

A PETRI NET ON-LINE CONTROLLER FOR THE
COORDINATION OF MULTIPLE MOBILE ROBOTS

by

@FaWltina Hwang, B.Eng.

A thesis submitted to the

School of Graduate StudiES

in partial ful6.ll.m.ent of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

Augwot2000

St. John's, Newfoundland, Canada

Abstract

In applications such as mining, space exploration, aod. toxic waste cleanup, mobile

robots are often required to move within a common environment and to share re

SOUl'ces. This introduces the need for a means of coordinating their behaviours. A1Bo.

due to the unpredictable nature of the worksite, there is a need to acoommodate

changes in a dynamic environment.

A general framework for group robotics was developed in respooae to this need.

The framework includes & discrete event control1u for on-line control and runtime

monitoring, the focus of the current rmeardl.

A Petri net based. disc.tete event formalism. has been inwatig&ted. as a basil for

the development of an oo·line controller. From a high-level task dEBCriptioo, a set of

rules have been used to automatically generate a Petri net structure that provides

coordinated behaviour. The Petri net can then be executed to !IeDd instructions to

robots and to incorporate feedback from the robota at runtime. This on-line oontroUer

has been used to control mobile robots in a proof-of-ooucept demonstration. In a

laboratory setting, the Petri net controUer was able to coordinate the behaviour of

two robots in marker-baaed. navigation tasks.

Although the work completed to date has provided promising results, many re.

search challenges remain. Some suggestions fur future work are presented.

Acknowledgements

Many thanks to Prof. Andy Fisher, Dr. Ray Goeine, Dr. Theo Norvell, and Dr. Siu

O'Young for their guidance and enoouragement. A thank you 88 weU to Dr. Rokonl1Z

zaman, Jamie King, and Rod Hale for countless hours of discussion and the sharing of

ideas. A number of engineering co-op students have worked on parts of this project,

and I thank each of them for tbeir contributions. 1 would abo like to thank the Fac

ulty of Engineering and C.CORE. Memorial University of Newfoundland. Fin&DciaJ.

support from NSERC and the VP Special Initiatives fUnd of Memorial University

was greatly appreciated..

ill

Table of Contents

Abstract .

Acknowledgements

Table of Contents .

List of Figures

1 Introduction..

L1 Why use autonomous mobile robots? •••••.

1.2 Why use groups of robots?•••....

1.3 Why is coordination necessary?

1.4 Why is simulation alone iosufficient?

1.5 A Petri net approach .

1.5.1 Why Petri net theory? • . . .

1.5.2 Why automatic Petri net generation? .

1.6 Contributions to research .

1.7 Thesis Summary

Related Work .

Introduction to Petri Nets .

3.1 Petri net theory .

3.2 Petri nets and group robotics

jv

p

ill

iv

vii

14

14

18

4 A General Framework for Group Robotics

4.1 Task Description

4.2 Resource Description . .

4.3 Dynamic Scheduler .

4.4 Discrete Event ControUer

4.4.1 Petri Net Generator

4.4.2 Petri Net Interpreter

4.5 Dynamic Re-scheduling .

5 A Petri Net On·Line ControUer

5.1 Environment Modeling .

5.2 High-Level Description of Robotic Tasks

5.3 Automatic Petri Net Generation.

5.3.1 Constraints

5.3.2 Resource Places ••.......••.••..

5.3.3 Su~Petri Nets

5.4 A Petri Net Interpreter .

5.4.1 Deterministic Transitions and On-Line Control.

5.4.2 Stochastic Transitions and Runtime Monitoring

5.4.3 Graphical Monitoring at Runtime .

5.5 Petri Net Analysis

5.5.1 Petri Net Theory: Behavioural Properties

5.5.2 Petri Net Theory: Analysis Methods

5.5.3 Software Analysis Module

6 Implementation and Demonstration Results

6.1 Task Definition Application

6.2 Mobile Robot Platforms

6.2.1 Scaled. Version of a Mining Site

20

21

22

22

22

23

23

24

26

27

28

30

30

31

31

41

41

42

42

43

43

44

45

49

49

51

51

6.2.2 Virtual Mining Site .

6.3 Communicatioos

6.3.1 WlDdows Sodrets•.••••••••••..•.

6.3.2 Server·Client Architecture .

6.4 Demonstration Results .

7 Conclusion and FUture Work. • • •••.

7.1 Conclusion•.....••••••••....

7.2 Future Work.

7.2.1 Hierarchical Modeling•.•.

1.2.2 Coloured Petri Nets•••••....

1.2.3 Petri Nets and Time••....

7.2.4 Synthesis Techniques•••.•.

7.2.5 Analysis Techniques••••.

7.2.6 Task Specification Language•

7.2.7 Petri Nets in Mathematical Form•••.•.

7.2.8 Enviroomeut Modelliog. •••.

7.2.9 Multiple vebicles in a road segment••••.

7.2.10 Two-way n&vig6Uon within a road segment•••••.

7.2.11 Facilitating Dynamic Ile-«heduling•.

References. . . . _ .•.

vi

52

53

54

54

55

62

62

63

63

64

65

66

67

68

69

71

71

72

73

74

List of Figures

3.1 A Petri net example illustrating concufnneV and conflict. . 16

3.2 A Petri net example illustrating the use of inhibitor arcs. 17

4.1 A general framework for group robotia. 21

5.1 Two simple road netWOtlc9 with the same logical environment model. 28

5.2 Petri net structure for Category 1: movement within a road segment. 33

5.3 Petri net structure for Category 2: movement through an intersection. 35

5.4 Generated Petri net structure for a oomplete task. 39

5.5 The output of the reschability analysis module for a simple Petri net. 47

6.1 The graphical user interface for the Taak Definition application. 50

6.2 Model mining vehicles in a scaled versioo of a mining site. 51

6.3 Mining vebiclm in a virtual eDViroomeDt created in OpenGL.. 53

6.4 Server·Client ardlltecture U8Ed for communication betwem compooents. 54

6.5 Stages of the demonstration task and their corresponding Petri net

states. 57

7.1 A toad model to allow three robots to travel. within Rl simultaneously. 72

7.2 A road. model that will aI.lO'lV two-way travel in a road segment. 72

vii

Chapter 1

Introduction

1.1 Why use autonomous mobile robots?

l\lining, space exploration, forestry, underwater exploration, and toxic waste cleanup

are but a few examples of areas in which the use of mobile robots can be of tremen

dous benefit. Autonomous and semi-autonomous robots can operate in dangerous

environments and perform operations that are hazardous to humans. In this way,

robotic systems can reduce the risk to human Ufe. Many industrial tasks performed

by humans can be slow and highly-repetitive, and because they require OODlltant at

tention, can be very fatiguing. Automation of these tasks using robotic tecbnology

can reduce the cognitive load on workers.

1.2 Why use groups of robots?

There are a number of potential advantages to using groups of mobile robots rather

than single robots. Certain task! may be too oomplex Or even impossible to be

completed by a siog1e robot. Coostructing and using a number of simpler robota can

be easier, cheaper, more 8exible, ami more £au1t-tolenmt than using a single robot to

complete a task. Many robota can be in many places at the same time, and many

robots can do many things at the same time. Multi-robot teams can take advantage

of parallelism and redtmdancy to inaease system robustness and achieve performance

gains.

Thus, in many applications, semi-automated systems involving groups of mobile

robots are a logical choice. In mining, multiple automated load-haukiump vehicles

can simultaneously travel between ore piles and crushers, resulting in high produc

tivity and a reduced need for humans to perform ti.me-consuming task![36J. In toxic

waste cleanup, teams of mobile robots can be sent to waste sites to map the location

of buried waste and to retrieve, 5Ort, treat, and package the waste. In underwater

applications, multiple machines can be deployed to inspect the hundred! of structural

nodes of an offshore oU and gas platform, or to cooperate in the construction of a

deepwater oil and gas faci1ity{20J.

1.3 Why is coordination necessary?

In many real-world applications, multiple robots are required to move within a com

mon environment and to share resources (e.g. roads and intersections) without caus

ing collision or deadlock. This is particulacly important in certain industrial appli

cations where vehicle collisions are DOt only dangerous, but may result in signi.6cant

costs in terms of vehicle repair and production downtime. It bas been n:mgnized

that the task of deploying mining trucks from a central garage requires a significant

level of coordination among vehicles. In forestry applications where many vehicles

are manually driven throughout a commoo worksite, collisions are Dot uncommon,

but could be avoided with a formal method of coordinating their movements. This

introduces the need for a means of detecting the possibility of collision and deadlock

during the task planning and resource allocation phase (i.e. in simulation).

1.4 Why is simulation alone insufficient?

Many industrial applica\iOD!l would require mobile robots to operate in a semi-8trUctured,

dynamic environment. Due to the unpredictable nature of the worbite, simulation

alone is insufficient to guarantee collision-free and deadlock-free operation. For ex

ample, in a mining application, it is difficult and lJOmeUmes impossible to know in

advance the precise length of time required by & vehicle to traverse a tunnel. There

is a possibility that the vehicle may encounter an obstacle, run out of fuel, or be

required to drive over difficult terrain.

Due to these uncertainties, the state of the system at any given time is non

deterministic. It is therefore necessary to monitor the robots during operation and to

send appropriate control signals at runtime. On-line system state monitoring can also

be used. to dynamically reschedule the robots to deal with changes in the operating

conditions. In this way, it may be possible to optimize the operation of the system.

1.5 A Petri net approach

A Petri net based disctet.e event formalism. has been invert.igated sa a basis for the

development of an on-line OODtroUer for multiple mobile robot systans. A discrete

e\o-ent system is a dynamic system that c:hanges state in acrordanc:e with the abrupt

occurrence of a pbysical event(35].

1.5.1 Why Petri net theory?

Petri net theory is well-suited. to describing and studying systems characterized. as be-

ing concurrent, asynchronous, distributed, parallel, nondetenninistic, and/or stochutic[JO] ..

Systems of mobile robots can often exhibit a number of these characteristics. The

theory also offers many formal analysis techniques. Petri nets can be formally verified.

against the occurrence of potentially undeeirable states (e.g. collision and/or dead

lock). Rules exist to describe the dynamic behaviour of Petri nets, and thus, Petri

nets can be executed at runtime to exhibit a specified behaviour. The potential then

exists for a Petri net controller to generate control signals and to incorporate feedback

from robots at runtime. In this way, it may be possible to achieve OQ.line monitoring

of system states.

1.5.2 Why automatic Petri net generation?

Developing a Petri net model of a system and designing a Petri net controller requires

an intricate knowledge of Petri net theory and its properties. Many of the tasks

that are executed by robots in industriaJ applications, however, have to be specified

by researchers or operators who may not have robot-speci6c knowledge, let aJone a

familiarity with Petri net modeling. The need (or effective human-machine interfaces

in robotic applications has been well-recognized [4, 17, 331.
[0 recognition of this need, a method. of automaticaJJ.y generating a Petri Det con

troller from a high-level task description baa bee:o investigated.. It is envisioned that

tasks requiring coordination of multiple robots will be specified at a high-level using a

Ilser-friendly, graphical interlace. From this description, the Petri net controller is au-

tomatically generated according to constraints impoeed by the working environment

and by the rules of operation. In this way, it is possible to hide the details of Petri

net theory from the operator, while still providing the ability to describe a robotic

task formally and to analyze it.

Automatic Petri net generation also bas the potential to accommodate changing

operating conditions. It is envisioned that dynamic scheduling will be used to o~

timize the system during operation. A dynamic scbecluler will oon.sider changes in

the composition of the robot team as well as changes in the opEnting environment

and allocate or r&.allocate tasks to robots as Dece!l8Alj'. The output of the dynamic

scheduler would be a task description which, if translated automatically into a Petri

net structure, has great potential for developing systems well-equipped to deal with

runtime changes in a dynamic environment.

1.6 Contributions to research

Throughout the course of this research, the following contributions were madE: by the

author:

• Development of a method for modeling road networks using a logical represen.

tation

• Development of a simple language for high·level specification of marker-based

navigation tasks for robots

• Development of rules which can be used in the automatic generation or a Petri

net controller

• Contributioos to a Petri net software application initially developed at C-CORE:

1. Incorporation of inhibitor arcs

2. Capability to deal with conflict

3. Capability to perform. on-line control

4. Capability to inootporate runtime feedback

5. Capability to perform reachability analysis

6. Capability to reoeive a task description from a sepuate software applica

tion and automatically generate a Petri net according to the rules men

tioned previously

In addition, as a member of a small team of researchers (less than 6), the author

made contributions to the development of a general framework for group robotics and

to demonstrations illustrating the concept of Petri net on-line control.

