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Aspects of Dealing with Imperfect Data in
Temporal Databases

Jo® Pons, Christophe Billiet, Olga Pons, and Guy De Tr

Abstract In reality, some objects or concepts have properties wiilma-tariant
or time-related nature. Modelling these kinds of objectsarcepts in a (relational)
database schema is possible, but time-variant and tiragetehttributes have an im-
pact on the consistency of the entire database. There&onpdral database models
have been proposed to deal with this. Time itself can be asdlece of impreci-
sion, vagueness and uncertainty, since existing time miegsdevices are inher-
ently imperfect. Accordingly, human beings manage timagisemporal indica-
tions and temporal notions, which may contain imprecisi@gueness and uncer-
tainty. However, the imperfection in human-used tempardications is supported
by human interpretation, whereas information systems e&gdordinary support
for this. Several proposals for dealing with such impeitest when modelling tem-
poral aspects exist. Some of these proposals consider fiedfehe system to be
the conversion of the specificity of temporal notions betwesed temporal ex-
pressions. Other proposals consider the temporal inditsiin the used temporal
expressions to be the source of imperfection. In this cimaateoverview is given,
concerning the basic concepts and issues related to thdlmgaé time as such or
in (relational) database models and the imperfectionsrtteat arise during or as a
result of this modelling. Next to this, a novel and curreméigearched technique for
handling some of these imperfections is presented.

1 Introduction

The concept of time itself is very complex to handle and pmtetr [45], [68],

though it is very natural and omnipresent. As informatiostegns often attempt
the modelling of natural objects, concepts or processey, diften require mod-
elling temporal aspects or concepts. Thus, several prégpbsse been concerned
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with the obtaining of theoretical models that allow the nibde or representation
of time [6], [10].

A very specific type of information systems are databaseesyst which are
computer systems designed to manage databases. A datebéses data repre-
senting real objects or concepts. Each (atomic) part oktdasa is a result value of
a measurement of a property or a description of a propertyredbobject or con-
cept. In reality, some aspects or properties of objects ncepts are time-variant
or time-related. e.g., the moment of a bank transactionaditionally a moment
in time and thus a time-related notion, the function of an leyge in a company
can change through recorded history and is thus time-varatemporal database
schema is a database schema that models real objects optowith time-related
or time-variant properties. However, the modelling of temgb aspects has a direct
impact on the consistency of the temporal database, bet@isemporal nature of
these aspects imposes extra integrity constraints. An gbeai@onsider a relation in
a relational library database, modelling the presence ok&dn the library. Every
physical book is represented by a unique identifier. Evergnein the relation con-
tains such an identifier, a date on which the correspondiing bas loaned and a
date on which it was subsequently returned (if it was retdiyné/ithout further pre-
cautions, a library employee could add several recordstivtisame book identifier,
different ‘loaned’-dates and no ‘returned’-dates. Thisugr of records would repre-
sent the same physical book being loaned several times fenadif dates and never
returned, which is of course impossible. A temporal datatmedel will typically
constrain record insertion and prevent similar modellimzpnsistencies.

A lot of research concerns temporal database models andappioaches to
the modelling of time. The first efforts were towards the esgntation of historical
information related to objects represented by records iataldise [8]. Some pro-
posals tried to extend the Entity Relationship Model [46thaut impact on any
database standards like SQL [65].

Notably, in 1994, “A Consensus Glossary of Temporal Dataliasncepts” was
published [29]. For this publication, 44 temporal databasearchers, among which
some of the main researchers in this field, cooperated ttr@@aonsensus on the
nature and definitions of some of the main temporal databaiseepts and termi-
nology. This glossary was subsequently updated in 1998 [41]

An interesting issue in temporal modelling concerns refeghips between tem-
poral notions. Notably, Allen [1] studied temporal relatships between time inter-
vals (and as a special case time points). Among others, tbg/igg of temporal
databases has greatly profited from these temporal resdijos, because they al-
lowed for richer and more complex user-specified temporatyjdemands, by al-
lowing to express more complex relationships between tmpaoeal notions in the
temporal expressions in the query and the temporal indicgin the database. e.g.,
in a relation modelling who was department head of an irntgtituduring which pe-
riods of time, a query like ‘who were the department headsnwitgomas worked
for the institution’ can be evaluated using similar relasbips.

Humans handle temporal information using certain tempooéibns like time
intervals or time points [29], and they often have to deahvithperfections like
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imprecision’s, vagueness, uncertainties or inconsigsrmossibly contained in the
descriptions of these temporal notions. Among many otlikese possible imper-
fections in descriptions of temporal notions determinerapdrtant issue in tempo-
ral modelling. e.g., the description of the temporal noftiimra sentence like ‘The
Belfry of Bruges was finished on a day somewhere between (1201 A.D. and
31/12/1300 A.D.’ contains imperfection because of the uagety in the used time-
related expression. It is known that the building was finisbe a single day, but it
is not known precisely which day this was.

To allow information systems to cope with these and similgadmperfections,
many approaches adopt fuzzy sets [52] for the representatiemporal informa-
tion [54], [55], [5], [20]. The temporal relationships stad by Allen were fuzzified
by several authors [58], [55], [67]. Garrido et al. [36] pratdifferent temporal op-
erators, defined by a combination of regular fuzzy compasgsBoth [36] and [61]
deal with uncertainty in temporal expressions concernimg intervals. Other ap-
proaches, like [63], use rough sets [59] to represent tirez\vals.

Next to temporal modelling, some attention has been spetgroporal reason-
ing [1]. Although temporal reasoning is not discussed is tthapter, it should be
noted that, among others, Dubois and Prade et al. [20], [2& ldealt with fuzzi-
ness and uncertainty in temporal reasoning.

The aim of this chapter is to present and explain some maioegis regarding
time in information systems and to present and discuss sssnes and techniques
concerned with handling data imperfections related to tifile rest of this chapter
is structured as follows. Section 2 presents some basiceptsmi@and terminology
about temporal modelling and discusses some of its impoaspects and issues,
while section 3 presents some important issues concermegdambination of data
imperfections and temporal modelling. In section 4, sonsd@oncepts and termi-
nology about temporal databases are presented, followeh lmyerview of some
interesting issues concerning temporal databases andeysafrsome commercial
temporal database systems. Finally, in section 5, an apprimaquerying tempo-
ral databases containing imperfect temporal informatsopresented, followed by
some conclusions and some suggestions for future work troseg.

