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A B S T R A C T 

Performing prescribed physical exercises during home-based rehabilitation programs plays an important role
in regaining muscle strength and improving balance for people with different physical disabilities. However,
patients attending these programs are not able to assess their action performance in the absence of a 
medical expert. Recently, vision-based sensors have been deployed in the activity monitoring domain. They 
are capable of capturing accurate skeleton data. Furthermore, there have been significant advancements in
Computer Vision (CV) and Deep Learning (DL) methodologies. These factors have promoted the solutions
for designing automatic patient’s activity monitoring models. Then, improving such systems’ performance 
to assist patients and physiotherapists has attracted wide interest of the research community. This paper 
provides a comprehensive and up-to-date literature review on different stages of skeleton data acquisition 
processes for the aim of physio exercise monitoring. Then, the previously reported Artificial Intelligence 
(AI) - based methodologies for skeleton data analysis will be reviewed. In particular, feature learning from
skeleton data, evaluation, and feedback generation for the purpose of rehabilitation monitoring will be studied.
Furthermore, the associated challenges to these processes will be reviewed. Finally, the paper puts forward 
several suggestions for future research directions in this area. 
 

 

1. Introduction 

With the recent advances in medical science and related technolo-
gies, the elderly population in developed countries, such as the UK 
and Australia, is growing. According to the Australian Bureau of Statis-
tics [1], the proportion of older adults in Australia (aged 65 and over)
is predicted to grow from 15% (3.8 million) of the whole population in
2017 to 22% (8.8 million) in 2025. Moreover, according to the Office
for National Statistics [2], due to the recent advances in healthcare, 
the population of people over 60 in the UK is increasing from 14.9
million in 2014 to 18.5 million in 2025. According to Cameron and
Kurle [3], the possibility of being physically disabled due to different 
medical conditions, such as stroke or a hip fracture, is higher for 
older adults. Therefore, a new challenge is emerging for the healthcare
systems in developed countries, since the increase in the aging rate 
is associated with the decline in the physical ability of the aging
population. Therefore, they are going to make up one of the largest 
groups of people participating in physical rehabilitation programs. 

Patients with physical disabilities are usually prescribed (by physio-
therapists or occupational therapists) to attend different rehabilitation
programs either in medical agencies (hospitals) or at home. Each of 
these methods of rehabilitation at the home or a medical center has its
advantages and limitations. During the inpatient rehabilitation period,
the performances of the patients are being monitored by the experts, 
and they are provided with prompt feedback. However, depending 
on their performance, the patients might need to attend the program
for several sessions. Attending these programs with the supervision of 
an expert is expensive, time-consuming, and tedious, since it involves
transportation and inpatient medical services. Therefore, there is a 
preference for a majority of patients for home-based rehabilitation [3].
Moreover, the inpatient programs usually include long waiting lists due
to factors such as shortage of staff and long waiting time for treatment
leading to poor health improvement in patients [4]. In addition, the
trend of home-based rehabilitation has increased after the prolonged
COVID-19 pandemic in 2020 and the closure of rehabilitation centers
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or their limited programs [5]. According to Frigerio et al. [6], the im-
plementation of tele-rehabilitation during the COVID-19 lockdown has
gained excellent satisfaction from the patients’ side and is a promising
tool to be used after the pandemic.

In addition to all of the aforementioned positive impacts of home-
based rehabilitation, it is worth mentioning that the quality of the
rehabilitation program plays an important role in the extent of the
neuroplasticity achieved by the patients [7]. However, the lack of
feedback and tedious home settings can have a demotivating effect on
the patients in home-based rehabilitation programs and may affect the
final outcome [8]. According to Gelaw et al. [9], to yield positive results
from home-based physical rehabilitation programs, patient enthusiasm
and continuous follow-up from the side of an expert are essential. 
To follow up on the progress of the patients, the therapists use web-
based tele-rehabilitation programs in which, they monitor the actions
and provide online feedback. However, due to several challenges such 
as shortage of staff and lack of time, there are challenges in ensur-
ing consistency of online monitoring [10]. Therefore, the need for
computer-aided home-based rehabilitation programs for inexpensive
and private training sessions with online feedback is increasing. These
computer-aided therapy sessions will utilize the sensors and human
activity analysis algorithms to guide the patients in performing the
actions properly, and assist the healthcare providers in monitoring
patients’ recovery status. The specific aim of this paper is to investigate
different automatic human activity analysis techniques in the literature
for monitoring home-based rehabilitation exercises, and to explore
the challenges and limitations of such techniques for further research 
recommendations. 

In general, human activity analysis is one of the most important and
challenging areas in AI. It involves analyzing human body movements
based on the motions of different body joints, skeleton, and mus-
cles [11]. Based on the complexity of the action, these movements can
be interpreted as different gestures, human–human interactions, group
actions, and behaviors [12]. Analyzing these activities can provide
useful information about the personality of individuals, their physiolog-
ical and psychological states, and possibly their targets and intentions.
Recently, there is a growing interest in developing and using automatic
human activity analysis systems, which can assist experts in different 
tasks for health-care [13,14], surveillance in public places [15,16],
and developing driver-less systems [17,18]. However, developing an 
effective system for human activity analysis highly depends on how
accurate are the motion tracking, data pre-processing, representation
learning, and evaluation techniques [11]. Therefore, while looking for a
problem definition for activity analysis, four main questions arise: ‘‘Q1:
What is the task that we are targeting in human activity analysis?’’, 
‘‘Q2: What are the actions and input modalities for an automated 
system?’’, ‘‘Q3: What are the automatic learning strategies that we
can consider for the problem?’’, and ‘‘Q4: What are the evaluation 
techniques for the performance of an automated system?’’. An overview
of these questions as a pipeline of this study follows:

Q1: Human activity analysis encompasses several general tasks,
such as Human Activity Recognition (HAR), Human Activity Detection
(HAD), Human Activity Prediction (HAP), and finally Human Activ-
ity Evaluation (or assessment) (HAE). One of the popular fields of
study is the traditional HAR problem, which involves action classifi-
cation, based on a developed system that can assign class labels to
different action categories, based on the different input modalities.
HAR has been widely explored by researchers in various domains of
healthcare [19,20], driverless cars [21], surveillance systems for public
areas/home/organizations [22], smart home/city [23–25], etc. HAD
aims to assign starting and ending points (labels) to the performed 
actions. Assigning these points to an untrimmed video has attracted
much attention due to its real-world applications in detecting and man-
aging abnormal dangerous situations in traffic or public [26,27]. HAP
refers to developing a model which can predict future actions (states)
2

of a series of actions based on the previous incomplete observations. s
redicting the next states of many real-world actions and behaviors can
revent hazardous situations, such as careless driving, terrorist attacks,
r even fall prediction in the daily living of elderly people [11,28,29].
inally, in contrast to all of the tasks mentioned above, HAE aims to 
ssess the performed actions by individuals based on some reference
orrect actions and provide some feedback (such as scores) to improve
he quality of the actions. According to Lei et al. [11], this field of study 
as begun to attract many researchers in the community because of
ts important real-world applications, such as skill training for differ-
nt expertise learners [30,31], sports activity assessment [32,33], and 
hysical activity rehabilitation [34,35]. In order to create an automatic
hysical activity monitoring system for a rehabilitation period, the 
AE is the most important one to be considered. In other words, an

deal automatic monitoring device must be able to evaluate the action
roperly and then provide feedback on how the action can be more 
ccurately performed.

Q2: As mentioned above, human motion analysis has multiple ap-
lications which include different real-world situations. Depending 
n which real-world problem we aim to solve by motion tracking
nd analysis, the individuals perform different activities, ranging from
imple daily actions to complex and specific actions (such as sports
ctivity and rehab prescriptions). According to Yadav et al. [36],
epending on the complexity of the action and application we are 
iming, the automatic human action analysis systems usually need large
atasets containing different useful modalities, which aim to represent
he performed actions in the best way. According to Sun et al. [37],
uman actions can be represented using several modalities such as 
ision-based (RGB videos/images, depth videos/images, skeleton/joint
ata sequences, InfraRed (IR) sequences) [28,38], wearable-based [39],
adar-based [40,41], audio-based [42], and Wifi-based [43]. With the
ide variety and accessibility of the sensors for capturing these modal-

ties in the past decade, the investigations on designing automatic
AR/ HAE systems based on these data are growing [37]. However,
ll of these modalities capture various information about an action. 
herefore, they have different levels of strengths and limitations, which 
re illustrated in Fig. 1. The most important factors which should 
e considered while selecting a modality for capturing actions are 
he sensor’s cost, appropriate resolution depending on the application
nd the target activity, privacy-preserving, visual interpretability, and
obustness towards any changes in the data collection conditions.

Comparing different techniques of data collection in Fig. 1 il-
ustrates the fact that the skeleton/joint modality, which includes a 
equence of the coordinates of human body joints, might be the best
ption considering all of the factors. Skeletal data has drawn much
ttention for the task of human activity recognition by many re-
earchers [44–46], because of certain advantages that it has compared
o other methods. According to Shi et al. [44], skeleton-based activity 
ecognition stands out from the rest of the vision-based recognition
ethods because it shows robustness towards changes in body scales,

peed of the performed activity, camera viewpoints, and the inter-
erence of backgrounds. This modality preserves visible information 
omehow, however, it is an affordable privacy-preserving technique
o capture important structural body motion information. Considering
he aforementioned advantages, this study specifically aims to dive 
eep into different capturing techniques for skeletal data and previous
tudies utilizing this modality.

