27,582 research outputs found

    Combining quantifications for flexible query result ranking

    Get PDF
    Databases contain data and database systems governing such databases are often intended to allow a user to query these data. On one hand, these data may be subject to imperfections, on the other hand, users may employ imperfect query preference specifications to query such databases. All of these imperfections lead to each query answer being accompanied by a collection of quantifications indicating how well (part of) a group of data complies with (part of) the user's query. A fundamental question is how to present the user with the query answers complying best to his or her query preferences. The work presented in this paper first determines the difficulties to overcome in reaching such presentation. Mainly, a useful presentation needs the ranking of the query answers based on the aforementioned quantifications, but it seems advisable to not combine quantifications with different interpretations. Thus, the work presented in this paper continues to introduce and examine a novel technique to determine a query answer ranking. Finally, a few aspects of this technique, among which its computational efficiency, are discussed

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    McGenus: A Monte Carlo algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifically, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php .Comment: 6 pages, 1 figur

    A Roadmap to Reduce U.S. Food Waste by 20 Percent

    Get PDF
    The magnitude of the food waste problem is difficult to comprehend. The U.S. spends $218 billion a year -- 1.3% of GDP -- growing, processing, transporting, and disposing of food that is never eaten. The causes of food waste are diverse, ranging from crops that never get harvested, to food left on overfilled plates, to near-expired milk and stale bread. ReFED is a coalition of over 30 business, nonprofit, foundation, and government leaders committed to building a different future, where food waste prevention, recovery, and recycling are recognized as an untapped opportunity to create jobs, alleviate hunger, and protect the environment -- all while stimulating a new multi-billion dollar market opportunity. ReFED developed A Roadmap to Reduce U.S. Food Waste as a data-driven guide to collectively take action to reduce food waste at scale nationwide.This Roadmap report is a guide and a call to action for us to work together to solve this problem. Businesses can save money for themselves and their customers. Policymakers can unleash a new wave of local job creation. Foundations can take a major step in addressing environmental issues and hunger. And innovators across all sectors can launch new products, services, and business models. There will be no losers, only winners, as food finds its way to its highest and best use

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented
    corecore