1. 7 Thesis Summary

Chapter 2 presents a summary of the literature in several related areas. In Chapter 3,

a brief introduction to Petri net theory is given. Further elements of Petri net theory

are introduced as they become relevant. In Chapter 4, a general framework for group

robotics, conceived. by members of the Faculty of Engineering at Memorial Univer·

sity of Newfoundland and the Intelligent Systems group at C.CORE, is presented

to explain the context in which the Petri net controller was developed.. Chapter 5

details the on-line Petri net controller and. the methods used for automatic Petri net

generation. In Chapter 6, some additional. modules which were developed for testing

purposes are described, as well as the results of experiments conducted using the

Petri net controller. Future work and conclusions of this research are presented in

Chapter 7.

Chapter 2

Related Work

A review of the literature is presented. in the following related fields: cooperative

mobile robots operating in dynamic environments, coordination of multiple robots

to achieve oollision- and deadlock-free behaviour, discrete event control of robotic

tasks using Petri net theory, the application of Petri net theory to the field of mobile

robotics, and Petri net-based controllers used in runtime execution and monitoring.

There has been some research into the development of oontrol frameworks for c0

operative mobile robots operating in dynamic environments. Parker's ALLIANCE

architecture{34] addresses the issues of fault-tolerance, reliability, and adaptability

for teams of mobile robots. The fault-tolerant response considered in the work is the

dynamic re-selection (or re-allocation) of tasks due to robot failures or a dynamically

changing environment. Adaptivity refers to the ability of the robot team to change its

behaviour over time in response to changes to either improve performance or to pre

vent unnecessary degradation in performance. The outcome of this work is a mission

planner that is dynamic, but the objective is Dot to deal with coJ.li.sion-avoidance. The

experiments described deliberately avoid situations where the probability of collision

is high.

Brumitt and Stentz[8J propoee GRAMMPS, a Generalized Robotic Aut.ooomow

Mobile Mission Planning System for multiple mobile robots operating in UDStn1ctured.

environments. Again, hO'MM!r, they do not address inter·robot collision avoidance.

Furthermore, this work considers applicatiOO!l where robots and goals ace interchang~

able (e.g. applications of an exploratory nature), and the coocepts are not generally

applicable.

Other areas of research address the coordination of multiple robots \0 achieve

collision-free and deadlock·free behaviour. A1ami et. a1.(1] describe the MARrHA

project. High-level missions are produced by a Central Station and sent to robots,

which then use 8 Plan Merging Paradigm to communicate with all the other robots

in the system to achieve coordinated behaviour. Noreils[32] developed a language

used to describe Predicate/Transition nets which are executed to control coordinated

protocols. One limitation of this approach is that coordinated protocols must be

programmed and downloaded prior to execution, limiting the possibility of changing

control strategies at run-time. Singh and Fujimma{37] suggest a navigation strategy

that can be used to achieve cooperative behaviour among a set of mobile robots

in tasks such as mapping of an unlmown bounded region. Collision detection and

avoidance is solved with a method of arbitration in individual cases of impending

collision between robots.

Azatm and Scbmidt[5] introduce a decentralized approach to achieving conflict..

free motion, an approach involving a dynamic prioritization of the robots. In C&8I!S

where the robot priority scheme fails, inter-robot communication and a method of

negotiation are used to resolve the conftict. In this work, confticts are seen 88 events,

and are resolved as they occur, sometimes requiring some vehicles to backtrack in

their routes.

Bourbakis(7j discusses the difficulty ofachieving efficient syncbroniza.tion of robots

moving in 8 dynamic environment while avoiding oollisioos. Be ptE!I!IeDts a generic

traffic priority language, calJed KYKLOFORlA. which is used by each robot to make

decisions during navigation and avoid possible ooUisiOO8 with other moving objects.

Most of these works addre!ll CDllisioc avoidance at a local level, deJCribing methods

to be used by individual robots to resolve conflicts, often requiring substantial sensory

information as well as communication with other robots in the environment. There

has been little emphasis on coordinating the vehicles at a higher level. with the aim of

preventing situation!! where impending collision becomes an issue. Some exceptions.

however, are described in {14] and [10J which recognize the need to resolve potential

conflicts before they can occur.

The work of Causse and Pampagnin114] was carried out to develop a prototype

transport system dealing with heavy loads in hospitals. The intended application im

plies a number of functional requirements, including the sharing of common resources

such as elevators, corridors, and parking areas between robots. Also, the robots are

required to navigate indoors along a known network of patbs. Their approach recog

nizes the need for confticts to be reeol\'ed before two robots can block each other. and

performs traffic control by the booking of nodes in a topological graph that represents

the current environment. CaIoud et. &1.[101 establisb a set of behaviour rules which

implement space allocation policies. All robots are required to oommunicate with

each other as necessary to abide by the rules, thereby achieving coordination of the

motions of multiple robots.

A detailed. review of much of the existing work in cooperative mobile robotics can

be found in [11].

There has been a significant amount of research into the discrete event control

of robotic tasks using Petri net theory[16, 27, 31, 41, 12, 22, 26, 9, 241. A large

portion of the work is carried out in the CDntext of Flexible Manufacturing Systems

and robotic assembly tasks. Petri net models an! frequently used in off-line simulation

and analysis, and subsequently used to programme robots to perform tasks. In an

10

area of work not specific to robotic applications, there have been developments in

translating Petri nets into oontrollanguages such as ladder logic(3, 39, 401. Although

Petri net theory appears to be valuable in off-line simulation, the need to programme

robots to perform tasks remains a limitation in terms of developing systems capable

of accommodating changing requirements during operation.

There have been a few reports on the application of Petri net theory to the field of

mobile robotics. Causse and Christensen [13J present issues in control architectures

for autonomous mobile robots, and express the view that any control architecture

must mix several kinds of hierarchies. They then explain how hierarchical principles

may be formulated in a single framework using Coloured Petri Net models. Montano

et. al.(28J view control systems for mobile robots as a collection of ooncurrent pJ'().

cesses; robot control, image processing, data from raogefinder procmsing, decision

making, planning, etc. They use & time Petri net formalism to allow verification

of functioDal and temporal syste:n requirements, and also to allow automatic code

generation, thereby avoiding coding mistakes. Petri nets were also used. by Oliveira

et. al.[33J llS a formal language to describe the structure of the mission-oontrol software

of an autonomous underwater vehicle. The Petri net description was used in auto

matic code generation, an aspect which is discussed further below. Caloud et. al.[lO]

use hierarchical Petri nets to interpret plan decompositions and to monitor execution

of tllSks being carried out by mobile robots. The Petri net allows the robots to react

to IWexpected events.

Petri nets in mobile robotics has been largely applied to the control systems of

single robots. Our approach differs in that we investigate the utility of the Petri

net formalism in the higher-level task of ooordinating the actiODS of multiple robots,

rather than at the vehicle-level..

Petri net theory has, for a large part, been applied in olI·line simulation. However,

in many applications, the uncertain and dynamic nature of the working environment

11

makes it difficult to guarantee collision-free aocl dead1ock·free OpentiOD through sim

ulation alone. RMher I a method of runtime execution and monitoring is required.

The use of Petri net theoty for this type of on-line control has been mentiooed in

several works.

Caloud et. al.[lOl preeent the GOFER project whoee goal is to OODtrol the opera..

tions of many mobile robots in an indoor environment in order to automate & variety

of tasks. Their system. for planning and execution integrates t.a8k planning, task &I.

location, motioo planning, and executiOD monitoring. The execution system uses a

hierarchical Petri net formallBJD to monitor execution &Ild react to unexpected events.

Given an instance of a plan, a robot generates a net composed of states, action tran

sitions, and hierarchy transitioDS. Action transitions correspond to the performance

of an action, while hierarchy transitions have only a logical meaning in the process

of plan interpretation. The planning and execution system is written in COMMON

LISP, and at the time of publication, experiments had only been performed with the

help a simulator designed to simulate actions of autonomous agents.

Mascaro and Asada{26] preent an approach to interactive control of human-robot

systems using dual Petri oet8. One Petri net represents the human side task pcoc:ellI!I,

while the other represents the robot side. They describe a proof-of·(Xmcept experi

ment involving; a cable connection task which requires human-robot cooperation. The

Petri net model of the tal!Ik is translated into computer programs, using one computer

to perform all actions pertainiag to robot monitoriag and control and a separate com

puter for monitoring the human. The control programs are written using an object

oriented programming method where places, transitions, and tokens are represented

by classes of objects which contain pointers connecting them to each other. Member

functions are used. to collect data, check conditions, and fire transitions.

Crockett et. aI.[iS) describe work in which a Petri net is used to describe the

sequencing information for a manufacturillg workstation. An application is composed

12

of a description of the Petri net model of the system using a declarative language.

and 8Ction-eausing procedures written in the "C" programming language. Their Petri

Net-based Controller (PNC) runs on a general purpose computer, sends and receives

ASCII messages, and works mainly with software interfaces. The PNC associatEs a

procedure with each place and then executes that procedure when a token arrives at

that place during Petri net execution.

The work of Freund and Rossman[l7] US&I an on-line Petri net monitor in the

oontext of developing a virtual reality (VR) interfaoe for robot control. The 'WOrk

was intended to make use of the capabilities of an already existing intelligent robot

control system (mCS), and to enhance the system with a VR interface. The mcs
was already capable of executing high level task de!lCriptioos. The cbaUenge in the

interface, then, was to translate the motions of a user into a series of tasks for the

IReS. A !lpedal class of Petri nets, "'state/transition-nets with named marks", was

used to monitor the events related to user actions in the virtual environment at ron·

time. The oCCWTence of an event would cause a state-cb.ange in the Petri net, which

would result in an action being sent to the robot control system. to be carried out at

a particular time.

Lima et. al.[241 have developed a Petri-net-hued applicatioo to coordinate the

execution of robotic tasks and provide a human·macbine interface.. A robotic task can

be designed through a graphical user interface. by drawing a Petri net and auociating

tasks to places and events to transitioos. Taak execution can be foUowed in real-time

by watching; the 80w of tokens through the net. In their implementation, prior to

execution, a designer is requited to define in a file the location of the tasks which

are used. by the net. The software then takes care of directing the request to the

appropriate location. Examples of applications to visual servoing and catching of

moving objects by a robotic ann, and to mobile robot tasks are presented.

Oliveira et. aL{33I. in their design of a mission control system for the MARIUS

13

autonomous underwater vehicle, have developed two specially designed. software~

gramming environments CORAL and ATOL. CORAL is a set of software tools that

allows an operator to graphically build a library of elementary vehicle operations

(vehicle primitives) embodied in Petri nets, and to run them in real time. ATOL

provides similar tools for mission prooedwe programming. CORAL consists of two

fundamental modules: the vehicle primitives library ecUtor and generator, and the

CORAL engine. The main goal of the first is to embody each vehicle primitive into

a Petri net description. At runtime, the CORAL engine executes the Petri net and

transition firings start the executioD of tasks. The engine sends commands, to and

receives responses from the vehicle system. tasks. This get-Up allows for easy pr~

gramming of missions, and also provides the system developer with & graphical user

interface to monitor the state of progress of the mission based OD the evolution of

tokens in a Petri net.

The development of thee Petri net on·line oontroUers has been, fOf the most part,

dedicated. to the control. of single robots. In (101. although the intended application is

a muIti·robot system, the utility of the Petri net controller is not in the coordination

of multiple robots. Rather. a set of behaviour rules is used along with inter-robot

communication to deal with oollision and deadlock. The preeent work explores the

utility of a Petri net-hued on-line controller in the coordination of multiple robots.

The present work also inVE8tigates an additional layer of automation which has the

potential to facilitate the development of Petri nets used for task execution and mon

itoring. A method of automatically generating Petri nets to control tasks requiring

cooperation of multiple robots is dESCribed. The tasks are described at a high-level,

and the construction of the Petri net model is accomplished automatically. To the

author's best knowledge, there bas been no published work in this area. In [101, it is

reported that "a robot generates a net", but details or bow the net is generated are

not given.

