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Abstract

Multi-agent systems represent a group of agents that cooperate to solve common tasks

in a dynamic environment. Multi-agent control systems have been widely studied in the

past few years. The control of multi-agent systems relates to synthesizing control schemes

for systems which are inherently distributed and composed of multiple interacting entities.

Because of the wide applications of multi-agent theories in large and complex control

systems, it is necessary to develop a framework to simplify the process of developing control

schemes for multi-agent systems.

In this study, a framework is proposed for the distributed control and coordination

of multi-agent systems. In the proposed framework, the control of multi-agent systems is

regarded as achieving decentralized control and coordination of agents. Each agent is mod-

eled as a Coordinated Hybrid Agent (CHA) which is composed of an intelligent coordination

layer and a hybrid control layer. The intelligent coordination layer takes the coordination

input, plant input and workspace input. After processing the coordination primitives,

the intelligent coordination layer outputs the desired action to the hybrid layer. In the

proposed framework, we describe the coordination mechanism in a domain-independent

way, as simple abstract primitives in a coordination rule base for certain dependency re-

lationships between the activities of different agents. The intelligent coordination layer

deals with the planning, coordination, decision-making and computation of the agent. The

hybrid control layer of the proposed framework takes the output of the intelligent coor-

dination layer and generates discrete and continuous control signals to control the overall

process. In order to verify the feasibility of the proposed framework, experiments for both

heterogeneous and homogeneous Multi-Agent Systems (MASs) are implemented. In addi-

tion, the stability of systems modeled using the proposed framework is also analyzed. The

conditions for asymptotic stability and exponential stability of a CHA system are given.

In order to optimize a Multi-Agent System (MAS), a hybrid approach is proposed to

address the optimization problem for a MAS modeled using the CHA framework. Both the

event-driven dynamics and time-driven dynamics are included for the formulation of the

optimization problem. A generic formula is given for the optimization of the framework.

A direct identification algorithm is also discussed to solve the optimization problem.
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Chapter 1

Introduction

Modern control systems must meet the requirements of significant degrees of dynamic

environments to provide greater flexibility. Distributed Artificial Intelligence (DAI) is a

sub-discipline of Artificial Intelligence (AI) that deals with problems requiring a distributed

approach to effective practical solutions [5]. The implementation of complex AI systems

can be approached by decomposing the global goal into simpler, well-specified tasks which

are easier to be accomplished independently by a collection of interacting and autonomous

components (i.e., agents). It is proved in [32] that agent-oriented approaches are well suited

to the engineering of complex control systems. Multi-Agent Systems (MASs) represent a

group of agents working cooperatively to solve common tasks in a dynamic environment.

The control of MASs relates to synthesizing control schemes for systems which are inher-

ently distributed and composed of multiple interacting entities.

1.1 Motivation

The control of large complex robotics and manufacturing systems require autonomous

cooperating or coordinated multiple robots and other platforms to work together, where

the term coordinated refers to tight coupling of the physical platform’s kinematics and

dynamic parameters. The control of multiple platforms is very different from that of a single

platform. The environment is not static because all the other platforms are reacting in

the environment at the same time. Many reported approaches usually are not generalized.

1



2 A Framework for Coordinated Control of Multi-Agent Systems

And a lot of them can not be applied to both homogeneous systems and heterogeneous

systems. Agent activities need to be analyzed at both the strategic level and the tactical

level that involves platforms’ kinematics and dynamics.

1.1.1 Problem Statement

The tasks of cooperative robots, such as grasping, manipulation, lifting, dropping, and

handling, require close and simultaneous coordination of all the robots.

Scenario 1.1.1 Consider the control of a multi-crane system composed of two industrial

overhead cranes operating in a shared workspace. The goal of this multi-crane system is to

control the two cranes to move the payloads in the shared workspace without any collision.

The overhead cranes are hybrid systems that have both discrete events and continuous

dynamics. The two hybrid systems need to interact with each other in order to achieve a

global goal.

In the above scenario, the two overhead cranes have similar properties. A more in-

teresting and more challenging case is the control of a heterogeneous Multi-Agent System

(MAS). In this scenario, three systems with different properties need to cooperate with

others.

Scenario 1.1.2 Consider the control of a system consisting of a mobile robot, an overhead

crane, and a robot manipulator. The mobile robot is a flexible, robust platform for either

indoor or outdoor experiments and applications. The robot manipulator can provide six

degrees of freedom. The goal for this control system is to develop cooperative tasks among

the overhead crane, the mobile robot and the robot manipulator. The mobile robot picks up

an object in the overhead crane’s workspace and carries it to the manipulator’s workspace.

The robot manipulator is mounted on a track which is an extra axis of control for the robot

manipulator. It picks up the object from the mobile robot and delivers it to the other end

of its track.

One thing that is common with these scenarios is to control multiple hybrid systems to

cooperate and coordinate in order to achieve the global goal. Other examples can be the
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distributed control of a reservoir system. The agent-based approach can be applied for dis-

tributed control of multiple hybrid systems. In a MAS, agents have various specializations

for the subtasks. Individual agents can be implemented by non-adaptive techniques and

they may also have learning capabilities. The basic functionality is mostly encapsulated

in individual agents. Agents represent their own abilities locally, and the whole system

becomes goal oriented.

1.1.2 The Control of Multi-Agent Systems

Multi-agent control systems relate to the decomposition of complex control problems so

that multiple local controllers can solve the problem cooperatively. On the other hand, the

control of MASs relate to synthesizing control schemes that are inherently distributed and

consist of multiple entities. The control of MASs have been widely studied in the past few

years.

In [8], an agent-based approach for distributed control systems is proposed which is

adaptable and dynamically reconfigurable. The approach makes use of distributed artificial

intelligence tools at both the planning and the control levels. In [3], the development and

implementation of an agent-based distributed control system in a waste water treatment

plant are introduced. In [16], the authors study a simplified version of the RoboFlag

competition that they model as a hybrid system. In [13], a distributed algorithm for

coordinating the flow of a mass of vehicles approaching a highway exit or a tollbooth is

studied. An approach to detect and diagnose multiple faults in industrial processes with

a hybrid multi-agent diagnostic system is presented in [23]. A method is proposed in [34]

where the programs that identify the conditions of a specific type of data are defined and

integrated by means of a multi-agent architecture. A dispatching control system for flexible

manufacturing systems is presented in [31]. In [52], implicit communication is used to

address the problem of coordination of multiple mobile robots. In [42], an extended Kalman

filter-based algorithm for the localization of a team of robots is described. Coordinating the

motions of multiple robots operating in a shared workspace without collisions is addressed

in [1] for the coordination of multiple robots when their trajectories are specified. In

[44], a negotiation protocol for verifying the feasibility of a cooperative task is proposed.

In [66], the object closure method is defined and a set of decentralized algorithms are
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developed to allow the robots to achieve the object closure. In [25], Petri nets are used to

evaluate the efficiency of the MAS. In [43], it is described that the use of behaviors as the

underlying control representation provides useful encoding that both lends robustness to

control and allows abstraction for handling scaling in learning that focuses on multi-agent

robot systems.

1.1.3 The Architecture for Multi-Agent Systems

Because of the wide applications of multi-agent theories in large and complex control sys-

tems, it is necessary to develop a framework to simplify the process of developing control

schemes for MASs. The control architecture for MASs can be broadly characterized as

deliberative control, reactive control, and a combination of both of them. Deliberative

control is based on planning, while reactive control is based on coupling between sensing

and actuation. Strategies which require that action be mediated by some symbolic repre-

sentation of the environment are often called deliberative. In contrast, reactive strategies

do not exhibit a steadfast reliance on internal models. Instead of responding to entities

within a model, the control system can respond directly to perception of the real world.

Deliberative Control

An architecture for multi-robot systems is proposed in [55] that considers cooperation as

an opportunity to increase the skills of robots which already possess some capabilities. In

this architecture, several modules are defined for an agent. However, this framework only

deals with the domain of a multi-robot system.

An architecture for MASs and the application of the architecture for the control of an

autonomous mobile robot are introduced in [59]. A knowledge source and several layers

are defined in this architecture. However, this framework only deals with the domain of

mobile robots. Furthermore, more modules should be included in this architecture to make

it generic.

In [53], the synthesis of a multi-agent supervisor for a multi-agent framework is stud-

ied. It is proved that there is an algorithmic procedure for the recursive construction

of a multi-agent supervisor when an additional automaton is added to a system. This
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work concentrates on the research of supervising a MAS rather than defining a generic

framework.

In [27], an algebra for computing overall survivability from dimensions of success is

studied. A control infrastructure is presented that leverages the degrees of freedom to

make run-time adaptations at multiple hierarchical levels to maximize overall system sur-

vivability. But this framework concentrates on the system survivability rather than the

control of the system.

Information technology has made today’s manufacturing systems increasingly distributed.

Such systems consist of a complex array of computer-based decision units, controllers, and

databases. In [57], a multi-agent framework is presented for achieving system integration.

This work specifically emphasizes the coordination mechanisms needed for ensuring the

orderly operations and concerted decision making among the agents of the manufacturing

systems. The application of the framework to a printed circuit board manufacturing sys-

tem and the performance results are also described. While successful in many ways, this

framework does not include the hybrid nature and the continuous dynamics of a system

that always exist in complex manufacturing systems.

A multi-agent framework is proposed in [64] to develop product design and planning

using the concurrent engineering approach. The model brings together constraints from

all team members in the development cycle. The methodology uses conflict-resolution

techniques and design-improvement suggestions to refine the initial product design and

process plan generation. Simulation is used to verify the feasibility of the design. This

framework focuses on providing a way of modeling design teams. It presents a way to

model an individual team member’s perspective as a segment of the task knowledge. It is

not applicable to the control of MASs.

DAI lacks a clear and implementable model for cooperative problem solving, which

specifies how agents should operate and interact in complex, dynamic and unpredictable

environments. In order to address this problem with DAI, a new cooperation model has

been developed in [32]. This model specifies pre-conditions which must be attained before

collaboration can start and prescribes how individuals should behave when the joint activity

is proceeding and also when the joint activity runs into difficulty. This model has been

used to guide the implementation of a general-purpose cooperation framework and the
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qualitative and quantitative benefits of this implementation have been assessed through

a series of comparative experiments in the real-world domain of electricity transportation

management. This framework deals with the cooperation issues of MASs, but it doesn’t

include the hybrid characteristics of a MAS either.

In [26], the concept of agent is applied to implement control algorithms and application

architectures for flexible control in manufacturing systems. A framework is presented

and demonstrated by running a simulated manufacturing system by a set of agents. The

requirements for the implementation and overview of the building blocks of the agent

architecture are given. The persistent data management facilities are included into the

agent architecture which allows an agent to handle information and knowledge. This

framework focuses on the overall management of the MAS, it lacks the ability to deal with

the dynamics and uncertainty of the environment.

In [29], the traditional framework for discrete-event control is extended to include the

case of control with active events, in which both the user and the environment have events

that they can trigger. A synthesis algorithm is outlined for minimally restrictive controllers.

Multiuser systems are also discussed. This work focuses on the control of discrete events.

It provides a model for multi-users to generate events. It is not a generalized framework

that can be applied to the control of MASs.

A stable control strategy is presented in [45] for groups of vehicles to move and recon-

figure cooperatively in response to a sensed, distributed environment. Each vehicle in the

MAS serves as a mobile sensor and the vehicle network as a mobile and reconfigurable

sensor array. The underlying coordination framework uses virtual bodies and artificial po-

tentials, which is based on gradient climbing missions in which the mobile sensor network

looks for local maxima or minima in the environmental field. The network adapts its con-

figuration in response to the sensed environment in order to optimize its gradient climb.

This framework focuses on the mobile sensor network problem, which makes it problem

dependent and not suitable for other domains.

A strategy is described in [58], in which agents attempt to make claims using tactical

rules. As the debate among agents continues, a shared argument map is created, which

is controlled by strategic rules. Inconsistency is assumed to stand unless it is attacked by

another agent. An evaluation function calculates the strength of arguments in terms of
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a number of structural constraints. This work provides a strategy for decision making,

rather than a strategy for the control of a MAS.

Motivated by the distinction between controllable and uncontrollable events, in [6], the

difference between two types of agents within a MAS are defined. The agents are distin-

guished as controllable agents and uncontrollable agents. Controllable agents represent

agents that are directly controlled by the system’s designer. Uncontrollable agents repre-

sent agents that are not under the designer’s direct control. Such systems are referred to

as partially controlled MASs. In this work, it is investigated how one might influence the

behavior of the uncontrolled agents through appropriate design of the controllable agents.

Different techniques are presented for controlling agents’ behaviors in various domains.

This work focuses on controlling agents to learn and affect other agents (for example, op-

ponents in a game) in the environment. It does not provide a framework for the control of

MASs either.

Nowadays, manufacturing systems are required to be capable of responding rapidly to

dynamic changes, and fulfilling customer needs in order to rival with business competi-

tors. There is a demand for the integration of process planning and production scheduling.

A multi-agent based framework is introduced in [36] in which process planning and pro-

duction scheduling are integrated. In addition, this framework enables the utilization of

manufacturing resources to be dynamically optimized as well as provide a platform on

which alternative configurations of manufacturing systems can be assessed. This work

focuses on the scheduling of MASs which covers only one aspect of developing a generic

framework. The hybrid nature of such an agent is not addressed.

Based on the analysis of the reinforcement learning and Markov games, a layered multi-

agent coordination framework is proposed in [18]. Based on agents’ interaction of compe-

tition and cooperation, this coordination framework adopts the zero-sum Markov game in

higher layer to compete with opponent and adopts the team Markov game in lower layer

to accomplish the team’s cooperation. This coordination framework is applied to Robot

Soccer. The learning issue for a MAS is studied in this framework, while a comprehensive

and generic framework for the control of MASs still needs to be studied.
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Reactive Control

Behavior-based control appears to be a popular approach to offer a practical level of flexi-

bility, autonomy, and computational economy for preliminary design of MASs. It is based

on the reactive control strategy [9].

An agent’s architecture is proposed in [38] for multi-robot systems. This architecture

is based on satisfaction and altruism allowing the agents to amend their low-level behavior

in order to solve more complex problems. Unfortunately, rather than defining a complete

model for MASs, this architecture focuses on the “altruistic” reactions.

