typical SAR images.
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3.2.2 Resolution
Since the technology of the SAR sensor was originally developed from its predecessor, 

the side looking airborne radar (SLAR) it seems appropriate to give a description of 

SLAR first as a prelude to the description of SAR.

The SLAR system is relatively straightforward: it consists of an antenna mounted on an 

aircraft, which transmits short pulses (of the order of 10'6 seconds) of microwave 

radiation and measures the time and the strength of the reflected signal (known as the 

backscatter). Each backscattered pulse of radiation is used to build up a line in the 

image; successive lines are built up from successive pulses of radiation and the forward 

motion of the aircraft (figure 3.1).

y** ' Radar 
footprints

Scene

Range
Azimuth

Figure 3.1 The SLAR sensor

Each individual backscattered pulse of radiation is made up of a number of echoes from 

different objects on the ground in the line of sight of the antenna. The resolving power 

of the sensor in the cross-track direction is determined by the ability of the sensor to 

separate these echoes. This is known as the range resolution. For two objects on the 

ground to be imaged separately and hence resolved, the pulse of radiation backscattered 

from each object must be received at the antenna separately. Therefore the closest the 

objects can be to each other, and still be resolvable is the distance that corresponds to 

half of the length of the pulse of radiation, t, in the slant range. The distance 

corresponding to Tin the slant range (the slant range resolution) is given by

CTSlant range resolution = — (3.1)
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where c is the speed of light. In terms of ground range, this is dependent on the look 

angle of the sensor (figure 3.2). Therefore, ground range resolution can be expressed as

C TGround range resolution, Rr = -------- (3.2)
2 sin#

where #is the look angle of the sensor (defined in figure 3.2).
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Figure 3.2 Geometry of the SLAR sensor

Since the pulse length is inversely proportional to the bandwidth of the , the

range resolution of any pulsed radar system is fundamentally limited by the bandwidth 

of the transmitted pulse. A wide bandwidth can be achieved by using a short duration 

pulse, but the shorter the pulse, the lower the transmitted energy. This leads to a poorer 

the signal to noise ratio, hence worse radiometric resolution. Therefore, when designing 

a pulsed imaging radar system, a balance has to be achieved between geometric 

resolution and radiometric resolution.

The azimuth resolution of the SLAR sensor (measured in radians) is dependant on the 

beamwidth (not to be confused with bandwidth) of the antenna, and the ground range 

(figure 3.3).
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Figure 3.3 Azimuth resolution of the SLAR sensor (after Lillesand and Kiefer, 1994)

As the distance from the sensor increases, the beam of radiation fans out. At a distance 

rj from the sensor, the two objects A and B can be resolved since their separation is 

greater than the beamwidth. However, at a distance r2 from the sensor, the two objects

cannot be imaged separately: the beamwidth is now wider than their separation. Thus, 

azimuth resolution can be expressed as:

where r is the ground range and p  is the beamwidth of the antenna. The beamwidth is 

proportional to the wavelength of the radiation, X, and inversely proportional to the 

antenna length, /,

To improve the azimuth resolution of the SLAR sensor for a given wavelength, the 

length of the antenna has to be increased. This can be done in two ways: (1) by 

increasing the physical length of the antenna, or (2) by synthesizing the length of the 

antenna. The first method is obviously limited by the physical size of the platform, so 

the second method is used to improve the azimuth resolution, i.e. a synthetic antenna, or 

aperture, is created.

A ’ and B ' (which have the same separation as A and B) cannot be resolved since they

Ra = rP (3.3)

(3.4)

Therefore, azimuth resolution can be expressed as

Ra (3.5)
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Although the SAR sensor only has a short physical antenna, it uses the forward motion 

of the platform to synthesize an antenna which is effectively very much longer. The 

principle depends on the use of coherent radiation, together with a precise knowledge of 

the transmit and receive point of the radar pulse. As the platform moves forward in its 

orbit, the distance from the antenna to the target (the slant range) changes continuously, 

and therefore the phase of the reflected signal changes as well. Since the phase is 

dependent on the geometry of the system, it is possible to correctly phase the return 

signals with respect to each other so that the effect is equivalent to them all having been 

received simultaneously by an antenna of length equal to the path length over which the 

radar signals were collected. In this way, the synthesized antenna can be thought of as a 

number of independently radiating antennae.

The azimuth resolution of a SAR sensor is determined by the Doppler bandwidth of the 

backscattered signal (for an explanation of Doppler shifting see Einstein, 1905.) 

Regions on the ground in front of the sensor will be approaching the sensor, and hence 

backscattered radiation will be Doppler shifted to a higher frequency. Similarly, 

radiation backscattered from objects on the ground behind the sensor will be Doppler 

shifted to a lower frequency, and radiation backscattered from objects in the line of 

sight of the sensor will have no Doppler shift (figure 3.4). By processing the 

backscattered radiation according to its Doppler shift, it is possible to synthesize a very 

small beamwidth.

lange

DopplerAzimuth

Pulse
width

Figure 3.4 SAR and beamwidth

The consequence is that the azimuth resolution of a SAR sensor becomes a function of 

antenna length only:
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(3.6)

Range resolution of the SAR sensor is the same as that of the SLAR sensor (given in 

equation 3.2).

3.2.3 Geometric distortions
The principal geometric effect in typical ground range SAR images is the displacement 

of objects due to relief (Leberl, 1990). Chapter 2 gave a brief description of how terrain 

affects the positions of objects in aerial photographs, and explained how distortions due 

to relief increase with increasing distance from the principle point. In SAR images, the 

opposite is true (figure 3.5). The projection of the building in the photograph causes the 

top of the building, A, to be imaged at a, further from the principaA point than the base 

of the building, which is imaged at b. However, in the radar image, the top of the 

building is imaged at a \ which is closer to the nadir point than the base of the building, 

which is imaged at b\ This effect causes vertical objects to layover in the image, and is 

worse for objects close to the nadir of the sensor.

B

Figure 3.5 Distortions due to relief in optical and radar images 
(after Lillesand and Kiefer, 1994)

3.2.4 Radiometric attributes
Speckle in SAR images originates from the coherent nature of the electromagnetic 

radiation that is used to form the image. A single resolution cell in the image, which 

may represent a region of lOmxlOm on the ground, contains multiple scatterers. When 

the electromagnetic radiation interacts with these scatterers they produce echoes which 

may interfere constructively or destructively, depending on the exact structural content 

of the cell and the location of the antenna. The result is an image that appears to be

Photograph

Radar image

73



corrupted by random noise. In order to better understand how speckle corrupts SAR 

images, it is useful to create a statistical model. The model used is that of multiplicative 

noise, since this reflects the occurrence of speckle in SAR images. For multiplicative 

noise,

where zij is the observed value of pixel (i,j), Xy represents the signal and Vy represents

the noise, with a mean of 1 and variance of <JI. The argument proposed by Lee (1981)

showed that the standard deviation of the noise can be expressed in terms of the mean 

and variance of the observed pixel value:

This result is extremely useful, since it gives a method of estimating the standard 

deviation of the speckle from the image itself; no other information regarding how the 

image was formed is required. By simply measuring the mean and standard deviation of 

a large number of pixels in a homogeneous region of any SAR image (in which all the 

pixel values are uncorrelated), it is possible to estimate the standard deviation of the 

speckle. It is important that the region is homogeneous since any features in the image 

will corrupt the results.

Although the standard deviation of the speckle can be estimated using equation 3.8, it 

can also be determined exactly if specific details of the image formation process are 

known. When the image is formed, multiple sub-images (or looks) can be combined to 

produce a multiple look image. This is done to reduce speckle, but in doing so, spatial 

resolution is also reduced. Therefore, spatial resolution is traded off against radiometric 

resolution. Lee (1986) demonstrated how the standard deviation of the speckle is 

dependent on the number of looks in the image, N, and how those looks are combined. 

When generating a multiple look image, either the amplitude of the range lines can be 

generated and averaged, or the intensities can be averaged before generating the 

amplitude. The two methods lead to a slightly different dependence of c v on N. Table

3.1 shows how o v varies with N.

(3.7)

(3.8)
x
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Number of 
looks

Gy
(Processed by amplitude averaging)

OV
(Processed by intensity averaging 

then computing amplitude)

1 0.5227 0.5227

2 0.3696 0.3630

3 0.3017 0.2941

4 0.2614 0.2536

6 0.2134 0.2061

8 0.1848 0.1781

Table 3.1 Dependence of avon the number of looks, N (Lee, 1986).

The dependence of speckle on the number of looks was investigated using an ERS-1 

PRI (precision product) SAR image of Southern France. The image was displayed so 

that a large homogeneous region could be found. The mean and standard deviation of 

the pixels were then measured in a large number of sub-regions (11x11 squares) within 

the main region. Values of standard deviation were grouped according to DN value, and 

the mean for each group was determined. These values were plotted against the DN 

value for the corresponding group (figure 3.6). A straight line was fitted to the data 

using a least squares method. The gradient of this line represents the standard deviation 

of the speckle.
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Figure 3.6 Mean and standard deviation of pixels in ERS-1 PRI SAR image
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The standard deviation of the speckle was found to be 0.299, which would imply (from 

table 3.1) that the image is made up of 3 looks. This corresponds well to the true value 

which, according to ESA specifications for PRI image products, is 3 looks (ESA, 1993).

The importance of the standard deviation of speckle in SAR images becomes clear in 

the next chapter, which discusses speckle reduction. When designing algorithms to 

reduce speckle it is often useful to incorporate the statistical model given above. In 

practice this means knowledge of the standard deviation of the speckle is required in 

advance, in order to process the image.

Other obvious radiometric effects present in SAR images are shadow and sidelighting, 

caused by the way in which the microwave radiation interacts with the ground. Both of 

these effects are illustrated in figure 3.7.

Resulting image 
lineStrength

Reflected 
. ^Vsignal
l i m e ' ' S,ren9th

Figure 3.7 Sidelighting and shadow in SAR images (Lillesand and Kiefer, 1994)

As the above diagram shows, when the slope of the terrain facing the sensor is almost 

equal to the sensor look angle (i.e. the local incidence angle is small), the backscatter is 

high (slope A in figure 3.7). As the local incidence angle increases, the backscatter 

decreases (slope B). The second radiometric effect shown in figure 3.7 is shadow. The 

peak of slope A casts a radar shadow over the back of the slope, which is therefore not 

imaged; instead a region of black pixels appear on the image.

The radiometric properties of a SAR image are determined by how the microwave 

radiation physically interacts with the target. This interaction depends upon the 

dielectric properties of the target, the geometry of the target, and the frequency and
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polarization of the incident radiation. However, this project does not consider multi­

frequency or multi-polarization SAR data. Therefore, it is beyond the scope of this piece 

of work to discuss all the possible radiometric effects that may appear in an image, 

except to say that different wavelengths and polarizations interact differently with 

different targets, allowing different features to be imaged.

3.2.5 The ERS family of satellites
The European Space Agency’s Environment Remote Sensing platform ERS-1 (shown in 

figure 3.8) was the first in a series of satellites dedicated to spaceborne environmental 

monitoring, the successors being ERS-2, and the hugely optimistic Envisat platform.

SAR Antenna
V ind  S c a t t e r o m e t e r  X  v 

A ntennae  ' \

Radar A l t im e t e r

PR ARE

Figure 3.8 The ERS-1 satellite (© ESA)

The main instruments onboard the ERS platform are the active and passive microwave 

sensors, a radar altimeter, and an infrared radiometer. The active microwave instrument 

(AMI) has two modes of operation: image and wave. SAR images are acquired in image 

mode, in which the sensor has a spatial resolution of 26 m in range (across track) and 

between 6 and 30 m in azimuth (along track). Image data is acquired for a maximum 

duration of approximately ten minutes per orbit since the data rate is too high for 

onboard storage. It is therefore only acquired within the reception zone of a ground 

receiving station. The characteristics of the AMI and the orbital parameters of the 

platform are given in table 3.2.
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Orbital parameters AMI characteristics

Type Near-circular, 
polar, sun- 
synchronous

Frequency 5.3 GHz (C band)

Altitude 782 to 785 km Bandwidth 15.55 Mhz
Descending equatorial 
crossing time

10:30am local 
time

Pulse duration 37.1 |is

Inclination 98.52° Polarization Linear VV
Period Approximately 

100 minutes
Spatial resolution 6 to 30m along 

track;
26m across-track

Orbits per day 14.3 Swath width 100 km
Repeat cycle 3-day, 35-day 

and 176-day
Swath standoff 250 km to the 

right of the 
satellite track

Total mass 2157.4 Kg Incidence angle near swath 20.1° 
mid swath 23° 
far swath 25.9°

Table 3.2 Characteristics of ERS orbit and AMI specifications

The SAR antenna is aligned along the satellite’s line of flight, directing a narrow beam 

sideways and downwards onto the Earth’s surface (figure 3.9) to obtain strips of high 

resolution imagery of about 100 km in width.

S p a c e c ra f t  
Altitude 

(785 km)
S u b-sa te l l i te  track

Figure 3.9 ERS orbital geometry (© ESA)

ERS-2 is identical to ERS-1 in almost every way. It was designed and built in order to 

provide continuity of data after ERS-1 had reached the end of its useful life. However,
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ERS-1 proved to be unexpectedly successful and operated for much longer than anyone 

had predicted. This meant that ESA was able to operate both ERS-1 and 2 in tandem for 

some time, providing some very useful interferometric data. However, eventually at the 

end of May 1996, ERS-1 ceased regular operations, nearly five years after its launch. 

ERS-2 is still operating effectively and supplying useful data from all its instruments.

The next satellite in the ERS series, Envisat, will be the biggest satellite ever launched 

by ESA -  with dimensions of 26m xl0m x5m , it is literally huge (figure 3.10). Its 

payload is very similar to those of the ERS satellites, consisting of active and passive 

microwave instruments as well as an infrared radiometer, in order to ensure continuity 

of data. However, these instruments have been greatly improved and should therefore 

lead to far more useful data products. The sensor of most interest here is the AMI, 

known as ASAR (advanced synthetic aperture radar).

Figure 3.10 The Envisat platform (left) and ERS platform (right) (© ESA)

The ASAR instrument has five different operating modes, described in table 3.3, that 

can be used for imaging the Earth, depending on the application. This makes the ASAR 

considerably more adaptable than the SAR sensor of ERS-1, but still providing 

continuity of data.
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Image Wide swath Alternating Wave Global
monitoring

Polarization VV, HH VV, HH VV, HH, 
VH, HV VV, HH VV, HH

Spatial
resolution

30m across 
30m along

150m across 
150m along

30m across 
30m along

10m across 
10m along

1km across 
1km along

No. of looks -4 -12 -2 1 -7

Swath width Up to 
100km

Up to 
400km

Up to 
100km

5km
vignette

Up to 
400km

Table 3.3 Specifications of Envisat’s ASAR instrument

3.3 Acquisition and properties of SPOT data

3.3.1 Introduction
All of the optical data used in this study are SPOT panchromatic images acquired by the 

HRV (high resolution visible) sensor on the SPOT satellite. Since this sensor is a 

pushbroom scanner the first part of this section describes the principles of pushbroom 

scanners, whilst later sections describe the details of the SPOT satellite series, and the 

geometric and radiometric attributes of SPOT images.

3.3.2 The pushbroom sensor
A pushbroom (or along-track) scanner uses an linear array to build up an image of the 

ground line by line. As the platform moves forward the optics of the sensor project the 

image of a strip of ground onto the linear array. The array works by recording the 

intensity of this image line at discreet points along the line using CCD (charge coupled 

device) elements. The output of each element, which represents a pixel in the image, is 

stored electronically. When the sensor has moved forward a sufficient distance the next 

strip of ground is projected onto the array, and this in turn is recorded. By using the 

forward motion of the platform a two dimensional array of data (in other words, an 

image) is built up over a period of time (figure 3.11).
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Figure 3.11 The pushbroom scanner

The linear array can contain over 10000 individual CCD elements. For imaging at more 

than one wavelength, multiple arrays are needed, one for each spectral band, each of 

which would be placed in the optical focal plane. A pushbroom scanner has a number of 

advantages over other electro-optical scanning devices. The linear array is a very stable 

device that requires little power to operate, has no moving parts and is relatively small 

and lightweight. Each of these attributes make it a very reasonable device to use on 

spacebome platforms, where size, weight and longevity are key requirements. From a 

geometric perspective, the linear array has a fixed geometry which can be easily 

modelled. Radiometrically, it has the advantage that many different areas on the ground 

are imaged simultaneously, meaning that each CCD can spend longer imaging each 

individual region on the ground. This leads to greater energy being received by the 

sensor and hence a stronger signal and greater radiometric resolution. One disadvantage 

is that each CCD element has to be individually calibrated, but since this is not a 

significant problem, it does not compromise the usefulness of pushbroom sensors.

Pushbroom sensors have been employed on both airborne and spacebome platforms. 

The best known spacebome pushbroom scanner is the SPOT system, but the first to fly 

in space was the Modular Optoelectronic Multispectral Scanner (MOMS) built by 

Germany and launched on the Space Shuttle in 1983.

3.3.3 Image characteristics
Since optical linescanner images look similar to aerial photographs, it is easy to fall into 

the trap of assuming the geometric inaccuracies in these two data types are very similar.
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In fact they are very different, the geometric distortions present in linescanner imagery 

being very much more severe than those in aerial photography. The reason for this is 

that linescanner imagery is acquired over a period of time, whereas an aerial photograph 

is a snapshot in time. The five major causes of geometric distortions are:

□ off nadir viewing;

□ Earth curvature;

□ changes in flying height;

□ Earth rotation; and

□ changes in sensor attitude.

Distortions due to off nadir viewing exist because the sensor to target distance is 

different at nadir and off nadir. As the sensor to target distance increases (i.e. off nadir 

viewing) the line sampling interval increases. This causes the pixel size (in ground co­

ordinates) to increase. For SPOT, the pixel size at nadir is 10m, whereas off nadir it is 

13.5m. Since SPOT is able to view off nadir by as much as 27° distortions due to off 

nadir viewing are especially significant. Earth curvature also contributes to the scale 

distortions in the across track axis. Changes in flying height distort the image since line 

acquisition time is a function of flying height; height variations cause scale variations in 

the along track axis. As the image is acquired, the Earth rotates, the effect of which is 

that successive scan lines are shifted to the west. The amount of shifting is a function of 

latitude, and is worst at the equator. Finally, changes in attitude of the sensor while the 

image is being acquired leads to further distortions: rolling will cause lines to be shifted 

parallel to the pushbroom axis, pitching will cause successive lines to be interchanged, 

and yawing will cause scanlines to be rotated.

It is because of these distortions that a sensor model should be employed to 

geometrically correct optical linescanner imagery accurately (see, for example, Gugan, 

1987; Haan, 1991; Kratky, 1989; Westin, 1990; O'Neill, 1991). However, it is quite 

difficult to model all the distortions -  changes in flying height and sensor attitude are 

difficult to assess for the SPOT satellite. This means that even when a sensor model is 

used, it is possible that there will still be geometric distortions present in the 

"geometrically corrected" image.
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3.3.4 The SPOT satellite series
The SPOT system is a series of optical remote sensing satellites designed and built by 

the French national space agency (CNES) with input from Belgium and Sweden, with 

each satellite carrying two identical HRV sensors. The first SPOT satellite, SPOT 1, 

was launched in 1986 and operated for four years before it was removed from active 

service. SPOT 2, launched in 1990 is still operating, but SPOT 3, launched in 1993, 

failed after three years in orbit. SPOT 4 was launched in 1997 and appears to be 

functioning nominally. SPOT 5 is planned for launch in 2002. Due to increased demand 

for SPOT data, especially in the Northern hemisphere, both SPOT 1 and SPOT 2 were 

operational in 1997. Such is the success of the SPOT system that after ten years of 

operation approximately 5 million images have been archived.

Each satellite in the SPOT series has carried the same pair of sensors, the HRV 

instrument, except for SPOT 5 which will carry a much more advanced pair of HRV 

sensors. The HRV sensor is an along track linear scanning array which has two modes 

of operation: panchromatic and multispectral. Both sensors can operate in either mode, 

either simultaneously or individually. The presence of two identical sensors is one of the 

reasons that the SPOT system is unique. A summary of the HRV characteristics, as well 

as the platform orbital parameters, is given in table 3.4.

Orbital parameters HRV characteristics

Type circular, sun- 
synchronous, 
phased orbit

Operating
wavelength
(panchromatic
mode)

0.51 to 0.73 pm

Altitude 822 km Operating
wavelength
(multispectral
mode)

0.50 to 0.59 pm 
(green)
0.61 to 0.68 pm 
(red)
0.79 to 0.89 pm 
(NIR)

Inclination 98 deg Pixel size 
(panchromatic)

10m (at nadir)

Revolutions per day 14 + 5/26 Pixel size 
(multispectral)

20m (at nadir)

Period 101 minutes Viewing angle ±27° from nadir
Cycle duration 26 days Swath width 60 km (at nadir)

Table 3.4 SPOT orbital parameters and sensor characteristics

The second reason for the SPOT system being unique is the ability to manually point

the sensor away from the nadir, giving the opportunity for oblique viewing. This is done
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using a steerable mirror which is controlled from the ground and is moveable through a 

range of ±27°. Figure 3.12 shows a cross-section through the HRV sensor. The 

advantages that a steerable sensor offers are discussed in the next section.

Steerable
mirror

CCD
sensor

Oblique Vertical Oblique
viewing viewing viewing

Figure 3.12 Cross section of the HRV sensor (© CNES)

In multispectral mode, SPOT 1, 2 and 3 have three spectral bands in the green, red and 

near infrared regions of the electromagnetic spectrum (SPOT 4 and 5 have more bands, 

but they are not described here) which were chosen to give the best possible imaging of 

vegetation and landcover. The panchromatic band covers most of the visible spectrum, 

and although useful for landcover monitoring, it is really designed for mapping 

purposes. The spectral bands are shown in figure 3.13.

Although the radiometric properties of the SPOT sensors are interesting, it is the 

geometric properties which really make this sensor stand out from the numerous other 

Earth observation sensors in operation.
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Figure 3.13 HRV spectral bands (© CNES)

The swath width of the HRV sensor at nadir is 60km. With both instruments pointing 

vertically downwards there is an overlap of 3km, giving a total coverage below the 

satellite of 117km (figure 3.14). Since this combined field-of-view is wider than the 

greatest distance between two adjacent tracks the sensors are able image every point of 

the Earth’s surface during the satellite’s 26 day cycle.

60km

Figure 3.14 HRV viewing geometry (© CNES)
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More important than regular complete coverage of the Earth is the opportunity of 

oblique viewing, which allows the capture of stereo-pairs of images (figure 3.15). This 

is done by imaging the same area on the ground from different orbits (i.e. different look 

angles), and thus creating a parallax difference between the images. For a pair of images 

acquired with viewing angles of 24° to the left and to the right of the sensor, a base to 

height ratio of 1.0 is achieved. An image acquired vertically below the satellite (viewing 

angle of 0°) and an image acquired at maximum viewing angle of 27° will give a base to 

height ratio of 0.5. As with aerial photography, these stereopairs can be used for 

topographic mapping and the generation of DEMs.

A second advantage of the oblique viewing capability is the increased ground coverage. 

SPOT is able to image any area on the ground within a 900 kilometfe swath, leading to 

an increased viewing frequency for a given point during a given 26 day cycle. The 

repeat frequency varies with latitude, but at 45° the average time between passes is 2.4 

days, with a maximum of 4 days and a minimum of 1 day.

Day +10
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Day +5
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Figure 3.15 SPOT stereo viewing capability (© CNES)

Since SPOT 4 was launched in 1997 it has proved to be just as successful as the 

previous satellites in the SPOT series. It has a number of modifications, such as a new 

multispectral band in the mid-infrared ( l .5 8 -1.75 pm), onboard registration of all 

spectral bands (achieved by replacing the panchromatic band (0.51-0.73 pm) by band 

B2 (0 .61-0.68 pm) operating in both a 10-m and 20-m resolution mode), and improved
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recording capacity and telemetry capability. All the instruments have been validated, 

and apparently exceed their anticipated accuracies (SPOT Image, 1988).

SPOT 5, planned for launch in 2002, carries a new instrument: the high resolution 

geometry (HRG) sensor. Data will be acquired in four multispectral wavebands (Bl: 

0.50-0.59 pm); B2: 0.61-0.68 pm; B3: 0.79-0.89 pm; and MIR: 1.58-1.75 pm) as well 

as the panchromatic waveband (0.51-0.73 pm) which was abandoned on SPOT 4. This 

will ensure continuity of the spectral bands established since SPOT 1. The HRG 

instrument offers much improved resolution in both the multispectral and panchromatic 

modes: 5m and 3m (instead of 10m) in panchromatic mode, 10m (instead of 20 m) in 

the three spectral bands in the visible and near infrared ranges, and 20m in the middle 

infrared band.

3.4 Image selection

3.4.1 Introduction
It was decided very early on in this study to use just two types of data: spacebome SAR 

data, and SPOT data. The reason for doing this work is to investigate the possibilities of 

automatic image registration of two quite different types of data, of which SAR and 

SPOT are good examples. SAR data was chosen since it has a number of uses which are 

not always fully exploited, but could be when combined with optical data, whilst SPOT 

data was chosen since it is a principal, data source for remote sensing. It would have 

been interesting to use images from other sensors, such as the Indian remote sensing 

satellite IRS-1C, or the Japanese ADEOS satellite, but in order to stay focused on the 

project the decision was taken to limit the number of data sets used. However, there is 

no reason why the techniques developed here cannot be applied to data from other 

similar sensors.

The study area used is Southern France, in the region of the Rhone Valley, shown in red 

in figure 3.16.
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Figure 3.16 Study area in Southern France

This region was chosen for a number of reasons. Firstly, there is a large archive of data 

available from which images could be selected. Secondly, the area features many 

different types of landcover (mountains, agriculture, urbanization etc.). Thirdly, the area 

has been very well studied in the past by previous researchers. The combination of these 

reasons made this the obvious location of the test area.

3.4.2 SPOT data
The SPOT data used was acquired by SPOT l in 1986. The set of images cover areas of 

Southern France, from the Aix-en-Provence in the east to the Rhone Valley in the west. 

Table 3.5 gives details of the images. An example of one of the SPOT images, reduced 

in size, is shown in figure 3 .17.

Acquisition 
date and time

Look angle 
and direction

Location of 
centre of image

Image size 
(columns/rows) 

(pixels)

Image size 
(x, y) 

(kilometres)

19/04/1987
11:01:01

25.8°
Left

44°09’23" N 
5°02T8" E

6000x6000 60.1x75.5

26/04/1987
10:26:18

24.8°
Right

44°09’24" N 
4°5635" E 6000x6000 59.8x74.8

19/04/1987
11:01:09

25.8°
Left

43°40’26" N 
4°49’12" E

6000x6000 60.1x75.5

26/04/1987
10:26:26

24.8°
Right

43°40’26" N 
4°48D4" E 6000x6000 59.8x74.8

Table 3.5 Summary of SPOT images used in this study
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Figure 3.17 Reduced size full scene SPOT image

3.4.3 SAR data
The SAR used in this study corresponds to the same area as the SPOT images described 

above. Details of the images are given in table 3.6, and an example of a reduced size 

image is shown in figure 3.18.

Acquisition 
date and time

Image product 
description

Location of 
centre of image

Image size 
(columns/rows) 

(pixels)

Image size 
(x, y) 

(kilometres)

30/12/1991
10:28:02 PRI 43.6N4.9E 8000x8232 100x102.9

10/04/1992
22:01:13 RTM 44.0N 5. IE 8000x7767 100x97.9

06/05/1992
10:25:49 PRI 43.6N 5.5E 8000x8208 100x102.6

09/05/1992
21:49:52 PRI 43.9N 5.5E 8000x8203 100x102.5

16/11/1992
10:28:48 PRI 43.6N 4.8E 8000x8210 100x102.6

Table 3.6 Summary of SAR images used in this study

Although mostly ERS-1 SAR PRI (precision) images were used in this study, table 3.6 

shows that one RTM (roll-tilt mode) image was used. The only difference between an 

RTM image and a PRI image is the sensor look angle during image acquisition. For 

most of the time, ERS-1 was operated with a look angle of approximately 23°
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(producing amongst other products PRI images), but for a short period it was operated 

with a look angle of approximately 35°. Images acquired at this time were called RTM 

images. PRI and RTM images are almost the same, except that, for obvious reasons, the 

radiometric response of the terrain varies slightly. The difference between PRI and 

RTM images does not affect speckle reduction or feature extraction in this study in any 

way.

V - .

Figure 3.18 Example reduced size full scene SAR image (10:28:48)

3.4.4 Selected test sites
A number of small (but full resolution) square regions were cut from the SAR and 

SPOT images to be used as test sites for investigating the feature extracting and feature 

matching algorithms. They were chosen to reflect different landcover types and, more 

often than not, contained many strong features. These test images, shown in figures 3.19 

to 3.22 below, are named after the regions on the ground that they depict. The SAR 

image is shown on the left and the SPOT image on the right. To facilitate the 

comparison of corresponding features, the SPOT images have been approximately 

aligned with the SAR images using a simple manual registration.

9 0



Figure 3.19 Beaucaire test images

Figure 3.20 Camargue test images

Figure 3.21 Entressen test images
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Figure 3.22 Istres test images

The Beaucaire image features a river running through the centre with a town on either 

side. Also clearly visible are linear features which are most likely railway lines (due to 

their strong response in the SAR image). The terrain is flat near the river, but more 

undulating further from the river. The Camargue image includes a number of lakes and 

mud flats near the coastline. Other than the lakes there are few other features. The 

terrain is generally very flat. The dominant features in the Entressen image are fields 

which are very well defined in the SPOT image, but much less clear in the SAR image. 

This region is also very flat. The last pair of images, the Istres test site, features lakes 

near the coastline, like the Camargue region, but in this scene the terrain varies quite 

considerably.

These four image pairs were selected to reflect different types of landcover and terrain. 

In addition they were chosen so that in each pair either the SAR or the SPOT image 

consisted of some strong features.

3.4.5 Conclusions
As the images in the above figures show, the region of Southern France around the 

Rhone Valley and Aix-en-Provence features numerous different types of landcover, 

many of which are clearly visible in either the SAR or SPOT images, but not necessarily 

both. It is the features that are visible in both that will be essential for the automatic 

registration of these data sets, underlining the importance of a wide range of landcover 

types in the test area.

There are other attributes of the data sets that have been taken for granted, but perhaps 

should be mentioned, such as acquisition dates, image resolution, and overlap. The 

SPOT images were acquired more than five years before the SAR data, which implies
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that there could be some major differences between the images due to changes that took 

place on the ground between acquisition dates. It is not anticipated that this will be a 

problem in the matching of features since a large redundancy of features extracted 

means that there will be more than enough features to be matched. If any changes are 

detected, then this can be considered a very useful piece of information, and in itself 

justifies this work. The pixel size of both of the images are very similar to each other: 

12.5m for SAR and 10m for SPOT, meaning that features visible in both images will be 

of a similar size (in image co-ordinates).

Regretfully there has been no opportunity of using data from other optical or radar 

sensors. It would have been interesting to compare results, but in order that this study 

should be realistic in its goals, a few images tested thoroughly is a more worthwhile 

target than a large number of images that have only been tested superficially.

3.5 Discussion
The purpose of this chapter was to introduce the subject of image acquisition in order to 

highlight some of the geometric and radiometric aspects of SAR and SPOT images. It is 

accepted that a knowledge of the formation of the images should lead to a better 

understanding of how to develop and apply image registration algorithms to specifically 

work with these images. However, the subject of image acquisition is literally huge, and 

it really has not been possible to cover more than a minute fraction of it here. A full 

description of imaging radar can be found in Henderson and Lewis (1998), but 

unfortunately there is no similar single reference which fully describes optical remote 

sensing.

The first section of this chapter showed how a knowledge of the formation of SAR 

images can lead to the development of rigorous processing techniques, both geometric 

and radiometric. An understanding of the imaging geometry explains well all the 

geometric distortions present in SAR images. In turn this has led to the development of 

techniques for removing these distortions and generating geometrically accurate image 

products (orthoimages). The subject of radar image geocoding was briefly introduced in 

the previous chapter, but a full description of the subject of radargrammetry can be 

found in Schrier (1993).

The second section of this chapter introduced optical linescanners in general, and the 

SPOT system in particular. The geometric distortions present in optical linescanner 

imagery can be simply explained by considering the geometry of the sensor and the
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method of image acquisition, and removed from the image using a sensor model 

(Gugan, 1987). The main geometric distortions present are caused by the fact that the 

image is acquired over a period of time.

The radiometric properties of line scanner imagery are harder to quantify since they 

depend very much on which sensor is used to acquire the images. Different sensors 

operate in different parts of the electromagnetic spectrum, and each waveband has its 

own purpose: visible and near infrared wavebands for vegetation monitoring, middle 

infrared wavebands for geological mapping, and thermal infrared for oceanic and 

atmospheric applications. The purpose of this study is accurate image registration, 

which requires the highest resolution data, namely panchromatic data, which in the 

SPOT sensor straddles the visible wavelengths.

§ 3.4.4 introduced the SPOT satellite and the HRV sensor -  the instrument which 

acquired the optical images used in this study. It can clearly be seen that this is an 

enormously powerful and successful remote sensing tool, especially in the field of 

topographic mapping. A number of studies have shown that topographic maps and 

DEMs generated from SPOT data are accurate enough for mapping at scales of up to 

1:50 000 (Gugan and Dowman, 1988). SPOT is able to acquire images in a 

panchromatic waveband, and from different viewing locations, giving 10m resolution 

stereo pairs suitable for DEM generation and production of orthoimages. The method of 

geometric correction is exactly the same as the photogrammetric techniques used for 

aerial photography: the only supplementary data required is a set of ground control 

points. Although a DEM is also required, this can be generated from the SPOT data, as 

long as a stereopair of images is available. Techniques for automatic DEM generation 

from SPOT data are well established (see for example Day and Muller, 1989), and are 

now available as a part of many image processing software packages. It is for these 

reasons that SPOT data has been used in this study, rather than other optical sensors 

such as Landsat, which offer much better radiometric imaging, but far less advanced 

geometric viewing capabilities.

