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Abstract7

This paper presents a burned area mapping algorithm based on change detection of Sentinel-1 backscatter data guided8

by thermal anomalies. The algorithm self-adapts to the local scattering conditions and it is robust to variations of9

input data availability. The algorithm applies the Reed-Xiaoli detector (RXD) to distinguish anomalous changes10

of the backscatter coefficient. Such changes are linked to fire events, which are derived from thermal anomalies11

(hotspots) acquired during the detection period by the Moderate Resolution Imaging Spectroradiometer (MODIS) and12

the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Land cover maps were used to account for changing13

backscatter behaviour as the RXD is class dependent. A machine learning classifier (random forests) was used to14

detect burned areas where hotspots were not available. Burned area perimeters derived from optical images (Landsat-15

8 and Sentinel-2) were used to validate the algorithm results. The validation dataset covers 21 million hectares in 1816

locations that represent the main biomes affected by fires, from boreal forests to tropical and sub-tropical forests and17

savannas. A mean Dice coefficient (DC) over all studied locations of 0.59 ± 0.06 (± confidence interval, 95%) was18

obtained. Mean omission (OE) and commission errors (CE) were 0.43±0.08 and 0.37±0.06, respectively. Comparing19

results with the MODIS based MCD64A1 Version 6, our detections are quite promising, improving on average DC20

by 0.13 and reducing OE and CE by 0.12 and 0.06, respectively.21

Keywords: Burned area detection, Sentinel-1, backscatter coefficient, SAR, Random forests, Reed-Xiaoli detector,22

Fire23

1. Introduction24

Fire is one of the natural agents that most alter terrestrial ecosystems and has a key ecological role in a large part25

of the Earth’s surface. Fires may have local to global effects as they reduce soil fertility, change water supply, increase26

biodiversity loss and negatively influence carbon sequestration (Hoffmann et al., 2002; Van der Werf et al., 2010;27

Hansen et al., 2013; Bond et al., 2005; Aponte et al., 2016; Pausas & Paula, 2012; Lavorel et al., 2007). Fires may28
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also alter global biochemical cycles by modifying the emitted greenhouse gases (GHGs) and aerosols presence in the29

atmosphere (Van Der Werf et al., 2017; Andreae & Merlet, 2001; Bowman et al., 2009). Annual global estimates of30

carbon emissions from forest fires are quite variable. Van der Werf et al. (2010) place them between 1.6 and 2.8 PgC31

per year, which is equivalent to 20 to 30% of the global carbon emissions generated by burning fossil fuels (Kloster32

et al., 2012; Flannigan et al., 2009). However, other authors estimate fire related emissions at 2 to 4 PgC per year, the33

equivalent of up to 50% of fossil fuel emissions (Bowman et al., 2009). Regardless of the actual value, changes in34

global burned area (BA) remains an important source of interannual variability of atmospheric carbon concentration.35

Direct relationships between global warming and the frequency of fires at the global level implies a positive feedback36

process with sufficient potential to be a key factor in climate change (Flannigan et al., 2009; Hoffmann et al., 2002;37

Knorr et al., 2016). Although the current understanding of all these interactions is limited (Krawchuk et al., 2009),38

increased carbon concentration in the atmosphere may reinforce the effect of climate on fire frequency and intensity39

(Langenfelds et al., 2002; Flannigan et al., 2006). Such increases are spatially variable. Furthermore, some areas may40

not experience changes with respect to current fire regimes, while others may even experience reduced fire occurrence41

(Flannigan et al., 2009; Kloster et al., 2012; Andela et al., 2017).42

Given the relationship between the fire regime and climate, the Global Climate Observing System (GCOS) con-43

siders fire disturbance as an Essential Climatic Variable (ECV). An ECV is a physical, chemical, biological or a group44

of linked variables that contributes in a critical way to the characterization of the climate system, being key to study45

and predict its evolution (Bojinski et al., 2014). The origin of ECVs dates back to the 1990s, when gaps in climate46

knowledge and the reduction of observation networks in many countries led GCOS to develop the ECV concept to47

simplify the study of climate through systematic observations of a limited set of variables with great climatic impor-48

tance using satellite remote sensing data (Hollmann et al., 2013; Bradley et al., 2012). In 2010, the European Space49

Agency (ESA) started the Climate Change Initiative (CCI) programme as the main contribution of the Agency to the50

GCOS agenda. The CCI programme aims to obtain information on different ECVs using remote sensing data to help51

improving climate modelling (Plummer et al., 2017; Hollmann et al., 2013). Fire Disturbance is one of the ECV in-52

cluded in the first phase of the CCI programme initiated in 2010. The goals of this project were to produce long-term53

and consistent time series of global BA information (Chuvieco et al., 2016). The interest of global BA products for54

climate modelling has been reviewed by several authors (Mouillot et al., 2014; Poulter et al., 2015). And many global55

BA products have been released over the last years (Humber et al., 2018). Three such products were based on data56

from the NASA’s Moderate Resolution Imaging Spectrometer (MODIS) sensor, the MCD45 (Roy et al., 2008), the57

MCD64 (Giglio et al., 2009, 2018) and the MODIS Fire cci v5.0 (Chuvieco et al., 2018). Images acquired by the58

VEGETATION sensor on board the SPOT-4 (Satellite Pour Observation de la Terre) satellite have also been used to59

generate global BA products, namely the Global Burnt Area (GBA) 2000 (Tansey et al., 2004), Globcarbon (Plummer60

et al., 2006), L3JRC (Tansey et al., 2008) and the Copernicus Global Land Service Burnt Area (based on Proba-V61

since 2014: land.copernicus.eu/global/products/ba). Furthermore, the European Remote Sensing Satellite - Advanced62

Along Track Scanning Radiometer (ERS2-ATSR2) was used to generate the Globscar product (Simon et al., 2004)63
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while the MEdium Resolution Imaging Spectrometer (MERIS) data were used to generate the Fire cci v4.1 product64

(Alonso-Canas & Chuvieco, 2015; Chuvieco et al., 2016). All these products were obtained using passive remote65

sensing datasets (optical and thermal wavelengths) which have significant limitations in areas with persistent cloud66

cover. Another limitation comes from the relatively coarse (> 250 m) spatial resolutions of these sensors, which67

makes the detection of small fires difficult (Stroppiana et al., 2015a; Randerson et al., 2012).68

Several factors limit burned area mapping from remote sensing data. These factors are related to both, the sensor69

characteristics and the observed scene. The type of sensor (passive or active) and the region of the electromagnetic70

spectrum in which the images are acquired are decisive in the success of the burned area detection. Among the scene71

characteristics influencing detection accuracy, the size and shape of fire patches, land cover type, fire unrelated changes72

(e.g., phenology, floods, harvest, insects) and the presence of clouds (optical and thermal part of the spectrum) are the73

most relevant. Since sensor and scene related factors interact, the degree to which each of the mentioned factors affect74

BA detection success varies (Eva & Lambin, 1998; Boschetti et al., 2004; Belenguer-Plomer et al., 2018a; Padilla75

et al., 2015). The spatial and temporal resolution of the sensor have a significant impact on BA mapping accuracy,76

determining the minimum size of the fires that can be detected (Boschetti et al., 2004) and the time interval between77

fire and detection (Eva & Lambin, 1998). However, previous studies suggest that temporal resolution is less important78

than the spatial resolution when it comes to the accuracy of the BA detection (Boschetti et al., 2010).79

In a survey based on a questionnaire of 47 researchers who used BA products and an extended literature review,80

Mouillot et al. (2014) suggested that BA products should have commission errors (CE) in the range of 4% (ideal) to81

17 % (maximum) while omission errors (OE) above 19% were deemed less useful for the climate modelling efforts.82

A first global comparison analysis found that the NASA’s MCD64 was the most accurate BA product (Padilla et al.,83

2015), but was far from achieving these goals with CE and OE reaching 42% and respectively 68%. These errors84

were in part due to the low spatial resolution which results in small fires being overlooked (Randerson et al., 2012). A85

recent study has demonstrated that the contribution of small fires may be in fact even greater, as comparing Sentinel-286

and MODIS products for Africa showed an underestimation of almost 45% of BA (Roteta et al., 2019). Therefore, the87

development of new BA detection algorithms is a relevant research topic in the current context where climate change88

is a key issue. To achieve this improvement, the use of images from new satellites, such as those of the Copernicus89

missions of ESA, is necessary. Furthermore, alternative mapping options (e.g., radar based) are needed over areas90

where optical images are limited by persistent cloud cover (e.g., tropical areas).91

During the last decade, synthetic aperture radar (SAR) data have been increasingly used for BA mapping as data92

from multiple sensors became available. Such studies have taken advantage of radar independence of cloud cover and93

solar illumination, their increased spatial resolution and the availability of multiple polarizations and incidence angles94

(Bourgeau-Chavez et al., 2002; French et al., 1999). The European Remote Sensing (ERS) SAR satellites (ERS-195

and ERS-2) were widely used in boreal (Bourgeau-Chavez et al., 1997; Kasischke et al., 1994), tropical (Siegert &96

Hoffmann, 2000; Siegert & Ruecker, 2000; Ruecker & Siegert, 2000) and Mediterranean (Gimeno et al., 2004, 2002)97

ecosystems to detect and map BA. More recently, RADARSAT (Gimeno & San-Miguel-Ayanz, 2004; French et al.,98
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1999) and ALOS - PALSAR (Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture99

Radar) (Polychronaki et al., 2013) were employed for the same purpose. However, past SAR missions only provided100

data with low temporal resolution which hindered the development of efficient radar-based BA detection and mapping101

algorithms over large areas. In addition, the utility of past sensors was limited by the available polarizations (mostly102

single co-polarized sensors), steep viewing geometries (far from ideal when monitoring changes in vegetation) and103

data access restrictions.104

With the launch of ESA’s Sentinel-1 satellite constellation (A and B platforms, operational since October 2014105

and December of 2015, respectively) such limitations have been largely reduced. The Sentinel-1 constellation could106

theoretically provide images every three days by combining datasets acquired during ascending and descending trajec-107

tories. The independence from cloud cover and solar illumination, added to improvements in sensors characteristics108

(e.g., dual polarization, increased spatial resolution and incidence angle, precise orbital information), provides un-109

tapped opportunities for BA detection. A few studies have already explored the potentials of Sentinel-1 SAR images110

for BA detection, but these studies are focused on specific regions (Engelbrecht et al., 2017; Lohberger et al., 2018).111

To date, few studies tried integrating active and passive datasets for BA detection. Such a study detected BA in-112

dependently from Sentinel-1 and Sentinel-2 datasets on a relatively small area in the Congo basin suggesting that a113

combined sensor approach compensate for the strengths and limitations of each individual sensor (Verhegghen et al.,114

2016). However, SAR based BA detection has limitations as discussed in more detail in subsection 3.2. Lastly, fusion115

approaches combining optical and radar data have been considered for BA detection. In Stroppiana et al. (2015b,a)116