In [47], a modeling concept is presented that relies on a multi-agent based modeling

framework, which decomposes the control problem into highly autonomous entities. These

entities communicate via abstract sensors and actuators. However, this work is focused

on the communication of MASs. As a result, it is targeted on measuring systems that are

networked with multi-processors.

In [62], a framework is introduced that provides distributed control of large collections

of mobile physical agents in sensor networks. The agents sense and react to virtual forces.

This framework also provides an effective basis for self-organization, fault-tolerance, and

self-repair. Examples show how this framework can be applied to construct distributed

sensing grids, and dynamic behaviors for perimeter defense and surveillance. It is also an-

alyzed how to facilitate system understanding and predictability. This frame work focuses

on the application of sensing and surveillance, which is not applicable to the problems that

we focus on.

Distributed control offers robustness, scalability, and simplicity to the control and or-

ganization of module based systems. In [35], a general control framework is proposed and

a distributed control system based on the framework is presented. The behavior of the

complete robot is a collective behavior of all independent modules. All modules in the

robot contain their own processing and actuation units, which allow them to evaluate and

react to the environment independently. The modules can perform passive communication

with their immediate neighbors and can exhibit aggressive or tolerant behaviors based on

the environment changes to generate emergent group behaviors. Similarly, a multi-agent

approach is proposed in [46] for grasping tasks. Control of the system is distributed among

five different types of agents: link agents, joint agents, end-effector agents, task agents,
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and object agents. As each agent attempts to achieve a desired individual behavior, the

manipulator itself exhibits an emergent behavior that avoids obstacles while approaching

the object to be grasped. Another similar architecture for the control of robot systems is

discussed in [69]. By virtue of the support of adequate tools, this schema lends itself both to

a general increase of robot programming capability and flexibility and to rapid prototyping

of different architectural solutions. All the three frameworks focus on the implementation

of agent-based approaches to solve the control problem of a single robot. It does not deal

with the problem of controlling a complex system that is inherently distributed.

The Combination of Deliberative and Reactive Control

Exploration of highly risky terrains such as cliffs and risky construction sites by autonomous

robotic systems requires a control architecture that is able to autonomously adapt to

uncertainties in the environment. A software/hardware framework for cooperating multiple

robots is proposed in [30] to facilitate the development of such coordinated tasks. This

work builds upon earlier research into autonomous planetary rovers and robot arms. A

distributed control architecture is presented in which integrated multi-robot mobility and

control mechanisms are derived as group compositions and coordination of basic behaviors.

This framework includes the necessary group behaviors and communication mechanisms for

coordinated/cooperative control of heterogeneous robotic platforms. However, it doesn’t

provide a mechanism for analyzing the dynamics of the platforms. The stability of the

MAS is not considered either.

Song proposes a framework for controlling and coordinating a group of robots for co-

operative manipulation tasks in [61]. This framework enables a decentralized approach to

planning and control that allows the robots approach the object, organize themselves into

a formation that will trap the object and transport the object to the desired destination.

But this framework focuses on the formation control of the MAS. It is not applicable for

other applications.

A multi-agent approach for developing flexible real-time control systems for autonomous

mobile robots is presented in [37]. It is studied how to integrate heterogeneous algorithms

and functionalities on-board a robot, while still guaranteeing a reasonable response time. A

framework is provided for developing complex intelligent machines. The proposed control
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system is applied to robot navigation problems for which a robot runs through complex

environments by combining visual tracking, obstacle avoidance, and command receiving

behaviors within a single system. This architecture uses the agent approach to develop the

control strategy for one single robot. It does not deal with control problems for multiple

entities.

A new architecture for an agile shop floor control system is presented in [11]. The shop

floor control system is a dynamic system with the capability of adapting and accepting

unpredictable changes in its structures. The proposed architecture in [11] is based on the

methodology of multi-agent systems and Distributed Artificial Intelligence. Characteristics

of MASs are explored to implement a distributed, cooperative architecture for a shop floor

control system. To implement the framework, a coordination model between agents and

behavioral models of some representative agents are also established. This work focuses

on using the agent-based approach to solve the shop floor control problem. It does not

provide a strategy for the control of multi-agent problem.

1.1.4 Hybrid Systems and Multi-Agent Systems

Complex natural and engineering systems typically possess a hierarchical structure, char-

acterized by continuous variable dynamics at the lowest level and logical decision making

variables at the highest [7]. Virtually all control systems today issue continuous variable

controls and perform logical checks that determine the modes and the control algorithms.

The continuous variable system is operating at any given moment. Almost all control sys-

tems contain continuous-variable control commands and discrete logical commands. The

interaction of the discrete dynamics and continuous dynamics lead to the challenging hybrid

control problems. Hybrid systems involve both continuous variables and discrete variables.

The evolution of continuous variables and discrete variables is given by dynamic equa-

tions that generally depend on both. These dynamic equations often contain a mixture

of logic and discrete variables along with continuous variables. The continuous dynamics

of hybrid systems may evolve according to continuous time or discrete time. Generally

the continuous dynamics is given by differential equations. The discrete dynamics of hy-

brid systems is generally governed by a digital automaton or an input-output transition

mapping with a limited number of states. The continuous and discrete dynamics interact
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at certain events or certain firing times when the continuous state hits certain prescribed

values in the continuous state space. Because of the hybrid nature of MASs, we have to

consider simulating the continuous dynamics and the discrete dynamics of the agents. The

evolution of continuous variables and discrete variables of an agent interacts with discrete

events and continuous dynamics of another agent, and determines the evolution of the

discrete variables and continuous variables of the whole MAS.

In [14], a hybrid systems framework for the real-time multi-agent coordination and

control of multiple vehicles in the context of the multiple autonomous underwater vehicles

are discussed. The authors address the use of hybrid systems techniques for analyzing

and synthesizing the control architecture and describe how it can be implemented using

an object-oriented framework for implementing real-time, event-driven, distributed multi-

agent control systems. The work considers the hybrid nature of a MAS, it presents an

architecture for the control of a MAS. However, it is domain dependent, and can not be

regarded as a comprehensive framework.

Abstraction is a natural way to hierarchically decompose the analysis and design of

hybrid systems. Given a hybrid control system and some desired properties, a system

can be extracted while the properties of interest being preserved. In [63], a framework

for abstraction that applies to discrete, continuous, and hybrid systems, is presented. A

composition operator is introduced that allows the development of complex hybrid systems

from simpler ones. The compatibility between abstractions and this compositional operator

is also shown. This work presents an effective way for abstracting a hybrid agent, while it

does not solve the control problem of MASs.

In [22], a generic framework for integrated modeling, control and coordination of mul-

tiple multi-mode dynamical systems is developed. This framework of distributed control

of MASs is called Hybrid Intelligent Control Agent (HICA). In this framework, a certain

form of knowledge-based deliberative planning is integrated with a set of verified hybrid

control primitives along with coordination logic to provide coordinated control of systems

of agents. This work gives the basis for analyzing MASs as hybrid control systems. Al-

though in this framework, coordination factors have been defined as input coordination

factors and output coordination factors, there is no generic cooperation and coordination

mechanism defined for the HICA agents. Furthermore, because this framework is based
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on the multiple unmanned ground vehicle/unmanned air vehicle pursuit-evasion problem,

not all essential primitives are defined. It is not shown how to optimize the performance

of a MAS either.

1.1.5 Objectives

While feasible in many applications, most of the above architectures lack some degree

of generality and remain problem dependent. A generic framework for the control of

MASs is desired. A generic framework should be applicable for both homogeneous and

heterogeneous MASs. It should include hybrid primitives. Both time-driven and event-

driven dynamics should be included in the framework. A generic framework can be applied

to a wide range of problems, especially intelligent control of hybrid systems. In this study,

the distributed intelligent control of multiple hybrid systems is discussed, and a framework

for the cooperative and coordinated control of MASs is proposed. In order to make the

framework generic, we need to include both deliberative control and reactive control in

the agent. The results obtained will be valuable for the control of various MASs. The

analysis and design approach proposed in this study for MASs will provide insights to

researchers in intelligent control systems. The agents defined in this study are autonomous

problem-solving entities that have the following properties:

• Situated: They can receive inputs related to the state of their environment through

sensors.

• Reasoning: They are able to reason about the environment and have particular

objectives to achieve. They have intelligence built in them.

• Reactive: They are able to respond to the changes of the world and make changes

to the environment through actuators.

• Interactive: They are able to interact with other agents through explicit or implied

communication channels in order to achieve the global goal.

• Performance Measure: They have a performance measure with which the agent’s

performance on the tasks can be evaluated.
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1.2 Contribution

The major contribution of this work is that a generic Coordinated Hybrid Agent (CHA)

framework is proposed to tackle the control problem for MASs. This generic framework

is able to model the control of multiple hybrid agent systems. The proposed framework

can be applied to the design and analysis of both homogeneous and heterogeneous MASs.

An example of the homogeneous system is the multi-crane system mentioned above. An

example of the heterogeneous MAS consists of an overhead crane, a mobile robot, and a

robot manipulator, which has also been introduced. The CHA framework is proposed as a

novel approach for the integrated modeling, cooperative and coordinated control of MASs

that consist of multiple hybrid systems. In the proposed framework, the control of MASs

is considered as achieving decentralized control and coordination of agents. Each agent is

modeled as a CHA, which is composed of an intelligent coordination control layer and a

hybrid control layer. The intelligent coordination control layer deals with the planning,

coordination, decision-making and computation of the agent. The hybrid control layer of

the proposed framework takes the output of the intelligent coordination layer and gener-

ates discrete and continuous control signals to control the overall process. The proposed

framework includes both the hybrid dynamics, controls, and discrete logic for coordination

and cooperation for the system. Different from other researchers’ work, in the proposed

framework, we use the theory of coordination states, and include a coordination rule base,

an intelligent planner and a direct communication module in the intelligent coordination

control layer which make the proposed framework generic for various problems. With the

introduction of the intelligent coordination control layer and the hybrid control layer, we

are able to analyze the local stability of the agent, and then to analyze the global stability

of the MAS as logical DESs.

With the development of the framework for the control of MASs where agents cooperate,

coordinate and interact with each other, the contribution of this work includes:

• A generic framework for the control of MASs is proposed. The issues that usually

arise in real-world hybrid systems are identified. The mathematical model of hybrid

systems as interacting collections of dynamical systems is introduced in this work.

MASs discussed in this work evolve in continuous-variable state spaces and subject
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to continuous controls and discrete transitions. The hybrid model proposed in the

framework generalizes the concept of hybrid systems, and retains enough information

on which to pose and solve meaningful control problems.

• The proposed framework models both strategic control and tactic control. The in-

tegrated framework consistently and transparently deals with both high level design

requirements and low-level design requirements.

• The proposed framework also provides the integration of deliberative control with

hybrid reactive control through the interaction between the intelligent coordination

control layer and the hybrid control layer.

• The proposed framework has been applied to a few scenarios illustrating homogeneous

and heterogeneous configurations. The feasibility of the proposed generic framework

for the control of MASs is demonstrated using experiments and/or numerical simu-

lations.

• The stability of MASs modeled by the CHA framework is defined. Because each

CHA can be considered as a Discrete Event System (DES), we define the stability of

CHA systems in the sense of Lyapunov as a logical DES. The necessary and sufficient

conditions for the stability of CHA MASs are presented. In addition, the asymptotic

stability and exponential stability of a MAS modeled using the proposed framework

is also studied. It is also proved that both the heterogeneous and homogeneous MASs

developed using the proposed framework are exponentially stable.

• The optimization of MASs modeled by the CHA framework has also been studied.

The optimization of a CHA system can be described using time-driven dynamics and

event-driven dynamics. In particular, we have demonstrated the existence of optimal

controls. A direct identification algorithm is applied to optimize the performance

and timing of the MAS. Simulation results are given to check on the efficiency of the

optimization algorithm.

• In a MAS, it is desirable to set the order of tasks in multiple concurrent hybrid

systems. We define this as scheduling for a CHA framework. A scheduling scheme
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for a CHA system is proposed that provides two features. First, an algorithm for

ordering the use of shared resources among agents. Second, a means of predicting

the worst-case behavior of the MAS when the scheduling algorithm for ordering is

applied.

• In order to coordinate the agents during planning, we introduce the concept of co-

ordination rule base in the intelligent coordination control layer of a CHA. The

coordination rules can be defined for the MAS in a rule base called coordination rule

base. Planning of the agents have to follow the rules defined in the coordination rule

base. The coordination rules can be considered as desirable choices and constraints

for the actions of agents. The constraints specify which of the actions are in fact not

allowed in a given state. The desirable choices in general are desirable actions that

are available for a given state.

We have proposed a generic framework that includes the notion of hybrid systems.

The proposed framework is applicable for the control of MASs that relates to differential

equations and automata. A hybrid controller is included in the framework that issues

continuous-variable commands and makes logical decisions. We have developed a theory

for synthesizing hybrid controllers for MASs in order to optimize the control strategy.

The major contribution of this work is illustrated throughout this dissertation by various

examples, simulations and experiments. Since the proposed framework is to be applied to

various applications, the overhead might be unnecessary for certain applications.

1.3 Related Research Areas

To accomplish the objectives of this study, areas of related research are identified as dis-

tributed systems, MASs, discrete event systems, artificial intelligence, computer vision,

mobile robotics, robot manipulators, hybrid control systems, and so on.
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1.4 Organization

Chapter 2 gives some background information about this research work, including MASs,

centralized and decentralized control, input/output automata, continuous and discrete

event systems, hybrid systems and hybrid intelligent control agent. Chapter 3 describes

the proposed framework for the control of multi-agent systems. Chapter 4 gives the sta-

bility analysis of the proposed framework. The optimization of MASs with the proposed

framework is analyzed in Chapter 5. The direct identification algorithm is also introduced

for solving the optimal control problem for a CHA MAS. Chapter 6 describes the applica-

tion of the proposed framework to some scenarios to illustrate the feasibility of the proposed

framework. By using the proposed framework, the control schemes are developed for these

MASs. It is demonstrated that the proposed framework is generic and is applicable to

both homogeneous and heterogeneous MASs. Simulation and experimental results are also

given. Chapter 7 gives some examples to analyze the stability and optimization of MASs

using the methodology we have proposed. In Chapter 8, we summarize this work and give

some directions for future research.
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Background

In this chapter, we introduce the background knowledge of various areas related to this

research.

2.1 Multi-Agent Systems

The two most important fields of multi-agent systems are DAI and Artificial Life (AL) [19].