Q3: One of the most important challenges in the human motion
nalysis pipeline is how to develop a system that has a robust represen-
ation/feature learning framework. The performance of any automatic
ecognition and evaluation model highly depends on the quality of 
eatures extracted that represent the data [47]. There are two general
pproaches for data representation and feature learning, i.e. hand-
rafted features learning, and automatic feature learning using DL
echniques [48]. Some of the popular methods for classical hand-crafted
eature extraction are based on different modalities of depth, RGB, and

keleton data. For example, Depth Motion Map (DMM), Histogram of 
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Fig. 1. Strength and limitations of different vision-based and non-vision-based modalities in human action analysis. 
 

 

 

 

 

 
 

Gradients (HoG), and local binary features [49] can be extracted from
depth data. In other studies conducted by Xia et al. [50], 3D Histogram
of Oriented Displacement (HOD) and Accumulation of Motion Energy
(AME) are extracted as action features from the skeleton data. Using
the handcrafted features techniques for data representation might need
expert’s knowledge or specific algorithms for each problem, which 
might lead us to less generalization in various problems. This means 
that by using a specific algorithm for extracting features in a specific
modality for a specific problem, you may not be able to use the same
pipeline for another problem. Motivated by the successful performance
results of the use of DL techniques in various studies [51,52], this paper
will mostly investigate different studies which used this method for 
skeleton data in the past ten years.

Q4: Finally, the evaluation techniques and criteria in the two tasks
of HAR and HAE differ from each other, since they address two different
problems of classification and regression, respectively. To the best 
of our knowledge, previous studies in the vision-based rehabilitation
field rarely explored different evaluation methods for HAE problems.
Therefore, throughout this study, we will explore different evaluation
techniques, and examine their challenges, advantages, and limitations.

Exploring these four fundamental questions for the problem of au-
tomatic physical rehabilitation monitoring creates a workflow which is
illustrated in Fig. 2. Examining each part of this pipeline helps us to find 
3

existing challenges and limitations in the literature, and then find pos-
sible solutions for addressing them. In the data acquisition stage, sensor
selection, ethics considerations, activity selection, and experiment de-
sign are the most important tasks to perform. After data collection,
modality capturing and action labeling are the challenging stages.
Next, the researchers should design the proper classification/regression
model based on the HAE/HAR problem. Finally, the evaluation metrics
and methods for the designed system should be considered to produce
accurate results. This paper is organized based on exploring different
solutions to these four questions and the way different related papers
address this workflow. 

The remainder of this paper is organized as follows: Section 2
clarifies the methodology for this literature review and its contributions
compared to other related survey papers. In Section 3, we discuss the
types of impairments and the target body parts for different rehabilita-
tion exercises prescribed by the medical experts. Section 4 investigates
the related challenges of data collection. Section 5 explores the methods
for capturing skeleton data through sensing hardware. Section 6 pro-
vides a comparative analysis of different public datasets and discusses
their limitations and strengths. Section 7 provides information of the 
AI-based methods for representation learning on the skeleton data and
how these models can be evaluated. Section 8 provides information
on how other studies evaluated the activities and annotated them.
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Fig. 2. Designing a human activity analysis system for automatically monitoring physical rehabilitation follows this framework from left to right. 
 

 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

 
 

 
 

 
 
 

 
 

 

 

Section 9 provides a brief discussion of the current challenges detected
in the literature. Finally, Section 10 concludes the paper. 

2. Methodology of the review and its contributions 

In the last decade, several surveys and literature reviews have been
ublished, aiming to review generally the vision-based studies for auto-
atic physical activity recognition and evaluation for the rehabilitation
eriod. However, each of them summarizes different scopes of studies
nd their limitations. In 2004, Zhou et al. [53] discussed different
isual or non-visual human motion tracking sensors for rehabilitation 
xercises and compared these technologies. However, this study fails to
iscuss any AI-based algorithms for developing automatic recognition
nd assessment methods. In 2014, Webster et al. [54] investigated
he applications of Microsoft Kinect sensors in elderly care, stroke
ehabilitation, fall detection, and Kinect-based gaming. In the study
onducted by Da Gama et al. [55], the authors mostly focused on
roviding a formulation of monitoring the progress in the rehabilitation
sing various techniques such as angle flexion, euclidean distance, 
tc. However, according to Debnath et al. [56], both of the previous
tudies which either study the recognition (prediction) or evaluation
echniques for rehabilitation, have a clinical perspective for evaluation.
o solve this problem, Sathyanarayana et al. [57] discussed the vision-
ased algorithms from the computer vision perspective for evaluation.
n a recent study, Ahad et al. [58] provided a short review of vision-
ased action understanding for applications in assistive healthcare. 
hey investigated general vision-based sensors (such as Vicon optical
racking system and depth sensors) and environmental scenarios(such
s lighting conditions and background settings) for data collection, the
hallenges ahead of these data collection scenarios, and some bench-
ark datasets. However, this work lacks information about further

echnical methods for representation learning (such as different DL
echniques, which can be utilized for this purpose) and evaluation
ethods for scoring the activities. The latest literature review for

omputer vision-based algorithms for rehabilitation and assessment 
s conducted in [56]. This paper discusses a wide range of general
ision-based techniques for either recognizing or assessing rehabilita-
ion exercises. However, due to the generality of this study, this paper
eviews the previous studies in the field without covering the important
aterials such as the significance and limitations of different sensors,

echniques, and scenarios for data collection. The possible physical
ehabilitation exercises were not discussed also as a guideline for future
ork. In addition, there is very limited discussion on how different AI-
ased methods and evaluation techniques can improve the performance
nd feedback responses in the system. To solve all of these issues 
his paper covers a wide range of studies specific to skeleton-based
ctivity assessment for rehabilitation problem. This study contributes
4

he following: 
• This paper comprehensively reviews the skeleton-based data col-
lection procedures in relation to the sensor and physical activity
selection. Different challenges for proper data collection are iden-
tified and the limitations of the previous related public datasets
are discussed. 

• This study specifically aims to provide an up-to-date and holistic
literature review on the AI-based skeleton data analysis methods
for the physical rehabilitation problem. To the best of our knowl-
edge, this is the first time a study has been conducted on the
strength and the gaps of HAE methods provided for this specific
problem which paves the path for further studies. 

• The evaluation techniques are comprehensively explored for (1)
general automatic scoring systems and (2) part-based assessment
for each activity. Furthermore, the gaps and limitations of those
methods are discussed. This adds to the novelty of this paper
compared to the previously conducted literature review papers. 

This study includes a systematic literature review and it encompasses
the most recent studies (between 2011 and 2022), related to devel-
oping AI-based technologies for automatic physical activity evaluation
on rehabilitation. The Preferred Reporting Items for Systematic Re-
views and Meta-Analysis (PRISMA) [59] checklist is utilized to conduct
the step-by-step research methodology. In the identification stage an
appropriate search for articles has been performed through Google
Scholar, Scopus, and Science Direct, PubMed databases as illustrated
in Fig. 3. Based on the research question of building skeleton-based
automatic human activity evaluation systems for rehabilitation prob-
lems, we utilized Boolean search strings such as ‘‘Activity Recognition’’,
‘‘Skeleton-based activity assessment’’, ‘‘Human activity evaluation’’,
‘‘Kinect sensors’’, and ‘‘Rehabilitation’’ in different combinations. For
example, when using the Science Direct database for a combination
of ‘‘Skeleton-based activity assessment for rehabilitation’’, the number
of retrieved articles was 1439. The number of articles retrieved from
Google Scholar, Science Direct, Scopus, and PubMed are 6012, 2312,
1273, and 1310, respectively. To avoid duplication among all of the re-
trieved 10907 articles, Mendeley software was utilized and this resulted
in the final 6091 articles. In the next stage, the articles were screened to
omit the unrelated studies to the content of the research question based
on several conditions. For this step, titles, abstracts, language (only
English is included), number of citations, and journal (or conference)
quality were considered which led to only 942 papers. To check the
eligibility for inclusion, full texts of records were screened and several
records were excluded due to their irrelevance to the aim and scope
of this review paper, duplicated information from another reviewed
literature, and lack of detailed discussion and evaluation. To double-
check the precision of this search, a software called Publish-or-Perish
(PoP) was used. It provides a specific search on specified keywords
which results in limited, but more related search results. Finally, the 32

most related papers to the scope of this study including studies related 
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Fig. 3. The retrieval methodology used for finding, evaluating, and including the related articles in this review. 
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to previous literature reviews [53–58], datasets ( Table 3), and AI-based
methodologies ( Table 4), were retrieved and included in the review.
It is worth mentioning that one review study from 2008 [53] is added
to this paper because of the importance of the paper to the coherence
of this systematic review. 

3. Rehabilitation and physical exercises 

Physical disability and impairment are defined as limitations in 
the individual’s physical functionality, mobility, or stamina which can
be temporary or permanent for the long term and hinder them from
daily normal activities [60]. In general, physical disabilities include
activity, mobility, visual, or auditory impairments, or chronic pains
causing difficulty in functioning. They may occur (especially in older 
5

ndividuals) due to different neurological conditions such as stroke and
arkinson’s disease or different injuries such as spinal cord injuries, 
rain injuries, and hip fractures. To be specific, the physical impair-
ents can be categorized into two general groups: musculoskeletal 

nd neuromusculoskeletal [61]; musculoskeletal disabilities affect the
oint, skeleton, and muscle movements directly due to different reasons
uch as back and neck pain, osteoarthritis, and bone fractures and
njuries. The neuromusculoskeletal group includes impairments caused
y neurological conditions such as stroke, cerebral palsy, poliomyelitis,
pinal cord/brain injuries, and Parkinson’s disease. These types of 
isorders affect the nervous system which controls the muscles and
ones and their interaction with the brain [62]. Fig. 4 illustrates that 
hese disabilities might occur in both upper and lower limbs which are
ivided by the hip joint [63]. 
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Fig. 4. The 32 body joints and skeletons from both upper limb and lower limb captured
y Azure Kinect. 