The final topic covered in this chapter was image selection. The study area was chosen 

carefully to ensure that a good selection of suitable images were available. One of the 

main limitations of image registration based on feature matching is that for it to be 

successful it is essential to have images which contain many different types of features. 

It goes without saying that featureless images will be impossible to match using feature
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based image registration, and probably not possible using any other technique. The 

region in Southern France meets all the requirements in terms of visibility of features 

within images from both SAR and optical sensors.
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Chapter 4 R ad io m etric  p re p ro c e s s in g

4.1 Introduction
Now that the images which are going to be used in this study have been introduced it is 

possible to begin describing the processing of these images. Before feature extraction 

algorithms can be applied to the raw data, the images have to be radiometrically 

preprocessed in order to improve the success rate of the feature extraction algorithms.

The presence of speckle in the SAR images means that SAR preprocessing algorithms 

(smoothing and speckle reduction algorithms) have to be able to remove a lot of ‘noise’ 

whilst preserving the features in the image. This is a very tall order, and for a number of 

years researchers have been trying to develop ideal speckle reduction algorithms. The 

discussion of speckle presented in the previous chapter explained how speckle could be 

mathematically modelled -  this chapter explains how this modelling can be used to 

develop speckle reduction algorithms. However, it is not essential to model speckle in 

this way in order to develop speckle reduction algorithms and a number of non-rigorous, 

but very useful, algorithms are presented.

The preprocessing of SPOT images is very different from the preprocessing of SAR 

images since the signal to noise ratio of SPOT data is very much higher than that of 

SAR data. In fact, very little preprocessing is required, but a few algorithms are 

presented which enhance the features in the image and therefore should improve the 

success of feature extraction algorithms described later in this study.

4.2 Preprocessing of SAR data

4.2.1 Introduction
The usefulness of SAR images is clear, but the noise-like speckle which corrupts the 

images makes them difficult to interpret. To improve the interpretability, and therefore 

usefulness of SAR images, it is essential to try to remove the speckle. A very large 

number of speckle reduction algorithms (or filters) have been developed over the years, 

and this section aims to summarize some of the more important ones, as well as
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introduce some new ideas on speckle reduction. For ease of discussion, the speckle 

reduction filters described here have been divided into four groups (although this 

division is not rigid):

□ simple;

□ adaptive, rigorously modelling the statistical properties of the speckle;

□ adaptive, but not modelling the statistical properties of the speckle; and

□ improved traditional filters.

4.2.2 Simple speckle reduction filters
Simple filters are those which perform exactly the same algebraic operation on all pixels 

in an image. They have the advantage that they are made up of basic algebraic 

operations, so are therefore easy to implement and quick to produce results. Their 

disadvantage is that they take no account whatsoever of the physical principles behind 

the formation of a SAR image, and therefore do not necessarily produce the best results.

The principal simple speckle reduction filter is the mean, or moving average, filter. The 

3x3 mean filter is implemented by convolving the image with the kernel:

1 1 1 
1 1 1 
1 1 1

(4.1)

In practice, this is done by moving a 3x3 window across the image, pixel by pixel. The 

digital number (DN) of the pixel in the centre of the window is replaced by the mean of 

all nine pixel DNs in the window. This process is repeated for every pixel in the image. 

This filter can be thought of as a special case of the general 3x3 parametric low pass 

filter (Gonzalez and Woods, 1992), defined by the kernel:

( \ \ 2

\ b + 2 j

1 b 1
b b2 b
1 b 1

(4.2)

Further variations of the mean filter can be generated by changing the size of the kernel 

(e.g. 5x5, 7x7 etc.) or changing the ‘shape’ of the kernel. The 3x3 plus-shaped mean 

filter is defined by the kernel:
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0 1 0 
1 1 1 
0 1 0

(4.3)

Two further variations of the mean filter are the threshold mean filter (Pratt, 1991) and 

the k-average filter (Davis and Rosenfeld, 1978). The threshold mean filter will only 

replace the central pixel with the mean of the eight surrounding pixels if the difference 

between the two is above some user defined threshold, else no change takes place. The 

k-average filter takes the mean of the k pixels nearest in value to the central pixel. For a 

3x3 kernel, the value of k is usually set to 6 for best results.

Another very important and often used simple filter is the median filter. It works by 

moving an n x  n window across the image, and replacing the central pixel with the 

median of the n elements of the window. This filter proves to be very successful since 

spurious DNs in the window do not affect the output.

The last simple filter introduced here is the Gaussian filter. The image is smoothed by 

convolving it with a kernel generated from a 2 dimensional Gaussian function, G(x,y), 

where

G(x,y) = exp(  x2 + y2 A 
2cr2

(4.4)

In practice, a2 is set to one third the size of the operator. For example, for an operator of 

size 5, the convolution kernel is:

1071

0 11 26 11 0
11 47 109 47 11
26 109 255 109 26
11 47 109 47 11
0 11 26 11 0

(4.5)

From the kernel, it can be seen that pixels close to the central pixel play more of a role 

in determining the output of the filter than pixels further away from the central one.

To compare the results of the filters described above, they have each been applied to a 

200x200 pixel test image taken from the ERS-1 PRI SAR image of Beaucaire. The test 

image (shown in figure 3.19 in the previous chapter) features a portion of the Rhone
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river near the town of Beaucaire. The river appears as a dark feature passing through the 

centre of the image. Urbanization (the very bright regions) can be seen on both sides of 

the river, and bridges can be seen crossing the river. It is difficult to clearly make out 

field patterns, but reference to a map of the region shows that the mid-grey regions 

north of the urbanization does in fact represent agriculture.

Figure 4.1 shows the Beaucaire test image after the mean filter has been applied. The 

image on the left has been generated using a 3x3 kernel, and the image on the right 

using a 9x9 kernel.

Figure 4.1 Mean filter applied to Beaucaire image (left: 3x3, right: 9x9)

Figure 4.2 shows the Beaucaire test image after the plus shaped mean filter has been 

applied. As with the above example, the image on the left has been generated using a 

3x3 kernel, and the image on the right using a 9x9 kernel.

Figure 4.2 Plus shaped mean filter applied to Beaucaire image (left: 3x3, right: 9x9)

In figure 4.3 the 3x3 and 9x9 median filter has been applied to Beaucaire test image.
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Figure 4.3 Median filter applied to Beaucaire test image (left: 3x3, right: 9x9)

Lastly, figure 4.4 shows the Beaucaire test image after Gaussian smoothing using a 3x3 

and 9x9 kernel.

Figure 4.4 Gaussian smoothing of Beaucaire test image (left: 3x3, right: 9x9)

By looking at the above smoothed images it is immediately obvious that there is much 

more smoothing if the filter is applied over a larger window, irrespective of which filter 

is being used. It is also clear that the mean filter gives the most smoothing, and the 

others all slightly less. However, the cost of good speckle reduction is the loss of 

detailed features in the image, or in the case of the 9x9 plus shaped mean filter, the 

addition of a new texture effect to the image which was not there before. The best 

compromise of the above filters is the 3x3 median filter, which smoothes much of the 

speckle away but retains many of the detailed features.

The list of simple filters described here is by no means exhaustive. Over the years there 

have been many different types of simple filters developed, a complete summary of 

which would be too long to be included in this study.

4.2.3 Adaptive, rigorous filters
Adaptive filters, as their name suggests, adapt the way in which they process the image 

depending on local conditions. The four adaptive filters described here all use a rigorous
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statistical model of the speckle. The statistical model given in § 3.2.4 assumes the noise 

intensity between pixels is statistically independent (i.e. the image is uncorrelated). 

Therefore, any filter relying on a multiplicative noise model should only be applied to 

an uncorrelated image. However, the ERS-1 PRI SAR images used throughout this 

work are correlated, so processing must be carried to eliminate the correlation in the 

image. This can be done by averaging down the image as intensity data whilst 

preserving the statistical properties. When the despeckling has been completed, the 

image can be restored to its original size again. In the examples described below, this 

procedure was carried out using tools from the CAESAR image processing toolkit 

(Caesar, 1996).

The four adaptive filters described below are implemented by moving a fixed size 

window across the image. The central pixel is assigned a new value which is dependent 

on the image statistics within the window, as well as the global image statistics. In all 

the examples below, the following definitions apply:

x = original value of central pixel in window

x = new value pixel assigned to central pixel in window

// = mean of pixel values within window

<JX = standard deviation of pixels within window

Vx = variance of pixels within window

<JV = standard deviation of speckle noise

Vv = variance of speckle noise

The Frost filter (Frost et al., 1982) uses the following algorithm to process the image:

(4.6)x = mx and m = ----- -exp
V

where A is a normalization factor, and B is a constant to be set empirically. The Lee 

filter (Lee, 1981) processes the image by applying the following algorithm to each pixel 

in the image:

x = Jii + f  V |/ V
,7  ( 4 ? )KVx + f l %
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The Kuan filter (Kuan et al., 1985) is a more generalised version of the Lee filter, and is 

defined by the equation:

x = ju + '  v.
\x - m ) (4-8)

The only difference between the Lee algorithm and the Kuan algorithm is the additional 

term in the denominator, which does not appear in the Lee algorithm due to the linear 

approximation that was made for the non-linear multiplicative noise model. The last 

algorithm introduced here is the maximum a posteriori (MAP) filter, proposed by Kuan 

et al. (1987). An estimate of the original pixel value, *, is obtained by maximising the a 

posteriori probability density function,

, . . P(z \ x )p(x )
p W =  P(z) <4-9)

with respect to x  (Kuan et ah, 1987). If P ( z | jc) is chosen to be a gamma function and 

P(x)  is chosen to be Gaussian, then the following expression can be derived:

2

x 2 (x -  //)  + —y  (jc — *) = 0 (4.10)
o t

The real root of this cubic equation gives the value of the output pixel.

As with the simple filters, each of the above adaptive filters have been applied to the 

Beaucaire test image. In each case a 5x5 window was used to calculate local image 

statistics. Figure 4.5 shows the results of the Frost and Lee filters, whilst figure 4.6 

shows the results of the Kuan and MAP filters.

Figure 4.5 Frost filter (left) and Lee filter (right) applied to Beaucaire test image
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Figure 4.6 Kuan filter (left) and MAP filter (right) applied to Beaucaire test image

The results of these four filters are very different to the results generated by the simple 

filters in the previous section. The adaptive filters have retained much more detail than 

most of the simple filters, but have also removed less speckle. The Frost filter has 

retained a iot of ‘spot’ noise, which has been interpreted as being features rather than 

speckle. The Lee and Kuan filters have produced similar results, but the Kuan filter 

appears to give a slightly smoother result. The MAP filter has removed the most amount 

of speckle and retained the fewest features.

As with the simple filters, there are many more rigorous adaptive filters that have been 

developed over the years. To describe them all here would digress too far from the aims 

of this study, so only the principle ones have been introduced.

4.2.4 Adaptive, non-rigorous filters
The next group of speckle reduction filters to be described are the adaptive but non­

rigorous filters. Only one filter in this group (the sigma filter) uses the statistical model 

of multiplicative noise to determine the standard deviation of the speckle, but at no 

stage is the speckle modelled - the standard deviation of the speckle is just used as a 

parameter in the processing. The three filters described in this section are the sigma 

filter (Lee, 1983), the most homogeneous neighbour (MHN) filter (Nagao and 

Matsuyama, 1979) and the modified k-average filter (Narasimha Rao et al., 1995).

The sigma filter operates by replacing the pixel being processed by an average of those 

neighbouring pixels whose DN values lie within two noise standard deviations of the 

original pixel. Hence, pixels which represent sharp spot noise are excluded from the 

summation. A second variation of this filter incorporates a threshold (k) which ensures 

that there are enough pixels in the averaging process from which to take a sensible 

mean. For a 5x5 mask, k is usually set to 2, so there must be more than two pixels from 

which to take the mean. For a 7x7 mask, k is usually set to 3.
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The most homogeneous neighbourhood (MHN) filter works by taking a 5x5 window 

centred on the pixel being processed and generating nine separate masks over the 

window (figure 4.7). The mean and variance of each mask are determined and the DN 

value of the central pixel is replaced by the mean of the mask with the lowest variance. 

It is assumed that the lowest variance mask has the least chance of crossing an edge, so 

this algorithm should remove noise whilst preserving edges (hence the alternative name, 

edge preserve smoothing).

Diagonal mask, Vertical mask, Central mask
rotated 4 times rotated 4 times

Figure 4.7 Nine masks used in MHN filter

The modified version of the fc-average filter differs from the original version by 

allowing the value of k to change according to local conditions. In homogeneous regions 

a high value of k gives better speckle reduction whereas in regions of low homogeneity 

a low value preserves features better. The value of k is calculated using the expression:

* = n 2( l - . s )  (4.11)

where s = {Vhc -  Vmll) / Vhc is the variance of local window, and and 

are the maximum and minimum variance of whole image, and n is the window 

size. However, the authors completely failed to realise that the variance across a SAR 

image can vary dramatically. A 512x512 sub-image was extracted from a full scene 

ERS-1 PRI SAR image, and the maximum and minimum variance, Vmax and Vmin were 

measured. It was found that V^n ~ 60, while ~ 8000000; the mean of the variances

was approximately 9000. Thus, applying the modified fc-average filter using a 5x5 

window to this image meant that for virtually all the pixels, the value of k was 25. There 

were literally only one or two pixels where k took a lower value. To solve this problem, 

the histogram of the image needs to be adjusted so pixels with very high DN values are 

eliminated, and therefore making the variances occupy a much smaller range. When this 

was done it was found that the values of k used in the smoothing of the image were 

spread across the range of 1 to 25 much more evenly. However, the smoothing now
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depends very much on the extent to which the histogram is manipulated, making 

application of the filter very image-dependent, and hence comparison with other filters 

quite difficult.

The application of these three filters are shown below in figure 4.8. The modified k- 

average filter was applied to a version of the test scene with a modified histogram in 

order to generate a visual result, but there is no further analysis of this filter for the 

reasons given above.

MHN filter

Modified k-average

Figure 4.8 Sigma filter, MHN filter, and modified fr-average filter applied to Beaucaire test
image

Not surprisingly, these results are different to those produced by the previous two 

groups of filters. The sigma filter seems to have done a good job of removing speckle 

but retaining features, as has the modified /:-average filter, although this one has 

removed a little more speckle. The most interesting results are those produced by the 

MHN filter, where the smoothed image has quite a granulated appearance. The speckle 

appears to have been all but eliminated, and the edges of features retained, but it is not 

easy to be sure whether this result is more useful than any of the others.
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4.2.5 Improved traditional filters
This section describes improvements to traditional filters and the improved application 

of traditional filters, which have been developed in the course of this research.

One method of using standard smoothing filters to give better results is by applying 

them repeatedly to the same image. For a filter which does not remove very much 

speckle on its first application, a second, third or even fourth application may remove 

more speckle whilst still retaining features in the image. However, for some filters, after 

the first application the statistically independent nature of the pixels may be destroyed, 

in other words, the image becomes correlated. Therefore, for the subsequent 

applications of the filter, this has to be taken into account. The result is an iterative 

application of speckle reduction filters, which for some filters, such as the MAP filter, 

proves very successful. Further details can be found in McConnell and Oliver (1996).

A second method of improving speckle reduction filters is by applying more than one 

filter in combination. Although this will only work for a few types of filter, it does 

produce some very useful results. In particular, the combination of the median filter 

with two of the three adaptive, non-rigorous filters described above (sigma, MHN) as 

well as the ^-average filter, was investigated. In each of these filters, some form of 

averaging is done on some of the pixels surrounding the pixel being processed. It was 

felt however, that the performance of each of these filters could be improved by 

replacing the averaging algorithm with the median algorithm, since the median 

algorithm gives better retention of features than the mean algorithm, but they are both 

able to reduce speckle by a similar amount (see table 4.1 in § 4.2.5). Therefore, three 

new filters are proposed here: the sigma-median filter, the MHN-median filter and the k- 

median filter.

In the traditional sigma filter, the output pixel value is given by the mean of all the 

pixels in a surrounding window which are within two standard deviations of the input 

pixel value. In the case of the sigma-median filter, the median of the pixels, rather than 

the mean is taken. Therefore, although the same number of pixels are used to generate 

the output value, pixels which differ greatly from the input pixel value have less 

influence on the result. Figure 4.9 shows the sigma filter and the sigma-median filter 

both applied to the Beaucaire test scene.
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Figure 4.9 Sigma filter and sigma-median filter applied to Beaucaire test image

As with the sigma-median filter, the MHN-median filter generates its result using the 

median algorithm rather than the mean algorithm. The same argument applies as before: 

pixels whose values differ greatly from the input pixel value have a minimal effect on 

the output pixel value. Figure 4.10 shows the MHN filter and the MHN-median filter 

both applied to the Beaucaire test scene.

Figure 4.10 Traditional MHN filter and MHN-median filter applied to Beaucaire test image

The /e-median filter works in the same way as the ^-average filter, except that the 

median of the k nearest pixels is calculated rather than the mean. When applied using a 

3x3 window, the median of the six pixels whose values are closest to the input pixel 

value is assigned to the output pixel. When a 5x5 window is used, the median of the 

seventeen pixels whose values are closest to the input pixel value is assigned to the 

output pixel. To keep in line with all the other filters described here, the Ar-median filter 

has been applied using a 5x5 window. Figure 4.11 shows the Ac-average filter and the k- 

median filter both applied to the Beaucaire test scene.
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Figure 4.11 k-average filter and the fr-median filter applied to Beaucaire test image

It is not easy to see whether or not each of these new filters gives an improved visual 

result compared to the corresponding original filter. In each case, just as much speckle 

appears to have been removed, but the features in the image have been affected 

differently, giving the different results. To evaluate the usefulness of these three new 

filters, they have to be compared with all the other filters discussed above. A 

comparison of all the filters described in this chapter is given in the next section, which 

introduces two parameters that can be used to compare the properties of the different 

filters.

4.2.6 Comparison of speckle reduction filters
One of the main difficulties with speckle reduction is not developing a good speckle 

reduction filter, but defining what is actually meant by the term ‘good’. The previous 

four sections have described a number of different speckle reduction filters. All of these 

filters operate quite differently, and give a wide range of results. The reason for trying 

to remove speckle from a SAR image is to increase the interpretability of the image and 

the detectability of features. Therefore, the two goals of speckle reduction filters, both 

of which must be achieved, are reduction of speckle and retention of features. Therefore 

when comparing different filters, these two attributes can be used as a measure of the 

quality of the filters.

A method of measuring the speckle reduction capability of filters, proposed by 

Crimmins (1986), is the speckle index. The speckle index is defined by the equation:

Speckle index =  Y  Y  —)----- ( (4.12)
M N ^ t ! f l ( m , n )

where o  and // are the variance and mean of pixels measured within a 3x3 sliding 

window passed across an image with dimensions of M  and N. The speckle index gives a
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measure of the amount of speckle in a particular SAR image. By measuring the speckle 

index both before and after a filter has been applied, it is possible to get some idea about 

how much speckle has been removed in the filtering process.

A measure of the retention of features during speckle filtering is much harder to 

quantify. M cFarlane and Thomas (1984) proposed a simple, but not necessarily 

particularly robust method of assessing the retention of features using step edges in the 

image. They suggested locating a few step edges in the unfiltered image, and measuring 

their gradients. After the image has been filtered, the gradients are measured again and 

the ratio of the two gradients (before and after) for each edge will give an indication of 

the amount of smoothing of the edges that has taken place, and hence how well features 

have been retained. Narasimha Rao et al. (1995) used this principle to define a quantity 

for assessing the strength of edges: the edge strength index. A further variation is 

proposed here for determining how well edges have been retained after the application 

of a speckle reduction filter. In the Beaucaire test image, ten adjacent step edges located 

along the bank of the river were interactively selected (figure 4.12). The difference 

between the high DN of the riverbank, and the low DN of the river was measured for 

each of the ten step edges, and the results averaged. When repeated for the filtered 

image the ratio of the average step heights gives an indication of the amount of edge 

retention.

I
Figure 4.12 Location of step edges in Beaucaire image

Furthermore, it is useful to view the profile of this edge in three dimensions to 

understand visually how the smoothing algorithms affect the sharpness of the edge. 

Figure 4.13 shows the above step edge in the original image displayed in three 

dimensions: rows and columns are represented by the x-y plane, and the z-axis displays 

the DN values.
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Figure 4.13 Perspective view of step edge in Beaucaire test image

These two measures were applied to a selection of smoothed SAR images generated 

from the speckle reduction filters described above. The results are shown in table 4.1. 

The relative speckle index was calculated by dividing the speckle index for the 

smoothed image by the speckle index of the original image, meaning that a value close 

to 1 represents low smoothing, whilst a value close to zero represents high smoothing. 

Similarly, for the edge retention indicator, a value close to 1 represents good retention 

of features, whilst a value close to zero represents poor retention of features. A 

combined parameter can be generated where the edge retention parameter for each filter 

is divided by the speckle index for that filter. The result is a parameter which gives an 

indication of the overall quality of the filter: the higher the value, the better the filter. 

All of the filters were applied using a 5x5 sliding window. They have been grouped 

together in table 4.1 according to type of filter.
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Speckle reduction 
filter

Relative speckle 
index

Edge retention 
indicator

Edge retention/ 
speckle index

Mean 0.1033 0.294 2.85
Plus mean 0.2114 0.569 2.69
Median 0.0969 0.777 8.02
Gaussian 0.2674 0.587 2.20
^-average 0.2861 0.922 3.22
Frost 0.4667 0.963 2.06
Lee 0.4637 0.981 2.12
Kuan 0.4569 0.838 1.83
MAP 0.1246 0.348 2.79
Sigma 0.2245 0.806 3.59
MHN 0.4129 1.169 2.83
Sigma-median 0.3724 1.126 3.02
MHN-median 0.3152 1.003 3.18
^-median 0.2488 1.065 4.28

Table 4.1 Speckle indices and edge retention indicators for various speckle reduction
filters

With regards to which filters are best at removing speckle, the speckle indices in table

4.1 confirm what has already been seen in the above examples, namely that the simple 

filters remove the most speckle, closely followed by the MAP filter. The worst filters, in 

terms of the amount of speckle removed, are the rigorous adaptive filters (Lee, Kuan 

and Frost). The rest of the filters fall somewhere between these two extremes. This 

result is not really that surprising: simple filters smooth the image quite brutally, 

irrespective of whether any details need to be preserved, whereas rigorous adaptive 

filters pay great attention to removing only speckle and thus retaining a large amount of 

fine detail. It should be remembered that the speckle index is really just a measure of 

fine detail within the image: it makes no distinction between speckle and features. 

Therefore it is not possible to judge whether speckle or features, or both, are being 

removed from the image. It is for this reason that the edge retention indicator was 

introduced.

The edge retention indicator gives a good indication of the extent to which edges are 

smoothed during the filtering process. The worst culprits for smoothing edges are the 

mean and MAP filters, whilst four of the five non-rigorous adaptive filters actually 

enhanced the edge feature. The rigorous adaptive filters are also very good at retaining 

edges.

In order to decide which filters could be considered the best for removing speckle but 

retaining edges, the ratio of edge retention parameter to speckle index provides a useful 

guide. The median filter seems to be the best, and the Kuan filter the worst. All three of
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the new proposed filters (sigma-median, MHN-median and k-median) give very good 

results, as does the sigma filter. These results should not be interpreted too rigidly since 

they can vary according to which test image is used, or how various parameters have 

been set, but they are confirmed to some extent by previous studies: the median filter is 

generally accepted as being one of the best filters available (Toll, 1985; Mueller and 

Hoffer, 1989), and the MHN filter has often been used as a prelude to feature extraction 

from Earth observation images (Newton et al., 1994; Morgado and Dowman, 1997; 

Vohra and Dowman, 1996).

Figures 4.14, 4.15 and 4.16 show the perspective view of the step edge after the 

application of selected filters.

Figure 4.14 Perspective view of step edge after application of mean filter (left) and
median filter (right)

Figure 4.15 Perspective view of step edge after application of MHN filter (left) and MHN-
median filter (right)



Figure 4.16 Perspective view of step edge after application of sigma-median filter (left)
and fc-median filter (right)

It can clearly be seen that the mean filter smoothes the edge more than any of the filters.

The steep slope is completely wiped out, leaving quite a gentle gradient from the bank

to river. In the image this would mean the complete loss of distinct edges. The median

filter smoothes the bank and the river very well, but retains a lot of the steepness of the

edge. The other four filters show varying degrees of smoothing and edge retention. The

MHN and the sigma filters smooth the features slightly more than the corresponding

MHN-median and sigma-median filters, as would be expected, but all seem to retain the

steepness of the slope as well as each other.

This concludes the comparison of standard speckle reduction filters. Further 

comparisons can be found in McFarlane and Thomas (1984), Mastin (1985) and Dare 

and Dowman (1996).

4.2.7 Conclusions
From the above discussion of speckle reduction, it can clearly be seen that development 

of smoothing filters which do not destroy image information is not a trivial problem. So 

much work has been carried out over the years on this subject that it is not possible to 

describe it all here. Hence, the above discussion has limited itself to the main speckle 

reduction techniques which are generally accepted as being useful in SAR image 

interpretation.

Four groups of speckle reduction filters were introduced: simple filters, rigorous 

adaptive filters, non-rigorous adaptive filters and modified traditional filters. Each group 

gave quite different types of results: simple filters removed speckle well, rigorous 

adaptive filters preserved features well and the other two groups fell somewhere in
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between. The aim of this study is to select those filters which best aid feature extraction 

for image registration. However, before feature extraction has been investigated it is 

difficult to say at this stage exactly which filters should be selected, although it is 

possible to describe general properties of these filters, based on the types of features 

will need to be extracted: namely polygonal features that are recognisable in both of the 

images. These features must therefore have closed boundaries and they must not be too 

small, since small features are difficult to match. Therefore the ideal speckle reduction 

filters for this application can afford to lose fine detail, so long as features with strong 

edges are retained. This eliminates the simple filters (too much smoothing, therefore 

weak edges) and rigorous adaptive filters (not enough smoothing, therefore too many 

small features), hence leaving the original and modified non-rigorous adaptive filters. 

The best performers were the sigma filter, the MHN filter, the sigma-median filter, the 

MHN-median filter and the k-median filter. These filters will be used in the next stage 

of the processing, along with the median filter, which gave consistently good results.

4.3 Preprocessing of SPOT data

4.3.1 Introduction
Unlike SAR data, there is very little radiometric preprocessing that actually needs to be 

performed on SPOT data before it is used in the feature extraction process. Since the 

signal to noise ratio is usually good, noise does not obscure features and no smoothing 

is required. However, to improve the success of SPOT feature extraction algorithms, 

application of particular smoothing filters may be necessary.

Before any algorithms were applied to the SPOT images used in this study, the contrast 

was improved by adjusting the image histogram. A histogram normalization was 

performed, making features become much more distinct from their backgrounds. It was 

anticipated that this would improve the effectiveness of feature extraction algorithms 

without destroying any image information.

4.3.2 Smoothing of SPOT images
The smoothing filters that may aid the extraction of features are those which enhance 

the strengths of edges in the image, but do not destroy too much image information. 

From the study of SAR speckle reduction, it was decided to test three smoothing 

algorithms: the median filter, the MHN filter, and the MHN-median filter. The results of 

applying these algorithms to SPOT images are shown in figure 4.17 below.
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MHN filter MHN median filter

Figure 4.17 Smoothing algorithms applied to SPOT image of Beaucaire

The median filter (applied here using a 3x3 kernel) apparently does not change the 

original image significantly. The structure of the features has been preserved, and a 

small amount of noise has been removed. The MHN filter has much more of an 

influence than the median filter. The result is that features appear sharper, but it is clear 

that information has been lost, especially in the urban areas just below the centre of the 

image. This loss of information is not considered to be a problem since only very small 

features have been affected badly -  the larger features are still very clear. The MHN- 

median filter produces very similar results to the MHN filter -  so much so in fact that it 

is very difficult to detect any visual differences between the two resulting images. As a 

result it was decided to use only the median and MHN filters in conjunction with the 

feature extraction algorithms.
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As a final point it is interesting to note that the MHN filter and the MHN-median filter 

produce acceptable results for both images that are very noisy (SAR images) and those 

which are not so noisy (SPOT images). It is only when a lot of noise is present that the 

differences between these two filters is noticeable. This confirms that although the 

MHN-median filter removes more noise pixels than the MHN filter, it still preserves a 

significant amount of the information in the image.

4.3.3 Conclusions
The higher radiometric quality of SPOT panchromatic images compared to ERS SAR 

images means that relatively little preprocessing is required before features are 

extracted. Two algorithms were selected to be used with the feature extraction 

algorithms discussed later in this thesis. In addition, the contrast of the SPOT images 

was improved using a histogram normalization.

4.4 Discussion
This chapter has described the preprocessing of the SAR and SPOT images used in this 

study. Due to the radiometric quality of the SAR images comparatively more processing 

was needed than for the SPOT images.

With an understanding of SAR imaging, it has been shown that it is possible to 

construct a mathematical model of speckle, and hence develop rigorous speckle 

reduction algorithms. These algorithms have been shown to be very efficient at 

removing speckle from SAR images whilst retaining many of the features within the 

image. A number of non-rigorous filters were also introduced, which in some cases 

performed just as well, even though they did not use a rigorous model of speckle. Thus, 

for speckle reduction, although an understanding of SAR imaging is useful, it is not 

necessarily essential. Interestingly, it was found that the speckle reduction algorithms 

which did not rely on a rigorous mathematical model gave better results for the purposes 

of this study.

An important part of this chapter is the proposal of three new speckle reduction filters: 

the sigma-median, the MHN-median and the k-median. They do not attempt to estimate 

the radar backscatter like some of the rigorous filters, but instead they manipulate the 

image to give a better visual result, which for the purposes of this study is perfectly 

adequate. Although they are not necessarily fundamentally ground breaking, they are 

new and do produce good results compared to the other filters tested.
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Compared to the preprocessing of the SAR data, the SPOT preprocessing is very 

simple. The only algorithms which can be usefully applied to the SPOT data are those 

which enhance features while only slightly smoothing the image. The filters that fall 

into this category are the median filter, the MHN filter and the MHN-median filter. 

However, only the median and MHN filters will be used in later chapters -  the results 

produced by the MHN-median filter were too similar to the MHN results to be worth 

considering.

This concludes the overview of preprocessing techniques used in this study. The 

algorithms introduced here are now used in the next few chapters in conjunction with 

feature extraction algorithms.
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Chapter 5 F e a tu re  e x t r  a c t io n

5.1 Introduction
Chapter 2 introduced the subject of image registration based on feature matching, and 

proposed a system requiring the extraction and matching of both patches and edges. 

This chapter now describes in detail the principles behind feature extraction for 

automatic image registration, and the practicalities involved in applying feature 

extraction algorithms to different images. The subject of feature extraction, along with 

feature matching (described in the next two chapters) comprise the most difficult 

problems that have to be solved for automatic feature based multisensor image 

registration.

The ability to successfully match features from different images depends very much on 

the type, quantity and quality of the extracted features. If the features extracted are of 

the wrong type, poor quality, or too few, then it will be extremely difficult, if not 

impossible, to match corresponding features and perform the registration. Therefore a 

lot of time and effort has been put into the development of feature extraction algorithms 

to help ensure there are plenty of suitable features extracted from each image to be 

matched.

The three themes central to feature extraction for image registration are:

□ similar features have to be extracted from each image, even if the images have 

very different spectral properties; but,

□ not every single feature needs to be extracted from both of the images; and,

□ not all extracted features need to be matched.

It is essential that similar features are extracted from the pair of images being registered, 

and that those features are well distributed across the images. Once the features have 

been extracted, they have to be matched. If field boundaries, for example, are extracted 

from one of the images, then field boundaries must also be extracted from the other
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image. This is not a problem if the images were acquired by the same type of sensor, or 

by different sensors operating in the same part of the electromagnetic spectrum, but if 

the images are very different in nature (as is the case with SAR and optical data) then it 

proves more difficult to extract similar features. Therefore, to improve the chances of 

extracting similar features from different images, a range of feature extraction 

algorithms have to be used.

Unlike other applications of feature extraction, such as landcover classification, it is not 

necessary in feature based image registration to extract every single feature in the 

image. For a pair of relatively small images (say, for example, 512x512 pixels) a 

minimum of four well distributed matched patches would be sufficient to perform the 

first stage of the image registration procedure. To do this would mean extracting exactly 

the same four features from each image, which although not impossible, is quite 

unlikely. Therefore as many patches as possible should be extracted to ensure a large 

redundancy of features.

In the same way as it is not necessary to extract every feature from the image, it is also 

not necessary to match every feature that has been extracted. Even if hundreds of 

features have been extracted, four well distributed matched features are sufficient to 

perform the registration. However, if more features can be matched, a better result 

would be achieved since again there would be greater redundancy.

To summarize feature extraction in the context of image registration, it is reasonable to 

say that redundancy is a key factor. Although not all features need to be extracted from 

the image, as many as possible should be extracted to ensure a redundancy of features, 

and although not all the extracted features need to be matched, as many as possible 

should be matched to ensure a redundancy of matches. It is this redundancy that will 

eliminate blunders from the automatic image registration procedure, and hopefully lead 

to a more accurate result.

A final comment should be made about the types of features used in the automatic 

registration procedure. Although linear and areal feature extraction techniques are 

discussed in this chapter, there are other types of features which could be used for 

feature matching, but which have not been included in this study. Two principal ones 

are point features and wavelets (Djamdji et al., 1993). The reason for not using point 

features was given in chapter 2 : point features extracted from multisensor imagery 

cannot be matched. It has been shown by many authors that wavelets can be
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successfully used for single sensor image registration (Fonseca et al., 1997; Devore et 

al., 1997). However, the possibilities of using wavelets for multisensor image 

registration are less well researched. A quick study of wavelets seemed to show that 

they would not necessarily be any better for multisensor image registration than linear 

or areal features, so they are not considered in this study. However, further research is 

required in this area.