Chapter 3

Introduction to Petri Nets

3.1 Petri net theory

Petri nets, originating in the 1962 dis8ertation or Carl Adam Petri, are a graphical and

mathematical modeling tool which C&D be applied to many systems. An introduction

to Petri net theory is presented here. A oomplete tutoria1~review on Petri nets Can

be found in 1301.
A Petri net is a directed, weighted bipartite graph wboee nodes are either pl4cu

or trnnsitions. Graphically, placeJ are drawn sa circles, and transitioos are drawn M

bars. Directed Crc.f are draWD both &om. places to transit.ioos and &om traositiooa

to places. Arcs are labeled with weights (positive integers), and a k-weighted arc

may be interpreted 88 the equivalent of k parallel arcs with unity weight. Each place

may contain zero or more token.!l, and each token is drawn as a black dot within the

place. The marking of a Petri net indicates the number of tokens contained within

each place, and is represented as an m-vector where Tn is tbe total number of places

in the net. Formally, a Petri net is defined. as a ~tuple PN "" (P, T, A, W, Mo) where:

14

15

p = ~,P2, ...• p.,.} is a finite set oCplaces,

T ={tllt,•... ,t,.} is a finite set of transitrons,

A ~ (P x T)u(T x P) is a get of &rCS,

W: A _ (1,2,3, ...} is a weight function, and

Mg : P -0 {a, 1,2,3, ...} is the initial marking.

pnT=0andPUT,,0

Each transition bas input pku:u and ou~t plat:u Formally, the set of input

places of a transition t is givel by I(t) = {p\(p,t)~}. The set of output places of a

transition t is given by OCt) =- {pj(t,p)tA}.

In using Petri nets to model a task, one interpretation of the net components uses

condilionJ and event.!. Places represent conditions and transitioos represent evelta.

Input placES represent conditions whidJ. must be true before the event may occur.

Output places represent conditions which are true after the event baa occurred. When

a condition is true, a token appears in the appropriate place. Other interpretations of

Petri net components are also used, and can be found throughout the literature. For

example, in some interpretations, the presence of tokens in a place does DOt represent

the truth of a condition, but rather k tobns caD represent that k it.eml 01" resources

are available Thus, a Petri net may be Uged to model fEBOllrCe allocation.

Using the Petri net components as presented above, system behcvioun are m0d

eled by applying the Petri net transition (firing) rule. A traosition t is said to be

enabled if each input place contains at least w(P,t) tokens, where w(P,t) is the

weight of the arc connecting the input place p to transition t. Formally, t is en

abled if M(P) > w(P,t) for all pEI(t). Once the transition is enabled, it mayor

may not fire, depending on whether or DOt the event actually takes place. The fir·

ing of a transition causes a change in marking by removing w(p, t) tokens &om each

input place and adding w(t,p) tokens to each output place, where w(t,p) is the

16

weight of the arc connecting t to output place p. The new marking is M' where

M'(P) ~ M(P) -w(p,t) +w(t,p).

A transition without input places does not consume tokens, but acts as a source of

tokens for its output places. Thus, it is called a source trulUition. Source transitions

are always enabled. A transition without output places is called a sink troruition; it

consumes tokens from its input places but does not produce any. A single token can

be removed from a place by only ODe transition; they are indivisible.

Example: Figure 3.1(a) shows a simple Petri net with six places and five transi

tions. All arcs are of unity weight. Initially, place PI. is marked with a single token

and tl is the only enabled transition. When it fires, the token is removed from Pt and

a token is placed in each of Pl and 1'3. At this point, both t, and t3 are enabled and

can fire concul'T'ently. After t, and t, complete their firing, P4 and~ each contain one

token(Figute 3.1(b)). Transitions t4 and ts are then in oonftict-both transitions are

enabled, but the firing of either disables the other.

0
'·t1

p2 p3

12 t3

p4 p6

•• IS

p6

(oj

0
't1

p2 p3

t2 t3

p4. • p5

.. IS

p6

(b)

Figure 3.1: A Petri net example illustrating concun-ency and conflict.

17

AJJ. inhibitor an:: is a special type of arc. reprtlIeD.Led graphically as an arc whoee

arrow bead has been replaced with a circle. If a place p is connected to a transitioo t

by an inhibit.or are, the firing of t is inhibited by the presence of one or more tokens

in p. When p is unmarked, it bas no effect on the enabling and firing of t.

Example: Figure 3.2 illustrates the Uge of an inhibitor arc. In (a), transition

t1 is enabled and fires. Following the firing (Figure 3.2(b», a token is placed in p2

which inhibits any further 6ringJ of tl.

P'!' 11

p2

(a)

P'! 11

p2 ,

(b)

Figure 3.2: A Petri net example illustratinc the use of inhibitor &reS.

Petri nets may be divided into two categories acoordiDg to the firing characteristics

of the transitiocs[42J. In umimed Petri nets, the transitions are oonsideted to fire

instant.aoeously. Timed Petri Dets, OQ the other haDd. contain ttaDsitions which

require a certain amount of time to fire. Durin& this time, token! are neitbel- in the

input places nor output pl8a!B, but rather are coosidered to be <XIDtained within the

transitioD. Tokens emerge from the transition and are placed in the output plaoe8

after the time of the transition has passed. How long this will be depends on the type

of transition, whether it is determinimc or stocJuutic.

DdenninUn.c tn:uuitiol'U have a fixed !iring time t. Each time the traDSition is

18

enabled, it requires t time units to fire. This typeo! transitioD is useful in representing

a fixed task which requires a known length of time to be completed. Stochastic

transitions have firing times which are selected each time they are enabled based on

a probability distribution. Thus, the firing time may vary each time the transition is

enabled. Stochastic transitions are useful for modeling unpredictable events.

The basic concepts of Petri net tbeory have been presented to explain the fun..

damental rules for Petri net execution. One of the major strengths of the Petri net

formalism, however, is the support available for the analysis of many properties and

problems associated witb concurrent systems. A discussion of some behavioural pro~

erties (properties which depend on the initial marking of the net) is presented later

(see Section 5.5), along with a discussion of analysis methods.

3.2 -Petri nets and group robotics

Petri nets exhibit a Dumber of properties which make them an attractive alterna

tive for modeling systems of mobile robots. In particular, Petri net theory is able

to accommodate some of the challenges presented by systeIM which require coordi

nated behaviour among robots and which operate in unstructured or semi-structured

environments. The following advantages are noted;

1. Petri nets are naturally oriented towards the modeling and analysis of discrete

event systems that are characterized as being concunent, asynchronous, dis

tributed, parallel, nondeterministic, and/or stochastic.

2. Petri nets can be used to model systems where the transitions between events

are enabled according to arbitrarily complex rules.

3. Petri net based formalisms provide a systematic method for decomposing bigb

level behaviours (e.g. a complete task) into lower-level behavioun (e.g. a simple

19

autonomous task).

4. Petri net based formalisms provide & meaDS for decomposing or modularizing

potentially complex systems. Combining multiple systems can often be reduced

to keeping several original nets unaltered, and adding a few places and/or tran

sitions to achieve proper coupling.

5. Petri net theory provides well-deveJoped, formal analysis methods which can be

valuable in detecting potentially undesirable system behaviours (e.g. collision

and/o, deadlock).

6. Petri nets can be executed, thereby providing the potential for the development

of on-line controllers capable of runtime execution and monitoring. Further

more, their clear, graphical representation provides a means for developers to

easily track system states by following the movement of tokens through the net.

Petri net controllers have been proposed as one of the components of a general

framework for group robotics. This framework is presented in the following chapter.

Chapter 4

A General Framework for Group

Robotics

The development of a Petri net-based on-line controller began in the context of on·

going work toward a general framework for group robotics. This framework bas

been designed for the control of multiple mobile vehicles in an unstiuctured or semi

stnlctured. environment. In order, to be truly useful in real-world applications, control

architectures for multiple robot systems must explicitly address the dynamic nature of

the robot team and its environment. A general framework was developed in response

to this need.

The general framework for group robotics is shown in Figure 4. L The components

of interest at this time are the task description, the resource description, the dynamic

scheduler, the discrete event controller, and the mobile robots. Details of the other

components can be found in (191.

20

21

Figure 4.1; A general framework for group robotics.

4.1 Task Description

An operations planner describes robotic tasks as a combination of high-level sub~asks.

For example, the task for a load-haul-dump (LHD) vehicle may be to load at ore pile

A, haul to a crusher at B, dump at the crusher, and to repeat the sequence while

there is still ore at A. These high-level subtasks are expected to be completed semi·

autonomously by the vehicles' onboard computing systems. It is anticipated that

tasks will be described using an intuitive interface (e.g. graphical user interface),

then input to a dynamic scheduler.

4.2 Resource Description

A description of system resources is provided to the dynamic scheduler. Resources

(e.g. mining vehicles, roads, intenections, ore piles and crusbers) are characterized

by certain parameters. For example, links of roads would have associated. costs that

may vary for different types of vehicles, depending on factors such as fuel cost and

fuel efficiency for the vehicle. The parameters are updated. 88 the resources and the

elements of the operating environment change.

4.3 Dynamic Scheduler

The role of the dynamic scheduler is to optimize the execution of the system (e.g. by

maximizing efficiency). Taking into account that certain robots may only perform

certain tasks, and also that robots capable of performing the same tasks may complete

them differently, the dynamic scheduler must assign tasks to robots appropriate to

the capabilities and performance of each robot. For example, the dynamic scheduler

might have to select which load-hauklump (LHD) vehicles to use for a task, given that

some LHD's have greater capacity than others but a1Bo higher fuel costs. Furthermore,

given that the mine environment is such that there are multiple paths which could be

taken from the ore pile to the crusher, the dynamic scheduler would designate a route

for each LHO, bearing in mind that optimal operation may require a minimization of

total distance traveled.

4.4 Discrete Event Controller

The completion of a subtask by 8. robot can be considered 8. discrete event. A Petri

net based discrete event formalism has been propoeed 88 a basis for the development

23

of an on-line controller capable of coordinating multiple mobile robots.

4.4.1 Petri Net Generator

The output of the dynamic scheduler (and the input to the Petri net generator) is a

description of the suhtasks to be performed by each robot. For example, the dynamic

scheduler may provide the generator with a list of robots to be used and also the

road segments to be followed by each robot. The generator would then merge the

individual robotic task descriptions into a centralized control scheme which can be

formally verified to ensure coordinated behaviour among the multiple robots. For

example, given that multiple LHD's are required to share roads and intersections in

the mine, the role of the generator is to create a control scheme that is guaranteed

not to result in collision or deadlock. A method of centralized control is proposed to

achieve this coordination with minimal, if any, inter-robot communication.

4.4.2 Petri Net Interpreter

The output of the Petri net generator is a description of a Petri net controller (PNC).

The Petri net can be executed to send task-level oontrol signals to robots. From

the perspective of the PNC, it is assumed that a single subtask (one command) can

be successfully executed by the robot, either autonomously or through some method

transparent to the PNC. The PNC tells each robot what to do, not how. For example,

upon execution, the PNC could command a particular robot to "Move to point A" . It

assumes that the robot is capable of carrying out this fundamental task, and whether

the robots moves to point A by foUowing a light-line or through remote teleoperation

is irrelevant. In this way, the PNC remains independent of robot architecture; the

framework allows fot the system to incorporate and take advantage of the latest

advances in robot development.

24

Given that; multi-robot teams are often required to operate in semi-structured

environments, the state of the system at any point is Don...<feterministic. There is

too much uncertainty in the system. (e.g. determining where two robots will meet

and when) in oroer to solve f!!IIf!rY possible robot-interaction in advance. In order to

accommodate this, it is proposed that interactions be managed at execution time. The

PNC is not only responsible for system. execution, but also (or runtime monitoring.

Upon completion of each task, a robot notifies the PNC wbich is then able to update

the state of the system. The PNC is then able to send a new command to the robot

appropriate to the new system state.

4.5 Dynamic Re-scheduling

In the event that the operating conditions of the system change in such a way that

the behaviour of the group of robota is affected (e.g. a robot breaks down, a particular

road in a network must be closed), the dynamic scheduler reassigns the tasb to the

robots (e.g. gives the tasks of the broken robot to another functioning robot, re-route

the robots to avoid the newly dOled road), and a new PNC is created.

The proposed framework is intended. to provide the baais for the development of

a system that is responsive to changes in individual robot skills and performance, to

dynamic changes in the environment, and to changes in robot team composition wbUe

providing coordinated behaviour among multiple mobile vehicles. The framework

minimizes inter·robot communicatioD (a feature which is expected to enhance system

scalability), empbasizEi8 formal analysis methods for task validatioD, and has the

potential to optimize~ operation. F\irthermore, this framework recognizes that

dynamic operating conditions and other limitations prevent complete automation of

all robotic tasks. Thus, it SOlXlmmodates oo-demand human-machine cooperation

25

and dynamic reconfigurabilit;y.