To overcome the challenges of different impairments in daily life,
physical rehabilitation programs are provided by the healthcare sys-
tems in most developed countries. The role of rehabilitation programs is
to improve the physical functionality of temporary cases of disabilities
and to define a need and care routine for permanent types of dis-
abilities. Along with pharmacological treatments most of the physical
rehabilitation programs encompass different physical exercise thera-
pies which aim to prepare patients with disabilities for normal daily
activities. These exercises may be prescribed by the expert tool/weight-
free or with the use of therabands or weights, based on the need and
facilities of the patients and the type of impairments. The healthcare
provider team usually monitors the physical activities based on several
scoring and evaluation questionnaires and methods [64–66].

There is a vast set of exercises for the purpose of physical reha-
bilitation. However, some of these exercises are more common and
suitable for the purpose of data collection for developing a vision-
based HAR/HAE system. These actions can be performed without using
any tools and weights and they are visually understandable for further
recognition and evaluation. Table 1 illustrates some of the physical
ctivities, target disability, and target body parts. The first 6 exercises in
he table are targeting upper limb and the next 4 of them are for lower
imb impairments. It is worth mentioning that some of these exercises 
re targeting general impairments, which means that they are most 
ommon in any rehabilitation program, regardless of the impairment.
his means that creating datasets using these exercises is more helpful
or creating a generalized automatic HAR/HAE system. In addition, the
atasets which have been created targeting both upper and lower limbs,
re considering more different skeletons and muscles which leads to a
eneralized dataset.

The figures of the actions illustrated in Table 1 are perfectly inter-
retable for gesture description. Several exercises are for the rehabili-
ation of the impaired upper limb. As an example, elbow flexion and 
xtension consist of moving the elbow joint, starting from a straight
lbow to a bent one. Shoulder flexion is moving the shoulder while 
eeping the arm straight in front of the body. Shoulder abduction
onsists of the movement of the arm raised away from the body’s side
hile keeping it straight. To perform shoulder forward elevation the
articipant needs to clap the hands together and lift the arms up above
6

he head while keeping arms and elbows straight. Shoulder extension is H
nother exercise starting the arm beside the body and finishing behind
he body while keeping the posture straight.

Some exercises are prescribed for the improvement of mobility in
he lower limb. For example, the side tap is a way to improve the
alance in the body by training the patient to move one leg to the other
ide of the body, while maintaining the balance. The description and
uidance of the physical exercises and their targeted type of impair-
ents have been explored and mentioned in detail in a website [67],
hich is developed and gathered by a large team of physiotherapists in
ydney, Australia [68].

Rehabilitation period exercises can be conducted either in a medical
linic or hospital with the direct supervision of a healthcare provider,
r in a home-based situation, where the patients perform the prescribed
ctions in the home. There are several factors contributing to the 
ailure of clinic-based programs in providing full or partial recovery 
or patients. The expensive treatments, lack of young workforce as-
isting in these programs, transportation problems, the comfortable
ituation of home-based rehabilitation for some older adults, and oc-
urring pandemics such as COVID-19 hinder many disabled individuals
rom continuing to attend these programs. In the case of home-based 
ehabilitation exercises, most of the patients are noncompliant with 
he prescribed activities due to the lack of activity monitoring and 
eedback [58]. With the advent of computer vision systems and AI 
echniques, which leads to automatic rehabilitation period monitoring,
he challenges of traditional clinic-based and home-based rehabilitation
rograms can be overcome. Telerehabilitation with a good strategy for
hoosing data modality, vision-based sensor, and AI-based techniques 
an assist the medical sector in monitoring the rehabilitation and 
rogress of patients. In the next section, we discuss the challenges 
hat skeleton data can overcome compared to other vision-based data 
ollection methods, and why this modality is preferable compared to
ther vision-based modalities. 

. Challenges of data collection 

While the interest of researchers in creating vision-based public
atasets for patient action recognition and evaluation has skyrocketed
n previous years, there are several technical and ethical issues that 
eed to be considered before creating a scenario for the calibrations. 
hese issues might hinder the dataset from being accurate and gener-
lized for further technical research and evaluation on them. In this 
ection, we are going to briefly discuss these challenges and difficulties
f vision-based datasets, and how skeleton modality can be a good
ubstitute for all other vision-based modalities by ameliorating some 
f the limitations. Some of the challenges are general for any data
ollection related to this domain, some of them are specific to vision-
ased methods, and some of them are being solved by using the 
keleton data as the modality.

Privacy preserving: Even though the vision-based modalities are 
avorable for their highly informative features and being captured 
n a non-intrusive manner, they can create issues regarding privacy
reservation. Specifically, the RGB and depth images/videos contain
onfidential face information, which creates reluctance for the individ-
als to participate in the data collection. This information should be 
onfidentialised using some face-blurring algorithms to avoid the risk
f identifying, which adds another step to the preprocessing phase. This
ssue creates a challenge for dataset availability for data formats such
s RGB data. However, using modalities such as skeleton data is highly
rivacy-preserving because it just contains information like body joint
ositions which cannot be used for identifying the participants.

Ethical integrity and intellectual property rights: Another important
ssue that should be considered in any type of data collection is preserv-
ng the ethical integrity of the procedure. According to Facca et al. [75],
sing digital sensing technologies for collecting data on health-related
ubjects is challenging. These additional challenges compared to other

AR/HAE data collections originated from the fact that the procedure 
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Table 1 
List of exercises prescribed by experts in rehabilitation programs. The figures are extracted from several resources [67,69,70]. 

Gesture visual description Gesture Name Target impairment 

Elbow flexion and extension [71] General/ Spinal cord injury 

Shoulder Flexion [71] General/ Spinal cord injury 

Shoulder Abduction [69,71] General 

Shoulder Forward Elevation [71] General 

Shoulder Extension [69] General 

Shoulder internal rotator with theraband [69] Spinal cord injury 

Standing up and sitting down [72] General/ Impaired balance for elderly 

Walking on staircase [73] General/ Impaired balance for elderly 

Deep squat [69,74] General 

Stepping to targets(side tap) [71] Impaired balance for elderly/ lower limb
incomplete Tetraplegia 
 t
i
p

t
w
T

includes real-life patients and disabled people, which is a sensitive
group. In order to utilize patients in the process, the data collection
procedure needs more ethical screening from the different organiza-
tions including the hospital. This can also raise problems related to 
intellectual property rights for different organizations and hospitals.
This problem is usually solved by engaging healthy participants and
asking them to perform the correct activity and then mimicking the pa-
7

tients performing the same action for the data collection [58]. Although t
he collected data is not as realistic as the previous methodology, it
s enough for developing different AI methods and evaluating their
erformance.

Dataset Diversity: This issue should be considered before collecting
he data, in order to create generalized data containing participants
ith different genders, ages, clothes, physical stamina, and ability [58].
he data collection should be performed in multiple episodes or repeti-

ions, for multiple actions, on different days and situations, containing 
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subjects from various groups which is a challenging task to be per-
formed by a single team of researchers and needs to be performed
in several hospitals and institutions in parallel. This can lead to the 
ethical issues mentioned above, because of the sensitivity of the data.
This challenge might be one of the major reasons for the lack of public
diverse datasets for physical activity recognition in rehabilitation. Most
of the public datasets for this field mentioned in Section 2.4 contain
a limited number of repetitions, subjects, and general diversity of the
data. However, NTU-RGBD Dataset [46] is one of the most diverse and
popular general action recognition datasets. This dataset contains 60
classes of single-person actions (such as drinking water, falling down)
and two-person actions (such as hugging, walking towards, or high-
five), captured from 40 participants. A large number of participants and
actions helps this dataset to contain diverse samples with high numbers.
In another study conducted by researchers in Osaka University [76] for
gait recognition, gait videos of 10,307 subjects (a balanced number of
males and females with various ages, ranging from 2 to 87 years) were
collected [77].

Ambiance calibration: The variations in the ambiance of the en-
vironment selected for performing action hugely affect the quality
and diversity of the data. The actions can be performed in different
indoor/outdoor, lighting, and temperature conditions. Most of the sen-
sors are sensitive to these conditions and might perform poorly in 
some of these situations. According to Shahroudy et al. [46] a large
number of variations can be created by capturing the data in different
backgrounds, in order to create ambiance inconsistency and provide
a robust system. In the case of some sensors such as Kinect, they 
are limited to indoor scenes, because of the operational limitations
for lighting in this sensor [55] and that should be considered While
creating datasets using this sensor.

Dataset variation: According to Miron et al. [71], another essential
issue to be considered while collecting data is intra-class and inter-
class variations. Each physical activity prescribed for the rehabilitation
period can be performed with different variations in speed and par-
ticipants, which defines intra-class variations. There are also variations
between different actions which makes it harder for any HAR system to
differentiate the actions. Skeleton data is somehow robust towards any
differences in speed of the actions and participant’s body scale because
frames captured from sensors like Kinect are first converted to a series
of feature vectors regardless of orientation, position, and the speed of
action [78]. This makes the skeleton data modality favorable for data 
collection. 

Data imbalance: In some data collection scenarios with binary ac-
tion classification with discrete labels as ‘‘correct’’ or ‘‘incorrect’’, there
is a chance that the final real-life dataset is highly imbalanced (means
that the distribution of samples from both classes is not equal) [71].
This happens because some patient participants are not able to perform
some gestures because of their medical condition or they are unable to
perform an action with several repetitions. To solve this problem during
the data collection both the correct and incorrect actions (imitating the
patient’s movements) can be performed by healthy participants. In the 
case of tackling the imbalanced dataset, methods such as undersam-
pling and oversampling can be used after the data collection, which
vary in different ranges [47]. 