Landsat-5 TM and C-band ENVISAT ASAR data were integrated into a fuzzy algorithm aimed at burned area detec-117

tion in a Mediterranean environment.118

This paper presents a novel radar-based BA mapping algorithm based on temporal series of C-band backscatter119

coefficient, that self-adapts to local scattering conditions and it is able to detect small fires (down to 1 ha) in a fairly120

automatic way. The specific objectives of this study were to: (i) present the proposed algorithm and explain its121

functionalities; (ii) validate the BA detections over major biomes; (iii) compare the detection accuracy with that of122

existing products based on passive datasets; and (iv) analyse the factors influencing the algorithm accuracy.123

2. Study area and dataset124

The algorithm was developed using data from four sites, three located in the Amazon basin and one located in the125

Iberian Peninsula. Subsequently, the algorithm was validated over 18 sites around the world (Fig. 1). The validation126

areas were located within biomes where fire events occur frequently, from boreal forests to tropical and sub-tropical127

forests, savannas and grasslands.128
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Fig. 1: Location of the Military Grid Reference System tiles used for algorithm development and validation.130

131

The algorithm relies on temporal series of Ground Range Detected (GRD) dual-polarized (vertical-vertical VV, and132

vertical-horizontal VH polarizations) SAR images acquired by the Sentinel-1 A/B satellites in interferometric wide133

(IW) swath mode. The GRD data was processed on a tile base structure using as grid the 100 × 100 km Military Grid134

Reference System (MGRS). For each tile, Sentinel-1 images from ascending and descending passes (when available)135

and from all intersecting relative orbits were used. Land cover (LC) classification and hotspots derived from thermal136

anomalies were used as ancillary data.137

The land cover classification was produced in the framework of the ESA’s Land Cover cci project. This project138

delivers time series of consistent global LC maps at 300 m spacing on an annual basis from 1992 to 2015. The most139

recent map (i.e., 2015) was used. CCI land cover maps were generated using a combination of sensors, including140

MERIS and Proba-V time series of surface reflectance (Kirches et al., 2014). Since the SAR images were processed141

at a significantly higher pixel spacing (40 m, see subsection 3.1) than the LC map, the later was resized using a142

nearest-neighbour interpolation to coincide with the SAR spacing. In addition, the Land Cover Classification System143

(LCC) (Di Gregorio, 2005) was simplified by joining similar cover types into six groups: shrublands, grasslands,144

forests, crops, non-burnable, and others. One should notice that BA detection takes place over 100 × 100 km tiles.145

Therefore, for any given tile, the simplified LCC classification groups very similar classes.146

Hotspots were available from NASA’s Fire Information for Resource Management System (FIRMS). The hotspots147

were recorded by two sensors, the VIIRS (Visible Infrared Imaging Radiometer Suite) sensor at 375 m spatial resolu-148

tion (Schroeder et al., 2014) and the MODIS sensor at 1 km spatial resolution (Giglio et al., 2003). The VIIRS and149

MODIS database was last accessed in January 2018.150

To derive the validation fire perimeters (see subsection 3.4 for more details), Landsat-8 optical images were re-151

trieved from the United States Geological Survey repository (USGS) as atmospherically corrected surface reflectance152

products (Vermote et al., 2016). The validation period was adjusted for each tile considering the fire season length153
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and the availability of Landsat images with a cloud cover under 30%. Sentinel-2 Level-1C images retrieved from154

the Copernicus Open Access Hub were considered to reduce temporal gaps in the validation dataset and thus large155

discrepancies between the validation period and the Sentinel-1 detection period.156

The effect of soil moisture, an important factor affecting radar backscatter, on BA detection accuracy was analysed157

using the global Soil Moisture Active Passive (SMAP) product. Specifically, the Enhanced Level 3 Passive Soil158

Moisture Product based on L-Band Radiometer (9 km pixel spacing and 3 days revisit period) was used. The reliability159

of this product was demonstrated by a correlation coefficient above 0.8 between the estimated soil moisture and in160

situ measurements (Chan et al., 2018; Chen et al., 2018). From this product, the descending pass images (6 AM161

Equator crossing), more accurate than ascending according to Chan et al. (2018), were used so that all measurements162

represented the same acquisition time (Chan, 2016). As for the LC map, the product was resized to 40 m using the163

nearest-neighbour interpolation.164

3. Methods165

3.1. SAR data pre-processing166

The Sentinel-1 data was processed using open-source libraries available in the Orfeo ToolBox (OTB), an image167

processing software developed by the National Centre for Space Studies (CNES), France (Inglada & Christophe,168

2009). The OTB-based processing chain uses Ground Range Detected (GRD) Sentinel-1 images with the SAR data169

being tiled to 100 km using the MGRS system. The chain is highly scalable and autonomous once few parameters are170

set and includes the data download from Sentinel-1 repositories. The SAR data processing may be grouped in several171

steps including, pre-processing, geocoding and temporal filtering (Fig. 2).172

 Temporal filtering Pre-processing  Geocoding

Normalized 

backscatter 

coefficient (γ°)

Orthorectification, 
tiling, and slice 

assembly

MGRS grid

SRTM DEM Temporal 

filtering
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γ̀° 
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download

MGRS grid

Orthorectified 

images Orthorectified, 
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173

Fig. 2: SAR data processing with the Orfeo Toolbox.174

175

The pre-processing step includes data download of the specified MGRS tiles and radiometric normalization to176

gamma nought (γ0) using the gamma nought lookup table provided in the product metadata. Only SAR images ac-177

quired in the interferometric wide swath mode, the Sentinel-1 default acquisition mode over land, were used. The178

calibrated images were orthorectified to ground geometry using elevation information from the Shuttle Radar Topog-179

raphy Mission (SRTM) one arc-second DEM and the bicubic interpolator. The orthorectified images were clipped180

to the processing tile and the data acquired from the same orbital path but provided within different slices were mo-181

saicked (i.e., slice assembly). It should be noted that the BA algorithm uses temporal backscatter differences of the182
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same relative orbit, hence, terrain-flattening (Small, 2011; Frey et al., 2013) was not necessary as the DEM-derived183

normalization (illumination) area for a given pixel is constant in time thus not affecting the pre- to post-fire backscatter184

coefficient variations (Tanase et al., 2010c, 2015, 2018). The last step was a multi-temporal filtering of the products185

for each satellite pass (Quegan et al., 2000). The GRD data were processed to the nominal Sentinel-1 resolution (20186

m) through the OTB based chain.187

The BA detection algorithm deployment over large areas is conditioned by its performance (speed) and accuracy.188

Both parameters are influenced by the pixel spacing to which products are processed as omission and commission189

errors are highly depended on speckle while the processing speed increases with decreasing pixel size. Analysing190

the effect of pixel spacing on image radiometric properties, processing time and BA detection accuracy was essential191

for selecting the optimum pixel spacing for deployment. Tanase & Belenguer-Plomer (2018) carried out an analysis192

for four pixel spacing (i.e., 20, 30, 40 and 50 m) over two test tiles. A 40 m spacing provided the optimum trade-off193

between speckle reduction, storage and computing requirements and the accuracy of the detected BA. Therefore, the194

temporally filtered images were aggregated to 40 m.195

Radio Frequency Interference (RFI) may contaminate SAR data. Since RFI are largely observed over highly196

populated urban areas (Li et al., 2004; Njoku et al., 2005; Lacava et al., 2013) and considering that burned areas are197

usually located away from large cities, such effects were not observed and consequently were not considered.198

3.2. Backscatter behaviour in burned areas199

To better understand the proposed algorithm, its development, and the decision-making process that shaped it, this200

subsection describes the behaviour of C-band backscatter coefficient after fire events.201

Fire on vegetated areas results in variations of the backscatter coefficient, which may increase or decrease de-202

pending on the polarization, the remaining vegetation and the environmental conditions (i.e., rainfall) during SAR203

data acquisition. Fire consumption reduces the number of vegetation scattering elements potentially reducing the204

backscatter coefficient (Van Zyl, 1993; Antikidis et al., 1998). However, biomass consumption may increase scat-205

tering from the ground due to reduced signal attenuation (less vegetation) and the increased effect of soil surface206

properties, such as moisture and roughness (Tanase et al., 2010b). Hence, microwaves backscatter behaviour in areas207

affected by fires may be more heavily influenced by soil moisture properties when compared to unburned areas, par-208

ticularly when rainfall occurs after the fire (Imperatore et al., 2017; Gimeno & San-Miguel-Ayanz, 2004; Ruecker &209

Siegert, 2000). Rain and melting snow are the main causes of increased soil moisture (Huang & Siegert, 2006), influ-210

encing the radar signal and consequently reducing C-band sensitivity to fire induced changes (Tanase et al., 2010b).211

SAR-based BA mapping may be further hindered by spatial changes in soil moisture due to fire unrelated factors (e.g.,212

temperature, insolation, wind, slope and orientation, soil roughness) which are difficult to embed into detection algo-213

rithms. The local incidence angle (LIA) is yet another factor influencing C-band sensitivity to fire induced changes,214

with smaller LIA values providing increased burned to non-burned differentiation for co-polarized waves (Gimeno &215

San-Miguel-Ayanz, 2004; Huang & Siegert, 2006; Tanase et al., 2010b). Finally, wave polarization is also a funda-216
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mental variable, with cross-polarized waves being more sensitive to changes in vegetation (volumetric scattering) and217

less to surface properties (e.g., soil moisture and roughness) when compared to the co-polarized waves (Freeman &218

Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011). Such contrasting effects may generate a wide range of219

possible backscatter variations over burned areas that depend on the interplay between the SAR sensor characteristics220

(e.g., wavelength, polarization, incidence angle) and environmental conditions at SAR acquisition (e.g., fire impact,221

soil surface properties, meteorological conditions).222

The impact of fire on the backscattering coefficient was actually found to cause ambiguous effects. A strong223

backscatter decrease was found for burned tropical forests at C-band VV polarization under dry weather conditions224

due to the decreased volume scattering and increased heat flux, which led to a dryer ground (Ruecker & Siegert,225

2000; Lohberger et al., 2018). After rainfall, discrimination from the unburned surrounding forests was difficult as226

the backscatter coefficient over BA increased (Siegert & Ruecker, 2000). In the temperate region and the Mediter-227

ranean basin, lower backscatter values were found in fire-affected areas for cross-polarized C-band when compared228

to adjacent unburned forest (Rignot et al., 1999; Imperatore et al., 2017). In boreal forests, higher backscatter values,229

when compared to the adjacent unburned areas, were observed at C-band VV polarization when soil moisture was230

high, whereas lower backscatter was observed for sites with better drainage (Bourgeau-Chavez et al., 2002; Huang &231

