19,437 research outputs found

    Technology Teacher: Singing the Black and Blues

    Get PDF
    Gives simple, yet authoritative answers to the questions "Why is the sky blue?" and "Why is the sky black at night?" Combines technology with its application to Earth science, astronomy, and cosmology, and does so via language arts and music! This article was originally written for and published by the International Technology Education Association in its journal 'The Technology Teacher.' It is now archived on The Space Place Web site. Educational levels: Middle school, High school

    The MUSIC of CLASH: predictions on the concentration-mass relation

    Get PDF
    We present the results of a numerical study based on the analysis of the MUSIC-2 simulations, aimed at estimating the expected concentration-mass relation for the CLASH cluster sample. We study nearly 1400 halos simulated at high spatial and mass resolution, which were projected along many lines-of-sight each. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White, the generalised Navarro-Frenk-White, and the Einasto density profiles. We derive concentrations and masses from these fits and investigate their distributions as a function of redshift and halo relaxation. We use the X-ray image simulator X-MAS to produce simulated Chandra observations of the halos and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos which resemble the X-ray morphology of the CLASH clusters is composed mainly by relaxed halos, but it also contains a significant fraction of un-relaxed systems. For such a sample we measure an average 2D concentration which is ~11% higher than found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in 3D for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61. Simulated halos with X-ray morphologies similar to those of the CLASH clusters are affected by a modest orientation bias.Comment: 21 pages, 16 figures, 3 tables, submitted to Ap

    Halo Concentrations and the Fundamental Plane of Galaxy Clusters

    Get PDF
    According to the standard cold dark matter (CDM) cosmology, the structure of dark halos including those of galaxy clusters reflects their mass accretion history. Older clusters tend to be more concentrated than younger clusters. Their structure, represented by the characteristic radius rsr_s and mass MsM_s of the Navarro--Frenk--White (NFW) density profile, is related to their formation time. In~this study, we showed that rsr_s, MsM_s, and the X-ray temperature of the intracluster medium (ICM), TXT_X, form a thin plane in the space of (logrs,logMs,logTX)(\log r_s, \log M_s, \log T_X). This tight correlation indicates that the ICM temperature is also determined by the formation time of individual clusters. Numerical simulations showed that clusters move along the fundamental plane as they evolve. The plane and the cluster evolution within the plane could be explained by a similarity solution of structure formation of the universe. The angle of the plane shows that clusters have not achieved "virial equilibrium" in the sense that mass/size growth and pressure at the boundaries cannot be ignored. The distribution of clusters on the plane was related to the intrinsic scatter in the halo concentration--mass relation, which originated from the variety of cluster ages. The well-known mass--temperature relation of clusters (MΔTX3/2M_\Delta\propto T_X^{3/2}) can be explained by the fundamental plane and the mass dependence of the halo concentration without the assumption of virial equilibrium. The fundamental plane could also be used for calibration of cluster masses.Comment: Invited review article, to be published in "From Dark Haloes to Visible Galaxies", special issue of Galaxie

    Cosmological thinking: cultural heritage and challenge

    Get PDF
    The limitations of current technology do not allow one to foresee the expansion of the humankind beyond our planet for at least a few decades. Furthermore, the laws of physics, as for as they are known, preclude any form of traveling beyond the speed of light, as well as any viable and stable space-time shortcuts (wormholes, warp-drives, etc) that would facilitate cosmic traveling. Given the vastness of the Universe these are insurmountable obstacles for any {\it in situ} exploration of the cosmos beyond our most immediate cosmic neighbourhood. Nevertheless, the Universe is transparent and contains countless sources of visible light. Actually, in the last decades, technological developments have made possible to observe the cosmos throughout most of the electromagnetic spectrum as well as to perform dynamical studies that allow perceiving the presence of invisible components such as black holes, dark matter and dark energy. In this respect, humankind has then been given the opportunity to unravel the inner workings of the cosmos and through this process be part of the cosmic habitat. In this contribution various forms of cosmological thinking will be discussed, from some myths of creation till some of the latest scientific discoveries.Comment: 18 pages, 2 figures. Talk delivered at the Third International Symposium "Fronteiras da Ci\^encia: A Humanidade e o Cosmos", 13 - 14 November 2009, Universidade Fernando Pesssoa, Oporto, Portuga

    Classical and Quantum Aspects of Gravitation and Cosmology

    Full text link
    These are the proceedings of the XVIII Conference of the Indian Association for General Relativity and Gravitation (IAGRG) held at the Institute of Mathematical Sciences, Madras, INDIA during Feb. 15-17, 1996. The Conference was dedicated the late Prof. S. Chandrasekhar. The proceedings consists of 17 articles on: - Chandrasekhar's work (N. Panchapkesan); - Vaidya-Raychaudhuri Lecture (C.V. Vishveshwara) - Gravitational waves (B.R. Iyer, R. Balasubramanian) - Gravitational Collapse (T.P. Singh) - Accretion on black hole (S. Chakrabarti) - Cosmology (D. Munshi, S. Bharadwaj, G.S. Mohanty, P. Bhattacharjee); - Classical GR (S. Kar, D.C. Srivatsava) - Quantum aspects (J. Maharana, Saurya Das, P. Mitra, G. Date, N.D. Hari Dass) The body of THIS article contains ONLY the title, contents, foreword, organizing committees, preface, list of contributed talks and list of participants. The plenery talks are available at: http://www.imsc.ernet.in/physweb/Conf/ both as post-script files of individual articles and also as .uu source files. For further information please send e-mail to [email protected]: 12 pages, latex, needs psfig.tex macros. Latex the file run.tex. These Proceedings of the XVIII IAGRG Conference are available at http://www.imsc.ernet.in/physweb/Conf/ MINOR TYPO's in the ABSTRACT correcte

