380 research outputs found

    A petri net on-line controller for the coordination of multiple mobile robots

    Get PDF
    In applications such as mining, space exploration, and toxic waste cleanup, mobile robots are often required to move within a common environment and to share resources. This introduces the need for a means of coordinating their behaviours. Also, due to the unpredictable nature of the worksite, there is a need to accommodate changes in a dynamic environment. -- A general framework for group robotics was developed in response to this need. The framework includes a discrete event controller for on-line control and runtime monitoring, the focus of the current research. -- A Petri net based discrete event formalism has been investigated as a basis for the development of an on-line controller, ftom a high-level task description, a set of rules have been used to automatically generate a Petri net structure that provides coordinated behaviour. The Petri net can then be executed to send instructions to robots and to incorporate feedback from the robots at runtime. This on-line controller has been used to control mobile robots in a proof-of-concept demonstration. In a laboratory setting, the Petri net controller was able to coordinate the behaviour of two robots in marker-based navigation tasks. -- Although the work completed to date has provided promising results, many research challenges remain. Some suggestions for future work are presented

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Second Workshop on Modelling of Objects, Components and Agents

    Get PDF
    This report contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'02), August 26-27, 2002.The workshop is organized by the 'Coloured Petri Net' Group at the University of Aarhus, Denmark and the 'Theoretical Foundations of Computer Science' Group at the University of Hamburg, Germany. The homepage of the workshop is: http://www.daimi.au.dk/CPnets/workshop02

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    A Framework for Coordinated Control of Multi-Agent Systems

    Get PDF
    Multi-agent systems represent a group of agents that cooperate to solve common tasks in a dynamic environment. Multi-agent control systems have been widely studied in the past few years. The control of multi-agent systems relates to synthesizing control schemes for systems which are inherently distributed and composed of multiple interacting entities. Because of the wide applications of multi-agent theories in large and complex control systems, it is necessary to develop a framework to simplify the process of developing control schemes for multi-agent systems. In this study, a framework is proposed for the distributed control and coordination of multi-agent systems. In the proposed framework, the control of multi-agent systems is regarded as achieving decentralized control and coordination of agents. Each agent is modeled as a Coordinated Hybrid Agent (CHA) which is composed of an intelligent coordination layer and a hybrid control layer. The intelligent coordination layer takes the coordination input, plant input and workspace input. After processing the coordination primitives, the intelligent coordination layer outputs the desired action to the hybrid layer. In the proposed framework, we describe the coordination mechanism in a domain-independent way, as simple abstract primitives in a coordination rule base for certain dependency relationships between the activities of different agents. The intelligent coordination layer deals with the planning, coordination, decision-making and computation of the agent. The hybrid control layer of the proposed framework takes the output of the intelligent coordination layer and generates discrete and continuous control signals to control the overall process. In order to verify the feasibility of the proposed framework, experiments for both heterogeneous and homogeneous Multi-Agent Systems (MASs) are implemented. In addition, the stability of systems modeled using the proposed framework is also analyzed. The conditions for asymptotic stability and exponential stability of a CHA system are given. In order to optimize a Multi-Agent System (MAS), a hybrid approach is proposed to address the optimization problem for a MAS modeled using the CHA framework. Both the event-driven dynamics and time-driven dynamics are included for the formulation of the optimization problem. A generic formula is given for the optimization of the framework. A direct identification algorithm is also discussed to solve the optimization problem

    Diagnostic and adaptive redundant robotic planning and control

    Get PDF
    Neural networks and fuzzy logic are combined into a hierarchical structure capable of planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world scenario. Throughout this work levels of this overall approach are demonstrated for a redundant robot and hand combination as it is commanded to approach, grasp, and successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable environment. Four levels of hierarchy are developed and demonstrated, from the lowest level upward: diagnostic individual motor control, optimal redundant joint allocation for trajectory planning, grasp planning with tip and slip control, and high level task planning for multiple arms and manipulated objects. Given the expectations of the user and of the constantly changing nature of processes, the robot hierarchy learns from its experiences in order to more efficiently execute the next related task, and allocate this knowledge to the appropriate levels of planning and control. The above approaches are then extended to automotive and space applications
    corecore