Siegert, 2006; Kasischke et al., 1994). In Australian woodlands and open forests, the post-fire backscatter increased232

for co-polarized waves and decreased for cross-polarized waves (Menges et al., 2004) while for African open forests233

the backscatter decreased for both co- and cross-polarized C-band channels, although only the co-polarized channel234

was deemed useful for BA detection (Verhegghen et al., 2016). Changes in the post-fire backscatter levels appear to235

be strongly related to changes in soil moisture, with data acquired after rainfall being less suitable for classification236

or biophysical parameters retrieval. However, some fire-related studies reported increased differentiation potential for237

BA after rainfall in the Mediterranean basin (Gimeno & San-Miguel-Ayanz, 2004).238

3.3. Burned area detection and mapping algorithm239

The main requirements of the BA detection algorithm were: (i) the use of cloud insensitive satellite data (i.e.,240

SAR); (ii) sensitivity to local burn conditions; and (iii) a high degree of automation. The algorithm was designed to241

make use of existing datasets for training purposes by using sets of susceptible burned and unburned pixels for locally242

dominant land cover types. The algorithm has six stages with its simplified structure being provided in Fig. 3. The243

following paragraphs explain in detail each stage.244
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Fig. 3: Flowchart of the SAR based algorithm for burned area detection.246

247

3.3.1. Stage 1: Anomaly change detection248

An anomalous change implies variations outside the typical behaviour expected for a given area and time. Burned249

areas were considered anomalies since fires are inconsistent spatial and temporal events. The Reed-Xiaoli detec-250

tor (RXD), proposed by Reed & Yu (1990), extracts signatures that are distinct from the surroundings without the251

need for a priori information. Anomalies have two characteristics that make them outliers: (i) spectral signatures252

different from the surrounding pixels; and (ii) low occurrence probability (Stein et al., 2002; Banerjee et al., 2006;253

Kwon & Nasrabadi, 2005). RXD uses the
:::::
Hence,

:::::
RXD

::::::
allows

::
to

::::::::::
distinguish

:::::::::
anomalous

::::::::
changes,

::::
such

::
as

:::::::
burned254

:::::
areas,

::::
from

::::::::
pervasive

::::::::
changes,

:::::
those

:::::
occur

::
in

:
a
:::::::::
periodical

::::
way

:::
and

:::::
most

::::
part

::
of

:::
the

::::::
image,

::::
such

::
as

::::::::
seasonal

::::::
effects255

:::::::::::::::::::::
(Theiler & Perkins, 2006).

:::::
The covariance matrix to calculate the Mahalanobis distance from a given pixel to the256

mean of the no change areas
::::::::::
surrounding pixels (background)

:
is
::::::
needed

:::
by

:::
the

::::
RXD

:
(Dabbiru et al., 2012). Thus, for257

any given pixel of the image, the RXD (Eq. 1) scores the Anomalous Change (AC).258

AC (x) =
(
x′ − µ

)> C−1 (
x′ − µ

)
(1)259

where x is any given pixel, x′ is a vector formed by the image bands values of the pixel x, µ is a vector composed by260

the mean value of the background pixels (e.g., stable areas) in each image band and C is the covariance matrix of the261

image bands (computed from the background pixels). The background value may be computed as the mean sample of262

a subset image .
:::::
where

::::
only

:::::
pixels

::
of

:::::
same

::::
land

:::::
cover

::::
class

::
of

:
x
:::::
were

:::::::
included

::
in

:::::
order

::
to

::::::::::
differentiate

::
in

:
a
::::::
easiest

::::
way263

::
the

::::::::::
anomalous

:::::::
changes

::::
from

:::
the

:::::::::
pervasive,

::::
since

::::::::
seasonal

:::::
effects

::
or

::::
soil

:::::::
moisture

:::::::::
variations

::::
may

::::::
modify

::::::::::
backscatter264

::::::::
coefficient

:::::::::
differently

::
in
::::::::
function

::
of

::::
land

:::::
cover

:::::
class.

:
When a priori information is available, the background value265

may be computed from areas where anomalies are not expected. For BA detection, a priori information was provided266

by MODIS and VIIRS active fire databases. MODIS and VIIRS hotspots corresponding to the current detection267

period (CDP) were used to mask areas likely affected by fires while the remaining pixels were used to calculate the268

background values. The BA masks were derived by taking a buffer of 0.75 km around each hotspot. This buffer was269

considered the influence area of each individual hotspot (IAhs) and it roughly corresponds to the pixel size for VIIRS270

and MODIS thermal channels while also considering location uncertainty.271
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The RXD was applied to a set of temporal ratios of the backscatter coefficient (Eq. 2 and 3). Such temporal272

indices were previously used for estimating the impact of different disturbance agents (e.g., fire, insects, wind) on273

vegetation (Tanase et al., 2015, 2018). The selected temporal radar indices mainly use the VH backscatter, which274

is more responsive to volumetric scattering from vegetation and less affected by changes in surface properties (e.g.,275

soil moisture, surface roughness) when compared to the co-polarized (VV polarization) channel (Freeman & Durden,276

1998; Yamaguchi et al., 2005; Van Zyl et al., 2011).277

RI1 = γ0VHt−1/γ
0VHt+1 (2)278

RI2 =
(
γ0VHt−1/γ

0VVt−1

)
/
(
γ0VHt+1/γ

0VVt+1

)
(3)279

where γ0 is the backscatter coefficient (linear scale) of VV or VH polarizations, and t − 1 and t + 1 are respectively280

pre- and post-fire detection dates that define the CDP.281

To reduce errors related to signal variation due to fire unrelated sources (e.g., variation in soils moisture, vegetation282

regrowth), the AC values for CDP were modulated by the AC values recorded for the previous detection period (PDP)283

(Eq. 4). Practically, AC scores of the PDP were subtracted from the AC of the CDP. The result was a Modulated284

Anomalous Changes (MAC) score used in all subsequent algorithm stages.285

MAC (x) = AC (x)[t−1..t+1] − AC (x)[t−2..t−1] (4)286

3.3.2. Stage 2: Burned and unburned regions of interest287

In this stage, burned and unburned Regions of Interest (ROIs) were automatically extracted using the MAC scores288

and ancillary information from hotspots and land cover data. Since information on hotspots was acquired daily from289

two independent sensors (VIIRS and MODIS) most burned pixels in the selected study areas (94.3%) were in fire290

patches with at least one hotspot within 0.75 km, the selected buffer considered as hotspot area of influence (IAhs)291

even for the tropical regions, where cloud cover is frequent. The presence of hotspots greatly facilitated the attribution292

of the detected MAC values to burned areas. This allowed distinguishing BA from other changes, such as logging, crop293

harvesting, flooding, or vegetation disturbance due to insects or diseases. When hotspots were not available, due to the294

cloud cover or small fire size, a different attribution method was used as explained in Stage 4. Burned ROIs (bROIs)295

were extracted in two steps: seeding and growing. This is an approach previously used for BA mapping algorithms296

(Bastarrika et al., 2011; Alonso-Canas & Chuvieco, 2015; Roteta et al., 2019). To obtain the seeds, spatially connected297

IAhs pixels were first grouped in uniquely identified objects: q1 : n, where n is the number of the unique objects. A298

pixel x inside an object q, was considered burned seed (bSeed) if Eq. 5 was met.299

x = bSeed
(
q
)
→

(
MAC (x) ≥ min (s, v) > 0

)
∨

(
MAC (x) ≥ max (s, v) > 0 ∧min (s, v) < 0

)
(5)300
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where s = µ
(
MACq′

)
, being µ the mean and q′ a region around q bounded by distq and distq+

√
distq, with distq being301

the maximum span of object q. Thus, q′ delineates likely unburned areas in the vicinity of q; and v = µ
(
MACNG

)
,302

with NG being the neighbour pixels of G, where G is a pool of pixels inside q with MAC values below µ
(
MACq

)
.303

Essentially, for a pixel to be considered seed it had to fulfil two conditions, one related to vicinity to a hotspot (within304

IAhs) and the second related to the magnitude of backscatter change (MAC score).305

The bSeed pixels were extracted considering the major land cover type for each q object. Therefore, pixels in306

q′ region were stratified by land cover type with only pixels of the same land cover type as predominant of q being307

used for computations. In addition, the selected q′ pixels needed to be outside the IAhs of any other hotspot. Fig. 4308

shows graphically the concepts of q, q′ and distq. Once bSeed pixels for q were extracted, an open morphological309

operator (3 × 3 window) was used to eliminate isolated bSeed pixels. With increasing window size, BA omission310

errors increased while commission errors decreased. To determine the optimum size, an error analysis was carried out311

using different window sizes (3 × 3, 5 × 5 and 7 × 7) over the four algorithm development tiles (analysis not shown).312

The 3 × 3 window was selected since it least affected the detection of small size fires while still managing to reduce313

commission errors. The same window size was used in previous works to reduce speckle effects (Menges et al., 2004).314

hs1 

q 

hs1 hs1 hs1 q 

distq 

distq 

q' 

    HS1           HS2 

 750 m 

distq 

315

Fig. 4: Graphical representation of concepts needed to extract bROIs, being HS - hotspot.316

317

Given an object q and its predominant land cover class k, the growing phase started by masking out all the pixels318

of the image which MAC values were below the mean MAC value of all image pixels of land cover class k. The319

remaining pixels were used to compute a new mean of the MAC values which was used as the minimum threshold to320

label Likely Burned Pixels (LBP) of q (Eq. 6).321

x = LBP
(
q
)
→ MAC (x) > µ

(
MAC > µ (MACk)

)
(6)322
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Connected LBP
(
q
)

pixels were grouped and subsequently overlapped with the extracted bSeed pixels of q. LBP
(
q
)

323

groups overlapping bSeed pixels of q were assigned to the bROIs and constituted the first component of the de-324

tected burned areas. The second component was detected using no parametric classification (i.e., random forests) as325

explained in Stage 4.326

The unburned ROIs (uROIs) were derived iteratively by land cover type. The histogram of bROIs pixels identified327

in the previous step was used to calculate the MAC values for the 25 and 75 percentiles (P25 and P75, respectively).328

These values constituted thresholds used to classify the MAC image in burned and unburned. Pixels with MAC values329

below P25 or above P75 were considered possible unburned seeds since: (i) MAC values below P25 indicate small330

changes, likely unrelated to fires (e.g., vegetation growth, changes in vegetation water content); and (ii) MAC values331

above P75 are usually associated with significant changes, such as logging, crop harvesting, or floods. One should332

note that, high severity fires may also result in MAC values above P75. However, such areas are regularly associated333

to hotspots and therefore were not labelled as uROIs. An open morphological operator (3× 3 window) was applied to334

the classified binary image to remove noise. The effect of the open morphological operator was an increased number335

of unburned pixels. Pixels from the not burnable LC map classes (i.e., bare soils, water, snow and ice, urban areas)336

were labelled as uROIs, while pixels overlapping IAhs or bROIs were filtered out. Additionally, for the crop land337

cover class, groups of pixels over 56 ha (0.75 × 0.75 km, being 0.75 km the double of VIIRS spatial resolution) not338

overlapping hotspots were included as uROIs to account for fire-unrelated changes, such as crop harvesting or changes339

in surface properties (roughness) due to agricultural works (e.g., ploughing).340