This thesis describes initial developmeota in one component of the framework,

the d.iscrete event controller. Work completed toward the dewlopment of a Petri net

generator and a Petri net interpreter is presented.

Chapter 5

A Petri Net On-Line Controller

A software application has been developed at C-CORE and the Faculty of Engineering

and Applied Science, Memorial University of Newfoundland which allows Petri net

models to be created and executed. With tbis software, a model may be created. in

one of two ways:

1. The places, transitions (deterministic and stochastic), and arcs (normal. and

inhibitor) can be drawn by a user through the Graphical User Interface.

2. Provided. with a task description and a resource description, the software appli

cation can automatically generate a Petri net without user input.

In the proposed framework for group robotics, a dynamic scheduler provides a

Petri net generator with a de9Cription of high-level subtasks to be performed by each

robot. The generator then merges the individual task descriptions into a centralized

control scheme. Currently, marker-based natJigation tasks within a network of roods

are supported, and a Petri net controller can be automatically generated. to ensure

proper sharing of roads and intersections.

In order to accomplish this, the Petri net generator requires (a) information about

the nature of the operating environment (e.g. which roads are oonnected), and (b) a

26

27

set of rules which govern how resources are shared (e.g. only ODe robot is pennitted

in an intersection at any time). The environment representation and the principles

of resourC1:! sharing are presented next.

5.1 Environment Modeling

The generatioD of a control scheme tbat ensures proper sharing of roads and intersec

tions requires thl!: Petri net generator to have a knowledge of the working environment.

We currently consider robots navigating through a road network using a method of

marker-bo.sed navigation-robots are instructed to navigate to markers rather than

to absolute locations (e.g. global coordinates in the real world). Using this metbod,

a control scheme is not limited to a single physical road layout, but has the potential

to be generally applied to a number of road networks.

A simple road. network is shown in Figure 5.1(a). The network is represented. as a

model comprising a set of four road ~ent8 and a single intersection, each of which

is givm a unique identifier (e.g. Rl, R2, 11). Each road segment is aaaociated with

two unique markers, one at each end (e.g. Rl is MlIOciated with markers Ml and M2).

Each intetllection is associated with three or more markers. The markers identify the

ends of road segments leading into the i.ntenection (e.g. 11 is U5Oci&ted. with M2, M4,

M6, and M7). MarkE!!'!l have knowledge of thw 88I!lOciated road. segments, but DOt of

their intersections.

Using this method of repreeentation, each physical road. network produces a unique

logical environment model. The oonvene, however, is not true. A logical model

can represent any number of pbysicaJ. road networks since the physical location! of

the markers and the geometry of the road. ~ents are irrelevant to the Petri net

generator. The generator needs to know only the logical relationship between roads

and intersections. For example, the physical road network shown in Figure 5.1(b)

28

'oj

Figure 5.1: Two simple road networks with the same logical environment model.

would produce the same environment model as the road network in (a).

Currently, a fixed environment model is "hard-codedn
88 pact of the Petri net

generator. Using this method of representation, however, multiple environment mod

els may be stored (e.g. in a database) and referred to as necessary. In this way.

Petri net controllers can be generated to control multiple vehicles navigating in many

environments.

5.2 High-Level Description of Robotic Tasks

The input from a dynamic scheduler to the Petri net generator is a high-level descri~

tion of the tasks to be performed by each robot. A simple language for describing

marker-bMed navigation Wks has been developed. For a single robot, a task is rep

resented as the robot identifier followed by one or more markers, indicating that the

29

robot is to navigate to each marker in the order specified. In addition to the markers

which delimit the ends of the road segments, two special types of markers are &Iso

used: virtual markers and. "REPEA-r- marken.

Virtual markers do not have any physical meaning, but are Uged to convey infor

mation about a robot's starting position. Because a robot may not be located. at a

physical marker point when a task description is sent, the virtual marker is created

to identify the road segment in wbidl the robot is initially found. REPEAT markers

may be included. at the end of the marker list to represent iterative behaviour which

is characteristic of many robotic tasks. The REPEAT marker indicates that all the

markers in the list are to be visited repeatedly in the order given.

Currently, it is assumed. that road muken are listed in an order such that for

each consecutive pair, boLh markers in the pair are either 00 the same road segment

or are connected to the same intersection.. Furthermore. in the event that a REPEAT

marker is used, it is assumed that the first aod last road markers in the list bave been

chosen so that they are at diHerent ends of the same road segment. The REPEAT

marker can then be interpreted to mean that the robot should navigate &om the last

marker, within a road segment to the first marker, and iterate through the marker

list again.

Figure 5.1 shows two robots which must operate in the road net'NOrk. An example

task provided by the dynamic scheduler may require robot VI to cobtinuously tram

port ore from a muck pile at M3 to a dump site at MS. Robot V2 may be required

to do the same from a muck pile at. Ml to a dump site at MS. The input to the Petri

net generator would be the following task dEBaiption:

VI MVIRrUALI M4 M6 M5 M6 M4 M3 REPEAT (5.1)

V2 MVlJITUAL2 M2 M7 M8 M7 M2 Ml REPEAT

The navigation tasks for each robot are specified separately; the robota have DO

30

knowledge of each other. It is then the respoasibility of the Petri net generator to

produce a central controller capable of coordinating tbe actions of the two robots

(e.g. prevent collision at 11).

5.3 Automatic Petri Net Generation

Given the description of the environment and the high-level task descriptions for

multiple robots, the Petri net generator automatically generatEll!l 8 Petri net oootroUer

which can coordinate the behaviours of tbe robots. This is 8COOmpliabed in software

using an application developed in Visual C++. The code that has been developed

analyses the individual task descriptions, applies operating constraints. and uses a

fixed set of rules to create a Petri net structure that produces roordinated behaviour.

Once the structure has been determined, the software essentially mi.mics the actions

that an operator would use to create "be S&DM! Petri net manually. The concepts used

in the development of the software which implements this process are described in

the following sections.

5.3.1 Constraints

To generate a controller whim can coordinate the behaviours of the robots. the Petri

net generator must consider constraint.!! imposed by tbe environment and the require

ments for safe and efficient operation. In the CUlTent implementation., it is assumed

that ror safe operation,

• no more than one robot may traverse a road. segment at a time

• no more than one robot may pass through a single intersection at a time.

Although initially, these constraints may appear unrealistic in some environments,

it will be illustrated later (see Section 7.2.8) that with proper environment modeling,

31

these constraints have the potential to facilitate safe operation in a variety of road

networks.

5.3.2 Resource Places

Given the above COO5traints, road. segments and intersectioos are considered shared

re!>Ources with mutually exclusive rules foc ownership. They are represented in the

Petri net with ~oun:t placu. Resource places can be interpreted as being the "key"

required for entry into a road segment or intersection. For mutually exclusive aocess,

there is only one key per resource repreaented by a single token in the place. A marked

resource place indicates that the resource is available; the abeence of a token indicates

the resource is currently "owned" by a robot. Reeouroe places are created only for

resourees that are specified in the robot taBk descriptions. Thus, we avoid creating

resource places for roads and. interseetiODS that are never used, tbereby simplifying

the Petri net model.

The first step iD automatic Petri net generation is the creation of resource places

for each of the road segments in which robots are initially found. The ID of a robot's

initial road. segment is determined from the robot's virtual marker. Because theee road

segments are currently occupied, their corresponding resources places are initially

unmarked.

Once initial resource places have been created, the Petri net generator creates

sub-Petri nets for each robot. The metbod by which these subnets are created is

discussed next.

5.3.3 Sub-Petri Nets

The Petri net generator creates a suD-Petri net for each robot. The subnets are

interconnected. by resource place8 to achieve coordinated behaviour among multiple

32

robots. The creation of each suboet involve! a simple analysis of the task description

for each robot.

The task description for a robot consists of an ordered list of markers to be visited

by the robot. It is assumed that the markers are listed in an order that is physically

realistic. That is, both markers in each COIlgeCUUve pair in the list are either on the

same road segment or are oonnected to the same intersection. With this pretequisite,

the oonsecutive pairs of markers can be considered in one of two categories;

1. Pairs requiring a rohot to move within a road segment

2. Pairs requiring a robot to mOYe through an intersection.

A generic Petri net structure for each category bas been developed. These structures

are used as basic building blocks for generating complete subnets for each robot.

Category 1: Movement Within a Road Segment

Consider the task description for robot VI given in (5.1): "VI MVIRrUALl M4

M6 M5 M6 M4 M3 REPEAT" where MVIRI'UALI indicates that the robot's initial

position is within RI. The lirst two markers instruct VI to move from. MVIRI'UALI

to M4, two markers belonging to the same road segment. The Petri Det structure

which is generated to control this movement is shown in Figure 5.2.

With the robot at MVlRTUALl (represented by & token in place PVIRrUALl)

and ready for its next command, transition TO M4 is enabled (Figure 5.2(a» aDd

fires. When the transition fires, an instruction is sent to the robot to move to marker

M4 and tokens are placed in PI and P2 (Figure 5.2(b)). The stochastic transition AT

M4 is ena.bled by the token in P2 and begins firing. While the robot is in the process

or moving to M4, PI remains marked. When the robot reaches M4, transition AT M4

romplete; firing, madcing P3 and hence enabling NEXT COMMAND(Figure 5.2(c)).

33

~-' ~- ~-
ATAM lOfIH ATY4 • lOlM ATIM TOlIN

,., III ,I '" 112· ~ 113- 112 ."

""'...... ""'...... >EX<......,

(~ ~) (0)

Figure 5.2: Petri net structure for Category 1: movement within a road. segment.

During execution of this command, since the robot has not changed its ownership of

any resources (it maintains ownership of R2), no changes to the resource places are

required.

By removing the specific marker names from the transition names and replacing

them with variables, the Petri net in Figure 5.2 can be transformed into a generic

structure. This structure can be used to command any robot to move between any

two markers on the same road segment.

Category 2: Movement Through an Intersection

Again, consider the task description for VI given in (5.1). The second and third

markers instruct VI to move from M4 to M6 through intersection 11. Two things

may happen: the robot may be pennitted to proceed through the intersection, or the

robot will be required to stop.

34

• In the first case, VI must be able to obtain ownership of the intersection (11)

and subsequeotly of the road segment on the other side (R3). In the cunent

implementation, a. coD!lier"Vative approach is taken and VI takes ownership of

both before entering the intersection. This means th&t R3 is considered occu·

pied before there is actually a robot in it. This approach, however, guarantees

VI's ownership of R3 when it completes its travel through 11.

Altbough this is not an issue in the current example, it becomes important

in situations where multiple robots are required to share road segments. The

conservative approach prevents a robot &om becoming "stranded" in the inter·

section in the event that the destination road segment is occupied..

As VI enters the intersection, it must relinquish its ownership of its current

road segment (R2). Similarly, wben VI reaches the other side (M6), it must

relinquish its ownership of the intersection (11).

• In the second case, if either the intersection (11) or the destination road segment

(R3) is occupied, the robot is issued. a command to stop and waits untll the

occupied resource becomes free..

The Petri net structure used to oommaod 8. robot to move through an intersection

is shown in Figure 5.3. There are three resource places (shown in gray): R2, R3, and

11. The presence of a token in 8. resource place indicates the resource is available.

Initially, the robot is at M4 (represented by tokens in places Pl and P3 correl!lpondiDg

to places of the same name in Figure 5.2) and the robot's cum:nt road segment R2

is not available (Figure 5.3(a)).

3S

(.)

~)

1'1

Figure 5.3: Petri net structure fOT Category 2: movement through an intersection.

36

(~ (.)

(~ (.)

37

• If both Ii and R3 are available, transition TO M6 is enabled and fires, and an

instruction is sent to the robot to move to M6. Tokens are placed in P4 and

PS, and tokens are removed from resource places 11 and R3 to indicate that the

resources are in use(Figure 5.3(b)). At the same time, a token is returned to

R2 since it is no longer occupied by Vl. Also, an additional token is produced.

by the firing of TO M6 to mark P7. This token is simply COIl8UJDed by the

sink transition SINK1(Figure 5.3(c)). When transition AT M6 tires, a token is

returned to the intersection resource place (11) .

• IT either 11 or R3 is not available(Figure 5.3(d», a STOP transition is enabled

and fires, and an instruction is sent to the robot to stop moving. A token

is placed in PS, and tokens are returned to PI and P3 (Figure 5.3(e)). The

resulting etfect is that the robot stops and waits until both rt!9OUlCeS (ll and

R3) become free. The inhibitor arcs from P8 to the two STOP transition.s

prevent multiple stop commands from being issued to the robot while it is

waiting. When both re80W'CeS become available (Figure 5.3(f)), the TO M6

transition becomes enabled and fires as before. This time. however. the token

in pa inhibits SINKl from firing, and instead. both the token in P7 and in pa

"'. coosumed by SINK2 (Figure 5.3(g)).