2 Basic Concepts and Issues in Time Modelling

Before considering the introduction of temporal modellingnformation systems,
it is necessary to define and explain some main concepts wongeéemporal mod-
elling and their corresponding terminology, to situatesthand to discuss some
properties and issues related to these concepts. In thisrseseveral basic con-
cepts and their corresponding terminology will be defineghlained and situated.
Most of these concepts are widely used in the community opteal databases and
their definitions have been agreed upon in the context of [2&]these concepts, in
the entire chapter, the contents of [29] are followed (anero€ited).
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2.1 Basic Concepts and Properties

In information systems, time itself is usually perceivedaaénear or cyclic con-
cept [43]. Therefore, a time domain modelling time is usuedipresented by a set
with an imposed partial order. In general, two main typesimmeétmodels can be
discerned: dinear model [3] and acyclic model [51]. In the linear model, a total
order is imposed on the set and the progress of time is seelineaamatter, while
cyclic models are mainly used in the modelling of recurrentcpsses. It should be
noted that the majority of proposals use linear time models.

Data models used by information systems (and in specificp¢eah database
systems) may represent an underlying time axis ushlmgnons[29], which can
informally be described as the smallest distinguishalpfe tiinits that can be used
in the system. However, to explain what chronons are, araegpion of some other
temporal concepts is necessary.

Definition 1. Instant [29]
An instantis a time point on an underlying time axis.

Thus, an instant is basically an instantaneous time poitherime axis under-
lying a time model. The term is used in the context of the tinwelat too.

Orthogonal to the classification of time models as linearyatic, they can be
classified asliscrete denseor continuousmodels[29], [41]. In a discrete model [8],
the notion exists that every instant has a unique succesddha set of (modelled)
instants is seen as a discrete one. Here, intuitively, thefsestants can be seen as
isomorphic to the set of natural numbé¥sin a dense model, the notion exists that
between any two instants always lies another. Here, iatljtithe set of instants can
be seen as isomorphic to the set of rational numefahen the set of (modelled)
instants is a discrete one) or the set of real numBefwhen the set of (modelled)
instants is a continuous one). In a continuous model, thmalso exists that
between any two instants always lies another one, but thef éetodelled) instants
is always seen as continuous and there are no “gaps” betweeassive instants.

Some other necessary concepts are:

Definition 2. Time Interval [29]
A time intervalis the time between two instants.

Definition 3. Duration [29]
A duration is an amount of time with known length, but no specific startin
or ending instants.

A time interval as such is bounded by two instants, whereasration is not.
Also, it should be noted that an instant is in fact a singuéesecof a time interval.
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Definition 4. Temporal Element[29]
A temporal elements a finite union of time intervals.

Definition 5. Event[29]
An eventis an instantaneous fact, i.e. something occurring at danhs

Definition 6. ‘Temporal’ as Modifier [29]
The modifiertemporal’ is used to indicate that the modified concept concerns
some aspect of time.

Data models used for time modelling might now represent atetying time
axis using chronons:

Definition 7. Chronon [29]
In a data model, ehrononis a non-decomposable time interval of some fixed,
minimal duration.

A time model contained in a data model may now represent aarlymag time
axis by a sequence of consecutive chronons. These chromwesdentical dura-
tions. A data model will typically not specify the exact chom duration, so it can
be fixed later by applications implementing the data model.

The fact that chronons are actually time intervals has dqudait effect on the
representation of instants and time intervals. In a time ehading chronons, an
instant is of course represented by a chronon. A time inteney be represented
by a set of contiguous chronons, depending on the amounhefttie time interval
comprises.

Another classification of time models concerns the use aftpair intervals to
model time. The equivalence between interval-based ant-pased time models
is demonstrated ir?|.

Restrictions on time range may exist, as time may be boundedgonally in
the past and in the future [43].

2.2 Granularities

An important issue in time modelling concerns the concepéofporal granulari-
ties. A formal definition for this concept is given in [50]:

Definition 8. Granularity [74]
A granularity is an ordered set of non-overlapping and continuous termpora
elements calledranules
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Definition 9. Granule [74]
A granuleis the basic time unit in a granularity.

A temporal granularity is in fact a partitioning of the timed (time model) used
by a system, usually dependent on the application. For ebeqitine age of an adult
human being is usually expressed in years: one will use seesddike ‘Laura is 21
years old’ instead of sentences like ‘Laura is 21 years, 3thsand 4 days old’.
In this example any duration shorter than a year needs neseptation and thus
the used granularity allows no specification for duratiadmgrger than a year. The
granules are years.

As a granularityG is an ordered set, each granule may be represented by an
integer. In this representation, to keep track of the granityla granule is an element
of, the corresponding granularity name is added in subtscrip

G={ig|iez} (1)

In a system, the granularity with the shortest granulesisttironons granularity
which is denoted byt'. It is the granularity of which the granules are chronons.

Definition 10. Mapping function [50]
A mapping functionf is a function that maps a given granidg i € Z, in a
given granularityG, to a set of corresponding chronons:

fiG— 2(L)
ic— {c. | (c, is contained ing)A(c, € L)}

Note that a mapping functioh always maps from a given granulari@to the
powerset of the set of chronons Therefore, the output for a mapping function is
an element of”?(_L) and thus a subset df.

A mapping functionf requires that the following properties hold [50]:

e Gis an ordered set
e G is a set of continuous granules
e The granules in G do not overlap

The existence of mapping functions between granularitieglae chronons gran-
ularity also allows comparing granularities with respecttte length of their gran-
ules. In this context, two important concepts can be diszkrn

Definition 11. Finner Than [50]
Consider a mapping functiohand letic and jy be elements of granularities
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G andH respectively. Granularit is now said to bdéinner than granularity
H if:
If(ic)[ < [f(in)l

Definition 12. Coarser Than[50]
Consider a mapping functiohand letig and j4 be elements of granularities
G andH respectively. Granularit is now said to beoarser thangranularity
H if:

[t(c)| > [f(in)]

It is also possible to describe the relation between diffegeanularities. This is
called a casting function:

Definition 13. Casting function[50]

Consider two different granularities andH. A granularity-to-granularity
casting functioncastis then a function mapping granules fr@ato granules
from H:

cast:GxGxG —H
(ie,G,H) = Jn

whereig € G and jy € H and whereG denotes the set of all granularities.