3.3.3. Stage 3: Adjustment for temporal decorrelation341

During algorithm development, a temporal decorrelation between fire events (i.e., hotspots date) and backscatter342

coefficient change was observed (Belenguer-Plomer et al., 2018b). Such decorrelation events may be the result of343

delayed backscatter decrease after fire due to multiple factors including: (i) pre-fire conditions, e.g., drier than usual344

weather may result in low values for the pre-fire backscatter coefficient; (ii) post-fire weather, e.g., precipitations345

may temporally increase the backscatter coefficient; and (iii) vegetation-dependent backscatter response to fire events.346

For example, over forests, VH backscatter decrease may be delayed as there are still sufficient scattering elements347

(tree trunks and branches) present after fire. As time passes, trunks and branches dry up, which results in decreased348

backscatter from vegetation.349

To account for temporal decorrelation the BA was detected iteratively for each period. Delayed changes in350

backscatter were accounted for computing the bROIs detected in periods formed by the current pre-fire image (t − 1)351

and images acquired during following 90 days past the CDP (i.e., t + 2, t + 3). This temporal threshold was based on352

empirical observations (Belenguer-Plomer et al., 2018b). Such bROIs were labelled as burned in the CDP (t − 1 to353

t + 1) when overlapping hotspots from the CDP. Additionally, these bROIs must not overlap hotspot recorded past the354

CDP.355
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3.3.4. Stage 4: Random forests burned / unburned classification356

Only a fraction of the anomalous pixels was labelled as burned based on information from hotspots due to the357

rather restrictive criteria (i.e., MAC score) used in Stage 2 and 3. Pixels not meeting the imposed criteria also needed358

labelling. To avoid subjectivity, such pixels were labelled using a non-parametric classifier (i.e., random forests)359

trained with data extracted from bROIs and uROIs by each land cover classes and CDP. The random forests (RF)360

classifier was used as it is robust to data noise (Gislason et al., 2006; Rodriguez-Galiano et al., 2012; Du et al., 2015;361

Waske & Braun, 2009) and less sensitive, when compared to other machine learning techniques, to the quality of362

training samples and overfitting (Belgiu & Drăguţ, 2016). Moreover, RF was already used to classify SAR data363

(Waske & Braun, 2009) and solve similar fire mapping problems (Collins et al., 2018; Fernandez-Carrillo et al., 2018;364

Ramo & Chuvieco, 2017; Meddens et al., 2016).365

RF is an ensemble classifier that consists of a group of decision trees {h
(
x′,Θz

)
, z = 1, ...}, where x′ is the input366

vector of any given pixel (x), and Θz are an independently bootstrap sampled vectors with replacement in each decision367

tree (z). Each tree provides a unique class for x, being the class of x assigned as the most popular voted class (Breiman,368

2001). In this study, TreeBagger from MATLAB R© software package was used to construct the RF classifiers.369

RF classifiers are customizable through different parameters, such as: (i) number of trees; (ii) number of training370

samples; (iii) proportion of training samples by class; and (iv) number of independent variables employed in each tree.371

The number of trees is a key adjustment in RF classification since for more trees the generalization error converges372

and models are not over-fit (Breiman, 2001; Pal, 2005; Rodriguez-Galiano et al., 2012). On the other hand, using more373

trees demands more computational resources. An empirical analysis (not shown) concluded that 250 trees provided374

the best trade-off between speed and accuracy for BA classification in this study. Since the number of pixels in375

bROIs and uROIs is high, computational costs may be reduced by using just a fraction for training purposes. This376

fraction was determined, by land cover classes, as 1% of all bROIs and uROIs pixels divided by the number of trees377

(250). Unbalanced training samples may result in infra-classification of the minority classes. According to Chen et al.378

(2004), several approaches may be used to address such problems: (i) reducing the overall learning cost, with high379

costs being assigned to the miss-classification of the minority classes (Pazzani et al., 1994); (ii) under-sampling the380

majority and over-sampling the minority classes; or (iii) a combination of both techniques (Chawla et al., 2002). The381

latter approach was used in this study. Depending on the misclassification cost, the TreeBagger function generated382

in-bag samples by oversampling the burned class and under sampling the unburned class. The proportion of training383

data was empirically adjusted to 40% and 60% for burned and unburned classes, respectively.384

The number of variables considered for trees growing in each split was computed as the square root of the total385

number of variables (Gislason et al., 2006), as it reduces the correlation of trees and thus improves global accuracy386

(Rodriguez-Galiano et al., 2012; Gislason et al., 2006). In addition to the SAR based metrics used for RXD (Eq. 2387

and 3), up to 30 SAR metrics were used for RF classification. These metrics were computed as in Eq. 7 to 12. The388

non-parametric classification was carried out considering the land cover type with specific models being built for each389
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land cover class. The BA detected by RF was added to bROIs detected in Stage 2 and 3, and formed the total BA for390

the CDP.391

µ
(
γ0XY[t′,t−1]

)
− γ0XYt+i (7)392

µ
(
γ0XY[t′,t−1]

)
/γ0XYt+i (8)393

γ0XYt−1 − γ
0XYt+i (9)394

γ0XYt−1/γ
0XYt+i (10)395 (

γ0VHt−1/γ
0VVt−1

)
/
(
γ0VHt+i/γ

0VVt+i

)
(11)396

µ
(
γ0VH[t′,t−1]/γ

0VV[t′,t−1]

)
/
(
γ0VHt+i/γ

0VVt+i

)
(12)397

where γ0XY is the backscatter intensity (linear scale) of VV and VH polarizations, t′ is t−1 minus the double of days398

distance between t − 1 and t + 1, and i is 1 or 2, being 30 the maximum number of indices computed.399

3.3.5. Stage 5: Post-processing400

Post-processing was needed to account for temporal decorrelation and improve detection results over problematic401

land covers such as cropping areas. To adjust for temporal decorrelation, the BA detected by the non-parametric402

classifier for the CDP was compared to the IAhs of previous detection periods, up to 90 days before the pre-fire403

image (t − 1) (Belenguer-Plomer et al., 2018b). If burned areas detected in the current CDP (i.e., objects formed by404

contiguous pixels) overlapped previous IAhs (objects) by more than 75% (set from empirical observations) they were405

masked out and considered previous burns. Three additional post-processing steps were then carried out to further406

improve the results: (i) on cropping lands, groups of burned pixels (objects) with areas above 56 ha (see Stage 2)407

that did not overlap IAhs (i.e., no local hotspot) were removed. The rationale was that lack of hotspots over a large408

changing cropping area is an indication of harvesting rather than fire; (ii) burned objects below one hectare were409

removed to reduce noise in BA detections due to residual speckle; and (iii) a modal filter with a convolution kernel of410

3 × 3 pixels was applied to smooth the salt and pepper effects typical for SAR based classifications.411

Post-processing also deals with joining the BA detected in the different relative orbits intersecting a specific tile.412

The BA was detected separately for each relative orbit, to avoid misinterpreting backscatter changes due to chang-413

ing azimuth angles or illumination geometry as fire related changes, and the results were subsequently .
:::

To
:::::
cope

:::
the414

::::::::::
topographic

:::::
effects

:::
for

:::
BA

::::::::
detection

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert, 2006; Tanase et al., 2010b)415

:
,
::
the

::::::
results

:::::
from

:::::::
different

::::::
relative

:::::
orbits

:::::
were combined by joining the BA detectedin all relative orbits.416

3.3.6. Stage 6: Burned area detection without hotspots417

As clouds may prevent the propagation of radiation from active fires to the thermal sensors on board satellites, the418

algorithm was built with a backup mechanism to cope with the absence of hotspots for a specific land cover type and419

detection period. However, for the algorithm to work, hotspots need to be available for each land cover class at some420
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point during the analysed fire season.421

The algorithm first detected the BA for all land cover types during detection periods for which hotspots were avail-422

able. For detection periods without hotspots, the data were temporally stored for later processing. During detection,423

the algorithm saved a database containing the P25 and P75 of MAC values for bROIs (Stage 2) and the trained RF424

models (Stage 4) for each land cover class. This database is hereafter referred to as the Classifier Model and Criteria425

(CMC). Once detections for land cover classes and detection periods with hotspots ended, the CMC database was426

used to classify the temporally stored data (i.e., land cover types without hotspots during detection periods) if two427

conditions were met: (i) the CDP was within the fire season. The length of the fire season was computed using the428

hotspots daily frequency as the interval between the dates corresponding to the P5 and P95; and (ii) the difference429

between the CDP and the date for the nearest CMC was less than one month, thus avoiding possible confusions due430

to changes in vegetation phenology. When CMC entries from different detection periods met the conditions, the one431

closest to the CDP was used. The MAC image for the CDP was segmented into possibly burned and unburned based432

on the CMC P25 and P75, with the possible burned pixels being subsequently classified using the stored RF models by433

land cover class. When CMC entries were spaced equally in time when compared to the CDP (i.e., one entry is from434

a previous period and one from a posterior period), each entry was used separately and only the commonly detected435

BA was kept. The post-processing operations from Stage 5 were carried out on the detected BA from this stage.436

An additional operation was carried out to reduce possible commission errors during this stage. The operation was437

carried out over BA detected on different relative orbits. Note that detections were always carried out using time-series438

of images from the same relative orbit. If several relative orbits intersected a given tile, the algorithm worked through439

the data from each relative orbit separately. BA products composites were subsequently formed using detections from440

different relative orbits and the same detection period. For each detection period, BA pixels detected in different441

relative orbits were grouped in objects. If all pixels of an object were classified as unburned in one orbit, the object442

was removed from the detected BA for the CDP. Since, dual pass (ascending and descending) acquisition were not443

available for all tiles and spatially overlapping relative orbits only partially covered any given tile, this additional444

operation reduced commission errors where BA detections intersected.445

3.4. Reference images and validation metrics446

The reference burned perimeters extraction for validation purposes was based on a well established framework447

(Padilla et al., 2014, 2015, 2017). The reference data were obtained from Landsat-8 images using a RF classifier and448

training polygons selected by an independent operator. The validation perimeters were generated from 120 multi-449

temporal pairs of images with a maximum separation of 32 days. The temporal separation of the pairs was short450

to ensure that fire scars were clearly visible in the post-fire image. Before running the classification, clouds were451

removed using the pixel quality band of the Landsat product and each pair of images was clipped to the extent of its452

corresponding MGRS tile. Training areas were selected using a false colour composite (RGB: SWIR, NIR, R) that453

allowed for a clear discrimination of burned areas. Three training classes were considered: burned, unburned and no454
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data.455

The variables selected as input for the RF classifier were: (i) Landsat-8 bands 4 and 7; (ii) the Normalized Burn456

Ratio (NBR); and (iii) the temporal difference between the pre- and post-fire NBR values (dNBR). The NBR (Eq. 13)457

is defined as the normalized difference between the reflectance of NIR and SWIR wavelengths (Garcı́a & Caselles,458