    Discovery of a new fundamental plane dictating galaxy cluster evolution from gravitational lensing

    Get PDF
    In cold dark matter (CDM) cosmology, objects in the Universe have grown under the effect of gravity of dark matter. The intracluster gas in a galaxy cluster was heated when the dark-matter halo formed through gravitational collapse. The potential energy of the gas was converted to thermal energy through this process. However, this process and the thermodynamic history of the gas have not been clearly characterized in connection with with the formation and evolution of the internal structure of dark-matter halos. Here, we show that observational CLASH data of high-mass galaxy clusters lie on a plane in the three-dimensional logarithmic space of their characteristic radius rsr_s, mass MsM_s, and X-ray temperature TXT_X with a very small orthogonal scatter. The tight correlation indicates that the gas temperature was determined at a specific cluster formation time, which is encoded in rsr_s and MsM_s. The plane is tilted with respect to TXMs/rsT_X \propto M_s/r_s, which is the plane expected in case of simplified virial equilibrium. We show that this tilt can be explained by a similarity solution, which indicates that clusters are not isolated but continuously growing through matter accretion from their outer environments. Numerical simulations reproduce the observed plane and its angle. This result holds independently of the gas physics implemented in the code, revealing the fundamental origin of this plane.Comment: Replaced with a revised version to match the ApJ accepted versio

    Locating sovereignty in the auto-ethnographic-political poetics of daily existence in two amazonian films

    Get PDF
    The theme of daily life is a common one in the Brazilian Video in the Villages (Vídeo nas aldeias) filmic archive. I analyze the diversity of cinematic treatments of and approaches to the theme of daily life in an Indigenous village by comparing, contrasting, and examining how two films construct, embody, and experience communal life through culturally specific methods of inquiry. In particular, I explore concepts of time, the senses, creativity, and the relations between the individual and the collectivity as all of the above are cinematically rendered in the intimacy, the performance, and the ritual of daily life. Specifically, I look at how these two VNA productions, Shomõtsi (2001) and Kiarãsã Tõ Sâty, The Agouti’s Peanut (2005), repoliticize the everyday through sovereign practices. I discuss these cinematic works as they relate to imperfect media (Salazar & Cordova, 2008), decolonial pedagogies, and the “cosmological embeddedness of the everyday” (Overing & Passes, 2000, p. 298).peer-reviewe

    Kinetic Inductance Detectors for the OLIMPO experiment: design and pre-flight characterization

    Get PDF
    We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel'dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460\:GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300\:mK. The measured average resonator QQs are 1.7×104\times{10^4}, 7.0×104\times{10^4}, 1.0×104\times{10^4}, and 1.0×104\times{10^4} for the 150, 250, 350, and 460\:GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4\:rad/pW, 1.5\:rad/pW, 2.1\:rad/pW, and 2.1\:rad/pW; the electrical noise equivalent powers are 45aW/Hz\:\rm{aW/\sqrt{Hz}}, 160aW/Hz\:\rm{aW/\sqrt{Hz}}, 80aW/Hz\:\rm{aW/\sqrt{Hz}}, and 140aW/Hz\:\rm{aW/\sqrt{Hz}}, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NETRJ_{\rm RJ}s are 200μKs200\:\mu\rm{K\sqrt{s}}, 240μKs240\:\mu\rm{K\sqrt{s}}, 240μKs240\:\mu\rm{K\sqrt{s}}, and 340μKs\:340\mu\rm{K\sqrt{s}}, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz.Comment: Published on JCA

    Reconciling dwarf galaxies with LCDM cosmology: Simulating a realistic population of satellites around a Milky Way-mass galaxy

    Get PDF
    Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on FIRE (Feedback in Realistic Environments). This simulation models the formation of a MW-mass galaxy to z = 0 within LCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 Msun with gas kernel/softening that adapts down to 1 pc (with a median of 25 - 60 pc at z = 0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around a MW-mass host down to Mstar > 10^5 Msun. Latte's population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) a diverse range of star-formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at Mstar > 10^5 Msun that does not suffer from the "missing satellites" or "too big to fail" problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard LCDM cosmology.Comment: 7 pages, 5 figures. Accepted for publication in ApJ Letters. Several updates, including: (1) fixed a bug in halo finder, now identifies 13 satellite galaxies and more subhalos in the baryonic simulation; (2) fixed a minor bug in the feedback coupling and reran the simulation, resulting in a somewhat lower-mass host galaxy; (3) Fig 2 now shows stellar velocity dispersion profiles of satellite
    corecore