Thus, the functiorcastassociates a granuig in G to a corresponding granule
jn in H. Two kinds of granularity-to-granularity mappings can nogvdiscerned:
an upwards mappinds a mapping from a granularit§ to a coarser granularity
H, whereas a downwards mapping is a mapping from a granuldrity a finner
granularityL. Orthogonal to this classification, mappings between tvanglari-
ties may be classified asgular mappingsirregular mappingsor congruent map-
pings[50], [30].

e Regular mappingA regular mapping is a granularity-to-granularity magmpin
where the mapping function value is calculated by means dfiplications
and/or divisions and (maybe) an anchor adjustment. e.g.midpping value of
the mapping between hours and minutes is calculated usingjtgplication by
60.

e Irregular mapping An irregular mapping is a granularity-to-granularity npam
where the mapping function value can not be calculated bynsnemultiplica-
tions and/or divisions. e.g., the mapping value of the magetween months
and days is dependent on the exact month or day.

e Congruent mappingA congruent mapping is a granularity-to-granularity map-
ping where the two granularities involved in the mappingdde same granules
but a different anchor. e.g., the mapping between the dagsg@Ban calendar
days) and the academic days is a congruent mapping.
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Different granularity-to-granularity mappings betweeveyal granularities can
be represented using a granularity graph, which is a ddegtaph indicating the
mapping conversions. The above is illustrated in the falhguwexample.

Example 1Consider a system that models both Gregorian calendar d@sitesll as
academic calendar dates. In this system, the chrononslgrayis a set of millisec-
onds. Figure 1 shows the complete granularity graph cooreipg to this example.
The transition between the chronons granularity and therskcgranularity is an
example of a regular mapping. Regular mappings are repgezsdry thin arrows
in the visualisation of the graph. The transition betweendhys granularity and
the months granularity is an example of an irregular mapgdimghe graph visual-
isation, irregular mappings are represented by a bold affovally, the transition
between the Gregorian calendar day granularity and theeaviadlay granularity is
an example of a congruent mapping. Both concern the samelztythe academic
year starts on October 1st, whereas the Gregorian calerdarsyarts on January
1st. In the graph visualisation, congruent mappings angalised as straight lines
without arrow heads.

Academic year

I 2
Years Academic term
T £
Weeks Months Academic month

Days
I 24

Hours
I 60
Minutes
I 60

Seconds

Academic day

I 1000

Chronons

Fig. 1 The granularity graph corresponding to example 1.

2.3 Temporal Relationships

In this section, a brief introduction can be found, conaggiémporal relationships
sometimes also called ‘temporal relations’[5]. Tempoedtionships can be seen as
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relationships between temporal elements belonging todimedime domain. These
relationships express how the temporal elements are delatene another, with
respect to temporal precedence and overlap.

Relation

| Before J
| Equal J

| Meets J {
| Overlaps J P~ F

| During J —_

| Starts J ~
| Finishes J Time

Fig. 2 Allen relations between two time intervals | and J.

Several (collections of) operators have been proposeddierdo compare tem-
poral elements and model the temporal relationships betwesn. Allen [1] most
notably described such relationships between time infeivad as a special case,
between instants. Figure 2 shows the temporal relatioagklipn discerned. Some
proposals can be applied to both crisp and other time inte[v8], [55], [67], [36].

3 Data Imperfections in Time Modelling

As explained in the introduction, humans handle tempofatimation using tempo-
ral notions like time intervals or time points [29]. While tbheed temporal notions
may contain imperfections [16], [20], [55], [23], humansesf gracefully deal with
these, as their inherent interpretation capability actofior a lot of them. This
phenomenon has been studied a.o. in the field of artificialligence [13], [28]
and language understanding [11], [55], [16]. An informat&ystem, however, can-
not appeal to a similar interpretation functionality. Thony proposals have been
concerned with the combination of time and imperfectionthis context of infor-
mation systems [55]. In this section, some main conceptssanies concerning this
combination are presented.

3.1 Types of Imperfections in Temporal Modelling

Generally, in temporal modelling, a distinction is madenwzstn the following types
of imperfections [55].
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Uncertainty Temporal information or data may contain uncertaintysihieans
that the exact temporal value is (partially) unknown, hosvegenerally some
knowledge is present anyhow, possibly describing the vigthid55], [?], [54].
E.g., the temporal notion described in a sentence like ‘TéléBof Bruges was
finished on a day somewhere between 01/01/1201 A.D. and AB0Q A.D.
contains uncertainty: itis known that the belfry of Brugess\inished on a single
day and that this day lays somewhere between 01/01/1201ahd31/12/1300
A.D., but it is not known exactly which day it is.

VaguenessTemporal information or data might contain inherent vamss, as
a precise instant or time interval may be intended, but theergation of it is
certainly vague [67], [55], [16]. E.g., the temporal notaescribed in a sentence
like ‘It happened during summer.’ contains vagueness, as the boundaries of
the mentioned temporal notion are not clearly expressed.

Subjectivity or ambiguityTemporal notions might be subject to subjectivity or
ambiguity. In certain cases, the temporal notion concetrmistarical period like
‘late romanticism’ or ‘the early middle ages’ and thus caméasubjectivity [55].
In other cases, the interpretation of the temporal notigredds on extra factors.
E.g., consider a person saying to another person ‘Let’s eaat other at six.’
The person hearing these words doesn’'t now if 6 a.m. or 6 wnnténded,
though the person saying the words does.

As to the sources of the imperfections in temporal inforomtimost propos-

als consider no specific source [28], [67], [55], [23], [5@8], [73]. Some pro-

posals, however, deal with the imperfections specificabuiting from aspects of
language [16] and other proposals consider transitionsdest different granulari-
ties to be the source of imperfection in temporal informa{e0]. Therefore, some
proposals consider granularity as the base of the tempadéhfi10].

In an information system, temporal information is usuakyated to facts or

events [7]. In light of this, a classification of temporalanihation can be consid-
ered, in which the following types of temporal informatiomyrbe found:

¢ Definite temporal informatiarDefinite temporal information contains informa-

tion describing a situation in which all time indicationsasiated with some fact
are absolute time indications. The temporal informatigorecisely known.
Indefinite temporal informatiofil8]: Indefinite temporal information contains
information describing a situation in which the time indioa associated with
some fact has not been fully defined. E.g., consider an elahirt fact occurred
but it is not known exactly when.

Infinite temporal uncertain informatiof#4]: Infinite temporal uncertain infor-
mation contains information describing a situation in vitém infinite number of
time indications are associated with some fact. This isliysfaund in recurrent
events like meetings. E.g., consider meetings that taleemaery Wednesday at
noon. Some systems (usually with different informationvters) may dispute
the occurrence and/or the duration of a fact.
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3.2 Representation of Imperfect Information

As mentioned before, information systems may have to ddal tivhe indications
which contain vagueness. Even for some specific events t, the temporal indi-
cations may become imprecise. Therefore, a time point nhigispecified by means
of atime interval of which the boundaries may not be pregikebwn. An example.

Example 2 Consider a speaker and a hearer. The speaker wants to mateainta
ment with the hearer. Now, consider the speaker saying:

‘We will meet each other tomorrow around 10’

The hearer will now usually instinctively agree that the @ippment will be in e.qg.
the time interval between 9.55h and 10.05h.