1991; Key & Benson, 2006).459

NBR = (Band 4 - Band 7) / (Band 4 + Band 7) (13)460

where Band 4 is the surface reflectance in the near infra-red (NIR) wavelength (0.772 - 0.898 µm) and Band 7 is the461

surface reflectance in the shortwave infra-red (SWIR) wavelength (2.064 - 2.345 µm).462

After the RF classification, fire perimeters were visually revised to correct possible errors. New training fields463

were iteratively added and the RF was re-run until the classification result were deemed accurate. Reference BA464

perimeters were resized using a nearest-neighbour interpolation to the selected pixel spacing of the Sentinel-1 product465

(40 m). Temporal gaps between the Landsat-8 reference period and the Sentinel-1 detection period were filled in466

through photo-interpretation of Sentinel-2 images.467

The Sentinel-1 BA detections were validated using confusion matrices (Table 1). Three accuracy metrics were468

computed for the burned area class using the confusion matrices, the omission error (Eq. 14), the commission error469

(Eq. 15) and the Dice coefficient (Eq. 16) (Padilla et al., 2015).470

Table 1: Confusion matrix example.471

472

Refererence data

Detection Burned Unburned Row total

Burned P11 P12 P1+

Unburned P21 P22 P2+

Col. total P+1 P+2 N

473

OE = P21/P+1 (14)474

CE = P12/P1+ (15)475

DC = 2P11/ (P1+ + P+1) (16)476
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4. Results477

4.1. Algorithm accuracy478

The OE and CE over the validation tiles varied, with the highest errors (0.54 to 0.81) being observed over Aus-479

tralian grasslands and the lowest (0.19 to 0.2) over the Mediterranean forests and shrublands (Table 2). The highest480

BA detection accuracy (DC 0.82) was observed over the tile 22LQP located in the Amazon basin (Fig. 5). By land481

cover type, the algorithm produces more accurate results over forested areas (DC 0.64), followed by shrublands (DC482

0.56). The lowest detection accuracy was observed over grasslands (DC 0.28) (Fig. 6). Note that error metrics by land483

cover type were computed by pooling pixels with the same land cover type from all tiles.484
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Table 2: Error metrics for Sentinel-1 burned area detections for each MGRS tile analysed.485

486

MGRS Reference period Detection period P Dd nIM LC C DC OE CE

10SEH 04/10/2017–05/11/2017 28/09/2017–03/11/2017 B 12 16 G NA 0.61 0.34 0.43

10UEC 05/07/2017–22/08/2017 08/07/2017–25/08/2017 B 12 32 F NA 0.76 0.31 0.16

18NXG 30/10/2016–02/03/2017 03/11/2016–03/03/2017 A 24 6 F SA 0.64 0.35 0.36

20LQP 20/07/2016–22/09/2016 03/07/2016–25/09/2016 D 84 4 F SA 0.82 0.14 0.22

20LQQ 04/07/2016–22/09/2016 03/07/2016–25/09/2016 D 36 5 F SA 0.55 0.42 0.48

20LQR 04/07/2016–25/09/2016 03/07/2016–25/09/2016 D 36 8 F SA 0.64 0.26 0.43

29TNE 05/10/2017–06/11/2017 04/10/2017–04/11/2017 B 6 24 S Eu 0.7 0.38 0.2

29TNG 05/10/2017–06/11/2017 04/10/2017–05/11/2017 B 6 24 S Eu 0.67 0.36 0.3

30SVG 30/06/2015–16/07/2015 26/06/2015–20/07/2015 B 12 9 S Eu 0.65 0.19 0.46

30TYK 12/06/2017–30/07/2017 10/06/2017–28/07/2017 B 12 26 S Eu 0.69 0.31 0.3

33NTG 28/11/2015–16/02/2016 21/11/2015–13/02/2016 A 12 14 F Af 0.63 0.47 0.21

33NUF 07/12/2015–23/12/2015 28/11/2015–22/12/2015 A 12 3 F Af 0.52 0.52 0.43

33NUG 21/11/2015–24/01/2016 16/11/2015–27/01/2016 A 12 8 F Af 0.52 0.52 0.44

36NXP 30/12/2016–15/01/2017 01/01/2017–26/01/2017 D 6 6 S Af 0.46 0.62 0.41

48VWL 12/06/2017–21/06/2017 11/06/2017–23/06/2017 D 12 3 F As 0.58 0.57 0.15

49MHT 02/07/2015–04/09/2015 26/06/2015–06/09/2015 D 24 5 O As 0.67 0.35 0.32

50JML 07/03/2017–10/05/2017 04/03/2017–15/05/2017 D 12 13 G Au 0.21 0.81 0.76

52LCH 05/04/2017–21/04/2017 26/03/2017–24/04/2017 D 12 7 S Au 0.31 0.78 0.51

487

Reference period - period for which the reference burn perimeter were derived; Detection period - first and last

Sentinel-1 images of the data series; P - satellite pass (A-ascending, D-descending, and B-both); Dd - day difference

between images (mode); nIM - number of SAR images within the detection period; LC - predominant land cover

(G-grassland, S-shrub, F-forest, and O-others); C - continent for each tile (NA-North America, SA-South America,

Eu-Europe, Af-Africa, As-Asia, and Au-Australia); DC - Dice coefficient; OE - omission error; and CE - commission

error.

488

489

490

491

492

493
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Fig. 5: Maps of burned area detected using Sentinel-1 data per MGRS tiles. Errors of omission and commission are also shown.495

496

19



00.20.40.60.81

0.34
0.43

0.61
0.31

0.16
0.76

0.35
0.36

0.64
0.14

0.22
0.82

0.42
0.48

0.55
0.26

0.43
0.64

0.38
0.2

0.7
0.36

0.3
0.67

0.19
0.46

0.65
0.31

0.3
0.69

0.47
0.21

0.63
0.52

0.43
0.52
0.52

0.44
0.52

0.62
0.41

0.46
0.57

0.15
0.58

0.35
0.32

0.67
0.81

0.76
0.21

0.78
0.51

0.31

0.6
0.46
0.46

0.75
0.69

0.28
0.52

0.31
0.56

0.41
0.3

0.64
0.45

0.39
0.57

Sentinel-1

0 0.2 0.4 0.6 0.8 1

0.16
0.67

0.48
0.23

0.34
0.71

0.74
0.49

0.34
0.3

0.19
0.75

0.72
0.48

0.36
0.58

0.44
0.48

0.08
0.32

0.78
0.39

0.37
0.62

0.1
0.29

0.79
0.72

0.34
0.4

0.93
0.36

0.13
0.99

0.92
0.02

0.940.46
0.11

0.32
0.42

0.62
0.43

0.08
0.71

0.85
0.33

0.25
0.64

0.53
0.41

0.72
0.77

0.25

0.59
0.65

0.38
0.59

0.5
0.45

0.36
0.37

0.64
0.59

0.39
0.49

0.38
0.53
0.53

10SEH

10UEC

18NXG

20LQP

20LQQ

20LQR

29TNE

29TNG

30SVG

30TYK

33NTG

33NUF

33NUG

36NXP

48VWL

49MHT

50JML

52LCH

 

Crops

Grasslands

Shrubs

Forests

Others

MCD64A1

DC
CE
OE

497

Fig. 6: Assessment metrics of Sentinel-1 and MCD64A1 Version 6 burned area detections per MGRS tiles and land cover classes. The metrics
by land cover were computed using confusion matrices formed by pixels of the same land cover class from all tiles. DC - Dice coefficient, OE -
omission error and CE - commission error.
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4.2. Comparison with existing global products503

The accuracy metrics of the Sentinel-1 BA detections obtained from the presented algorithm were compared to504

those derived from the current most widely used BA global product, the MCD64A1 Version 6 (Giglio et al., 2018).505

The magnitude of the error metrics may be influenced by the temporal match between the images used to generate the506

reference perimeters and those used to generate the BA products. To account for detection errors caused by slightly507

different validation and detection periods, the MCD64A1 product was temporally subset to match the Sentinel-1508

detection periods.509

The accuracy metrics were analysed by tile as well as by land cover classes. The tile-based analysis showed510

particularly poor results for the MCD64A1 product over the tiles 18NXG, 20LQQ, 20LQR, 30TYK, 33NTG, 33NUF511

and 33NUG (Fig. 6). For the remaining tiles, the accuracy of the two BA detection algorithms were closely matched,512

with some tiles being more accurately estimated by the Sentinel-1 algorithm while others by the MCD64A1. By513

land cover class, the MCD64A1 achieved higher accuracies over grasslands while the Sentinel-1 detections were514

considerably more accurate over forests. For the remaining land cover classes both products showed similar accuracies515

over burned areas. Overall, the BA was more accurately detected using the SAR based algorithm. On average Sentinel-516

1 detections improved the DC of the MCD64A1 product from 0.46± 0.11 to 0.59± 0.06 (± confidence interval, 95%)517

and reduced the OE from 0.55 ± 0.14 to 0.43 ± 0.08 and CE from 0.43 ± 0.08 to 0.37 ± 0.06 (Fig. 7).518
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Fig. 7: Dispersion of Dice coefficient (DC), omission and commission errors (OE and CE) of burned area detected for all tiles for Sentinel-1 (S1)
and MCD64A1 Version 6. The red line indicates median value, and top and bottom box edges indicate the 75th and 25th percentiles, respectively,
while red dots indicate outliers.
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4.3. Factors influencing the algorithm accuracy525

The MAC values (Eq. 4), and the temporal variation (pre- minus post-fire date) of backscatter coefficient and526

soil moisture were analysed by land cover class for each Sentinel-1 temporal pair after the BA classification. Four527

categories were studied: burned, unburned, commission and omission errors. Data from all tiles were pooled (Fig. 8).528

The analysis confirmed that, over burned and commission error pixels, VH backscatter mean variation was higher529
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(1.72 ± 0.002 dB) when compared to the VV polarization (0.34 ± 0.0023 dB) for all land cover classes. As expected,530

MAC values were on average considerably higher over burned pixels and commission errors (13.5 ± 0.15) when531

compared to unburned and omission errors pixels (0.17 ± 0.03), following the trends observed for VH backscatter532

coefficient mean variation. Soil moisture variations from the SMAP product were very similar between burned and533

unburned pixels with no particular trend being apparent. For crops and shrubs soil moisture variations was slightly534

higher over burned areas while for the other land cover classes the opposite was true (Fig. 8).535
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Fig. 8: Temporal variation (∆ = datapre–datapost) of the backscatter coefficient (dB) and soil moisture (from SMAP) between pre- and post-dates
for BA detection periods. MAC values from RXD are also presented. Values are displayed by land cover classes for four categories of pixels:
unburned (Un), burned (Bu) and commission (Ce) and omission errors (Oe). Red line indicates median value. Top and bottom box edges indicate
the 75th and respectively the 25th percentiles. Outliers not shown to improved graphs discernibility.
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Since the algorithm uses hotspots derived from thermal sensors to map BA, the accuracies metrics (by land cover543

class) of the pixels located within and outside the IAhs were also compared (Table 3). The highest BA accuracy544

(DC) and lowest omission and commission errors were observed for the pixels located within the IAhs over all land545

cover classes as expected. Likewise, VH and VV pre- to post-fire backscatter coefficient temporal differences were546

also compared for both cases. Similar trends, as observed in Fig. 8, where burned and commission error pixels had a547

significant higher variation when compared to unburned and omission errors pixels, were found over both polarizations548

independently of the location with respect to the IAhs.549

Table 3: Errors metrics for Sentinel-1 BA detections and pre- to post-fire backscatter variations assessed as a function of proximity with respect to
the hotspots influence area (IAhs).