. Skeleton data acquisition 

As mentioned before there are several vision-based data acquisition
ethods which include RGB, depth map, IR sequences, and skeleton
ata. Based on many advantages that skeleton data have compared to
ther vision-based modalities (like robustness for noisy background,
rivacy preservation, computationally efficient compared to RGB data
o be processed, etc.), they are preferred by many of the studies in the
cope of physical rehabilitation assessment. With the advent of pose
stimation algorithms and accurate and accessible sensors, collecting
8

keleton data is much easier and more popular nowadays. Generally, 
here are two methods for skeleton data acquisition, which include
irect use of any sensing hardware, and indirect methods which include
ose estimation algorithms for capturing skeleton information from
GB data [79]. However, since our aim is to use accurate sensors for 
apturing 3-dimensional skeleton data from people, we will discuss the
rior method in this subsection. 

To capture the skeleton joint data many direct approaches (using 
 sensor directly to capture the skeleton data) have been used by
everal researchers. Optical Motion Capture System (OptiTrack MoCap)
ensors, such as Vicon, which are marker-based methods have been 
sed by several studies in the scope of rehabilitation [35,69,80]. In 
his approach, some reflective markers can be attached to several 
ody joints and the patient’s movements are tracked by some trackers
cameras). Then, with some processing of the data in the computer,
he 3D joint positions are captured [81]. The OptiTrack method for
apturing 3D skeleton data is known for its accuracy in capturing the 
xact position and better processing capability [81]. However, due 
o the higher cost of acquiring the sensors for capturing data, many 
esearchers use pose estimation algorithms or other cheap skeleton 
ata-capturing sensors. 

With the advent of the Microsoft Kinect XBOX 360, the technology
f 3D sensing was transformed to a huge extent. This sensing technol-
gy was introduced for the purpose of the gaming industry originally.
owever, it caught the attention of the research community very
uickly and it was used in various research fields like gesture recogni-
ion [82], pose detection [83], object detection citemanap2015object,
ign language recognition [84], virtual reality applications [85], and 
ehabilitation [56]. The first version of the Microsoft Kinect Sensors
Kinect V1) was meant to be used in the gaming industry and then 
sed by researchers in various research fields as a sensing method. 
he second version of Kinect (Kinect V2), which was for Windows, 
ad better resolution than the previous one and also has been used for
cientific research. Both of these devices have one depth and one RGB 
amera. In 2019 Azure Kinect sensors were introduced by Microsoft
or scientific purposes, mainly for computer vision and speech analysis
pplications [86]. Among the three sensing technologies for 3D imaging
f Time-of-Flight (TOF), Stereo vision, and structured light, the MS
inect V1 uses structured light technology, in which the device projects 
ome known signal to the object and inspects pattern distortion on 
he signal received back. This method is suitable for indoor activity
onitoring because the pattern distortion is highly sensitive to envi-

onmental interference [87]. MS Kinect V2 and Azure Kinect utilize the 
OF method of sensing in which the camera sends out IR lights, and
ecords the time or distance it takes for the IR light sent out to return
ack. The dataset collected by this sensor is limited to indoor scenes, 
ecause of the operational limitations of the IR sensor in the sense of 
ight [55]. This method compared to the structured light is more robust
o changing lighting conditions [88]. Compared to the first two versions
f Kinect, Azure Kinect has several advantages, including better depth
esolution, a lighter device (Azure Kinect is a lot smaller than the 
irst two versions), and is more accurate in positioning the skeleton 
ata [86]. The Skeleton joint positions captured by the SDK designed
or each of the devices of Azure Kinect, Kinect V2, and Kinect V1, are 
2, 25, and 20 joints, respectively. To the best of our knowledge no 
ther previous studies have used the Azure Kinect sensor for capturing
hysical rehabilitation exercises and due to the reasonable prices of this 
ensor compared to other accurate methods such as OptiTracks, this 
ensor should be explored in future studies. Table 2 illustrates several 
ther depth sensors which can capture depth 3D sensors with their 
elated features. Some of the sensors such as Intel RealSense D455 use 
tereoscopic technology for capturing the depth data by using several 
ameras distant from each other like the human eyes. These methods
eed separate SDKs for capturing the skeleton data from the depth data. 
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Table 2 
Several depth sensors and their features such as depth image resolution and frame rate of capturing image. 

Depth Sensors Technology Depth FOV frame rate (FPS) Depth image
resolution 

Compatibility Price 

Kinect V1 Structured light H:57◦,V:43◦ 30 320 × 240 px Windows 7,8 (USB
2.0) 

≃ $150 

Kinect V2 TOF H:70◦, V:60◦ 30 512 × 424�� Windows 8 and 
higher (USB 3.0) 

≃ $160 

Azure Kinect TOF NFOV: 65◦ WFOV: 
120◦ 

30 NFOV: 640 × 576 
WFOV: 512 × 512 

Windows 10 64-bit 
(USB 3.0) 

≃ $400 

Intel RealSense L515 TOF H:70◦, V:55◦ 30 1024 × 768 px USB 3.0 ≃ $350 

Intel RealSense D455 Stereoscopic H:87◦, V:58◦ Up to 90 1280 × 720 px USB 3.0 ≃ $240 

Intel RealSense D435 Stereoscopic H:87◦, V:58◦ Up to 90 1280 × 720 px USB 3.0 ≃ $180 

Orbbec Astra Structured light H:57◦, V:45◦ 30 640 × 480 px Windows 7 and 
higher (USB 2.0) 

≃ $160 

Asus Xtion Pro Structured light H:58◦, V:45◦ 30 640 × 480px USB 2.0 ≃ $150 
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6. Comparative analysis of available datasets 

Observing the previous studies on collecting data for rehabilitation
xercises, confirms the fact that there are a few publicly available 
keleton-based datasets collected for targeting different impairments.
or example, in a study conducted by Ar and Akgul [89], the authors 
sed a Microsoft Kinect sensor to capture the RGB and depth videos
f the participants performing several rehabilitation exercises for knee
nd shoulder rehabilitation. However, this study’s major limitation is
hat it does not include joint and skeleton information, which can be 
seful profoundly in HAR/HAE tasks. The reason behind the lack of 
ublicly available datasets for rehabilitation exercises is the privacy is-
ue for patients and the property rights of organizations [44]. Even the 
reviously described rich datasets like NTU RGB-D [46] are for daily
ctivities and they are not including rehabilitation exercises which are
omplex activities. Table 3 illustrates some of the characteristics of 
he datasets which include skeleton data as one of the vision-based 
odalities collected. These datasets encompass different vision-based
odalities to provide sufficient information for evaluating different

utomatic systems trained on them. However, there are several limita-
ions for the existing datasets (such as using old low-resolution sensors,
apturing data in single-view, and targeting specific populations or 
ody limbs) which need to be addressed.

Most of the datasets collected previously are targeting some spe-
ific impairments and their therapy activities. One of the famous
atasets created and published in 2018 is UI-PRMD (University of 
daho-Physical Rehabilitation Movement Data) [69] which is cap-
ured to address the lack of publicly available datasets for therapy 
ovements. One of the strengths of this dataset is that it includes 
0 general rehabilitation exercises and is not targeting any specific
mpairment group. They asked 10 healthy individuals to perform both
orrect actions and incorrect actions (simulating the patients) for 10
epetitions. This dataset includes the positions and angles of body joints
s skeleton data. Although the present paper is exploring skeleton data
s a sufficient modality for recognition and evaluation, using multi-
odality techniques can improve the performance of any HAR/HAE

ystem. However, the UI-PRMD is an example of studies not providing
ny further vision-based modalities as a data format.

Another recent dataset collected and published by Miron et al. [71]
s utilizing one Kinect V1 sensor to record skeleton data from 29
ubjects (15 patients and 14 healthy people) performing 9 general
ehabilitation exercises. This dataset provides skeleton data and the
epth images captured and not the RGB streams. Other than having
imited modalities, this dataset is suitable for HAR tasks since it only
9

rovides labels for ‘‘correct’’ and ‘‘incorrect’’ gestures. e
The University of Bristol’s (Sensor Platform for HEalthcare in Res-
dential Environment) SPHERE-Staircase2014 [73], SPHERE-Walking 
015 [72], SPHERE-SitStand2015 [72] are a series of datasets including
he normal and impaired version of each of the walking, walking on 
he staircase and sitting and standing movements. The actions in these
eries of datasets have been performed in both normal and abnormal
ait (simulating the patients with stroke and Parkinson’s disease with
he supervision of a physiotherapist) in front of either Kinect or ASUS
motion RGB-D camera. Although these datasets are a great source for
otion quality evaluation, they are specific to certain targeted actions

nd the datasets are not generalized.
The KIMORE dataset is another recent dataset, published in 2019

90], addressing the limited participants problem. In this study, 44
ealthy and 34 unhealthy subjects perform 5 repetitions of 5 phys-
cal activities for back pain rehabilitation. Kinect V2 was used for 
ction recording and the depth streams and joint positions and joint
rientations were extracted using the sensor. The RGB images are also
aptured, however, they are not publicly available. This dataset could
olve some problems related to a limited number of participants and
apture different modalities; however, this study includes only a limited
eries of actions related to a specific target impairment (back pain).

AHA-3D [91] is a dataset captured in 2018 for assessing the lower
ody fitness in seniors while performing exercises of chair-stand, feet
p and go, step test, and unipedal stance. A Kinect V2 and an RGB cam-
ra are used to capture the information related to these actions from 11
oung and 10 elderly people. Although this dataset has several vision-
ased modalities which are useful for creating a powerful multi-modal
AR/HAE system, this dataset lacks in the number of action classes and

he number of subjects. The TRSP [92] dataset was created to address
he lack of an appropriate dataset for detecting compensatory motions
uring the rehabilitation period of stroke patients. Such a data set is 
seful in developing an automatic system for coaching stroke survivors
n proper positioning. A Kinect V2 was used to capture the skeleton
ata from four compensatory movements performed by 19 participants.
his dataset was also created for a specific purpose and includes limited
ctions, participants, and modality.