The study of the semantics of ‘around’ in temporal [16] iradions has shown
that the size of the time interval associated with the imigeespecification of a time
point depends on the distance with respect to the curreat tfg., consider now
that the speaker is talking about something that happ&heihg last week; then
the hearer would consider a time interval of more or less 18.da

Some proposals [47], [10], [55], [7] conclude that the begiresentation for
incomplete temporal knowledge is therefore based on tirtexvials, even if they
refer to a fact that happen at a time point. This means théatllas proposed in [1],
the primitive units (the chronons) in a time domain, usedririrdormation system
should be intervals.

In order to represent and manage uncertain temporal infamproperly, sev-
eral theoretical frameworks have been proposed:

e Probability theory Probability theory [18], [49], [39] is usually employed @
uncertainty concerning a time interval allows a probaptiitbe associated to the
time interval. The use of probability theory is very usualdgistics information
systems. E.g.;The package will arrive at its destination on Monday moigin
with a probability of 0.8

e Possibility theory Using possibility theory?], a possibility degree is associated
to the temporal fact or event. Possibility theory is widesed to model uncer-
tainty and vagueness in time [20],[23],[17],[55]. Sevavaltks [67], [58] present
fuzzy versions of the temporal relations proposed by AllgnThe aim of these
works is generally to obtain a flexible way to compare undertd-known tem-
poral intervals by means of temporal relationships. Thdytf imperfect tem-
poral metadata is done ir?]} [?]. In [?] a proposal to use in fuzzy databases
temporal fuzzy linguistic terms is studied. Burne],[[?] has studied recently
the combination of fuzzy databases with temporal data.

e Rough setsRough set theory [59] has been used to represent uncgriaititne
intervals. The two dimensional representation of timeriaks and the temporal
relationships between them has been studied in [63].7ha[rough set-based
model for temporal databases is presented. The study ofotetglationships
between rough time interval is studied ifd].[
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3.3 Imperfections in Temporal Relationships

As the existence of temporal relationships allows to compgamporal notions,
many approaches have been concerned with finding similgydeahrelationships,
able to supportimperfections in the temporal informatidmich is described by tem-
poral notions or even by the temporal relationships thewesdb8], [55], [67], [20].
These approaches are often based on Allen’s operators fample 3 presents a
short example concerning one of Allen’s relationships.

Example 3Consider an event which takes place between time pgiateiB. Thus,
the event comprises time interval, B] (this is visualized in part (1) of figure 3). The
classical Allen relationship ‘after’ returns an interyBl o[ as shown in part (2) of
figure 3. A fuzzified version of Allen’s ‘after’ operator iduktrated in part (3) of
figure 3. The comparison between two time intervals resnltspossibility degree
in the unit interval. The shape of the possibility distribatis shown in part (3)
of figure 3. Note that all the points strictly after the poBtesults in a possibility
degree of 1 whereas there is an area near the Bamtvhich the possibility degree
runs smoothly between 0 and 1.

Consider now the interval given B, D], illustrated in part (4) of figure 3. The
user wants to know ifC, D] is after[A, B]. The crisp version of the ‘after’ operator
would return‘no’ as an answer. The fuzzy version for the same operator would
return‘yes, with a possibility of 0.5’

1 A B
a : : time
@ — : HHHH »time

possibility 4
(3)0.5 L :/

0 5 time
4) ; > time
(C)] & )

Fig. 3 Example for the Allen relationshijafter’. (1) The event bounded within time poirksand
B. (2) The crisp version of thafter’ operator. (3) A fuzzy version of the after operator. (4) Aresth
event, bounded within time poinf€, D].

4 Basic Concepts and Issues in Temporal Databases

A temporal database can generally be seen as a databaseti@jes some tempo-
ral aspects in its schema [32], [5]. In subsection 4.1, somie soncepts and proper-
ties concerning temporal databases and their definitiengrasented and explained.
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In subsections 4.2 and 4.3, some main issues of relatiomgldeal databases are
presented and discussed. Finally, subsection 4.4 preseioigerview of some com-
mercial temporal database systems.

4.1 Basic Concepts and Properties

A database schema models some part of reality. As mentiongetiintroduction,
the part of reality a temporal database schema tries to moaleains some tempo-
ral aspects. For example, in this part of reality, some cptsoer objects could have
time-related or time-variant properties. The modellinghefse temporal aspects has
to be handled specifically in order for the database to maistaonsistent model
of reality.

Thus, a temporal database will contéémporal valuesi.e. values representing
(indications of) time. Temporal values in a temporal dasabean be classified into
the following types based on their interpretation and miatepurpose. The def-
initions and explanations of these types can be found in §@] [56] and more
information can be found in [42], [69] and [56].

Definition 14. Valid Time [29]
Thevalid-time (VT) of a fact is the time when the fact is true in the modeled
reality.

Definition 15. Transaction Time[29]

A database fact is stored in a database at some point in timdeaféer it is
stored, it is current until logically deleted. Theansaction-time(TT) of a
database fact is the time when the fact is current in the databnd may be
retrieved.

Definition 16. Decision Time[56]
Decision time(DT) denotes the time when an event was decided to happen.

Definition 17. User-defined Time[29]
User-defined timg(UDT) is an uninterpreted attribute domain of date and
time.

Valid timesare usually provided by the user, wheré@ssaction-timesre usu-
ally system-generated and -supplied [29]. Temporal vabfetype UDT are not
given any extraordinary interpretation and have thus necaerdinary query lan-
guage support [29].

A temporal databasean now formally be defined as follows:
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Definition 18. Temporal Databasg29]
A temporal databassupports some aspect of time, not counting user-defined
time.

In a relational temporal database, temporal values willoofrse be in the tuples
of the extensions of temporal relations:

Definition 19. Valid-time Relation [29]
A valid-time relationis a relation with exactly one system supported valid-
time.

Definition 20. Transaction-time Relation[29]
A transaction-time relationis a relation with exactly one system supported
transaction-time.

A valid-time respectivelytransaction-time relational databade now defined
as containing one or more valid-time, respectively tratisagime relations [29].
Next to this bitemporalrelational databases contain both valid-time and traisact
time [29] and tritemporal databases contain valid-timensaction-time and decision-
time [56].

A very extensive list of the most well-known temporal datdanodels can be
found in [75]. As it is of course necessary to define a consistay to query
the temporal data, there are several proposals concertledjuery languages and
query language adaptations for temporal databases likeaf&7 [70].

In the rest of the chapter, the focus will be on concepts asgeis concerning
valid-time relations and aspects of valid-time relatidfa. this reason, the next two
sections will present and discuss some main issues congaerporal databases,
specifically applied to or presented in the context of véilide relations.

