867 research outputs found

    Stochastic Analysis of LMS Algorithm with Delayed Block Coefficient Adaptation

    Full text link
    In high sample-rate applications of the least-mean-square (LMS) adaptive filtering algorithm, pipelining or/and block processing is required. In this paper, a stochastic analysis of the delayed block LMS algorithm is presented. As opposed to earlier work, pipelining and block processing are jointly considered and extensively examined. Different analyses for the steady and transient states to estimate the step-size bound, adaptation accuracy and adaptation speed based on the recursive relation of delayed block excess mean square error (MSE) are presented. The effect of different amounts of pipelining delays and block sizes on the adaptation accuracy and speed of the adaptive filter with different filter taps and speed-ups are studied. It is concluded that for a constant speed-up, a large delay and small block size lead to a slower convergence rate compared to a small delay and large block size with almost the same steady-state MSE. Monte Carlo simulations indicate a fairly good agreement with the proposed estimates for Gaussian inputs.Comment: 13 pages, 8 figure

    A comparison of the performance of prediction techniques in curtailing uplink transmission and energy requirements in mobile free-viewpoint video applications

    Get PDF
    The rapid deployment of multimedia services on mobile networks together with the increase in consumer demand for immersive entertainment have paved the way for innovative video representations. Amongst these new applications is free-viewpoint video (FVV), whereby a scene is captured by an array of cameras distributed around a site to allow the user to alter the viewing perspective on demand, creating a three-dimensional (3D) effect. The implementation on mobile infrastructures is however still hindered by intrinsic wireless limitations, such as bandwidth constraints and limited battery power. To this effect, this paper presents a solution that reduces the number of uplink requests performed by the mobile terminal through view prediction techniques. The implementation and performance of four distinct prediction algorithms in anticipating the next viewpoint request by a mobile user in a typical FVV system are compared and contrasted. Additionally, each solution removes the jitter experienced by the user whilst moving from a view pattern to another by allowing some hysterisis in the convergence signal. Thus, this technique enhances the performance of all the algorithms by taking into consideration the fact that the user adapts to the presented views and will react accordingly. Simulation results illustrate that an uplink transmission reduction of up to 96.7% can be achieved in a conventional FVV simulation scenario. Therefore, the application of prediction schemes can drastically reduce the mobile terminal’s power consumption and bandwidth resource requirements on the uplink channel.peer-reviewe

    Active Control of Wind Tunnel Noise

    Get PDF
    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise

    A comparative study of the effectiveness of vibration and acoustic emission in diagnosing a defective bearing in a planetry gearbox

    Get PDF
    Whilst vibration analysis of planetary gearbox faults is relatively well established, the application of Acoustic Emission (AE) to this field is still in its infancy. For planetary-type gearboxes it is more challenging to diagnose bearing faults due to the dynamically changing transmission paths which contribute to masking the vibration signature of interest. The present study is aimed to reduce the effect of background noise whilst extracting the fault feature from AE and vibration signatures. This has been achieved through developing of internal AE sensor for helicopter transmission system. In addition, series of signal processing procedure has been developed to improved detection of incipient damage. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were applied to AE and vibration data acquired from a simplified planetary gearbox test rig with a seeded bearing defect. The results show that AE identified the defect earlier than vibration analysis irrespective of the tortuous transmission pat

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Ionospheric gravity wave measurements with the USU dynasonde

    Get PDF
    A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind

    A computationally efficient frequency-domain filtered-X LMS algorithm for virtual microphone

    Get PDF
    The computational complexity of the virtual FXLMS algorithm is higher than that of the conventional FXLMS algorithm. The additional complexity comes from computation of three secondary path transfer functions (as opposed to one) and a transfer function between the physical and the virtual microphones. The order of these transfer functions may be very high in practical situations where the acoustic damping is low. The high computational complexity of the virtual FXLMS algorithm imposes issues like high power consumption, making it difficult to implement the algorithm in battery operated ANC devices such as active headsets. In addition, the operating sampling frequency of the algorithm is limited and this in turn restricts its operation to relatively low frequency applications. In this paper, a new virtual FXLMS algorithm is derived by implementing all of the secondary path transfer functions in the frequency domain. The algorithm is simulated using measured transfer functions in a duct with low acoustic damping. Implementation schemes are proposed for the new frequency-domain virtual FXLMS algorithm, citing its advantages for use as an efficient real-time active noise control algorithm. © 2013 Elsevier Ltd.Debi Prasad Das, Danielle J. Moreau, Ben S.Cazzolat
    • …
    corecore