The purpose of DAI is to create systems that are capable of solving problems by reasoning

based on dealing with symbols. The purpose of AL is to build systems that are capable of

surviving and adapting to the environments. The research into agents was originated in

1977 [28] by Hewitt. He proposed the actor model of computation to organize programs

in which the intelligence is modeled using a society of communicating knowledge-based

problem-solving experts. Since then, the research in agents has continued and evolved.

The research of sharing data among agents dates back to 1980 [17]. In this work, the

model of the blackboard system was developed. Objects in the working area were inserted,

modified and withdrawn in a common area called the blackboard.

An agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through actuators. An agent within a multi-agent

system can be thought of as a system that tries to fulfill a set of goals within the complex,

dynamic environment. Agents have only a partial representation of the environment. In

recent years, there has been a growing interest in the control of systems that are composed

17
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of several interacting autonomous agents.

2.2 Centralized Control and Decentralized Control

The centralized control paradigm is characterized by a complex central processing unit that

is designed to solve the whole problem. The central unit must gather the data from the

whole system. The solution algorithms are necessarily complex and problem specific. Thus

the processing unit is able to check that a solution is the globally optimal solution which

is not easily achieved in a decentralized control paradigm. However, utilizing complex

algorithms and analyzing all information in a centralized controller always cause slower

responses than a decentralized control system.

Decentralized control paradigms are based on distributed control in which individual

components react to local conditions simultaneously. These individual components interact

with neighboring components to exhibit desired adaptive behaviors. The complex behav-

iors are a resultant property of the system of connections. The decentralized nature of

information in many large-scale systems, requires the control systems to be decentralized.

Decentralized control of discrete-event systems, in the absence of communication, has been

well studied. Control of logical discrete-event systems with communication is investigated

in [4]. Controllers observe events generated by the system and are allowed to pass messages

in order to attempt to resolve ambiguities and to determine correct control actions.

A problem is called intractable if the time required to solve instances of the problem

grows exponentially with the size of the instances. Exponential growth means that even

moderately large instances cannot be solved in any reasonable time. One should try to

divide the overall problem of generating intelligent behavior into tractable subproblems

rather than intractable ones [54].

2.3 Input/Output Automata

The input/output automaton model is defined in [40] as a tool for modeling concurrent

and distributed discrete event systems. I/O automata provides an appropriate way to

model discrete event systems consisting of concurrently-operating components. A funda-
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mental property of the model is that there is a clear distinction between the actions whose

performance is under control of the autamaton and the actions whose performance is un-

der the control of the environment. An automaton generates output and internal actions,

and transmits output to the environment. The automaton’s input is generated by the

environment and transmitted to the automaton. The I/O automata model allows precise

statements of the problems of concurrent systems. The problems are formulated as sets

of finite and infinite sequences of external actions. The I/O automata model is general

enough to serve as an operational model for many different languages describing sets of

action sequences.

An I/O automaton A has five major components:

1. An action signature sig(A);

2. A set states(A) of states;

3. A nonempty set start(A) ⊆ states(A) of start states;

4. A transition relation steps(A) ⊆ states(A)× acts(A)× states(A);

5. An equivalence relation part(A) partitioning the set local(A) into at most a countable

number of equivalence classes.

2.4 Continuous Systems and Discrete Event Systems

“A variable is called discrete if it takes values in a countable set and it is called continuous

otherwise” [39].

Discrete Event Systems (DESs) are dynamical systems which evolve in time by occur-

rence of events at time intervals not necessarily regular. Some examples include flexible

manufacturing systems, computer networks, logic circuits, and traffic systems [48]. “Logi-

cal” DESs are a class of discrete time DES with equations of motion that are most often

nonlinear and discontinuous in the occurrence of the events. It has been long known that

a stability theory can be developed in a very broad setting which is phrased in terms of

motions of dynamical systems and which does not require the description of the system

under investigation in terms of specific equations. In [49], Passino introduces a logical DES

model and defines stability in the sense of Lyapunov and asymptotic stability for logical

DESs. He shows that the metric space formulation can be used for the analysis of stability
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for logical DESs by employing appropriate Lyapunov functions. Consider stability prop-

erties of discrete event systems that can be modeled accurately with G = (X, ξ, fe, g, Ea),

where X is the set of states, ξ is the set of events, fe : X → X, g is the enable function,

and Ea is the allowed event trajectories. The r-neighborhood of a set X is denoted by the

set S(Xm; r) = {x ∈ X : 0 < ρ(x,Xm) < r}, where r > 0 and ρ denotes a metric on X.

The necessary and sufficient conditions for Lyapunov stability of the DES are given as:

“For a closed invariant set Xm ⊂ X of G to be stable in the sense of Lyapunov w.r.t.

Ea, it is necessary and sufficient that in a sufficiently small neighborhood S(Xm; r) of the

set Xm there exists a specified functional V , V is called the Lyapunov function, with the

following properties:

i) For all sufficiently small c1 > 0, it is possible to find a c2 > 0 such that V (x) > c2

for x ∈ S(Xm; r) and ρ(x,Xm) > c1.

ii) For any c4 > 0 as small as desired, it is possible to find a c3 > 0 so small that when

ρ(x,Xm) < c3 for x ∈ S(Xm; r) we have V (x) ≤ c4.

iii) V (X(x0, Ek, k)) is a non-increasing function for k, for x0 ∈ S(Xm; r), for all integer

k, as long as X(x0, Ek, k) ∈ S(Xm; r) for all Ek such that EkE ∈ Ea(x0).”

Modern systems involve both discrete and continuous states. Systems of interest in

this study are typically governed by continuous dynamic equations at particular discrete

states. Systems like these are considered as hybrid systems. In order to study the multi-

agent systems consisting of hybrid systems, we need to include the hybrid system concept to

model the controlled processes that have both discrete and continuous variables. Hence it

is necessary to define the proposed framework to deal with both the discrete and continuous

states.

2.5 Hybrid Systems

Hybrid systems are characterized by the combination of time-driven and event-driven dy-

namics. Time-driven dynamics are represented by differential equations, while the event-

driven dynamics are described through various frameworks used for modeling of discrete

event systems, such as timed automata, or Petri nets [51]. It is motivated by the structure

of robotics and manufacturing systems. In these systems, discrete entities move through a
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network of processing units which process the jobs so as to change their physical charac-

teristics according to certain specifications.

Hybrid control systems are control systems that involve both continuous and discrete

dynamics and continuous and discrete controls [7]. The continuous dynamics are usually

modeled by ordinary differential equations and depend on some discrete phenomena, cor-

responding to discrete states, dynamics and controls. Examples of such systems include

computer disk drives, transmissions and stepper motors, programmable logic controllers,

constrained robotic systems, and automated highway systems. Such systems arise when-

ever logical decision-making is mixed with continuous control laws. In order to deal with

hybrid control systems, there are two paradigms. The first one is aggregation, and the

second one is continuation. The aggregation paradigm treats the entire system as a finite

automaton or discrete-event dynamic system. The continuation paradigm treats the whole

system as a differential equation.

2.6 Hybrid Intelligent Control Agent

Many control problems involve processes that are inherently distributed, complex or that

operate in multiple modes. Agent-based control is an emerging paradigm within the sub-

discipline of distributed intelligent control. In [22], Fregene proposes the Hybrid Intelligent

Control Agent (HICA) as a conceptual basis for the synthesis of intelligent controllers in

problem domains which are inherently distributed.

The main advantage of HICA is that the number of agents that have to be developed,

and for which coordination protocols need to be provided, is significantly reduced. HICA

combines deliberative planning/coordination with reactivity. The main elements of HICA

are Y , Σ, U , C, S, Sq, Obj and Status, where Y represents the output from the controlled

process; Σ is a discrete control output generated by the control module; U is the continuous

control signal; C is a set of coordination factors; S represents supervisory commands; Sq is

the sequence of control primitives to achieve the objective; Obj is the short-term objectives

to achieve the overall goal of the agent; and Status represents a direct feedback of hybrid

states. In the hybrid control system, the controller is represented by
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ηc : Obj × Sq × Uc × Σc → {0, 1}

hc : Uc → 2Yc (2.1)

in which ηc is the discrete transition function for the control module; hc is the controller

output function.

The plant is represented by

fp : Q×X × U ×D → X

ηp : Q×X × Σ→ 2Q×X

hp : Q×X → 2Y (2.2)

where fp is a vector field that describes the evolution of the continuous state X within the

mode Q; D is the disturbance; ηp is the discrete transition function for the plant and hp is

the plant output function.

The key idea of HICA is to combine concepts from hybrid control and multi-agent

systems to build agents which are especially suitable for multi-mode control purposes.

HICA conceptually wraps an intelligent agent around a core that is itself a hybrid control

system. Fregene [22] illustrates how HICA might be used as a control agent to synthesize

agent-based controllers for inherently distributed multi-mode problems.

2.7 Summary

This chapter gives background knowledge related to the thesis. It includes multi-agent sys-

tems and control of multi-agent systems, centralized and decentralized control, continuous

and discrete event systems, hybrid intelligent control agent, input/output automata, and

so on. The proposed framework will be introduced in the next chapter.
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The Proposed Framework for the

Control of Multi-Agent Systems

The control of multi-agent systems is an emerging paradigm within the sub-discipline of

distributed intelligent control. In this chapter, a framework is proposed for the distributed

control and coordination of multi-agent systems. In the proposed framework, the control

of multi-agent systems focuses on decentralized control and coordination of agents. Each

agent is modeled as a CHA which is composed of an intelligent coordination control layer

and a hybrid control layer as shown in Figure 3.1. The core of the proposed framework is

on developing coordinated agents for the control of hybrid multi-agent systems. A generic

control architecture is developed to control either a homogeneous multi-agent system or a

heterogeneous multi-agent system. The proposed framework is able to model the coopera-

tion, coordination and communication among the members of the multi-agent system. The

control scheme is able to control a multi-agent system where agents cooperate, coordinate

and interact with each other.

3.1 The Agent Workspace

Agents can either work within the same workspace or have their own workspace. In order to

execute a common task, two or more agents might need to cooperate and coordinate within

the same workspace. For other tasks, agents may need to work in their own workspace and

23
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Figure 3.1: The Internal Structure of a CHA Agent.
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communicate with each other to achieve a global goal.

In a workspace si ∈ S for an agent or for a group of agents AG, we have the following

variables:

• agent(s) working in the workspace, represented by AG;

• one goal or a group of goals GL;

• obstacles and constraints O;

• objects J ;

• boundaries B for the workspace.

These variables are called entities of a workspace. Entities of a workspace can trigger

events for the agents to react.

3.2 The Hybrid Control Layer

We introduce the hybrid control layer, which is composed of trajectories of the system, the

controlled process, the action executor and the execution of hybrid actions.

3.2.1 Trajectories of the System

Let T denote the time axis. Since a hybrid system evolves in continuous time, we assume

an interval V of T ⊆ R to be V = [ti, tf ] = {t ∈ T |ti ≤ t ≤ tf , i ∈ Z
+, f ∈ Z+}. The

variables of the system evolve either continuously or in instantaneous jumps. The addition

of T is also allowed. For an interval V and t0 ∈ T , we have t0 +V = {t0 + t′|t′ ∈ V }. Using

the concepts from [39], we have the following definitions.

Definition 3.2.1 If we denote the discrete evolution space of a hybrid system as Q and

the continuous evolution space of a hybrid system as X, a trajectory of a hybrid system

can be defined as a mapping V → Q×X.
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The evolution of the continuous state in each sub-interval of V is described as f :

Q × X × U → Q × TX, where U represents the continuous control signal space, TX

represents the tangent space of space X. Thus for every sub-interval of V , we have ẋ(t) =

f(q(t), x(t), u(t)), in which f is the vector field. We assume the existence and uniqueness

of solutions to the ordinary differential equation on f .

Definition 3.2.2 The application of the continuous control signal u ∈ U and the discrete

control signal m ∈ M is defined as a hybrid action which is denoted by a ∈ A. In each

sub-interval, q(t) is a constant.

The discrete jumps of the state occur at ti+1, ti+2, . . ., tf−1 while the value of q and

x change simultaneously. The state of the system takes a discrete jump at time t from

(q(t), x(t)) ∈ Q×X to (q(t′), x(t′)) ∈ Q×X when a discrete control signal m of an action

a is taken (controlled jumps), or when certain criteria of the system are met (autonomous

jumps).

Definition 3.2.3 We define � as the restriction of trajectory E to a subset of its domain

d(E) in which discrete state transitions occur only at the starting point and/or at the ending

point. There is no discrete transition at the starting point or the ending point if the interval

is left-open or right-open, respectively. E � [t1, t2] means the subset of trajectory E over

t1 ≤ t ≤ t2. It can also be denoted as E � V , which means the subset of trajectory E over

[ti, tf ].

Definition 3.2.4 If E1 is a trajectory with a right-closed domain V1 = [ti, tj], E2 is a

trajectory with domain V2 = [tj, tf ], we define the trajectory link of E1 and E2 to be the

trajectory over [ti, tf ] as

E1 ∝ E2(t) =

{

E1(t) if t ∈ V1;

E2(t) otherwise.

For a countable sequence of trajectories, if Ei is a trajectory with domain Vi, while all

Vi are right-closed, and if 1 ≤ i ≤ ∞ and i ∈ Z, the infinite trajectory link can be written

as E1 ∝ E2 ∝ E3 . . . over V1 ∪ V2 ∪ V3 . . ..
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3.2.2 The Controlled Process in the Proposed Framework

The controlled process for each agent is essentially a hybrid system whose dynamics are

controlled by the coordinated hybrid agent. The evolution of the controlled process is given

by

Ip ⊂ Qp ×Xp (3.1)

Yp ⊂ Qa ×Xa (3.2)

Ep = Ep1 ∝ Ep2 ∝ . . . ∝ Epk
(3.3)

ηp : Qp ×Xp ×M → P(Qp ×Xp) (3.4)

γp : Qp ×Xp → P(Qp ×Xp) (3.5)

fp : Qp ×Xp × U → TXp (3.6)

hp : Qp ×Xp → Yp (3.7)

• Ip is the initial state of the controlled process that gives both the initial discrete state

Qp and the initial continuous state Xp.

• Yp is the output space of the controlled process which is a subset of the space Qa×Xa,

where Qa is the discrete state of the hybrid system read by the sensors, Xa is the

continuous state of the hybrid system read by the sensors.