550

551

552553

Crops Grasslands Shrubs Forests Others

Inside IAhs

DC 0.55 0.34 0.63 0.71 0.61

CE 0.38 0.64 0.27 0.27 0.36

OE 0.5 0.68 0.45 0.32 0.43

∆ VH (bp) 2.52 ± 0.02 1.06 ± 0.01 2.24 ± 0.005 1.48 ± 0.003 2.33 ± 0.03

∆ VH (cp) 1.27 ± 0.03 0.64 ± 0.01 1.54 ± 0.01 0.91 ± 0.01 1.26 ± 0.03

∆ VH (op) 0.15 ± 0.01 -0.33 ± 0.01 0.98 ± 0.003 0.31 ± 0.002 0.43 ± 0.01

∆ VV (bp) 1.42 ± 0.02 -0.73 ± 0.02 0.66 ± 0.01 0.26 ± 0.003 0.84 ± 0.04

∆ VV (cp) 0.03 ± 0.03 -0.91 ± 0.01 0.21 ± 0.01 -0.13 ± 0.01 0.42 ± 0.04

∆ VV (op) -0.29 ± 0.01 -0.78 ± 0.01 0.61 ± 0.004 0.06 ± 0.002 -0.1 ± 0.01

Outside IAhs

DC 0.11 0.17 0.39 0.27 0.45

CE 0.84 0.79 0.44 0.56 0.54

OE 0.92 0.86 0.7 0.81 0.57

∆ VH (bp) 2.6 ± 0.09 1.2 ± 0.03 3.63 ± 0.01 2.25 ± 0.01 0.9 ± 0.05

∆ VH (cp) 3.31 ± 0.04 0.33 ± 0.02 3.39 ± 0.01 2.18 ± 0.02 3.33 ± 0.08

∆ VH (op) -0.01 ± 0.02 0.08 ± 0.01 0.81 ± 0.01 0.22 ± 0.004 0.52 ± 0.02

∆ VV (bp) 0.46 ± 0.11 -0.53 ± 0.03 1.73 ± 0.01 0.27 ± 0.02 -1.44 ± 0.07

∆ VV (cp) 2 ± 0.05 -1.34 ± 0.02 2.03 ± 0.01 1.21 ± 0.02 2.78 ± 0.09

∆ VV (op) -0.73 ± 0.02 -0.55 ± 0.01 0.12 ± 0.01 -0.39 ± 0.005 -0.03 ± 0.02

544

∆ - pre- to post-fire temporal differences of VV and VH backscatter data by pixels classes of: burned (bp) and

commission (cp) and omission (oe) errors.

545

546

For six of the validation sites, images from ascending and descending Sentinel-1 passes were available. Therefore,547

a more detailed analysis was carried out to understand the difference in BA accuracy between ascending and descend-548

ing passes (Fig. 9). Overall, BA omission errors were minimum when both passes were used while BA commission549
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errors increased. However, DC values showed that BA detection generally improved when data from both passes was550

available.551
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Fig. 9: Assessment metrics of Sentinel-1 burned area detections per ascending (A), descending (D) and both satellite passes (B). DC - Dice
coefficient, OE - omission error and CE - commission error.
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The effect of topography and the environmental conditions (soil moisture) were analysed for each acquisition pass557

over the six tiles. The LIA was often used to analyse the effect of topography on the backscatter coefficient in areas558

affected by fires (Tanase et al., 2009, 2010a; Kalogirou et al., 2014; Gimeno & San-Miguel-Ayanz, 2004; Kurum,559

2015). However, the wide swath of the Sentinel-1 IW mode results in a variation of the incidence angle of about 17◦560

from near (29◦) to far (46◦) range. Since LIA is a function of incidence angle and local slope (U), DC scores were561

analysed (by satellite pass) as a function of both angles after grouping in five degrees classes (Tanase et al., 2010a).562

Similar trends were observed for both passes (Fig. 10) with better accuracies being observed for low LIAs and Us563

groups (<40◦).564

Nevertheless, analysing BA accuracy by LIA and U angles has limitations as LIA groups may include areas of dif-565

ferent slopes while U groups may include slopes oriented towards and away from the sensor with completely different566

scattering properties. Therefore, the sloped areas (U≥5◦) were further analysed by their orientation (V) with respect567

to the satellite viewing geometry (Fig. 10). Notice that positive V values are observed for slopes oriented towards the568

sensor while negative values are observed for slopes oriented away from the sensor. The BA accuracy improved over569

pixels oriented toward the sensor with omission error being lower for such pixels while commission errors slightly570

higher. Notice that a paired t-test showed no significant difference (p-value > 0.05) between the percentage of pixels571

(by ten degrees V groups) from ascending and descending satellite passes.572
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Fig. 10: Dice coefficient (DC) by local incidence angle (LIA) and local slope (U) groups. For sloped areas (U ≥ 5◦ degrees) the DC, commission
(CE) and omission errors (OE) are shown as a function of slope orientation (V) with respect to the Sentinel-1 viewing geometry. Negative V values
show slopes oriented away the sensor while positive V values show slopes oriented toward the sensor. The BA metrics are shown for six tiles where
both ascending (ASC) and descending (DESC) passes were available (i.e., 10SEH, 10UEC, 29TNE, 29TNG, 30SVG and 30TYK).
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Since Sentinel-1 ascending and descending images were acquired at different dates, variations in soil moisture580

(from the global SMAP product) between the pre- and post-dates delineating the CDPs were analysed to ascertain the581

influence of this important environmental parameter on BA detection errors. Over five of the six tiles the difference582

in soil moisture between ascending and descending passes were reduced. However, for tile 30SVG soil moisture583

increased considerably over some areas for descending pass acquisitions which translated in much larger commission584

errors (0.46) when compared to those observed for the ascending pass (0.16), where soil moisture was stable (Fig. 11).585

The increased commission errors were the result of a large and compact area located south of the fire perimeter that586

was misclassified as burned (Fig. 12). The temporal variations of the backscatter coefficient between ascending and587

descending passes (tile 30SVG) were correlated with the accuracy metrics. An important variation of the backscatter588

coefficient during the descending pass was observed over the misclassified burned area (CE) for both VV (2.8±0.029)589

and VH (1.0 ± 0.027) polarizations (Fig. 12).590
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591

Fig. 11: Temporal variations of soil moisture (SM) from Soil Moisture Active Passive (SMAP) mission for pre- and post-fire dates (∆S M =

S Mpre–S Mpost), in tile 30SVG. Ascending (A) and descending (D) passes are analyzed separately. Pixels are grouped by classes of unburned (Un)
and burned (Bu). Pixels from areas affected by commission (Ce) and omission errors (Oe) are also shown. The red line indicates median value, and
top and bottom box edges indicate the 75th and respectively the 25th percentiles. Outliers are not shown to improve graph discernibility.

592

593

594

595

596597

27



Un Oe Ce Bu

-10

-5

0

5

Un Oe Ce Bu

-10

-5

0

5

Un Oe Ce Bu

-10

-5

0

5

Un Oe Ce Bu

-10

-5

0

5

598

Fig. 12: Burned area from ascending (left column) and descending (right column) passes in tile 30SVG: red – burned (Bu), white – unburned (Un),
black – omission errors (Oe) and blue – commission errors (Ce). VV and VH backscatter coefficient variation (∆γ0 = pre f ire–post f ire) is also
shown for each pass.
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5. Discussion604

5.1. Algorithm development605

The Reed-Xiaoli anomaly detector (Reed & Yu, 1990), not widely used with SAR images except for levee slide606

detection (Dabbiru et al., 2012, 2016, 2018), seemed to work coherently when detecting burned areas as errors of607

omission appeared when low backscatter changes were observed over burned areas while error of commissions ap-608

peared due to fire unrelated backscatter variations over unburned areas. These trends were reflected by the MAC609

values for OE and CE classes which were close to those observed for unburned and respectively burned areas sug-610

gesting a correct estimation of the covariance matrices by taking advantage of the a priori information from stable611

areas (i.e., likely unburned pixels). Comparing backscatter variability over burned and unburned classes one may612

notice notably smaller MAC values over the later which also suggests a properly functioning of the anomaly detector613

according to the input data. To test the correct delineation of stable areas (i.e., background), a t-test was used to614

analyse the statistical difference between the inverted covariance matrices (used by RXD) obtained using hotspots and615
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those obtained using the BA validation perimeters from optical data (section 3.4). The analysis showed no statistical616

difference (p-values > 0.05) between the two methods demonstrating that hotspots may be reliably used to identify617

likely burned and unburned pixels as a preliminary source of burned area.618

The use of ancillary information from thermal anomalies (hotspots) allowed for attributing anomalous changes619

of SAR backscatter data as BA though a locally derived knowledge extraction. Hence, burned pixels were extracted620

without the need for relying on fixed thresholds on the SAR signal, which may depend not only on the land cover621

type, but also on backscatter variations due to spatially variable influencing factors (e.g., soil and vegetation moisture)622

that are difficult to model. Temporal decorrelation between hotspots (i.e., fire date) and the date at which radar623

backscatter changes were detected (Belenguer-Plomer et al., 2018b) was observed over most tiles. One should notice624

that temporal decorrelation is not specific to burned area nor the C-band frequency as similar effects were observed625

for L-band HV polarization over areas affected by deforestation (Watanabe et al., 2018). Therefore, temporal studies626

using SAR-based change detection techniques must devise methods to reduce or account for such effects (see the627

proposed approach in the Stage 3).628

The use of a non-parametric classifier was essential to cope the temporal lack of hotspots due to persistent cloud629

cover or small fire size (i.e., not detected by thermal sensors). Parametrising random forests classifier (RF) for BA630

classification may prove complex as almost an infinite combinations of parameter settings are possible. Ramo &631

Chuvieco (2017) proposed using 600 trees and a stratified training, where 10% of training data were burned pixels632

and the rest not burned, for the classification of MODIS images in burned and unburned classes. Such a setting was633

tested during algorithm development but the results were not as accurate as expected. Therefore, the RF set-up was634

customized based on empirical observations. The substantial differences in RF parametrization settings were mainly635

caused by the algorithm design, since it is building specific RF models for each land cover type and detection period.636