5.2 Edge extraction

5.2.1 Introduction
This section describes the various procedures investigated in the course of this study to 

extract edges from optical and microwave remotely sensed imagery. The two main 

types of edges in images are boundaries between two different regions on the ground 

(such as boundaries between different agricultural fields), and long, thin, continuous 

features (such as a roads or railways). In this study both of these types of features have 

been grouped together under the title of edges, even though strictly speaking the second 

group can be thought of as linear features rather than edges. The following sections 

describe a range methods for detecting edges using derivative operators, an algorithm 

for detecting edges in SAR images (SCANEDGE) and other techniques for extracting 

linear features specifically.

Extraction of edges is much simpler than extraction of linear features since an edge can 

be modelled much more easily. An edge in an image is just a boundary between two 

regions of different grey level and it does not necessarily represent a real feature on the 

ground. However, the strength of an edge can easily be determined, and it is reasonable 

to assume that if the edge is strong it does actually represent a real feature. Therefore, 

by simply thresholding an edge image it should be possible to eliminate false edges. In 

contrast, linear features (such as those which represent roads or railways) are far more 

complicated. Their grey level must be different from the background for them to be 

visible, but this grey level may vary as the background varies. The development of an 

algorithm which can recognise the complexities of a linear feature and extract it from 

the background is not at all trivial, and beyond the scope of this work. Therefore, in this 

study, the extraction of edges is pursued, but the extraction of linear features is not. 

However, a description of linear feature extraction techniques has been included.
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5.2.2 Gradient operators for edge detection
The most efficient way of detecting edges in images is by using derivative spatial filters 

(Gonzalez and Woods, 1992). If the image is represented by the function f (x ,  y) then the 

first derivative of this function is represented by the vector V/, where

v/=iJ +j! =iv/' +jv/> ( 5 -x)

The magnitude and direction of this vector are given by

Magnitude, |V/| = ^ (V /J 2 +(v/ y)2 (5.2)

Direction, 0(x, y) = tan
V/x ,v Jx y

(5.3)

In practical terms, the images are differentiated by applying a kernel to the image with 

elements that approximate the above equations. Consider the 3x3 kernel:

a\ 0 2 03

# 4 a5 0 6

an 0 8 ag

(5.4)

An approximation to the first derivative at as in the x (horizontal) and y (vertical) 

direction is given by the partial derivatives:

})f
—  - ( a l +a4+a7) - (a 3+a6+a9) (5.5) 
ox

df
—  ~(al +a2 +a3) - ( a 7 +a%+a9) (5.6) 
dy

These expressions can be represented by two kernels (shown below in equation 5.7) 

which, when convolved with the image, give results that can be combined to determine 

the magnitude and direction of edges at every pixel location.

1 0 -1

1 0 -1

1 0 -1

1 1 1

0 0 0

-1 -1 -1

(5.7)
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These particular kernels are known as the Prewitt operators. There are many other types 

of operators which approximate the partial derivatives in equations 5.1, and therefore 

enhance the edge information in the images. The Sobel and Frei-Chen operators are 

shown below.

Sobel:

1 0 -1

2 0 -2

1 0 -1

1 2 1

0 0 0

-1 -2 -1

(5.8)

Frei-Chen:

1 0 -1

S 0 -V?

i 0 -l

l V2 1

0 0 0

-1 -4~2 -1

(5.9)

As well as enhancing edge information in images, operators such as those described 

above also enhance noise which can lead to the detection of false edges. Unlike the 

Prewitt operator, the Sobel and Frei-Chen operators introduce a smoothing effect as 

well as an edge enhancement effect, which gives a slightly less cluttered image, but the 

edges are very slightly less distinct. For this study it was decided that the Sobel operator 

would be used since it gives the most smoothing. Figure 5.1 shows a test image and the 

corresponding edge strength image generated using the Sobel operator.

Figure 5.1 Original and edge strength images generated using Sobel operator
(© Playboy Inc.)

The edge strength image in figure 5.1 above shows how the Sobel operator highlights 

strong edges well (such as those around the hat) but weak edges are more difficult to
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make out (the line of the nose and mouth). Before these edges can be used in the 

matching procedure described in chapter 7, a lot of post-processing has to take place; 

this is described below in § 5.2.5.

Edge enhancement is not limited to first order derivatives: second order derivatives can 

also be used. The two dimensional Laplacian of the image function f{x, y) is given by

V 7 ( * .> 0 = ! ^ -  + f ^ T  (5-10)dx dy

The most common way of determining the second derivative of a digital image function 

is by convolving the image with the operator:

0 - 1 0

- 1 4 - 1

0 - 1 0

(5.11)

However, problems can occur when applying this operator for two reasons: it will 

produce double edges, and it tends to enhance noise pixels as well as edge pixels. The 

production of double edges can be explained by examining the profile of an edge (figure 

5.2).

(a) step edge

(b) first derivative

(c) second derivative

Figure 5.2 Step edge with first and second order derivatives
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Figure 5.2 (a) shows a typical step edge, figure 5.2 (b) shows the first derivative of this 

step edge, and figure 5.2 (c) the second derivative. The first derivative has one peak but 

the second derivative has a peak and a trough. The magnitude of the second derivative 

therefore has two peaks. However, the second derivative can be used to locate the edge 

by examining the location of the zero-crossing. The procedure proposed by Marr and 

Hildreth (1980) suggests firstly smoothing the image with a Gaussian filter to limit the 

rate at which intensities change, and then identifying intensity changes (edges) by 

finding the zero-crossing of the second derivative. Hence the image is convolved with 

the Laplacian of Gaussian. The Gaussian takes the form:

G (r) = exp
2 cr

(5.12)

where r 2 = x 2 + y 2 and <7is the standard deviation.

Laplacian of Gaussian= V2G =
V - o - 2 ^

C74
exp

2 < t

(5.13)

In practical terms, the Laplacian of Gaussian operator is applied by setting a width 

parameter w, where

w = 2 V2 c (5.14)

Figure 5.3 shows the result of applying the Laplacian of Gaussian operator to an image 

with two different values for w.

/  /« /•>e i- v  •,7  / • • i Tl(l// r

Figure 5.3 Zero crossings in test image, w= 5 (left) and iv=9 (right)
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The edge image on the left of figure 5.3 (w=5) has clearly detected more edges than the 

image on the right (w=9). This is because with a larger value for the parameter w, there 

is much more smoothing in the image, and more of the weaker edges are smoothed out. 

However, the drawback of this is that the edges which have been extracted are much 

more generalized and do not necessarily reflect the actual edges in the original image 

quite as accurately as the edges extracted by using a lower value of w . Although both of 

the above images could be said to have some edges which truly represent real features 

in the original image, there are also a lot of edges present which represent only very 

weak features. It will be necessary to remove these types of edges since they will 

complicate and slow down the matching process, and possibly lead to false matches. 

Unfortunately, the principal method of removing weak edges from an image, non- 

maximal suppression (described below), cannot be used on edge images generated using 

second derivatives since there is no edge strength or edge direction associated with 

these images. Therefore, simple clutter removal algorithms (described at the end of this 

chapter) have to be used, even though they will not necessarily produce good results. 

The post-processing of edge images in order to improve feature matching results is a 

subject which is discussed in § 5.2.5.

5.2.3 The SCANEDGE algorithm
A method which was used for extracting edges from SAR images was the SCANEDGE 

algorithm supplied as a part of the commercial software package Caesar, produced by 

N. A. Software Ltd., UK (Caesar, 1996). The algorithm detects edges using a 

combination of a scanning window and a scanning edge (Oliver et al. 1995). The user is 

able to set a parameter, p, which controls the probability of detecting false edges. Figure

5.4 shows edges extracted from the Entressen SAR image using three different values of 

p  (0 .0 1 , 0 . 0 0 1  and 0 .0 0 0 1 ).
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Figure 5.4 Edges extracted from Entressen images using SCANEDGE with three different

values of p

The SAR image used to illustrate the SCANEDGE algorithm would be a challenge for 

any edge detector, even though it is a quite typical of SAR data. Although the human 

observer is able to clearly see field boundaries, there are really only a few features 

which stand out enough from the background to be detected by this algorithm. Those 

features are the lake in the bottom left corner of the image and the group of very bright 

rectangular objects near the centre. These features have been extracted well in each of 

the four different examples above, but where lower values of the parameter p  have been 

used, far more edges have been extracted. However, it is not clear whether these edges 

represent real features on the ground, or whether they are false alarms. It would be 

expected that the more continuous the edge feature is, the more likely it is to represent a 

feature on the ground. Therefore, a careful balance between choice of the parameter p 

and clutter removal algorithms should lead to the best result for feature matching.
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5.2.4 Other methods of linear feature extraction
In the course of this study, other linear feature extraction algorithms were tested, which 

although^did not produce good results at the time, have been included in this thesis due 

to their relevance to the subject. Both of the techniques described below would need 

more research before they could be used successfully in the feature based image 

registration procedure, but even so they are potentially very useful algorithms.

One of the linear feature extraction algorithms tested but not pursued was the Hough 

transform (Hough, 1962). A selection of points in an image f(x, y) will all lie on a 

straight line if they satisfy the equation:

y = ax + b (5.15)

where a and b are parameters representing the gradient and y-intercept of that line. 

Rewriting this equation as:

b = -ax + y (5.16)

and substituting the x and y values of a point (x*, y*) in image space will yield a straight 

line in the ab plane (parameter space) with the equation:

b = -axk + yk (5.17)

If two points are collinear in image space, they will translate into two intersecting lines 

in parameter space. The point of intersection in parameter space represents the gradient 

and intercept of the line joining the two points in image space. Any further points which 

lie on the same line in image space will also translate into straight lines in parameter 

space which will all intersect at the same location. Therefore, by examining intersecting 

points in parameter space, it is simple to determine the parameters of the line passing 

through collinear points in image space. However, if those points lie along a line which 

is almost vertical, a and b approach infinity. Therefore, an alternative method of 

describing a straight line which avoids infinities can be used:

xcos0+ ysin#= p  (5.18)

where p  is the length of the normal to the line, measured between the line and the 

origin, and 6 is the angle between the normal and the x-axis. The procedure for 

determining gradient and intercept is exactly the same, except that now lines are plotted 

in the pO plane rather than the ab plane.
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In practical terms, the Hough transform can be difficult to implement for two reasons: 

detected lines have infinite length, and a linear feature in an image is not represented by 

a series of points. To limit the length of detected lines, the image must be split into tiles, 

and each tile processed individually. To convert the linear features in the image to a 

series of points, the image must be preprocessed. It is this preprocessing step that needs 

further research before the Hough transform can be used to extract linear features from 

remotely sensed images in a robust manner. An experiment was performed with a SAR 

image of a region of Southern France near the town of Langon. This image was 

thresholded and filtered for clutter before linear features were extracted with the Hough 

transform. Four processing steps are shown in figure 5.5.

(b)

V j |*S v  1.4 V: ; ■' . i V 1

(C) (d)
Figure 5.5 Four processing steps in Hough transform procedure

Figure 5.5 (a) shows the original Lan£on SAR image, and figure 5.5 (b) shows the result 

of preprocessing, where the image has been thresholded and filtered for clutter. Figure 

5.5 (c) shows the result of applying the Hough transform to a tiled version of the image, 

and in figure 5.5 (d) this image has been thresholded to separate the strong linear 

features from the weak ones. The resulting linear features can be seen to coincide well 

with those in the original image, but a lot of features in the image have been lost in the 

extraction process. It seems that the Hough transform is a very powerful tool for linear
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feature extraction, even from an image where there is a lot of noise, but further research 

is required if this is to become a reliable method of feature extraction.

A second linear feature extraction technique which was investigated but not followed up 

is the use of line enhancement masks, which when convolved with the image, enhance 

linear features (Gonzalez and Woods, 1992). The operators used to enhance lines are:

-1 -1 -1

2 2 2

-1 -1 -1

-1 2 -1

-1 2 -1

-1 2 -1

(5.19)

2 -1 -1

-1 to -1

-1 -1 to
-1 -1 2

-1 2 -1

2 -1 -1

If the first operator is convolved with an image where a horizontal line is present, the 

operator will enhance this line relative to the background. The result of this operator 

will be greater than the results from the other operators, since they will tend to highlight 

lines in other directions. Therefore, by applying all of these operators to an image, and 

comparing the results from each, it is possible to enhance linear features. Tests showed 

that although this produced interesting results, it did not provide the output required for 

feature matching. However, use of these operators with an algorithm such as the Hough 

transform could possibly lead to much better linear feature extraction, but further 

investigation is required.

5.2.5 Post-processing of edge images
After edges or linear features have been extracted, they must be processed in order to 

highlight the important features and suppress the unimportant ones. Figure 5.6 shows 

the result of applying the Sobel edge detector to the SPOT image of Istres.
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Figure 5.6 SPOT image of Istres (left) and Sobel edge strength image(right)

Although there are quite a few very strong edges in the image, there are also a lot of 

weak edges. In order that this result can be used efficiently in the matching procedure, 

the weak edges need to be removed. The technique used to do this is non-maximal 

suppression (Canny, 1986), but the particular method described here was proposed by 

Lewis (1988). The distinction of whether an edge pixel strong or weak is determined by 

examining neighbouring pixels. An edge pixel is defined as strong if its strength is 

greater than the two pixels which lie on a line parallel to the gradient of the edge in 

question and on either side of it (see figure 5.7).

X

Y

Figure 5.7 Non-maximal suppression proposed by Lewis (1988)

In figure 5.7, the edge follows a path from X  to Y. Consider the pixel at point A. To 

decide if this pixel is strong it is compared with the pixels values at points a and b. If the 

strength of A is greater than both a and b , then it is considered strong. Now consider the 

pixel at point B. Rather than comparing the strength of B with the strengths of points c 

and d  (as suggested by Canny, 1986), it is actually compared with the strengths at points 

e an d /. These two points are located such that the length of e f  is the same as ab, and e 

a n d / l ie  on a line parallel to the gradient of the edge at point B. The strengths at e and /  

are determined from a linear interpolation of the four surrounding pixel values. The 

result o f removing weak edge pixels in this way is shown in figure 5.8.
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Figure 5.8 Weak edges suppressed using non-maximal suppression

There are still a large number of edges in the image so further processing is required: 

the edge suppressed image must be thresholded at some user defined value. The result is 

shown in figure 5.9.
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Figure 5.9 Thresholded edge image

It is essential that the edge image is thresholded so that weak edges can be removed, but 

selection of the threshold is very difficult since there is no obvious way of deciding 

where the boundary between strong edges and weak edges should lie. A method of trial 

and error has been employed here, but further research is necessary to formulate a more 

robust method.

5.2.6 Conclusions

This section has introduced some different methods of extracting edges. The list is by 

no means conclusive; it merely represents some algorithms which are useful for 

extracting edges for automatic image registration. Although the term ‘edge extraction’ 

has been used to describe all the algorithms here, they could really be separated into two 

categories: edge detection and linear feature extraction. Edge detection relies on 

differentiating the image either once (first derivative edge detection) or twice (second 

derivative edge detection). First derivative edge detection produces both an edge 

strength and edge direction image, whereas second derivative edge detection produces



an edge location image. Post-processing of both these images is necessary to prepare the 

images for registration by removing clutter.

The linear feature extraction algorithms described in this section include line detection 

kernels, the Hough transform and a commercially available edge detection routine for 

SAR images (SCANEDGE). Of these algorithms only SCANEDGE was tested fully. 

The Hough transform was shown to be a very useful tool for extracting straight linear 

features, but further research is required to ensure that consistently reliable results can 

be achieved. Line detection kernels were tested but found to not produce useful results 

for the purposes of this study.

Of all the edge extraction techniques described here, the only ones which can be used in 

conjunction with smoothing and speckle reduction algorithms introduced in the previous 

chapter are the first derivative edge detectors. The second derivative edge detector, the 

LoG operator, cannot be used in conjunction with a smoothing algorithm since it 

already incorporates one. The SCANEDGE algorithm relies on the DNs of the SAR 

image being uncorrelated, but this is only the case for raw images that have been 

processed in the correct manner. Application of a speckle reduction algorithm will lead 

to the pixel values being correlated and hence the SCANEDGE algorithm may produce 

unreliable results. Examples of results obtained when the Sobel operator is used with 

smoothing and speckle reduction algorithms are shown in chapter 7 when edge 

matching is discussed.

In summary some fairly basic linear feature extraction techniques have been tested and 

they have been found to produce results good enough for the purpose of image 

registration. Implementation of these results will be discussed in chapter 7.

5.3 Patch extraction

5.3.1 Introduction
This section describes the three techniques used in this study (and one other not used) to 

extract areal features from satellite imagery. A patch is any feature in an image with a 

two dimensional spatial extent. Although the extent of a particular feature in an image is 

easy for the human visual system to determine, it is much more difficult to train a 

computer to recognise where features begin and end. Therefore, the algorithms 

described below are concerned with recognizing a feature and its spatial extent, and then 

separating that feature from the surrounding features and background. A patch can be 

recognized by its colour, texture or boundary (or a combination of these three). Of the
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four techniques described below, thresholding recognizes features according to grey 

level (i.e. colour), homogeneous patch extraction according to texture (or lack of it), and 

segmentation according to both grey level and texture. The method of extracting patches 

by converting boundaries to regions was not tested in this thesis, but is an important tool 

for feature extraction which is closely related to the other methods described, and so has 

been included here for completeness. In the very active discipline of computer vision, 

many techniques for extracting areal features from images have been developed, and 

continue to be developed, but to describe them all here would digress to far from the 

principle topic of this thesis (image registration). So long as the areal feature extraction 

algorithms introduced here provide useful features for image registration, then a full 

description of every other type of feature extraction algorithm is not necessary.

Of the algorithms described below, only three benefit from being used in conjunction 

with smoothing and speckle reduction algorithms. Automatic thresholding makes use of 

smoothing in order to enhance the image histogram (described in § 5.3.2), and the 

optical segmentation algorithms, REGSEG and OPTISEG, make use of the MHN filter 

to enhance the edges of features in the SPOT images. The reasons why preprocessing 

can or cannot be used with particular feature extraction algorithms are given in each 

case.

5.3.2 Thresholding
Thresholding is the simplest method of extracting areal features from digital images, but 

it is not really recognized as a reliable feature extraction tool. However, because of its 

relative simplicity, and success in other automatic image registration systems (Morgado 

and Dowman, 1997; Vohra et al. 1996) it was felt that it should be included in this 

study. Since a digital image consists of pixels with discreet grey values, it is possible to 

select a particular grey level (the threshold) below which all the pixels are set to zero, 

and above which all the pixels set to 255 (for an 8  bit image). Figure 5.10 shows an 8  bit 

greyscale image (i.e. DN values from 0 to 255) which has been thresholded at grey level 

112.
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Figure 5.10 Original greyscale image (left) and image thresholded at grey level of 112
(right) (© Playboy Inc.)

The result of the thresholding is that the image has been split into black and white areas 

corresponding to light and dark regions in the original image. If a particular feature is 

very light in colour and has a dark background, thresholding provides a means to 

separating that feature from its background. However, there are two particular 

difficulties associated with feature extraction using thresholding:

1. If the grey level difference between features and background varies across the 

image, a global threshold (i.e. thresholding applied to the whole image) will not 

extract all the required features.

2. Even in local regions (i.e. a region where feature and background have a 

constant grey level difference) there is always the difficulty of knowing which 

threshold level to set in order to get optimum feature extraction.

The first problem can be solved by splitting the image into a discreet number of smaller 

tiles in such a way that if a tile contains a feature, then the difference in grey level 

between the feature and the background is constant. If a tile contains multiple features, 

it could be further split into smaller tiles, until there is a maximum of one feature and 

one background in each of these smaller tiles. W hen the image has been split into the 

required number of tiles, each tile can be thresholded individually with a different level. 

Although this method of tiling may not be particularly robust, it is an improvement over 

trying to threshold a large image with just one threshold level.

The second problem, actually deciding which is the most appropriate level for 

thresholding, is more difficult to solve, and is compounded by the fact that if the image 

has to be tiled, it has to be solved many times over. One possible solution is to manually
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try many different threshold levels on each image or tile until the required result is 

obtained, but this is very labour intensive. A second possibility is to automatically select 

the threshold level based on the content of the image or tile; this is known as automatic 

thresholding. A survey of automatic thresholding techniques is given by W eszka (1978). 

Since manual thresholding can be very time consuming, especially with large images, a 

technique of automatic thresholding has been developed in the course of this study.

Automatic thresholding uses the shape of the histogram to determine the most 

appropriate level for the threshold. Since the shape of the histogram depends on the 

content of the image, the success of automatic thresholding is also heavily dependent on 

the image content. For this reason, automatic thresholding is not appropriate for all 

types of images. The simplest type of image to threshold automatically is one which 

contains a single feature on a uniform background, since in this case the histogram will 

usually have two peaks, one representing the feature, and one representing the 

background. This type of histogram is known as a bimodal histogram. Figure 5.11 

shows an example of this type of image, and its corresponding histogram.

Figure 5.11 Single feature image (left) and corresponding bimodal histogram (right)

The image in figure 5.11 is a radar image of an oil slick at sea. In the histogram the dark 

oil slick is represented by the smaller peak on the left, whilst the background of the 

ocean is represented by the larger peak on the right. The histogram is very noisy 

because the radar image has not been smoothed in any way and therefore the speckle in 

the image is affecting the histogram. In a bimodal histogram the most appropriate level 

for the threshold is somewhere between the two peaks. From a manual examination of 

the histogram above, it was estimated that a threshold level of 100 would fall 

approximately half way between the peaks of the histogram. Figure 5.12 shows the 

result of thresholding the image at this level.
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Figure 5.12 Radar image of oil slick (left) and image thresholded at grey level of 100
(right)

It can be seen therefore that by thresholding the image at a value which lies between the 

peaks of the bimodal histogram, the main feature can be separated from the background. 

A lot of clutter has also been extracted, but this can be simply removed by further 

processing (see § 5.4).

Therefore, to automate the extraction of features from images using thresholding the 

procedure must automatically determine the threshold level. This would be a trivial 

problem if the histogram had two clear peaks separated by a distinct trough. However, 

in general histograms are very noisy and contain many peaks and troughs superimposed 

on the bimodal shape, as can be seen in the histogram in figure 5.11. It is therefore 

necessary to process the histogram so that the locations of the two main peaks and the 

trough can be determined accurately. This can be done by smoothing the histogram, and 

a technique has been developed here which uses different smoothing kernels, and a 

varying number of iterations.

To smooth the histogram, the frequency of a particular grey value f DN is averaged with 

its neighbours to give a new value of the frequency f 'DN at that grey level. This can be 

expressed by the equation:

f D N  =   7 S fDN-i + - +  f DN + -  + f D N + i  (5.20)
2 n + 1 (=,

For a 3 grey level kernel the value of n is 1, for a 5 grey level kernel n is 2 and for a 7 

grey level kernel n is 3. Each of these three kernels were applied to the histogram of the 

oil slick image, and the resulting histograms are shown in figure 5.13.
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Figure 5.13 Original histogram (a), and histograms smoothed with 3, 5, 7 grey level
kernels (b, c, d respectively).

It can be seen that although a larger kernel gives better smoothing of the histogram, 

even the largest kernel used here (7 grey levels) does not give a histogram with exactly 

two peaks. Therefore, rather than applying larger and larger kernels, it was decided that 

it would be more efficient if the same kernel was applied repeatedly to the same 

histogram. Figure 5.14 shows 10 iterations of the 7 grey level kernel to the oil slick 

histogram. The original histogram is shown as a red line, the 10th iteration is shown as a 

blue line, and all iterations between are shown as black lines. (Note that in the diagram, 

successive iterations have been drawn displaced from the previous, so that the curves do 

not overlay each other.) It can be seen that by the sixth iteration, there are exactly two 

peaks in the histogram.
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DN va lue  ->

Figure 5.14 Ten iterations of histogram smoothing using 7 grey level kernel

The aim of histogram smoothing is to obtain a histogram with exactly two peaks. The 

correct combination of kernel size and number of iterations will achieve this, but this 

combination will be different for all images. For any image it is possible to construct a 

table giving the number of peaks in the histogram for different combinations of kernels 

and iterations. For the image in question, this table is shown below (table 5.1). Note that 

the table shows number of turning points, rather than number of peaks (these values the 

represent the same quantity since number of turning points = number of peaks + number 

of troughs).

Number of iterations

1 2 3 4 5 6 7 8 9 1 0

3 98 61 49 45 31 31 21 19 19 17
5 88 29 17 15 11 7 5 5 5 5

Kernel 7 82 21 7 5 5 3 3 3 3 3
size 9 54 9 5 5 3 3 3 3 3 3

1 1 54 7 3 3 3 3 3 3 3 3
13 48 9 3 3 3 3 3 3 3 3
15 40 5 3 3 3 3 3 3 3 3

Table 5.1 Number of turning points for different combinations of kernels and iterations

For each of the combinations of iterations and kernel size which give three turning 

points (in other words, two peaks and a trough) it is possible to calculate a threshold 

level. This threshold level can either be chosen as the location of the trough, or



somewhere else between the two peaks in the histogram. The trough of the histogram 

actually represents the pixels which lie on the boundary between the feature and the 

background. By thresholding at this level some boundary pixels will be classed as 

feature pixels and others will be classed as background pixels. By thresholding at a 

slightly higher level all of the boundary pixels will be classed as feature pixels. It was 

decided that this would give a better representation of the feature, so the threshold level 

was set at the level exactly half way between the trough and the background peak. This 

was done for the above example, and the threshold levels which were calculated are 

shown in table 5.2 below. Note that some of the cells in the table are empty since it is 

only possible to calculate a threshold level for three turning points.

Number of iterations

1 2 3 4 5 6 7 8 9 10

Kernel

3
5
7

- - - - -
94 98 98 98 98

size 9 - - - - 98 98 98 98 98 98
11 - - 95 97 97 98 98 98 99 99
13 - - 98 98 98 98 99 99 99 99
15 - - 98 98 99 99 99 1 0 0 1 0 0 1 0 0

Table 5.2 Threshold levels for different combinations of kernels and iterations

The threshold levels in table 5.2 above illustrate that whichever combination of 

iterations and kernel size giving three turning points is used to determine the threshold 

level, the results do not vary very much. In the above example, the mean, mode and 

median threshold level are 98.17, 98 and 98 respectively. This implies that in this 

example, the best threshold level to at which to threshold the image would be 98 (which 

actually agrees quite well with the initial estimate of 100). It was therefore decided that 

to automatically select the threshold level, the mean should be taken of all the threshold 

levels calculated from each combination of iterations and kernel size. To ensure that no 

spurious values occur, the mean should only be taken if there are a minimum of six 

combinations with three turning points.

This method of automatically determining the threshold level is now applied to two 

typical SAR images: an image featuring an oil slick at sea, and an image of agricultural 

land in Southern France. In the case of the oil slick, there is one object and one 

background, so the algorithm is able to calculate the most appropriate threshold level 

relatively simply since the histogram is obviously bimodal. The result shown in figure 

5.15 clearly shows that the slick has been extracted well from the uniform background,
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even though a lot of clutter has been extracted as well. (As already mentioned, this 

clutter can be easily removed using techniques described in § 5.4).

Figure 5.15 Oil slick image (left) and automatically thresholded image (right)

Unfortunately it is not always so simple to achieve a good result like this. Often an 

image gives the impression that its histogram will be bimodal when this is not the case. 

Figure 5.16 shows the second SAR test image, featuring a river passing through the 

town of Beaucaire in Southern France. On the right is the corresponding histogram.

Figure 5.16 SAR image of river and town (left) and corresponding histogram (right)

It would be expected that the histogram would be bimodal, with a small low grey value 

peak representing the river, and a large higher grey value peak representing the 

background. Two possible reasons that this is not the case is that the feature is relatively 

small in comparison to the size of the image, and that the speckle is saturating the 

histogram and obliterating any small peaks. Although it is not possible to increase the 

size of the object in this image, an obvious way overcoming the problem of speckle 

corrupting the histogram is to simply remove the speckle from the image. By smoothing 

the image, more pixel values will be assigned to either the grey level of the object, or 

the grey level of the background; there will be fewer pixels with grey levels in between. 

This should lead to a more bimodal histogram. Figure 5.17 shows the histogram of the 

original image, and the histograms of the image after it has been smoothed with a mean
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filter of increasing kernel sizes. (Note that a linear contrast stretch has been applied to 

the image to convert it from 16 bit to 8  bit; the maximum grey value in the 8  bit image 

(255) represents grey level 511 in the original image).

No smoothing 3x3 mean filter

mean filter

mean filter 11x11 mean filter

Figure 5.17 Histograms of smoothed Beaucaire image

The above figure shows that by applying smoothing filters to the image, the bimodal 

nature of the histogram can be accentuated. It appears that the best result is given by the 

5x5 mean filter -  larger filters lead to the peaks being smoothed too much. The 

automatically determined threshold value calculated from the image smoothed with the 

5x5 mean filter is 60. The result of thresholding the original image at this level is shown 

in figure 5.18.
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Figure 5.18 Automatically thresholded SAR image of region near Beaucaire

Figure 5.18 shows that by thresholding at the automatically determined value, some of 

the features in the image (the river and some dark fields) have been separated from the 

background. Once again, the clutter that has been extracted can easily be removed with 

post-processing.

The work so far has shown that it is possible to automatically extract major features 

from certain SAR images using thresholding. An attribute of all the images used so far 

is that they have all contained one major feature and a fairly continuous background. 

This is not true for all SAR images, and especially not true for optical images. The next 

part of this section deals with the extraction of features from SPOT images using 

automatic thresholding. Figure 5.19 shows a typical SPOT image of agricultural land in 

Southern France on the left, and on the right the histogram of this image.

Figure 5.19 SPOT image of agricultural land near Entressen (left) and corresponding
histogram (right)

It can clearly be seen from both the image and the histogram that there are more than 

one type of feature and background. When the automatic threshold algorithm described 

above is applied to this image, it determines the ideal grey level for thresholding to be 

119. The result of thresholding the image at this level is shown in figure 5.20.
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Figure 5.20 SPOT image of agricultural land thresholded at grey level 119

The dark fields have been separated from the lighter background, but some other 

features, such as lighter colour fields have been merged with the background. The 

problem here is that the histogram is multi-modal rather than bimodal, which is clear 

from figure 5.19. There is more than one major feature in the image, and there is a 

separate peak for each feature, so therefore the histogram has multiple peaks. It is not 

possible to split a multi-modal histogram at just one threshold level: instead a density 

slicing procedure needs to be used to split the histogram at each trough and thus 

separate each feature from the others. In this case the histogram smoothing operation 

has removed all but two of the peaks from the histogram and has therefore been able to 

determine a threshold level, which represents the optimum thresholding level for 

separating the major dark features from the lighter background. Automatic density 

slicing is much more difficult than automatic thresholding since the number of major 

features in the image must be known in order that the correct amount of histogram 

smoothing can take place to ensure that important peaks are not smoothed away. There 

is no obvious way of doing this without human intervention, so no attempt has been 

made here. However, it would make for a very interesting area of future research.

One of the drawbacks of using thresholding for the extraction of patches is that the 

patches which are extracted are not unique. They all have the same grey value, and are 

sometimes joined to each other by small groups of pixels. Therefore, it is not always 

possible to associate a particular patch extracted from the image with a single feature on 

the ground. When this is the case, it is more useful to convert the patch image into an 

edge image, and use the edges in the second stage of the image registration procedure, 

rather than using the patches in the first stage of the registration procedure.

In summary, this section has given a description of thresholding and shown how 

information contained in the image histogram can be used to automatically estimate the



ideal threshold level. A method of removing noise from the histogram has been 

presented which ensures that the correct peaks and troughs are identified. It has also 

been shown that smoothing the image can help to improve the bimodal nature of the 

histogram, which in turn helps to ensure that the correct peaks and troughs are 

identified. The algorithms described in this section have been illustrated using a 

selection of images that provide interesting results. Not all images provide useful 

results, and to show poor results would not add anything to this discussion. It is for this 

reason that the test images have been carefully selected, and null results have been left 

out.

5.3.3 Homogeneous patch extraction
Homogeneous patch extraction (Abbasi-Dezfouli and Freeman, 1994) is a very 

straightforward technique for extracting areal features from imagery. However, the 

drawback of the simplicity of this feature extraction method is that it will not 

consistently produce good results from all types of images. The algorithm works by 

scanning the image for homogeneous patches (i.e. regions with the same grey level) and 

separating them from the background. Since it is not common for features in the image 

to have a consistent grey value, a tolerance parameter can be set which specifies a range 

in which the grey values of pixels must fall.

The algorithm proceeds by firstly scanning the image for homogeneous 3x3 patches and 

extracting them. These 3x3 regions are then used as ‘seed patches’ from which larger 

homogeneous regions are grown. The process continues until none of the regions can be 

grown any further.

As the name suggests, only homogeneous patches can be extracted using this method. 

Features on the ground which are represented by continuous but textured regions in the 

image will not extracted. In this study this should not prove to be a problem since the 

feature matching process relies on the results of a range of feature extraction algorithms, 

and not just this one. It is this redundancy that ensures the matching procedure produces 

consistent results.

Figure 5.21 shows a SPOT image of the region near Istres, and its corresponding 

features extracted using the homogeneous patch extraction algorithm. Figure 5.22 shows 

a SAR image of the same region and the corresponding extracted features. Tests showed 

that the results of patch extraction from the SAR images could be improved if 8  bit data 

was used rather than 16 bit data. Therefore a linear contrast stretch was performed on
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the SAR images by assigning the values of 0 and 511 in the original histogram to 0 and 

255 in the new histogram.

Figure 5.21 SPOT image of Istres (left) and extracted homogeneous patches (right)

Figure 5.22 SAR image of Istres (left) and extracted homogeneous patches (right)

Patches were extracted from the SPOT image using a tolerance value of 5, while 

patches were extracted from the SAR image using a tolerance value of 13. As would be 

expected, more homogeneous patches have been extracted from the SPOT data than 

from the SAR data. This is because the SAR image is corrupted by speckle, and 

therefore features are much less homogeneous. However, both of the above results can 

be improved by post-processing: small patches can be removed from the images, and 

small holes in the patches can be filled. It is this combination of feature extraction and 

post-processing which makes homogeneous patch extraction a useful method of feature 

extraction for image registration.