• Ep = Ep1 ∝ Ep2 ∝ . . . ∝ Epk
is the trajectory of the controlled process. It has k

discrete states in consequence and Epi
= Ep � Vi, in which Vi = [ti1, ti2], i ∈ Z+, ti1

represent the starting point of the sub-interval and ti2 represent the ending point of

the sub-interval, respectively. Ep is determined by the discrete state evolution and

the continuous state evolution of the controlled process.

• ηp is a function that governs the controlled discrete transition of the controlled pro-

cess. P(.) represents the power set. ∀V = [ti, tf ], the controlled discrete jumps of

the controlled process is given by

qp(t
′) = ηp(qp(t), xp(t),m) (3.8)

where qp ∈ Qp, xp ∈ Xp and m ∈M represents the discrete control signal.
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• γp is the function that governs the autonomous discrete transition of the process. As

mentioned before, there are both controlled jumps and autonomous jumps for the

hybrid system. ∀V = [ti, tf ], the autonomous discrete jumps of the controlled process

is given by

qp(t
′) = γp(qp(t), xp(t)) (3.9)

where qp ∈ Qp and xp ∈ Xp.

• fp is the vector field determined by the evolution of the continuous state (xp ∈ Xp) of

the controlled process at a certain discrete state (qp ∈ Qp) of the controlled process

(i.e., within the sub-interval of V while the discrete state qp(t) is a constant or a set

of constants).

Thus, ∃c, if qp(ti) = c over interval Vi, 1 ≤ i ≤ ∞, i ∈ Z, Vi = [ti1, ti2], then the

restriction (Ep � Vi) of the trajectory of the controlled process Ep is given by

ẋp = fp(qp(ti), xp(ti), u(ti)) (3.10)

where qp ∈ Qp, xp ∈ Xp and u ∈ U represents the continuous control signal.

• The output yp(t) ∈ Yp is the feedback of the controlled process. The output is read

by the sensors and is given by

yp(t) = hp(qp(t), xp(t)). (3.11)

3.2.3 The Action Executor

For each single agent, the evolution of the discrete and continuous state of the system is

considered as the execution of a hybrid action.

The action executor has two functions fe and ηe defined as:

fe : A× Yp ×Xr → U (3.12)

ηe : A× Yp →M (3.13)

• fe is the continuous action execution function that takes the desired hybrid action

a ∈ A, the output yp ∈ Yp of the process, and the reference value xr ∈ Xr as input,

then generates the continuous control signal u ∈ U for the process.
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• ηe is the discrete action execution function that takes the desired hybrid action a ∈ A

and the output yp ∈ Yp of the process as input, then generates the discrete control

output to the process.

The selection of appropriate actions and sequence of the actions are handled by the

intelligent coordination control layer which will be introduced later. Because the action

executor deals with all the local control problems, in the view of the intelligent coordination

control layer, the controlled process can be considered as a discrete event system.

3.2.4 The Execution of Hybrid Actions

Similar to [41], we describe the execution of the hybrid actions as a finite or infinite

alternating sequence.

Definition 3.2.5 An execution sequence is defined as β = Ep1a1Ep2a2Ep3a3 . . ., where Epi

is the restriction Ep � Vi and ai is the hybrid action that occurs between Epi
and Epi+1

.

Note that there will always be a hybrid action between Epi
and Epi+1

no matter the

discrete jump is a controlled jump or an autonomous jump. This is because if there is an

autonomous jump between Epi
and Epi+1

, a null action can be used to represent that no

action is taken.

A finite execution sequence ends with a restriction. If Epi
is not the last restriction in

β, then after the execution of ai, we have a new trajectory link Epi
∝ Epi+1

.

The execution sequence β of the hybrid actions determines the trajectory Ep. Ep

represents the evolution of the discrete states of the hybrid system, and the evolution of

the continuous states in between the discrete transitions.

3.3 The Intelligent Coordination Control Layer

In general, problems involving multi-agent coordination can be modeled by assuming that

states represent the joint state of n agents. Also, the joint action represents actions of

all the agents, where, each agent may not have knowledge of other agents’ actions. In

most practical problems, the joint state and action sets are exponential in the number of
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agents, and the aim is to find a distributed solution that does not require combinatorial

enumeration over joint states and actions.

The key of the proposed approach is to build an intelligent coordination control layer

above the hybrid control layer for the intelligent agent. Thus the hybrid dynamical system

is hidden under the intelligent coordination control layer. In the CHA framework, local hy-

brid dynamics are considered as hybrid actions. The intelligent coordination control layer

has full authority control and coordination of the agent in an abstract way. The intelligent

coordination control layer plans the sequence of control primitives and selects appropriate

hybrid actions without violating the coordination rules. The intelligent coordination con-

trol layer is built upon the action executor. It also communicates with the supervisor and

neighboring agents whenever necessary to enhance the cooperation and coordination.

3.3.1 Coordination States

Definition 3.3.1 At the intelligent coordination control layer, we define the states of the

agent in an abstract way, which we call coordination states of the CHA. We denote the set

of coordination states as R.

Although the coordination states are also discrete states, they are different from the

discrete states Q defined for the controlled process. The coordination states represent how

much an agent has completed a series of hybrid actions in order to complete a desired task.

The evolution of the coordination state r ∈ R is determined by the intelligent coordina-

tion control layer. The evolution of the coordination state along a planned trajectory is

accomplished by the action executor.

3.3.2 The Model of the Intelligent Coordination Control Layer

Agents repeatedly and simultaneously take actions, which lead them from their previous

states to new states. As illustrated in Figure 3.1, in the proposed framework, an intelligent

coordination control layer is built above the hybrid control layer. The hybrid dynamic

system is hidden under the intelligent coordination control layer. The intelligent coordina-

tion control layer interacts with other agents through the communication mechanism. In

addition, the intelligent coordination control layer takes Qa and Xa as feedback from the
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controlled plant, then it outputs the desired action a ∈ A and reference value xr ∈ Xr to

the action executor. The intelligent coordination control layer is modeled as

I ⊂ R (3.14)

ϕ : Qa ×Xa → R (3.15)

β : Q/ ×X/ × S/ ×Qs ×Xs ×R→ A (3.16)

fc : R→ R (3.17)

g : R→ P(A)− {∅} (3.18)

fr : R×X/ ×Xs ×Xa → Xr (3.19)

fo : R×Xs ×Xa → X. × S. (3.20)

φo : R×Qs ×Qa → Q. × S. (3.21)

where

• I is the initial state of the agent that gives the initial coordination state R.

• ϕ is the logic function that maps the feedback from the controlled plant Qa and Xa

to the coordination state set R.

• β is the function that maps the discrete coordination input Q/, the continuous coor-

dination input X/, the coordination input signature S/, the discrete workspace state

Qs, the continuous workspace state Xs and the coordination state to the desired

action set A.

• fc is the function that governs the transition from the current coordination state

to the next coordination state. It is defined by the coordination rule base and the

intelligent planner that will be introduced later.

• g is the enabling function for a ∈ A. We only need fc to be defined when a ∈ A

occurs, g maps R to a non-empty state set (i.e., there are always some actions that

lead to the next state).
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• fr is the function that maps the current coordination state R, the continuous coor-

dination input X/, the continuous workspace state Xs and the continuous controlled

plant state Xa to the reference value Xr for the action executor.

• fo is the function that maps the current coordination state R, the continuous workspace

state Xs and the continuous controlled plant state Xa to the continuous coordination

output X.. The destination agent of the output is given by the coordination output

signature S..

• φo is the function that maps the current coordination state R, the discrete workspace

state Qs and the discrete controlled plant state Qa to the discrete coordination output

Q.. The destination agent of the output is given by the coordination output signature

S..

3.3.3 Coordination Rule Base

In order to coordinate the agents while planning, we introduce the concept of coordination

rule base which is inspired by social laws defined in [56]. The coordination rules can be

considered as desirable choices and constraints for the actions of agents. The constraints

specify which of the actions are in fact not allowed in a given state. The desirable choices

in general are desirable actions that are available for a given state.

Definition 3.3.2 Given a set of coordination states R, a set of rules L, and a set of

actions A, a desirable choice is a pair (a, lo) where a ∈ A and lo ∈ L is a rule that defines

a desirable action that results in a transition with the maximum distance along the path of

R in the metric space at the given coordination state r ∈ R.

Definition 3.3.3 Given a set of coordination states R, a set of rules L, and a set of

actions A, a constraint is a pair (a, lc) where a ∈ A and lc ∈ L is a rule that defines a

constraint at the given coordination state r ∈ R.

Definition 3.3.4 A coordination rule set is a set of desirable choices (a, loi) and con-

straints (ai, lci). We denote the coordination rule set as C. The coordination rule set

defines which action should be taken at a given coordination state r ∈ R.
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A set of rules L is used to describe what is true and false in different coordination states

of the agent. Given a coordination state r ∈ R and a rule l ∈ L, r might satisfy or not

satisfy l. We denote the fact that r satisfies l by r |= l. The meaning of (ai, li) will be that

li is the most general condition about coordination states which chooses or prohibits the

action ai.

Definition 3.3.5 A coordination rule base for the intelligent coordination control layer

of a CHA is a tuple (R,L,A,C, T ) in which C is a coordination rule set, and T is the

transition function T : R × A × L → P(R) such that: For every r ∈ R, a ∈ A, c ∈ C, if

r |= lc holds and (a, lc) ∈ C, then T (r, a, l) = ∅, the empty set, which means the desired

transition is prohibited; For every r ∈ R, a ∈ A, c ∈ C, if r |= lo holds and (a, lo) ∈ C,

then T (r, a, l) = ř, where ř is the coordination state after the desirable action is taken.

The coordination rule base provides a skeleton for the agents to coordinate with others.

Agents in a multi-agent system with a coordination rule base share the set of abstract

states, the convention for describing states, the set of potential actions and the transition

functions.

3.3.4 Intelligent Planner

Without violating the coordination rule base, the intelligent coordination control layer can

have built-in intelligent planners to generate actions as the input to the action executor.

Following a coordination state r ∈ R, the selected action is determined by T : R×A×L→

P(R). The AI approaches for planning tasks such as potential field methods, artificial

neural networks, and knowledge based planning schemes can be implemented as possible

intelligent planners.

The intelligent planner plans the desired coordination state trajectory that is checked

against the coordination rule base to make sure that the trajectory is not violating the

rules. After the desired trajectory has been planned, the action a ∈ A for each step along

the trajectory can be selected and output to the action executor.

For a given present state in R, denoted by rp, the next state rn is obtained by

rn ⇐
(

xrn
= max{xi, i = 1, 2, . . . , k}

)

, (3.22)
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where x is the degree of fitness of the coordination state, i is the number of the neighboring

coordination states including itself (i.e. all the possible next states).

3.3.5 Implicit Communication

In addition to the coordination rule base and the intelligent planner, in a CHA framework,

agents interact to a module called implicit communication to coordinate their behaviors.

This is necessary for applications in which agents need to cooperate and react at a high

speed. Instead of using a network-based communication mechanism, agents interact with

each other through sensors and actuators in order to cooperate and coordinate.

Implicit communication can be modeled as reactive agents working in the same workspace.

However, since reactive agents don’t have the ability to plan, the planning ability for agents

is implemented through the intelligent coordination control layer.

3.4 The Capacity of a CHA System

In a CHA MAS, it is possible that multiple concurrent systems share the same resource.

In order to analyze how many agents can share the limited resource, we need to solve

the capacity problem of a CHA system. A scheduling scheme can be designed for a CHA

system with multiple systems sharing the resources, which provides two features:

1. An algorithm for ordering the use of shared resources among agents. In particular,

multiple agents depend on the output of one single agent.

2. A means of predicting the worst-case behavior of the system when the scheduling

algorithm is applied.

A scheduling scheme can be static (if the predictions are undertaken before execution)

or dynamic (if run-time decisions are used).

In this thesis, we will concentrate mainly on schemes. Agents are assigned priorities

such that at all times the agent with the highest priority is occupying the shared resource

(if it is not blocked by other agents). A scheduling scheme will therefore involve a priority

assignment algorithm.
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3.4.1 Simple Concurrent Model

It is necessary to impose some restrictions on the structure of concurrent CHA systems.

• The CHA system is assumed to consist of a fixed set of agents.

• All agents requiring the same resource are periodic, and the periods are known.

• The agents requiring the same resource are completely independent of each other.

• All agents have fixed worst-case execution times.

One consequence of the agents’ independence is that it can be assumed that at some

point in time all agents start executing. This represents the maximum capability of a CHA

system.

3.4.2 Fixed-Priority Scheduling

Each agent has a fixed and static priority which is computed at pre-run-time. The shared

resource is assigned in the order determined by agents’ priority. The agent that takes the

shortest time on the shared resource has the highest priority. The agent that takes the

longest time on the shared resource has the lowest priority.

Assume Ci is the time the ith agent spends on the shared resource, and Ti is the time

the ith agent can finish one cycle of its job, then we need

N
∑

i=1

(
Ci

Ti

) ≤ 1. (3.23)

This means that if the utilization of the agent set is less than the total capacity of the

shared resource, all agents can have access to the shared resource. This is true because if

the condition holds, the sum of the time all agents spend on the shared resource will be

less than or equal to the period of the agent with the lowest priority, which is the worst

case.
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3.5 Summary

Multi-agent systems represent a group of agents operating cooperatively to solve common

tasks in dynamic environments. In this chapter, a generic framework is proposed for the

control of multi-agent systems. In the proposed framework, the control of multi-agent

systems is considered as achieving decentralized control and coordination of distributed

agents. Each agent is modeled as a CHA which is composed of an intelligent coordination

control layer and a hybrid control layer. Different from other researchers’ work, in the

proposed framework, we use the theory of coordination states, and include a coordination

rule base, an intelligent planner and an implicit communication module in the intelligent

coordination control layer which makes the proposed framework generic for various prob-

lems. The proposed framework includes the primitives necessary for the modeling of MASs.

With the introduction of the intelligent coordination control layer and the hybrid control

layer, we are able to analyze the local stability of the agent, and then to analyze the global

stability of the MAS as logical DESs.



Chapter 4

Stability Analysis of the Proposed

Framework

In this chapter, we discuss the stability of MASs modeled using the CHA framework.