Hence, it does not have to cope with widely varying land cover and burn conditions as the work of Ramo & Chuvieco637

(2017) which used one uniquely trained model worldwide.638

5.2. Comparison with global products639

Over most validation areas, the accuracy of the proposed algorithm was higher when compared to the MCD64A1640

Version 6 product (Giglio et al., 2018). The mean DC value over all studied locations was 0.13 higher for the Sentinel-641

1 BA detections (i.e., 28% higher). The DC values of Sentinel-1 detections per tiles were statistically higher than those642

of MCD64A1 (paired t-test p-value of 0.024). In addition, the variability of Sentinel-1 BA detection accuracy was643

considerably lower when compared to the MCD64A1 product. The mean values for OE and CE over all tiles were644

also lower for the Sentinel-1 detections.645

The analysis showed that for 13 tiles (72% of the studied areas) the Sentinel-1 BA detections had higher DC scores646

than the MCD64A1 product. For one tile, 33NUF, the difference in accuracy (DC) of the two products is 0.5. The647

very low accuracy (DC 0.02) observed over this tile for the MCD64A1 product is difficult to explain with the data at648

hand, hence the tile was considered an outlier. For five tiles (i.e., 18NXG, 30TYK, 33NTG, 33NUG, and 49MHT)649
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the improvement of the Sentinel-1 product was substantial with DC increasing on average by 144% when compared650

to the MCD64A1 product. The large difference in DC scores was mainly caused by the high OE (0.72 to 0.94) in651

the MCD64A1 product. Detection of small burned areas (< 120 ha) is problematic using MODIS data due to the652

coarse sensor resolution (Giglio et al., 2009). To evaluate if reduced spatial resolution of MODIS was the reason653

behind MCD64A1 product poor performance, the percentage of BA from fire scars below 120 ha was computed654

based on the reference datasets. In tiles 33NUG, 33NTG, and 49MHT fires below 120 ha constituted 85%, 53% and655

respectively 48% of the total BA suggesting that the lower performance may be related to the coarser MODIS spatial656

resolution. Therefore, these results suggest that improvements in BA detection accuracy may be possible not only in657

areas with frequent cloud cover. However, for tiles 18NXG and 30TYK small fires (< 120 ha) constituted only 34%658

and respectively 25% of the total BA indicating that fire size may not be the only factor influencing detection accuracy659

when using coarse resolution sensors.660

For five tiles (i.e., 29TNE, 30SVG, 36NXP, 48VWL and 50JML) the MCD64A1 product showed higher DC scores661

when compared to the Sentinel-1 based detections. The mean difference for the four first tiles was only 0.13. However,662

for tile 50JML this difference was higher, with the MCD64A1 product being markedly more accurate (DC 0.41 vs.663

0.21). It seems such large differences were related to the conditions encountered over the Australian grasslands, where664

backscatter variations recorded from pre- to post-fire periods were low, hindering the detection algorithm. By land665

cover class, the results indicate that a radar-based BA mapping algorithm may provide BA products with better or666

similar accuracies when compared to available global products, except for grasslands. The most significant difference667

in accuracy was observed over grasslands, where the MCD64A1 was more accurate than the Sentinel-1 based BA (DC668

0.45 vs. 0.28). Conversely, over forests Sentinel-1 derived BA was more accurate (DC 0.64 vs. 0.49).669

5.3. Factors influencing BA accuracy670

Temporal variation of pre- and post-fire VH and VV backscatter coefficient over pixels of affected by CE and OE671

were similar to those observed over burned and respectively unburned pixels. Following, the main factors affecting672

burned area classification were discussed.673

5.3.1. Environmental conditions674

CE may only be related to factors that modify the scattering proprieties in a similar manner to fires (e.g., rainfall,675

harvest, defoliation, snow-melt, logging) if backscatter changes are concentrated in a reduced part of the image676

(anomalous changes), since the RXD may identify such variations as spatial anomalies
::::::
similar

::::
than

::::
fires. For in-677

stance, unrelated fire backscatter variations which did not affect the entire image occurred over tile 30SVG, where the678

highest difference between commission errors for ascending (0.16) and descending (0.46) passes were observed. For679

this tile, soil moisture variations over CE pixels varied notably between ascending and descending passes. For the680

descending pass, post-fire soil moisture was on average 0.014 ± 1.18e-04 m3/m3 higher when compared to pre-fire681

soil moisture, while for the ascending pass the increment was marginal (6.2e-04 m3/m3). Consequently, over pixels682
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affected by CE, an average increase of 2.8± 0.029 dB for VV polarization and 1.0± 0.027 dB for the VH polarization683

was recorded from pre- to post-fire date for the descending acquisitions. The differentiated increase by polarization684

confirmed the larger influence of the soil surface properties on the VV polarization when compared to the VH polar-685

ization as noted previously by others authors (Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011).686

The backscatter coefficient change generated by variations in soil moisture was incorrectly mapped as burned since:687

(i) the algorithm does not account for the sign of the backscatter change; and (ii) the image part affected by rainfall688

was located close to hotspots (areas bordering the fire perimeter). This suggests that algorithm improvements may689

further mitigate commission errors related to soil moisture variations by considering the backscatter change direction.690

Notice that, tile 30SVG was an exception as at this location a major part (67.6%) of the CE were concentrated in an691

large enough area (3420 ha) to extract useful information from the coarse pixel spacing SMAP product. The influence692

of soil moisture on BA accuracy was inconclusive for rest of the tiles, most probably due to the coarse pixel spacing693

of the SMAP product (9 km). Since global products of snow-melt,
:::
The

:::
use

::
of

:::
soil

::::::::
moisture

:::::::
products

::
at
::::::
higher

::::::
spatial694

:::::::::
resolution,

::::
such

::
as

:::
the

::::::::::
Copernicus

:::::::
Surface

::::
Soil

:::::::
Moisture

::::::
(SSM)

::::::
based

::
on

:::::::::
Sentinel-1

::::
data

::
at

::
1

:::
km

::
of

:::::
pixel

:::::::
spacing695

::::::::::::::::::::::::::::
(Bauer-Marschallinger et al., 2018)

:
,
::
to

::::::
reduce

:::
CE

:::::::
derived

:::::
from

:::
soil

::::::::
moisture

:::::::::
variations

::::
will

::
be

:::::::::::
investigated

:::::
when696

:::::
global

::::::::
available,

:::::
since

::::
now

:::::
exists

::::
only

:::
for

:::::::
Europe.

:::
On

:::
the

:::::
other

:::::
hand,

:::::
since

:::::
global

::::::::
products

::
of

:
harvest, defoliation,697

floods or logging at enough detailed pixel spacing are not available and precipitation products based on extrapolation698

of data from rain gauges have a much coarser pixel spacing (0.5◦) and own errors (Hu et al., 2018), it was not possible699

to identify all the commission errors sources
::
in

::::
order

::
to
:::::
filter

::::
them.700

5.3.2. Fire impact701

Conversely, pixels affected by OE may have been the result of the effects of different variables which attenuated702

the vegetation combustion effects on the C-band backscatter coefficient. Fire severity, the degree of organic matter703

loss due to fire combustion (Keeley, 2009), constrains the temporal backscatter variation between pre- and post-fire704

(Tanase et al., 2010b, 2014). The dNBR mean values over the pixels affected by omission errors (0.068 ± 6.65e-05)705

was 22.73% lower when compared to the dNBR values observed for correctly detected burned pixels (0.088 ± 7.5e-706

05). Notice that the dNBR index is widely used to detect BA and estimate fire severity over a range of biomes (Escuin707

et al., 2008; Loboda et al., 2007; Van Wagtendonk et al., 2004; Tanase et al., 2011) and that high fire severity implies708

a more significant reduction of vegetated scattering elements due to combustion.709

5.3.3. Topography710

Topography also affected the BA accuracy, with a tendency of increased burned areas omission being observed for711

the pixels oriented away from the sensor most likely due to the existence of shadowed regions (Tanase et al., 2010a,712

2009). Conversely, for the pixels oriented towards the sensor the commission errors increased since soil proprieties had713

a higher influence on radar scattering.
:::::
Since

:::
the

:::
OE

::::::
derived

::
of

:::
the

::::::::::
topography

::::
were

::::::
higher

:::
than

:::
the

::::
CE,

::
to

:::::::
improve

:::
the714

:::
BA

::::::::
accuracy,

::::::::
detections

::::
from

::::::::
different

::::::
relative

:::::
orbits

::::
were

::::::
joined

:::::
when

:::::::
available

::::
(see subsubsection 5.3.5

:
).
::::
The

:::::
angle715
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::
of

::::::::
incidence

:::::::::
determines

:::
the

::::::::
accuracy

:::
not

::::
also

::
in

:::::
SAR

:::::
based

:::
fire

::::::::::
monitoring,

:::::
since

::
in

::::::::::::::
Xu et al. (2019)

:
it

::
is

::::::::
observed716

:::
how

::::
also

::::::
affects

:::
the

::::
land

:::::
cover

:::::::::::
classification

:::::::
accuracy.

:
717

5.3.4. Land cover type718

The variables mentioned above affect the scattering processes over burned and unburned areas differently depend-719

ing of the land cover class observed and translated into variable map accuracies. Lower BA accuracies were found720

over grasslands as the scattering elements characteristic for this vegetation type interact to a lesser extent with the C-721

band waves when compared to the scattering elements encountered in shrubs and forests (stems, branches). However,722

the most important factor affecting the algorithm sensitivity to fire in grasslands seemed to be related to fire timing. In723

areas characterized by long intervals (months) between grass curing and fire events the algorithm encountered diffi-724

culties as the cured (i.e., dry) grass has low scattering properties being mostly transparent to the radar waves (Menges725

et al., 2004). Therefore, grass consumption by fire results in small or nil VV and VH backscatter changes from vegeta-726

tion consumption which hinders BA detection. This observation seemed supported by the lower temporal variation of727

the backscatter coefficient over burned when compared unburned grasslands. Conversely, forest and shrubs, besides728

containing scattering elements more susceptible to interact to C-band radar waves, are not affected by curing to the729

same extent (i.e., some water needs to be retained to ensure plant survival). Thus, vegetation consumption by fire730

results in a noticeable scattering decrease which is detected by the algorithm, although sometimes a temporal gap731

between fire and detection was observed (temporal decorrelation) as discussed in Belenguer-Plomer et al. (2018b).732

5.3.5. Ancillary information and SAR data availability733

The use of hotspots was essential given that only two backscatter channels were available (VV and VH polar-734

izations). Without hotspots, differentiation of burned areas from other land changes (e.g., floods, logging, harvest,735

vegetation disturbance due to pests, drought) that modulate the backscatter coefficient in a similar fashion was diffi-736

cult as also noted by Huang & Siegert (2006). Lower BA detection accuracies were found in pixels located far (outside737