The homogeneous patch extraction algorithm was also tested with images that had been 

preprocessed using the smoothing and speckle reduction algorithms described in chapter 

4. For the SPOT images it was found that preprocessing made the results much worse. 

The smoothing algorithms led to the grey level differences between features in the 

image to be reduced, causing the extracted patches to become merged with each other. 

For SAR images the result of using the homogeneous patch extraction algorithm in
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conjunction with the speckle reduction algorithms introduced in chapter 4 was that 

fewer features could be successfully extracted. Smoothing algorithms caused features to 

become merged, as with the SPOT images, and adaptive non-rigorous algorithms led to 

false patches being extracted. The rigorous adaptive algorithm performed slightly better, 

resulting in extracted patches with slightly fewer holes, but the results were not good 

enough to further investigation. It was decided that in the case of homogeneous patch 

extraction, more could be achieved with post-processing of the extracted patches than 

preprocessing of the images.

5.3.4 Segmentation
Segmentation is a very well established method of extracting features from images. It is 

similar to classification in that it splits the image into a number of discreet regions, but 

unlike classification, there is no limit to the number of classes. Furthermore, the method 

of deciding which pixels to group into which regions is quite different in classification 

and segmentation. Since the properties of SAR and optical images are quite different, 

the algorithms used to segment them are also different. For this reason, the description 

of the SAR segmentation algorithms, and the SPOT segmentation algorithms are 

separated below.

SAR segmentation

The two SAR segmentation algorithms which were used in this study (MUM and 

RWSEG) are commercial products supplied by N. A. Software Ltd., UK (Caesar, 1996). 

Each is slightly different in the way they work, and produce slightly different results. 

The MUM (Merge Using Moments) algorithm works by initially extensively over­

segmenting the image and then merging neighbouring regions to produce a coarser 

segmentation (Cook et al., 1994). The merging uses statistical properties (moments) of 

the regions to decide whether they represent the same underlying cross-section; if so, 

they are merged. The process is repeated until no further merging is possible. A tuning 

parameter, p, can be set by the user to have some control over the final image 

segmentation: if the probability that two neighbouring regions represent the same 

underlying cross-section is greater than 1 0 ‘p, then the regions are merged.

The RWSEG algorithm works by successively detecting edges in an image, and 

growing regions between them (White, 1991). The first step in the procedure is the 

application of an edge detector which adapts its shape to local conditions. A pixel is
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classified as an edge if the class separation distance between two regions is greater than 

some threshold, e. This can be expressed as:

where jlla and//b are the means of regions A and B, o A and o B are the standard 

deviations of the regions A and B, and e is a user defined. Assuming the mean values 

have a Gaussian distribution a value of e of 2.33 is equivalent to a 2% probability of 

false alarms. Lower values of e increase the probability of false alarms, meaning more 

false edges will be detected in the initial segmentation. After this initial edge detection, 

gaps between edges are filled with decreasing size discs which are merged with each 

other if they overlap and have similar means. When no more discs can be inserted or 

merged, the process repeats itself: the edge detection algorithm is applied again, and the 

regions between edges are filled. The process continues to repeat until the segmentation 

stops improving. The result is an image which has been over-segmented, so a final 

merging stage is used to eliminate weak edges. Once again, the class separation distance 

is used to find weak edges. If it is less than some threshold j  (which is user defined), the 

edge is defined as being weak, and the neighbouring regions are merged.

Since both of these algorithms have been developed from a statistical model of speckle 

they must be applied to uncorrelated SAR images. Therefore it is not possible to 

preprocess the images beforehand in order to improve the results.

Figure 5.23 shows the MUM segmentation algorithm applied to the SAR image of Istres 

with four different values for the parameter p. Figure 5.24 shows the results of the 

RWSEG segmentation algorithm with two different values of the parameters e and j  

being applied to the same test image. With these segmentation algorithms it was 

possible to use the original 16 bit data rather than having to perform a linear contrast

(5.21)

stretch.
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Figure 5.23 SAR image segmented with MUM using four different values of p.

(£=2.81,7=0) (£=2.81,7=3.5)

(£=3.29,7=0) (£=3.29,7=3.5)

Figure 5.24 SAR image segmented with RWSEG using two different values of eand j.
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The above figures show that both the MUM and RWSEG algorithms can segment the 

SAR images very successfully. It can be seen in figure 5.23 (the MUM segmentation) 

that increasing the value of p  reduces the number of regions, but the effect is not great. 

The RWSEG algorithm, with the parameter j  set to 0, can be seen to produce more 

regions in the segmented image than the MUM algorithm, but increasing j  to 3.5 merges 

the regions to such an extent that the result is similar to that of the MUM algorithm. 

Increasing the value of e from 2.81 to 3.29 reduces the number of regions, but the 

change is not very great. It is difficult to compare the outputs of these different 

algorithms since there are so many different combinations of parameters that can be 

used. The four combinations used here were chosen to exemplify the type of results that 

can be obtained and how they differ. The question of how to select the optimum 

parameters for image segmentation is addressed in the next chapter.

Optical segmentation

Two segmentation algorithms used for extracting features from optical images which 

were tested in this thesis were REGSEG (Kai and Muller, 1991) and OPTISEG 

(Ruskone and Dowman, 1997).

The REGSEG algorithm is a region growing segmentation process in which regions are 

grown one-by-one in all directions from seed points. Growing continues until an edge 

pixel is met, or the difference between a growing region and a potential candidate pixel 

for that region is above some threshold. This threshold, d , has to be set by the user 

before processing takes place. The advantage of this method of image segmentation 

over standard region growing techniques is that regions are grown in all directions from 

seed points, rather than being grown in a particular scanning direction, therefore making 

the algorithm more robust. Furthermore, the optional use of edge information allows a 

limit to be set on the size and shape of the regions. This makes the REGSEG algorithm 

very flexible since the user is not obliged to use edge information, and if edge 

information is used it does not have to come from the image being segmented -  it could 

come from digital map data, or another image, as long as those data sets were registered 

to the image being segmented.

The OPTISEG algorithm is loosely based on the REGSEG algorithm, but is much more 

advanced and therefore tends to produce better results. It works in the same way as 

REGSEG: regions are grown based on clustering of neighbouring pixels which have 

similar properties. A cluster of pixels forms a region, and further pixels are added if
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they fulfill a criterion based on the grey level difference between the pixel and the 

region, and the mean grey level of the region. This criterion can be expressed as a 

threshold, T, where:

T = b  + juMi -v V i (5.22)

where b is the difference between grey level of the candidate pixel and grey level of 

region i, M f and V) are the mean and variance of region i, and ju and v  are user defined

variables. In order to segment an image, the user must select values for T, ji and v  as 

well as a further parameter which sets a lower limit for the size of regions. Once the 

segmentation process has finished an image is obtained which is over-segmented (as 

was the case with the RWSEG algorithm), so further processing has to take place to 

merge neighbouring regions together. The three types of regions which have been over­

segmented, and therefore can be merged, are:

□ regions split by local distortions;

□ small regions wholly within larger region which were formed by noise pixels; 

and

□ regions in heterogeneous areas.

To merge regions that have been split by local distortions, the radiometric similarity of 

the regions is determined using the class separation distance. This value is compared 

with a threshold and regions are merged accordingly. The process repeats with a linearly 

decreasing threshold value until no further changes take place.

The ratio between the length of the longest boundary and the area of a region is used to 

decide whether that region is wholly enclosed within another region, and therefore 

whether the region should be merged with its surroundings. If the ratio is above some 

threshold, then the merging takes place.

The third type of over-segmentation is resolved by evaluating a shape measurement, g, 

for each region, where:

g = j r  (5.23)
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where A is the area of the region and d is the mean minimum distance of every point in 

the region to the boundary. Shapes that are very jagged have low values of A, and they 

can therefore be merged with their neighbours.

Note that without the post-segmentation merging of regions, and with // and v both set 

to zero, the OPTISEG algorithm will produce exactly the same results as the REGSEG 

algorithm.

A feature of both the REGSEG and OPTISEG algorithms is that they can be used with 

images that have been preprocessed. Both algorithms were tested with three different 

images: non-smoothed, smoothed using the median filter, and smoothed using the MHN 

filter. It was found that the best results were achieved when the MHN filter was used to 

preprocess the images. Without this filter the images tended to become under­

segmented. Smoothing with the MHN filter meant that low values of the pixel 

difference parameters (d for REGSEG and b for OPTISEG) could be used without the 

risk of under-segmentation.

The two segmentation algorithms described above (REGSEG and OPTISEG) were 

applied to the SPOT image of Istres. Figure 5.25 shows the result of applying the 

REGSEG algorithm with four different values for the parameter d (d = 4, 5, 6  and 7). 

Figure 5.26 shows the result of applying the OPTISEG algorithm with various 

combinations of values for 7, // and v. Note that the grey values of the output regions 

are random so the spectral properties of the segmented image does not reflect the 

spectral properties of the input image.
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(d=4) (d=5)
Figure 5.25 SPOT image segmented with REGSEG using four different values of d{2, 3, 4

and 5).
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(7= \,ju=0.2, v=-0.2) (7=20, ju=0 .2 , v^-0 .2 )

(T= 5, //=0.05, v^-0.2) (7=5, //=0.5, ^=-0.2)

v */»- &J* \  mJSmm 
(7=5, //=0.2, v^-0.5)

Figure 5.26 SPOT image segmented with OPTISEG using different values of 7, fi and v.

The images in figure 5.25 and 5.26 above show clearly that the two algorithms 

(REGSEG and OPTISEG) produce very different results. For low values of d, the 

REGSEG algorithm segments the large features well, but completely over-segments 

smaller features in the background. As the value of d  is increased, the smaller features 

are not so over-segmented, but the larger features begin to merge with surrounding 

features. With d=5, it can clearly be seen that the image is under-segmented, i.e. too 

many features have been merged together to produce too few segments. Therefore, the 

most obvious aspect of the REGSEG algorithm is that the result is very finely 

dependent on the value of the parameter d.
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The three pairs of images in figure 5.26 were generated by keeping two of the three 

parameters constant while adjusting the third. The first pair of images were generated 

using values of 1 and 20 for the parameter T. It is clear that by increasing T, the amount 

of segment merging increases and the number of segments decreases. Although large 

values of T lead to an under-segmented image, low values of T do not appear to over­

segment the image. Increasing the parameter /z from 0.05 to 0.5 leads to a large change 

in the result. The lower the value of /z, the more segmented the image becomes. As with 

the parameter 7, under-segmentation seems to be more typical than over-segmentation. 

The last parameter, v, has the greatest effect on the result. By changing v  from -0.05 to 

-0.5 the image goes from being under-segmented (too few patches) to over-segmented 

(too many patches). Therefore the OPTISEG result is very finely dependent on the value 

of v, just as the REGSEG result was finely dependent on the parameter d.

In conclusion, it can be said that both algorithms segment the image well, even though 

they give quite different results. The REGSEG algorithm will be useful for isolating 

large patches, whilst the OPTISEG algorithm will be useful for isolating both large and 

small patches. However, the larger number of parameters associated with the OPTISEG 

algorithm will make it slightly more difficult to fine tune when trying to produce the 

best results.

As mentioned above, both of these segmentation algorithms can be improved by 

incorporating an edge image into the processing, which can limit the size and shape of 

the output regions. This was tested using an edge image generated by locating zero 

crossings in the original image. The REGSEG segmentation of the Istres image was 

repeated incorporating this edge image (figure 5.27), and the results are shown in figure 

5.28.
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Figure 5.27 Edge map of SPOT image of Istres

Figure 5.28 SPOT image segmented without edge map (left) and with edge map (right)

In the pair of images above, the one on the left has been segmented without the use of 

edge information, whilst the one on the right has been segmented with edge 

information. For clarity, only the largest segments have been displayed. When edge 

information is not used it can be seen that there is extra merging of regions (see, for 

example, the region in the bottom left hand corner of the images) which leads to there 

being more larger patches. With edge information, the growing of the patches is limited 

by the edges, so there tends to be smaller patches.

5.3.5 Boundary to region conversion
A final method of extracting areal features from images is by extracting boundaries of 

features (using techniques described in § 5.2), and using these boundaries to create 

polygons. Although it was only partially tested in this study, it is important to include a 

note about this process here since it completes the picture of linear and areal feature 

extraction. There are a few different methods of converting boundaries to regions, 

depending on the type of edge image used, and the type of result which is required. If 

the extracted boundaries form closed loops, the loop can simply be filled in order to
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convert it into a region. If the boundaries do not form closed loops a procedure to 

extrapolate edges and connect them can be used to create closed loops, which can then 

be filled. Alternatively the areas between fragments of edges can be filled by inserting 

discs of decreasing sizes until regions are created with no gaps between them. This 

technique operates in a very similar way to the RWSEG algorithm, which segments an 

image by detecting edges and then creating a segmented image from that edge image. 

However, RWSEG repeats the process a number of times, and outputs a wholly 

segmented image, whereas boundary to region conversion repeats the process only once 

and is not limited to processing the entire image: as many or as few patches can be 

created as required. These different methods are described in more detail in Newton 

(1993) and Newton et al. (1994).

In this study an algorithm was developed for filling closed loops to create regions. 

Although this algorithm was successful, it was felt that developing methods of creating 

closed loops from open loops by edge interpolation would digress to far from the theme 

of the project. However, within the context of a robust system of feature extraction this 

would be an important tool, so although it is not developed further here, further research 

is warranted.

5.3.6 Conclusions
This section has introduced the subject of extraction of areal features from satellite 

imagery. Three methods of extraction have been investigated: thresholding, 

homogeneous patch extraction, and segmentation. One further method of detecting areal 

features by extracting boundaries and converting them to regions was described but only 

partially tested. The main reason for this is that the procedure may appear to be simple, 

but in reality it is actually quite complex, and to develop it fully would digress to far 

from the principle research themes of this study.

The technique of automatic thresholding described above has shown that for images 

with distinct features on a homogeneous background, it is easily possible to extract 

those features fully automatically using a thresholding technique. The advantages of this 

method of feature extraction is that it is simple and quick to perform, and does not 

require any user intervention at all. However, the drawbacks are that it is dependent on 

image content (meaning that it will not necessarily produce useful results for all 

images), and the features extracted can sometimes be difficult to separate from each 

other. This second drawback can be overcome by using the extracted features as edges
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in the second stage of image registration, rather than patches in the first stage of image 

registration. Although this limits the usefulness of thresholding as method of feature 

extraction slightly, it is not a considerable problem.

One of the principle difficulties involved with automatic thresholding is processing the 

histogram so that it becomes truly bimodal (i.e. it only has two peaks and one trough). 

Due to noise, a histogram which has a bimodal shape may not be truly bimodal, making 

it quite difficult to select the exact locations of the major peaks and troughs. A method 

of processing using different size kernels and varying iterations was shown to give good 

smoothing and robust estimations of the locations of the major peaks and troughs.

The method of extracting features by identifying homogeneous patches proved to be 

surprisingly successful considering the simplicity of the method. Not so surprising was 

the fact that far better results were achieved with SPOT data than with S AR data, due to 

the poorer signal to noise ratio of the SAR images. Post-processing algorithms are able 

to improve the usefulness of the images for the matching procedure, making this method 

of feature extraction quite important to the automatic image registration procedure as a 

whole. However, it is still true to say that homogeneous patch extraction would benefit 

from further research.

The segmentation algorithms described in this chapter were all developed by other 

researchers, so the only work that could be carried out here was a comparison of the 

algorithms, and an investigation into how the algorithms could be tuned to optimize the 

extraction of features from SPOT and SAR data. Two SAR segmentation algorithms 

(MUM and RWSEG) and two SPOT segmentation algorithms (REGSEG and 

OPTISEG) were introduced. It was shown that MUM and RWSEG produce similar 

results, even when the segmentation parameters were varied. REGSEG and OPTISEG 

however produced quite different results. REGSEG tended to either over-segment the 

image or under-segment the image. It was clear that the algorithm is very finely 

dependent on the tuning parameter, and optimal selection of this parameter is very 

difficult. OPTISEG on the other hand is much more stable. The three tuning parameters 

still have a marked effect on the output, but the final result is not quite so strongly 

dependent on the values of these parameters. Furthermore, the additional post­

segmentation merging aspect of the OPTISEG algorithm gives improved results over 

the REGSEG algorithm since it eliminates the problem of over-segmentation. A final 

point to consider regarding the optical image segmentation algorithms is the use of edge
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information to improve the result. It was briefly shown that edge information can lead to 

segments which more truly represent real features on the ground. This technique of 

improving the segmentation will be shown to be very useful in optimizing the feature 

extraction and feature matching procedures.

There are many other methods of extracting areal features from remotely sensed 

imagery, but no further techniques will be described here. The remainder of this chapter 

concentrates on the post-processing of the extracted features, both areal and linear, in 

order to improve their use in the feature matching procedure.

5.4 Post-processing of extracted polygons

5.4.1 Introduction
The two previous sections have described how linear and areal features can be extracted 

from remotely sensed images. As was mentioned in the introduction, not all the 

extracted features need to be used in the registration process. Therefore, before trying 

match features from different images, post-processing algorithms can be applied to the 

extracted features to eliminate those that appear not to be very useful. There are other 

forms of post-processing which are also necessary to improve the matching procedure, 

such as unique grey value assignment and polygon to edge conversion. Each of these 

topics are discussed in the next three sections.

5.4.2 Unique grey value assignment
Since the type of output image generated by the different areal feature extraction 

algorithms described in § 5.3 above can vary, it is necessary to process the output 

images so they are all in the same format. The output images differ as follows:

□ Thresholding produces single bit binary images, so all the polygons have the 

same grey level (either black on a white background, or white on a black 

background).

□ Homogeneous patch extraction produces the same output as thresholding: single 

bit binary images.

□ Polygons produced using the RWSEG and MUM algorithms have grey levels 

which are equal to the mean of all the pixels in the original that make up that 

region.

□ OPTISEG produces polygons with unique grey levels (i.e. every polygon has an 

individual grey level), but these grey levels bear no relation to the original 

image.
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□ REGSEG produces polygons with non-unique grey levels and which bear no 

relation to the original image.

The output required for the matching procedure is one where each patch in the image 

has a unique grey value (so that each patch can be uniquely identified), but these grey 

values do not have to be related to the grey values of the pixels which make up the 

features in the original image (since features imaged by different sensors cannot easily 

be matched using spectral attributes). Therefore, the ideal output is provided by the 

OPTISEG algorithm. In order to convert the outputs from the other algorithms to the 

same format, a simplified version of the OPTISEG algorithm was used. This algorithm, 

called ASSIGN_DN, uses the OPTISEG algorithm to segment the processed images, 

but with the parameters T, n  and v all set to zero, and with the post-segmentation region 

merging procedure removed. The result is that each polygon in the processed image is 

given a new and unique grey value, but its size and shape is not changed in any way.

A further property of the output is that the lowest grey level value is zero, and the 

highest is equal to the number of polygons minus one. This is very useful for reducing 

the amount of memory each image occupies. For an image with up to 255 different grey 

levels, the most efficient way to store each pixel value is as an unsigned 8  bit integer. In 

computational terms, this means that each pixel will require one byte of memory space. 

However, if the greatest grey level in an image is greater than 255, but less than 65535, 

then the most efficient way to store each pixel is as an unsigned 16 bit integer, but this 

takes up twice as much memory space as the 8  bit integers. If the greatest grey level in 

an image is greater than 65535, then the pixels must be stored as a 32 bit unsigned 

integers. The advantage of having an image with polygons whose grey values start at 

zero and increase in steps of unity is that it is possible to store the image in its most 

(memory) efficient format. Not only does this save computer memory space, but it also 

means that algorithms take less time to process the images.

5.4.3 Clutter removal
Some of the outputs from the areal feature extraction algorithms described above not 

only contain the major features in the image, but also a lot of insignificant minor 

features (see figure 5.29). These small features, referred to here as clutter, can be 

removed from the images without jeopardizing the accuracy or efficiency of the 

matching algorithm; in fact, removal of clutter actually increases the efficiency of the 

matching procedure. Two different methods to do this were implemented in this study.
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Main feature
Clutter

Figure 5.29 Clutter in automatically thresholded image of an oil slick

The first method of clutter removal (called RM_CLUT) scans the image with a square 

window and examines the pixels that make up the border of the window (i.e. the outside 

perimeter of pixels). If all the pixels in the border have the same grey value, then all the 

pixels within that border are set to the same grey value as the border. Figure 5.30 shows 

examples of 5x5 and a 7x7 windows.

Figure 5.30 Examples of 5x5 and a 7x7 windows used for clutter removal

In the 5x5 window in figure 5.30, if all the pixels in the border (the grey pixels) have 

the same grey value, then all nine pixels within that border are set to the same grey level 

to the border, irrespective of what their values were before. Likewise, in the 7x7 

window, if all the pixels in the border have the same grey value, then all 25 pixels 

within the border are set to the same grey level as the border. The algorithm is applied 

to the image by the user predefining a maximum window size and the filtering being 

repeated with increasing window sizes from 3x3 to that maximum size.

The second method of moving clutter (called RM _SMALL_PATCHES) is slightly 

more straightforward. Since every polygon has its own unique identity it is possible to 

filter polygons according to size. The user has to predefine the minimum allowable 

polygon size, and all polygons below this size are removed.

Both of these clutter removal algorithms work in different ways, and produce slightly 

different results, but both are very useful tools. RM_CLUT takes into consideration the 

shape of the polygon in question as well as the size, whereas RM_SMALL_PATCHES 

does not. RM_CLUT will not remove long thin features, even though they only consist 

of few pixels, whereas RM_SMALL_PATCHES will remove these features. However,
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in an image which has been completed segmented, RM_CLUT will only remove 

polygons which are complete enclosed within other polygons, whereas 

RM_SMALL_PATCHES will remove all polygons below a certain size, irrespective of 

their surroundings in the image. Figure 5.31 shows the application of these two 

algorithms to the thresholded oil slick image.

Figure 5.31 Thresholded oil slick image with clutter removed using RM_CLUT (left) and
RM_SMALL_PATCHES (right).

The above images show that both of these algorithms perform very similarly, although

RM JSM ALLJPATCHES removes more clutter than RM_CLUT, especially in the area

around the main feature. However, RM_CLUT is far more computationally efficient,

and therefore is a useful tool.

5.4.4 Polygon to edge conversion
The final post-processing procedure described in this chapter is the conversion of 

polygons to edges. Linear features can be generated from extracted areal features by 

detecting the perimeter of the region and separating it from the rest of the image. It is 

not possible to apply an edge detection algorithm, such as those described in § 5.2 

above, to the polygon image since the strength and direction values would be 

meaningless if the grey values of the polygons did not reflect the grey values in the 

image. Therefore an edge extraction algorithm was used which just located the edges 

between regions, and did not measure the strength or direction.

The edge extraction algorithm works by passing a 3x3 plus shaped kernel across the 

segmented image. If the central pixel has a different grey level to any of the other pixels 

in the kernel, then an edge is present (figure 5.32).
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No e d g e  E d g e  d e te c te d  E d g e  d e t e c te d  No e d g e
d e te c te d  d e te c te d

Figure 5.32 Four possible positions of edge extraction kernel in relation to an edge

Figure 5.32 shows four possible positions of the edge extraction kernel in relation to a 

boundary between two regions. In the first and last position no edge is detected because 

the central pixel has the same grey value as all the other pixels, but in the other two 

positions, edges are detected. The output is written to another image which becomes an 

edge representation of the segmented image.

5.4.5 Conclusions
This section has described some different post-processing techniques which can be used 

to enhance features, both linear and areal, extracted from images in order to improve the 

results of the feature matching process. These post-processing techniques may seem 

trivial in themselves, but are very important in the overall feature extraction and 

matching process. In the next chapters further processing techniques will be described 

which filter the images even further to improve the matching results.

5.5 Discussion
This chapter has shown that with some relatively simple feature extraction algorithms it 

is possible to perform some quite complex processing tasks on remotely sensed imagery 

and detect specific features. The purpose of this chapter was not to give a complete 

review of the latest methods of feature extraction, but rather to show how certain types 

of features can be extracted from particular imagery for the purpose of feature based 

image registration. The techniques described can generally be classed as low and 

medium level processing algorithms; high level processing has been avoided due to its 

complexity. The algorithms described here are tailored specifically to extract the most 

useful features for the method of image registration proposed in this study. Therefore 

they concentrate on extracting patches for the first stage of the registration procedure 

and edges for the second stage. The algorithms discussed in this chapter are summarized 

in table 5.3 below.
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Algorithm Image Feature Parameters

First derivative edge 
detector SAR / SPOT Edge strength and 

direction
Kernel size, 

threshold level

Second derivative edge 
detector SAR / SPOT Edge location Filter width

Hough transform SAR / SPOT Linear feature Line strength 
threshold

SCANEDGE SAR Edge location Probability of 
false edges

Thresholding SAR / SPOT Regions and edge 
locations Threshold level

Homogeneous patch 
extraction SAR / SPOT Regions and edge 

locations
Maximum grey 
level difference

MUM SAR Regions and edge 
locations

Probability of 
false patches

RWSEG SAR Regions and edge 
locations

Edge strength and 
merging parameters

REGSEG SPOT Regions and edge 
locations

Maximum grey 
level difference

OPTISEG SPOT Regions and edge 
locations

Maximum grey level 
difference, mean and 
variance parameters

Table 5.3 Summary of feature extraction algorithms

After features have been extracted, post-processing improves the quality of the result. 

The post-processing algorithms described in § 5.4 assign individual grey levels to each 

of the patches and successfully remove a lot of the clutter from the images, making 

further interpretation much simpler. The full usefulness of these two procedures will 

become clear in the following chapters when extracted features are matched with each 

other. Finally, a description of a method for converting patches to edges has been 

described. This is a very useful tool since it means that patches which are used in the 

first stage of the registration procedure can be converted to edges which can be used in 

the second stage. In this way the scope of some of the feature extraction algorithms is 

doubled.

A common drawback to almost all of the feature extraction algorithms described here is 

that they require some user intervention in the form of setting parameters. It has been
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shown repeatedly in this chapter that optimizing the feature extraction algorithms by 

adjusting the parameters can lead to much better results. However, to fit in with the 

concept of an automatic registration system, it is necessary that the feature extraction 

stage of the procedure is also automatic. Therefore, this optimization of parameters must 

be performed automatically. The method of doing this is described in the next chapter.

An important improvement to image segmentation was suggested in § 5.3.4 where edge 

information from a second derivative edge detector was used in combination with an 

optical segmentation algorithm. The results showed that by combining edge information 

with the segmentation procedure lead to much improved results. However, the edge 

information can be generated by any of the feature extraction algorithms. Furthermore, 

multiple feature extraction algorithms could be used to generate the edge information. 

For example, an edge image could be generated by combining the results of a first 

derivative edge detector with linear features from the Hough transform and boundaries 

from thresholding. When this edge image is used in the segmentation procedure the 

results should be much improved.

As a final note it should be reiterated that the feature extraction algorithms used in the 

proposed method of automatic registration do not have to be able to extract all the 

significant features from an image. Multiple feature extraction algorithms will be used 

together, so those features missed by one algorithm will be extracted by one of the other 

algorithms. Secondly, it is not essential that all features are extracted from each image 

since only a few features are needed for the first stage of the registration. These two 

facts mean that the whole feature extraction procedure is much simplified.
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Chapter 6  P a t c h  M a t c h i n g

6.1 Introduction
The system of automatic image registration proposed in this thesis is a two step 

procedure. This chapter describes the first of these steps: patch matching. The 

justification for using patches in the first step of the matching procedure has been given 

in the previous chapters, as has a description of the methods used to extract patches 

from remotely sensed images. This chapter therefore concentrates solely the results of 

applying areal feature extraction algorithms to SAR and SPOT data, the matching of the 

patches, and the new techniques developed here to improve the quality of the matching 

results.

The first part of this chapter describes how the three methods of areal feature extraction 

(thresholding, homogeneous patch extraction and segmentation) were applied to the 

SAR and SPOT test images. Details of all the processing steps are given, including 

preprocessing (smoothing) and post-processing (clutter removal), and the results for 

each combination of image and algorithm is given. The subsequent section describes 

how the extracted patches are matched, based on attributes such as size, shape and 

location in the image. It also presents the results of the registration of the images based 

on the patch matching results. The last section describes new techniques for improving 

the matching results.

For the purposes of this part of the study two test areas have been selected to test the 

patch matching techniques: Istres and Camargue. These images were chosen since they 

display many different types of land cover and some interesting features with a range of 

sizes and shapes. The two pairs of images are shown in figures 3.20 and 3.22. The 

geometry of each pair of images above is very similar since the images were 

approximately aligned, the reasons for which were presented in chapter 2. To recap, 

approximate alignment is performed at the very beginning of the processing chain. It 

can either be carried out manually, by selecting a few tie points across the whole full
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scene images, or automatically using ephemeris data supplied with the raw images. In 

this case the images have been approximately aligned using the manual method.

6.2 Extraction of patches from SAR and SPOT images

6.2.1 Introduction
This section shows the results of applying the areal feature extraction algorithms, 

described in the previous chapter, to both sets of SAR and SPOT test images. In each 

case a full description of how the algorithms have been applied has been given. 

Furthermore, each algorithm has been fine tuned to give the best possible result for the 

matching procedure. Details of this fine tuning has also been included.

6.2.2 Thresholding
Before any processing took place, the SAR images were converted from 16 bit to 8 bit 

by assigning the grey value of 511 in the input image to the value 255 in the output 

image. The histograms of the raw SPOT images were normalized to improve the 

contrast of the image. In the SAR Istres image there is one major object feature (water 

bodies) on a fairly continuous background so the automatic thresholding procedure can 

be applied. The histogram of the raw image was not significantly bimodal so it had to be 

enhanced using image smoothing. The result of automatically locating the peaks and 

troughs in the histogram lead to a suggested threshold level of 81. Figure 6.1 shows the 

original and thresholded images. In the SPOT image of Istres it is a bit more difficult to 

anticipate in advance whether or not the histogram needs enhancing since it is not clear 

whether there is only one object feature in the image. In fact, it turned out that no 

histogram enhancement was necessary and the automatic threshold routine determined 

the best threshold level to be 156. The results of automatically thresholding the SPOT 

image is shown in figure 6.2.
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Figure 6.1 SAR im age of Istres and  co rresp o n d in g  th re sh o ld ed  im age ( threshold  = 81)

Figure 6.2 SPOT image of Istres and corresponding thresholded image (threshold = 156)

A similar procedure was followed for the pair of images of the Camargue, but both 

image histograms had to be enhanced by smoothing; the resulting threshold levels were 

66 for SAR and 68 for SPOT. The original and thresholded images are shown in figure 

6.3 and figure 6.4.
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Figure 6.3 SAR image of Camargue and corresponding thresholded image
(threshold = 66)

Figure 6.4 SPOT image of Camargue and corresponding thresholded image
(threshold = 68)

As is common with thresholding, a lot of clutter has been extracted from the images 

along with the main features. It is not surprising therefore that a degree of post­

processing clutter removal is required. This was done in two steps:

1. The algorithm RM_CLUT was used to remove clutter from both inside and 

outside the extracted regions.

2. The algorithm RM_SMALL_PATCHES was used to remove the remainder of 

the clutter missed by the RM_CLUT algorithm.

For the RM_CLUT algorithm the maximum window size was set to 15 for both images, 

and for the RM_SMALL_PATCHES algorithm the minimum patch size was set to 200 

for both images. Both of these choices were fairly arbitrary, but seemed to give good 

results since most of the clutter was removed, but the important features were retained.
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The results of the post-processing are shown in figure 6.5 and figure 6.6. (Patches in the 

SPOT image have been assigned random grey scale values for clarity.)

Figure 6.5 SAR and SPOT images of Istres after clutter removal

%
k

i f

?
Figure 6.6 SAR and SPOT images of Camargue after clutter removal

The extraction of patches from these four test images using automatic thresholding has 

been relatively successful. In each case a threshold level could be determined 

automatically, although in three of the four images pre-smoothing had to be used to 

enhance the histograms in order to obtain a result. The features which have been 

extracted the best from the SAR images are the large water bodies, which is not really 

surprising since their grey values differ the most from the background. These water 

bodies have not been extracted quite so well from the SPOT images since the grey 

values differ much less. A lot of clutter has been extracted from the SAR images with 

the patches, but this was successfully removed using the clutter removal algorithms. The 

results show that a larger number of similar patches (i.e. those which represent the same 

features on the ground) have been extracted from the Camargue images than the Istres
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images, leading to the conclusion that the Camargue images are better suited to 

matching based on patches extracted using automatic thresholding. A summary of the 

extraction of these patches using automatic thresholding is shown in figure 6.7.

