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Abstract—Databases contain data and database systems gov-
erning such databases are often intended to allow a user to
query these data. On one hand, these data may be subject to
imperfections, on the other hand, users may employ imperfect
query preference specifications to query such databases. All of
these imperfections lead to each query answer being accompanied
by a collection of quantifications indicating how well (part of)
a group of data complies with (part of) the user’s query. A
fundamental question is how to present the user with the query
answers complying best to his or her query preferences. The
work presented in this paper first determines the difficulties
to overcome in reaching such presentation. Mainly, a useful
presentation needs the ranking of the query answers based on
the aforementioned quantifications, but it seems advisable to not
combine quantifications with different interpretations. Thus, the
work presented in this paper continues to introduce and examine
a novel technique to determine a query answer ranking. Finally,
a few aspects of this technique, among which its computational
efficiency, are discussed.

I. INTRODUCTION AND OPENING EXAMPLE

Generally, databases contain data. Usually, such data are
the results of measurements, descriptions or calculations in-
tended to capture those properties of real-world objects or
concepts, that are deemed necessary to be preserved by hu-
mans. In this way, database systems managing databases model
real-world objects or concepts and thus (parts of) reality. For
example, a database containing data representing rental cars
might contain the numerical datum ‘2010’ to represent in what
year a car was made.
Obviously, one of the most important purposes of database
systems is to allow humans (and other systems) to query
data or retrieve information or knowledge from the databases
they control. For example, the database system controlling the
database mentioned above might allow users to query its data,
from which can be learned in which years the 10 most often
rented cars were made.
In the last decades, both the way in which properties of real-
world objects or concepts may be represented in databases
and the way in which data may be queried or information
or knowledge may be retrieved from databases have been
severely enhanced by proposals concerning applications of soft
computing techniques.

Many of the data in databases are (directly, or through
human-made equipment) produced by humans or represent
information or knowledge (directly or indirectly) produced
by humans. In the last decades, researchers have started to
acknowledge the observation that such human-made data, in-
formation or knowledge can be subject to imperfections, often

due to the imperfect nature of humans and human reasoning or
to imperfections in measuring equipment. Such imperfections
may take the form of uncertainties [1]–[9], imprecisions [1],
[8], [9], vaguenesses [1], [9], contradictions, etc [8]–[10]. To
allow the representation of such imperfections or ways to deal
with them, many existing approaches propose to extend the
data contained in databases to also contain descriptions of the
determined intensity levels of such imperfections or such ways
of handling imperfections [1], [5], [6], [11].
For example, consider table I, which is the visualization of
an example relational database relation containing data repre-
senting 3 properties of each of 5 rental cars. For every such
car, data representing a unique ID number, the color of the car
and an ill-known time interval [1]–[3], [12]–[15] determining
when the car might be available for rent, are stored. The first
row in the table contains these properties’ (or in the context
of databases: attributes’) names, every other row visualizes the
values representing these properties for one car. Every value
for the attribute ‘Availability’ represents an ill-known time
interval, which is a time interval subject to uncertainty caused
by a (partial) lack of knowledge, about which all the available
knowledge is contained in a possibility distribution on the set
of all existing time intervals. The interpretation is: an exact
time interval during which a car is available, is intended, but
due to a (partial) lack of knowledge about the circumstances
determining this interval, it is uncertain exactly which interval
is intended. In order to model confidence about which interval
is intended, every existing time interval is given a possibility
degree, which is interpreted as the degree of how plausible it
is, given all available knowledge, that the corresponding time
interval is the intended interval [1]–[3], [12]–[15].

While querying a database, a user may convey his or her
query preferences in different ways. The historically oldest
way is the regular way, following which the user determines
the data which he or she finds desired or satisfactory and thus
wants to retrieve, by perfectly describing the allowed values
of these data. For example, a user might be interested in all
rental cars build ‘in the exact year 2010’.
In the last decades, several proposals were made, which present
approaches to allow users to use a fuzzy way to convey
preferences, following which the user determines the data
which he or she finds desired or satisfactory and thus wants
to retrieve, by imperfectly describing the allowed values of
these data [4], [10], [16]–[19]. For example, a user might
be interested in all rental cars build ‘around the start of this
century’.
In recent years, several proposals were made, which present
approaches to allow users to use a bipolar way to convey
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TABLE I. AN EXAMPLE RELATION.