IAhs) when compared to pixels located in close proximity (within 750 m) of hotpots events (see supplementary ma-738

terial). According to the reference data, only a 15.3% of burned pixels were not located within IAhs allowing for BA739

detection rates comparable or better than those of currently available global products.740

Joining detections from different passes (
::::::
relative

:::::
orbits

::::::
(from ascending and descending

:::::
passes) increased the741

detected burned area. Inherently, the availability of several orbits covering the same area resulted in reduced OE which742

is particularly true when different viewing geometries were used over areas with steep topography. Conversely the CE743

increased as wrongly detected areas are also joined in post-processing (Stage 5 of the algorithm). Despite the increased744

CEs, the use of both Sentinel-1 passes generally improved the BA accuracy. It should be noted that consistent dual745

pass (ascending and descending) acquisitions are currently available only over Europe and North America. The746

analysis suggested that differences in BA accuracy between ascending and descending passes were mainly caused747

by the interaction between the viewing geometry and the local topography as explained in subsection 4.3, with the748
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highest accuracies being achieved over areas oriented towards the sensor. Using images acquired in a single pass749

may result in increased omission errors particularly in regions with accentuated topography. These results confirm750

previous findings that highlight the effect of topography on burned area detection and fire impact estimation (Gimeno751

& San-Miguel-Ayanz, 2004; Huang & Siegert, 2006; Tanase et al., 2010b).
:::::
Future

::::::::::::
investigations

::
in

:::::
order

::
to

::::::
reduce752

::::::::::
topographic

:::::
effects

::::
will

:::
be

:::::::
needed,

:::::
since

::::::::
according

::
to

:::::::
current

:::::::::
Sentinel-1

::::::::::
observation

:::::::
scenario,

:::::
over

::::
most

:::
of

:::::
Earth753

::::::
surface

::::
data

:
is
:::::
taken

::::
only

::
in

::
a
:::::
single

::::
pass.

:
754

The accuracy of the Sentinel-1 product was also assessed as a function of the number of SAR images available755

during the detection period as well as the number of days between consecutive acquisitions. The BA was detected756

regardless of the image number or their temporal distance, thus coping with the variable acquisition strategy (temporal757

frequency) of the Sentinel-1 mission over different regions. The main temporal factor which limited the algorithm758

accuracy was the post-fire vegetation regrowth cycle. Where image acquisitions were more frequent, when compared759

to vegetation regrowth cycles, the algorithm detected the changes in backscatter coefficient generated by fires and760

labelled them as BA. However, the relationship between BA detection accuracy (DC) and the number of images used761

and their acquisition frequency (day difference of consecutive images) per tiles was weak (0.32 and respectively 0.38762

Pearson’s correlation coefficient) since additional factors affected the algorithm accuracy (i.e., topography and fire763

unrelated changes). Thus, it was concluded that current Sentinel-1 temporal frequencies might be sufficient for global764

retrieval. Nevertheless, the relatively small number of test samples may have obscured some effects. In addition, the765

relationship between Sentinel-1 acquisition frequency and the detection accuracy may vary with the land cover type766

(different post-fire regrowth cycle).767

5.4. Comparison with previous Sentinel-1 based approaches768

Previous studies based on Sentinel-1 data for BA detection were carried out only at local to regional scales.769

However, C-band backscatter from fire affected areas varies with the local conditions. Therefore, locally trained770

algorithms are difficult to transfer to other regions. Engelbrecht et al. (2017) used empirical thresholds to detect BA771

in South Africa achieving OE and CE of 0.29 and 0.48, respectively. Depending on area, the proposed algorithm may772

achieve similar or better accuracies. Lohberger et al. (2018) used an object-based image analysis approach to detect773

BA in Indonesia. However, since only information on the overall accuracy was provided comparisons were difficult.774

Finally, Verhegghen et al. (2016) tested the most suitable thresholds when separating burned from unburned pixels in775

the Congo basin, but did not provide accuracy metrics of their detected BA. Nevertheless, since such studies relied776

on algorithms heavily optimized over local to regional scales, comparisons with the proposed algorithm are of little777

relevance.778

6. Conclusions779

This paper introduced an automated and cloud cover insensitive algorithm for BA detection using Sentinel-1780

dual-polarized backscatter images. Hotspots from active fires and land cover data were used as ancillary information781
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when attributing anomalous backscatter changes to burned and unburned classes. The algorithm was validated at782

18 locations (100 × 100 km tiles) covering over 21 million hectares worldwide. Algorithm accuracy was assessed783

using reference burn perimeters derived from optical sensors (Landsat-8 and Sentinel-2). The agreement between the784

Sentinel-1 algorithm and the reference perimeters was compared with that of the most widely used global BA product,785

the MCD64A1 Version 6. Over all tiles, the mean OE and CE for BA were 0.43 and 0.37, respectively. The mean DC786

was 0.59. When compared with the MCD64A1, the proposed algorithm improved burned area detection (DC) by 28%787

(from 0.46 to 0.59) over the analysed tiles. This improvement was mainly related to reduced OE
::::::
reduce

:::
OE,

::::::
which

::
is788

::::
very

:::::
useful

:::
for

:::
the

:::::
users,

:::::
since

:::
has

::::
been

:::::::::::
demonstrated

::::
that

:::::::::
Sentinel-1

::::
may

::
be

:
a
::::
key

:::::
source

:::
of

::::::::::
information,

:::::::::
especially789

:::::
where

::::::
optical

::::
data

:::::
based

:::::::
products

::::
have

::::::::::
information

:::::
gaps,

:::
due

::::::
mainly

::
to
::::::
clouds.790

According to our analysis, strong topography conditioned the BA accuracy with slopes oriented away from the791

sensor being subject to higher errors
:
,
:::::
being

::::::::
necessary

::::::::
combine

::::::::
detections

:::::
from

:::::::
different

::::::
relative

::::::
orbits

::
to

::::
cope

:::::
these792

:::::
effects. Likewise, it was observed that a reduced fire severity translated into increased omission errors. On the other793

hand, commission errors seemed to correlate with fire unrelated changes affecting the scattering processes(e. g.,794

soil moisture). .
:

Furthermore, scattering from burned areas was directly influenced by vegetation type with higher795

accuracies being observed over forested areas (DC 0.64) and lower over grasslands (DC 0.28) which were attributed796

to the difficulty in tracking changes of cured vegetation using the C-band data. The main advantages of the proposed797

algorithm were related to: (i) insensitivity to cloud cover;
::::::::::
Self-adapting

:::
to

::::
local

:::::::::
scattering

:::::::::
conditions

::
to
:::::::

extract798

::::::
burned

:::
area

:::::::
without

:::
the

::::
need

::
of

:::::
fixed

::::::::
thresholds

::
or

:::::
prior

::::::::::
information

::
of

:::::::
observed

:::::
area;

:::
and

:
(ii) independence between799

accuracy and Sentinel-1 temporal frequency; and (iii) more detailed pixel spacing when compared to current global800

products
::::::::
capability

::
of

::::
BA

::::::::
detection

:::::
when

::::::
thermal

:::::::::
anomalies

:::::
were

:::
not

::::::::
available

:::::
using

:::::::
random

::::::
forests

::::::
models

:::::
built801

::::
from

::::
data

:::::
when

::::
were

::::::::
available. On the other hand, the main limitations were related to the: (i) misclassification of802

fire unrelated changes(e.g., due to soil moisture); (ii) positive relationship between accuracy and hotspots availability;803

and (iii) accuracy dependence on variables affecting radar scattering processes (e.g., ecosystem type, topography). To804

reduce such limitations, further improvements shall be investigated.805

Acknowledgements806

This work has been financed by the European Space Agency through the Phase 2 of the Fire cci (Climate Change807

Initiative) project (Contract 4000115006/15/I-NB) and by the Spanish Ministry of Science, Innovation and Univer-808

sities through a FPU doctoral fellowship (FPU16/01645). We acknowledge the use of data from LANCE FIRMS809

operated by the NASA GSFC Earth Science Data and Information System (ESDIS). We also acknowledge Dr. Thierry810

Koleck and Dr. Stephane Mermoz for kindly providing the code for Sentinel-1 data pre-processing and the comments811

and suggestions of several anonymous reviewers which helped improving the original manuscript.812

34



References813

Alonso-Canas, I., & Chuvieco, E. (2015). Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sensing of814

Environment, 163, 140–152.815

Andela, N., Morton, D., Giglio, L., Chen, Y., Van Der Werf, G., Kasibhatla, P., DeFries, R., Collatz, G., Hantson, S., Kloster, S. et al. (2017). A816

human-driven decline in global burned area. Science, 356, 1356–1362.817

Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966.818

Antikidis, E., Arino, O., Arnaud, A., & Laur, H. (1998). ERS SAR Coherence & ATSR Hot Spots: a Synergy for Mapping Deforested Areas. The819

Special Case of the 1997 Fire Event in Indonesia. European Space Agency-Publications-ESA SP, 441, 355–360.820

Aponte, C., de Groot, W. J., & Wotton, B. M. (2016). Forest fires and climate change: causes, consequences and management options. International821

Journal of Wildland Fire, 25, i–ii.822

Banerjee, A., Burlina, P., & Diehl, C. (2006). A support vector method for anomaly detection in hyperspectral imagery. IEEE Transactions on823

Geoscience and Remote Sensing, 44, 2282–2291.824

Bastarrika, A., Chuvieco, E., & Martı́n, M. P. (2011). Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing825

omission and commission errors. Remote Sensing of Environment, 115, 1003–1012.826

Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L. et al. (2018).827

Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Transactions on Geoscience828

and Remote Sensing, (pp. 1–20).829

Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., & Chuvieco, E. (2018a). Insights into burned areas detection from Sentinel-1 data830

and locally adaptive algorithms. In Active and Passive Microwave Remote Sensing for Environmental Monitoring II (p. 107880G). International831

Society for Optics and Photonics volume 10788.832

Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., & Chuvieco, E. (2018b). Temporal backscattering coefficient decorrelation in833

burned areas. In Active and Passive Microwave Remote Sensing for Environmental Monitoring II (p. 107880T). International Society for Optics834

and Photonics volume 10788.835
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for pre- and post-fire dates (∆S M = S Mpre–S Mpost), in tile 30SVG. Ascending (A) and descending1110

(D) passes are analyzed separately. Pixels are grouped by classes of unburned (Un) and burned (Bu).1111

Pixels from areas affected by commission (Ce) and omission errors (Oe) are also shown. The red1112

line indicates median value, and top and bottom box edges indicate the 75th and respectively the 25th1113

percentiles. Outliers are not shown to improve graph discernibility. . . . . . . . . . . . . . . . . . . 271114

Fig. 12 Burned area from ascending (left column) and descending (right column) passes in tile 30SVG:1115

red – burned (Bu), white – unburned (Un), black – omission errors (Oe) and blue – commission errors1116

(Ce). VV and VH backscatter coefficient variation (∆γ0 = pre f ire–post f ire) is also shown for each1117

pass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281118
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