4.2 Primary Keys in Valid-time Relation Design

Generally, when designing a relation based on a relaticataléise model, a subset
of the relation’s attribute set is usually chosen as prinkasy The values of a tuple
for these attributes will then uniquely determine this &jpgience no two distinct
tuples may have the exact same values for every attributésrptimary key. Next
to attributes unrelated to time, a valid-time relation sohewill typically contain
one or more attributes which model the valid-time aspeatskehavior of the real
objects and concepts modelled by the relation schema.dmihik, these attributes
are calledvalid-time attributeslin valid-time relation extensions, distinct tuples can
exist containing the exact same values for every attribute the valid-time at-
tributes. These distinct tuples represent distinct vessiof the same real object or
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concept, valid during different time periods. To allow thésgence of such tuples
when designing a valid-time relation using a relationabase model, the most
common solution is to include the valid-time attributeshie primary key.

The following example illustrates this primary key issue.

Example 4Consider the example valid-time relation visualized inléab, which
models when certain people worked as employees in a cedaipany and under
whose supervision they worked during that time. The vahuktattributes ‘Start’
and ‘End’ describe the year when an employee started, rigglgdinished working
for the company. For example, the last tuple visualized ietd represents that
the employee represented by this tuple started workinghfercompany in 2005
and finished in 2009. The attributes ‘Name’, ‘Birthday’ arlipervisor’ describe
respectively the name, birthday date and unique identifiehe supervisor of an
employee in the time during which he or she worked for the camgpWhen correct,
the date of an employee’s birthday never changes and as thecimodelling of
birthday dates has no effect on the database consisteneyBifithday’ attribute
thus describes UDT values. The attribute ‘ID’ describes leyge identifiers. For
each tuple, this identifier (a number) uniquely identifies #mployee represented
by the tuple.

Now consider{ID} being the primary key and consider the company wanting to
hire Sarah again in 2010. This would be represented by antiple in the relation,
containing value 4 for attribute ‘ID’. The existence of swckuple is of course not
allowed by the primary key, because it would mean the exigtenf two distinct
tuples containing value 4 for attribute ‘ID’. This problerarcnow be solved by
defining a new primary key{ID, Start, End¢, which allows for the existence of
distinct tuples with value 4 for attribute ‘ID’, as long asthhave different values
for attributes ‘Start’ or ‘End’. The resulting relation ie@wn in table 2.

Table 1 Example relation modelling the employees of a company. Valuethéo ‘Birthday’ at-
tribute are visualized here in ‘dd/mm/yyyy’ format.

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009

4.3 Consistency in Valid-time Relation Content Modification

The solution presented in subsection 4.2 concerns reldésign and consists of
including the valid-time attributes in the primary key. Qrtiinately, implementing
this solution as such allows for the existence of recordsseh@lues imply incon-
sistencies with respect to the modelling of reality.
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Table 2 Example relation after including the valid-time attributedhie primary key and adding a
tuple.

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 2 2010 -

Consider a valid-time relation of which the primary key cangartitioned into
two sets of attributes. One set contains attributes totadhglated to time, for which
the values of a record allow to uniquely identify the objentancept represented by
the record. The other set contains the valid-time attriglit@ecause the valid-time
attribute(s) is(are) included in the primary key, the estise of distinct records with
exactly the same values for all time-unrelated attributes distinct values for at
least one valid-time attribute is not prohibited. Thuseiisg such records into the
relation is not prohibited either, even if the informati@presented by the values
for the valid-time attributes shows clear inconsistencdgsexample.

Example 5Consider the example valid-time relation visualized ina&a} which is
based on the relation visualized in table 1. The primary lkeggain{ID, Start,
End}. The last record in the relation represents a person nane@hSstarted
working for the company in 2007 and finished in 2008, with suiser ‘John’.
However, the fourth record represents the same person dthe for attribute ‘1D’
is the same) started working for the company in 2005 and faish 2009, with
supervisor ‘Maria’. The intention is clear: Sarah workedha company from 2005
to 2009, first for Maria, then for John, then again for Martas lof course possible
for an employee to change supervisors, but it is of coursegsiple for a person to
start working in the same company twice at different timesdffferent supervisors,
without stopping to work for one in between, as it is impokstb stop working for
a supervisor twice at different times, without working ferogher one in between.
The valid-time information represented by the last recardieéarly not consistent
with the valid-time information represented by the fourhard, or vice versa.

Table 3 Example relation with records whose values for the valid-tittebaites violate consis-
tency.

ID Name Birthday Supervisor Start End
1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 3 2001 -
3 John 21/02/1964 - 1999 -
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 3 2007 2008
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The most usual approach to deal with this inconsistencylenolis to adapt the
DML used by the DBMS, as to enforce consistency towards tiritle rgspect to the
modelled reality.

Example 6 Consider the problem presented in example 5. The inconsigtrises
when the last record in table 3 is inserted. Because thedso@lues for the valid-
time attributes differ from those of the fourth record, thstlrecord is accepted. The
DML statement used was (the table is called ‘Employees’):

| NSERT | NTO Enpl oyees VALUES
(4, 'Sarah’, *29/11/1985, 3, 2007, 2008);

The inconsistency problem can now be solved by replacirsgstiatement with:

UPDATE Enpl oyees SET ‘ End’ = *2007" WHERE
(ID=4) AND (Start = 2005) AND (End = 2009);
| NSERT | NTO Enpl oyees VALUES
(4, “Sarah’, *29/11/1985, 3, 2007, 2008);
| NSERT | NTO Enpl oyees VALUES
(4, 'Sarah’, '29/11/1985, 2, 2008, 2009);

The resulting relation is visualized in table 4.

Table 4 Example relation updated maintaining consistency.
ID Name Birthday Supervisor Start End

1 Peter 24/10/1985 3 2010 -
2 Maria 03/04/1984 - 2001 -
3 John 21/02/1964 - 1999 2010
3 John 21/02/1964 - 2010 -
4 Sarah 29/11/1985 2 2005 2007
4 Sarah 29/11/1985 3 2007 2008
4 Sarah 29/11/1985 2 2008 2009

4.4 Commercial Temporal Database Systems

Several commercial temporal DBMS exist. Table 5 gives amoee of some of the
more well-known temporal DBMS and provides references foraninformation.
Oracle workspace manager [9] and TimeDB [72] are librararsdealing with
time in OracleDB. On another note, TimeDB and Postgree Teahj@2] are sim-
ilar: both are simple implementations that implement a sub§the Allen opera-
tors and some operations for the creation and manipulafi¢@noporal attributes
(valid-time, transaction-time or both times are suppdrtédradata [71] is mainly a
business intelligence system designed for data miningr&kx[19] is an extensible
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database system in which the core of the database may beediig a customized
algebra. It is designed for non-standard applications aadgports both valid and
transaction-times.