/  Original /  
/  SAR im a g e  M

/  Original /  
/  S P O T  im a g e  J f

Linear co n t ra s t  s tre tch  
{0, 511} ^  {0, 255}

H istogram
norm alisa tion

E n h a n c e  h is togram  
(Istres a n d  C a m a rg u e )

E n h a n c e  h is tog ram  
(C a m a r g u e  only)

Automatically  d e te rm in e  
th resho ld  level

Automatically d e te rm in e  
th resho ld  level

T h re sh o ld  im age T h re sh o ld  im a g e

ijH
RM _CLUT 

Max. w indow s iz e  = 15
RM _CLUT 

Max. w indow  s iz e  = 15

RM _SM A LL_PA TCH ES 
Min. pa tch  s iz e  = 200

RM _SM A LL_PA TCH ES I 
Min. p a tch  s iz e  = 20 0

Assign un ique  
grey  v a lu e s

A ssign  un ique  
g rey  v a lu e s

/  SAR pa tch  
/  im a g e  /

/  S P O T  p a tch  Jf 
/  im a g e  j f

Figure 6.7 Flow chart summarizing automatic thresholding

6.2.3 Homogeneous patch extraction
As with the automatic thresholding, the first step in this extraction procedure was the 

conversion of the original 16 bit SAR images to 8 bit images using a linear contrast 

stretch; as before, 0 was assigned to 0 and 511 was assigned to 255. Again the raw 

SPOT image was normalized to improve the contrast. In order to extract patches using 

homogeneous patch extraction, a tolerance parameter has to be set by the user. After a 

few trials, the best values for this parameter appeared to be 13 for the SAR images and 5 

for the SPOT images. The results from the homogeneous patch extraction algorithm are 

shown in figures 6.8 and 6.9 for Istres and figure 6.10 and 6.11 for Camargue.
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Figure 6.8 Homogeneous patch extraction results for SAR image of Istres

Figure 6.9 Homogeneous patch extraction results for SPOT image of Istres

Figure 6.10 Homogeneous patch extraction results for SAR image of Camargue
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Figure 6.11 Homogeneous patch extraction results for SPOT image of Camargue

Clearly a lot of post-processing is required to fill the holes in the patches extracted from 

the SAR images, and a lot of clutter has to be removed from the SPOT images. The 

same two step procedure as used for the automatic thresholding was used here, and the 

corresponding results are shown in figure 6.12 and figure 6.13.

m

T t
Vfc *

Figure 6.12 Post-processed patches extracted using homogeneous patch extraction for 
SAR (left) and SPOT (right) images of Istres
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Figure 6.13 Post-processed patches extracted using homogeneous patch extraction for 
SAR (left) and SPOT (right) images of Camargue

An examination of the above images clearly shows that this method of extracting

patches has produced results, which in the case of the SAR images, are quite similar to

those produced by automatic thresholding, but in the case of SPOT, are quite different.

The homogeneous patch extraction results for the SPOT images of Istres and Camargue

are far superior results to those generated using automatic thresholding. The

homogeneous patch extraction procedure is summarized in figure 6.14.
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Figure 6.14 Flow chart summarizing homogeneous patch extraction
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6.2.4 Segmentation
This section shows the results of applying the segmentation algorithms described in the 

previous chapter to the SAR and SPOT test images. Since there are four different 

segmentation algorithms being tested the layout is slightly different to the two previous 

sections: each algorithm is fully tested before proceeding onto the next.

With the MUM segmentation algorithm there was no need to convert the data from 16 

bit to 8 bit since the algorithm works well with both (even though there is a large time 

saving by using 8 bit data). Experiments were performed with different values of the 

probability of false alarms parameter p  (where the probability of false alarms is given by 

10'/?) for each of the test images to obtain the best result. The results for the Istres image 

are shown in figure 6.15, and the results for the Camargue image are shown in figure 

6.16.

Figure 6.15 Istres SAR image segmented using MUM algorithm with p = 6

Figure 6.16 Camargue SAR image segmented using MUM algorithm with p = 6
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The chosen value of p  seemed to give the best extraction of features from the 

background. Although in both images the background has merged in a number of places 

and the foreground features (the water bodies) remain distinct from the background, a 

degree of post-segmentation was required to ensure good separation of the features. 

Patches were merged solely on grey value: neighbouring patches with a grey level 

difference of less than 30 were merged.

Post-processing of these images is required to remove small insignificant patches, after 

which holes left behind in the large patches (by the removal of small patches) must be 

filled. Therefore, for the post-processing of segmented images, the 

REMOVE_SMALL_PATCHES algorithm must be applied first, and the RM_CLUT 

algorithm applied second, the reverse of the method used for the previous results. The 

post-processed images of Istres and Camargue are shown in figure 6.17.

Figure 6.17 Patches extracted from Istres (left) and Camargue (right) using MUM
segmentation

In figure 6.17 the patches have been assigned random grey values to clarify the result, 

but even so it is still a bit difficult to see exactly which features have been extracted. In 

the Istres image, a least four water bodies, and some other features, have been extracted, 

and in the Camargue image most of the principal features seem to have been extracted. 

Many of the patches have been merged by the MUM algorithm. This could be avoided 

by setting a lower value for the parameter p , but in doing so the patches which represent 

features would have been split into multiple patches. Therefore, the difficulty with the 

MUM algorithm is finding a value of p  which gives a good balance between splitting of 

patches and merging of patches.
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To achieve the best Istres result (the one shown above) the parameter p  was set to 6 , the 

minimum patch size was set to 200 and the maximum window size for the RM_CLUT 

algorithm was set to 21. For the Camargue image, p  was set to 6 , the minimum patch 

size was set to 200 and the maximum window size was set to 21. A flow chart 

summarizing the MUM segmentation process is shown with the RWSEG process below 

in figure 6 .21 .

As with the MUM algorithm, the RWSEG algorithm will also produce results for 16 bit 

images, so no preprocessing of the image was required. However, the RWSEG 

algorithm is more complex in that two parameters have to be set (e and j )  compared to 

just the one for the MUM algorithm. This meant that it is much more difficult to find 

the correct combination of parameters to give the best result. After experimenting with 

different values, the results shown in figures 6.18 and 6.19 were achieved.

Figure 6.18 Istres SAR image segmented using RWSEG with e = 3.29 and j -  6

Figure 6.19 Camargue SAR image segmented using RWSEG with e = 3.29 and j  = 4
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It proved slightly more difficult to produce good results using the RWSEG algorithm 

for the two test images than the MUM algorithm. This is because the RWSEG algorithm 

tends to over-segment the images much more than other algorithms so post­

segmentation merging of the patches is required. The algorithm does merge patches to 

an extent (controlled by the j  parameter) but it was found, as with the MUM algorithm, 

that even more merging was required. This was achieved by merging patches in the 

resulting image based on grey value alone. For both the Istres and Camargue images, 

neighbouring patches with a grey level difference of less than 30 were merged.

As with the MUM results, the RWSEG results need to be post-processed. The same 

method as above was used, i.e. applying the REMOVE_SMALL_PATCHES algorithm 

first (with minimum patch size set to 200) and the RM_CLUT algorithm second (with 

the maximum window size set to 21). The results are shown below in figure 6.20. (Note 

that white regions actually represent areas where no patches exist.)

Figure 6.20 Patches extracted from Istres (left) and Camargue (right) using RWSEG
segmentation

The final results of the RWSEG algorithm are not that different from the final results of 

the MUM algorithm. However, they do differ slightly in that the patches are a little 

more merged in the RWSEG results. Most of the major features seem to have been 

extracted, but the quality of the result can only be assessed when it is used for matching.

A flow chart summarizing the extraction of patches using RWSEG is shown in figure 

6.21 with a flow chart summarizing the MUM algorithm.
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Figure 6.21 Flow charts summarizing MUM and RWSEG algorithms

The next two algorithms, REGSEG and OPTISEG, are used for segmentation of optical 

images, in particular SPOT imagery. Before either of the algorithms were applied, the 

SPOT test images were preprocessed. Firstly the images were normalized to improve 

the contrast of the images, and secondly a smoothing/edge enhancement algorithm (the 

MHN filter) was applied to the images. For the REGSEG algorithm only one parameter 

had to be set. As with the other algorithms tested, the values for this parameter for each 

test image (Istres and Camargue) were found by trial and error, and the results are 

shown below in figures 6.22 and 6.23.
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Figure 6.22 Istres SPOT image segmented using REGSEG with d=  3

Figure 6.23 Camargue SPOT image segmented using REGSEG with d=  3

As mentioned in the previous chapter, the REGSEG algorithm has a propensity to over­

segment images. The backgrounds of both the test images have clearly been over­

segmented, but the features are quite clear in the foreground. Increasing the value of the 

parameter d  lead to less over-segmentation of the background, but the foreground 

features became merged with the background. Therefore a value of 3 for d  seemed to 

give the best result in both cases.

Since the backgrounds of the images are clearly over-segmented the small patches need 

to be removed to leave the large ones, and holes may need to be filled. The same 

method of clutter removal is used here as was used for the MUM and RWSEG 

algorithms above. The minimum patch size for REM OVE_SMALL_PATCHES was set 

as 200 and the maximum window size for RM_CLUT was set as 21. The post-processed 

results are shown below in figure 6.24.
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Figure 6.24 Patches extracted from Istres (left) and Camargue (right) using REGSEG
segmentation

The above images show that although the initial results of the REGSEG algorithm may 

have not appeared to be very useful, the algorithm has in fact extracted a large number 

of useful patches from both images; the post-processing has clearly performed well. A 

flow chart summarizing the REGSEG segmentation procedure is shown in figure 6.28.

Just as the RWSEG feature extraction procedure was more complicated than the MUM 

feature extraction procedure, so the OPTISEG feature extraction procedure is more 

complicated than the REGSEG feature extraction procedure. OPTISEG requires three 

parameters to be set, so a lot of experimentation was required before good results could 

be obtained. These results are shown in figures 6.25 and 6.26 below.

Figure 6.25 Istres SPOT image segmented using OPTISEG with T=5,  ju = 0.05, v = -0.2
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Figure 6.26 Camargue SPOT image segmented using OPTISEG with T=  5, n = 0.2, v= -0.2

The results obtained using OPTISEG are quite different from those obtained using 

REGSEG. The REGSEG algorithm gave a result with a greatly over-segmented 

background, whereas OPTISEG did not over-segment or under-segment either the 

foreground or background features. The parameters of the OPTISEG algorithm were 

selected so that the larger features in the could extracted, but this was at the expense of 

some of the smaller features, which were merged in the process. This is not considered a 

problem since the smaller features are less useful in the matching procedure than the 

larger ones .

Once again the same clutter removal procedure was applied, with the minimum patch 

size set at 200 and the maximum window size set at 21. The results are shown in figure 

6.27 below, and a flow chart describing the OPTISEG segmentation procedure is shown 

in figure 6.28.

Figure 6.27 Patches extracted from Istres (left) and Camargue (right) using OPTISEG
segmentation
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Figure 6.28 Flow chart of optical segmentation procedure

6.2.5 Conclusions
This section has presented the results of applying areal feature extraction algorithms to 

two SAR and two SPOT test images. It has described in detail exactly how each 

algorithm has been applied in order to give the best possible results for feature 

matching. One of the aims of this project is to develop automatic feature extraction 

algorithms for use in an automatic image registration system, but it is clear from this 

first section that some of the feature extraction algorithms operate far from 

automatically. Those algorithms (homogeneous patch extraction and all the 

segmentation algorithms) have been used with user intervention in order to get the best 

results. In the context of an automatic system, user intervention would not be possible; 

this problem is addressed below in § 6.4.2.

The method of automatic thresholding is the only algorithm of those described above 

which is truly automatic. It requires no user intervention at any stage. However, the 

above examples show that it does not always produce results useful for patch matching.
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Patches which can be used for matching have been extracted from both the SAR and 

SPOT images of Camargue and the SAR image of Istres, but not from the SPOT image 

of Istres.

Homogeneous patch extraction has been shown to successfully extract useful patches 

from all of the images tested above. Since the extraction algorithm only requires one 

parameter to be set and the post-processing of the results is relatively straightforward, 

this is a very useful algorithm for the proposed automatic image registration system.

The four segmentation algorithms used in this study all produce results which can be 

used in the patch matching procedure. The most similar results come from the two SAR 

segmentation algorithms (MUM and RWSEG). Both give useful patches, but the MUM 

algorithm only needs one parameter to be set while the RWSEG algorithm needs two to 

be set. Therefore, although the automation of the setting of the single MUM parameter 

will be more straightforward than that of the two RWSEG parameters, the latter does 

offer more flexibility in the type of result which can be achieved. The same is true for 

the two optical segmentation algorithms (OPTISEG and REGSEG): they both produce 

useful results, but OPTISEG requires three parameters to be set, compared to just one 

for REGSEG. Therefore, the automation of the OPTISEG algorithm will be more 

difficult than the automation of the REGSEG algorithm.

The results shown above illustrate very clearly the need for multiple feature extraction 

algorithms. A single algorithm would be insufficient to produce enough useful patches 

for automatic registration.

A final point should be made about the test images used. The SAR images were 

acquired four years after the SPOT images were acquired, and since some of the major 

features in the images are water bodies, it would perhaps be expected that there would 

be some change between the images. However, this does not appear to be the case and 

the images are quite similar, apart form the cloud contamination that is clearly visible in 

the SPOT image of Camargue.

6.3 Patch matching

6.3.1 Introduction
So far this chapter has presented the results of extracting patches from four remotely 

sensed test images. The next stage of the image registration procedure is to code and 

match these patches. Once matched they can be used to register the corresponding
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images. This section describes the patch matching procedure used in this system of 

automatic image registration. Although the method presented here has a few similarities 

to that described by Morgado and Dowman (1997) and Abbasi-Dezfouli and Freeman 

(1994), it is intrinsically new.

The first section below describes how the patches are coded. A number of attributes are 

determined for each patch, such as area, perimeter length and shape. The second section 

below describes how the patches are matched based on their attributes, and how that 

matching is refined. The final section uses the matching results to perform the 

registration, and the results are presented.

6.3.2 Patch attribute encoding
This section describes the methods used to encode the attributes of the patches which 

are used in the matching procedure. These attributes are:

□ area;

□ perimeter length;

□ bounding rectangle; and

□ location in the image.

The area of each patch is simple to calculate since it merely involves counting up all the 

pixels which make up that patch (see figure 6.29 below). This is trivial if all the patches 

in the image have a different grey value. The post-processing of the extracted patches 

featured an algorithm for unique grey value assignment, so determining the area of each 

patch is therefore straightforward. The perimeter length of each patch is determined by 

counting up all the pixels in the perimeter of the patch, and the bounding rectangle is 

calculated by determining the extent (in rows and columns) of the patch (see figure 6.29 

below).

A --------------  W idth  ►

Figure 6.29 Area, perimeter and bounding rectangle of typical patch
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In the above diagram, the grey pixels (both light and dark) represent the whole area of 

the patch. The dark grey pixels are the pixels which make up the perimeter. By simply 

counting the dark grey pixels it is possible to determine the length of the perimeter. The 

bounding rectangle is expressed in terms of width and height (shown in the above 

diagram) and measured in pixels.

The last attribute of the patch to be determined is the location of the patch in the image. 

This is calculated by measuring the co-ordinates of the centroid of the patch. The 

centroid is calculated by simply taking the mean of the row co-ordinates of all the pixels 

in the patches, and the mean of the column co-ordinates of all the pixels. Although 

comparison of centroid locations is not a reliable way of matching patches, it is used in 

the matching procedure to refine the matching results.

One further attribute that previous studies have considered useful in patch matching, but 

which has not been used here, is the chain code of the boundary of the patch. Chain 

coding (Freeman, 1961) is a technique used to describe the changing direction of the 

boundary, and therefore describes the shape of the patch. In this study where patches 

extracted from SAR and optical images are being matched, chain codes would not 

necessarily increase the accuracy of the matching since, although the general shapes of 

corresponding patches are similar, their boundaries can be quite different. For an 

example of this, compare the corresponding patches in figure 6.12 above. Furthermore, 

there are other problems associated with chain codes which can make it difficult to 

match patches successfully. These problems are discussed in Abbasi-Dezfouli and 

Freeman (1994).

This discussion of attribute coding of patches has only featured five different types of 

attributes. However, there are numerous other methods of describing the shapes of 

patches, such as polygonal approximations, signatures and boundary segments. These 

are not considered here since the method of matching described below is simple, 

accurate and robust, and so their inclusion would be superfluous. A detailed discussion 

of these other methods of patch coding can be found in Gonzalez and Woods (1992).

The attributes described above are exemplified below using the patches extracted from 

the SPOT image of Istres using homogeneous patch extraction (shown in figure 6.30). 

There are 31 patches in this image -  the attributes of the four largest patches are listed 

in table 6.1 below. The reference numbers in the image refer to the corresponding 

reference numbers in the table.

185



Figure 6.30 Patches from SPOT image of Istres with corresponding reference numbers

Reference
number Area Perimeter

length
Centroid
(column)

Centroid
(row)

Bounding
rectangle

rows

Bounding
rectangle
columns

1 4291 260 266.917 68.799 92 69

2 18978 549 164.209 122.386 186 149

3 4097 255 63.095 291.865 84 81

4 6356 330 231.220 309.265 122 75

Table 6.1 Attributes of patches in SPOT image of Istres processed with homogeneous
patch extraction (all units are pixels)

The coding of the patches is a completely automatic process requiring no human

intervention. The patches extracted from the images (described in the previous section)

were all coded in this manner.

6.3.3 Matching
This section describes the process used to match the patches extracted from the SAR 

and SPOT images. Although it is similar to previous work, the procedure is essentially 

new. It works in a stepwise manner where the matching results are refined in each step. 

The first step of the matching algorithm matches all the patches from the first image 

(image 1) to patches in the second image (image 2), and vice versa. This is done by 

using the differences in the attributes of the patches to determine a cost function which 

is minimized to give the best match. The cost function is also used to removed multiple 

matches. The second step refines the results by eliminating false matches by comparing 

the shapes of matched patches. The third step further refines the matching results by 

analysing the separations of matched patches. This matching procedure is summarized 

in figure 6.31, and the three steps are described in detail in the remainder of this section.
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Patches 
extracted 

from image 1

Patches 
extracted 

from image 2

Determine attributes of patches: 
area, perimeter length, bounding 

rectangle, location of centroid

Step 1

Match all image 
1 patches with 

image 2 patches

Match all image 
2 patches with 

image 1 patches

Remove multiple 
matches

Remove multiple 
matches

Combine matching results

Step 2

Step 3

Remove false matches by 
comparing patch shapes

Remove false matches by 
comparing patch separation

Matched 
patches

Figure 6.31 Flow chart summarizing patch matching procedure

Step 1 -  Cost function matching

The use of a cost function for image matching was described by both Morgado and 

Dowman (1997) and Abbasi-Dezfouli and Freeman (1994). However both of these 

authors found that there are some problems associated with its implementation. A 

general point was that on its own it will not differentiate all the good matches from the 

bad matches. This is because incorrect matches sometimes give a low value for the cost 

function, and correct matches sometimes give high values. Therefore, more information 

has to be used to improve the matching results, such as using a chain code method to 

describe the shapes of the patches, or using the relative geometry of the matched 

patches with respect to each other in order to highlight poor matches. Although it was 

shown that both of these methods worked in the examples cited by the authors, they 

would not necessarily work here. The reason for not using chain codes method was 

given in § 6.3.2. The problem with using the relative geometry of matched patches is 

that there may not be enough good matches to ensure a reliable result could be 

determined, or too many bad but geometrically similar matches could easily lead to an
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incorrect result. Therefore, there is a question of robustness associated with these two 

methods of improving the match results.

The cost function used by Morgado and Dowman (1997) is shown below in equation 

6 . 1.

r  = - f l 2| + |Pi ~Pi\ + \r\ “ ^l + h  ~ c 2\ + ... (6.1)

where T is the value of the cost function, is the area of patch i, pi is the perimeter 

length, and r, and c, are the height (in row pixels) and width (in column pixels) of the 

bounding rectangle. The last term which has not been shown here represents differences 

in chain codes.

A specific problem associated with this function is that it was found that the area 

component influenced the results more than the other attributes. To get around this 

problem, the value of the area component was halved to reduce its influence. However, 

since areas and lengths are being compared, it seems more reasonable to take the square 

root of the area component, so that all the components being compared have the same 

dimensionality. Furthermore, with the above function, larger patches will always give a 

larger cost function value than smaller patches. Therefore, to ensure this is not the case, 

the differences in components have been normalized. Thus, the cost function used in 

this study is expressed by the equation:

i

flj — #2 2
+ 5* 1

to + rx ~r2 + Cl C2
ax + a2 Pi + p 2 r\+ r2 c, +c2

The cost function is determined for the first patch in image 1 and all the patches in 

image 2. The combination of patches which gives the minimum value is accepted as the 

best match. The process is repeated for the second, third and all subsequent patches in 

image 1 until they have all been matched with patches in image 2. In the situation where 

a patch from image 2  has been matched with two different patches from image 1 , the 

match with the lowest cost function is accepted as the correct one. The result is that all 

the patches in image 1 have been matched, but not necessarily all of the patches in 

image 2 have been matched. In order to ensure that all of the patches in image 2 have 

the opportunity to be matched with all of the patches in image 1 , the process is repeated 

with the order of the images reversed. The first patch in image 2 is matched with all the
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patches in image 1, as is the second, third, and so on. Multiple matches are again 

eliminated using the value of the cost function. Before the matching results can be 

refined in the second step of the matching procedure, the results from the two processes 

described above have to be combined.

An example of the cost function matching results, generated using patches extracted 

from the SAR image of Istres using MUM segmentation and patches from the 

corresponding SPOT image using REGSEG segmentation, are shown in table 6.2.

SAR patch 
grey level

SPOT patch 
grey level Cost function Patch separation 

(pixels)

2 5204 0.463 112.429
3 2 2 0 0.484 0.353
7 13897 0.270 225.892
9 3417 0.550 253.794
1 0 2901 0.277 4.651
1 2 3754 0.229 6.835
13 18389 0.265 267.599
18 26749 0.240 514.928
2 1 13746 0.662 209.264
2 2 21272 0.394 275.525
24 8585 0.259 378.102
28 18558 0.306 166.298
30 21476 0.327 198.795
32 11307 0.313 59.894
33 25114 0.129 242.566
37 21579 0.137 303.653
39 20029 0.286 395.225
43 16449 0.549 43.834
45 15793 0.287 3.995
56 1339 0.414 330.546
60 11922 0.416 382.007
61 16119 0.474 123.264
71 17966 0.215 347.164
73 13154 0.714 222.182
75 6637 0.276 384.673
76 16520 0.186 386.544
77 4572 0.382 418.060

Table 6.2 Example of cost function matching results

Table 6.2 shows that there are a large number of matches, but the majority of these are 

false (this is clear from the patch separation distances). The next step in the matching 

procedure refines these results and eliminates false matches by comparing the shapes of 

the matched patches.
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Step 2 -Refinement by comparing patch shape

Previous studies have used chain coding to match patches based on shape. However, 

this procedure will not necessarily produce reliable results for patches extracted from 

SAR and SPOT imagery. Therefore, a much simpler method is introduced here. To 

detect a false match, a pair of matched patches are laid on top of each other with their 

centroids coinciding, and the number of pixels that they have in common are counted. 

Patches with similar shapes will have a large number of pixels in common, whereas 

patches with different shapes will only have a few pixels in common. In order that 

results from different pairs of patches can be compared, the results are expressed as a 

ratio of pixels in common to total number of pixels in the two patches. By selecting a 

threshold for minimum amount of overlap it is simple to separate the correct matches 

from the false matches. It was decided to use a threshold of 70% for all the results. 

Table 6.3 shows the matching results from table 6.2 with correct matches highlighted 

according to their percentage of overlap.

Obviously it is possible that some false matches may still be accepted as true matches, 

but now the correct matches outnumber the false matches. The third stage of the 

matching procedure further refines the results to ensure that no false matches remain.
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SAR patch 
grey level

SPOT patch 
grey level Cost function

Patch
separation

(pixels)

Percentage
overlap

2 5204 0.463 112.429 19.4
3 2 2 0 0.484 0.353 88.5
7 13897 0.270 225.892 33.1
9 3417 0.550 253.794 31.2
1 0

1 2

2901
3754

0.277
0.229 6.835

89.9
nA a94.4

13 18389 0.265 267.599 19.9
18 26749 0.240 514.928 37.2
21 13746 0.662 209.264 66.8
22 21272 0.394 275.525 36.6
24 8585 0.259 378.102 40.1
28 18558 0.306 166.298 49.3
30 21476 0.327 198.795 52.6
32 11307 0.313 59.894 56.1
33 25114 0.129 242.566 56.1
37 21579 0.137 303.653 65.2
39 20029 0.286 395.225 57.3
43 16449 0.549 43.834 30.7
45 15793 0.287 3.995 88.7
56 1339 0.414 330.546 23.0
60 11922 0.416 382.007 62.9
61 16119 0.474 123.264 59.6
71 17966 0.215 347.164 51.4
73 13154 0.714 222.182 29.0
75 6637 0.276 384.673 48.2
76 16520 0.186 386.544 35.1
77 4572 0.382 418.060 47.1

Table 6.3 Refined matching results with correct matches highlighted

Step 3 -  Refinement using patch separation

The third and final stage of the matching process removes the remaining false patches 

(if there are any) by comparing the patch separation distances for all the matched 

patches. Since the images being matched are initially aligned with each other, it true to 

say that the patch separation for all correctly matched patches should be very similar. 

By plotting a histogram of all the patch separations, a cluster will exist which represents 

the correct matches. The patch separation for the false matches will distributed 

randomly. Therefore, by eliminating all the matches with a patch separation distance 

outside that cluster, only the correct matches remain. For this method to be reliable, 

there must be a significant number of correctly matched patches in order to identify the 

cluster.

The final results with false matches eliminated are shown in table 6.4, and the matched 

patches are shown in figure 6.32. The images confirm that all of the matches are correct.

191



SAR patch 
grey level

SPOT patch 
grey level Cost function

Patch
separation

(pixels)

Percentage 
overlap (xlOO)

3 220 0.484 0.353 0.885
10 2901 0.277 4.651 0.899
12 3754 0.229 6.835 0.944
45 15793 0.287 3.995 0.887

Table 6.4 Final matching results

Figure 6.32 Matched patches from SAR and SPOT images of Istres

The above results clearly illustrate that the method of patch matching proposed here has 

been successful. Table 6.4 shows that comparison of the cost function alone for 

different combinations of patches is not a suitable method of patch matching. However, 

when it is used in conjunction with shape information, in the way described above, 

accurate results can be obtained. Furthermore, it should be pointed out that the proposed 

method of patch matching is simple, quick, efficient and automatic. No user 

intervention is required at any stage.

This matching procedure was applied to all the combinations of patches extracted from 

SAR and SPOT images. The results are shown in table 6.5.
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Method of patch 
extraction

Camargue Istres

Total
matches

Total correct 
matches

Total
matches

Total correct 
matches

SAR auto thresholding 
SPOT auto thresholding 46 1 50 0

SAR auto thresholding 
SPOT homogeneous patch 82 0 59 3

SAR auto thresholding 
SPOT REGSEG 150 2 108 3

SAR auto thresholding 
SPOT OPTISEG 206 1 333 3

SAR homogeneous patch 
SPOT auto thresholding 39 1 50 0

SAR homogeneous patch 
SPOT homogeneous patch 75 0 59 3

SAR homogeneous patch 
SPOT REGSEG 143 2 108 2

SAR homogeneous patch 
SPOT OPTISEG 199 0 333 3

SAR MUM
SPOT auto thresholding 94 2 83 0

SAR MUM
SPOT homogeneous patch 130 1 92 4

SAR MUM 
SPOT REGSEG 198 4 141 4

SAR MUM 
SPOT OPTISEG 254 0 366 2

SAR RWSEG 
SPOT auto thresholding 126 1 73 0

SAR RWSEG
SPOT homogeneous patch 162 0 82 5

SAR RWSEG 
SPOT REGSEG 230 2 131 3

SAR RWSEG 
SPOT OPTISEG 286 1 356 3

Table 6.5 Summary of all matching results for Istres and Camargue

The results in table 6.5 are quite interesting. The most striking trend is that the number 

of possible matches and the number good matches are very dependent upon which 

image and which combination of feature extraction algorithms are used. The fact that it 

is not possible to select one combination of algorithms which will perform well on all
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pairs of images justifies the use of multiple feature extraction algorithms in this study. 

Previous studies have overlooked or ignored this fact by selecting images which give 

good results with the algorithms being used. A couple of other conclusions that can be 

drawn from table 6.5 are firstly that there are more matches for the Istres image than the 

Camargue image (surprising perhaps when the images are compared) and secondly that 

the number of possible matches is not a guide for number of good matches. Therefore 

the combinations of algorithms should be judged only on the number of good matches 

found.

In conclusion, this section has described a robust and reliable procedure for matching 

patches extracted from SAR and SPOT imagery, and presented the results of applying 

this procedure to 16 pairs of feature extraction images. The next section uses these 

results to the approximately register the corresponding pairs of images.

6.3.4 Image registration
The previous section has shown that the patch matching algorithm described here can 

successfully match patches extracted from SAR and SPOT imagery. This section 

demonstrates how those results can be used to register the two pairs of images (Istres 

and Camargue). Table 6.5 above shows the number of good matches which were found 

for each combination of feature extraction algorithm. The combinations producing the 

greatest number of matches will be used to perform the registration. It is not necessarily 

true that these combinations will give the most accurate registration, but for the 

purposes for this demonstration, they will give the largest number of residuals.

For the Camargue test site, the greatest number of matches were found using the patches 

extracted from the SPOT image using the REGSEG algorithm, and the patches 

extracted from the SAR image using the MUM algorithm. The corresponding matched 

patches are shown in figure 6.33 below.
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Figure 6.33 Matched patches extracted from SPOT (left) and SAR (right) images of
Camargue

The centroids of these patches have been marked with small crosses. It is these 

centroids which are used as tie points to register the images. All four points were used 

to generate the parameters of an affine transformation. This transformation was used to 

register the SPOT image to the SAR image. The residuals of the transformed tie points, 

along with the original and transformed co-ordinates of the centroids are given in table 

6.6 below.

The corresponding data is also shown below for the Istres test site. In this case, the 

combination of feature extraction algorithms which gave the greatest number of tie 

points was RWSEG for the SAR image and homogeneous patch extraction for the 

SPOT image. The matched patches are shown in figure 6.34.

%
Figure 6.34 Matched patches extracted from SPOT (left) and SAR (right) images of Istres

In this case five patches have been matched, so there are five tie points with which to 

determine the parameters of the transformation for registering the images. Once again
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an affine transformation was used to register the SPOT image to the SAR image. The 

original co-ordinate data of the tie points and the residuals are given in table 6 .6 .

SPOT SAR SPOT Residual
original original transformed

<u Column Row Column Row Column Row Column Row
3
W) 67.73 37.80 78.86 36.82 70.20 37.64 2.47 -0.16
OSfl 123.88 399.41 125.20 398.25 122.47 399.50 -1.41 0.09
c
C3
u

266.81 175.52 267.23 176.57 262.62 175.79 -4.19 0.27
347.89 385.76 351.59 386.69 351.03 385.57 3.13 -0 . 2 0

26.01 444.27 26.92 444.03 23.56 441.94 -2.45 -2.33
Vi 100.80 298.92 102.44 299.10 99.24 300.68 -1.55 1.77
u 154.39 196.21 161.14 192.34 158.08 196.60 3.69 0.39
l-H 341.26 263.22 347.64 265.43 344.80 265.04 3.54 1.82

497.12 36.30 496.42 29.39 493.89 34.67 -3.22 -1.64
Table 6.6 Co-ordinates of Camargue and Istres tie points with residuals

It should be remembered that the residuals in the above table are not an independent 

check of the accuracy of the registration, but even so they do give an indication of the 

quality of the registration. However, with so few tie points it is very difficult to interpret 

very much from these residuals. One important point that can be clearly seen is that 

there are no blunders in the matching: all of the residuals have the same order of 

magnitude of less than 5 pixels. A blunder would be apparent since it would lead to 

some quite large residuals.

6.3.5 Conclusions
This section has presented a method for matching patches extracted from SAR and 

optical imagery, and shown the types of results that can be achieved. The idea of 

extracting patches from different types of imagery and matching them in order to 

register the images is not a new one, but the specific method of doing this described 

here is new. Although some of the original ideas for matching were based on previous 

work, it was found that new techniques had to be developed if the patches were to be 

matched accurately and efficiently. These new techniques have been designed to 

produce accurate and reliable results automatically, without the need for human 

intervention, which is essential for a robust automatic image registration system.

To summarize, the patch matching method works by matching all the patches from one 

image to patches in the corresponding image, using a simple cost function derived from 

attributes of the patches. Multiple matches are removed, and the results are refined by 

comparing the shapes and the separations of the matched patches. The result is that for 

each combination of feature extraction algorithms a number of reliable matches can be
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found. The quantity of matches depends on which feature extraction algorithms and 

which images were used. For the two test images used in this part of the study, it was 

found that the segmentation algorithms tended to give the most matches, and the 

thresholding algorithm the least number of matches. However, it is not expected that a 

similar distribution of matches would be found for other images.

Lastly, this section has shown how the matched patches can be used to derive the 

parameters of a transformation function which in turn is used to register the images. 

Although there are too few matches to allow a full analysis of the accuracy of the 

registration, the residuals do indicate that there were no matching blunders.

Previous researchers which have developed similar techniques of feature based image 

registration have usually stopped at this point and presented their methods as prototype 

systems for automatically registering imagery. However, there are still a number of 

problems which need to be overcome if the method proposed here is to be useful as an 

automatic image registration system. Some of the issues which need to be addressed are:

□ improving the quantity of matches;

□ improving the spatial distribution of the matches;

□ improving the quality of matches; and,

□ refining the feature extraction process so it can proceed automatically.

It is only by further developing the feature extraction and patch matching algorithms 

that a robust system can be developed. If the system developed is not robust then it 

ceases to be a useful piece of applied research. The next section describes some new 

improvements to the proposed method of feature extraction and registration which lead 

to improved results.

6.4 New techniques for improved patch matching

6.4.1 Introduction
So far this chapter has presented a reliable method of registering a pair of images based 

on feature extraction and matching. This section describes a number of new 

improvements that can be made to the extraction and matching processes which enhance 

the accuracy and reliability of the results, as well as overcome some of the problems 

already encountered. The first aspect which is considered is the lack of automation in 

the feature extraction process. Different methods are presented below for automatically 

selecting the parameters used in these processes and therefore solving the problem of
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manually choosing the most appropriate parameters. The following section describes 

how results from all of the different feature extraction algorithms can be combined 

together to improve the number of matched patches found in a pair of images, and 

ensure that only the best possible matches are used to register the images. § 6.4.4 

explains how the feature extraction and feature matching procedures can be integrated 

to produce an increased number of high quality matched patches. The final section 

illustrates how these techniques improve the image registration results.

6.4.2 Automatic parameter selection
The automatic selection of feature extraction algorithm parameters is essential if the 

proposed registration method is to operate without user intervention. Of the work 

described so far, it is only the feature extraction stage which is not automatic. Therefore 

this section provides some ideas on how the algorithms can be automated and still 

produce good results. There are two problems to consider here: what determines the best 

combination of parameters, and how can these parameters be selected automatically? To 

answer the first question, it is suggested that the best combination of parameters should 

give the greatest number of correct matches. Therefore the quantity of correct matches 

can be used as a measure to select the best combination of parameters. Two solutions 

are presented which address the second question: a brute force method, and a 

database/look-up-table method.