At this time, it is important to note one of the 88SUUlptions of this model. When &

STOP command is issued to & robot. it is IIlISWned that the robot receives the message

and is able to stop before it enters the intersection. This means that the transition

must fire before the robot actually reac:h.es the end of the road segment leading into

the intersection. The length of time required for this should consider the worst esse

communication delays and the dynamics of the vehicle itself. Thus. when the robot

receives a stop command. it begins action at that time (e.g. deceleration) that will

38

result in the vehicle being stopped when it reaches the end of the road segment.

In practical applications, this can be implemented by using "pre-markers" which

are located. farther back from the intenection than the original markers and are

customized for each type of robot. The robots could provide feedback when they

reach the pre-markers, and the next oommand could be queued. U a robot. then, is

given two consecutive MOVE commands, it may execute them. both without having

to slow down in between, thereby improving productiVity.

As in the previous category, by removing the specific marker and resource names

from the net and replacing them with variables, the Petri net in Figure 5.3 can be

transformed into a generic structure. This structure can be used to command a robot

to move between two markers on different sides of an intersection.

The generic structurES presented for Categories 1 and 2 can be used as basic

building blocks to construct a Petri net controller for a complete task. Figure 5.4

shows the Petri net that has been generated for the task described. in (5.1): "VI

MVIRTUALI M4 M6 M5 M6 M4 M3 REPEAT V2 MVIRTUAL2 M2 M7 M8 M7

M2 MI REPEAT".

In (al, the net generated and displayed by the Petri net software application is

shown. Although further work is required in the graphical layout of the Petri net, the

functionality of the net is complete. Resource places are located in a oolumn at the left

side. The subnets for VI and V2 are clearly separated, with the only interconnections

being through the resource places which are used to ooordinate behaviour. The

arc from the bottommost transition to the topmost place in each subnet has been

automatically generated in response to the REPEAT marker.

In (b), the same Petri net is illustrated as an interconnection of the basic building

blocks developed for Categories 1 and 2.

(a)

Figure 5.4: Generated. Petri net structure for a complete task.

39

40

(b)

41

The Petri net structures described can sccommod&te an arbitrary number of mo

bile robots operating in any network of roads. Thus, system. scalability is not limited

by this method of automatic Petri net generation.

5.4 A Petri Net Interpreter

Our general framework for group robotics stresaes the need for a means of managing

rohot interactioD5 at execution time. Once a Petri net control structure has been

automatically generated from a high·level task description, the Petri net controller ia

then executed to achieve on-line control and runtime monitoring. As the Petri net

executes according to the rules for transition firing, instructions appropriate to the

ctuTent system state are sent to individual robots. As robots complete their taBu or

encounter difficulties, they provide feedback which is incorporated into the Petri net

execution and used to update the state of the system..

Using our Petri net software application, it is pofI8ible to model systems using

two types of transitions: lkUnninutic and 8tochostic. Thel!le two types of transitions

have been given diHereot meanings in the CXlIltext of on-line control and runtime

monitoring.

5.4.1 Deterministic 'Iransitions and On-Line Control

Deterministic transitioDS can be asaigned a firing time, t, so that wben the transition

is enabled, it fires and does not deposit tokens in output places until after t time units

have passed.. Each deterministic transition can also be associated witb a task·level

robot command. The command is specified witb a robot identifier and the task to be

carried out by tbe robot. During Petri net execution, wben a transition is tired, its

associated. command is sent to the appropriate robot.

42

For example, in Figure 5.2, t.ransition WOO M4" has an &8lIOci&ted robot command

that instrUCts robot VI to IDO\'e to marker M4. When transition TO M4 fire5, the

instruction is sent to VI and is intended to be carried out immediately.

5.4.2 Stochastic Transitions and Runtime Monitoring

Stochastic transitions an! 8SlIOCiated with feedback from robots. The same as deter

ministic transitions, stochastic transitions are enabled. and. fired according to the rules

for Petri net executioD. The duration of the firing, however, is noIrdetenninistic.

Thus, stochastic transitions are useful in modeling procelgeS which require an un

known length of time (e.g. a robot traversing a road segment which may contain

unknown obstacles). Each stochastic transition is assigned an event to monitor. Once

a stochastic transition &res, it waits for the event to 0ttW". When feedback is received

indicating that the event bas occurred, the transitioD completes its firing and deposits

tokens in its output places.

In Figure 5.2, tr&DSition AT M4 is assigned to monitor the receipt of an "AT M4"

message from Vi. When the transition fires, it will continue to fire until appropriate

feedback is received. from VI. The transition then completes its firing and deposits

tokens in its output places.

5.4.3 Graphical Monitoring at Runtime

As a Petri net is executed, the movement of tokens is shown as a two-dimensiocal

animation in the Graphical User Interface of our Petri net software appUcation. In this

way, it is possible to monitor the state of the system during operation by observing

the distribution of tokens presented in a graphical form.

43

5.5 Petri Net Analysis

One of the major strengths of the Petri net formalism is the support available for the

analysis of many properties and problems associated with concurrent systems. In this

section, some properties of Petri nets are defined, one particular method. of analysis

is explained, and finally, the CWTent analysis capabilities of the Petri net software

application that bas been developed. are desaibed.

5.5.1 Petri Net Theory: Behavioural Properties

The behavioural~ of a Petri net are properties wmOO depend aD the initial

marking of the net. Among other properties, the initial token distributioo determines

the rtJJchability, boundtdne3's, and livenu.t of a Petri net.

Reachability

When an enabled transition is fired, the marking of a Petri net is changed according

to the transition liring rule. A sequence of firings will give a sequence of markings. A

marking M.. is reachable from a marking M.. if there exists a sequence of firing! that

transforms M" to M... The rmch4lrility set R(M.) of a marked Petri net is the set

of all markings reachable from M._ Tbe reachahility problem for Petri nets is that of

determining if & marking M.. is reachable in a net (N. Mo).

For a Petri Det that has been automatically generated from a talk description,

let Mn be a marking that represents a collision between two vehicles. Given the

initial marking Mo, if it is determined that M... is reachable from Mo. then the task

can be revised to prevent the collision. U. on tbe other hand. it is determined that

Mn is not reachable from Mo. then we have 8 formal verification that this particular

collision scenario will not occur. This type or analysis can be quite valuable during

the de....elopment phase of a cootrol system.

44

Boundedness

A Petri net is said to be k-boundd if the number of tokens in each place is n~

greater than & finite number k for any of the reachable markings. A Petri net is said

to be Jafe if it is i-bounded: that is, tbe number of tokens in each place is either

1 or O. In the context of a multiple mobile robot system, let us asswne that places

represent pbysical locatioDl!l and tbat a token in a place represents the presence of

a robot at a particular location. If the Petri net is determined. to be safe, then the

operation of the system is guaranteed never to attempt to force two or more robots

to occupy the same space.

Liveness

A transition t in a marked Petri net is said to be live if, from each reachable marking,

it is possible to progress through a firing sequence to another marking in which t is

enabled. A marked. Petri net is live if each transition is live. This means that a live

Petri net guarantees deadlock-free operation. A dead Petri net is defined to be a net

in which every transition is dead. Different levels of liveness have been defined, and

details can be found in [301. The livmESll of a Petri net controller for a system of

multiple mobile robots is important in determining the productivity of the system.

5.5.2 Petri Net Theory: Analysis Methods

A number of Petri net analysis methods exist. A method of t.:tJ1Jm1bility tree" is

explained next, followed by a description of the analysis module of the Petri net

software application.

Coverability Tn!es

A Petri net with an initial marking can have 88 many "new"markings as there are

enabled transitions. Each of t.beee "new'" markings, in tum, can geD.f!'ate more mark

ings. In this way, it ill possible to repre9E!Dt all the reedlable marIcings 88 a tree, where

each. node represents a marking that baa been generated from the initial marking and

its successors, and each arc represents a transition &ring that transforms one state

into another. The coverability tree for a marked Petri net can be analyzed for a num

ber of properties, including boundedness, safeness, dead transitions, and reachable

markings.

For a bounded Petri net, the coverability tree contains all pOl!l8ible rea.cbable mark

ings, and is therefore known aa the reachability tree, which can be used in an ex

haustive method for all analysill problems. F'tom coverabllity and reachability trel!!l,

corresponding coverability and reachability graphs can be drawn.

5.5.3 Software Analysis Module

Analysis capabilities within a Petri net software application may often be very~.

A simple analysis module hu been developed fot our Petri net software application,

currently capable of performing reacbability analysis on bounded. nets. The imple

mentation of this module is pre!lellted..

In performing reachability analysis, a graphical Petri net model. is first translated

into a mathematical representation involving an input matri:t, an output matTU, and

a marking vector. The input matrix, 1, is a p x t matrix where p is the number of

places in the net and t is the number of transitions. Element (i,i) of the input matrix

contains the weight of the directed. arc from place i to transition i. The element is

set to zero when the place i ill not an input place of transition i, and to -1 when the

input place is connected to the transition with an inhibitor arc. Similarly, the output

46

matrix, 0, contains the weights of the directed arcs from transitions to places. The

marking vector, M, is of Ienglh P, and oootains the number of tokens in each place.

The places and transitions are numbered. acx:ording to the order in which they were

created using the Graphical Use!' Interface.

Transition firings are implemented by manipulating these matrices. In order to

fire transition j, all the input places to transition j must oontain sufficient tokens and

the transition must not be inhibited. That is, (or each place i where l(i,i) = to, if

to > 0 and M(i) ?: to or- if to =-1 and M(i) =O. thm transition j will6re, removing

t.; tokens from each input place i where t.; > O. Furthermore, for each place k where

O(k,j) = Uk, 'LIlt tokens will be added to each output place k. The analysis treats all

transitions as logical witb zero !iring time.

A recursive algorithm implementing a "depth-first- search is used to produce the

coverabillty tree. The nodes of the tree (i.e. the markings represented by the nodes)

are stored in a global set. This set is initialized to oont.ai.n only one marking

the initial marking. Then for each transition that is enabled by the marking, the

transition is fired, a new marking is generated and a DeW node added to the tree, and

the reachability analysis is conducted for the Dew madring. The stopping condition

for the recursion is set when the firing of the transition generates a marking that

is already represented by a node in the tree. The arcs of tbe coverability tree are

stored in a second set. Each time a transition is fired, a new entry in the set is

created containing three fields: the current marking, the transition &red, and the new

marking resulting from the firing.

The reacbability analysis module also guards ag&iost state explosion for large nets.

A parameter can be set to limit the maximum number of states that will be "found"

by the analysis. Once this limit bas been rescb.ed, the recursion is stopped, and

the ..."8J.ue returned as the "next state" following a transitiOD firing indic.ates that the

maximum number of states bas been reached. A message is abo sent to let the user

47

la) (b) (el

~Y·'
States
No. ~ .' .2

to 11
1 1 2 0
2 0 2 1
3 0 1 2

.2
4 0 0 3
5 1 1 1
6 1 0 2

Transitions
Cu. Trans Nax!
3 11 4
2 11 3
1 to 2
5 to 3
6 to 4
5 11 6
1 11 5

Figure 5.5; The output of the reachability analysis module for a simple Petri net.

know that a complete reachability analysis was not possible.

A simple Petri net is shown in Figure 5.5(a), and the results of the reachability

analysis are shown in (b). The results are presented under two headings: "States"

and "Transitions". Each row beneath the heading of "States" is a reachable marking.

For example, the first row reads [1 2 0] indicating that in the initial marking,

places Po, Pt, and P2 are marked with 1, 2, and 0 tokens respectively. There are six

rows under "States"; thus this Petri net has six reachable states.

Each row llllder the heading of "Transitions" represents an arc in the reachability

tree. The middle column shows the transition that was fired to bring the Petri net

from the state number in the first column to the state munber in the third column.

Note that state 4 whose marking is [0 0 3 J is never found in the first oolumn under

"Transitions" indicating that no transitions could be fired from state 4. That is, the

48

Petri net is dead.. This can also be teen in Figure S.5(c) where the textual results in

(b) are represented as a graph.