We are interested in both the local stability and the global stability of MASs. The local

stability is used to describe each single agent’s ability to maintain the stability of one entity

in a MAS. The global stability of a MAS describes the ability of a group of agents’ ability

to achieve a desired goal. In order to achieve the global stability, the local stability of all

agents has to be guaranteed. First, we discuss the local stability of a single agent. For the

local stability, we analyze the stability of a CHA which is modeled as a hybrid system with

two layers (i.e., the hybrid control layer and the intelligent coordination control layer).

Then, we discuss the global stability of a MAS. In order to analyze the global stability of

a MAS, each CHA can be treated as a DES at the upper layer. The dynamics of the DES

evolve in time with the occurrence of events at possibly irregular time intervals.

4.1 Local Stability of the Proposed Framework

The local stability of a CHA can be analyzed using the similar approach as discussed in

[21]. In order to analyze the stability of an agent, we have to consider both discrete and

continuous variables. An agent is said to be locally stable if the control of an agent has

been designed such that the continuous state evolution at each abstract state is stable in

37



38 A Framework for Coordinated Control of Multi-Agent Systems

the sense of Lyapunov with respect to the equilibrium point; transition from one abstract

state to another abstract state does not cause the transition from the other abstract state

back to the abstract state immediately; and unsafe continuous states are avoided during

transition. Based on these requirements, we can define the local stability of a CHA.

Definition 4.1.1 An agent in a CHA MAS is said to be locally stable if

1. The action executor is designed such that the continuous state evolution is stable in

the sense of Lyapunov with respect to the equilibrium point of that abstract state.

2. The abstract state transition is achievable through the intelligent coordination control

layer, and the reverse state transition does not happen immediately.

3. All unsafe regions in the continuous space are avoided with the proper design of the

action executor.

With the definition of the local stability of an agent, we are able to analyze the global

stability of a CHA MAS.

4.2 Global Stability of the Proposed Framework

Since agents modeled with the proposed framework interact with other agents through

discrete events, in order to analyze the global stability of a MAS, each CHA can be treated

as a DES at the intelligent coordination control layer. The dynamics of the DES evolve

in time with the occurrence of events at possibly irregular time intervals. Manufacturing

systems, computer networks, logic circuits, and robotic systems are good examples of DESs.

Events in a manufacturing system could be the arrival of a part, the commencement of the

processing of a job, or the finishing of the processing of a job. Events happen at random

time. In a CHA MAS, we have multiple hybrid systems, which involve events happening

asynchronously. We have discussed the local stability. Since we need to treat the agents as

DESs to analyze the global stability, we will apply the stability analysis method proposed

by Passino in [49] and [48].
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According to the model of the intelligent coordination control layer introduced above,

the stability properties of the CHA systems can be accurately modeled as:

G = (R, A, fc, g, Ev), (4.1)

where R is the coordination states, A is the set of hybrid actions, fc : R→ R for a ∈ A is

the transition function. g : R → P(A) − {∅} is the enable function which is governed by

the coordination rule base, and Ev is the set of valid event trajectories for the coordination

states R. Note that the events we are discussing here are the hybrid actions that the agent

might take. It is also possible that, at some states, no actions should be taken; this is

represented by a null action.

Let rk ∈ R represent the kth coordination state of the CHA and ak ∈ A represent

an enabled action for rk (i.e. ak ∈ g(rk)). As described above, at state rk ∈ R, action

ak ∈ A is taken, the next coordination state rk+1 is given by the transition function fc.

Thus, rk+1 = fc(rk). Each valid event trajectory Ev represents a physically possible event

trajectory. If rk ∈ R and rk ∈ g(rk), ak can be taken if it lies on a valid event trajectory

that leads the state to rk+1 = fc(rk).

In the proposed framework, we model the intelligent coordination control layer as G.

First, we model the system via R,A, fc and g. Then, the possible trajectories Ev are given.

The allowed event trajectories are denoted as Ea ⊂ Ev. In the proposed framework, Ea is

governed by the coordination rule base. The allowed event trajectories that begin at state

r0 ∈ R is denoted by Ea(r0). If we use Ek = E0E1E2 . . . Ek−1 to denote an event sequence

of k events, the value of function R(r0, Ek, k) to denote the coordination state reached at

time k from r0 ∈ R by the application of event sequence Ek, then R(R(r0, Ek, k), Ek′ , k′) =

E(r0, EkEk′ , k + k′). In order to guarantee the global stability of the CHA system, we need

to define the coordination rule base properly to guarantee desired action sequences that

will make the system stable.

Definition 4.2.1 For a CHA MAS, a closed invariant set Rm ⊂ R is called stable in the

sense of Lyapunov w.r.t. Ea if for any ε > 0, it is possible to find a quantity δ > 0 such

that when the metric ρ(r0, Rm) < δ we have ρ(R(r0, Ek, k), Rm) < ε for all Ek such that

EkE ∈ Ea(r0) and k ∈ Z+ where E is an infinite event sequence, and Z+ is the set of
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positive integers. Moreover, if ρ(R(r0, Ek, k), Rm) → 0 as k → ∞, then the invariant set

Rm is defined as being asymptotically stable w.r.t. Ea.

Here, the metric ρ(.) is a generalized distance measure. Let Rm ⊂ R, then the distance

from point r to the set Rm is denoted by ρ(r, Rm) = inf{ρ(r, r′) : r′ ∈ Rm}. where inf(.)

is the greatest lower bound of a set.

Definition 4.2.2 For a CHA MAS, a closed invariant set Rm ⊂ R is called exponentially

stable in the sense of Lyapunov w.r.t. Ea if for r0 ∈ r-neighborhood, ρ(R(r0, Ek, k), Rm) <

ζe−αkρ(r0, Rm), for some α > 0 and some ζ > 0 and for all Ek such that EkE ∈ Ea(r0) and

k ∈ Z+ where E is an infinite event sequence, and Z+ is the set of positive integers.

Given a coordination state r ∈ R and a rule l ∈ L, r might satisfy or not satisfy l.

Recall that we denote the fact that r satisfies l by r |= l. Based on the definitions and

the CHA model we have described, we give the definition of the global stability of a CHA

system.

Definition 4.2.3 A CHA multi-agent system is said to be globally stable if

1. Each agent is locally stable based on Definition 4.1.1. The action executor of each

agent can accomplish the hybrid actions so that the coordination states can transition

according to fc.

2. All the actions taken are on the allowed event trajectories Ea that lead the system to

the goal set, and for r ∈ R, a ∈ A, c ∈ C, we have r |= lo holds and (a, lo) ∈ C,

r |= lc holds and (a, lc) ∈ C respectively. lo ∈ L defines an optimal action and lc ∈ L

defines a constraint respectively. L is a set of coordination rules.

3. Our goal set of the abstract states r, the invariant set Rm ⊂ R is stable in the sense

of Lyapunov w.r.t. Ea.

Moreover, if the invariant set Rm ⊂ R is asymptotically stable in the sense of Lyapunov

w.r.t. Ea, the CHA multi-agent system is called asymptotically stable. If the invariant set

Rm ⊂ R is exponentially stable in the sense of Lyapunov w.r.t. Ea, the CHA multi-agent

system is called exponentially stable.
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In order to satisfy the third global stability requirement of a CHA system, we need to

give the conditions for closed invariant set Rm to be stable. By applying the approach from

[49] and [48], we have the following theorems for the abstract states of a CHA system.

First, the necessary and sufficient conditions for a closed invariant set to be stable are

given.

Theorem 4.2.1 (Passino et al. [49]) For a closed invariant set Rm ⊂ R to be stable

in the sense of Lyapunov w.r.t. Ea, it is necessary and sufficient that in a sufficiently

small r-neighborhood of the set Rm there exists a specified functional V with the following

properties:

1. For all sufficiently small c1 > 0, it is possible to find a c2 > 0 such that V (r) > c2

for r ∈ r-neighborhood of Rm and ρ(r, Rm) > c1.

2. For any c4 > 0 as small as desired, it is possible to find a c3 > 0 so small that when

ρ(r, Rm) < c3 for r ∈ r-neighborhood of Rm, we have V (r) ≤ c4.

3. V (R(r0, Ek, k)) is a non increasing function for k ∈ Z+, as long as R(r0, Ek, k) ∈

r-neighborhood for all Ek such that EkE ∈ Ea(r0).

Here, the r-neighborhood of an arbitrary set Rm ⊂ R is denoted by the set S(Rm;

r) = {r : 0 < ρ(r, Rm) < r}.

Proof Proof for this theorem can be found in [49].

Then, the necessary and sufficient conditions for a closed invariant set to be asymptot-

ically stable are given.

Theorem 4.2.2 (Passino et al. [49]) For a closed invariant set Rm ⊂ R to be asymp-

totically stable in the sense of Lyapunov w.r.t. Ea, it is necessary and sufficient that in a

sufficiently small r-neighborhood of the set Rm there exists a specified functional V having

all the properties of Theorem 1 and, furthermore, V (R(r0, Ek, k)) → 0 as k → ∞, for all

Ek such that EkE ∈ Ea(r0) and for all k ∈ Z+ as long as R(r0, Ek, k) ∈ the r-neighborhood

of the set Rm.

Proof Proof for this theorem can be found in [49].
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Finally, the sufficient conditions for a closed invariant set to be exponentially stable are

given.

Theorem 4.2.3 (Passino et al. [48]) In order for the invariant set Rm to be exponentially

stable w.r.t Ea, it is sufficient that in a sufficiently small r-neighborhood of the set Rm, there

exists a specified functional V and three positive constants c1, c2, and c3 such that c2 > c3

and

1. c1ρ(r, Rm) ≤ V (r) ≤ c2ρ(r, Rm), and

2. V (R(r0, Ek+1, k + 1))− V (R(r0, Ek, k)) ≤ −c3(ρ(R(r0, Ek, k), Rm)),

for all r0 ∈ the r-neighborhood of the set Rm, for all Ek such that Ek+1 = Eke (e ∈ E),

and Ek+1E ∈ Ea(r0), k ≥ 0.

Proof Proof for this theorem can also be found in [48].

4.3 Summary

In this chapter, the local stability and the global stability of a CHA MAS are defined.

Conditions for a CHA MAS to be stable, asymptotically stable, and exponentially stable

are also given. In the next chapter, we apply the stability analysis methodologies to analyze

the stability of CHA MASs later.



Chapter 5

The Optimization of a CHA System

In the proposed framework, the control of the MASs is regarded as a decentralized control

and coordination of agents. The CHA framework is able to implement coordination tasks

for multi-agent systems. In this chapter, the optimization of MASs modeled by the CHA

framework is studied.

There are numerous research done in the field of MASs and optimization techniques.

Most of them concentrate on the decision making and optimization using MAS techniques.

[24] gives an example of how expert systems techniques for distributed decision-making

can be combined with contemporary numerical optimization techniques for the purposes of

supply chain optimization and for software implementation. The system measures supply

chain performance and the effect of different parameters in the replenishment control sys-

tem. The system can be used to simulate the behavior of a system that uses optimization

for part of its decision-making. [70] proposes a fuzzy multi-agent decision-making strategy

to facilitate supplier management. A fuzzy model is used to evaluate the environmental

performance of the suppliers and the life cycle environmental impact of the purchased prod-

uct. Through analysis of manufacturer’s business strategy, combined with other decision

parameters, an optimal supplier is selected under fuzzy multi-criteria decision analysis.

In [20], multi-agent constraint systems are considered with preferences, modeled as soft

constraint systems in which variables and constraints are distributed among multiple au-

tonomous agents. As a case study, it is considered as a distributed meeting scheduling

problem where each agent has a pre-existing schedule and the agents must decide on a

43
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common meeting that satisfies a given optimality condition. In [67], the problem of group

decision making is considered where the selection process is based upon a group prefer-

ence function, obtained by an aggregation of the participating agents individual preference

functions. Individual agents strategically manipulate the information they provide, so as

to further their own goal of getting their most preferred alternative selected by the group.

In [2], a simple single-decider optimization model with a real application is described, and

solution methodologies for optimal resource allocation fitting different scenarios (central-

ized, distributed, multi-agent) are discussed, identifying ranges of autonomy, quantifying

rewarding and defining a negotiation protocol between the agents and the supervisor. [50]

presents a methodology that, for the problem of scheduling of a single server on multiple

products, finds a dynamic control policy via intelligent agents. The Reinforcement Learn-

ing approach was implemented via a multi-agent control architecture where a decision

agent was assigned to each of the products.

In our study, we consider both time-driven dynamics and event-driven dynamics for the

optimization of a CHA system. The optimization problem of the MASs is analyzed. An

example is also given to illustrate how to define the optimization problem for a CHA. The

direct identification algorithm is also introduced for solving the optimal control problem

for a CHA MAS.

5.1 Problem Formulation

In this section, the optimization problem of a CHA MAS is formulated. In our CHA

framework, each agent is modeled as a hybrid control layer and an intelligent coordination

control layer. For a single agent, the controlled plant is at some initial physical state xr0(t0)

at time t0 and subsequently evolves according to the time-driven dynamics

ẋr0 = fpr0
(xr0 , ur0 , t), (5.1)

where the subscript r0 represents the initial abstract state. x is the continuous state, u is

the continuous control signal, t represents time.

At time tr0 , an event takes place. The abstract state becomes r1 and the physical

state becomes xr1(tr0). There might be a jump of the physical state at tr0 . Therefore it
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is possible that xr1(tr0) 6= xr0(tr0). Then the physical state subsequently evolves according

to new time-driven dynamics with this initial condition. The time tr0 at which this event

happens, is called the temporal state of the agent. It depends on the event-driven dynamics

of the form

tr0 = wr0(t0, xr0 , ur0). (5.2)

Let rk ∈ R represent the kth coordination state of a single agent. In general, after the

abstract state switches from rk−1 to rk at time trk−1
, the time-driven dynamics are given

by

ẋrk
= fprk

(xrk
, urk

, t), (5.3)

where the initial condition for xrk
is xrk

(trk−1
). The event-driven dynamics are given by

trk
= wrk

(trk−1
, xrk

, urk
). (5.4)

Both the physical state xrk
and the next temporal state trk

are affected by the choice of

the control schemes at the abstract state rk. Note that in order to solve the optimization

problem, tr0 , tr1 , tr2 , . . . , trk
are considered as temporal states intricately connected to the

control of the system.