ID Color Availability

001 red IKI1
002 teal IKI2
003 blue IKI3
004 light green IKI4
005 green IKI5

preferences. Two main types of such approaches exist [20].
Approaches of one type allow the user to determine the data
which he or she finds acceptable and among this acceptable
data, to determine the data which he or she finds really
desired, both by describing the allowed values of these data.
Approaches of the other type allow the user to independently
determine both the data which he or she finds desired or
satisfactory and the data which he or she finds undesired or
unsatisfactory, both by describing the allowed values of these
data. The descriptions used in bipolar querying may contain
imperfections [3], [4], [11], [16], [18]–[23].
For example, a user might ‘prefer a green car, but dislike red
cars’ and might ‘desire the car to be available during a certain
week’.

Usually, when querying a database not containing data sub-
ject to imperfections (neither data representing information or
knowledge subject to imperfections) using a regular approach
towards conveying preferences, the query result is a set of
data collections, each containing coherent data which fully and
perfectly comply with the user’s query preferences. Thus, a
similar data collection is considered an answer to the query.
However, if a database contains data subject to imperfections
or it is queried using a fuzzy way, the query result will
usually be a set of data collections, each containing coherent
data which comply with the user’s query preferences to any
degree. Each of these data collections is then accompanied by
a corresponding set of gradual, usually numerical, indications,
where each indication is a quantification of how well (part
of) the accompanying data collection complies with (part of)
the user’s query preferences. In this paper, a quantification is
exactly this: a numerical value expressing a valuation. Thus,
a similar data collection is again considered a query answer,
but, compliance to the user’s preferences is now a matter of
degrees (quantifications) [2]–[7], [10]–[13], [15]–[17], [19].
For example, the result set of the last example query applied
to the example relation visualized in table I might take the
form of the set of tuples visualized in table II. In this table,
the first row contains labels of which every label in a column
refers to the meaning of the values visualized in that column
and every other row corresponds to a different tuple of the
example relation. The values visualized in the column labeled
‘ID’ hereby refer to the ID’s of the example cars, as visualised
in table I. The value visualized in the column with label Color
(Dis)satisfaction for a tuple is a quantification of how well the
car with this tuple’s ID complies with the user’s preferences
about color, based on the example relation’s data. The value is
a number between 0 and 1, a bigger number indicating higher
satisfaction. The value visualized in the column with label
Availability for a tuple is a quantification of how plausible it
is, given all available knowledge, that the car with this tuple’s
ID is available during the entire preferred week. Hence, this
value is a possibility degree between 0 and 1.

It is clear that, although every quantification accompanying

TABLE II. THE RESULT OF THE EXAMPLE QUERY.

ID Color (Dis)satisfaction Availability

001 0.0 1.0
002 0.5 0.5
003 0.1 0.1
004 0.8 0.9
005 1.0 0.0

a query answer quantifies a level of compliance to the user’s
preferences of the same group of data, different quantifications
may have distinctly different interpretations and semantics.
A fundamental question arises now: should one consider
combining such quantifications with different interpretations?
For example, should the values for a tuple visualized in
table II in the columns with labels Color (Dis)satisfaction and
Availability be combined?
On one hand, such quantifications have distinctly different
semantics and it would not be clear what exactly the meaning
or interpretation would be of the result of such a combination
or what the semantically most coherent ways would be to
further process such combination results. For example, would
the combination mentioned above result in a quantification of
satisfaction, of possibility or even of something else? Would
the processing of such combination result employ operators of
possibility theory or others? Thus, it is important, for every
query answer presented to the user, to certainly preserve all
different types of quantifications as separate (meta)data.
On the other hand, without an unambiguous and straight-
forward ranking of the query result tuples, a user cannot
clearly or easily discern the query answers which comply
well with his or her demands from those which don’t. This
would defeat the purpose of querying. For example, it is
somehow clear that the result tuple with ID ‘004’ visualized
in table II should be offered more prominently to the user
than the query answer with ID ‘003’. Reasonably, such a
ranking should be based on how well the result tuples comply
with the user’s different preferences. As there cannot exist
a ranking between quantifications with different semantics, a
combination of quantifications with different semantics seems
to be required.