Although some of the limitations of these studies are mentioned 
pecifically for each of them, there are some important general lim-
tations that have not been considered by any of these datasets. For 
xample, these datasets could be captured using sensors with higher
ccuracy compared to sensors like Kinect V2, such as MS Azure Kinect.
nother problem they are facing is that they have used single sensors,
ithout changing their point of view, and position of them, which can
ighly impact the RGB and depth data collected. The environmental
alibrations of the lab used for data capturing have not been consid-

red and the data was collected in constant environmental situations 
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Table 3 
Public datasets for physical rehabilitation exercises. 

Dataset (year) Target group Participants Sensors Physical activity Objective Collected Limitations 
modalities 

IRDS (2021) General 29 subjects (15 Kinect V1 several Classification of Skeleton data, Limited number of 
[71] patients, repetitions correct/incorrect depth images modality,

14 healthy of 9 general actions limited number of subjects, 
people) rehabilitation regression discrete labels only 

exercises (both (predicting suitable for HAR research, 
upper a score for imbalance data 
and lower limb) actions) 

KIMORE Back pain, 78 subjects (34 Kinect V2 5 repetitions of regression Skeleton data, Specific target population, 
(2019) [90] Stroke, patients, 44 5 exercises (predicting a depth images, specific physical activities, 

Parkinson’s healthy) for back pain score for actions) RGB(not public) limited number of actions 
(both upper
and lower limb) 

UI-PRMD General 10 healthy Kinect and 10 repetition of regression Skeleton data Limited number of 
(2018) [69] subjects VICON 10 general (predicting modality, limited number 

(performing both rehabilitation a score for of subjects 
correct exercises actions)
and incorrect (both upper and 
actions) lower limb) 

SPHERE- Walking-up 12 participants ASUS Xmotion 48 sequences of Classifica- Depth streams Limited to one action, 
Staircase stairs gait performing RGB-D camera 1 action tion/regression and Skeleton limited number of 
(2014) [73] normal and including data modalities, 

abnormal gait walking limited number of subjects, 
up the stairs specific physical activities, 
(lower limb) limited to certain limb 

rehab 

SPHERE- Walking gait, 10 participants ASUS Xmotion 40 sequences of Classifica- Depth streams Limited to one action, 
walking (2015) simulating stroke performing RGB-D camera 1 tion/regression and Skeleton limited number of 
[72] and Parkinson’s normal and action including data modalities, limited number 

patients abnormal gait walking of subjects, 
(lower limb) specific physical activities

(limited number of
actions),
limited to certain limb 
rehab 

SPHERE- Sitting and 10 participants Kinect V2 109 sequences of Classifica- Depth streams Limited to one action, 
SitStand standing gait performing 1 tion/regression and Skeleton Limited number of 
(2015) [72] normal and action including data modality,

abnormal gait walking (lower limited number of subjects, 
limb) specific physical activities,

limited to certain limb 
rehab 

TRSP (2017) compensatory 19 subjects (10 Kinect V2 4 compensatory Classification Skeleton data Limited to one action, 
[92] motion healthy movements Limited number of 

detection in , 9 stroke (upper limb) modality,
stroke patients patients) limited number of subjects,

limited to certain limb 
rehab 

AHA-3D Assessing senior 21 subjects (11 Kinect V2/ 79 sequences of Classifica- Skeleton data, limited number of subjects, 
(2018) [91] lower body young, RGB camera 4 actions (lower tion/regression depth, RGB specific physical activities, 

fitness levels 10 elderly limb) images limited number of actions, 
individuals) limited to certain limb 

rehab 
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(without changing the background or the lighting or the temperature).
In addition, some of the actions such as rehabilitation exercises related
to neck joint recovery are not considered in the exercise setting. All of
these raise the need to create a general dataset that can solve some of
the problems mentioned above in the future. The more variations in 
subjects and camera views and backgrounds, the more accurate will be
the evaluation of different techniques developed on the same dataset.
The introduction of a new activity recognition dataset for the purpose
of monitoring actions during the rehabilitation period will enable the
research community to apply different new AI techniques and explore
10

their potential and performance. t
. AI methods for representation (feature) learning and evaluation 

After generating a proper dataset, including a balanced number of 
amples for both correct and incorrect activities, the next important
tep is the design of the analysis pipeline. The objective of each study
lays an important role in designing the pipeline for proposing a 
ethodology. Reviewing the literature shows that different research
rojects were performed for developing automatic rehabilitation sys-
ems and each pursued specific objectives. This diversity in their objec-

ive makes the comparison difficult. In addition, the studies in this field 
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Table 4 
Skeleton-based methodologies proposed for automatic physical rehabilitation monitoring task. 

Study (year) Dataset Targeting
population 

Sensors Feature Modeling 
strategy 

Objective Contributions Limitations 

Chang et al.
(2011) [93] 

Non-public (2
young patients
performing
rehab exercises 
for 34 days) 

Upper limb 
motor 
impairment 

Kinect Posture based 
on the Joint 
angles 

Kinerehab Using Kinect 
posture
recognition for
counting the
correct exercises 

Confirms that the 
Kinect-based 
interventions 
enhance patients’
motivation for 
rehab, and improve
their performance 
over time 

Non-public dataset,
Preliminary
research, Not an 
AI-based HAE 
technique, Not
providing
continuous score for 
the patients to
monitor their subtle 
improvements 

Chang et al.
(2013) [94] 

Non-public (2
young patients
performing
rehab exercises 
for 34 day) 

Severe cerebral 
palsy with upper
limb motor 
impairment 

Kinect Posture based 
on the Joint 
angles 

Kinerehab Using Kinect 
posture
recognition for
counting the
correct exercises 

Confirms that the 
Kinect-based 
interventions 
enhance patients’
motivation for 

Non-public dataset,
Preliminary
research, Not an 
AI-based HAE 
technique, Not

rehab, and improve
their performance 
over time 

providing
continuous score for 
the patients to
monitor their subtle 
improvements 

Lin et al. Non-public (2 Upper limb Kinect Normalized Kinerehab Using skeleton Grading the actions Non-public dataset, 
(2013) [95] patients with impairment coordinates of data provided by using ME of Preliminary

upper limb joints Kinect and skeleton data and research, Not an 
disability perform prove the AI-based HAE 
performing statistical contribution of technique, very 
Tai-Chi rehab analysis on them rehabilitation limited 
exercises) exercises in understanding of 

recovery the improvement in
actions 

Exell et al. Non-public (3 Upper limb Kinect and Joint angle FES method comparison of Illustrated the Non-public dataset, 
(2013) [96] patients stroke stimulation trajectory for rehab and patients success of the Not an AI-based 

performing in 18 rehabilitation glove screening performance proposed system for HAE technique 
interventions) using the before and after improving the 

data collected FES with the patients’ movement 
from sensors reference actions and during reach 

using the plots and grasp activities 
for the joint
angle trajectory
changing in time 

Su et al. Non-public (3 Shoulder rehab Kinect DTW vector Dynamic Using DTW and Provided a good Non-public dataset, 
(2014) [97] shoulder rehab exercises captured from Time Fuzzy Neural action scoring Not an AI-based 

exercises skeleton data Warping system provided technique aligning HAE technique, 
performed 6 (DTW) a performance 80.01% of the time Requires domain 
subjects) algorithm evaluation with the experts’ knowledge to design 

and fuzzy technique scores fuzzy rules for new 
logic exercises. 

Benettazzo Non-public (2 Shoulder rehab Kinect Joint position ANN posture Providing audio Provided good Non-public dataset, 
et al. shoulder rehab exercises distance from recognition feedback for the detection of the very basic AI-based 
(2015) [98] exercises the reference actions using AI exercises and HAE/HAR technique 

performed by 10 action evaluate reliably 
participants) their correctness 

Antunes et al. Non-public Stroke, General Kinect, Asus Normalized Using Providing Provided an Not an AI-based 
(2016) [99] (Modify action, rehab Xtion PRO and mathematical visually human interpretable HAE technique 

Weight and temporarily approaches interpretable physical action 
balance) and aligned like feedback for assessment method 
public skeleton data Euclidean patients
SPHERE-Walking using DTW distance 
[72] 

(continued on next page) 
 
are rather new and the field has not been adequately explored, which
also highlights the potential for further research in this field. 

For example, in one study, Chang et al. [93] have used Kinect
sensors to leverage the human pose estimation capabilities of the Kinect 
11
SDK for counting the correct exercises performed by the participants in
physical rehabilitation (They call this system Kinerehab). This method 
was only proposed to do a performance evaluation of two young 

adults with upper limb impairments performing the exercises without 
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Table 4 (continued). 