The most complete implementation is Workspace Manager.

Unfortunately, none of these systems take data imperfegiicto account, nei-
ther in data storage nor in querying.

Table 5 Commercial Temporal Database Systems.

Name Time Supported Comments Reference
Oracle Workspace Manager VT and TT. Package for Oracle DB. 9]
TimeDB VT and TT. Interface for Oracle DB. [72]
Postgree Temporal VT. Package for Postgree SQL.  [62]
Teradata VTand TT. Used for data-mining. [71]
Secondo VTand TT.  Spatio-temporal database. [38]

5 Data Imperfections in Temporal Databases

Consider a logistics company which transports packagethednoment a package
leaves, the time when it will arrive at its destination maydstimated, but will
typically not be known precisely. For such companies andanyrother situations,
information systems able to handle imperfection with respe certain temporal
aspects of the objects modelled by the system are necessary.

5.1 Data Imperfections in Temporal Databases

Data and information imperfections and techniques to mrethem correctly in
databases and queries are usually the focus of researczindatabases. Proposals
from this field may present an approach based somehow on $&tzkieory [52] or
possibility theory [22], although other theories suppafbrmation imperfections
too. Comparably, many proposals concerning the introdoaif data imperfections
or information imperfections in temporal databases preggproaches based some-
how on fuzzy set theory [36], [35], [55], [5] or possibilithe¢ory [23], [61], [12],
although proposals based on other theories exist [31], [&3]. As possibility the-
ory is usually seen as a theory of confidence, aimed at dealithguncertainty, in
some proposals, possibility theory is used specificallyaiadie uncertainty in tem-
poral information. In fuzzy databases [34], uncertaintydsally expected to appear
in the database content, whereas other types of impenfgctaably imprecision,
are usually expected to appear in querying.

Concerning temporal databases, there are several appso#xiinandle uncer-
tainty in temporal data stored in a database. Many of thegmaphes concern sev-
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eral different types of time notions (VT, TT or DT), but mogttbese approaches
focus somehow on valid-time [36], [35].

In the following subsection, a novel approach to represgntincertainty con-
cerning valid-time notions and a corresponding technigquguery similar valid-
time indications in a valid-time relation are proposed. Tinesented proposal is
based on concepts introduced in [21] and on the framewongzed in [61].

5.2 Handling Uncertainty in a Valid-time Relation

A valid-time indication usually takes the form of a time intal. Such a valid-time
interval can be described (and stored in a valid-time m@at&cord) using its bound-
aries (endpoints) or using one endpoint and the intervgltherysually, a valid-time
interval is represented using its endpoints, which is dls@pproach adopted by the
presented proposal.

Generally, the uncertainty concerning a set of values mightescribed by a
possibility distribution on the powerset of which one of #lements can be the
intended set [21]. This representation, however, intredlgbme issues in practice
or in practical applications. Therefore, in the presentegpsal, possibility theory
is used to model uncertainty, but only uncertainty conceyiine exact values of the
start and end point of a valid-time interval is considered #ne uncertainty in both
the start point and the end point are modelled using po#gibiktributions.

In fact, to model the uncertainty related to a valid-timemgl using possibility
theory, the presented proposal introduces so-calleahdlaln time intervals, relying
on the concept of ill-known sets [21].

5.2.1 lll-kknown Time Intervals

To represent valid-time indications which might contaircerainty, the presented
proposal introduces the concept of ill-known valid-timéeivals, which relies on
the concept of ill-known sets [21]. To correctly explain th@ncept of ill-known
sets, the concept of possibilistic variables should benihiced first. In the pre-
sented proposal, the definition of possibilistic variatdef61] is followed. In [61],
apossibilistic variables defined as follows.

Definition 21. Possibilistic variable[61]

A possibilistic variableX over a univers&J is defined as a variable taking
exactly one value itJ, but for which this value is (partially) unknown. Its
possibility distribution7ix on U models the available knowledge about the
value thaiX takes: for eachi € U, 7 (u) represents the possibility théttakes
the valueu. In the presented work, this possibility is interpreted asemsure
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of how plausible it is thak takes the value, given (partial) knowledge about
the valueX takes.

Now, consider a seR, which contains single values (and not collections of val-
ues). When a possibilistic variabg is defined on such a sBf the unique value,
takes, which is (partially) unknown, is called #irknown valuein this work [21].

When a possibilistic variable is defined on the powergR) of some universe
R, the unique value the variable takes will be a crisp set angdssibility distribu-
tion on the powerset?(R) will describe the possibility of each crisp subseRib
be the value the variable takes. This value (a crisp set)dhahle takes, which is
(partially) unknown, is now called ati-known set[21].

Finally, consider a seR, which contains single values (and not collections of
values) and its powerse? (R). Now consider a subse?, (R) of #(R) and let this
subset contain every element 6f(R) that is an interval, but no other elements.
When a possibilistic variabl; is defined on the subse®, (R) of the powerset
Z(R) of some sefR, the unique valueX; takes will be a crisp interval and the
possibility distributionri. of X; will be a possibility distribution on? (R). This
1y, will define the possibility of each value a?(R) (a value ofZ (R) is a crisp
interval which is a subset d®) being the valueX; takes. This exact value (a crisp
interval) the variable takes, which is (partially) unkngws called anill-known
interval here.

The presented proposal will deal with ill-known time intals: Ill-known time
intervals are ill-known intervals in a time domain. In thegented proposal, an ill-
known time interval will be defined and represented via aststnd end point, which
will be ill-known values. The elements of the ill-known tirrgerval are the values
between its start and end point, including the start and emtpthemselvés It
should be clear that this approach to representing ill-kntwe intervals differs
from the approach based on a single possibility distriloutio a set?| (R) of a set
R. These approaches have a different behavior and can beaideddribe different
ill-known time intervals. The correspondences, intematdiand transitions between
these different representations of ill-known intervalsl dneir interpretations are
part of the authors current research.

In the presented proposal, a closed ill-known time inten#i start point defined
by possibilistic variableX and end point by possibilistic variableis noted[X,Y].
Figure 4 shows a closed ill-known time interval.

Several authors work with concepts very similar to thes&ritbwn time inter-
vals and some of them [36] propose transformations of theriésg functions in
order to optimize the storage of such ill-known valid-tinméeirvals, though recent
research might seem to indicate some minor issues with cegpsome of these
transformations [61]. A comparison between the transfdiona in [36] and the
framework in [61] is presented in [60]. Figure 5 illustragesransformation based
on the ‘convex hull’ approach [36].