In an attempt to bring a solution to this problem more
within reach, in this paper, a general technique is presented to
create an unambiguous and straightforward ranking of query
result tuples, based on how well these query answers comply
with the user’s preferences, without actually combining the
corresponding quantifications. Succinctly, the idea behind this
approach is to first consider the domain of each quantification
with a distinct interpretation as an orthogonal dimension in
a Cartesian space made up of these dimensions. Next, the
vector of all quantifications corresponding to a query answer
is considered a point in this space. Next, a reference point
is chosen. Finally, a distance measure is chosen and for each
point corresponding to a result tuple, the distance between this
point and the reference point is measured. The tuples are then
ranked according to these distances. Next to the presentation
of this technique, this paper contains two smaller contributions
in the form of a determination of acceptable guidelines for
the creation of a similar ranking of query answers (and a
motivation for these guidelines) on one hand and a concise
reasoning about the choices of the aforementioned reference
point and distance measure on the other.



To the knowledge of the authors, only a few papers have ac-
knowledged the existence of the aforementioned problem [4],
but no paper has ever focussed on attempting to solve it. In the
opinion of the authors, this is quite astonishing, as they assess
the impact of this problem for soft computing in information
retrieval to be quite big. Indeed, it is the authors’ opinion that
for soft computing in information retrieval to reach one of its
goals, namely to allow people to retrieve possibly imperfect
data, information or knowledge in a possibly imperfect way, it
is essential that both the representation and handling of imper-
fection in data in databases, (or in information or knowledge
represented in databases) and the representation and handling
of imperfection in ways of retrieving data, information or
knowledge from such databases, is supported. Moreover, the
presence of such support should not impede the usefulness and
execution speed of such database systems. It is the authors’
opinion that the work presented in this paper is an important
step in allowing this support.

The rest of this paper is structured as follows. In section III,
the problem of creating a result ranking under the aforemen-
tioned constraints is presented and briefly examined, resulting
in a set of acceptable guidelines for the creation of such a
ranking. In section IV, an outline for the general technique
which is the main contribution of this work, is presented
and briefly motivated. In section V, a concise reasoning is
presented about some choices which must be made in the
context of the presented general technique. A few interesting
choices are presented and discussed. In section VI, a brief
examination of the efficiency of the presented technique is
described. Finally, in section VII, some conclusions and future
work in the light of this research are discussed. First however,
the next section (section II) presents and describes some
of the most prevalent types of imperfections encountered in
information retrieval.

II. PRELIMINARIES: TYPES OF IMPERFECTIONS

Data, information or knowledge may be subject to dif-
ferent types of imperfections. In the following sections, the
most prevalent types of imperfections and the ways in which
such imperfections or knowledge about such imperfections is
usually represented or modeled, are shortly described.

A. Uncertainty

In some cases, it is known that a datum is intended, but this
datum is somehow unknown. Often, a set of data exists, each
of which could be the intended datum. In those cases, it is said
that the datum is subject to uncertainty [1], [2], [5], [8], [12],
[21], [24]–[27]. Usually, for a datum subject to uncertainty, an
attempt is made to model the available knowledge about the
intended datum, by assigning each of the data which could
be the intended datum a degree of confidence an agent has
that the corresponding datum is the intended datum. Thus,
existing knowledge about the intended datum often takes the
form of a distribution of such degrees of confidence on existing
data. Depending on the source of the circumstances of the
uncertainty, such confidence can take different forms, where
different forms have different interpretations and different
handling rules. When the source is variability, confidence
usually takes the form of chance and probability theory is
used [1], [12], [26], [27]. When the source is a (partial) lack

of knowledge, confidence usually takes the form of possibility
and possibility theory is used [1], [8], [12], [21], [24], [25].
Other sources and forms of confidence exist.
For example, it might be known that a certain instantaneous
event took place during an hour of a given day, but not
during which hour. In this case, one could attach a degree
of confidence to each hour of the given day expressing one’s
confidence that the event took place in that hour.

