94 research outputs found

    On the application of massive mimo systems to machine type communications

    Get PDF
    This paper evaluates the feasibility of applying massive multiple-input multiple-output (MIMO) to tackle the uplink mixed-service communication problem. Under the assumption of an available physical narrowband shared channel, devised to exclusively consume data traffic from machine type communications (MTC) devices, the capacity (i.e., number of connected devices) of MTC networks and, in turn, that of the whole system, can be increased by clustering such devices and letting each cluster share the same time-frequency physical resource blocks. Following this research line, we study the possibility of employing sub-optimal linear detectors to the problem and present a simple and practical channel estimator that works without the previous knowledge of the large-scale channel coefficients. Our simulation results suggest that the proposed channel estimator performs asymptotically, as well as the MMSE estimator, with respect to the number of antennas and the uplink transmission power. Furthermore, the results also indicate that, as the number of antennas is made progressively larger, the performance of the sub-optimal linear detection methods approaches the perfect interference-cancellation bound. The findings presented in this paper shed light on and motivate for new and exciting research lines toward a better understanding of the use of massive MIMO in MTC networks

    Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated?

    Full text link
    Massive MIMO is a promising technique to increase the spectral efficiency (SE) of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent transceiver processing. A common rule-of-thumb is that these systems should have an order of magnitude more antennas, MM, than scheduled users, KK, because the users' channels are likely to be near-orthogonal when M/K>10M/K > 10. However, it has not been proved that this rule-of-thumb actually maximizes the SE. In this paper, we analyze how the optimal number of scheduled users, KK^\star, depends on MM and other system parameters. To this end, new SE expressions are derived to enable efficient system-level analysis with power control, arbitrary pilot reuse, and random user locations. The value of KK^\star in the large-MM regime is derived in closed form, while simulations are used to show what happens at finite MM, in different interference scenarios, with different pilot reuse factors, and for different processing schemes. Up to half the coherence block should be dedicated to pilots and the optimal M/KM/K is less than 10 in many cases of practical relevance. Interestingly, KK^\star depends strongly on the processing scheme and hence it is unfair to compare different schemes using the same KK.Comment: To appear in IEEE Transactions on Wireless Communications, 16 pages, 14 figure

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Real-Time Maximum Spectral Efficiency for Massive MIMO and its Limits

    Get PDF

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis són l'avaluació del rendiment a nivell d'enllaç i l'estudi de l'abstracció de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimació de canal amb un model d'error de soroll additiu Gaussià anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bàsica dels mètodes d'abstracció de l'enllaç és mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual és usada per a predir la BLER. Proposem un innovador mètode d'abstracció de l'enllaç que pot predir la BLER amb bona precisió en esvaïments multicamí i que inclouen els efectes de les retransmissions HARQ. El mètode proposat es basa amb l'estimació de la informació mútua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version

    Impact of User Number on Massive MIMO with a Practical Number of Antennas

    Get PDF
    corecore