The brute force method of parameter selection is very simple but only applicable to 

some of the feature extraction algorithms. It works by testing a range of parameters for 

each of the feature extraction algorithms, and seeing which combination of parameters 

gives the largest number of correct matches. The problem with this method is that it can 

be time consuming since the whole matching procedure has to be repeated for each 

different parameter. This problem is not severe if each feature extraction algorithm is 

dependent on only one parameter, and if the algorithm can be executed quickly, but if 

this is not the case, then this method of parameter selection could be far too inefficient 

and it may be quicker to select the parameters manually.

The feature extraction algorithms which only need one parameter to be set are 

homogeneous patch extraction, MUM and REGSEG. For each algorithm a range of 

parameters, which were evenly distributed around the values chosen to produce the 

results shown in the early part of this chapter, were tested. The number of correct
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matches found for each combination are shown in the tables 6.7 to 6.10. Matches for 

Camargue are shown in black, and matches for Istres are shown in red.

SPOT homogeneous patch extraction parameter

Image 3 4 5 6 7

1 1
Camargue

Istres
0
2

0
3

0
3

0
0

0
1

SAR
homogeneous

patch
extraction
param eter

1 2 Camargue
Istres

0
2

0
3

0
3

0
0

0
3

13 Camargue
Istres

1

3
0
3

0
3

0
0

0
3

14 Camargue
Istres

1

0
0
0

0
0

0
0

0
0

15 Camargue
Istres

2
0

0
0

0
0

0
0

0
0

Table 6.7 Number of correct matches for SPOT homogeneous patch extraction and SAR
homogeneous patch extraction

SPOT REGSEG param eter

Image 1 2 3 4 5

SAR
homogeneous

patch
extraction
parameter

1 1
Camargue

Istres
0
2

1

3
1

2
1

2
1

0

1 2
Camargue

Istres
0
2

1

3
2
2

1

2
1

2

13 Camargue
Istres

0
2

2
3

2
2

2
2

1

3

14 Camargue
Istres

1

0
2
0

2
0

1

0
1

0

15 Camargue
Istres

1

0
1

0
3
0

2
0

1

0

Table 6.8 Number of correct matches for SPOT REGSEG and SAR homogeneous patch
extraction
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SPOT homogeneous patch extraction param eter

Image 3 4 5 6 7

4 Camargue 0 0 0 0 0

Istres 2 2 2 0 4
Camargue 0 0 0 0 0

Istres 3 3 3 0 3
SAR MUM A Camargue l 0 l 0 0

param eter Istres 3 2 4 0 4
7 Camargue 0 l 0 l 0

Istres 3 4 3 0 3
« Camargue 0 l 2 2 0

Istres 2 3 2 0 2

Table 6.9 Number of correct matches for SPOT homogeneous patch extraction and SAR
MUM

SPOT REGSEG param eter

Image 1 2 3 4 5

4 Camargue 1 2 3 2 1

Istres 2 2 3 3 3

s Camargue 0 3 3 2 1

Istres 3 4 4 4 4
SAR MUM A Camargue 0 3 4 2 2

param eter Istres 2 4 4 3 3
7 Camargue 0 1 2 2 1

Istres 3 3 3 3 3
s Camargue 0 1 3 1 1

Istres 3 2 2 2 2

Table 6.10 Number of correct matches for SPOT REGSEG and SAR MUM

A number of conclusions can be drawn from the results in the above tables. Firstly, and 

most obviously, the quantity of correct matches found is dependent upon which images 

are used. Secondly, and more importantly, there seems to be no regular pattern to the 

results. It is very difficult to draw any correlation between the value of the parameters, 

and the number of matches found. This is not necessarily a surprising result, but it does 

mean that a brute force method such as this for selecting the values of the parameters is 

the only viable automatic method. It is also clear that a number of different 

combinations of parameter values give the same number of matches, showing that no 

one particular combination is better than another. Lastly, it appears that the combination 

of the MUM and REGSEG algorithms give consistently more patches than any of the 

other three combinations. It is unclear why this should be so, but it is possibly due to the
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fact that both algorithm extract features using a similar method, and therefore similar 

features are extracted from each image.

The results clearly illustrate that this brute force method of parameter selection has 

worked: combinations of parameters can be selected automatically which will produce 

enough matched patches to perform the approximate registration. Therefore, the whole 

registration system so far can be considered automatic. The next section goes on to 

describe how the large number of extracted patches can be used to improve the accuracy 

of the registration, but before this, another method of parameter selection is introduced.

The second method of parameter selection described here has not been tested, but would 

make an interesting topic for future research. The method relies on the construction of a 

database containing information about different landcover types and the optimal 

parameters to use to extract features from images of those landcover types. The database 

would also have to contain information about which sensor acquired the image and how 

the conditions at the time of image acquisition affect the visibility of particular features. 

The method would operate by the user giving information about the landcover in the 

images being registered, and the database providing the optimal parameters for the 

feature extraction algorithms to give the best results for that particular landcover. 

Whether or not this method would work in practice is a question that is beyond the 

scope of this thesis.

6.4.3 Combined use of multiple feature extraction results
One of the strong points of the proposed method of registration, and the theme that runs 

throughout this thesis, is redundancy. The use of multiple feature extraction algorithms 

means that it is possible to increase the number of matches found between two images 

compared to if only one combination of feature extraction algorithms were used. Table

6.5 above compared the number of good matches found between pairs of images, but it 

does not give any information on whether there is any overlap between matches. For 

example, if a combination of MUM and REGSEG algorithms gives four matches, and a 

combination of RWSEG and OPTISEG algorithms gives five matches, then there is a 

minimum of five matches found between the images, and a possible maximum of nine 

matches. Thus, by combining the results of these combinations of matching algorithms 

it may be possible to increase the number of matches, compared to if only one 

combination were used. Furthermore, where there is overlap of matched features (i.e. 

where the same match has been found by different combinations of algorithms) it is
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possible to select the highest quality match and reject the lowest quality match, thereby 

improving the accuracy of the matching results.

The results generated from the Istres and Camargue data sets in § 6.3.3 were both used 

to test the first step of the refinement process: increasing the number of matches by 

combining matches from different combinations of feature extraction algorithms. This 

was done by combining all the patches matched from the SAR image into one group, 

and combining all the patches matched from the SPOT image into another group. By 

comparing the centroids of the matched patches within each group it is possible to 

determine where the overlap in the results lies. For the Camargue data set there were a 

total of 18 matched patches, and for the Istres data set there were 38 matched patches in 

total. The Camargue patches have been listed in table 6.11.

Reference
SAR
grey
level

SPOT
grey
level

Value of 
cost 

function

Percentage
overlap

Centroid 
(row, column)

1 2 4 0.559 72.3 36.665 78.878
2 382 9383 0.907 75.5 177.920 269.584
3 2 1 0.636 80.0 36.665 78.878
4 8 8 1361 0.308 71.1 386.693 351.594
5 2 4 0.356 73.1 36.821 78.863
6 2 1 3810 0.186 73.6 398.245 125.198
7 53 9383 0.343 8 6 . 0 176.569 267.232
8 8 8 15579 0.283 78.3 386.693 351.594
9 2 1 0.363 80.2 36.821 78.863

1 0 64 206 0.641 75.7 177.680 268.424
1 1 2 4 0.468 71.0 39.268 81.427
1 2 64 9383 0.193 8 6 . 1 177.680 268.424
13 2 1 0.486 74.6 39.268 81.427
14 1072 206 0.315 75.0 177.429 269.559
15 1 4 0.585 73.4 37.105 79.673
16 1072 9383 0.336 86.3 177.429 269.559
17 1 1 0.606 79.5 37.105 79.673
18 136 106 0.362 71.2 47.867 395.934

Table 6.11 Matched patches from Camargue images

Those SAR patches which have centroids within a radius of 10 pixels of each other can 

be considered to represent the same feature in the SAR image. Thus, line numbers 1,3, 

5, 9,11, 13, 15, 17 in the above table represent one patch, 2, 7, 10, 12, 14, 16 another 

patch, 4, 8  another patch, 6  another patch, and 18 another patch. Therefore, there are 5 

distinct matched patches. This is greater than the maximum number of matches found 

before, which was 4.
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These matches can now be refined so only the highest quality matches are used in the 

registration procedure. To determine the best match both the value of the cost function 

and the percentage overlap must be taken into account. A low cost function and a high 

overlap is required, so by maximizing the ratio of overlap to cost function, the best 

results will be highlighted. Table 6.12 shows the details of similar matches grouped 

together with the ratio of overlap to cost function in the last column. For each group the 

best match, determined from this ratio, is highlighted. These best matches are displayed 

graphically in figure 6.35.

Ref.
SAR
grey
level

SPOT
grey
level

Value of 
cost 

function

%age
overlap

Centroid 
(row, column)

Overlap
/cost

function
1 2 4 0.559 72.3 36.665 78.878 1.29
3 2 1 0.636 80.0 36.665 78.878 1.25
5 2 4 0.356 73.1 36.821 78.863 2.05
9 2 I 0.363 80.2 36.821 78.863 2.20
15 1 4 0.585 73.4 37.105 79.673 1.25
17 1 1 0.606 79.5 37.105 79.673 1.31
11 2 4 0.468 71.0 39.268 81.427 1.51
13 2 1 0.486 74.6 39.268 81.427 1.53
18 136 106 0.362 71.2 47.867 395.934 1.96
7 53 9383 0.343 86.0 176.569 267.232 2.50
14 1072 206 0.315 75.0 177.429 269.559 2.38
16 1072 9383 0.336 86.3 177.429 269.559 2.56
10 64 206 0.641 75.7 177.680 268.424 1.18
12 64 9383 0.193 86.1 177.680 268.424 4.46
2 382 9383 0.907 75.5 177.920 269.584 0.83
4 88 1361 0.308 71.1 386.693 351.594 2.30
8 88 15579 0.283 78.3 386.693 351.594 2.76
6 21 3810 0.186 73.6 398.245 125.198 3.95

Table 6.12 Best matched patches from Camargue images

Figure 6.35 Best matched patches from SAR and SPOT images of Camargue
(left and right respectively)
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The refinement of the matching procedure was repeated for the Istres images. The 

results are shown graphically in figure 6.36.

Figure 6.36 Best matched patches from SAR and SPOT images of Istres 
(left and right respectively)

The value of combining results from different feature extraction algorithms is 

immediately obvious from the above results. For the Camargue images there are now 

five matched patches rather than four, and for the Istres images there are five as before, 

but now the accuracy of the matches is much better. This is best illustrated by 

comparing figure 6.36 with figure 6.34 which shows the five matches found when the 

combination of feature extraction algorithms is RWSEG and homogeneous patch 

extraction. The matched patches in figure 6.36 are obviously very similar to each other, 

but the matched patches in figure 6.34 are much less similar. Since the latter results are 

more similar, it is likely that the patches represent the features on the ground more 

accurately, and therefore they will give better image registration results. Hence, the 

combined use of different feature extraction algorithms in this way can be considered a 

success.

The final point to consider in this section is the combination of the previous two 

concepts. § 6.4.2 described how the parameters of the feature extraction algorithms can 

be automatically selected by a brute force method, and this section described how the 

matching results can be improved by selecting patches extracted using different 

algorithms. It is now proposed that the matching results can be improved still further if 

all the patches extracted using every possible combination of parameters are matched 

and refined. This was done for both the Istres and Camargue images, and improved 

results were obtained.
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All the SAR patches extracted in § 6.4.2 were matched with all the extracted SPOT 

patches. The results were refined and false matches were removed, using the methods 

described above, until only the best correct matches were left. Other matched patches 

which were not found here, but were found in the matching performed in § 6.3.3, were 

combined with these matches.4 The results are shown in table 6.13 and 6.14, and 

displayed graphically in figures 6.37 and 6.38.

Ref.
SAR
grey
value

SPOT
index

Value of 
cost 

function

%age
overlap

Centroid 
(row, column)

Overlap
/cost

function
1 2 2 0.330 76.9 37.743 75.909 2.33
2 112 9383 0.324 85.6 176.441 267.346 2.64
3 1308 615 0.306 75.1 311.012 387.414 2.45
4 78 1584 0.130 75.0 386.662 351.204 5.76
5 22 3810 0.155 75.4 398.301 125.094 4.86

Table 6.13 Best matching results for Camargue image

Ref.
SAR
grey
value

SPOT
index

Value of 
cost 

function

%age
overlap

Centroid 
(row, column)

Overlap
/cost

function
1 12 52 0.116 96.0 191.598 159.453 8.27
2 45 333 0.162 93.0 263.892 345.084 5.74
3 15 123 0.088 88.8 295.350 103.798 10.09
4 86 1390 0.237 71.4 320.588 333.588 3.01
5 2 220 0.115 84.4 444.251 26.058 7.33

Table 6.14 Best matching results for Istres image

Figure 6.37 Best matched patches from SAR (left) and SPOT (right) images of Camargue

4 R em em b er  that § 6.3 utilised all six feature extraction algorithms, whereas this section has only 
considered  four feature extraction algorithms.
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Figure 6.38 Best matched patches from SAR (left) and SPOT (right) images of Istres

This further development to the matching procedure has lead to an extra pair of matched 

patches being found in each of the images, so now there a total of six matches for each 

image. The quality of the matches is indicated by the high ratio of percentage overlap to 

cost function.

This section has illustrated how the matching procedure can be improved in terms of 

number of correct matches found, and quality of those matches, by combining the 

results from many different feature extraction algorithms. Results show that the new 

techniques introduced here are successful for both the test images, and computation 

times are not prohibitive.

6.4.4 Integrated feature extraction and matching
The idea of combining feature extraction algorithms and feature matching algorithms 

has already been mentioned in previous chapters, but in this section the concept is 

developed more fully. The idea is that features are extracted from each image and 

matched. These matches are then used to approximately register the images as usual, but 

afterwards the information contained in one image is used to refine the extraction of 

features from the other image. The matching process is then repeated with the refined 

extracted features and a better result is obtained. A method of image registration similar 

to this is described by Li (1995).

Of all the feature extraction algorithms discussed in chapter 5, only the REGSEG 

algorithm can incorporate information from sources other than the image itself. When 

used in this way, REGSEG segments optical images by the usual method of region 

growing, but the growing is limited by edge information provided from another source. 

In this case that edge information comes from the corresponding SAR image which has
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been approximately registered to the optical image. This is summarized in the flow chart 

in figure 6.39 below. The beauty of this method is that it refines the feature extraction 

results by making full use of all the information available.

SAR
im age

S P O T
im age

F e a tu re  extraction

F e a tu re  m atch ing

A pproxim ate  a l ignm ent

E d g e  extraction

..

Better
s e g m e n ta t io n

Figure 6.39 Flow chart summarizing integrated feature extraction and matching

This process was tested using the combinations of feature extraction algorithms found in 

§ 6.3.3 which gave the most matches to determine the initial registration. Therefore, for 

the Camargue test images, the MUM and REGSEG algorithms were used to determine 

the initial registration, whereas for the Istres test images, RWSEG and homogeneous 

patch extraction were used. After the images had been approximately aligned, edge 

images were created from the SAR images by converting the segmented images to edge 

images. The SPOT images were then re-segmented using this additional information 

and the matching and registration procedures were followed as before. The results of the 

refined matching are given in table 6.15 below. The values in the table represent the 

number of correct matches found when the SAR patches are matched with the refined 

SPOT patches, created using a range of edge extraction techniques. The numbers in 

black represent the Camargue data sets, and the numbers in red the Istres data sets.
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Method of SAR patch extraction

Auto
thresholding

HPE MUM RWSEG

None
2
3

2
2

4
4

2
3

Automatic 1 2 2 1

Method of
thresholding 3 3 3 3

0
3

0
3

0
2

0
2

edge
extraction

HPE

i o i 1
4MUM

i
3

A
4

i
4

RWSEG
1
3

1
3

1
3

1
5

Table 6.15 Results of combined feature extraction and matching

The results in table 6.15 show that in certain circumstances the use of edge information 

can increase the number of matches found compared to when no edge information is 

used. However, the success of this method of improving feature matching is dependent 

upon the combination of feature extraction algorithms used, and the images to which 

they are applied. The results above show specifically that greater success has been 

achieved with the Istres image than with the Camargue, but no one method of edge 

extraction stands out from the others. An important result which is not clear from 

looking at the figures in table 6.15 is that of the two matches found for the Camargue 

images using edges derived from automatic thresholding and patches extracted using 

homogeneous patch extraction, one of them is a new patch. Therefore, when these 

results are combined with the results from the previous sections, the total number of 

matches found in the pair of Camargue images has increased to seven.

6.4.5 Results of refined patch matching
The above three sections have illustrated different methods of improving and refining 

the patch matching results. This section now explains how these improvements are 

combined with each other, and presents the new registration results which can be 

obtained. Figure 6.40 shows a flow chart which summarizes the refined matching 

process.
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Extract features using multiple I  
algorithms and parameters I

Match all features

Increase matches by integrating 
feature extraction and matching

Select only best matches

Register images

Figure 6.40 Flow chart summarizing image matching with refinements

The first stage of the refined matching process is to extract features from images using 

all the different feature extraction algorithms available, and as wide a range of 

parameters as possible. All of the patches extracted are then grouped together into two 

groups: one for SAR patches and one for SPOT patches. The patches are then matched 

with each other, and a number of good matches are found. These matches are used to 

approximately align the images so that the quantity of matches can be increased using 

integrated feature extraction and feature matching. Any new matches found in this final 

stage are added to the matches already found. Finally all the matches are used to 

generate the parameters of an affine transformation to approximately align the images.

The final results of the patch extraction for the SAR and SPOT images of Camargue and 

Istres are shown in figures 6.41 and 6.42 below. The details of how the patches were 

extracted are given in tables 6.16 and 6.17.
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Figure 6.41 Final m atched  p a tch e s  from SAR (left) and  SPOT (right) im ages  of C am argue

Patch
number

SAR SPOT Quality of 
matchExtraction

algorithm Parameters Extraction
algorithm Parameters

1 MUM p = 8 REGSEG d = 2 2.33
2 MUM p = 6 Auto, thresh. t = 68 1.96
3 MUM p = 4 REGSEG d = 3 2.64
4 MUM p = 8 REGSEG d = 3 4.86
5 Horn, patch t=  13 Auto, thresh. t = 68 0.89
6 Horn, patch t=  13 Horn, patch t = 3 2.45
7 MUM P -  7 Horn, patch t = 6 5.76

Table 6.16 Details of matched patches for Camargue images
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Figure 6.42 Final matched patches from SAR (left) and SPOT (right) images of Istres



Patch
number

SAR SPOT Quality of 
matchExtraction

algorithm Parameters Extraction
algorithm Parameters

1 RWSEG e = 3.29 Horn, patch t = 3 1.73
2 MUM p = 6 Horn, patch t = 3 5.74
3 MUM p = 6 Horn, patch t = 3 8.27
4 MUM p = 4 Horn, patch t = 7 3.01
5 MUM p = 5 Horn, patch t = 5 10.09
6 Horn, patch t = 13 REGSEG t = 6 7.33

Table 6.17 Details of matched patches for Istres images

Using the matched patches, the parameters of the affine transformation can be derived 

for each image. The details of the registration are given below in table 6.18 for 

Camargue and 6.19 for Istres. As before, the residuals in the tables are the residuals of 

the tie points and not of independent check points, so therefore they do not give an 

accurate measure of the quality of the registration. They have been included because 

they are useful for highlighting the fact that there are no blunders.

SP<
orig

OT
inal

S A 
orig

lR
inal

SPOT
transformed Residual

Column Row Column Row Column Row Column Row
37.83 67.60 37.74 75.91 37.94 68.80 0.12 1.21

<ua
93
E

47.87 395.93 46.68 398.84 47.39 396.88 -0.48 0.94
175.52 266.81 176.44 267.35 176.80 264.70 1.28 -2.11
399.41 123.88 398.30 125.09 398.21 122.58 -1.20 -1.30

C4
V 243.28 441.62 240.91 439.01 241.48 439.74 -1.80 -1.89

310.11 388.59 311.01 387.41 311.43 388.07 1.32 -0.52
386.19 348.43 386.66 351.20 386.94 352.10 0.76 3.67

Table 6.18 Co-ordinates of Camargue tie points with residuals

SP<
orig

OT
inal

S^
orig

lR
inal

SPOT
transformed Residual

Is
tr

es

Column Row Column Row Column Row Column Row
36.30

263.22
196.22 
309.51 
298.92 
444.10

497.12
341.24
154.43
330.73
100.80
25.80

29.39
263.89
191.60
320.59
295.35
444.25

496.42
345.08
159.45
333.59
103.80
26.06

34.46
260.36
199.18
314.07
298.71
441.49

494.62 
343.08 
156.67
331.62 
100.96 
23.16

-1.85
-2.86
2.96
4.56
-0.20
-2.61

-2.49
1.84
2.25
0.89
0.17
-2.65

Table 6.19 Co-ordinates of Istres tie points with residuals

Patch matching for the Camargue image gave seven tie points, while for the Istres 

image it gave six. Using these points, the parameters of an affine transformation were 

generated for each image. The affine transformation function is represented by two 

equations:
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X  = ax + by + c 

Y = cix + ey + /

The values of the coefficients a to /a re  listed in table 6.20.

(6.3)

(6.4)

Parameter Camargue Istres

a 0.9989 0.9398

b 0.001601 -0.03640

c 9.8839 24.9100

d 0.01059 0.001424

e 1.0156 1.0036

f -18.6903 -15.629

Table 6.20 Coefficients of affine transformation function for Camargue and Istres

Interesting features to note are that for both images a and e are close to unity, and b and 

d  are close to zero. This signifies that the rotation and scale change between the SAR 

and SPOT images are small. The coefficients c a n d /a re  much larger, signifying that the 

translation is not small. The affine transformation functions were used to register the 

SPOT images to the corresponding SAR images. Figure 6.43 shows the outline of the 

original (untransformed) SPOT features (in cyan), and the outline of the transformed 

SPOT features (in red) overlaid on top of the original SAR image.

Figure 6.43 Results of patch based registration for Camargue (left) and Istres (right)

It is clear from figure 6.43 that the alignment of the images has been greatly improved. 

The blue outlines align much more closely with the boundaries of the corresponding
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SAR patches than the red outlines. Although the images only provide a qualitative 

comparison and no quantitative results, they do show that the registration results are 

sensible and that no blunders have occurred.

A final comment should be made about the distribution of the tie points, since tie point 

distribution has a marked effect on registration accuracy (Orti, 1981). Due to the 

automatic nature of the patch extraction and patch matching procedures, it is not 

possible to control the distribution of the tie points. Therefore, in each pair of images 

matched using this system, the distribution will be essentially random. A good 

distribution, where tie points are spread evenly across the image and close to the 

comers, will not always be obtained, so even if a large number of tie points have been 

located, the registration could still be quite poor. The only way to increase the chances 

of a good distribution is to maximise the number of matched patches.

The distribution of tie points located in the pair of Camargue images is slightly more 

evenly spread across the image than the tie points located in the pair of Istres images. 

From figure 6.41 it can be seen that the Istres tie points are clustered around a line 

which runs from top right to bottom left of the image. To ensure a more accurate 

registration result, a further two tie points would be required in the top left and the 

bottom right of the image. The Camargue tie points have a more even distribution with 

points located closer to the comers than in the Istres images (see figure 6.41).

6.4.6 Conclusions
The purpose of this section was to propose refinements that can be made to the standard 

method of image registration based on patch matching. The reason for doing this was 

primarily to increase the number of matched patches found between a pair of images, 

but also to increase the accuracy of those matches. Furthermore, since the results of the 

matching can be used as a guide for selecting parameters of the feature extraction 

algorithms, this section also proposed solving the problem of automatic selection of 

these parameters.

The proposed method of refinement was based mainly on a brute force method: all 

possible combinations of feature extraction algorithms were used with numerous 

combinations of parameters. The large redundancy of patches extracted meant that a 

large number of correct matches were found, and only the most accurate matches were 

used in the registration. In addition, the brute force method solved the problems of 

automatic parameter selection. Lastly, a method of integrated feature extraction and
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matching was investigated. It was found that the number of correctly matched patches 

could be increased, and therefore this makes a useful addition to the matching 

procedure.

The results obtained are clearly better than those generated without the proposed 

refinements. Without the refined procedure, four correct matches were found for the 

Camargue images, and five for the Istres images, compared to seven and six matches 

found when the refined procedure was used, and therefore leading to a better spatial 

distribution of matches. Also, with the refined procedure the matched patches extracted 

from each image are more similar to each other, meaning there is a greater likelihood 

that the centroids actually represent the same point on the ground.

There are many more refinements that can be made to the matching process which have 

not been discussed here. One important concept is a patch filtering procedure (Dare et 

al., 1997; Ruskone and Dowman, 1997). The idea is to filter the extracted patches based 

on their attributes, so only those patches likely to produce a correct match are actually 

used in the matching procedure. This technique should increase the efficiency of the 

whole matching process greatly since the number of patches being matched is reduced. 

In addition it should also reduce the occurrence of blunders, and therefore increase the 

reliability of the matching results. It was not tested here since the proposed algorithms 

have produced enough correct results to prove the concept of alignment of images using 

extracted patches, but it would make an interesting project for future research.

6.5 Discussion
Although the title of this chapter is simply ‘Patch matching’ it does in fact describe a 

large proportion of the image registration procedure. The first section presented the 

results of applying the feature extraction algorithms described in chapter 5 to the four 

test images used in this chapter. The parameters of those algorithms were selected 

manually, and chosen so that the results would provide the best chance of detecting 

matches between corresponding images.

The following section described the patch matching procedure in detail, from the coding 

of the patches (i.e. the measurement of the patch attributes), to the matching of the 

patches, and the calculation of the parameters of the transformation function. The 

technique of matching patches based on their attributes is not a new one, but few 

previous studies have applied it specifically to radar and optical satellite data. Due to the 

very different way in which features on the ground are imaged by these two sensors, this
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combination of image types causes problems for the matching process. Although the 

human observer can clearly distinguish particular features in a pair of images, it is very 

difficult to extract exactly the same features from each image, and therefore there are 

few common features to be matched. The consequence is that the matching process 

must be very robust in order to make best possible use of those common features which 

have been extracted, and produce the maximum possible number of good matches. The 

matching procedure proposed in this chapter is obviously reliable and robust since for 

both pairs of images some correct matches, but no incorrect matches, were found. 

Furthermore, the matching algorithm was surprisingly time efficient. Although time 

efficiency is not an important factor in this study (the goal of which is to verify the 

concept rather than produce an end product) it would affect further development of the 

proposed techniques into a commercially viable software package.

In previous studies, work often stops at this point: once a suitable number of matches 

have been found the authors move onto the next subject. However, for the sake of 

robustness and reliability, this study investigated possibilities for refining the matching 

procedure in order to increase the quantity and accuracy of the matched patches. A few 

different techniques were described which lead to a significant increase in the number 

of correctly matched patches. The most important idea that was proposed is that it is not 

necessary to rely on just one method for extracting patches: many different techniques 

can be used and the results combined in order to increase the likelihood of finding 

correct matches. The consequence was that the number of matches found increased, and 

the redundancy of similar matches found using different combinations of feature 

extraction algorithms meant that only the best results need be retained.

The patch matching results were used to register the two pairs of test images. Although 

there were not enough tie points to allow a rigorous statistical analysis of the residuals, 

it was still possible to draw some useful conclusions. It was found that the parameters of 

the transformation function showed that the rotation and scale change between each pair 

of images was small, but the translation was much larger. This was confirmed when 

untransformed and transformed boundaries of features from the SPOT image were 

overlaid on the original SAR image: the translation was obvious, but the rotation and 

scale change were not noticeable.

This concludes the discussion of patch matching for image registration. This chapter has 

presented a very successful method of patch matching which includes a number of new
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techniques for ensuring a high chance of matching corresponding patches extracted 

from SAR and SPOT imagery. The alignment of the two pairs of images which have 

been registered automatically using patch matching is now refined in the next stage of 

the image registration procedure using edge matching.
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Chapter 7 Im p r o v in g  a u t o m a t ic  r e g is tr a tio n  
USING EDGE MATCHING

7.1 Introduction
The previous chapter has presented a method of automatically registering images based 

on patch matching. For some applications which do not require a high level of accuracy 

of registration, the results produced by this method of automatic registration will be 

sufficient. However, for most applications, many more tie points will be required to 

ensure sufficiently accurate registration results. A good spatial distribution of tie points 

is essential for accurate registration results, as is a large quantity of tie points. In order 

to improve the quantity and distribution of tie points found in a pair of corresponding 

images, a refinement stage can be added to the registration process based on edge 

matching. This chapter presents a description of the application of edge matching to the 

results generated by patch matching in the previous chapter. It is shown that the number 

of tie points can be greatly increased without compromising the automatic nature of the 

proposed registration system. In addition, the increased quantity of tie points enables a 

fuller statistical analysis of the results, which is included in the latter stages of this 

chapter.

Edge matching can be considered as the final step in the proposed process for 

automatically detecting tie points between a pair of images. The two reasons cited for 

using edge matching are (1) to increase the quantity of tie points, and (2) to increase the 

distribution of the tie points. It is clear this is a necessary step in the processing chain 

when the results from the previous chapter are considered: patch matching will only 

produce a few tie points from a pair of corresponding images, even if there are a large 

number of strong features in those images. However, although edge matching will 

produce a larger quantity of tie points than patch matching, it cannot be used in 

isolation: to produce good results, the images have to be approximately aligned in 

advance, and matched features have to have been located in the pair of images. It is for 

these reasons that patch matching and edge matching are used together.
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Edge matching works by matching pixels which represent the edges of objects on the 

ground. The edge pixels are extracted using the edge extraction algorithms described in 

chapter 5 and matched using an algorithm based on dynamic programming.

An important aspect of edge matching, as with patch matching, is that it is essential that 

only extracted edges which represent the same object on the ground are matched. One 

way to ensure this would be to compare attributes of the edge being matched (such as 

length, radius of curvature, location of end points etc.). However, this would involve a 

lot of processing and would not necessarily produce accurate results. Therefore, the 

method proposed here is to match only those pixels in the boundaries of patches which 

are already known to represent the same object on the ground. This is done by using the 

boundaries of matched patches as masks to eliminate all other unwanted edge 

information from the images. The mask is created by extracting the boundary pixels of 

each matched patch as well as all the pixels within a 10 pixel radius surrounding each 

boundary pixel (see figure 7.1 below).

LA __ _______
(a) (b)
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(e)
Figure 7.1 Selection of edges for matching using masks

Figure 7.1 (a) shows the unprocessed Istres SAR image, figure 7.1 (b) shows the 

matched patches and figure 7.1 (c) shows edges extracted from the original image using 

LoG edge detector. Figure 7.1 (d) shows the mask derived from the matched patches, 

and figure 7.1 (e) shows the result of applying this mask to the edge image. By 

comparing figure 7.1 (a) with figure 7.1 (e) it can be seen that a lot of irrelevant edge 

information has been discarded, and only those edges in the region of the boundaries of 

the matched features remain. This ensures that only useful edge information will be 

used in the matching process, leading to a much more efficient algorithm which has a 

smaller chance of making incorrect matches.

The matching algorithm described here has been used in previous studies (Morgado and 

Dowman, 1997, Vohra et al. 1996, Newton et al. 1994) and is seen as a reliable method 

of matching edge features. However, as with the patch matching technique described in 

the previous chapter, the matching algorithm described in this chapter has been adapted
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slightly to increase reliability and accuracy of the results. One significant difference 

between this study and previous studies is the decision to extract edges by applying 

edge extraction algorithms to the raw images. Previous studies have in general relied on 

generating edges by segmenting the image (usually by manual thresholding) and 

converting the result to an edge image by applying an edge detector to the result. This is 

an inefficient method of extracting linear features, and is prone to inaccuracies. This 

study only uses algorithms specifically designed to extract linear features: derivative 

edge detectors and a SAR edge detection algorithm. It is expected that this will ensure 

accurate extraction of edges, and therefore reduce the possibility of errors in the 

matching algorithm.

The first section of this chapter presents the results of applying edge extraction 

algorithms described in chapter 5 to the test images, whilst the second section describes 

the matching of the extracted edges and analyses the tie points found.

7.2 Extraction of linear features from SAR and SPOT images

7.2.1 Introduction
This section describes the application of three different linear feature extraction 

algorithms to the two pairs of test images introduced in the previous chapter: Camargue 

and Istres. The first and second derivative edge detection algorithms can be applied to 

both SAR and SPOT data, but the CAESAR edge detection routine is limited to SAR 

data only. Unfortunately, due to the nature of the edge matching algorithm, only edges 

extracted using the first derivative edge detector can be used in the matching process. 

However, results have been generated using the other algorithms so that the first 

derivative edge detector results can be compared with them.

As with the polygon extraction algorithms already described, the results of each edge 

extraction algorithm depends on which values are used for the different parameters. In 

order to set the parameters to obtain the best results, it is necessary to define what a 

good result actually is. The same argument is used here as was used with the polygon 

extraction algorithms: the best results are those which give the greatest number of good 

matches. Before the edge features have been matched it is difficult to know what values 

the parameters should take in order to give the greatest number of matches. Therefore, 

the parameters used to generate the results in this section were selected by trial and 

error.
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All of the results generated require some degree of post-processing. The principal 

reason for this is that the edge matching algorithm requires images with edge location 

and direction information, but no edge strength information. Therefore, the edge 

strength results generated using the Sobel operator need to be thresholded. However, 

before thresholding, insignificant edges are removed from the images using masking, 

and the non-maximal suppression routine described in chapter 5.

7.2.2 First derivative edge detection
The first derivative edge detection algorithm chosen to be used in this thesis is the Sobel 

edge detector. Although this algorithm can be applied to raw data, preprocessing the 

data improves the results. Preprocessing of SAR images involves the application of 

speckle reduction algorithms, whilst preprocessing of optical data is the application of 

smoothing algorithms.