B. Imprecision and Vagueness

In existing literature, imperfections of different types have
been named imprecisions, hence different views on the inter-
pretation of imprecisions exist.
Some authors consider imprecision to be the imperfection to
which a datum is subject if this datum is described with
a precision which is coarser than the precision needed [8],
[9], [21], [24], [28]. For example, if the height of a person
is required as an amount of centimeters and is described to
be between 1.8 and 1.9 meters, the number representing this
height is said to be subject to imprecision. According to this
view on the interpretation of imprecision, confidence about the
intended datum may be modeled just like confidence about a
datum subject to uncertainty is modeled [8], [9].
Other authors consider imprecision to be the imperfection to
which a datum is subject if crisp boundaries for this datum
do not exist, often because it is bounded in a gradual way [1],
[21], [28], [29]. For example, the time interval indicated by the
words ‘the Industrial Revolution’ has no crisp boundaries, as it
gradually came into existence and gradually faded out. Usually,
a datum subject to imprecision which is interpreted following
this view, is represented by a fuzzy set with a conjunctive
interpretation, where the gradualness of the datum is reflected
in the gradualness of the fuzzy set.
Both views on the interpretation of imprecisions approach
vagueness in the same way: vagueness is considered to be
the same imperfection as imprecision, except for the fact that
the description of a datum subject to vagueness is always
linguistic.

In the next section, the main issues arising when attempting
to create a presentation of query answers in the presence of
such imperfections are presented, described and discussed.

III. COMBINING QUANTIFICATIONS AND REQUIREMENTS
FOR RANKING

As mentioned in section I, if a database contains data
subject to imperfections or it is queried using a fuzzy way,
the query result will usually be a set of data collections, each
containing coherent data which comply with the user’s query
preferences to some degree(s), each accompanied by one or
more gradual indication(s), where each gradual indication is
a quantification of how well (part of) the accompanying data
collection complies with (part of) the user’s query preferences.
Obviously, if the data in the database is subject to several
different types of imperfections, if several different types of
imperfections are allowed to be used in querying the database
or if a type of imperfection to which the data in the database is
subject differs from a type of imperfection allowed to be used
in querying that database, each of the aforementioned query
answers will be accompanied by not one quantification, but
a corresponding collection of several different quantifications



where each quantification indicates either how well that part
of the corresponding data collection which is subject to a
certain imperfection complies with the corresponding perfect
part of the user’s query preferences, or how well that perfect
part of the corresponding group of data complies with the
corresponding part of the user’s query preferences expressed
in a fuzzy way, or how well that imperfect part of the
corresponding group of data complies with the corresponding
part of the user’s query preferences expressed in a fuzzy way,
where both imperfections in data and query have the same
type. For example, if a relational database relation containing
data subject to uncertainty is queried using query condition
specifications using vague terms, each result tuple will be
given a quantification indicating the confidence about the data
in this tuple in the context of this uncertainty and another
quantification indicating how well data in this tuple fit the
vaguely specified query conditions. A similar thing can be
observed in table III, which is a visualization of the set of
tuples resulting from the querying of the example relation
visualized in table I using a query expressing in a fuzzy way
that: the user searches a car to rent and prefers a green car,
but dislikes red cars and desires the car under consideration
to be available during a given, precisely specified week. As
many different shades of green and red exist, the user’s query
condition with respect to the car color is subject to vagueness.
Thus, every result tuple is given a quantification indicating
how well the color representation in the tuple represents the
user’s color-related query condition. These quantifications are
visualized in the column labeled ‘Metadata: Color Satisfaction
Degree’ in table III, for every result tuple visualized by a row
in this table.
The uncertainty about the availability of the cars during the
week indicated in the user’s query preferences, gives rise to
a possibility degree indicating how possible it is that a car is
available during the indicated week. In table III, this possibility
degree for a car corresponding to a result tuple is visualized
in the row corresponding to that tuple, in the column labeled
‘Metadata: Possibility of Availability’.