Study (year) Dataset Targeting Sensors Feature Modeling Objective Contributions Limitations 
population strategy 

Eichler et al. Non-public (12 Stroke, upper 2 Kinect V1 FMA related Action Classifying Provided a good Non-public dataset, 
(2018) [100] patients with limb rehab features scoring using actions into precision (100% very basic AI-based 

stroke, 10 SVM and RF correct/incorrect accuracy for two HAE technique, 
healthy subjects based on the actions) based on utilizing handcrafted 
performing FMA FMA feature set just handcrafted features, Utilizing 
movements) features discrete values for 

action scoring and
classifying the
samples into
correct/incorrect 

Li et al. 
(2018) [101] 

UI-PRMD General rehab Kinect, 
VICON 

Scaled and 
mean shifted 
joint angle
trajectory, RMS
based 
soft-labels 

Different 
GAN 
structures 

Modeling and
evaluation of 
actions using
GAN 

Public dataset, First 
attempt for
modeling and
evaluation of 
actions through
GAN 

Not providing
continuous score for 
the patients to
monitor their subtle 
improvements 

Williams et al. 
(2019) [102] 

UI-PRMD General rehab Kinect, 
VICON 

Dimensionality
reduced 
skeleton data 
with AE 

GMM model 
for scoring
the actions 

Automatic 
assessment of 
physical
activities 

Public dataset, AI 
method for scoring
the action, proved
that dimension 
reduction methods 
such as AE perform
better compared to
other methods 
(PCA) 

Using this technique
might miss the
information about 
the correlation of 
joints, no specific
info about the 
contribution of 
joints in the action
scoring is provided 

Liao et al. 
(2020) [66] 

UI-PRMD, 
KIMORE 

General rehab, 
Back pain,
Stroke, 
Parkinson’s 

Kinect, 
VICON 

Dimensionality
reduced 
skeleton data 
with AE 

GMM Log-
likelihood 
method for 
scoring the
actions, 
spatio-
temporal
method for 
training an 
automatic 
scoring
model 

Automatic 
assessment of 
physical
activities using
spatio-temporal
technique 

Public dataset, AI 
method for scoring
the action, good
performance
0.02527 MAD on 
UI-PRMD, 0.03786 
MAD on KIMORE 

Using
spatial–temporal
technique might
miss the info about 
the correlation of 
joints, no specific
info about the 
contribution of 
joints in the action
scoring is provided 

Kim et al. 
(2021) [103] 

Chowdhury
et al. 
(2021) [104] 

Albert et al. 
(2021) [105] 

IRDS 

KIMORE 

KIMORE 

General rehab 

Back pain,
Stroke, 
Parkinson’s 

Back pain,
Stroke, 
Parkinson’s 

Kinect 

Kinect V2 

Kinect V2 

Heatmaps of
the skeleton 
joints 

Handcrafted 
features 
(angles and
distance 
between 
joints), raw 
skeleton data 

Normalized 
joint positions 

Pre-trained 
ResNet 

LSTM model 
with hand 
crafted 
features 
(LSTM-HF)
and 
LSTM-GCN 

Utilizing
GAN for data 
augmentation 

Patient 
identification 
through physical
activity 

Automatic 
assessment of 
physical
activities using
two different 
techniques 

Classifying the
actions into 
healthy/patient
using a classifier 
on original data
and augmented
data 

Public dataset Good 
performance for
classification 
(around 98% for a 
specific gesture) 

Public dataset, 
comparing the
average in every
fold of RMSE in all 
actions by
LSTM-GCN (0.191)
and LSTM-HF 
(0.290) shows 
LSTM-GCN is better 

Public dataset, 
illustrated that the 
model trained on 
the augmented data
have better 
F-measure over all 
of the classes 
compared to
original data 

Lack of HAE 
technique, for
scoring the actions
Using heatmap
technique might
miss the info about 
the correlation of 
joints 

No specific
information about 
the contribution of 
joints in the action
scoring is provided 

Not providing
continuous score for 
the patients to
monitor their subtle 
improvements, no 
specific information
about the 
contribution of 
joints in the action
scoring is provided 

(continued on next page) 
12
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Table 4 (continued). 

Study (year) Dataset Targeting Sensors Feature Modeling Objective Contributions Limitations 
population strategy 

Raihan et al. KIMORE Back pain, Kinect V2 Extracted Genetic Automatic Public dataset, AI Using this feature 
(2021) [106] Stroke, features using algorithm- assessment of method for scoring extraction technique 

Parkinson’s 1D LBP from optimized physical actions the action, Good might miss the info 
skeleton data CNN scoring performance about the 

(MAD 0.01337 on correlation of joints, 
the validation set no specific info 
for KIMORE) about the 

contribution of 
joints in the action
scoring 

Du et al. Non-public (2 Upper limb Kinect Raw skeleton GCN with Automatic Public dataset, No specific info 
(2021) [80] patients with impairment data self- assessment of proposed method about the 

upper limb represented as supervised physical (with an average of contribution of 
disability graph regularization activities MAE for all joints in the action 
performing exercises = 0.021) scoring
Tai-Chi rehab better than other 
exercises) previous methods 

Deb et al. UI-PRMD, General rehab, Kinect, Raw skeleton STGCN with Automatic Public dataset, Not providing 
(2022) [35] KIMORE Back pain, VICON data self attention assessment of Defining individual scores for 

Stroke, represented as model physical explainability of the each of the joints 
Parkinson’s graph activities with model for better 

variable length, feedback using 
providing attention model, 
explainable considering the 
feedback variable length of

the movements, 
better performance
compared to
previous methods 

Mottaghi et al.
(2022) [107] 

KIMORE Back pain,
Stroke, 
Parkinson’s 

Kinect V2 Features 
provided by
the dataset 

Deep Mixture
Density NN 

Automatic 
assessment of 
physical actions 

Public dataset, AI 
method for scoring
the action, Good 
scoring performance 

Using CNN-LSTM
might miss the info
about the 
correlation of joints, 
no specific info
about the 
contribution of 
joints in the action
scoring 
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proposing any AI-based HAE technique. In another research, Chang 
et al. [94] used the same methodology to evaluate the performance
of the two young patients and provided them with feedback. This
proposed system provided 3 Degrees of Freedom (DoF) for performing
physical rehabilitation exercises in the upper limb, which included 1
DoF for elbows and 2 DoF for shoulders. That is an upgraded version 
of the previous research with 1 DoF. These studies can be considered 
preliminary research on the use of Kinect sensors for rehabilitation 
purposes and do not include major AI-based proposed methodology.
In addition, counting the correct exercises utilized in these papers does
not provide any continuous score for the patients to know how close
they are to getting the action correct. However, one of the major results
of these studies is to confirm that Kinect-based interventions enhance
patients’ motivation for rehabilitation, and improve their performance
over time. According to Debnath et al. [56], to have a better scoring
unction for physical activities, Exell et al. [96] compared the joint
ngle trajectories. In this study, the authors used Functional Electrical
timulation (FES) which is used in stroke rehabilitation as a way
f assisting patients to improve their body movements. The Kinect 
ensor and a stimulation glove are utilized for data collection. The 
omparison of patients’ performance before and after FES with the
eference actions using the plots for the joint angle trajectory changing
n time illustrated the success of the proposed system for improving the
atients’ movement during reach and grasp activities.

Mean joint angle error can also be used as a way to grade an 
ction, which has been used in another study related to the former 
13
nes mentioned above as conducted by Lin et al. [95]. In this study, 
he authors asked 2 patients with upper bone impairment to perform 
 Tai-Chi regimen for upper limb rehabilitation which includes 10
tanding and 18 sitting actions illustrated in Fig. 5. This paper includes
omprehensive information about the skeleton data normalization and
erforming an action scoring technique that they have utilized. The
ctions were graded through a strategy and feedback was provided for
he participant, to suggest a repetition on performing the action or not.

In the study conducted by Su et al. [97], the authors utilized the 
TW and a fuzzy neural system to perform better scoring of actions 
nd provide interpretable feedback based on the speed and the DTW
istance of the actions performed by the participants from standard
ction. Benettazzo et al. [98] utilized joint position Euclidean distance
rom the reference action as a feature set for providing audio feedback
or performance evaluation. All of these methods were proposed in a 
ay that they mostly aimed to produce feedback based on the skeleton
ata extracted from the Kinect sensors and their differences from the 
eference actions. However, one of the most important actions that can
e performed is to use AI-based techniques (instead of mathematical
ifference techniques) to automatically score the actions, which makes
he progress of decision-making faster using their pattern recognition
bility. To solve this issue many studies changed their perspective to
uild an AI-base automatic scoring system.

In general, one of the most important phases in building any auto-
atic recognition/evaluation system is to find the best representation

f the data, which mainly includes finding and extracting the most 
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Fig. 5. Tai-Chi rehabilitation exercise regimen including (A) 10 standing exercises and (B) 18 sitting exercises [95]. For more details, please refer to the cited paper. 
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relevant features. There are two general approaches to performing fea-
ture extraction, which is hand-crafted feature extraction, or automatic
feature extraction mainly using DL strategies.

The conventional approaches for skeleton-based activity recognition
are mostly based on extracting hand-crafted features and then applying 
some ML methods to them [108,109]. In the area of activity assess-

ent for physical rehabilitation, one of the hand-crafted feature-based
ethods is introduced by Eichler et al. [100], in which the patients

nd healthy participants perform the Fugl-Meyer Assessment (FMA)
hysical activities as a clinically approved intervention for people
urviving from a stroke. Two Kinect sensors were utilized for action 
ecording and one medical professional provided FMA scores for the 
ctions. Some features relating to the speed of actions and statistical
alues (such as mean, max, and variance) of different measurements
f angle and distance of the skeleton data were used as the feature
et for representing the data. Then, C4.5(as a decision tree method),
upport Vector Machine (SVM), and a Random Forest (RF) classifiers
ere used to classify samples into patient and healthy (based on the 
MA score, where 0–1 is the score for the patient and 2–3 is the score
or the healthy participant). In another attempt, Antunes et al. [99]
rovided a visually human-interpretable feedback system that uses 
hree different datasets to capture the skeleton data, then performs
ome pre-processing on the data to align them temporarily and spatially
sing Dynamic Time Warping (DTW), and finally provide feedback
ased on the Euclidean distance of the joints to the reference action
o provide a score.