The reachability tree contains information about aU the reachable states of the

system. The markings of a reachability tree can be subsequently analyzed to extract

certain types of information which provide formal proof of the system properties. For

example, consider the Petri net for a complete teak shown in Figure S.4. The tree

may be modeled to show that (or the sublet 0(places that represent that a vehicle

is navigating toward a marker, no more than one place is marked at a time. Thus,

the controller can be guaranteed oever to command a robot to move to two different

markers simultaneously. This type of furtber analysis remains a subject of future

work.

Chapter 6

Implementation and

Demonstration Results

The utility of a Petri net controller for the coordination of multiple mobile tobota was

illustrated in a proof~r<OOCept demonstration. In order to demonstrate the coocept

of Petri net on-line control in the context of our general framework (or group robotics,

a replacement module for the dynamic scheduler was created and two mobile robot

platforms were developed. 'I'he8e components of the framework lloU'e integrated into

a system which was used to coordinate the actions of multiple vehicles in navigation

""ks.

6.1 Task Definition Application

The role of the dynamic scheduler is to provide the Petri net generator with a descrip

tion of the tasks to be performed by each robot. For the proof-o£<oncept demonstra.

tion, a Task Definition software application W8l!l deYeloped. to provide this functional

ity. Although in this application, robot scheduling is neither dynamic nor automatic,

an operator is able to specify marker4based navigation t88laI quickly and easily using

49

50

Figure 6.1: The graphical user interface for t.he Task Definition application.

a graphical user interface (GUI).

The GUI for the Task Definition application is shown in Figure 6.1. The interface

shows an image of the road netY."Ork within a scaled mining site. The locations and

names of markers used to identify the ends of road segments are overlaid on the

image. The initial positions of two robots inside the mine are shown as coloured

squares. Through the GUI. the user is able to sclect a robot and then click on a aeries

of markers to be visited by the robot in order. A "REPEAT' marker can also be

added at the end to indicate iterative behaviour. In this way, high.level descriptioru;

of navigation tasks can be created for multiple robots.

Once the navigation tasks have been specified, the task description is "sent" to

the Petri net generator. The method. of communication is described in Section 6.3.

51

Figure 6.2; Model mining vehicles in & scaled version of 8. mining site.

6.2 Mobile Robot Platforms

The Petri net controller was used to control mobile robots on two different platforms:

physical robots in a scaled version of a mining site, and virtual robots in an OpenGL

mining environment.

6.2.1 Scaled Version of a Mining Site

A scaled version of 8. mining site was oonstrncted 88 a test site for the Petri net on

line controller. The mining vehicles used in testing were remote-oontrolled models of

actual construction vehicles and are shown in Figure 6.2. The remote control units

for the model trucks were modified to accept commands from a PC.

A software application was developed which is able to accept high-level commands

such as "Move to MI" and to send the appropriate remot~ntrolsignals to drive the

truck to Ml. This application requires the use of a path planner and a positioning

system. For path planning, a simple straight-line method is used. For positioning,

52

a pan/tilt camera is mounted overhead and image processing techniques used to

determine vehicle locations. In this way, a positioning system such as CPS or OOPS

isemulat.ed.

Upon task completion by a robot, the software application sends a message to the

Petri net controller.

6.2.2 Virtual Mining Site

When "'''Olking with physical multi-ro~ systems., implementation presents a number

of challenges. Each robot must be outfitted with a low-level controller and & suite of

sensors. Physical mobile robota can also be prone to a variety of breakdowns. Thus,

for reasons including time, cost, and O\'erall system reliability, the utility of physical

multi·robot systems in Lasting can often be quite limited.

Virtual robots in virtual environments do not grapple with the same issues and

can therefore be valuable platforms for t.esting. A virtual mining environment was

created in OpenGL and is shown in Figure 6.3. It is possible to view any portion

of the worksite from difterent viewing angles. Multiple vehicles are easily placed in

the environment with keyboard oommands. AtJ with the physical robots, the virtual

robots are able to execute high-level oommaDds such as "Move to MIlO using a simple

straigbt·line path planner. When the task is complete, a message is again geD.t to the

Petri net controUer.

It is intended tbat the interface between the Petri net controller and the virtual

robots will be identical to the interface to the physical robots. In this way, physical

and virtual robots can be easily interchanged in a manner that is transparent to the

Petri net controller. The implicatioo. is that control schemes may be tested using

virtual robots and subsequently used to cootrol pbysical robots to acI:tieve the same

53

Figure 6.3: Mining vehicles in a. virtual environment created in OpenGL.

system task, with few if any modifications. furthermore, it would be possible to have

physical robots interact with virtual robots in a coordinated fashion.

6.3 Communications

Once a task description has been created using the Task Definition Interface, the

description is sent to the Petri net generator to be tr&D8lated into a Petri net struc

ture. Also, during execution, the Petri net controUer sends oommands to the robots

and receives feedback from the robots when tasks are completed. Thus, a means of

communication among the components of the framework is required.

Figure 6.4: Server·Client architecture uaed for communication between components.

6.3.1 Windows Sockets

The components of the framework communicate over a local area network using 'fraDs..

mission Control Protocol/Internet Protocol (TCPlIP). Each software application as

sociated. with a component includes a Windows Sodret. A socket is a communication

endpoint, an object through. which an application sends or m:eives data aao88 a net-.

work. Sockets are bidi.rectional. and can therefore both send and receive meesages.

6.3.2 Server-Client Architecture

In addition to the software applications associated with the components of the fram.~

work, a separate application was dewloped aa a Central Server for the communica.

tions architecture. Each oompooeot of the framework must. CODD«:t as a client to the

central server. TIilil architecture is shown in Figure 6....

The components communicate by message-passing. Each message contains infor

mation identifying the intended recipient of the IDel!Illagl!. All meeaages are sent to the

server and are subsequently btoadcut to all \be clients. The compooeots recognize

and process messages intended for them, and ignore all the ot~ JnelII.8g@8.

55

Through this method ofcommunication, then! is DO limit to the number of romp«>

nents that can be added to the system. The system is sca1abIe since more robots may

be added without significant cha.nges to the other components in the architecture.

Furthermore, since the components communicate through a network, this implemen

tation would allow an operator to control robotic tasks at a remote location.

6.4 Demonstration Results

A proof-of-concept demonstration was designed and implemented. to illustrate the

utility of Petri net control in the rootext of a general framework for group robotics.

A Petri net controUer was used. successfully to provide coordinated. navigation of two

vehicles in a simple road network.

The task description required two robots to navigate repeatedly along inter3ecting

paths. The task description was as in (5.1);

VI MVlRTUALl M4 M6 M5 M6 M4 M3 REPEAT

V2 MVlRTUAL2 M2 M7 M8 M7 M2 Ml REPEAT

Figure 6.5 illustrates the progrel!lll of the task at dilferent stages and their corte

sponding Petri net states (ooly & partial Petri net is shown). The Petri net controller

guarantees coordinated behaviour between the two vehicles.

(a) The robots are at their starting positions. Two transitioos are enabled: for VI,

''TO M4n and for V2, "TO M2".

(b) V2 completes its task before VI, and is given permission to enter the intersection.

The transition "TO Mr is enabled. and fires, and V2 begins moving through

the intersection.

56

(c) In tbe meantime; VI arrives at M4, but the absenceofa token in 11 "un-inhibits"

the "STOP" transition. VI waits at the interaection.

(d) V2 finishes crossing the intersection and begins moving to MS. A token is re

turned to place 11 which then enables the "TO M6" transition of VI.

(e) VI crosses the intenection, returns a token to 11, and IIKM!S to M5.

The 58.1D.e wk was demonstrated using two virtual vehicles in the virtual environ

ment. The final experiment combined the two and demcnstrated & physi~ robot in

coordinated behaviour with a virtual robot. Thus, from the perspective of the Petri

net controller, the type of vehicle being controlled. is transparent.

Although the demonstrations involved only two vehicles in a simple road network

with a siegle intersection, the demonstration is easily scalable. Because the rules

for automatic Petri net generatioDS are generic, a cootroUer can be created for an

arbitrary road netWOrk given that it is represented in the proper format. The ndes

for coordinated navigation are also scalable; the awnbel' of vehicles is easily increaaed

v.ithout any changes to the me\hod by which Lbe controUer is generated.

57

(a)

Figure 6.5: Stages of the demonstration task and their corresponding Petri net states.

(b)

58

Ie)

59

(d)

60

(e)

61

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In applications where groups of mobile robots are required to operate in semi-structured

environments, there is a Deed to coordinate robot behaviours and to accommodate

changes in a dynamic envirow:Dent. In response to this need, a general framework (or

group robotics bas been developed. Within this fr&me900rk, a discrete eYeIlt controller

is used. for on-line control. and runtime monitoring.

Researcb in the development of 8 Petri net on-line controllet bas been de8cribed.

From a high-level task description, a set of rules have been used to BUt.omaticalJ.y

generate a Petri net structure that provides coordinated behaviour. The Petri net

can then be executed. to send instructioDS to robots and to incorporate feedback

from the robots at runtime. This method of automatic Petri Det generation and

Petri net interpretation bas been used to control mobile robots in a proof-of-concept

demonstration. In a laboratory setting, the Petri net controller W8/!I able to coordinate

the behaviour of two robots in marker-based navigation tasks.

The work completed. to date has provided insight into the utility of a Petri net

62

63

formalism in the control of multiple mobile robotic systems requiring coordinated

behaviour. The concept of Petri net on·line control shows significant promise as a

means of developing systems capable of addressing the dynamic nature of robot teams

and their operating environments. In particular, the automatic generation of & Petri

oet control structure from a high-level task description appears to be & key factor in

system reconfigurability, and automatic Petri net generation in this context appealS

to be novel with respect to work described in the literature.

The results of this research have been very encouraging. It is apparent, bowever,

that many research challenges remain before a system can be implemented for use in

industrial applications. The focus of the future work needs to be in further develoJ>'

ment of a discrete event controller, as well as in the development of other components

of our general framework (or group robotics. This work in the area of Petri net on-line

control, however, has provided a good starting point.

7.2 Future Work

The work completed to date bas provided a great deal of insight into the potential

for using Petri nets to control cooperative mobile robotic tasks. The research that

has been conducted has been valuable in illustrating the utility of Petri net control in

a proof-of-<Xlncept demonstration. A number of research challenges, however, remain

to be investigated in the future.

7.2.1 Hierarchical Modeling

For complex systems, Petri net models of tasks can quickly grow in size and complex

ity. Methods of hierarchical deromposition based on Petri nets have been developed

which may make the complexity of such systems more manageable{12]. A Petri net

64

is used to describe a task at a high level. The Petri net is tben decomposed in a

stepwise manner into lower-level Petri nets in which transitions can be either directly

implemented by control oommands or command sequences, or further decomposed

into lower level nets. The method of hierarchical decomposition allows a Petri net to

retain some important properties.

The current implementation of a Petri net based on-line controller is capable of

generating high-level oets intended to provide coordination between multiple robots.

The method. of automatic generation 8ll8UID.e8 that high-level subtasks (e.g. navigating

from point A to B) are able to be oompleted by the mobile robots.

In order to facilitate SUCCES!fu1 completion of tbe subtasks, on-board controllers

are required at the robot level. Lower-level Petri net controllers, derived from a

systematic decomposition of the high-level controller, could be used. In this way, the

properties of the high level net can be preserved. On-board Petri net controllers may

also be an effective means of modeling subtasJc.s to incorporate task-preserving human

intervention. The suhtask can be modeled. as a sequence of discrete events in a way

that will allow seamless transfer of control between human and machine.

Fwther research is required in methods of hierarchical decomposition of high level

Petri nets for coordinated control of multiple mobile robots. Also, the modeling of

robotic subtasks in a way that will allow task-preserving human intervention remains

to be investigated.

7.2.2 Coloured Petri Nets

10 colound Petri nets[23], tokens are given attributes called CJJlours. Transitions can

have different firings which depend on the colours and numbers of tokens in the input

places to the transition. Using the theory of coloured Petri nets, it may be possible

to ''foldn identical parts of an ordinary Petri net into a single coloured. Petri net[43}.

65

thereby simplifying the Petri net structure witbout losing any modeling capabilities.

The original set of places is partitioned. into a!ll!t of disjoint clasges, and each class or

places is replaced by a single place. The ook>ur of e6Cb token indicates which of the

original pl8Ce5 the token belongs to. Similarly, the set of transitions is partitioned

into Ii set of disjoint claaes, aDd each class is replaced by a single traosition with

different firings to represent the original transitions.

Mobile robotic systems often comprise multiple robots operating ooncurrently

while performing similar tasks. The modeling approach taken in this work gener·

atE'S a separate subnet for each vehicle. It may be po8Sible to "fold" each of these

subnets into a single coloured Petri net. For complex systems, the gain in simplifying

the visual representation of the Petri net may be significant.