The main problem examined in the work presented in this
paper is how to present the query answers in a query result, of
which each is accompanied by a collection of quantifications
with different interpretations, resulting from a user query, to
said user. It is the opinion of the authors that in doing so, two
main concerns must be taken into account.

On one hand, it must be taken into account that such quan-
tifications with different interpretations have clearly different
semantics and as a result of this, combining quantifications
with one interpretation with one another may require the
employment of different rules than the ones employed to
combine quantifications with another, different interpretation
with one another. As a result of this observation, it seems
logical to discourage the combination of two or more different
quantifications with different interpretations, assigned to the
same query answer. Indeed, it is the opinion of the authors
that it cannot always be clear what the semantics of such a
combination would be or what rules would be employed to
further compare or combine the result of such a combination
with the results of other, similar combinations. For example,
if one would try to combine a quantification of chance with
a quantification of possibility, it would not be clear if the
resulting combination would be a quantification of chance or

a quantification of possibility or even something else. Based
on this argument, the authors would like to conclude that a
straightforward combination of two or more different quantifi-
cations with different interpretations should be avoided, and
that it can be argued that, for each query answer, preserving the
distinct quantifications with different interpretations associated
to it (for example as metadata corresponding to the query result
set) might be very useful.

On the other hand, it must be taken into account that
the amounts of data contained in existing databases and
the amounts of real-life concepts or objects represented by
these data are usually great and even strongly increasing.
As mentioned before, if a database contains data subject to
imperfections or it is queried using a fuzzy way, the query
result will usually be a set of data collections, each containing
coherent data which comply with the user’s query preferences
to some degree(s). Thus, this result set, of which elements
may be presented to the user, usually contains a great many
elements. However, it is reasonable to assume that among the
answers in such a result set, the user is most or even only
interested in the ones that comply best with this user’s query
preferences. Hence, previous proposals suggested to rank the
query answers in the result set according to how well they
comply with the user’s query preferences and either only or
most prevalently present the user with the top-k query answers
(where k is a positive integer) based on this ranking. Following
this reasoning, the authors would like to conclude that it can
be argued that ranking the answers to a user’s query before
presenting them to this user is fundamental to the usability of
the retrieval of data, information or knowledge.
In situations where each of the answers in a result set originat-
ing from a user’s query is accompanied by a single quantifi-
cation of how well that answer complies to this query, where
all of these quantifications have the same interpretation, many
existing approaches suggest to base the determination of the
rank of each of these answers on the size of its corresponding
quantification. Although a similar ranking expresses some kind
of comparison between answers, because the interpretation
and semantics of the aforementioned quantifications are the
same for all answers, these quantifications may be used as a
basis for this comparison. Moreover, as such a quantification
corresponding to an answer is a quantification of how well the
answer’s data complies with the user’s query preferences, it
is logical to assume that a similar ranking reflects the way in
which the user would evaluate the answers, based on his or
her query preferences.
Consider the situation described in the beginning of this
section, where each of the answers in a result set originating
from a user’s query is accompanied by a collection of different
quantifications with different interpretations. As argued above,
it is necessary to rank these answers before presenting (some
of) them to the user and it seems logical to determine a
similar ranking based on the quantifications corresponding to
the answers, where the rank of an answer reflects how well the
answer complies with the user’s query preferences, by being
based on all of the collection of quantifications corresponding
to the answer. However, this is not a straightforward task.

Taking all of the arguments presented above into account,
it is clear that the answers to a user’s query should be ranked
before presentation to the user, and it is the proposal of the
authors that this ranking should have the following properties,



TABLE III. THE RESULT SET FOR THE EXAMPLE QUERY APPLIED TO THE EXAMPLE RELATION.

ID Color Availability Metadata: Color Satisfaction Degree Metadata: Possibility of Availability

001 red IKI1 0.0 1.0
002 teal IKI2 0.5 0.5
003 blue IKI3 0.1 0.1
004 light green IKI4 0.8 0.9
005 green IKI5 1.0 0.0

based on the arguments given above.