There are two different smoothing algorithms for SPOT data which have been 

introduced in this thesis: the median filter and the most homogeneous neighbour filter. 

The Sobel edge detector was applied to each of the Camargue and Istres images after 

smoothing with each of these algorithms. Post-processed results are shown in figures

7.2 and 7.3; the threshold level, t, is given in brackets with each image.

Original image No smoothing (t = 40)

221



3x3 median filter (t = 40) MHN filter (t -  40)
Figure 7.2 Edge images generated from Sobel edge detector applied to smoothed

Camargue SPOT images

Original image No smoothing (t = 60)

3x3 median filter (r = 60) MHN filter (f = 60)
Figure 7.3 Edge images generated from Sobel edge detector applied to smoothed

Istres SPOT images
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The differences between the three edge images of Camargue and Istres are not great. 

Although the smoothed images are visually quite different to the unsmoothed images, 

these differences are not so noticeable when edges are extracted. Even though the 

results are quite similar, the all three results will be used in the matching algorithm to 

ascertain if there are any subtle differences making one result better for matching than 

the others.

Chapter 3 introduced 12 different speckle reduction algorithms for SAR images, all of 

which gave quite different results. By comparing the results of applying the Sobel edge 

detector to images processed with each of these algorithms, a decision can be made 

about which ones are best oriented to aiding the edge extraction procedure. Of the 12 

algorithms, the five that were found to produce the most useful results were:

□ median;

□ most homogeneous neighbour (MHN);

□ sigma;

□ sigma median; and

□ MHN median.

The rest of the algorithms were found to cause the Sobel edge detector to extract too 

much clutter with the edge information and therefore increase the risk of false matches 

being found during the matching procedure. The fact that the others have been rejected 

at this stage does not compromise the validity of this study: the five algorithms show 

that the concept of using multiple feature extraction algorithms is valid, and the results 

produced are robust. Any future study could incorporate more speckle reduction 

algorithms to see if the accuracy of the final matching results could be improved. 

However, in this study, that seems unnecessary. It is interesting to note that two of the 

five selected filters are new ones which were proposed in chapter 3. This is not 

necessarily surprising since the goal of the research described in the third chapter was to 

develop speckle reduction algorithms which could aid the feature extraction process for 

image registration. Figure 7.4 shows the SAR image of Camargue, and the results of the 

Sobel filter applied to the five smoothed images. Figure 7.5 shows the same results for 

the Istres image.
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Original image

MHN filter {t = 85)

Median filter (t = 80)

Sigma filter (t = 50)

MHN median filter (t = 70) Sigma median filter (t = 70)

Figure 7.4 Edge images generated from Sobel edge detector applied to Camargue SAR
images
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Original im age M edian  filter ( t =  60)

v

MHN filter (t = 65) Sigma filter (f = 35)

MHN median filter (t = 60) Sigma median filter (t = 45)

Figure 7.5 Edge images generated from Sobel edge detector applied to Istres SAR
images

The differences between the five results for each of the Camargue and Istres images are 

slightly more obvious than the differences with the SPOT images, however once again



they are too similar to be able to predict at this stage which one would give the best 

edge matching results. Therefore, all five results are used in the edge matching 

procedure.

The full linear feature extraction algorithm using first order edge detection is 

summarized in figure 7.6 below.

Original 
SAR image

Original 
SPOT image

Linear contrast stretch 
{0, 511} -> {0, 255}

Histogram
normalisation

3 * - —

Speckle reduction 1 Smoothing

Sobel edge detection Sobel edge detection

3 s —
Mask unwanted areas Mask unwanted areas

3 * —

Non-maximal Non-maximal
suppression suppression

-^ 1 3 3 * —
Threshold image Threshold image

SPOT edge 
image

SAR edge 
image

Figure 7.6 Flow chart summarizing linear feature extraction using first derivative edge
detection

7.2.3 Second derivative edge detection
The second derivative edge detection algorithm, the Laplacian of Gaussian (LoG), is 

applied to raw images only. Unlike the Sobel operator, no preprocessing is required 

since the LoG algorithm incorporates a smoothing component. However, it is necessary 

to set the value of the parameter w which specifies the width of the window over which 

the algorithm is applied. A range of values of w were tested for each image, and the 

results are shown below in figures 7.7 and 7.8. These results have been post-processed 

by masking out unwanted features.
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V o

Figure 7.7 LoG algorithm applied to SAR and SPOT images of Camargue

v ' \ 0
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Figure 7.8 LoG algorithm applied to SAR and SPOT images of Istres

The results produced by the Laplacian of Gaussian operator are quite different from 

those produced using Sobel edge detection. The edges of the features are far more 

continuous with fewer holes and breaks. However, there is much more ambiguity in the 

edges: it is more difficult to tell exactly where the edges of the main features are 

located. The values of w which gave these results were 9 and 10 for the SAR and SPOT 

images of Camargue, and 9 and 8 for the SAR and SPOT images of Istres. The full 

algorithm is summarized in figure 7.9.

/  Original /  
/  SAR im a g e  /

/  Original 
/  S P O T  im a g e  M

Linear  c o n t ra s t  s tre tch  
{0, 511} -> {0, 255}

H is togram
norm alisa t ion

Laplacian  of G a u s s ia n L aplacian  of G a u s s ia n

M ask  u n w an te d  a r e a s M ask  u n w a n te d  a r e a s

/  SAR e d g e  M 
/  im a g e  JF

/  S P O T  e d g e  /  
/  im a g e  /

Figure 7.9 Flow chart summarizing the application of the LoG algorithm

7.2.4 CAESAR edge detection

As with the second derivative edge detection algorithm, the CAESAR algorithm is 

applied to raw image data. A single parameter, p, representing the probability of 

extracting a false edge has to be selected. For the Camargue image the value of p  was
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set to 4, and for Istres it was set to 3. The post-processed results are shown in figures 

7.10 and 7.11 below.

Figure 7.10 Camargue image and result of CAESAR edge detection

Figure 7.11 Istres image and result of CAESAR edge detection

The CAESAR algorithm appears to produce results which could be very useful for edge 

matching: the edges are fairly continuous, and unlike the LoG operator there is less 

ambiguity about the location of the edge. However, some clutter has also been extracted 

with the edges which may adversely affect the edge matching results. The full algorithm 

is summarized in figure 7.12.
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/ Original 
SAR image

Linear contrast stretch
{0, 511} -*{0 , 255}

CAESAR edge detection

Mask unwanted areas

SAR edge 
image

Figure 7.12 Flow chart summarizing the application of the CAESAR algorithm

7.2.5 Conclusions
Each of the edge extraction algorithms has successfully extracted edges from the SAR 

and SPOT test images, although all of the results are quite different. The CAESAR 

algorithm appears to be the most successful for the SAR images since it has produced 

fairly continuous edges which reflect both large and small features in the images. There 

seems to be few false edges in the resulting images, but a lot of clutter has been 

extracted with the good edges. If necessary this clutter could easily be removed with 

post-processing algorithms.

The LoG algorithm produces edge images which are quite different from those 

produced by the CAESAR or Sobel operators. The edges are smooth and quite 

continuous with few abrupt changes in direction, but for some features in the image, 

multiple edges have been extracted, leading to ambiguous results. The results for the 

SAR and SPOT images are fairly similar.

Each combination of the Sobel operator and smoothing algorithm gives slightly 

different results, but for the SPOT images these differences are virtually negligible. For 

the SAR images the differences are still small, but a little more noticeable. The sigma 

filter apparently produces the most continuous edges, while the results of the other 

smoothing filters are much the same.

None of the algorithms operate automatically - all of them require some user input. The 

results generated by the Sobel operator have to be manually thresholded, the LoG 

operator has a parameter w which has to be set manually, and the CAESAR algorithm
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has a parameter p  which has to be set manually. Unless a single set of parameters can be 

found which will produce good results for a range of images, or it is found that the 

values of these parameters have little effect on the final results, then a method of 

automatic parameter selection will have to be implemented. This is discussed further in 

§ 7.3.4.

Although the results of the LoG and CAESAR algorithms have been illustrated here, 

they cannot actually be used in the edge matching process. This is because they produce 

results which only give information about the location of edge features in the image, 

and not the direction of those edge features. The matching algorithm relies on both of 

these pieces of information in order to function properly. The reason for including the 

results of the LoG and CAESAR algorithms was to enable a comparison of the results 

of the Sobel operator with results from other sources.

Finally, as a guide for assessing the quality of the edge matching results calculated in 

the next section, it is useful to know the number of edge pixels extracted using each 

algorithm. These are detailed in table 7.1 below.

Sensor Algorithm Camargue Istres

Sobel and median filter 3286 2511

Sobel and MHN filter 3355 2580

SAR Sobel and sigma filter 3705 2866

Sobel and MHN median filter 3583 2267

Sobel and sigma median filter 3150 2748

Sobel and no filter 3990 3065

SPOT Sobel and median filter 3384 2290

Sobel and MHN filter 3667 2311

Table 7.1 Number of pixels extracted for each edge extraction algorithm

7.3 Edge matching

7.3.1 Introduction
This section describes the edge matching algorithm and presents the results generated 

from matching the edges extracted in the previous section. The quality of the results are 

judged according to the number of tie points found, and the accuracy of those tie points. 

Since it is clear that the edge matching algorithm, in its present form, cannot be
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improved or refined, no modifications have been suggested. However, this algorithm is 

not the final word on edge matching, and suggestions for an altogether more robust 

algorithm are deferred to the discussion at the end of this chapter.

7.3.2 Edge matching by dynamic programming
The edge matching algorithm (Newton et al., 1994) uses dynamic programming and is 

loosely based on a method described by Maitre and Wu (1989). For it to produce useful 

results, an approximate transformation must be defined between the SAR image and the 

SPOT image. In this case, that transformation is determined from the centroids of the 

patches which have already been matched. The algorithm operates by moving along 

each edge in the SAR image pixel by pixel, and by using the transformation function it 

predicts where each pixel will be located in the SPOT image. For each SAR pixel, a 

search area is set up around the predicted location in the corresponding SPOT image. A 

cost function, based on pixel separation and difference in direction, is evaluated for all 

SPOT pixels within a certain radius of the predicted position of the SAR pixel, and the 

SPOT pixel with the lowest cost function value is accepted as the match. Only one 

SPOT pixel can be matched to each SAR pixel, and vice versa (see figure 7.13 below).

SAR S P O T

<
/

z Affine ^  \  z

x
Y

w
transfo rm ation Jy

ZJr'"x J

I
x ’ W J

Figure 7.13 Linear feature matching

The predicted location of pixel X  in the SAR image is x in the SPOT image. A search is 

made around point x in the SPOT image (denoted by the grey area) and pixel x ’ is found 

to be the lowest cost match. The algorithm then proceeds onto pixels at Y and Z.

The most important aspect of this algorithm is that when all the edges in the SAR image 

have been considered, the edge with the lowest average cost function is used to update
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the initial transformation. The whole matching process is then repeated, but this time it 

starts from new, and most likely better, starting conditions. However this time, the edge 

used to update the transformation is excluded from the matching. This process is 

repeated until all of the edges in the SAR image have been excluded.

7.3.3 Edge matching results
The matching algorithm can only be applied to the edges extracted from corresponding 

SAR and SPOT images using the first derivative edge detector (Sobel operator). The 

reason, as described above, is that the algorithm requires both edge location and edge 

direction information. Unfortunately, of the extraction algorithms detailed here, only the 

Sobel operator provides this information. Since five speckle reduction filters were tested 

with the SAR images, and three smoothing options were employed with the SPOT 

images, for each pair of images there are a possible 15 combinations of edge extraction 

algorithms. 5

The matching results (i.e. the number of tie points found for each pair of edge extraction 

algorithms) are shown in table 7.2 for the Camargue images, and table 7.3 for the Istres 

images. An obvious trend in table 7.1 above is that more edge pixels have been 

extracted from the Camargue images than the Istres images. This would imply that more 

matched edge pixels will be found for the Camargue images than the Istres images. 

Therefore, in order to be able to compare the results from each image, the ratio of 

matched pixels to total number of extracted edge pixels for the two images in question 

has been expressed as a percentage in tables 7.2 and 7.3 below.

5 In the following discussion, each combination of Sobel operator and smoothing filter is referred to as an 
‘edge extraction algorithm.’



Method of edge extraction from SPOT
image

Sobel and Sobel and Sobel and
no smoothing median filter MHN filter

Sobel and 1813 1623 1745
so median filter (25%) (24%) (25%)

emo Sobel and 1802 1593 1661

2  |  

1  fi

MHN filter (25%) (24%) (24%)

Sobel and 1901 1678 1938
W>

O

Sigma filter 

Sobel and

(25%)

1929

(24%)

1692

(26%)

1858
o

J3
-m

MHN median (25%) (24%) (26%)
4»

2 Sobel and 1740 1492 1632
sigma median (24%) (23%) (24%)

Table 7.2 Number of tie points found with percentages for Camargue image using 
different combinations of edge extraction algorithms

Method of feature extraction from SPOT 
image

Sobel - 
no smoothing

Sobel - 
median filter

Sobel - 
MHN filter

g Sobel - 1531 1 1 2 0 1 1 2 2
©
Cm median filter (27%) (23%) (23%)
EO Sobel - 1503 1116 1 1 1 1w 
2 & MHN filter (27%) (23%) (23%)
■m tsjn
w s Sobel - 1681 1248 1265
5  & sigma filter (28%) (24%) (24%)
« <

cm Sobel - 1400 1053 1033
O

"O MHN median (26%) (23%) (23%)
O

JS
■M

MH Sobel - 1615 1178 1150
sigma median (26%) (23%) (23%)

Table 7.3 Number of tie points found with percentages for Istres image using different 
combinations of edge extraction algorithms

There are no obvious trends in the results shown in tables 7.2 and 7.3, suggesting that

the number of tie points found is independent of image and independent of which edge

extraction algorithm is used. For all combinations, approximately a quarter of the total
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number of extracted pixels in the two images are found to match each other. Although 

there are slight variations in this figure, those variations are inconsistent, and therefore it 

is not possible to draw any hard and fast conclusions. In order to further analyse the 

matching results, the next section considers the accuracy of the matched pixels, rather 

than the quantity of matched pixels.

7.3.4 Image registration
The results generated in the previous section can now be used to register each pair of 

images. For all combinations of feature extraction algorithms there are enough tie points 

to be able to assess the accuracy of the registration. For each case the matched points 

were randomly split into two equal sized groups: tie points and check points. The tie 

points were used to generate the parameters of the affine transformation which in turn 

was used to register the images. Subsequently these parameters were used to transform 

the check points. Residuals were calculated by comparing the transformed location of 

the check point with the actual location. Since the check points were not used in the 

calculation of the transformation parameters, they can be considered independent, and 

therefore a reliable indicator of the accuracy of the registration. Tables 7.4 and 7.5 show 

the root mean square (RMS) residual for each combination of edge extraction algorithm 

for each pair of images.

Method of feature extraction from SPOT 
image

Sobel - Sobel - Sobel - 
no smoothing median filter MHN filter
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Sobel - 
median filter 
Sobel - 
MHN filter 
Sobel - 
sigma filter 
Sobel - 
MHN median 
Sobel - 
sigma median

1.652 1.672 1.772 

1.743 1.668 1.737 

1.779 1.869 1.858 

1.635 1.633 1.701 

1.692 1.670 1.910

Table 7.4 RMS residuals for Camargue image transformation for different combinations
of edge extraction algorithms
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Method of feature extraction from SPOT 
image

Sobel - Sobel - Sobel - 
no smoothing median filter MHN filter
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Sobel - 
median filter 
Sobel - 
MHN filter 
Sobel - 
sigma filter 
Sobel - 
MHN median 
Sobel - 
sigma median

1.693 1.601 1.650 

1.488 1.546 1.662 

1.595 1.632 1.624 

1.597 1.739 1.606 

1.607 1.534 1.495

Table 7.5 RMS residuals for Istres image transformation edge different combinations of
edge extraction algorithms

For all combinations of edge extraction algorithms for both images, the RMS residuals

fall in the range of 1.5 to 2.0 pixels. The general trend is that much the same results are

obtained for whatever combination of edge extraction algorithms are used. This is not

wholly unexpected if the images of the extracted edges (shown in figures 7.2 to 7.5 in §

7.3) are compared. Since the differences between the edge images are small, the RMS

residuals generated from those edge images would not be expected to differ greatly.

The two attributes which have been used to assess the quality of the edge matching are 

the ratio of tie points located to total points extracted, and the RMS residuals of the tie 

points. In order to gain a more of an insight into the quality of the tie points, two more 

factors should be considered: the spatial distribution of the tie points and the angular 

distribution of the residuals. Both of these factors can be displayed simultaneously by 

plotting the location, magnitude and direction of each residual. Figure 7.14 shows the 

residuals for two Camargue matching results: (1) SPOT Sobel with median filter and 

SAR Sobel with MHN median filter, and (2) SPOT Sobel with MHN filter and SAR 

Sobel with sigma median filter. Similarly figure 7.15 shows the residuals for two Istres 

matching results: (1) SPOT Sobel with no filter and SAR Sobel with MHN filter, and 

(2) SPOT Sobel with median filter and SAR Sobel with MHN filter. In each case the 

two matching results have been chosen since they represent the lowest and highest 

residuals for each test scene respectively. Note that for each case only 10% of the total 

number of residuals have been plotted (so that the images are not over-cluttered), and 

that the magnitudes of the residuals have been increased by a factor of eighty to make
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them visible in the images. Although only four results are illustrated here, they are 

typical examples of all thirty combinations described in tables 7.4 and 7.5 above.

Figure 7.14 Distribution of residuals for two Camargue matching results

Figure 7.15 Distribution of residuals for two Istres matching results

Since the edge matching procedure matches points in the region of the boundaries of the 

matched patches, the spatial distribution of the tie points determined from edge 

matching are is going to be similar to the spatial distribution of the tie points determined 

from patch matching. Even so, the distribution is much improved since the boundaries 

of the patches lie closer to the edges of the image than the centroids of the patches. It 

was stated in the previous chapter that the distribution of tie points located in the 

Camargue images was better than the distribution of tie points located in the Istres 

images. The same is also true here. Comparing figures 7.14 and 7.15 it is clear that the 

spatial distribution of the Camargue check points is more evenly spread across the 

images than the Istres check points. As with the patch matching results, the Istres check
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points are again clustered around a diagonal line running from the top right of the image 

to the bottom left. However, this time that clustering is not so severe.

As well as depicting the spatial distribution of the check points, figure 7.14 and 7.15 

also show the angular distribution (directions) of the residuals. A visual examination of 

the images suggest that the directions are random -  there is no reason to suspect 

systematic errors or blunders are present.

One final method of assessing the quality of the tie points is to visualize the registration 

results. Since the above matching results have not been able to identify any particular 

edge extraction combination as being better than any other, just one combination was 

chosen at random to generate the registration results: Sobel-median with Sobel-median. 

This combination provided 1623 tie points for the pair of Camargue images and 1120 tie 

points for the pair of Istres images. These tie points were used to generate the 

parameters of an affine transformation (see equations 7.1 and 7.2), which are listed in 

table 7.6 below.

X  = ax + by + c (7.1)

Y = dx + e y + f  (7.2)

Parameter Camargue Istres

a 1 . 0 0 0 2 0.9998

b 0.0006225 -0.0002092

c -0.1666 -0.05332

d -0.0007973 -0.03367

e 1 . 0 0 0 2 0.8949

f -0.1808 0.3010

Table 7.6 Coefficients of affine transformation function for Camargue and Istres

It should be remembered that the edge matching was performed as a refinement 

technique using the original SAR image and the transformed SPOT image as input 

images. Therefore, the edge matching affine coefficients are not related to the patch 

matching coefficients calculated in the previous chapter. However, there are some 

similarities: once again a and e are close to unity, and b and d  are close to zero, 

signifying a small rotation and a scale factor close to one. This time c and /are  small as
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well, which is expected since the edge matching algorithm is a refinement to the patch 

matching results. Edge matching transformation parameters which are large relative to 

the patch matching transformation parameters would not signify a refinement and 

therefore imply that something was wrong with one of the matching processes.

The edges of the SPOT features, transformed using edge matching, have been overlaid 

on top of the SAR image in figure 7.16. The edges of the SPOT features transformed 

using patch matching have not been displayed in this image since they lie very close to 

the edges of the SPOT features transformed using edge matching and would confuse the 

results.

Figure 7.16 Outlines of transformed SPOT features (green) overlaid on SAR image

Figure 7 .16 shows that the transformed SPOT edges are aligned well with the edges of 

the SAR features, confirming that the refinement of the automatic registration procedure 

has not introduced any new errors or blunders.

In conclusion, it is apparent from the results in tables 7.2 to 7.5 and the subsequent 

spatial analysis of the residuals that the choice of smoothing algorithms for SAR and 

SPOT images does not have a great influence on the final edge matching results. It is 

therefore reasonable to assume that the choice of parameters used in the edge extraction 

algorithms will also have little effect on the edge matching results. For this reason it is 

proposed that the parameter values used in these two tests should produce acceptable 

results when applied to other images. This fact is verified in the next chapter.

7.3.5 Conclusions
This section has introduced a method of finding tie points in a pair of images based on 

edge matching, and successfully applied it to features extracted from SAR and SPOT
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images. The method has been used in previous studies and is accepted as being both 

reliable and robust. The edge matching algorithm was applied to all the combinations of 

edge images which were generated using the Sobel operator in section 7.2 and the 

results were appraised by comparing the number of tie points found, the accuracy of 

those tie points, the spatial distribution and the angular distribution of the residuals, for 

each combination.

The accuracy of the tie points was assessed by examining the residuals generated when 

those tie points were used to calculate the parameters of the transformation function. In 

order to ensure an unbiased result, one half of the tie points were used in the calculation 

of the parameters, and the other half were used as check points. The RMS residuals for 

each combination of edge extraction algorithms were calculated and compared, and it 

was found that the RMS residuals all fell in the range of 1.5 to 2.0 pixels. Analysis of 

the distribution of the tie points showed that they were spread fairly evenly across the 

image, and that the directions of the residuals were apparently random in nature. When 

the affine transformation was used to register the images, the edges of the principal 

features in the SPOT data were found to match well with the corresponding features in 

the SAR data.

The edge matching results show that the choice of smoothing algorithm applied to the 

image before the Sobel operator is applied does not make any noticeable difference to 

either the number of tie points found, or the accuracy of those tie points. This fact 

simplifies the automatic registration procedure since, unlike in the patch matching 

procedure, results from multiple feature algorithms do not have to be generated.

7.4 Discussion
This chapter has presented a method of refining the registration results generated by the 

patch matching technique described in the previous chapter. The two reason for using 

this refinement technique are (1 ) to increase the quantity of the tie points, and (2 ) to 

increase the distribution of the tie points. To achieve these aims an edge matching 

technique was employed, and the results generated showed that the technique was 

successful.

Although edge matching techniques have been used in previous registration studies a 

few new ideas have been incorporated into this interpretation of the technique. The first 

new concept is associated with the extraction of the edges themselves. Other studies 

have used differing methods of extracting edges, but this study proposes a method
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which makes better use of the edge extraction algorithms: edges are extracted by 

applying different operators to raw or preprocessed images, after which all unwanted 

edge information is discarded using masks generated from the patch matching results of 

the previous chapter. This method ensures that reliable edges are extracted from the 

images, and that all unwanted information is removed before any processing takes 

place.

The next new concept to be proposed is the use of edge images generated by multiple 

edge extraction algorithms. Unfortunately the rigid nature of the matching algorithm 

only allows edges generated by first derivative edge detectors to be used, so this valid of 

this idea could not be tested. However, as a result of this, one final proposal can be 

made: that the edge algorithm is replaced by a more efficient and reliable one.

Although the algorithm tested in this chapter gave good results, there would be no harm 

in improving the algorithm to increase its usefulness. The present algorithm matches 

edge pixels based only on location and edge direction. If pixels in an edge could be 

matched using more of their attributes, then it seems likely that a more accurate and 

reliable result would be obtained. Other attributes which could be used are the length of 

the edge, the radius of curvature of the edge, the location of the pixel within the edge, 

location of start and end points of the edge, and so on. If this were the case, then the 

results would not be so dependent on the two attributes which are used in the present 

algorithm.

This chapter brings to a close the discussion of the development of an automatic 

registration system. The next chapter aims to apply the techniques developed in this 

thesis to a pair of full scene SAR and SPOT images in order to accurately register them. 

A discussion of the techniques developed, and the quality of the results they generate is 

presented in the final chapter.
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Chapter 8 A u t o m a t i c  r e g i s t r a t i o n  o f  f u l l  
SCENE IMAGES

8.1 Introduction
This thesis has proposed a method of automatic image registration based on feature 

matching. The previous chapters have explained in detail how each of the individual 

algorithms operate, and results have been demonstrated for a range of test images. This 

chapter now applies those algorithms to full scene images in order to further validate the 

research presented here. The reason for carrying out this validation, as stated in the 

opening chapters of this thesis, is that for an automatic image registration system to be 

useful to an end user, the algorithms must produce reliable results for full scene images 

as well as small images.

Many previous studies (Twu ,1996; Boardman et al., 1996; Heipke, 1996) and a lot of 

modem automatic geocorrection software (PHODIS, SOCET SET) have used image 

pyramids in the registration of large images. In pyramid matching the full scene images 

are reduced in resolution by a number of different scale factors to create the layers in the 

pyramid. Initially the lowest resolution images (which represent the top layer of the 

pyramid) are approximately aligned using feature matching. The registration results are 

then passed onto the next layer in the pyramid to improve the alignment of the images. 

The matching and registration are repeated, and each time the registration results are 

passed on to the next layer. This process is repeated, and the registration results become 

progressively more accurate until the bottom layer of the pyramid is reached and the 

images are accurately registered.

This approach to full scene image registration was tested with SAR and SPOT data, but 

it was found that it did not produce consistent results. The problem was associated with 

the feature extraction and feature matching steps in the procedure. It has been stated on 

numerous occasions in this thesis that the greatest stumbling block to feature based 

image registration for SAR and SPOT images is the extraction of a suitable number of
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corresponding features for the matching to be considered reliable. The use of image 

pyramids merely magnifies the problem since the extraction process has to be repeated 

many more times. Therefore, until feature extraction algorithms have been developed 

which can consistently and reliably extract a large number of corresponding features 

from the images being matched, pyramid matching cannot be considered a suitable 

method for registering multisensor data sets.

Since pyramid matching cannot be used in this case, this study proposes to use a method 

based on image tiles. The full scene images are approximately aligned with each other, 

and then split into a number of small tiles. Matching then takes place on a tile by tile 

basis: features are extracted and matched for each individual tile. When all the tiles have 

been processed the tie points can be combined into one group and used to generate the 

parameters of the transformation function.

The method of automatic registration of full scene images proposed in this study is a 

three step procedure:

3. initial approximate alignment using ephemeris data or manually selected tie 

points;

4. accurate registration using matched patches; and,

5. refined registration using matched edges.

In the first step the full scene images are approximately aligned. This can be done by 

either using the ephemeris data supplied with the images, or with four manually selected 

tie points. Results of both methods are illustrated in the next section. After this initial 

registration, the images are tiled, and each pair of corresponding tiles are registered 

using the patch matching procedures described in chapter 6. The quantity and 

distribution of the tie points can then be increased by using the edge matching 

refinement technique described in chapter 7. Finally, the tie points generated from the 

tiles are used to register the full scene images.

The images chosen to test this method of full scene image registration are those from 

which the small test scenes were taken. They depict an area of the southern coast of 

France close to where the River Rhone flows into the Mediterranean.
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8.2 Pre-registration processing

8.2.1 Introduction
Pre-registration processing includes the initial alignment of the full scene images, the 

cropping of the images to ensure that there is 100% overlap of the images, and the 

creation of the image tiles. Two techniques are compared for the initial alignment: one 

using ephemeris data and the other using tie points. The first method is automatic and 

requires no user intervention, but the second is obviously manual. However, the other 

pre-registration processes (cropping and tiling) are both automatic.

8.2.2 Initial alignment
With both SAR and SPOT images information is provided describing the locations of 

the four comers of the images in ground co-ordinates. If these points are used as tie 

points, then each image can be registered to a ground co-ordinate system using an affine 

transformation. So long as both images are in the same ground co-ordinate system they 

can be overlaid on top of each other and considered to be registered to each other. 

However, this ephemeris information is only provided as a guide to help users visualize 

the coverage of the image on the ground. Therefore, it is not surprisingly that 

approximate alignment using ephemeris data produces quite poor results which are 

worse than those produced using manually selected tie points. Figure 8.1 shows the 

SAR scene registered to an orthographic ground co-ordinate system using ephemeris 

data. Overlaid on top of the image are the outlines of the main features taken from the 

SPOT scene. These features have also been registered to the same ground co-ordinate 

system.
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Figure 8.1 Approximate registration using ephemeris data 
(orthographic ground co-ordinate system)

It can be seen that over most of the image the alignment is quite poor, although in a

couple of places it is not too bad6. The misalignment is obviously due to small

inaccuracies in each of the rotation, scale factor and translation components of the affine

transformation function.

The alignment generated using four manually selected tie points is much more accurate. 

Figure 8.2 shows the result of registering the images using four tie points placed close to 

each of the corners of the SPOT image. This time the result is displayed in SAR image 

co-ordinates rather than ground co-ordinates.

6 E ven a stopped  clock  is co rrect tw ice a day!
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Figure 8.2 Approximate registration using four manually selected tie points 
(SAR image co-ordinate system)

It is clear that although the images are aligned much more closely, that alignment is still 

not perfect, which proves that more refined matching at full resolution is very 

important. Even so, the outlines of the main features from the SPOT image can be seen 

to approximately align with the features in the SAR image. This alignment should 

therefore provide a good starting point for the automatic image registration.

A final comment should be made about how this lack of automation affects the validity 

of this study. Clearly it would be better if this initial step could be fully automated, but 

it was not considered essential since firstly, the process of locating four tie points is 

quite straightforward for any end user, and secondly this step gives the end user the 

opportunity to examine the images before any processing begins. This would be useful 

for highlighting blunders, such as the incorrect choice of images which do not overlap. 

Furthermore, if necessary, additional processing could be carried out on the 

automatically aligned images to try to improve the accuracy of the registration, but in 

the context of this study, this was seen as unnecessary.
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8.2.3 Creation of image tiles

Once the images have been aligned they can be easily cropped so that both images 

cover the same area on the ground, and are made up of the same number of pixels. 

Creation of image tiles is also a very simple procedure: the image can either be split into 

a fixed number of tiles which are all the same size, or a tile size can be chosen, and as 

many as possible fitted into the image. In this case the latter method was used: tiles of 

512x512 pixels were fitted into the full scenes. This resulted in the creation of 99 tiles 

(9 rows x 11 columns), one row of which were slightly smaller than the rest of the tiles. 

The results are shown in figure 8.3 for the SAR image and 8.4 for the SPOT image.

Figure 8.3 SAR image split into tiles
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Figure 8.4 SPOT image split into tiles

8.2.4 Conclusions
There is very little which can be said in conclusion to the work presented in this section, 

except that it is clear that manual approximate alignment of full scene images is more 

accurate than automatic alignment which relies on ephemeris data. Future research 

could investigate this issue, but for this piece of work it was deemed unnecessary. The 

processing of the full scene images described here means that they are now ready to be 

registered automatically using feature extraction and matching.

8.3 Automatic registration using feature matching

8.3.1 Introduction
This section describes the extraction and matching of features from the tiles created 

from the approximately aligned full scene images, and the subsequent registration of 

those images. Exactly the same methods were employed in this section as were 

described in chapters 6 and 7. The brute force technique of parameter selection for patch 

extraction algorithms was used, which meant that two of the segmentation algorithms 

(RWSEG for SAR and OPTISEG for SPOT) could not be used in the feature extraction 

stage. As was explained before, this is because these algorithms produce results which 

are finely dependent on multiple parameters, meaning automatic parameter selection is

248



very difficult. The images were registered using the patch matching results, after which 

the results of the patch matching were refined using the edge matching techniques 

described in chapter 7. The images were then registered again to see if there was any 

improvement in accuracy. This section also includes a discussion of the registration 

results, and a proposal for using the automatically generated tie points in the 

orthorectification of the SPOT data.

8.3.2 Polygon extraction and matching
From a quick examination of figures 8.3 and 8.4 it appears that there are only a limited 

number of tiles which will be of any use in the patch matching procedure. These are 

tiles which contain strong features in both the SAR data and the SPOT data. The 

majority of the tiles do not contain sufficient features to guarantee successful patch 

matching. However, it should be remembered that it is not necessary to match features, 

and therefore acquire tie points, in all of the tiles. Just enough tiles should be used to 

ensure that the tie points are distributed fairly evenly across the image, with some 

located near each of the comers.

For this reason it was decided to manually select and process only those tiles which 

would have the greatest probability of yielding matched patches. Obviously, it is not 

essential to include this manual step in the processing chain, since the feature extraction 

and matching algorithms could have been applied to all the tiles. But by intervening in 

the automatic processing chain at this point meant an enormous saving in processing 

time. Future research into the development of this type of automatic registration system 

could investigate the possibilities of automating this step, but that is beyond the scope of 

this thesis.

The images were examined and 12 tiles were selected to be used in the registration 

process. The aim was that these tiles should be spread very evenly across the image, but 

this was not easy since the principle features which were likely to give good matches 

were not spread evenly across the images. The selected tiles are shown in figure 8.5 

below.
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Figure 8.5 Distribution of tiles selected to be matched

The 12 tiles were selected so that some occupied areas as close to the corners of the 

images as possible, whilst others were spread relatively evenly across the central region 

of the images. The distribution shown in figure 8.5 indicates that these criteria were 

almost met -  apart from a gap in the top right of the images, the distribution is fairly 

even.