In a CHA MAS, events corresponding to the actions of one agent can be indexed as

k = 0, 1, . . . , Ni − 1, where subscript i represents the ith agent in the system. Each agent

can be considered as a multi-stage process modeled as a single-server queuing system. The

objective for the ith agent is to finish Ni actions. In the CHA framework, once the agent

takes an action, it cannot be interrupted, and continues its task until it finishes it. Let

ak ∈ A represent an enabled action for rk. As an agent takes an action ak, the physical

state, denoted by xrk
, evolves according to the time-driven dynamics of the form

ẋrk
= fprk

(xrk
, urk

, t), (5.5)

where the initial condition for xrk
is xrk

(trk−1
). The continuous control variable urk

is used

to attain a desired physical state.

If the time required to finish the kth action is srk
and Γrk

(urk
) ⊂ Rn is a given set that

defines xrk
satisfying the desired physical state, then the control signal urk

can be chosen
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to satisfy the criteria

srk
(urk

) = min
(

t ≥ 0 :
(

xrk
(trk−1

+ t)

= xrk
(trk−1

) +

∫ trk−1
+t

trk−1

fprk
(xrk

, urk
, τ)dτ

)

∈ Γrk
(urk

)
)

(5.6)

where we can assume that under the best circumstance, i.e. without any disturbance, urk

is a fixed constant value at the abstract state rk. The temporal state trk
of the kth action

represents the time when the action finishes.

In a MAS, we have two or more agents interacting with each other in order to achieve

a global goal. Therefore, when the ith agent finishes its kth action aki
, it might have to

wait for the jth agent finishes its lth task alj before the ith agent can starts its (k + 1)th

task a(k+1)i
. Assume that agent i’s tasks will only depend on agent j’s tasks. Let ta(k+1)i

represent the starting time of the (k+1)th action for the ith agent. In this case ta(k+1)i
6= trki

.

Instead, ta(k+1)i
= trlj

where the temporal state trlj
represents the time when the lth action

of the jth agent finishes. Therefore, the event-driven dynamics of the temporal state trki

of the ith agent can be represented by

trki
= max(tr(k−1)i

, trlj
) + srki

(urki
) (5.7)

where l = 0, 1, 2, . . . , Nj − 1, j is the index of the agent and j 6= i. Thus if action aki

does not depend on the completion of any actions of any other agent, Equation 5.7 can be

simplified as

trki
= tr(k−1)i

+ srki
(urki

). (5.8)

One may notice that we need to set t0i
= 0 to make sure that tr0i

= trlj
+ sr0i

(ur0i
) and

tr0i
= sr0i

(ur0i
) in case action a0i

does not depend on the completion of other actions.

In order to simplify the optimization problem for the ith agent, we assume that the

temporal states trlj
of the lth action of the jth agent are known. Then we can see that

when trlj
> trki

, there is an idle period in the interval [trki
, trlj

] during which the physical

state of the ith agent does not change.

Therefore, the optimization problem for the ith agent of the CHA framework becomes

the optimization problem of the hybrid control layer, i.e., the optimization of the hybrid
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system that combines the time-driven dynamics in Equation 5.4 and the event-driven

dynamics in Equation 5.7.

The optimization problem to be solved for the ith agent takes the general form

min
ur0 ,...,urNi−1

(

Ni−1
∑

k=0

Lrk
(trki

, urki
)
)

(5.9)

where Lrk
(trki

, urki
) is the cost function defined for the kth action of the ith agent in the

system. The cost function has been defined without including xrki
because xrki

is supposed

to reach the desired value as defined in Equation 5.6 which gives the srk
(urk

) for the ith

agent here.

Notice that for the optimization problem defined in Equation 5.9, the index k =

0, 1, 2, . . . , Ni − 1 does not count time steps, but rather asynchronous actions. Rewrit-

ing Equation 5.9, we can represent the optimization problem as

min
ur0 ,...,urNi−1

(

Ni−1
∑

k=0

(

φ(trki
) + θ(urki

)
)

)

. (5.10)

Example 5.1.1 To illustrate how to formulate the optimization problem using the model

discussed above, we present the optimal control problem for the multi-agent system involving

an overhead crane and a mobile robot as mentioned in Scenario 1.1.2. We consider the

optimization problem for the mobile robot.

The mobile robot needs to finish various tasks in order to coordinate and cooperate with

the overhead crane to achieve the final goal of the multi-agent system. The “quality” of

the work of the mobile robot has to be maintained otherwise the cooperation would not be

possible. For example, if the mobile robot turns too early or too late, the mobile robot would

not stay on track when it gets into the overhead crane’s workspace and it will fail the task.

As a result, the whole system would not complete the mission. In particular, the mobile

robot’s actions involve searching the landmark, aligning its body to the target, landmark

following, turning left, turning right, and so on. The goal of the whole system is that the

mobile robot needs to move into the overhead crane’s workspace and wait there, until the

overhead crane finishes its dropping action. Then, the mobile robot takes the object that the

overhead crane has dropped and transports the object out of the overhead crane’s workspace.
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From this example, we can see that the actions of the agents are different from the jobs

defined in [12]. The actions that we have defined are different tasks. In [12], jobs are done

for different products by the single-stage process. However, in our framework, each agent

has to take various actions on a single object in order to accomplish the overall task. Of

course, we can also apply the model to systems that require the same task to be done on

multiple products.

In this example, the coordination is defined in the coordination rule base. The mobile

robot needs certain amount of time to finish the task. The position of the mobile robot is

critical for the cooperation. The distances between the mobile robot and the landmarks are

used to determine the quality level of the actions. In a sufficiently large empty space, a

mobile robot can be driven to any position with any orientation, hence the robot’s configu-

ration space has three dimensions, two for translation and one for rotation. The physical

state of the kth action of the mobile robot is denoted by (xrk
, yrk

, θrk
) and represents

the translational and rotational position of the mobile robot. Thus the mobile robot can be

illustrated as the model shown in Figure 5.1, the wheels are aligned with the vehicle. The

kinematic model of the mobile robot can be represented as

ẋrk
= u1rk

cos θrk
,

ẏrk
= u1rk

sin θrk
, (5.11)

θ̇rk
= u2rk

,

where u1rk
corresponds to the forward velocity of the vehicle and the angle of the vehicle

body with respect to the horizontal line is θrk
, the angular velocity of the vehicle body is

u2rk
, (xrk

, yrk
) is the location of the center point of the robot. The forward velocity u1rk

and the angular velocity u2rk
are used to control the motion of the mobile robot.

The path of the mobile robot can be obtained by integrating Equation 5.11. Since the

mobile robot needs to take a series of actions to achieve the global goal for the multi-agent

system, we use the subscript rk to represent the abstract state of the mobile robot which

indicates which action the robot is taking.

Next, the temporal state of the kth action of the mobile robot represents the time when

the mobile robot starts the next action. Let trlj
be the ending time of the lth action of the jth

agent that the mobile robot depends on in order to finish its own action, the event-driven
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Figure 5.1: The Model of the 4-Wheeled Mobile Robot.

dynamics describing the evolution of the temporal states of the mobile robot are given by

trk
= max(tr(k−1)

, trlj
) + srk

(urk
), (5.12)

where srk
(urk

) is the time for the mobile robot to finish the kth action. Notice that we have

omitted subscript i for simplicity. In this system, we consider two control objectives: 1)

Increasing the performance of the mobile robot, and 2) Reducing the time for the mobile

robot to finish all the tasks. Thus, the optimal control problem of interest can be expressed

as:

min
ur0 ,...,urNi−1

(

Ni−1
∑

k=0

(

φ(trk
) + θ(urk

)
)

)

. (5.13)

The function φ(trk
) above is the cost related to the time an action is finished and the

time the task it depends on is finished. Generally, if the robot moves slower, its performance

is better. The function θ(urk
) is the cost function to penalize lower speed since we want

the robot to finish its tasks faster. As an example, we can choose φ(trk
) = |trk

− trl′
j

| and

θ(urk
) = 1

urk

.
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5.2 Necessary Conditions

Recall the optimal control problem described in Equation 5.9, we define the following

augmented cost for the ith agent by extending the analysis procedures for a single stage

system proposed in [10] to a multi-agent system (for simplicity, the subscript i is omitted)

J̄(t, λ, u) =

Ni−1
∑

k=0

(

Lrk
(trk

, urk
)

+λrk
[max(trk−1

, trlj
) + srk

(urk
)− trk

]
)

, (5.14)

where t and u are Ni-dimensional vectors for the temporal state and the control, and λ is

an Ni-dimensional vector for the costate sequence used to adjoin the temporal dynamics

to the cost function. Throughout the rest of the analysis, the following assumptions are

made.

Assumption 5.2.1 (Cassandras et al. [10]) The one-step cost Lrk
(., .) and the service

functions srk
(.) are continuously differentiable for all k = 0, 1, . . . , Ni − 1.

Assumption 5.2.2 (Cassandras et al. [10]) The service functions srk
(.) are monotoni-

cally increasing for all k = 0, 1, . . . , Ni − 1.

Assumption 5.2.2 can be service functions that are monotonically decreasing, depending

on the nature of the control variables urk
, yielding dual results to those we will subsequently

derive.

Given Assumption 5.2.1, the augmented cost J̄ , as the sum of Lipschitz functions, is

itself a Lipschitz function. Such functions are continuous, but not everywhere differen-

tiable. For Lipschitz functions, non smooth optimization gives the necessary conditions for

optimality [10]. Suppose f : Rn → R is a locally Lipschitz continuous function of u ∈ R.

The necessary condition for the optimization of non smooth Lipschitz functions is given in

terms of ∂f(u). Our task now is to identify ∂J̄ .
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If we ignore the non differentiability associated with the “max” operation in Equation

5.14, the standard first-order necessary conditions for optimality require that

∂J̄

∂urk

= 0, (5.15)

∂J̄

∂λrk

= 0, (5.16)

∂J̄

∂trk

= 0, (5.17)

for all k = 0, 1, . . . , Ni − 1. Equation 5.15 gives

∂Lrk
(trk

, urk
)

∂urk

+ λrk

dsrk
(urk

)

durk

= 0. (5.18)

Equation 5.16 gives the state equation

trk
= max(trk−1

, trlj
) + srk

(urk
) (5.19)

with initial condition t0 = −∞. Finally, Equation 5.17 gives

λrk
=

∂Lrk
(trk

, urk
)

∂trk

+ λrk+1

d max(trk
, tr

l
′

j

)

dtrk

(5.20)

with boundary condition

λrNi−1
=

∂LrNi−1
(trNi−1

, urNi−1
)

∂trNi−1

. (5.21)

Assumption 5.2.3 In this study, we assume the task of one agent only depends on one

other agent. When we optimize agent i, we assume that the actions of agent j that agent

i depends on are constants.

Notice that rl
′

j
of tr

l
′

j

represents a different state of agent j. This is necessary because

for a different task of agent i, it does not depend on the same task of agent j. We can see

that if the task of agent i at state rk does not depend on any other tasks of agent j, the

optimization problem becomes a similar problem as defined in [10] that can be analyzed
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with the results shown in [10]. In this study, we provide analysis for tasks of an agent

depend on another agent.

Equations 5.18-5.21 define a boundary-value problem, in which the solution provides a

control sequence satisfying the necessary conditions for optimality. The problem becomes

complicated because of the presence of the “max” function in Equation 5.20. This function

is Lipschitz continuous, differentiable in trk
everywhere except at the single point where

trk
= tr

l
′

j

with

d

dtrk

max(trk
, tr

l
′

j

) = 0, (5.22)

if trk
< tr

l
′

j

;

d

dtrk

max(trk
, tr

l
′

j

) = 1, (5.23)

if trk
> tr

l
′

j

.

At the point where trk
= tr

l
′

j

, the left and right derivatives clearly exist, given by 0

and 1, respectively. As the system operates, the sequence of arrival and departure times

define a sample path. On any sample path, the points where trk
= tr

l
′

j

, acquire special

significance, since they are responsible for the non differentiability of the “max” function

in Equation 5.20.

5.3 Non Smooth Optimization of a CHA MAS

In order to identify ∂J̄ , we introduce the following terminology for a CHA MAS:

Definition 5.3.1 In a CHA MAS, an action ark
is called a normal action of the ith agent

if it does not depend on the action of another agent (i.e. trk−1
+ srk

(urk
) = trk

).

Definition 5.3.2 A critical action with index rk of agent i is an action that satisfies

trk
= trk

lj

. Superscript k of r is used to represent the state of agent j that the kth action of

agent i depends on.

Definition 5.3.3 An idle period for the ith agent in a CHA MAS is a time interval

(trk
, trlj

] such that trk
< trlj

for any k = 0, 1, . . . , Ni − 1.
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Definition 5.3.4 A busy period for the ith agent in a CHA MAS is a continuous set of

actions, ak, . . . , an for 1 ≤ k ≤ n ≤ N such that the following conditions are satisfied:

1. trk
< trlj

;

2. trn+1 < trn+1
lj

;

3. trs
≥ trs

lj
, for every s = k, . . . , n when action as depends on an action of agent j.

Superscript s of r is used to represent the state of agent j that the sth action of agent

i depends on.

From Definition 5.3.3, we can see that an idle period is a time interval of strictly positive

value during which the agent has no other actions to take but a null action. From Definition

5.3.4, we can see that a busy period is a time interval during which the agent takes a series

of actions without any interruption, and without waiting for the other agent. A busy

period, initiated at time trlj
, always follows an idle period and be followed by another idle

period. There is no idle periods within a busy period.

Notice that a critical action corresponds to the situation where the “max” function is

not differentiable in Equation 5.20. Notice that a critical action does not end a busy period

while a busy period may contain one or more critical actions.

Assumption 5.3.1 In agent i, if action ark
is a normal action, then the next action ark+1

starts at the same time as ark
finishes.

In order to identify the busy period structure and the locations of critical actions within

a busy period, we associate with every action ark
, k = 0, . . . , Ni − 1 the following indice

nk = min(n ≥ k : trn
< trn+1

lj

) (5.24)

mk = min(m ≥ k : trm
≤ trm+1

lj

) (5.25)

It can be seen that nk is the index of the last action in the busy period containing

action ark
. For mk, if action ark

is critical or there are critical actions between action ark

and the end of its busy period, then mk is the index of the first such critical action. Thus
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mk < nk and we have trmk
= trmk

lj

. If, on the other hand, action ark
is not critical and

there are no critical actions between action ark
and the end of its busy period, then mk is

the index of the action that ends the busy period (mk = nk). Then we have the following

analysis.