1) The determination of the rank of a query answer must
take into account all quantifications corresponding to
this answer.

2) The determination of the rank of a query answer
must not contain a combination of quantifications
with different interpretations.

3) The way of ranking the answers to a user’s query
must reflect the assumed intention of the user, i.e. the
highest ranks must be assigned to the query answers
best complying with the biggest part of the user’s
query preferences.

4) The determination of the ranks of the query answers
must not significantly slow down the process of
selecting which answers will be presented to the user.

In the next section, the general technique which is the main
contribution of the work presented in this paper, is described.
This technique is intended to rank query answers according to
the properties enumerated above.

IV. THE PROPOSED RANKING APPROACH

Consider a database and a user’s query applied to this
database. Now consider the result set

R = {(R1, Q1), (R2, Q2), · · · , (Ri, Qi), · · · , (Rn, Qn)}

of this query, where every (Ri, Qi), i ∈ N ∧ 1 ≤ i ≤ n
consists of an answer Ri to the user’s query and an ordered
collection of quantifications Qi corresponding to Ri. Let each
such ordered collection of quantifications Qi consist of m
quantifications, i.e. Qi = (qi,1, qi,2, · · · , qi,j , · · · , qi,m), and
let the quantification qi,j with the same index j have the same
interpretation, for every collection of quantifications Qi, and
thus correspond to the same type of quantification Tj .

The work presented in this paper now proposes the
following steps to determine a rank for every query answer
Ri, i ∈ N ∧ 1 ≤ i ≤ n.
Firstly, a vector space V is constructed, with m dimensions,
where every dimension Dj , j ∈ N ∧ 1 ≤ j ≤ m corresponds
to a type of quantifications Tj , which is the type to which
the quantifications qi,j , i ∈ N ∧ 1 ≤ i ≤ n belong.
This vector space obviously has an origin, which is the
vector O = (o1, o2, · · · , oj , · · · , om), where, for every
j ∈ N ∧ 1 ≤ j ≤ m, the value oj is the smallest allowed
value for the type of quantification Tj . In this vector space
V , a subspace Vsub is considered, where Vsub contains every
vector v = (v1, v2, · · · , vj , · · · , vm) of which the value vj
is an allowed value for quantification type Tj , and no other
vectors. Hence, through this construction, every such vector vj
corresponds to a possible ordered collection of quantifications.
Secondly, a reference vector Vref =
(vref,1, vref,2, · · · , vref,j , · · · , vref,m) in this vector space V

is chosen. The intention is that this reference vector is the
vector to which all vectors corresponding to query answers
are compared in order to determine their ranks.
Thirdly, for every vector V Ri =
(vri,1, vri,2, · · · , vri,j , · · · , vri,m) corresponding to a
collection of quantifications Qi, i ∈ N ∧ 1 ≤ i ≤ n, the
Euclidean distance di between the chosen reference vector
and vector V Ri is calculated, i.e.:

di = ((vref,1 − vri,1)
2 + (vref,2 − vri,2)

2 + · · ·
+(vref,j − vri,j)

2 + · · ·+ (vref,m − vri,m)2)
1
2

Fourthly, for each result (Ri, Qi) ∈ R, i ∈ N ∧ 1 ≤ i ≤
n, depending on the reference vector chosen, this Euclidean
distance di determined for vector V Ri corresponding to Qi

is used as a basis to determine the rank of the corresponding
query answer Ri.

With respect to this technique, three remarks should be
made.

1) This technique makes the assumption that every
type of quantification used to indicate how well (a
part of) a query answer complies with (a part of)
the user’s query, is equipped with a total ordering.
This assumption makes sense: indeed, if a type of
quantification would not be equipped with a total
ordering, it would not be possible to rank query
results based on quantifications of this type, even
if the only imperfection in both the database and
the query would be of this type. Hence, it would
not be possible to rank these query results based
on how well the answers comply with the user’s
query preferences, which would defeat the purpose
of ranking whatsoever. Therefore, it is the opinion of
the authors that such a type of quantification would
not make sense, and is therefore not used.