Techniques for modeling ooordinated mobile robot taBks using coloured Petri nets

remain to be developed. As well, exteIWODS to our Petri net software application are

required to accommodate the full functionality required by simulations "in colour" .

7.2.3 Petri Nets and Time

In order to study performa.nc:e upects of a multiple robot syst.em., the dw-atioo. of

various robotic tasks must be taken into account. Foe example, it may be demable to

monitor the average waiting time of robots at interseetioDS as a means of determining

the optimality cl the system. Although the cutreIlt Petri net software application

aJto\\"S a firing time to be assigned to a deterministic transition, the Bimulation ca.

pabilities involving time remain limited. Future work could include developing the

application further to consider time.

In particular, two areas of development are recommended. Firstly, the Petri net

application could allow a minimum and maximum firing time to be asaigned to a

transition. For robotic applications in semi-structured environments, the nondeter-

66

ministic nature of tasks makes it nearly impossible to specify a fixed Lask duration.

On the other band, it is reasonable to expect that a task will be completed within

a. particular time interval. Task durations outside of this interval could signal that

a problem has occurred and that human intervenbon may be requited. Thus, rather

than assigning 8. fixed firing time to & t.ransitioo, it would be useful to be able to

associate a "window of time" with the transition..

Secondly, the analysis capabilities of the Petri net software application should

also be extended to include time. In this way, it will be possible to evaluate cert&in

performance characteristics of the system such as average robot idle time and sys.

tem throughput. Also, in determining whether or not a forbidden state will occur,

although a logical Petri net analysis without time may indicate that the forbidden

state is indeed reachable, timed analysis may in faa reveal that the forbidden state

will never occur. That is, some of the logical states of the Petri net may be masked

by timing effects. This type of analysis could be useful in developing oontrollers that

are less conservative.

7.2.4 Synthesis Techniques

A critical component of our general framework for group robotics is the automatic

Petri net generator. Given 8. high-level ta8k d8!lCriptioD Cor multiple mobile robots,

bow do we build a controller that (a) achieves \be task deacribed. and (b) preeerves

certain properties (e.g. absence of deedlock)?

Some simple rules for automatically generating a Petri net have been presented.

These rules produce nets that coordinate navigation tasks while ensuring proper re

source sharing. Although they have been very useful in providing insight into the role

of automatic Petri net. generation, these rules have many limitations. They are only

useful for navigation tasks. In aaxmmodating the sharing of roads and intersections,

67

the rules are overly CODge!'4tive.. For example, before a vehicle is permitted to enter

an intersection, not only must the inter!lection be free, hut the road segment to be

entered at the other side of the intenection must also be free.

Further researdl into formal Petri net synthesis techniques could be very beneficial

in overcoming these limitations. A number of Petri net synthesis techniques exist [6,

291 which provide methods of building Petri 'nets to meet certain constraints. By

building a net to meet the constraints, the resulting Petri net is gtIanmtetd to have

desired properties. Use of these formal techniques and algorithms would potentially

allow the synthesis of Petri net controllers which can accommodate complex tasks.

7.2.5 Analysis Techniques

One of the greatest strengths of a Petri net based formalism is the support available

for the analysis of many properties and problems 8ISOciated with OOIlCUITellt systems.

A complete Petri net software padcage should include a variety ofanalysis capabilities.

The current Petri net software application has limited eapabilitieB for analysis; a

reachabillty tree can be produced {or a bounded net. For complex unbounded Petri

nets, reacbability trees are not always pnctic.al due to a state explosion problem.

Furthermore, it is often the cue tbat all the detai.led results of reachability analysis

are not requited. Thus, the current Petri net software applicatioo would. benefit

from the development of more options for analysis. For example, .rtrudurnl 4n4lyris,

analysis based on the structure of a Petri net, can often be useful. In panicu1ar,

invariant analy.N seems to be a popular approach. More details of invarilUlt analysis

can be found in [30].

In the context of a general framework for group robotics, it is possible that the role

of Petri net analysis may be redundant if sophisticated synthesis techniques are used.

[f it is possible from a given task deecription to synthesize a net that is guaranteed to

68

have certain propertieB (e.g_ abemce of deadlock and collision). there may no longer

be & need. to analyze tbe net for thme properties. In this cue, it may be more useful to

analyze the task description for i.nhermt coUisi.on- and de8dlock-<:ausing instructions.

If, from the task descriptioo., it i!I not po88ible to synthesize a net that is guaranteed to

have desired properties, the taak dellcription should be revised. The role of an analysis

module in the context of the framework is an area that requires further consideration.

7.2.6 Task Specification Language

In the context of our general framework for group robotiC!l, the Petri net generator

requires a detailed speci6cation of a robotic task. AJJ discus8ed in Section 7.2.5, it

may be desirable to BDalyze the task de9CriptioD for certain properties. If the nature

of the task description is such that the resulting system will result in collision and/or

deadlock, the task can be revised.

In order to perform an analysis at this level, a formal task specification language is

required. The task specification language should allow task deecriptiODS to be formally

analyzed for certain properties. At present, the language used in task specification is

relatively simple, coD5isting of an ordered list of markers for each robot, and is lim

ited. to the specification of marker-based navigation tub. Realistic tasks involving

multiple robots, however, are more complex. 1be task specificatioD J.anguage sbould

be able to describe QOQ-navigatlon tasks, for example, digging, dumping, drilling, and

blasting for a mining application. In addition, the specification language should be ca

pable of describing tasks which must be performed in a particular sequence (e.g. robot

1 must blast before robot 2 can begin hauling). The language may accommodate a

number of flow-control structures such as "if-then" and "do-wbUe" statements.

Furthermore, it is paramount that an operator-friendly interface be developed

which can be used in taak specification. In general, the operator in charge of specifying

69

tasks will not be formally trained in describing tasb using tbe specificatioo 1angu.age.

Thus, a friendly interface is required to hide the details of the language from the

operator,

7.2.7 Petri Nets in Mathematical Form

Petri Net Theory: Matbematical Representationa

A Petri net and its dynamic behaviour can be de8Cr:ibed and. anal)'Ud mathemati

cally. Matrix equations have been presented which govern the behaviour of concurrent

sysWns modeled by Petri(301.

Incide~ Matri:z;: For & Petri net N with n transitions and m places, the incidence

matrix A - [a;J1 is an n x m matrix. of integer!! where

o,j =o.~ -aij

and at is the weight of the arc from transition i to output place j and a,j is

the weight of the arc from transition i to its input place j. That is, a.;j, a;'j and II.;j

respectively represent the number of tokens removed, added, and changed in place j

when transition i fires once. For a Petri net with marking M, transition i is enabled

if and only if

a.;j $ M(j) j:= 1.2.... ,m

State Equation:. The marking of a Petri net M" is written as an m x 1 oolumn

vector where the jth entry of M" repreeenta the number of tokens in place j after the

kIll firing in a firing sequence. The kCh firing vector Uk is an n x 1 column vector with

only one nonzero entry, a 1 in the i 1Jl position indicating that transition i fires at the

k1h firing. The state equation for a Petri net can then be written

10

Example: For the simple Petri net shown in Figure 5.5(8.). the initial mark

ingM.-ll 2 oj'";,dlangedtomarkingM,=lo 2 1 JT by tbeliringolto

(represented by the first element in the firing vector). The state equation is as follows:

In addition to describing the behaviour of the Petri net, these matriCElll can be

used. in mathematical analysis (e.g. reacbability and i..nwriant analysis).

Petri. Net Representations in Software

Currently, our Petri net software application allows Petri nets to be created graph

ically. From this graphical representation, a mathematical representation is derived

and used to interpret the net.

The concept of stlVting witb a graphical Petri net and translating it into mathe

matical form for execution can be valuable when nets are manually created using a

GUl. In the context of automatic Petri net geoention, h09lo"eVer, thi! appro&d:l. baa

some limitations. Given the current implementation of the Petri net software appli

cation, the automatic Petri net generator must create a graphical Petri net, described

in terms of the on-screen placement of plaoes and transitions. However, since it can

be a nontrivial t.aak to determine the '"best" graphical layout for a net, the controUen

that can be generated automatically are severely limited. by an ability to represent

them graphically.

The reverse strategy is therefore propoeed in our general framework for group

robotics. The output of the Petri net generator is a mathematical net description.

From this, a Net VISU&1izer component prodUCES a graphical representation.

The Petri net generator needa to be modified to automatically generate nets in

71

mathematical form rather than in graphical form. A separate visualization mod·

ule needs to be developed to implement algorithms for translating nets from matrix

representation to graphical representation. Although not required for Petri net inter·

pretation, the visualization module should not be eliminated since one of the strengths

of Petri net theory is that the graphical representation of a net greatly enhances the

ability to monitor the state of a system with ease.

7.2.8 Environment Modelling

The rules for automatic Petri net generation have been developed based on the COD

straint that for safe operation, no more than one robot may traverse a road segment at

a time, and DO more than one robot may pass through 8. single intersection at a time.

Although initially, these constraints may appear unrealistic in some environments,

with proper environment modeling, they have the potential to facilitate safe oper

ation in road networks with less restrictive functional requirements. As illustrative

e.xamples, two possible environment models are presented, one which allows multiple

vehicles to travel (in the same direction) in a road segment and another which allows

vehicles to travel both ways in a road segment.

7.2.9 Multiple vehicles in a road segment

To accommodate the travel of multiple vehicles in the same direction within a road.

segment, a road segment can be modeled 88 a series of "road 8U~segments" which

may be traversed by only one robot at a time. Thus, rather than a single resource

place for each large road segment, a resource place can be generated for each sub

segment. If the sub-segments are connected by "dummy intersections" (intenections

requiring :zero time to cross), no changes to the roles for Petri net generation are

required. Figure 7.1 shows a modified model for road segment Rl that will allow

72

R,

M1

R1 • R'. R1........
M' M'~M'b M1CjM1d M2M2 -- t t

I. I.

Figure 7.1: A road model to allow three robots to travel within Rt simultaneously.

M1

ft1M2 __ M'•
Ml

R1.

ft••
M2

Figure 7.2: A road model that will allow two-way travel in a road segment.

three robots to travel within Rl simultaneously.

7.2.10 Two-way navigation within a road segment

The current environment model allOW'S navigation through a road segment in only

one direction at a time. In many applications, it is highly likely that two-way traffic

will be required in road segments. In this cue, a segment can be modeled as two

"side segments" (Figure 7.2). If it is 88SUIIlEld. that the task description for each robot

obeys the directions of travel for each side segment (i.e. no robot is instructed to

travel the "wrong" way in a road), the current roles for Petri net generation need. not

be modified.

It is recommended that the modeling of environments be further inveJtigated.

Improved modeling methods and techniques for Petri net syntbE!J3i8 will potentially

73

allow controllers to be synthesized for robots operating in a variety of environments.

7.2.11 Facilitating Dynamic Re-scheduling

In the context of our general framework for group robotics, the Petri net generator

is intended to receive from a dynamic scheduler a description of tub for individual

robots. The individual robouc taak descriptioos are then merged into 8 centralized

control scheme whidl can be formally verified. to ensure ooordinated behaviour among

the multiple robots.

tn the event that the operating conditions of the system chaoge in such a way

that the behaviour of the group of robots is affected, the dynamic scheduler reassigns

the tasks to the robots, and a DeW Petri net controller is created.

From the perspective of the discrete event controller, the transition from one

control scheme to a "rescheduled- control scheme remains an area for future work.

The Petri net generator is not currendy equipped to communicate with the dynamic

scheduler in this iterative fashion, and further development to accommodate this

feature is required. Also, it is quite likely that some robots will require rescheduling

when other robots ate in the process of completing a task. Further investigation is

required to determine an appropriate way to change control schemes in mid-task.

References

[l} R. Alami, S. Fleury, M. Henb, F. Ingrand, and F. Robert. Mult; Robot Coop

eration in the Martha Project. IEEE Robotics and Automation Magazine, 5(1),

pp. 36-47, 1998.

[21 R. Alami, F. Ingrand, and S. Qutub. A Scheme for Coordinating Multi-Robot

Planning Activities and Plans Execution, Proaeding.! a/the EeAl '98, Brighton,

UK, LAAS Report No. 98174. 1998.

(31 D. Andreu, J. Pascal, and R. Valette. Fuzzy Petri Net-Based Programmable

Logic Controller. IEEE 7\-o:nsactiom on Sy4teTn$, Man, and Cybernetics - Pa.rt

B: Cybernetics, Vol. 27, No.6, pp. 952-961, December 1997.