However, recently there are some proposed methodologies using 
 Deep Learning approach on the raw collected data for the same 
urpose. These methods mostly include three main Neural Network
rchitectures, i.e. Recurrent Neural Networks (RNNs) [45,46,110], Con-

volutional Neural Networks (CNNs) [111–113], and Graph Neural Net-
works (GNNs) [44,114–116]. For each of these methods, the coordi-
nates of the joints should be represented differently, such as vector
sequences, pseudo-images, and graphs, respectively. According to Shi
et al. [44], in the field of HAR, sequence-based techniques utilize RNN-
based architectures and feed the skeleton data as a sequence of joints 
(time-series sequences), to capture the temporal features of the data.
CNN-based frameworks can capture the spatial features of the skeleton
pseudo-image representation of the skeleton data and perform an image
classification task. In some studies, instead of representing skeleton
data as sequences or pseudo-images, authors used graph-based models
in which the skeleton data is represented as a graph. In the graph
representation, joints are vertices and bones are edges. According to Shi
et al. [44], the reason for the popularity of graph-based techniques for
modeling skeleton data is that compared to the sequence-based meth-
ods and image-based representation, the graph-based methods are more
reasonable since the skeleton in the human body is naturally organized 
as a graph. There are some kinematic dependencies between skeleton
bones and joints, and GNN models by applying special convolutions
14
n over graph edges corresponding to the joints can capture these 
ependencies [117,118].

Deep Learning techniques for physical rehabilitation exercise eval-
ation have been explored recently in a small number of papers. In
he study conducted by Williams et al. [102], the authors utilized an 
utoencoder (AE) for dimensionality reduction and a Gaussian Mixture
odel (GMM) to derive a parametric probabilistic movement model

f the density of the movements to evaluate the human movements in
hysical rehabilitation exercises. MSE, MAE, and MPE for two exercises
f deep squat and standing shoulder abduction with four approaches
f scoring (GMM, DTW, Mahalanobis distance, and Euclidean distance) 
ere presented in this paper. This paper showed that the AE model
roduces better results compared to other dimensionality reduction
ethods, such as Principal Component Analysis (PCA).

Also, Liao et al. [66] proposed a pipeline with three important
omponents of dimensionality reduction for skeleton data, the scoring
ethod for the actions, and the spatio-temporal-based methodology for

coring the actions. This paper investigated dimensionality reduction
or skeleton data using AEs (including 3D data of 15 to 40 skeleton
oints regarding the sensor type) which is rarely investigated by other
tudies. The authors proposed a Gaussian Mixture Model (GMM) based
odel for scoring the actions. Finally, a spatio-temporal architecture,

ncluding 1D CNNs and Long Short-Term Memory (LSTM) layers, was
sed to perform the regression. Kim et al. [103] performed a patient
dentification using a pre-trained ResNet architecture on the heatmaps
xtracted from the skeleton data of the healthy and patient people
n the public IRDS dataset. This method illustrated good performance
n classifying the patients. However, it lacks scoring of the actions,
hich can help the patients to understand to what extent they are 
erforming the actions well. One of the latest research conducted by
ottaghi et al. [107], proposed a pipeline called Deep Mixture Density
etwork(DMDN) including CNN, and LSTM layers for capturing spatio-

emporal features of the motion by adding mixture density layers to 
redict the scores for the skeleton data in the KIMORE dataset. The 
etrics of Root Mean Square Error (RMSE) and Spearman correlation

oefficient of the validation dataset for each action were provided by 
he authors and according to the results, the DMDN provides good
erformance compared to Liao et al. [66] in some of the exercises. 

In 2021 Raihan et al. [106] utilized a mixture of both hand-
rafted features and Deep Learning methodologies to propose a genetic
lgorithm-optimized CNN model trained on the 1D LBP (Local Binary
attern) feature sets extracted from the skeleton data from KIMORE
ataset. The resulting Mean Absolute Deviation (MAD) for the testing 
et in the KIMORE dataset illustrates that the method has a better 
egression performance compared to the method proposed by Liao 
t al. [66]. Chowdhury et al. [104] conducted research on comparing 
he performance of two pipelines including feeding the handcrafted 
eatures provided by the KIMORE dataset to an LSTM neural network 
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Fig. 6. Attention maps provided in the paper [35] for five exercises. To represent the importance of each joint, the circles are shown bigger when they have higher importance.
he figure represents (a) the Average attention map (left) and joint role or importance (right) of expert users. In columns (b) and (c), the left figures illustrate the role (or 

mportance) of different joints in scoring, when the score gets high or low respectively, and the right figures show the difference in the role of joints from the reference movement 
where the violet circles are bigger, the patients needs to pay more attention to perform better action). 
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(LSTM-HF) and feeding the raw skeleton data as with a graph repre-
sentation to a Graph Convolutional Network (GCN)-LSTM architecture.
The RMSE reported as an average of cross-validation of every fold
for each exercise illustrates that LSTM-GCN (average RMSE=0.191)
performs better compared to LSTM-HF (average RMSE=0.290). The
results in this paper prove the fact that the GCN technique can capture
better spatio-temporal features of the human body compared to the
handcrafted features provided by the experts. In similar research, Du 
et al. [80] utilized a GCN with a self-supervised regularization on the
UI-PRMD dataset to show that the GCN can capture spatial information
of the human body. The mean absolute error (MAE) between the 
predicted score values and the ground truth performance scores on the
validation set for the 10 exercises shows that the proposed method 
(with an average of MAE for all exercises of 0.021) performs better
than other methods such as Liao et al. [66] (with an average of MAE
for all exercises= 0.025).

One of the major limitations of the previous studies is that the HAE
systems are not able to provide interpretable and explainable feedback
for the patients to know which joints are the most contributing (salient)
ones in the decision-making progress of the system. Providing an ex-
15

plainable methodology can help the patients to improve their actions by m
aying more attention to the special joint movements resulting in low
cores and assist the patients in monitoring their actions and trusting a
ransparent model instead of a black box. Another important limitation
f the previous works is that in order to feed the action performed by a
articipant to a CNN or LSTM model, they had to convert the captured
ideos to fixed-length ones which contradict real-world situations since
he actions can be performed with different speeds and repetitions.
o address both of these problems and create a model with better 
erformance, Deb et al. [35] proposed a Spatio-Temporal GCN (STGCN)
ith a self-attention layer. This paper provides a comparison of dif-

erent methods such as [66,116,119–121] with the evaluation criteria 
uch as MAD, Mean Absolute Percentage Error (MAPE) and RMSE
cores. Comparing these criteria for all of the 10 exercises in UI-PRMD
nd five exercises in KIMORE illustrates that the proposed method
erforms better in scoring for most of the exercises. The attention 
ap illustrating the importance of the joints in scoring each action is

iven in Fig. 6. To the best of our knowledge, this is the first attempt
n providing explainable scores for actions in physical rehabilitation
ssessment and this direction needs to be explored further.

Due to the fact that it is challenging to create a large dataset in the

edical domain (including the scope of this paper), which is essential 
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for deep learning models to learn the pattern in data, some studies tried
to solve this situation with data augmentation methodologies. Albert
et al. [105] proposed a Generative Adversarial Network (GAN) with
CNN and LSTM layers for producing sufficient synthetically augmented
data. They illustrated that a fully convolutional network classifier 
trained on the augmented data can classify the samples into patient
and healthy better than the original data. Li et al. [101] investigated 
different types of GAN models, such as Deep Convolutional GANs
(DCGAN) [122], Wasserstein GAN [123], and Recurrent GAN [109]
for both data augmentation and performance evaluation. However, the
classification accuracy of the GANs is assessed based on a series of 
introduced soft labels for the action sequences. 

8. Evaluation methods 

In this subsection two levels of evaluation criteria selection for 
the skeleton data analysis is discussed. In the first level, evaluation
methods for the human subjects’ activities are discussed which plays an
important role in the final HAE system performance. The second level
encompasses the evaluation techniques proposed by different studies
to assess the performance of ML/DL-based HAE systems compared to
other pipelines. 

8.1. Evaluation methods for human subjects’ actions 

In this subsection, we discuss performance evaluation approaches
for the human subjects’ actions utilized in different previous studies.
In the level of the participants’ action evaluation, which includes the
‘‘degree of correctness’’ of the physical activities performed by the
subjects, the actions can be annotated with discrete and continuous 
scores. In other words, the approach of scoring the actions may frame
the problem as either classification or regression [56]. The action 
evaluation methodology plays an important role in the validation and
interpretability of the whole HAE system. Table 5 includes some of the 
most common methods for scoring the actions which we will discuss in
the following.

According to Mangal et al. [64], generally human motion scor-
ing can be explored in two main categories, (1) rule-based and (2)
template-based approaches. Rule-based approaches (or clinical scoring)
are providing scores for the actions based on a set of rules provided by
the clinicians who assess the movement with tools and questionnaires.
In other words, some of the previous studies preferred to use the knowl-
edge and experience of the physiotherapists in scoring during the data
collection stage. Some of the very basic related methodologies such 
as counting the correct exercises [93,94] have been proposed previ-
ously to evaluate patients’ improvement performance by comparing the
number of correct exercises before and after performing some physical
activities to the correct actions performed by the experts. This method
lacks a very important characteristic of an automatic assessment model,
which is the interpretability of the scoring methodology. The HAE
systems designed based on this scoring method are unable to assist 
the expert in monitoring the subtle improvements in the performance.
FMA [124] and Unified PD Rating Scale (UPDRS) [125] are some
of the clinical scoring methodologies utilized by different authors for
action assessment [100,126]. As another example, clinicians monitored
the actions performed by the healthy and patient participants in the
KIMORE dataset [90] through a questionnaire called the Exercise Ac-
curacy Assessment Questionnaire (EAAQ) [127], which is illustrated
in Fig. 7. According to this assessment system finally, each action is
quantified through three scores of the clinical Total Score (TS) as the
sum of all of the ten identified scores; the clinical Primary Outcome
(PO) score as the sum of the scores of the first three questions; and the
clinical Control Factors (CF) as the sum of the last seven questions. In
the data collection related to the IRDS dataset [71], the authors utilized
the expert knowledge to provide scores as labels of correct/incorrect to
the participants performing the actions. 
16

g

These methodologies are able to provide powerful and real-world 
cores because of using the experts’ knowledge. However, there are 
everal limitations to this data annotation method. First, in most of the
ata collection procedures access to different experts from different dis-
iplines (such as both computer science and medical science) is limited.
n addition, in some cases, the scoring methodologies that the medical 
xperts use might vary based on different tools and questionnaires. 
his makes the data more specific to a certain tool and questionnaire
esults and hinders the researchers from finding a more generalized
AE pipeline for action assessment. It fails in generalizing the model

or new physical activities not clinically scored and not introduced to 
he model before. Moreover, the reliability of the scores provided is 
ighly dependent on the experience, knowledge, and possible bias of 
he expert scoring the actions. Therefore, we recommend that future
esearchers in the related area provide an automatic procedure to create
eneralized annotations. To reach this goal, it is preferable to use a 
emplate-based scoring approach in which actions are being assessed
ompared to a reference perfect action.