2) Essential to the presented technique, is the fact that
it does not combine quantifications with different
interpretations. Indeed, in the determination of the
distance between a vector V Ri and reference vec-
tor Vref , the calculation develops in the following
way. First, for every value vri,j corresponding to
a quantification qi,j , the square (vref,j − vri,j)

2

of the distance between both values is calculated.
Here, as both vref,j and vri,j correspond to quan-
tifications of the same interpretation, this squared
distance calculation is a type of combination of two
quantifications, but they have the same interpretation.
This squared distance itself, however, does not have
this interpretation, but it acquires the interpretation
of ‘a squared distance between two quantifications’.
For this squared distance, the interpretation of the
quantifications is no longer important. Next, the sum
of these squared distances is calculated, followed
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Fig. 1. A vector space corresponding to the example result set.

by the square root of this sum. Thus, this entire
calculation is not based upon the combination or
comparison of quantifications with different interpre-
tations, but rather on the combination or comparison
of the quantifications Qi of the query result (Ri, Qi)
with the values of a reference vector Vref , where
every quantification is compared to or combined with
the corresponding value of the reference vector for
the dimension corresponding to the same type of
quantification.

3) In theory, distance metrics differing from the Eucli-
dean distance could be used to calculate the distance
between the reference vector and a vector represent-
ing the collection of quantifications corresponding
to a query answer. In the work presented in this
paper, the Euclidean distance is chosen because it
best represents the way in which human beings would
assess a direct distance between two vectors in a
vector space. Through what is deemed by the authors
as a choice of distance metric representing ‘natural’
human reasoning, the authors hope to construct a
more ‘natural’ ranking.

Figure 1 contains a visualization of a possible vector space
V chosen in the context of the query result illustrated in
table III. The chosen dimensions are named ‘Color Satisfac-
tion Degree’, referring and corresponding to the satisfaction
degrees quantifying compliance with respect to car color, and
‘Possibility of Availability’, referring and corresponding to the
possibility degrees quantifying compliance with respect to car
availability. A Cartesian coordinate system is installed in this
space and the chosen subspace Vsub is illustrated using a dotted
bounding box. Vsub is chosen based on the assumption that
both given types of quantifications have the same weight and
govern quantifications in the unit interval [0, 1]. The vectors
corresponding to the collections of quantifications assigned
to the query answers visualized in table III are visualized as
points in figure 1.

In the next section, those choices for the reference vector,
as part of the technique introduced above, which are deemed

1.0

1.0

Color Satisfaction Degree

Possibility of Availability

Fig. 2. Distances from the ideal vector. The visualization of the ideal vector
is encircled.

interesting by the authors, are presented, discussed and illus-
trated. A small discussion is added about their differences.

V. POINTS OF REFERENCE

As mentioned in section IV, the second step in the
proposed technique consists of choosing a reference vector
Vref = (vref,1, vref,2, · · · , vref,j , · · · , vref,m) in the con-
structed vector space V with m dimensions. In the following
subsections, two choices for this reference vector, which are
deemed interesting by the authors, are presented, discussed and
illustrated.

A. The Ideal Vector

It would be possible to choose the so-called ‘ideal vec-
tor’ as a reference vector. This ideal vector is a vector
Videal = (videal,1, videal,2, · · · , videal,j , · · · , videal,m) in the
constructed vector space, where each value videal,j is the value
of the highest quantification allowed by the quantification type
corresponding to dimension Dj , for every j ∈ N∧1 ≤ j ≤ m.
Hence, this ideal vector corresponds to a collection of quantifi-
cations where each quantification expresses perfect compliance
of the collection’s corresponding answer to the user’s query
preferences. The intention behind the choice of the ideal
vector as reference vector is to force a comparison of every
answer’s collection of quantifications with the best possible
collection of quantifications, where answers that comply better
with the user’s query preferences correspond to a vector that
lies closer to the ideal vector. Thus, if the ideal vector is
chosen as reference vector, the rank of a query answer should
be inversely proportional to the distance between the vector
corresponding to its collection of quantifications and the ideal
vector. For the vectors corresponding to the answers visualized
in table III, these distances are visualized by dashed lines in
figure 2.