1 The presented proposal only deals with closed ill-known timerirtis. Dealing with halfopen
or open ill-known intervals is part of the current researcthefauthors.
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In the presented proposal, ill-known valid-time interval be used to represent
valid-time indications in a valid-time relation and to mbdee uncertainty these
may contain.

To evaluate the temporal demands in queries issued by wsgusty a valid-time
relation containing ill-known valid-time intervals, thegsented proposal introduces
a technique based on the concept of ill-known time condsaimhich is based on
the concept of ill-known constraints as presented in [6bthB-oncepts are treated
in subsection 5.2.2.

Before ill-known time constraints can be introduced, asothotion related to
possibilistic variables shoud be paid attention to. In,facispecific application
of possibilistic variables is obtained when the set undersicteration is the set
of boolean values, denotel = {T,F}, whereT denotes ‘true’ and= denotes
‘false’ [61]. Indeed, any boolean propositigrntakes exactly one value . If the
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knowledge about which value this propositipntakes, is given by a possibility
distributionr,, then propositiorp can be seen as a possibilistic variable. In the pre-
sented proposal, the interest lies with the case where tpopition holds (denoted

p = T) and the possibility and necessity that T demand most attention. In the
following sections, the following notations are used, lobse previous notations:

Possibility thatp = T: Pogp) = my(T) (2)
Necessity thap=T: Nedqp) =1—my(F) 3)

5.2.2 lll-kknown Time Constraints

The presented proposal contains a technique for evaluaseg queries used to
query a valid-time relation in which the valid-time indizats are represented by ill-
known time intervals. Part of this query evaluation techieicglies on the concept of
ill-known time constraints, which is based on the concejit-thown constraints as
presented in [61]. These concepts are presented belowwkod) [61], anill-known
constraintis defined as follows.

Definition 22. Given a universé&J, anill-known constraint Cis specified by
means of a binary relatioR C U2 and a fixed, ill-kknown value defined by its
possibilistic variablé/ onU, i.e.:

C=(V,R)
A setA C U now satisfies this constrai@tif and only if:

VacA: (V,a) eR

An example of an ill-known constraint is given by:
C< é (Xv <)
Some sef then satisfie€_ if

YVacA: X<a

The satisfaction of a constraiGt= (V,R) by a setA is basically a Boolean mat-
ter (either the set satisfies the constraint or not) and castie seen as a boolean
proposition, but due to the uncertainty inherent to th&iibwn valueV, it can be
uncertain whethe€ is satisfied byA or not [61]. Based on the possibility distri-
bution 75, of V, the possibility and necessity thAtsatisfiesC can be found. This
proposition can thus be seen as a possibilistic variablg. dine required possibility
and necessity are calculated using the following formusds. [
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PoqA satisfiesC) =min( sup 75 (w)) 4)
acA \ (wa)eR

NedA satisfi =mi inf 1— 5

ed A satisfiexC) min <(W|72)¢R m(w)> (5)

Now, to calculate the possibility or necessity of a Aetatisfying multiple con-
straints, the min t-norm operator is used to express a cotiumof constraints. For
example:

and(A satisfie,

Poq (A satisfie<C; )
), Pog A satisfie<C,

min(Pog A satisfie<C;
acA

) =
)
Ned (A satisfiesC;) and(A satisfieLy)) =
mi/?(Nec(A satisfie€C;), Ned A satisfie<,))
ac
Accordingly, the max t-conorm operator is used to expressjartttion of con-
straints. For example:

Pog((A satisfiesC) or (A satisfiey)) =
ma}g(( Pog A satisfie<C; ), Pog A satisfie<C;))
ac
) =
)

Ned (A satisfiesC;) or (A satisfie<,
mzix(N eqA satisfie€C; ), Ned A satisfieC,
ac

In the presented proposél;known time constraintare considered, which are
ill-known constraints of which the considered universe fisree domain.
In the next subsection, the core of the presented propodabkizibed.

5.2.3 Querying Valid-time Relations containing lll-known Valid-time
Intervals

One of the main purposes of the existence of (relationalhldetes is to allow
information retrieval. The standard query language folafienal) databases is
SQL [53], but several proposals to extend the SQL languag&rdasaction-time
databases [66], valid-time databases [33] and bitempeatabadses [57] exist and
some authors have studied how to support temporal quenyisgndard SQL [70].
As mentioned before, the presented proposal deals withyimgea valid-time
relation. In this subsection, the core of the presentedqwalgs described. First the
particular structure of the relation is described, alonthvle nature and structure
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of its supposed contents. Next, the particular query sireds presented. Finally,
the particular method for evaluating queries and for raglhre result records are
presented.

Relation Structure

In the presented proposal, a valid-time relation is comsidlan which every record
contains just one valid-time indication. This valid-tinmelication is represented by
a closed ill-known time interval, to allow uncertainty iretkalid-time information.
As explained above, the ill-known time intervals used heitebe defined and rep-
resented via their start and end points, which are ill-knealnes in the valid-time
domain.

Query Structure

In the presented proposal, a query consists of two sepavatgracts of user de-
mands.

Definition 23. Query
A queryQ is given by: 3 '
0= (Qtume, Q) (6)

Here, Q denotes the construct of all (possibly fuzzy) non-tempaoissr
query demands. These comprise all constraints and demamdiated to
valid-time and thus unrelated to the valid-time indicat@mthe queried rela-
tion. Q™M denotes the temporal demand specified by the user.

The presented query structure allows the user to specifpgiestemporal de-
mand, denoted b@"'Me,

Definition 24. Temporal demand
A temporal deman@®''"™¢ is defined by:
Q™M= (I,AR (7)

Here,| denotes a crisp time interval (which can be specified in any isa
quired) andAR denotes one of the Allen relations (cf. section 2.3).

The interpretation of such a temporal dem&if'® = (I, AR) is that, for a record
with an ill-known valid-time interval, the user demands thiaAR J holds.
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Query evaluation

Query satisfaction in a fuzzy relational database is ugw@athatter of degree. Typ-
ically, the evaluation of the query demands for a recordltesu asatisfaction de-
gree s which is typically in the unit interval, i.es € [0, 1]. This satisfaction degree
then models the extent to which the record satisfies the qiemands. As such, a
satisfaction degree of O indicates total dissatisfactibilena degree of 1 indicates
total satisfaction and every level of satisfaction betwtsal satisfaction and total
dissatisfaction is indicated by a satisfaction degre bebw@and 1.