The template-based scoring approach can be classified into two 
roups of model-free (direct matching) and model-based group of 
etrics [66]. The model-free approach includes applying a distance 

unction between the sequences of actions performed by the participant
nd the reference action. Utilizing distance functions as scoring criteria
ssists us in providing a generalized qualification method, which can 
e used for new types of physical activities. For example, to provide 
 more generalized and interpretable score for assessing the actions 
erformed by the patients, some studies proposed grading the actions 
hrough Mean Absolute Error (distance) (MAE) or MAD [95]. For
xample, Lin et al. [95] used joint position (after scaling them) and 
ngle mean error as a measuring method for monitoring the progress 
f patients. They used the distance/error (denoted by �) function 
llustrated in Eq. (1) to find the distance of 3D joint positions of the 
eference (��) and patients (��) movements considering that the Kinect
ensor can capture � joints: 

1 
� 

� = 
∑

|�� − ��| (1)
� �=1 

Then, they provided a set of discrete scores ranging from 0 to 2, in 
which 0 means the ME for both of the joint positions and angles was 
not higher than a threshold, 1 means the ME for either joint position or
angle was higher than a threshold, and 2 means that the ME for both
of the joint positions and angles was higher than a threshold. Although
this methodology improved the understanding of the performance of
the patients slightly, since it provides a discrete score, changes in 
the improvement of the actions are not noticeable. In addition, these
scores are not taking into account the whole temporal sequence of
the action being performed from the starting point to the end of the 
action. In general, methods like MAE and Euclidean [95,96,98,128]
distance for comparing the two time series are not suitable because 
they are not considering the variations in the length of the time series
vector (length of recording). For this reason, methods like DTW are 
being used as a distance metric for time series recordings with different
lengths [97]. In general, DTW is a method for recovering the optimal
temporal alignment of two sequences of time series with different and
variable lengths [129]. This method and other versions of it have 
been used in several papers as a pre-processing phase to align two 
human actions with different lengths [99]. In specific, according to 
Zhou and De la Torre [130] given two time series of � = [�1, … , ��]
and � = [�1, … , ��], DTW is a technique to align X and Y with different
engths of n and m such that, the following sum of square cost error is
inimized. This method can also be used for scoring the actions.

Compared to model-less approaches, the model-based metrics use
robabilistic methods for modeling the skeleton motion data and em-
loy the log-likelihood for performance evaluation [66]. According to
angal et al. [64] this approach is advantageous since it generates a 
eneralized score for any type of action with good accuracy. Hidden 
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Fig. 7. The questionnaire used in the KIMORE dataset for scoring participant’s action performance [90]. 
Table 5 
List of common action evaluation methods and their limitations and strengths. 

Subject performance Some of the papers Pros Cons 
evaluation method using the criteria 

Counting the correct [93,94] Preliminary Not monitoring the 
exercises (discrete methodology subtle improvements in 
scoring) the actions 

MAE of joint [95] Providing a better Not taking the whole 
positions understanding of the performance of the 

action compared to the temporal action from 
discrete scores the starting to the

ending point 

MAE of joint angles [95,96] Providing a better Not taking the whole 
understanding of the performance of the 
action compared to the temporal action from 
discrete scores the starting to the

ending point/ not
suitable for time series 
data 

Euclidean Distance [98,99,102,128] Providing a better Not taking the whole 
of skeleton data understanding of the performance of the 

action compared to the temporal action from 
discrete scores the starting to the

ending point/ not
suitable for time series 
data 

DTW and its [74,97,102,131] Suitable for time series Probably not as 
variations data with variable accurate and 

length generalized as 
model-based methods 

GMM or HMM [66,102,132] Model based method of – 
scoring (accurate and
generalized) 
c
i
t
e
t
t
d
p

Markov Model (HMM) and GMM are some of the well-known model-
based methodologies for scoring the actions based on the probabilistic
density functions [66,102,132]. 

.2. Evaluation methods for HAE system 

The second step in the evaluation process is the evaluation and
comparison of the HAE systems based on some standard classification
and/or regression metrics. In other words, a very essential step in 
17
onducting research on designing an AI technique for action evaluation 
s to explore the existing performance evaluation criteria for validating 
he proposed HAE system. However, according to Lei et al. [11], the 
valuation criteria vary in different studies performed in rehabilita-
ion exercise assessment because of its non-uniformity in formulating 
he data collection. Most of the studies in this scope use their own 
ataset (which are non-public because of ethical issues and intellectual 
roperty restrictions), with different configurations, and evaluation 
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criteria, which makes it harder to compare different DL/ML-based
methodologies applied on them.

As mentioned in the previous section, many papers used MAD, MAP,
RMSE, Spearman correlation coefficient, and maybe other methods for
evaluating regression models. However, there is no uniformity and
coherency in using these criteria to make them comparable with future
works. One interesting limitation of previous related work related to the
evaluation criteria is not paying attention to the variations in actions
cross-subject and cross-view and therefore did not provide a cross-
subject and cross-view train-test split and score. For example, in the 
Shahroudy’s et al. [46] study they used one cross-subject evaluation in
which they split the data into two sets of train-set and test-set based on
the subjects only. In cross-view evaluation, only the data collected by
the two front cameras were for training and the data from camera 1 is
used for the testing.

In addition to the previously mentioned limitations, it is worth
mentioning that all of the studies including designing an HAE sys-
tem for rehabilitation problem provided the general scores for the 
actions [35,45,80,105,107]. However, a general score for each action 
diminishes the explainability of the activity feedback in which the
patient will not be able to interpret the score and decide which body 
part to improve. In an attempt to create interpretable feedback, Deb
et al. [35] utilized the attention map to illustrate the problematic body
part movements. However, to the best of our knowledge, the use of 
separate scores for each body part needs to be studied further in the
future. 

9. Summary of the detected limitations of previous studies 

In this section, we briefly discuss the detected challenges in the
revious related studies. The studies on developing HAE systems for
ehabilitation exercises have the following gaps: 

• The previous related public datasets have many limitations such 
as limited data, single-view data capturing, targeting a specific
population, low-resolution capturing devices, and discrete label-
ing of the activities. This raises the need for new data collection
to cover all of these gaps. 

• The studies conducted on developing AI-based methods for HAE
are very limited and few in number, which shows the potential of
this area to be explored further. They have used different datasets
for different targets (for activity recognition, or scoring the action
based on correct/incorrectness, or scoring actions with a contin-
uous label). Since, providing a continuous label can demonstrate
the improvement of the action better, developing a more accurate
HAE system for this aim is necessary. 

• The accuracy of the scoring system plays an important role in
effective treatment. Due to the fact that very limited studies in
the literature have been detected, further studies on promoting
scoring accuracy should be conducted. 

• The related methodologies provide feedback in a way that the 
patient and expert are provided with either label for actions 
as correct/incorrect or continuous scores. However, one future 
study direction can be to use interpretable scores including visual,
audible, or tactile tangible feedback. This feedback system can 
either be used as a reminder (of the incorrect posture or action
of the patient) or guidance (of the correct performance of the
activity) method for the patients. That can play a key role in a
successful rehabilitation procedure. 

0. Conclusion 

Physical activities have been widely used by physiotherapists as 
he most adequate prescription for the physical rehabilitation of differ-
nt disabilities. With the advent and combination of computer vision
18

ethods and high-resolution sensors, many studies proposed different 
L/DL-based activity recognition and evaluation assistant systems to
elp medical experts with decision-making and prescriptions. This pa-
er comprehensively reviews the different stages of designing a system
or such a task. Thus, the current review contributes significantly to 
he literature on automated assessment of physical activity and exer-
ise. First, we discussed about different data-capturing technologies,
hysical activities to be captured, and the challenges of data collection
or physical rehabilitation. Then, we explored the recent ML/DL-based
ethodologies proposed by different studies for the HAR/HAE task

ased on the skeleton modality, together with their evaluation methods
nd the limitations and related gaps.

As mentioned above, the focus of this work is exploring the HAE
ystems built based on skeleton data for the rehabilitation problem.
his decision is made to constrain the research domain in order to make 
onducting this systematic review feasible. Thus, it is worthwhile to
uggest the exploration of different modalities (such as radar, audio,
earable, and Wi-Fi) utilized for the same purpose in future studies to
xamine their computational cost and accuracy. This will pave the way
or future researchers in activity type selection for the specific modality
hat they are using as the input data. Another future work that we 
ould offer is a comprehensive analysis of designing HAE systems for
eneral applications (including rehabilitation actions, sports, and daily
ctivities) for a better comparison of different techniques’ performance
especially DL-based methods). 
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