B. The Worst Vector

It would be possible to choose the so-called ‘worst vec-
tor’ as a reference vector. This worst vector is a vector
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Fig. 3. Distances from the worst vector. The visualization of the worst vector
is encircled.

Vworst = (vworst,1, vworst,2, · · · , vworst,j , · · · , vworst,m) in
the constructed vector space, where each value vworst,j is the
value of the lowest quantification allowed by the quantification
type corresponding to dimension Dj , for every j ∈ N∧1 ≤ j ≤
m. Through the construction described in section IV, the worst
vector coincides with the origin of the vector space. Hence,
this worst vector corresponds to a collection of quantifications
where each quantification expresses absolutely no compliance
of the collection’s corresponding answer to the user’s query
preferences. The intention behind the choice of the worst
vector as reference vector is to force a comparison of every
answer’s collection of quantifications with the worst possible
collection of quantifications, where answers that comply better
with the user’s query preferences correspond to a vector that
lies further away from the worst vector. Thus, if the worst
vector is chosen as reference vector, the rank of a query
answer should be proportional to the distance between the
vector corresponding to its collection of quantifications and
the worst vector. For the vectors corresponding to the answers
visualized in table III, these distances are visualized by dashed
lines in figure 3.

C. Differences

It should be clear that, because of the use of the Euclidean
distance in the presented approach, all equidistant vectors lie
upon the surface of a single (hyper-)sphere, with the reference
vector as a midpoint. Hence, changing the midpoint results
in changing the elements of the classes of equidistant vectors
and thus in changing which collections of quantifications are
deemed equivalent by the ranking technique. At the moment
this paper is written, further research is required to determine
which choices for reference vector and distance metric result
in rankings best reflecting human reasoning.

In the next section, a brief discussion about the compu-
tational efficiency associated with the presented approach is
presented.

VI. COMPUTATIONAL EFFICIENCY

Consider a result set to a user’s query, containing n
elements, where each element is assigned m quantifications of
how well the element’s answer complies with the user’s query.
To determine the computational efficiency of the approach
to determine a ranking for these elements, as introduced in
section IV, two arguments must be taken into account.

First, it is important to notice that, for a given result set
element, the determination of its rank is independent from the
other elements of the result set or their quantifications, but only
depends on the quantifications in its own collection. Hence, for
a single result set element, the determination of its rank has
an execution time of O(m).

Second, to determine a ranking for the complete result
set, the rank for every result set element must be determined.
Hence, the determination of the rank of every element in the
result set may be done in O(m ∗ n).

Notoriously left out of this reasoning is the computational
efficiency of ordering the result set elements based on their
assigned ranks before presenting them to the user. However,
every querying technique in which result set elements are
assigned a rank, needs to provide for such ordering, and the
order of computational efficiency presented above only has the
intention to highlight the computational burden added by the
approach presented in section IV.

VII. CONCLUSIONS AND FUTURE WORK

The work presented in this paper introduces a general
technique to present a user with these answers to his or
her query which are deemed to comply best with his or her
query preferences, where compliance with the user’s query
preferences is indicated through the use of quantifications with
different interpretations and where such quantifications with
different interpretations are never combined. As mentioned
before, it is the authors’ opinion that for soft computing in
information retrieval to reach the goal of allowing people to
retrieve possibly imperfect data, information or knowledge in
a possibly imperfect way, it is essential that an unambiguous
presentation of the query answers best complying with the
user’s preferences is achieved, which is inevitably based on
the aforementioned quantifications. As the authors deem it
unacceptable to calculate a straightforward combination of
quantifications with different interpretations, the technique
presented in this paper presents another way of yet achieving
an unambiguous query answer ranking.

Many aspects of the presented approach require further in-
vestigation. An inquiry about the impact of different reference
vectors to which query answers are compared and about the
distance metrics used in this comparison is strongly suggested,
preferably with respect to the intention of mimicking human
reasoning in the best possible way. Another interesting idea to
investigate is the use of optimization techniques to determine
a query answer’s rank from its collection of quantifications.

REFERENCES
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