For each pair of corresponding tiles, patches were extracted and matched using the 

methods described in chapter 6. The matched patches were extracted using a range of 

feature extraction algorithms. The details of the extraction and matching processes have 

not been included here, but it should be noted that all the improvements to the patch 

matching procedure (described in § 6.4) had to be implemented in order to achieve the 

maximum possible number of matches. Even so, of the 12 selected tiles, only ten 

produced correctly matched patches -  two of them failed to locate any common 

features. Figure 8.6 shows the number of correct matches found for each tile that was 

processed.
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Figure 8.6 Number of correct matches found for each processed tile

As a result of extracting and matching patches from the 12 tiles a total of 39 matched 

patches were located. However, since two of the tiles failed to produce any matches, the 

distribution of those tie points is now much worse than the distribution of the original 

12 patches. There are no matches in the bottom left corner of the images, nor are there 

any matches in the region to the right of the centre of the images. It is likely that this 

distribution of tie points will adversely affect the registration results, but it is a problem 

which is very difficult to solve. A good distribution of tie points is completely 

dependent upon the ability to extract and match features across the whole image. With 

the feature extraction algorithms introduced in this study it has clearly not been possible 

to do this, partly due to the quality of those feature extraction algorithms, and partly due 

to the lack of common features in the SAR and SPOT images. This problem is 

fundamental to automatic feature based image registration, and was introduced in § 

2.4.6. It is discussed further in chapter 9.

Figures 8.7 and 8.8 show the matched features for the SAR and SPOT images 

respectively. Although there are problems with the spatial distribution of the tie points 

generated from these matched patches, it is still possible to proceed with the registration 

of the full scene SPOT image to the full scene SAR image. The details and results of 

this registration process is discussed in the next section.
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Figure 8.7 Matched features from SAR image

Figure 8.8 Matched features from SPOT image
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8.3.3 Image registration

The centroids of the matched patches were grouped together and used as tie points to 

determine the parameters of a single affine transformation function to register the SPOT 

image to the SAR image. The parameters of the transformation function were generated 

using a least squares method. To illustrate the results visually, figure 8.9 shows some 

patches extracted from the SPOT image overlaid onto the SAR image using this 

transformation. The quality of the result can be assessed by comparing this figure with 

figure 8.2 above.

Figure 8.9 Visual result of automatic registration using patch matching

By comparing figures 8.2 and 8.9 it is clear that the patch matching registration 

technique improves the registration result in some areas of the image, but not in others. 

It can be seen that there is now better alignment of the whole of the river feature, 

whereas before with the manual registration there is a marked misalignment at the 

southern end of the feature. However, the lake on the right of the image does not align 

as well as before. The most likely cause of this misalignment is that an affine
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transformation function has been used to correct for non-linear errors, especially those 

caused by terrain, which it is not able to do. Therefore, it would be unreasonable to 

expect that the registration result could be much better than it actually is.

Obviously, it is insufficient to judge the results by interactively observing the reduced 

resolution images. In order to statistically assess the accuracy of the registration, the 

same procedure was employed here as was used in chapter 7. The tie points located by 

patch matching were split into two groups: one group was used to generate the 

parameters of the transformation function, and the other group were used as check 

points.

Test 1 Test 2

x  residual y  residual x  residual y  residual
(pixels) (pixels) (pixels) (pixels)

-9.40 -10.08 6.12 0.06

-6.98 -4.79 -9.08 -12.15

9.72 1.65 -0.97 -0.68

-4.54 21.04 16.68 -0.07

-14.21 5.51 -4.96 4.15

-10.28 2.87 -6.28 1.81

5.77 -17.71 16.25 -12.52

-10.38 3.74 7.57 3.83

-14.38 8.73 -10.03 3.29

-12.57 6.62 -6.29 -4.62

6.53 -7.87 12.61 0.59

10.40 0.31 15.92 0.76

-31.20 -0.06 17.11 0.19

-33.48 -0.96 -24.50 1.31

13.33 1.92 18.25 -3.07

15.41 0.11 13.22 1.98

16.69 2.40 19.88 -0.22

-2.11 1.52 -7.52 0.02

1.90 -0.75 2.26 1.49

2.15 -0.58 2.73 1.35

Table 8.1 Residuals in xand y for two sets of check points
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The check points were transformed and residuals were calculated by comparing the 

predicted location of the check points with their actual location. In order to confirm the 

results, the process was then repeated, but with the two groups interchanged: the check 

points were now used as tie points, and the tie points were used as check points. The 

residuals for the two tests are shown in table 8.1 and the RMS residuals are shown in 

table 8.2. In x , the residuals range from approximately -33 to 20 pixels, and in y from - 

17 to 21 pixels, but the means of both x and y are close to 0. The y residuals are much 

smaller than the x residuals. The results for test 2 are very slightly better than those for 

test 1, but the difference is small and not significant.

Test 1 Test 2

RMS residual in x 14.17 pixels 12.65 pixels

RMS residual iny 7.52 pixels 4.43 pixels

Total RMS residual 16.04 pixels 13.40 pixels

Table 8.2 RMS residuals for two sets of check points

Table 8.2 shows that the RMS residual is significantly greater in the x direction than in 

the y direction for both of the tests. An explanation for this is given below. A quick 

glance at these residuals would imply that the registration result was really not very 

good at all, but considering that an affine transformation has been used to register to full 

scene multisensor images, this is hardly surprising. An important aspect of these results 

is the fact that the residuals for test 1 are similar to those for test 2, implying that both 

combinations of tie points and check points are representative of the whole set.

Both groups of residuals listed in table 8.1 have been plotted on the original SAR image 

so that their distribution can be visualized. The result is shown in figure 8.10, but note 

that the magnitude of the residuals have been increased by a factor of 80 so that they are 

easily visible. Residuals from test 1 are shown in pink and residuals from test 2 are 

shown in blue.
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Figure 8.10 Two sets of residuals overlaid on original SAR image

Figure 8.10 shows that the distribution of residuals for both groups is not completely 

random. There is clear systematic error in the a  direction, but this is not necessarily the 

case in the y  direction. This pattern is most likely caused by the fact that a linear 

transformation function has been used to correct for non-linear distortions in the image. 

The affine transformation can correct for differences in rotation, translation and scale, 

but the images being registered incorporate more complicated distortions, due mainly to 

perspective and terrain effects. By comparing the images with a topographic map of the 

region, it was estimated that the tie points had a vertical range of about 50m. For an 

object with a height of 50m being imaged off-nadir (i.e., with a look angle of 25°) by 

the SPOT satellite, the radial displacement of the top of the object from its true 

orthographic location is approximately 27m, or three pixels. For an ERS SAR image, 

the corresponding displacement is approximately 46m, or four pixels. Therefore, the 

maximum error due to terrain effects could be as much as seven pixels. These 

distortions will be much greater in the a  (across track) direction than in the y (along 

track) direction, due to the way in which the images are acquired. The residuals 

displayed in figure 8.10 confirm that the RMS errors in the a  direction are greater than 

the RMS errors in the y  direction. Therefore, although the residuals may seem 

comparatively large, they do actually reflect the physical situation.
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It would be expected that the residuals generated by the affine transformation are quite 

high since a first order transformation function cannot model the distortions that exist 

between full scene SAR and SPOT images. However, just because the residuals are high 

does not mean that the tie points which have been located in the images are inaccurate. 

The accuracy of the tie points can be verified by observing the matched patches in each 

tile. Figures 8.11 to 8.20 show the matched patches from each tile overlaid on top of the 

original SAR and SPOT images. In each case it can clearly be seen that all the patches 

have been matched correctly. Tiles are numbered according to their row/column 

location in the full scene images.

Figure 8.11 Matched patches from tile at (1,3)

Figure 8.12 Matched patches from tile at (1,8)
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Figure 8.13 Matched patches from tile at (2,3)

Figure 8.14 Matched patches from tile at (2,8)

Figure 8.15 Matched p a tch e s  from tile at (4,4)
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Figure 8.16 Matched patches from tile at (6,2)

Figure 8.17 Matched patches from tile at (6,5)

Figure 8.18 Matched p a tch e s  from tile at (7,11)
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Figure 8.19 Matched patches from tile at (8,6)

Figure 8.20 Matched patches from tile at (8,9)

Thus it can be seen from the ten pairs of images above that all the patches have been 

correctly matched, and therefore all the tie points can be considered to be reliable. 

However, the images also illustrate how errors can occur in the exact location of some 

of the tie points. The errors arise because the centroids of the matched patches are used 

as the tie points, but these centroids are not always reliable. In cases where the matched 

feature is in contact with the edge of the tile, the misalignment between the two tiles can 

cause the feature to be a slightly different size and shape in the two images. Consider 

the river feature in figure 8 .17 for example: due to the misalignment of the two images, 

the feature is slightly bigger in the SAR image than in the SPOT image. The 

consequence is that the location of the centroid (in ground co-ordinates) in the SAR 

image will be different to the location of the centroid (in ground co-ordinates) in the 

SPOT image, resulting in a less accurate tie point. These less accurate tie points 

contribute to RMS residuals detailed in table 8.2. In order to assess the accuracy of the 

tie points it would be necessary to compare the location each one in ground co-ordinates
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and determine the discrepancies at each point. However, since no ground control data is 

available is it not possible to do this.

This problem of inaccurate tie points could be solved by manually eliminating 

dubiously matched patches, but this would require a lot of user intensive processing and 

would leave even fewer tie points with which to register the images. A much better 

solution is to refine the quality of the tie points using edge matching, which is described 

in the next section.

Another reason for the comparatively high residuals is the relatively uneven spatial 

distribution of the tie points. Previous chapters have stated the importance of an even 

distribution of tie points, but this has not been achieved here due to the lack of matched 

features. Therefore this will also contribute to the magnitude of the residuals.

8.3.4 Refinement using edge matching
Although the patch matching results have already been used to register the full scene 

images, it is still useful to investigate the possibilities of refining the results using the 

edge matching techniques described in chapter 7. It is unlikely that the RMS residuals 

shown in table 8.3 can be significantly improved, since an affine transformation will 

still be used for the registration, but a small improvement is expected since the edge 

matching should eliminate errors caused by poorly matched centroids. If a larger set of 

more accurate tie points can be found using edge matching, then this may prove useful 

for the method of automatic registration proposed in the next section.

In order to refine the results using edge matching, each tile which includes three or more 

matched patches must be registered. The important point to note is that although the 

affine transformation will be used for each tile, the tie points will be different, and 

therefore the parameters of the transformation will be different. By working with 

individual tiles, rather than all the tiles collectively, the registration results for each tile 

will be more accurate since the transformation will only be correcting for local 

distortions. For each tile the method proposed in chapter 7 was followed. Both SAR and 

SPOT tiles were smoothed using the median smoothing filter, and edges were located 

using the Sobel operator. Unwanted edges were masked out, leaving only those edges 

near the boundaries of the matched patches. Edges were matched, tiles were registered, 

and the corresponding results are shown in table 8.4. There is no need to register 

individual tiles since only the tie points are needed, but RMS residuals do give a good 

indication of the accuracy of the matching of the edges.
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Tile (row, column) No. of tie points found RMS residual (pixels)

(1,3) 28 3.02

(1,8) 84 2.60

(2, 3) 955 1.78

(4,4) 271 2.27

(6, 2) 423 1.81

(7,11) 50 12.37

(8, 6) 752 10.40

(8, 9) 925 1.86

Table 8.4 Number of tie points found and RMS residual for each processed tile

Table 8.4 illustrates the range of results which can be obtained using edge matching, 

depending on the content of the tiles. Tiles with a large number of strong features will 

yield a greater number of matched patches, and more matched patches means more edge 

pixels which can be matched. Thus the number of tie points found for each tile, shown 

in table 8.4, can vary greatly. In addition the accuracy of the registration can be found to 

vary a lot as well. This is due to a number of factors such as terrain effects, perspective 

distortions and distributions of tie points, which will be different for all tiles. Most of 

the tiles yield RMS residuals of 3 pixels or less, but two of the tiles produce much 

poorer results. This does not necessarily imply that the tie points are incorrect (although 

this could be a factor), but distortions from other sources may be more prominent in 

these tiles. Therefore, although the RMS residuals for each tile can be used to highlight 

potential sources of error in the full scene registration, they should not be used to 

remove tie points from the full scene registration.

The result of performing the edge matching is that for each tile a much larger set of tie 

points has been found for each image. However, although the SAR component of these 

tie points are in the same co-ordinate system as all the other SAR components, the 

SPOT components of the tie points are in different co-ordinate systems. This is because 

each SPOT tile has been registered to its corresponding SAR tile slightly differently. 

Therefore, in order to be able to use these tie points to register the full scene images, the 

SPOT components of the tie points have to be transformed back into their original co­

ordinate system. Once this is done (simply by reversing the transformation function 

derived by patch matching) all the new tie points can be combined into a single group 

and used to register the full scene SPOT image to the full scene SAR image.
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A total of 3488 tie points were found using the edge matching technique. Their spatial 

distribution across the image was similar to the tie points found using the patch 

matching technique (i.e. sufficient but not perfect) but obviously this time the points 

were much more clustered. This distribution is shown in figure 8.21.

?M

Figure 8.21 Spatial distribution of tie points found using edge matching

These tie points were used to register the images. As with previous tests, the tie points 

were split into two groups: one for calculating the registration parameters and the other 

to act as check points. The RMS residuals are shown in table 8.5.

Test 1 Test 2

RMS residual in x 9.89 pixels 9.84 pixels

RMS residual in y 4.47 pixels 4.50 pixels

Total RMS residual 10.85 pixels 10.82 pixels

Table 8.5 RMS residuals calculated using tie points from edge matching

As was anticipated, the refined registration parameters determined using edge matching 

has produced residuals which are superior to those determined using patch matching 

alone, but not significantly different. Since there are many more tie points now (3844 

compared to 39), the results for the two tests (test 1 and test 2) are much more similar. It 

is not necessarily true that the residuals are smaller since more tie points have been used 

to calculate the transformation parameters -  table 8.4 shows that in this example there is 

no correlation between number of tie points and the magnitude of the RMS residual. 

The residuals are similar to those determined using patch matching since the patch 

matching procedure has played a role in locating the tie points used for edge matching. 

The x residual is larger than the y residual (by approximately 5 pixels), but as with the
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patch matching results, the terrain and perspective effects can account for the difference. 

It is interesting to note that the total RMS residual of approximately 11 pixels is greater 

than most of the RMS residuals for each individual tile. Two reasons can be used to 

explain this fact. Firstly, the spatial distribution of residuals across the tiles is in general 

much more even (and therefore better) than the spatial distribution of the tie points 

across the whole full scene image. Secondly, distortions due to terrain and perspective 

effects are local to the tiles, and can therefore be more accurately modelled with the 

affine transformation. If it is assumed that errors due to poorly matched centroids have 

been removed in the refinement process, and that the increased number of tie points has 

no effect on the overall error, then the lower RMS residual that has been achieved must 

be due to terrain and perspective effects, and the clustering of the tie points. As before, 

the residuals were plotted on the SAR image in order to visualize their distribution (see 

figure 8.22).

Figure 8.22 Refined residuals from edge matching overlaid onto SAR image

The magnitude of the residuals in figure 8.22 have been enlarged by a factor of 80 for 

clarity. Also note that only the results for one of the tests have been plotted (unlike 

before when the results of the two tests were plotted), and that for this test only 5% of 

the residuals have been plotted.
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It can be seen that the spatial distribution of the residuals of the refined registration is
r  • • * 7very similar to the spatial distribution of the residuals of the original registration , 

except that there are many more residuals clustered into fewer regions across the image. 

The distribution of residual orientations is also quite similar. The systematic error is still 

quite clear since the refinement technique is not able to correct this. Comparison of the 

magnitude and direction of the residuals with a topographic map does not indicate any 

obvious correlation with terrain height, but this is most likely masked by the strong 

clustering of the tie points. A much more even distribution of tie points is essential if 

residuals are to be correlated with terrain heights.

Since the refined registration results are fairly similar to those achieved using patch 

matching alone, the overlay of the SPOT patches on the SAR image is not significantly 

different from the result shown in figure 8.9. Even so, it is shown in figure 8.23 below.

Figure 8.23 Visual result of automatic registration refined using edge matching

7 I f  this w ere not the case, then the edge m atching could  not be considered  to be a refinem en t technique.
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Figure 8.23 is not significantly different from figure 8.9 since the refined registration is 

only slightly different from the original. This small change is not possible to detect 

visually between the two images. The above figure has been included to prove that no 

blunders have been made in the refinement process, and that the result is still 

reasonable.

As with the original patch matching results, the relatively large residuals obtained with 

the refined registration procedure do not mean that the tie points are incorrect -  

however, it is clear that the transformation function is incorrect. In order to circumvent 

the problem of selecting a suitable polynomial transformation function, a method for 

improving the registration results based on the technique of patch and edge matching is 

proposed in § 8.4.

8.3.5 Conclusions
The automatic registration of tiles making up two full scene images has been presented 

in this section. The work is very similar to that of previous chapters where small scenes, 

which were very similar to the tiles used in this chapter, were registered. The same 

techniques were used, namely patch extraction using brute force parameter selection, 

patching matching based on patch attributes, and refinement using edge matching.

Features were not extracted from all the patches since redundancy has played a role in 

the image registration system yet again. This time the redundancy of tiles means that not 

all tiles have to be matched, therefore greatly reducing the processing time but without 

compromising the accuracy of the results.

At the patch matching stage, all the tiles yielded too few patches to allow a reliable 

statistical analysis of the subsequent registration of individual tiles. However, when all 

the tie points were combined and the full scene images registered to each other, it was 

possible to calculate some RMS residuals. Analysis of these residuals highlighted the 

errors caused by using the incorrect transformation function.

The registration results were improved using the refinement method based on edge 

matching. From the refined registration results it was still clear that the incorrect 

transformation function had been used, but since more tie points were used in the 

calculation of the transformation parameters, the overall residuals were better, 

indicating that the refinement technique is a valuable improvement the registration 

procedure.
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A possible solution to the problem of inaccurate registration caused by the incorrect 

choice of polynomial transformation function would be to use a piecewise polynomial. 

If matches could be found in every single tile across the full scene images, this could be 

a good starting point for determining a piecewise polynomial transformation function 

which could register the images. Although it would not be able to eliminate the errors 

completely, it would be a significant improvement on the affine transformation used 

here.

However, to ensure accurate registration, the tie points found using patch and edge 

matching could be combined with photogrammetric techniques to perform a full 

orthorectification of the SAR and SPOT images. This is discussed in the next section.

8.4 Automatic orthorectification of SPOT data
This chapter has illustrated how two full scene, multisensor images can be automatically 

registered quite successfully using feature matching. However, the quality of the final 

result is compromised by the simplicity of the transformation function. It seems 

unfortunate therefore that a lot of effort has been put into automatically locating the tie 

points, but the accuracy of these tie points is not reflected in the final result. It is 

obvious that the affine transformation should not be used to register the images, so some 

more complicated mathematical model should be considered. Using higher order 

polynomials would give better residuals, but the accuracy of the registration would 

probably be much worse, so they can be ruled out. However, if a digital elevation model 

of the whole coverage of the two images were available, and if it was of sufficient 

resolution, it would be possible to automatically register the images to a high degree of 

accuracy using well-established photogrammetric techniques. The proposed method for 

is summarized in the flow chart in figure 8.24.
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and co-registered SAR 
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Figure 8.24 Method of automatic registration using photogrammetric techniques

The first step in the procedure is to geocode the SAR data using the DEM. For ERS 

images supplied with detailed ephemeris data, this can be performed fully automatically 

with no need for human intervention whatsoever. Other SAR images (such as those 

from Radarsat) benefit from the use of one or two GCPs. After geocoding, each pixel in 

the original SAR image can be expressed in three dimensional ground co-ordinates ( jc, y, 

z). The second step is to generate tie points between the SAR and SPOT images using 

the patch matching and edge matching techniques described in this thesis. The result is 

that a number of points are found in the SPOT image which can be directly associated 

with points in the SAR image. Therefore, for each of these points located in the SPOT 

image, the ( jc, y, z) location is known in ground co-ordinates, effectively making these 

points ground control points. This means that all the information required to orthorectify 

the SPOT image is available: a DEM, a set of GCPs and a camera model. Thus, the next 

stage of the processing is to orthorectify the SPOT image using this data. The result is 

that both the SAR and SPOT images are now geometrically corrected, and expressed in 

the same ground co-ordinate system - they are effectively registered to each other. The 

final stage in the processing is to compare the locations of features in the images in 

order to assess the accuracy of the registration. Any inaccuracies could be reduced by 

repeating the patch matching procedure and generating a new set of tie points. These 

points would then be used to determine an affine transformation function which, when 

applied to the images, would reduce any small errors that may exist. A similar method 

of orthorectifying SPOT images using the superior geometry of SAR images was
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proposed by Renouard and Perlant (1993). They found that the planimetric accuracy of 

SPOT products could always be increased when correct with ERS images.

The process described here is automatic in nature, and produces accurately registered 

full scene images. It does however depend completely on having a sufficiently accurate 

DEM with a coverage that includes the extent of both of the images. If stereo SPOT 

images and some GCPs were available, then a DEM could be created automatically 

using area based matching (Day and Muller, 1989). Alternatively, a DEM could be 

created from stereo SAR images (Sowter, 1998; Dowman et al., 1997), although this 

would be less accurate than the SPOT DEM. One further method of generating a DEM 

would be to use SAR interferometry (Massonet, 1997). Although this method can 

produce very accurate DEMs, it is dependent on having exactly the right images.

8.5 Discussion
This chapter has shown how the technique of automatic registration based on feature 

matching, described in the preceding chapters of this thesis, can be applied to full scene 

images. The procedure follows three distinct steps:

1. initial approximate alignment using four manually selected tie points;

2. accurate registration using matched patches; and,

3. refined registration using matched edges.

An initial approximate alignment technique based on ephemeris data was investigated, 

but it was found that the alignment was quite poor. The simplicity of selecting four tie 

points means that pursuing a more complicated but automatic initial approximate 

alignment strategy seems unnecessary. Therefore, it was proposed that the manual 

technique should be employed.

The patch matching procedures were successful in yielding a number of matches spread 

across the images. The quantity and distribution were sufficient to allow the full scene 

images to be registered and residuals to be calculated, but insufficient to achieve an 

accurate registration. The magnitude and angular distribution of the residuals could be 

explained by the spatial distribution of the tie points, and the fact that an affine 

transformation was used to correct for nonlinear distortions (terrain and perspective 

effects). An analysis of match patches indicated that although there were no blunders in 

the matching process, it was likely that some of the tie points may have been inaccurate 

(to the order of a few pixels). Further refinement of the registration using edge matching
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gave improved results by eliminating these inaccurate tie points, but the transformation 

function and tie point distribution still had a significant effect on the residuals.

The extraction and matching of patches described in this section highlights one of the 

principle advantages of using tiled full scene images. This is the fact that not all of the 

tiles have to be matched; this means that the volume of processing can be greatly 

reduced, but the final registration results should not be adversely affected, as long as a 

sufficient number of patches can be matched.

The residuals showed that the accuracy of the final registration was dependent on the 

choice of transformation function. However, it is important to remember that the final 

registration accuracy will also depend on the spatial distribution of tie points, 

irrespective of which transformation function is used. Therefore, to ensure accurate 

registration results, it is essential that patches are matched across the whole area of 

interest, rather than in just one or two localized regions. Thus the same statement is 

repeated here as has been made on numerous occasions before in this study: the success 

of the proposed automatic registration system is directly dependent on the ability to 

extract and match similar features from both the SAR and SPOT data. The distribution 

of the patches that were matched in the example described in this chapter was 

reasonable, but it could have been much better. Matches were located close to the edges 

of the images, as well as in the centre, but a wider and more even distribution would 

have been desirable. Further research in feature extraction routines is necessary in order 

to improve the quantity and spatial distribution of the matches.

A significant difference between registering small images and full scene images is that 

the refinement technique will only increase the spatial distribution of tie points in the 

small scenes. The extent to which the spatial distribution is increased is dependent on 

the size of the matched patches compared to the size of the image. For small images, the 

patches are comparatively large, but for full scene images, they are comparatively much 

smaller. Furthermore, since not all tiles could be refined, and only matched edge pixels 

have been used in the refined registration, the spatial distribution of tie points is actually 

worse in the refined registration than in the approximate registration determined from 

matching patches alone.

In answer to the problems associated with the choice of polynomial transformation 

function, a method of automatic orthorectification of SPOT data using the feature 

matching results was proposed. In using traditional photogrammetric techniques the
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errors caused by polynomial transformation functions can be avoided, but to do so a 

sufficiently accurate DEM is required.
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Chapter 9  D is c u s s i o n

The opening chapter of this thesis introduced the subject of data integration and 

explained how it consisted of two procedures: image registration and data fusion. It was 

shown that data integration is a very important aspect of remote sensing that warrants 

detailed research. This study set out to investigate the feasibility of automating the 

image registration component of data integration, when used with multisensor data sets. 

In order to achieve this, a method of automatic image registration was proposed and 

subsequently researched. This method, based on patch matching and edge matching, 

was shown to be successful at automatically registering SAR and SPOT images to a 

level of accuracy similar to what could be achieved with manual image registration, but 

in much less time, and with very little human effort. This proposed method of automatic 

image registration was illustrated with both small (512x512 pixels) and large (full 

scene) images.

The second chapter reviewed various methods of image registration. As a result of this 

review it was clear that although the structure of an automatic multisensor image 

registration system could be well defined, the individual algorithms that make up such a 

system are not well defined. It was proposed therefore that this study should concentrate 

on the development of those algorithms. Consequently, five objectives were outlined. 

To recap, these were:

1. to investigate and develop automatic feature extraction algorithms for use with 

SAR and SPOT data;

2. to develop an automatic patch matching algorithm for use with features 

extracted from SAR and SPOT data;

3. to integrate the patch extraction and patch matching procedures;

4. to investigate the possibilities of registration of both small and large images 

using the patch matching results; and,
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5. to investigate the possibilities of extending the matching results to allow for full 

orthocorrection of the data sets.

Objective 1

Chapter 5 investigated a selection of feature extraction algorithms which could be 

applied to SAR and SPOT images. The three techniques which were chosen to be used 

in the patch matching algorithm were automatic thresholding, homogeneous patch 

extraction and segmentation. The automatic thresholding algorithm was based on the 

established technique of bimodal histogram splitting, but included a reliable method of 

locating the optimum threshold level. The homogeneous patch extraction algorithm 

implemented here was essentially the same as described in previous work. Of the four 

segmentation algorithms described in chapter 5, two were based on previously 

published research, and the other two were a part of commercial software packages. Of 

all six algorithms, only one (automatic thresholding) could operate automatically. The 

others needed some form of human intervention in order to obtain optimum matching 

results. Hence it was found that it is not possible to develop automatic feature extraction 

algorithms in isolation. To achieve automation they need to be combined with the 

feature matching process.

Objective 2

Chapter 6 proposed and investigated an automatic patch matching algorithm. The 

algorithm was a three step procedure which used the results of a cost function, the shape 

of the patches, and the separations of similar patches to find corresponding patches 

extracted from the SAR and SPOT images. Although the idea of the matching algorithm 

came from previous research, the procedure described here was essentially new. It was 

found that matches could be detected as long as similar features were extracted from 

each image. As a result it became clear that if the patch matching algorithm were to be 

universally successful, it would have to be combined with the patch extraction stage in 

the processing. Even so, the algorithm was considered to be a success since all the 

matches it detected were correct; there were no blunders.

Objective 3
Investigation of patch matching showed that integration of the patch extraction and 

patch matching procedures is necessary to ensure successful matching results. § 6.4 

proposed a number of methods of increasing the number of matches found in a pair of 

corresponding images. These included using patches from many different feature
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extraction algorithms, using patches from feature extraction algorithms with many 

different parameter settings, and using the features from one image to improve the 

extraction of features from the corresponding image. All these techniques were found to 

increase the number of matched patches that were detected. A further refinement to the 

patch extraction and patch matching procedures which was introduced but not tested 

was the concept of a filtering algorithm which could be used to remove patches which 

are likely to give false matches. As a result of the new improvements made to the 

combined patch extraction/patch matching procedure, the number of matches found in a 

pair of corresponding images was increased.

Objective 4

The success of the patch extraction and patch matching algorithms was evaluated by 

applying them to two pairs of small (512x512 pixels) images and one pair of large (full 

scene) images.

For the small images, seven matched patches were detected in one, and six matched 

patches were detected in the other. Thus, there were sufficient tie points to allow each 

pair of images to be registered, but not enough to allow a statistical analysis of the 

registration results. Therefore, the quality of the results had to be judged by other 

means. Firstly, a comparison of each pair of matched patches showed that all the 

patches had been correctly matched; there were no blunders in the matching. As a result, 

all the tie points could be considered reliable. Secondly, the spatial distribution of the tie 

points was considered. For one image that spatial distribution was better than the other 

image, meaning the accuracy of the registration would probably be better for that image. 

If these pair of images were being registered manually, and a similar number of tie 

points were used, there is no reason to suggest that the manually selected tie points 

would be more precise than the automatically selected tie points. If the spatial 

distribution of the manual tie points were similar to the spatial distribution of the 

automatic tie points, and the same transformation function were used in each case, then 

the automatic registration can be considered to be as accurate as the manual registration.

A technique based on edge matching was investigated to see if it could improve the 

quality of the registration results generated using patch matching. The nature of the edge 

matching algorithm is such that it can only be used in conjunction with the patch 

matching algorithm described in chapter 6. It was found that the edge matching 

algorithm can improve the quality of the registration results by increasing the precision
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and spatial distribution of the tie points. Chapter 8 explained that where a pair of 

matched patches are in contact with the edge of the image it is possible that the tie 

points calculated from the locations of the centroids may be unreliable. However, when 

edges are matched instead of patches, this unreliability does not exist. In addition, since 

real features on the ground (the edges of features) are being used as tie points rather 

than arbitrary points (centroids), the edge matching tie points can be considered more 

precise than the patch matching tie points. For small images, edge matching was shown 

to give a much larger number of tie points with a much more even spatial distribution. 

As a result, it is reasonable to conclude that automatic registration based on patch and 

edge matching gives better registration results than manual registration since the 

automatically selected tie points are at least as precise as the manually selected tie 

points, but there are many more and their spatial distribution is much better. The 

accuracy of the automatic registration was also assessed in terms of RMS residuals. It 

was found that for the two tests, the RMS residuals were of the order of 1.5 pixels, 

depending on which edge extraction algorithms were used. It should be remembered 

that this value is dependent on the ability of the transformation function to represent the 

physical geometry of the system as well as the quality of the tie points. In order to 

assess the accuracy of the tie points alone, it is necessary to measure their discrepancies. 

However, without ground control data, this is not possible.

Chapter 8 illustrated how the patch and edge matching algorithms could be applied to 

full scene images. The images were split into tiles, and the algorithms were applied to 

selected tiles in exactly the same way as with the small images described above. Two 

separate tests were performed. Firstly, the full scene image were registered using just 

the tie points located from patch matching. A total of 39 tie points across the whole 

image gave a RMS residual of approximately 15 pixels. Secondly, the full scene images 

were registered using the tie points located from patch and edge matching. This time, 

3488 tie points gave a RMS residual of just under 11 pixels. The difference between the 

patch matching results and the edge matching results was explained by the fact that the 

patch matching had used unreliable tie points, but the edge matching eliminated these. 

Since all the patches had been matched correctly it can be concluded that the edge 

matching tie points contain few blunders. Therefore, the principal reason for obtaining a 

RMS residual of 11 pixels must be due to the choice of transformation function, and its 

inability to correct for terrain induced errors. The variation of terrain height across the 

set of tie points was estimated to be 50m, which leads to an error of up to 7 pixels in the

275



across track (x) direction. Considering that the RMS residuals in x and y were 10 pixels 

and 4.5 pixels respectively, the results are in line with what would be expected. 

Although there were a large number of tie points located in the full scene images, and 

these tie points could be considered to be reliable, their spatial distribution was quite 

poor, since they were clustered into a few small regions across the image. There is no 

doubt that this clustering affected the accuracy of the registration, and was most likely 

the cause of the angular distribution of the residuals, which appeared to be systematic. 

The only solution to this problem is to ensure that tie points are spatially well 

distributed across the whole image.

Objective 5

The investigation into the automatic registration of full scene images made it clear that 

the affine transformation function is insufficient, and that if accurate registration is to be 

achieved then a more rigorous form of image registration is needed. Therefore, the idea 

of combining the automatically selected tie points with established photogrammetric 

techniques was proposed. With the availability of a DEM and a few (two or three) 

GCPs, it should be possible to geocode the SAR data, orthorectify the SPOT data, and 

register the two images to a high degree of accuracy. If ERS SAR data were used the 

GCPs would not be necessary. Furthermore, by implementing the proposed system, the 

whole process would be fully automatic.

In addition to investigating these five objectives, this thesis has also researched other 

aspects of the automatic image registration system, particularly preprocessing of SAR 

data. Chapter 4 studied speckle reduction algorithms in detail, and made some proposals 

for new speckle reduction techniques. It was found that these techniques were useful in 

this application, but further research is required to investigate how useful they will be in 

other circumstances.

Although the proposed method of automatic image registration has proved successful, 

there are a number of areas that require further research. In particular, feature extraction 

algorithms for both SAR and SPOT images need to be developed in order to ensure a 

large number of features can be matched. This is probably the most significant 

stumbling block in the proposed image registration system, and the one that warrants 

most research. Further research into the initial approximate alignment of the images 

would also be useful, since this is a manual processing step in the chain which could
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probably be simply eliminated. The patch matching algorithm produced excellent 

results, but the edge matching algorithm could be improved in order to increase 

precision and reliability. However, the edge matching algorithm in its present form gave 

acceptable results, and therefore a new edge matching algorithm is not essential. 

Finally, further research into the use of automatically selected tie points in the rigorous 

geometric correction of images would be desirable. Other topics which would benefit 

from further research have been highlighted throughout this thesis.

This study set out to investigate automatic registration of multisensor data sets. By 

proposing a system of automatic image registration, researching the algorithms which 

make up that system, and testing the system with both small and large images, it has 

achieved its objectives. However, it is clear that the whole subject of automatic image 

registration requires more research if multisensor data sets are to be exploited to their 

full potential.
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