3,217 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review

    Get PDF
    Performing prescribed physical exercises during home-based rehabilitation programs plays an important role in regaining muscle strength and improving balance for people with different physical disabilities. However, patients attending these programs are not able to assess their action performance in the absence of a medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions for designing automatic patient’s activity monitoring models. Then, improving such systems’ performance to assist patients and physiotherapists has attracted wide interest of the research community. This paper provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence (AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied. Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward several suggestions for future research directions in this area

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Wearable and IoT technologies application for physical rehabilitation

    Get PDF
    This research consists in the development an IoT Physical Rehabilitation solution based on wearable devices, combining a set of smart gloves and smart headband for use in natural interactions with a set of VR therapeutic serious games developed on the Unity 3D gaming platform. The system permits to perform training sessions for hands and fingers motor rehabilitation. Data acquisition is performed by Arduino Nano Microcontroller computation platform with ADC connected to the analog measurement channels materialized by piezo-resistive force sensors and connected to an IMU module via I2C. Data communication is performed using the Bluetooth wireless communication protocol. The smart headband, designed to be used as a first- person-controller in game scenes, will be responsible for collecting the patient's head rotation value, this parameter will be used as the player's avatar head rotation value, approaching the user and the virtual environment in a semi-immersive way. The acquired data are stored and processed on a remote server, which will help the physiotherapist to evaluate the patients' performance around the different physical activities during a rehabilitation session, using a Mobile Application developed for the configuration of games and visualization of results. The use of serious games allows a patient with motor impairments to perform exercises in a highly interactive and non-intrusive way, based on different scenarios of Virtual Reality, contributing to increase the motivation during the rehabilitation process. The system allows to perform an unlimited number of training sessions, making possible to visualize historical values and compare the results of the different performed sessions, for objective evolution of rehabilitation outcome. Some metrics associated with upper limb exercises were also considered to characterize the patient’s movement during the session.Este trabalho de pesquisa consiste no desenvolvimento de uma solução de Reabilitação Física IoT baseada em dispositivos de vestuário, combinando um conjunto de luvas inteligentes e uma fita-de-cabeça inteligente para utilização em interações naturais com um conjunto de jogos terapêuticos sérios de Realidade Virtual desenvolvidos na plataforma de jogos Unity 3D. O sistema permite realizar sessões de treino para reabilitação motora de mãos e dedos. A aquisição de dados é realizada pela plataforma de computação Arduino utilizando um Microcontrolador Nano com ADC (Conversor Analógico-Digital) conectado aos canais de medição analógicos materializados por sensores de força piezo-resistivos e a um módulo IMU por I2C. A comunicação de dados é realizada usando o protocolo de comunicação sem fio Bluetooth. A fita-de-cabeça inteligente, projetada para ser usada como controlador de primeira pessoa nos cenários de jogo, será responsável por coletar o valor de rotação da cabeça do paciente, esse parâmetro será usado como valor de rotação da cabeça do avatar do jogador, aproximando o utilizador e o ambiente virtual de forma semi-imersiva. Os dados adquiridos são armazenados e processados num servidor remoto, o que ajudará o fisioterapeuta a avaliar o desempenho dos pacientes em diferentes atividades físicas durante uma sessão de reabilitação, utilizando uma Aplicação Móvel desenvolvido para configuração de jogos e visualização de resultados. A utilização de jogos sérios permite que um paciente com deficiências motoras realize exercícios de forma altamente interativa e não intrusiva, com base em diferentes cenários de Realidade Virtual, contribuindo para aumentar a motivação durante o processo de reabilitação. O sistema permite realizar um número ilimitado de sessões de treinamento, possibilitando visualizar valores históricos e comparar os resultados das diferentes sessões realizadas, para a evolução objetiva do resultado da reabilitação. Algumas métricas associadas aos exercícios dos membros superiores também foram consideradas para caracterizar o movimento do paciente durante a sessão

    Smart Sensing Technologies for Personalised Coaching

    Get PDF
    People living in both developed and developing countries face serious health challenges related to sedentary lifestyles. It is therefore essential to find new ways to improve health so that people can live longer and can age well. With an ever-growing number of smart sensing systems developed and deployed across the globe, experts are primed to help coach people toward healthier behaviors. The increasing accountability associated with app- and device-based behavior tracking not only provides timely and personalized information and support but also gives us an incentive to set goals and to do more. This book presents some of the recent efforts made towards automatic and autonomous identification and coaching of troublesome behaviors to procure lasting, beneficial behavioral changes
    corecore