[41 R. C. Arkin and T. Balch. Cooperative Multiagent Robotic Systems. Chapter

in Artificial Intelligence and Mobile Robots, D. Kortenkamp, R. P. Bonasso, and

R. MWl'hy (&Is.), MITjAAAl Preos, 1998.

[51 K. Azarm. and G. Schmidt. A Decentralizecl Approach for the Conflict-Free Mo

tion of Multiple Mobile Robots. Advanced' Robotics, VoL 11, No.4, pp. 323-340,

1997.

[6J Z. Banaszak and M. H. Abdul·Hussin. Algorithm of Live and Conflict-Free Petri

Nets Synthesis for Prescribed System. Performance. Engineering and Technology,

Vol. 17, No.2, pp. 154-113, 1998.

74

75

[71 N. G. Bourbakis. A Traffic Priority Language for Collision-Free Navigation of

Autonomous Mobile Robots in Dynamic Environments. IEEE 7htnsactiMu on

Systems, Man, and Cybernetic! - Pari B: Cybernetic.s, Vol. 27, No.4, pp. 573

587, August 1997.

[81 B. L. Brumitt and A. Stentz. GRAMMPS: A Generalized Mission Planner for

Multiple Mobile Robots in Unstructured Environments. Proceeding" 0/ the 1998

IEEE International Conference an Robotie" and Automation, Leuveo, Belgium,

pp. 1895-1902, May 1998.

19] A. Caloini, G. Magnani, and M. pezze. A Technique for Designing Robotic Con.

trol Systems Baaed on Petri Nets. IEEE 7hlnaactions on Control Sy.!tem4 Tech·

nology, Vol. 6, No.1, pp. 72-87, January 1998.

[1O} P. Caloud, W. Chait J. Latombe, C. Le Pape, and M. Vim. Indoor Automation

with Many Mobile Robots. Proceeding.! oj the 1990 IEEE International Worbhop

on Intelligent Robots and Systenu, Japan, pp. 67-72, July 1990.

[11] Y. U. Cao, A. S. Fukunsga, and A. B. Kahng. Cooperative Mobile Robotics:

Antecedents and Directions. Autonomous Robots, 4, pp. 1-23, 1997.

1121 T. Cao and A. C. Sanderson. Task Decomposition and Analysis of Robotic~

sembly Task Plans Using Petri Nets. IEEE 1hJn.!Iacnons in Industrial Electronics,

Vol. 41, No.6, pp. 620-630, December 1994.

[131 O. Cal1sse and H. I. Christensen. Hierarchical Control Design Based on Petri Net

Modeling for an Autonomous Mobile Robot. Intelligent Autonomous Systems,

U. Rembold et aI. (Eds.), pp. 665--678, lOS Press, 1995.

76

(14] O. Causse and L. H. Pampagnin. Management of a Multi-Robot System in a

Public Environment. IEEE/RSJ International Conferenre on Intelligent Robots

and Systems, Vol. 2, pp. 246-252, 1995.

[15] D. Crockett, A. Desrochers, F. DiCesare, and T. Ward. Implementation of a

Petri Net Controller for a Macbini.ng Workstation. I'rocudings 0/ tM 1981 IEEE

International Conference on Robotics and Automation, Raleigh, North Carolina,

pp. 1861-67, March 1987.

[16] P. Freedman. Time, Petri Nets, and Robotics. IEEE Thmsactions on Robotics

and Automation, Vol. 7, No.4, pp. 417-433, August 1991.

[171 E. Freund and J. Rossman. Projective Virtual Reality: Bridging the Gap Be

tween Virtual Reality and Robotics. IEEE Th17l$Qctions on RobotiC! and Au

tomation, Vol. 15, No.3, pp. 411-422, June 1999.

[18J D. W. Gage. Development and Command-Control Tools for Many-Robot Sys

tems. Proceedings 0/ SPIE. The International So<:uty for Optical Engineering.

Philadelphia, PA, USA, pp. 121-129, October 1995.

[19J R. Gosine, R. Hale, F. Hwang, J. King, M. Rokonuzzaman, and J. Seshadri. A

General Framework ror Group Robotics with Applications in Mining. Interna

tional Advcnced' Robotics Program, First lntemational Workshop on Advances

in Robotics for Mining and Underground Applications, Brisbane, Australia, Oc

tober 2000 (submitted).

[20) R. Gooine, M. Rokonuzzaman, R. Hale, F. Hwang, J. King, , and J. Seshadri.

An Approach to Multi-Robot Cooperation Under Human Supervision. Ocean

Engineering Handbook, CRC Press, 2000 (in press).

n

[211 M. Hassoun and C. Laugier. Towards a Real-Time Architecture to Control

an Autonomous Vehicle in Multi-Vehicle Environment. Proceedinfl4 of the 1993

IEEEjRSJ International Conference on Intelligent Robots and Systems, VoJ«>.

bama, Japan, pp. 1134-1140, July 1993.

[221 J. Jang, P. Koo, and S. Y. Nof. Application of Design and Control Tools in a

Multirohot Cell. Computers and /ndU3trial Engineering, Vol. 32, No.1, pp. 89

100, 1997.

[23] K. Jensen. Coloured Petri Nets, Basic Concepts, Analy.!is Methods and Prndicai

Use, Volumes 1-3, New York: Springer-Verlag, 1997.

[24] P. Lima, H. Gracio, V. Veiga, and A. Karlsson. Petri Nets for Modeling and eo..
ordination of Robotic Tasks. Proceedings of the 1998 [EEE International Con·

ference on Systems, Man, and Cybernetics, San Diego, California, pp. 190-195,

October 1998.

[25J D. C. MacKenzie, R. C. Arkin, and J. M. Cameron. Multiagent Mission Specifi

cation and Execution. AutonomoUJ Robots, 4, pp. 29-52, 1997.

[261 S. Mascaro and H. Asada.. Hand-in-Glove Human·Machine Interface and inter

active Control: Task Process Modeling Using Dual Petri Nets. Proceedingl of

the 1998 IEEE Intemational Conference on Robotics and Automation, Leuven,

Belgium, pp. 1289-1295, May 1998.

[27] B. J. McCarragher and H. Asada. The Discrete Event Control or Robotic Assem

bly Tasks. 1h1nsactions of the ASME, Vol. 117, pp. 384-393, September 1995.

128J L. Montano, F. J. Garcia, and J. L. VUlarroel. Using the Time Petri Net For

malism ror Specification, Validation, and Code Generation in Robot--Control

78

Applications. The Internation4l Journal of Robotia Rueorch., Vol. 19, No. I,

pp. 59-76, January 2000.

[291 D. J. Mu and F. DiCesare. A Review of Synthesis Techniques for Petri Nets.

Proaedings of Rensselaer's Second International Cooferena on Computer Inte

grated Manufacturing, Los Alamitos, CA, USA, pp. 348-355. 1990.

[30! T. Murata. Petri Nets: Properties, Analysis and. Applications. Proceeding.! of tM

IEEE, n(4), pp. 541-579, 1989.

[311 T. Mum.. N. Komoda, K. Mal8UDlOtO, and K. Haruna. A Petri Net-B...,.j

ControUer for Flexible and Maint.&inable Sequence Control and ita Applications

in Factory Automation. IEEE Tran.!cctiOnJ on Industrial Electronic.J, Vol. 1&.33,

No. I, pp. 1-8, February 1986.

(321 F. R. Noreils. TOW8I'd. & Robot Archi.t.ee\:ure Integrating Cooperation Between

Mobile Robots: Application to Indoor Environment. 'I"M International JourntJl

of Robotics Ruearch, Vol. 12, No.1, pp. 79-98, February 1993.

(33) P. Oliveira, A. Pascoal, V. Silva., and C. Silwsue. Mission Control of the MAR·

IUS Autonomous Unden'&ter Vehicle: System Design, Implement&tkm, aod Sea

Trials. lnterncdional Journal of Systenu Scienct., Vol. 29, No. la, pp. 106ft-lOBO,

1998.

134) L. E. Parker. ALlJANCE: An Architecture for Fault Tolerant Multi-Robot (h.

operation. IEEE ThJnsactwru on Roboties and Automation, 14(2), pp. 220-240,

1998.

(35) P. J. G. Ramadge and W. M. Woobam. The Cootrol of Dioaete Event Syotems.

it Proceedings of the IEEE, Vol. 77, No. I, pp. 81-97, January 1989.

71l

[36J M. Rokonu=unan, R. D. Hale, F. Hwang, J. King, and R. G. G<>eine. Mndeling,

Controlling, and Monitoring Tel.erobotia Ba8ed Mine Operations as Discrete

Event Systems. Prot:«tIing$ of tM 3l1t lnUrn4tion4l Symporiwn on Robotics,

Montreal, Quebec, May 2000.

[371 K. Singh and K. Fujimura. A Navigation Strategy for Cooperative Multiple M"

bile Robots. Prcx:w:tin9~ of the 1993 IEEE/RSJ International Con/eren,a. on

Inulligent Robot.! and Systeml, Yokohama., Japan, pp. 283-288, July 1993.

[381 A. Stentz, J. Bares, S. Singh, and P. Rowe. A Robot.ic Excavator for Autonomous

Truck Loading. Autonomou.s Robot8, 7, 2, pp. 175-186, 1999.

1391 A. Taholakian and W. M. M. Hales. PN~PLC: A Methodology for Designing,

Simulating, and Coding PLC Bued Control Systems Using Petri Nets. Interne·

tional JoumaJ of Production Rueon:A, Vol. 35, No.6, pp. 1743-1762, 1997.

(401 M. Zhou and E. Twiss. Design of Industrial Automated Systems Via Relay Lad.

der Logic Programming and Petri Nets. IEEE Thln.!acti0n8 on Syderru, Man,

and Cy~tiC$ - Part C: Applic:ation..t and Reviews, Vol. 28, No. I, pp_ 137

150. February 1998.

{411 M. Zhou, Ed. Petri Nets in Flexible and Agile Automation. MlI8S8Cbusetts:

Kluwer Academic Publishers, 1995.

(421 W. M. Zuberek. Tuned. Petri oeta-de6nitions, properties, and applications. Mi

~lectronia and Reliability (Specia1lssue on Petri Nets and Related Graph

Models), Vol. 31, No.4, pp. 627-644, 1991.

[43J W. M. Zuberek. Tirrwi Petri Neu-An Introduction.. Lecture Notes for C5-6726,

Memorial University of Newfoundland. i998.

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents v
	0010_Table of Contents vi
	0011_List of Figures
	0012_Chapter 1 - Page 1
	0013_Page 2
	0014_Page 3
	0015_Page 4
	0016_Page 5
	0017_Page 6
	0018_Chapter 2 - Page 7
	0019_Page 8
	0020_Page 9
	0021_Page 10
	0022_Page 11
	0023_Page 12
	0024_Page 13
	0025_Chapter 3 - Page 14
	0026_Page 15
	0027_Page 16
	0028_Page 17
	0029_Page 18
	0030_Page 19
	0031_Chapter 4 - Page 20
	0032_Page 21
	0033_Page 22
	0034_Page 23
	0035_Page 24
	0036_Page 25
	0037_Chapter 5 - Page 26
	0038_Page 27
	0039_Page 28
	0040_Page 29
	0041_Page 30
	0042_Page 31
	0043_Page 32
	0044_Page 33
	0045_Page 34
	0046_Page 35
	0047_Page 36
	0048_Page 37
	0049_Page 38
	0050_Page 39
	0051_Page 40
	0052_Page 41
	0053_Page 42
	0054_Page 43
	0055_Page 44
	0056_Page 45
	0057_Page 46
	0058_Page 47
	0059_Page 48
	0060_Chapter 6 - Page 49
	0061_Page 50
	0062_Page 51
	0063_Page 52
	0064_Page 53
	0065_Page 54
	0066_Page 55
	0067_Page 56
	0068_Page 57
	0069_Page 58
	0070_Page 59
	0071_Page 60
	0072_Page 61
	0073_Chapter 7 - Page 62
	0074_Page 63
	0075_Page 64
	0076_Page 65
	0077_Page 66
	0078_Page 67
	0079_Page 68
	0080_Page 69
	0081_Page 70
	0082_Page 71
	0083_Page 72
	0084_Page 73
	0085_References
	0086_Page 75
	0087_Page 76
	0088_Page 77
	0089_Page 78
	0090_Page 79
	0091_Blank Page
	0092_Blank Page
	0093_Inside Back Cover
	0094_Back Cover