• mk = nk

This means that action ark
is not critical, there are no critical actions between action

ark
and the end of its busy period, and we have max(trp

, trp
lj

) = trp
for all p =

k, . . . , nk − 1 and max(trnk
, trnk

lj

) = trnk
lj

. Therefore, all derivatives in Equation 5.14

exist under Assumption 5.3.1 and we get

λrk
=

nk
∑

p=k

∂Lrp

∂trp

. (5.26)

Then, the optimality condition 5.15 becomes

∂J̄

∂urk

=
∂Lrk

∂urk

+
dsrk

durk

nk
∑

p=k

∂Lrp

∂trp

= 0. (5.27)

Recalling Assumption 5.2.1, we have the following lemma.

Lemma 5.3.1 With Assumption 5.2.1 and Assumption 5.3.1, if mk = nk, then J̄(.)

is continuously differentiable in urk
, and the optimality condition is

∂J̄

∂urk

=
∂Lrk

∂urk

+
dsrk

durk

nk
∑

p=k

∂Lrp

∂trp

= 0. (5.28)

Proof The proof follows the analysis above.

We can see that if mk = nk for all k = 0, . . . , Ni − 1, then the function J̄ would be

differentiable.



The Optimization of a CHA System 55

• mk < nk

J̄ exhibits non differentiability associated with critical actions, when m(i) < n(i).

For any critical action, we have max(trmk
, trmk

lj

) = trmk
= trmk

lj

and the corresponding

derivative in Equation 5.20 does not exist. Since actions ark
and armk

are in the same

busy period and mk ≥ k, we have

trmk
= max(trk−1

, trk−1
lj

) + srk
(urk

) +

mk
∑

p=k+1

srp
(urp

) (5.29)

where the “max” accounts for the fact that action ark
may be the first in the busy

period. Through Equation 5.29 we see that the control for action ark
affects the

departure time of action mk. Suppose that we fix all other control variables and

adjust urk
. Recalling Equation 5.22 and Equation 5.23, we have the following one-

sided derivatives:

lim
trmk

↑t
rk
lj

d

dtrmk

max(trmk
, trk

lj

) = 0, (5.30)

lim
trmk

↓t
rk
lj

d

dtrmk

max(trmk
, trk

lj

) = 1. (5.31)

The limit in Equation 5.30 represents adjusting urk
so that trmk

increases toward trk
lj

.

It is same for other critical actions between mk and nk. Combining Equation 5.14

and Equation 5.20, we have

∂J̄

∂urk

=
∂Lrk

∂urk

+
dsrk

durk

(

mk
∑

p=k

∂Lrp

∂trp

+ λmk+1

d max(trmk
, trk

lj

)

dtrmk

)

. (5.32)

Recall Assumption 5.2.2 and Equation 5.29, trmk
is monotonically increasing with

u(rk). With Equation 5.30 and Equation 5.31, the above equation leads to the one-

sided derivative

(
∂J̄

∂urk

)− =
∂Lrk

∂urk

+
dsrk

durk

mk
∑

p=k

∂Lrp

∂trp

(5.33)
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and

(
∂J̄

∂urk

)+ =
∂Lrk

∂urk

+
dsrk

durk

nk
∑

p=k

∂Lrp

∂trp

. (5.34)

regardless of whether one or more critical actions are present between k and nk. Then

we have the following Lemma.

Lemma 5.3.2 Under Assumption 5.2.1 and Assumption 5.2.2, for every k = 0, . . . , Ni−

1,

(
∂J̄

∂urk

)+ = (
∂J̄

∂urk

)− +
dsrk

durk

nk
∑

p=mk+1

∂Lrp

∂trp

. (5.35)

Proof From Equation 5.33 and Equation 5.34

(
∂J̄

∂urk

)+ =
∂Lrk

∂urk

+
dsrk

durk

nk
∑

p=k

∂Lrp

∂trp

=
∂Lrk

∂urk

+
dsrk

durk

mk
∑

p=k

∂Lrp

∂trp

+
dsrk

durk

nk
∑

p=mk+1

∂Lrp

∂trp

= (
∂J̄

∂urk

)− +
dsrk

durk

nk
∑

p=mk+1

∂Lrp

∂trp

. (5.36)

Thus Equation 5.35 holds.

As a conclusion, we have the following theorem.

Theorem 5.3.3 Under Assumption 5.2.1 and Assumption 5.2.2, an optimal control urk

for the ith agent of a CHA MAS, k = 0, . . . , Ni − 1, satisfies the following conditions:

1.

0 ∈
∂J̄

∂urk

= [min
(

(
∂J̄

∂urk

)−, (
∂J̄

∂urk

)+
)

, max
(

(
∂J̄

∂urk

)−, (
∂J̄

∂urk

)+
)

] ⊂ R,

where

(
∂J̄

∂urk

)− =
∂Lrk

∂urk

+
dsrk

durk

mk
∑

p=k

∂Lrp

∂trp

,
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(
∂J̄

∂urk

)+ =
∂Lrk

∂urk

+
dsrk

durk

nk
∑

p=k

∂Lrp

∂trp

,

nk = min(n ≥ k : trn
< trn+1

lj

),

and

mk = min(m ≥ k : trm
≤ trm+1

lj

).

2. trk
= max(trk−1

, trk−1
lj

) + srk
(urk

), t0 = −∞.

Proof The proof follows directly from the necessary condition of non smooth optimization

0 ∈ ∂J̄
∂urk

, and from Lemma 5.3.1 and Lemma 5.3.2.

Remark 5.3.1 We can see that when mk < nk, we have

∂J̄

∂urk

= [min
(

(
∂J̄

∂urk

)−, (
∂J̄

∂urk

)+
)

, max
(

(
∂J̄

∂urk

)−, (
∂J̄

∂urk

)+
)

] ⊂ R. (5.42)

When mk = nk, we get ( ∂J̄
∂urk

)− = ( ∂J̄
∂urk

)+, in which case ∂J̄
∂urk

defined by the closed

interval above is a singleton.

Recalling Lemma 5.3.1, we see that when mk = nk (i.e., when action ark
is not critical

and there are no critical actions between action ark
and the end of its busy period), the

first condition of the theorem simply requires that ( ∂J̄
∂urk

)− = ( ∂J̄
∂urk

)+ = 0.

For Lrk
(., .) and srk

(.), when mk < nk, generally neither ( ∂J̄
∂urk

)− = 0 nor ( ∂J̄
∂urk

)+ = 0

(i.e., in general, zero is not an end point of the interval defining ∂J̄rk
). Therefore, when

mk < nk, the first condition of the above theorem requires that ( ∂J̄
∂urk

)− and ( ∂J̄
∂urk

)+ have

opposite signs (i.e., ( ∂J̄
∂urk

)−( ∂J̄
∂urk

)+ < 0).

5.4 Direct Identification Algorithm

In this section, we will propose the direct identification algorithm for the optimization of

a CHA MAS. The direct identification algorithm is able to identify the busy periods to

optimize a CHA MAS.
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Definition 5.4.1 A busy-period structure is a partition of the actions ar0 , . . . , arNi−1
into

busy periods.

Lemma 5.4.1 If actions ark
, . . . , arnk

constitute a single busy period on the optimal sample

path, then the optimal control u∗
rk

is identical to the optimal control u∗(k, nk), where u∗
rk

represents the optimal control of the busy period while u∗(k, nk) represents part of the

optimal control path.

Proof Considering Theorem 5.3.3, notice that the state equation does not propagate in-

formation across the idle period preceding the busy period containing action ark
. The

control for action ark
does not depend on actions preceding the busy period. In addition,

the control does not depend on actions in the following busy periods either. Thus the

optimal control u∗
rk

for a busy period is unique.

Remark 5.4.1 Lemma 5.4.1 tells us that we can solve the optimal control problem of agent

i by identifying the busy periods and solve the optimal control problem for each busy period.

Lemma 5.4.2 If actions ark
, . . . , arkn

constitute a single busy period on the optimal sample

path, then

1. t∗rk
< trlj

;

2. t∗rn+1
< trn+1

lj

;

3. t∗rs
≥ trs

lj
, for every s = k, . . . , n, where superscript ∗ represents that the variable is

for the optimal sample path.

Proof The proof follows Definition 5.3.4.

Theorem 5.4.3 Under Assumption 5.2.1 and Assumption 5.2.2, the busy period structure

of an optimal sample path is unique in the sense that for any ark
, k = 0, . . . , Ni − 1, the

last action of the busy period containing ark
is unique on the optimal sample path.
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Proof The proof is by contradiction. Suppose that there exist two different busy period

structures that both satisfy optimality. We can assume that the difference between the two

busy period structures is in their respective first busy periods. Denote the two busy period

structures by A and B. Let rA be the last state in the first busy period on busy period

structure A, and rB be the last state in the first busy period on busy period structure B.

Assume that trA
< trB

. Recall Lemma 5.4.1, the optimal control urk
in both busy period

structures should result in the same t∗rA
. From Lemma 5.4.2 and the busy period structure

A, we have

t∗rA
< trA

lj

. (5.43)

On the other hand, from Lemma 5.4.2 and the busy period structure B, we have

t∗rA
≥ trA

lj

. (5.44)

This causes contradiction, the busy periods must coincide, and the proof is complete.

Based on Theorem 5.4.3, for each single agent modeled using the CHA framework, the

direct identification algorithm is proposed to solve the optimization problem. The idea is

that we can identify the busy period structure of an agent by optimizing all busy periods.

In the algorithm, N represents the number of agent in the MAS. Q(k, n) represents

the sub-optimization problem of a sequence of actions that starts from state rk and ends

at state n. In the algorithm, we assume that agent 0 depends on some external events,

and agent i depends on actions of previous agents, i = 1, . . . , N − 1. By applying the

direct identification algorithm for the optimization of the CHA framework, we are able

to optimize the performance and time of agents in a CHA MAS based on the given cost

function.

Remark 5.4.2 In the direct identification algorithm listed in Table 5.1, the index k always

indicates the first action of all busy periods on the optimal sample path. This is because k

is updated as k = n + 1 in Step 2 only when the last action of a busy period is identified to

be arn−1.
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Table 5.1: The Direct Identification Algorithm

for i = 0 to N − 1

Step 0 initialize k = 0, n = 0;

while n ≤ Ni − 1 do

Step 1 solve the sub-optimization problem Q(k, n);

Step 2 identify busy periods:

if trn
< trn

lj
then

k ← n + 1

end if

Step 3 increment index n

n← n + 1

end while

end for

5.5 Summary

In this chapter, we give an analysis of the optimization of a CHA MAS. In our study,

we consider both time-driven dynamics and event-driven dynamics for the optimization

of a CHA system. We have proposed some useful definitions and theorems to solve the

optimization problem. An example is also given to illustrate how to define the optimization

problem for a CHA. The direct identification algorithm is also introduced for solving the

optimal control problem for a CHA MAS. In the next chapter, we will give examples and

experiments to illustrate how to utilize the proposed framework to develop the control

scheme for multi-agent systems.



Chapter 6

Experiments and Simulations

This chapter gives some experimental and simulation results for systems modeled using the

proposed framework. The goal is to implement the tools we have introduced to develop

the control algorithm for multi-agent systems. The feasibility of the proposed framework is

illustrated through three different scenarios. It is demonstrated that the proposed frame-

work is generic and can be applied to the control of both homogeneous and heterogeneous

MASs.

6.1 The Multi-Crane Cooperation System

In this experiment, the proposed framework is applied to the homogeneous multi-agent

system as introduced in Scenario 1.1.1. The control of a multi-crane system composed

of two industrial overhead cranes operating in the same workspace is studied using the

proposed framework. The goal of the control of this multi-crane system is to control the

two cranes to move the payloads in the same workspace without any collision. The results

are also reported in [33].

6.1.1 The Overhead Crane

Overhead cranes are widely used in many fields, such as the shipping, mining, manufac-

turing and automotive industries where the overhead cranes are used to move loads from

61
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Figure 6.1: The Overhead Crane.

one place to another. The crane in this multi-agent system has three DC motors for the

three dimension workspace. Two potentiometers are connected to measure the swing an-

gles. The overhead cranes used in this study are shown in Figure 6.1. Details about the

overhead crane can be found in [65].

The crane is considered as a hybrid system whose dynamics are controlled by the hybrid

agent. At the initial stage, the initial discrete and continuous values for the system are

set. We have discrete values such as the direction of movement and the brake status. We

have the continuous values such as the speed of the trolley.

If the value of zBrake turns from true to false, speedZ will jump from 0 to the desired

speed (ideally). If flagMoveToTarget turns from false to true, the crane will jump

from the idle state to the moving state. For the developed crane system, we also have

autonomous jumps. When the limit switches are triggered, the crane will stop moving and

the speed for that direction will jump to zero.

fp determines the evolution of the continuous state. We can control the speed of the

motors in order to control the speed of the payload v. The position of the payload (xc, yc, zc)
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in the coordinate of the workspace can be described as

xc = x + l sin θx cos θy,

yc = y + l sin θy, (6.1)

zc = −l cos θx cos θy,

where (xc, yc, zc) is the position of the payload in the trolley coordinate, x and y are

the travel and traverse positions, l is the length of the string, θ is the swing angle of the

payload that can be decomposed into the travel direction θx and traverse direction θy.

The action executor

The following actions are designed for the overhead crane: anti-swing, pick up, move

to, put down, cross over and stop. The design of the actions can be found in [33].

The abstract states

For the crane, we have the following abstract states:

1c idle;

2c object picked up;

3c load has been transferred to target;

4c load has been put down;

5c picked up without the load;

6c backed to the initial position;

7c put down without load;

8c swinging stopped;

9c move away;

10c collision avoided.

6.1.2 Modeling the System Using the Proposed Framework

In this section, the proposed framework is applied to model the control of the multi-crane

Cooperation system.

The intelligent coordination control layer

In the intelligent coordination control layer, the states of the controlled process are

mapped to the abstract states. The crane starts at the initial state 1c. The coordination
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input q/ ∈ Q/ and x/ ∈ X/ are the abstract state r ∈ R of the other crane and the position

of the other crane. Since we only have two agents in the system, we do not need the input

signature. Here qs ∈ Qs is obtained from the user’s graphical interface which tells if the

load is ready or not. xs ∈ Xs determines the starting position and the target position of the

payload. Based on the coordination rule base, β gives the desired action. The coordination

rule base also determines the enable function g. After the desired hybrid action is executed

by the action executor, the system transitions to the next abstract state. fr outputs the

continuous reference to the action executor, for example, the target position xt. fo and φo

communicate the current position and abstract state to the other agent, respectively.