In the presented approach, for every reagrech part of a quer@ = (Q™me, Q)
is evaluated independently:

e The user preferences expressed in the non-temporalQate evaluated, re-
sulting in a satisfaction degree denows(r). The presented approach accepts
any valid, sound method of calculating this evaluation,oaglas the method is
well-founded anag(r) € [0,1].

e The evaluation of the temporal demand expressed in the terinpart, Qi'™Me =
(I,AR), depends oiAR A specific construct of ill-known constraints (cf. sec-
tion 5.2.2) is considered, depending on the Allen relatienaled byAR The
exact construct of constraints is an instantiation baseatdi@formulas which can
be found in table 6, for every possible value’d® The form and capacity of these
constraints are based on [61]. Then, using equations (4)®nthe exact for-
mulas to calculate the possibility Rgse(r) and the necessity Ngene(r) that
recordr satisfies this construct of ill-known time constraints aegivked from
this construct of constraints. As mentioned, Ras(r) and Negyime(r) denote
the possibility, respectively the necessity that the aersd record satisfies the
construct of constraints corresponding to the temporalkael®'™e and thus the
possibility, respectively the necessity thatatisfiesQ! e,

Table 6 Constructs of constraints related to their respective Alléations, as used in the pre-
sented work. In this table, the ill-known time intendi= [X,Y] in a recordr has a start point
described by possibilistic variabk and an end point described by possibilistic variablerhe
crisp time interval in the user’s temporal demand is denbted

Allen Relatior] Construct of constraints
| before J C12 (<,X)
I equal J (Cl 2 (Z,X)) A (Cz 4 (;A.,X)) A (03 4 (g,Y)) A (04 2 (#,Y))
| meets J (Clé(g,x)>/\ﬂ(02é (#,X))
| overlaps J (Clé(<,Y )/\ﬂ(Czé(g,X))/\ﬁ(Cgé(z,X)
| during J ((cl s (>7X)) A <C2 2 (g,Y))) v ((c3 B (2,X)> A (c4 2 (<,Y)))
I starts J (12 X)) A-(C2 (X))
| finishes J (cl 2 (g,Y)) A (Cz 2 (;A,Y))
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Aggregation and Ranking

In this subsection, the notations used in the previous stibseare followed. To be
able to present the most appropriate results to the userpnastinently, for every
recordr, an aggregation method is used to aggregatgyRes) and Negyime(r)
into a temporal record rarégime(r) and after this, a convex combination combining
eqime(I') andeg(r) will provide the final record rankfina ().

To calculateegime(r), an a simple and crude method is used:

egume(r) = (Po%ume(r) +2 Nechme(r)) o

This method aims to provide the result records with a natanalking based on
the users temporal constraiyime(r) will of course be a value if0, 1}, as both
Pogyime(r) € [0, 1] and Negyime(r) € [0,1]. The purpose is that records which fit the
users temporal demand better get a higher score than reftiirt the temporal
demand worse. Here, this aim is reached because the ngatsgite Negime(r)
cannot exceed 0 unless the possibility degregyieg ) equals 1.

The final rankingesing (1) for a recordr is now given by a convex combination
of both temporal and non-temporal evaluation scores.

€final (1) = wxe€q (1) + (1 — W) * Eqtime (9)
A convex combination is used mainly for 2 reasons:

e The use of this convex combination allows a record to makeua fow temporal
evaluation score with a high non-temporal evaluation saackvice versa.

e The exact value ofv can now be modified to ascribe more value to either the
fulfillment of the user’s temporal demands or the fulfillmefthe user’'s non-
temporal constraints.

In the next subsection, some main concepts and issues camgipolarity in
the context of temporal databases are presented and digcuss

5.3 Bipolarity in Temporal Databases

Humans express their preferences using both positive agdtive statements,
where positive statements express what is desired or atde@nd negative state-
ments express what is undesired or unacceptable [5]. Taligaéon is interesting
with regard to database querying, because sometimes aasendt exactly know
his or her preferences or can't express them in only posstigeements, but prefers
to use negative statements to express what he or she diglikiEsesn’t need. This
introduces the need fdripolar querying a technique to model both positive and
negative user preferences in a database query. Sometirsitiggand negative pre-
ferences are clearly symmetric, making it possible to @eoive from the other. For
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example, a person may define the concept of ‘tall’ as ‘1.8Cmetr higher'. The
negative would then be the opposite: not tall would be ‘aimgthess than 1.80 me-
ters’. However, in some cases, positive preferences cdrerditectly obtained from
negative preferences or vice versa. E.g., when a persoerprif buy a black mo-
torbike, this does not necessarily mean the person wouddlytotject a very dark
blue motorbike. This phenomenon is calleeterogeneous bipolarif26], [27].

The use of imprecise query preference formulation in bipgleerying is well
discussed in existing literature [14], [27], [48]. In [48ksired and mandatory query
conditions are used, instead of positive and negative pnefes. However, the in-
verse of a mandatory preference expresses what shoulddmestjand this could
be seen as negative information, whereas desired quenyjtiomsdcan be seen as
positive preferences. However, the combination of bipglaerying and the use of
imprecise query preferences in the context of temporalb@dats is not so well
discussed in existing literature. A proposal for the bipajaerying of valid-time
databases has been made by Billiet et al. [5]. The model preg¢here deals with
a fuzzy valid-time specification based on [36].

Bipolarity can be handled using different concepts, suchntastionistic fuzzy
sets [2], interval valued fuzzy sets [76] Grattan-Guine3g|,[ Janh [40], Sam-
buc [64], [25] or two fold fuzzy sets [24].

From a theoretical point of view, bipolarity might be founither in the queries
presented to a database system or in a database managedtbyasdaystem.

When bipolarity is found in queries, it is possible to distifgh between:

e Bipolarity inside query criteria: each individual queryterion may be specified
using both positive and negative preferences. For examp&wuerying a car
database, the user can express that he or she wants a blaoltaefinitely not
a red neither a blue one. Bipolarity resides here within #recolor criterion.

e Bipolarity outside query criteria: the query is specifiethgs global positive and
a global negative preference part. For example when qugeygar database, the
user can express that he or she wants a black car, but defingeh car with a
fuel consumption of 6 liters or more.

Concerning bipolarity inside a database, it should be ptsso specify both
positive and negative real world object or concept aspestsn at record level.
Nevertheless, not so much research exists concerningabifydh databases.

6 Conclusions and Further Research

In this chapter, some of the main concepts concerning irdtion imperfections
in temporal modelling and information imperfections in f@ral modelling in in-
formation systems and the terminology corresponding widsé concepts are in-
troduced and explained and some of the main properties ofssnes with these
concepts are presented and discussed. An overview of som@eaial temporal
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DBMS is briefly introduced. Finally, a novel technique foreqying valid-time re-
lations using imperfect query specifications is presented.

Further research work could follow several general dioei First of all, a the-
oretical model for dealing with uncertainty in both the dtse and the query at the
same time could be researched and defined. Next, impler@rgancluding both
DDL and DML could be proposed and constructed.
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