44,536 research outputs found

    Greater general startle reflex is associated with greater anxiety levels: a correlational study on 111 young women

    Get PDF
    Startle eyeblink reflex is a valid non-invasive tool for studying attention, emotion and psychiatric disorders. In the absence of any experimental manipulation, the general (or baseline) startle reflex shows a high inter-individual variability, which is often considered task-irrelevant and therefore normalized across participants. Unlike the above view, we hypothesized that greater general startle magnitude is related to participants\u2019 higher anxiety level. 111 healthy young women, after completing the State-Trait Anxiety Inventory (STAI), were randomly administered 10 acoustic white noise probes (50 ms, 100 dBA acoustic level) while integrated EMG from left and right orbicularis oculi was recorded. Results showed that participants with greater state anxiety levels exhibited larger startle reflex magnitude from the left eye (r109 = 0.23, p < 0.05). Furthermore, individuals who perceived the acoustic probe as more aversive reported the largest anxiety scores (r109 = 0.28, p < 0.05) and had the largest eyeblinks, especially in the left eye (r109 = 0.34, p < 0.001). Results suggest that general startle may represent a valid tool for studying the neural excitability underlying anxiety and emotional dysfunction in neurological and mental disorders

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Plug-in to fear: game biosensors and negative physiological responses to music

    Get PDF
    The games industry is beginning to embark on an ambitious journey into the world of biometric gaming in search of more exciting and immersive gaming experiences. Whether or not biometric game technologies hold the key to unlock the “ultimate gaming experience” hinges not only on technological advancements alone but also on the game industry’s understanding of physiological responses to stimuli of different kinds, and its ability to interpret physiological data in terms of indicative meaning. With reference to horror genre games and music in particular, this article reviews some of the scientific literature relating to specific physiological responses induced by “fearful” or “unpleasant” musical stimuli, and considers some of the challenges facing the games industry in its quest for the ultimate “plugged-in” experience

    Phonetics Learning Anxiety – Results of a Preliminary Study

    Get PDF
    The Phonetics Learning Anxiety Scale, a 44-item questionnaire based on a 6-point Likert scale, designed for the purpose of the research sheds light on the nature of this peculiar type of apprehension experienced by advanced FL learners in a specific educational context (i.e. a traditional classroom, rather than a language or computer laboratory), in which the major focus is on pronunciation practice. The obtained quantitative data imply that such factors as fear of negative evaluation (represented by general oral performance apprehension and concern over pronunciation mistakes, pronunciation self-image, pronunciation self-efficacy and self-assessment) and beliefs about the nature of FL pronunciation learning are significant sources of PhLA. Anxiety about the transcription test (IPA Test Anxiety) - one of the other hypothetical determinants of PhLA - did not prove to be correlated with the general level of Phonetics Learning Anxiet

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception

    Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality

    Get PDF
    Feedback processing is critical to trial-and-error learning. Here, we examined whether interoceptive signals concerning the state of cardiovascular arousal influence the processing of reinforcing feedback during the learning of ‘emotional’ face-name pairs, with subsequent effects on retrieval. Participants (N = 29) engaged in a learning task of face-name pairs (fearful, neutral, happy faces). Correct and incorrect learning decisions were reinforced by auditory feedback, which was delivered either at cardiac systole (on the heartbeat, when baroreceptors signal the contraction of the heart to the brain), or at diastole (between heartbeats during baroreceptor quiescence). We discovered a cardiac influence on feedback processing that enhanced the learning of fearful faces in people with heightened interoceptive ability. Individuals with enhanced accuracy on a heartbeat counting task learned fearful face-name pairs better when feedback was given at systole than at diastole. This effect was not present for neutral and happy faces. At retrieval, we also observed related effects of personality: First, individuals scoring higher for extraversion showed poorer retrieval accuracy. These individuals additionally manifested lower resting heart rate and lower state anxiety, suggesting that attenuated levels of cardiovascular arousal in extraverts underlies poorer performance. Second, higher extraversion scores predicted higher emotional intensity ratings of fearful faces reinforced at systole. Third, individuals scoring higher for neuroticism showed higher retrieval confidence for fearful faces reinforced at diastole. Our results show that cardiac signals shape feedback processing to influence learning of fearful faces, an effect underpinned by personality differences linked to psychophysiological arousal

    Feedback from the heart: emotional learning and memory is controlled by cardiac cycle, interoceptive accuracy and personality

    Get PDF
    Feedback processing is critical to trial-and-error learning. Here, we examined whether interoceptive signals concerning the state of cardiovascular arousal influence the processing of reinforcing feedback during the learning of ‘emotional’ face-name pairs, with subsequent effects on retrieval. Participants (N = 29) engaged in a learning task of face-name pairs (fearful, neutral, happy faces). Correct and incorrect learning decisions were reinforced by auditory feedback, which was delivered either at cardiac systole (on the heartbeat, when baroreceptors signal the contraction of the heart to the brain), or at diastole (between heartbeats during baroreceptor quiescence). We discovered a cardiac influence on feedback processing that enhanced the learning of fearful faces in people with heightened interoceptive ability. Individuals with enhanced accuracy on a heartbeat counting task learned fearful face-name pairs better when feedback was given at systole than at diastole. This effect was not present for neutral and happy faces. At retrieval, we also observed related effects of personality: First, individuals scoring higher for extraversion showed poorer retrieval accuracy. These individuals additionally manifested lower resting heart rate and lower state anxiety, suggesting that attenuated levels of cardiovascular arousal in extraverts underlies poorer performance. Second, higher extraversion scores predicted higher emotional intensity ratings of fearful faces reinforced at systole. Third, individuals scoring higher for neuroticism showed higher retrieval confidence for fearful faces reinforced at diastole. Our results show that cardiac signals shape feedback processing to influence learning of fearful faces, an effect underpinned by personality differences linked to psychophysiological arousal

    The Effects of Discrete Emotions on Risky Decision Making

    Get PDF
    Contrary to the dominant view that generally equates feelings with poor thinking, converging evidence indicates that decisions – including those involving risk – are influenced by affective experiences. Research, however, is limited to studies on undifferentiated, global positive versus negative mood states; less is known about the influence of discrete emotions. The purpose of this research was to extend the affect-cognition literature by (a) examining the effects of discrete emotions varying along the dimensions of valence and arousal, and (b) identifying the systematic ways that discrete emotions underlie risky decision making. We used a set of emotion-laden IAPS images to elicit and compare the impact of incidental emotions on risky decision making. One hundred and twenty-two undergraduate students were randomly assigned to one of the four affective conditions: excitement, contentment, fear, and sadness. Following the emotion induction procedure, participants completed the Choice Dilemmas Questionnaire (CDQ) to assess their risk-taking propensity. Results indicated an interaction effect between valence and arousal for positive emotions, such that excited participants were significantly more risky in their decision making compared to contented participants. The discussion focuses on the theoretical and practical health implications of these findings. We recommend that future research capitalize on the insights gained from emotion research and use it favorably to improve decision making under risk
    corecore