The coordination rule base

Based on the nature of the multi-crane system, the following coordination rule base is

defined.

The desired choices are:

1c (pick up) 2c

2c (move to) 3c

3c (put down) 4c

4c (pick up) 5c

5c (move to) 6c

6c (put down) 7c

8c (move to) 3c or 6c

9c (move to) 3c or 6c

10c (move to) 3c or 6c

The constraints are:

2c if swing (anti-swing) 8c

5c if swing (anti-swing) 8c

2c if cross in the same region (cross over) 9c

5c if cross in the same region (cross over) 9c

2c if move into the unloading zone behind the other crane at the same time (stop) 10c

5c if move into the loading zone behind the other crane at the same time (cross over)

10c

The coordination rule base defines the desired choices and the constraints for the cranes
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Figure 6.2: The Mobile Robot, ATRV-Mini.

to cooperate with each other. The proposed framework was applied to develop the con-

trol system for the multi-crane system. Experiments show that the two overhead cranes

can work within the same workspace without any collisions. In the experiment, the two

overhead cranes transport loads within the shared workspace.

6.2 The Control of a Multi-Agent System

A more interesting and challenging case is the application of the proposed framework for

the control of the heterogeneous multi-agent system as introduced in Scenario 1.1.2. The

control systems involved in this system are:

1. A mobile robot, iRobot ATRV-Mini as shown in Figure 6.2, which is a flexible,

robust platform for either indoor or outdoor experiments and applications.

2. An overhead crane which has been introduced above.

3. A robot manipulator, CRS F3 as shown in Figure 6.3, which can provide six degrees

of freedom.

The final goal of this application is to have a cooperative action among the overhead

crane, the mobile robot and the robot manipulator. As shown in Figure 6.4, the mobile

robot picks up an object in the overhead crane’s workspace (zone 1) and carries it to the
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Figure 6.3: The Robot Manipulator, F3.

manipulator’s workspace (zone 2). The robot manipulator is mounted on a track which is

an extra axis of control for the robot manipulator. The robot manipulator picks up the

object from the mobile robot (zone 2) and delivers it to the other end of the track (zone

3). There are four landmarks set in the workspace to guide the mobile robot to move along

the desired trajectory.

6.2.1 The Mobile Robot

In this multi-agent system, the mobile robot is a nonholonomic mobile robot with kine-

matic constraints in the two dimensional workspace. A nonholonomic constraint for a

mobile robot is a non-integrable equation involving the configuration parameters and their

derivatives (velocity parameters). Such a constraint does not reduce the dimension of the

space of configurations attainable by the robot, but reduces the dimension of the space of

possible differential motions at any given configuration. Consider the mobile robot that is

modeled in Example 5.1.1. The moving direction of the mobile robot is the discrete value

while the continuous values are listed in Equation 5.11.

The Action Executor

In order to pick up an object from the crane and deliver it to the robot manipulator,
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Figure 6.4: The Setup of the Multi-Agent System.
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the mobile robot needs to execute the following desired actions:

(search) - turn the servo motor of the CCD camera to scan the environment in order

to find the landmark;

(align) - align the robot body to the target;

(vision navigation) - move toward the landmark using the output of the fuzzy con-

troller;

(turn left) - turn left 90o;

(turn right) - turn right 90o;

(turn back) - turn 180o;

(move back) - move backwards into the loading area of the manipulator.

These actions are guaranteed to be executed by the hybrid action executor.

The Coordination States

For the mobile robot, we have the following coordination states:

1m idle;

2m first landmark located;

3m aligned;

4m first landmark reached;

5m second landmark located;

6m second landmark reached;

7m loaded;

8m third landmark located;

9m third landmark reached;

10m fourth landmark located;

11m fourth landmark reached;

12m ready to be unloaded.

6.2.2 The Robot Manipulator

The robot manipulator is made by CRS Robotics. The joints and tracks are illustrated in

Figure 6.5. The manipulator has an interface with Windows 2000 which is called ActiveR-

obot. There are more than fifty functions defined in the interface for controlling the robot
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Figure 6.5: The Axis Configuration of the Robot Manipulator.

manipulator and processing data. The specification of the robot manipulator is listed in

Table 6.1.

The robot is connected to the robot server that processes all the requests from the clients

that command the robot manipulator. The functions that the clients can call are listed

in Table 6.2 [60]. The robot server gets the control of the robot manipulator through the

manipulator’s controller. Then the robot server controls the joints through the functions

described in the table.

The Action Executor

In order to pick up an object from the mobile robot and deliver it to the other side

of the track, the robot server needs to send out the following desired actions to the robot

manipulator:

(approach) - the tip of the manipulator approaches the object;

(close gripper) - the manipulator grabs the object;

(move up) - the tip moves up in order to pick up the object;

(move left) - the manipulator moves to the left end of the track;

(turn left) - the manipulator turns left 90o;

(drop) - the gripper opens in order to drop the object;

(turn right) - the manipulator turns right 90o;
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Table 6.1: The Physical Limitations of the Robot Manipulator

Axis Limit

1 ±180o

2 −135o to 45o

3 ±135o

4 ±180o

5 ±135o

6 51 turns or ±18432o

Track 5000 mm

(move right) - the manipulator moves right and goes back to the initial position.

These actions are guaranteed to be executed by the controller.

The Coordination States

For the robot manipulator, we have the following coordination states:

1r ready to pick up;

2r picked up.

6.2.3 Modeling the System Using the Proposed Framework

In this section, the proposed framework is applied to model the control of the multi-agent

system with the mobile robot, the robot manipulator and the overhead crane.

The Workspace

In this multi-agent system, the overhead crane, the mobile robot and the robot manip-

ulator have three separate workspace. The mobile robot’s workspace overlaps with both

the crane’s workspace and the robot manipulator’s workspace. Thus the object could be

delivered from the overhead crane to the robot manipulator.

The overhead crane’s goal is the loading area. The mobile robot has short term goals

as the landmarks and long term goals as the loading area in the crane’s workspace and the

loading area in the robot manipulator’s workspace.

The Intelligent Coordination Control Layer
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Table 6.2: The Functionalities of the Robot Server

Function Input Description

Extend distance Extend the arm

a specific distance

Retract distance Retract the arm

a specific distance

MoveH distance Move the arm over

& direction the track a specific distance

MoveV distance Move the arm UP

& direction or DOWN a specific distance

Turn degrees Turn the base of

& direction the arm a specific angle

TurnG degrees Turn the end effector

& direction a specific angle

TurnW degrees Turn the wrist a

& direction specific angle

MoveTo position Move to a previous

defined position

Learn position Save the current

arm position in a variable

Ready none Move arm to the

ready position

Home none Move arm to the

home position

Gripper position Open/close the gripper

Speed velocity Set the speed
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In the intelligent coordination control layer, the states of the controlled process are

mapped to the coordination states. The mobile robot starts from the initial state 1m. The

coordination input q/ ∈ Q/ is the coordination state r ∈ R of the crane and the robot

manipulator. We have three agents in the system, the input signature makes the mobile

robot know where the coordination input is from. x. ∈ X. represents the relevant position

of the mobile robot in the overhead crane’s workspace. The values are obtained from the

sonar sensors. Based on the coordination rule base, the desired action is selected. The

coordination rule base also determines the enable function g. After the desired hybrid

action is executed by the action executor, the system transitions to the next coordination

state. fr outputs the continuous reference to the action executor, for example, the distance

for the robot to make a turn in front of the landmarks. fo and φo communicate the current

position and discrete state to other agents, respectively.

The robot manipulator also starts from the initial state 1r. The coordination input

q/ ∈ Q/ and x/ ∈ X/ are the coordination state r ∈ R of the mobile robot and the

relative position of the mobile robot in the loading zone, respectively. We have three

agents in the system, the input signature makes the robot manipulator know where the

coordination input is from. Based on the coordination rule base, β gives the desired action.

The coordination rule base also determines the enable function g. After the desired hybrid

action is executed by the action executor, the system transit to the next coordination state.

φo communicates the current coordination state to the other agents.

The Coordination Rule Base

Based on the nature of this multi-agent system, the following coordination rule base is

defined.

The desired choices for the crane:

1c (pick up) 2c

2c (move to) 3c

3c (put down) 4c

4c (pick up) 5c

5c (move to) 6c

6c (put down) 1c

The constraints are:
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If mobile robot is not at state 6m, (put down) is not allowed for 3c

The desired choices for the mobile robot:

1m (search) 2m

2m (align) 3m

3m (vision navigation) 4m

4m (turn left) 5m

5m (vision navigation) 6m

6m (null) 7m

7m (turn back) 8m

8m (vision navigation) 9m

9m (turn right) 10m

10m (vision navigation) 11m

11m (turn back)(move back) 12m

12m (null) 1m

The constraints are:

If crane is not at state 5c, only (null) is allowed for 6m, and the transition is prohibited

If manipulator is not at state 2r, only (null) is allowed for 12m, and the transition is

prohibited

The desired choice for the robot manipulator:

2r (move left)(turn left)(drop)(turn right)(move right) 1r 1r (approach)(close gripper)(move

up) 2r

The constraint for the manipulator is:

If the mobile robot is not at state 12m, (approach)(close gripper)(move up) is not allowed

for 1r

Note that since there is no states defined between a series of actions for the manipulator,

several actions can be executed in consequences. This series of actions can be thought as

one single action.

The coordination rule base defines the desired choices and the constraints for the agents

to cooperate and coordinate with each other.

Communication Mechanism

In this experiment, the server-client architecture is implemented for the communication
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among agents. Communications between the server and the client are realized using the

Common Object Request Broker Architecture (CORBA). Users are able to monitor and

operate the agents at a remote site while the agents exchange information with others

using CORBA.

In order to interface the local control to another agent at a remote side, a server and

a client are constructed for the agent. The client part resides on the remote agent. The

server part resides on the host machine on the local agent. The host machine is an on-

line PC with Windows NT system or Linux installed. CORBA is used to handle requests

involving the control of the hardware from the remote computer.

6.2.4 Results

In this section, the results of the development of this multi-agent system are given.

The Design of the Action Executor for the Mobile Robot

As an example, the design of the action executor of the mobile robot is introduced. In

order to provide tolerance to the inaccuracy of the visual data, the vision navigation of the

mobile robot is implemented by building a fuzzy steering controller. The turning angle of

the robot is determined by differential steering method. If both the left wheels and the

right wheels turn in tandem, the robot moves in a straight line. If one wheel turns faster

than the other, the robot follows a curved path. So steering the robot is just a matter of

varying the speed of the wheels. Since the turn radius of the robot is quite large compared

with the radius of the wheels, referring to Figure 5.1, we have the following relationships:

S1 = Rφ,

Sm = (R +
w

2
)φ, (6.2)

S2 = (R + w)φ,

where S1 and S2 give the displacement (distance traveled) for the left and right wheel

respectively, R is the turn radius of the center, w is the distance between wheels (from

center-to-center along the length between the two font wheels or two back wheels), and

φ is the angle of the turn in radians. Sm is the displacement at the center point. Once

we have established the simple geometry for the differential steering system, it is easy to
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develop algorithms for controlling the robot’s turning angle φ. As the robot is considered

as having a rigid body, to develop a forward kinematic equation for the differential steering

system, we start by specifying a frame of reference in which an arbitrarily chosen point is

treated as stationary.

By differentiating Equation 6.2, we have

uR − uL = φ̇w, (6.3)

where uL and uR correspond to the forward velocity of the left wheels and the right wheels

respectively. Then we have

u2 = φ̇ =
uR − uL

w
. (6.4)

A block diagram of the fuzzy controller is shown in Figure 6.6. The desired φd is acquired

by calculating the position of the target in the image representing the environment detected

by the color CCD camera. The error between the command signal and the actual position,

as well as the change in error of signal are calculated and fed into the fuzzy controller.

From Equation 6.4, it can be seen that the difference between the velocity of the wheels

determines the turning speed. The fuzzy controller is designed to output the desired u2 to

the motors to control the robot’s turning angle φ to converge to the desired angle φd.
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Figure 6.6: Block Diagram of the Fuzzy Logic Controller.

The fuzzification procedure maps the crisp input values to the linguistic fuzzy terms

with the membership values between 0 and 1. In this study, we use five membership

functions for both error eφ = φ−φd and change in error ėφ = φ̇− φ̇d. Figure 6.7 and Figure

6.8 illustrate the input membership functions for eφ and ėφ respectively.
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Figure 6.7: Input Membership Functions for Error eφ.
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Figure 6.8: Input Membership Functions for Change in Error ėφ.

The rules governing the input output relationship of the proposed fuzzy controller are

given. The inference mechanism is responsible for decision making in the control system

using approximate reasoning [15]. The control rules are designed based on expert knowledge

and testing. Furthermore, the control rules also meet the stability requirements derived

from Lyapunov’s direct method. For example, if eφ is “poslarge” and is increasing rapidly

(i.e., ėφ is “poslarge”), then the left motor should be much faster than the right motor (i.e.,

u2 should be “NL”). Based on this knowledge, we can obtain twenty five fuzzy rules. Table

6.3 represents abstract knowledge that the expert has about how to control the turn angle

given the error and its derivative as inputs. The input and output linguistic variables are

summarized in the table.

The defuzzification procedure maps the fuzzy output from the inference mechanism to

a crisp signal. We use the Center Of Gravity (COG) defuzzification method for combining

the recommendations represented by the implied fuzzy sets from all the rules. Let bi denote

the center of the membership function of the consequent of rule (i) and
∫

µ(i)dx denote the

area under the membership function µ(i). The COG method computes the crisp value µc
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Table 6.3: Rules for the Differential Steering System

ėφ

u2 − u1 pos pos zero neg neg

large small small large

poslarge NL NL NL NS ZO

possmall NL NL NS ZO PS

eφ zero NL NS ZO PS PL

negsmall NS ZO PS PL PL

neglarge ZO PS PL PL PL

given by:

µc =

∑

i bi

∫

µ(i)dx
∑

i

∫

µ(i)dx
. (6.5)

In this study it is used for computing the center of gravity of the implied fuzzy sets.

Figure 6.9 shows the output membership functions.

ZO PS PLNSNL

(t), (%)10 20 30-10-20-30 0 u2

Figure 6.9: Output Membership Functions.

The fuzzy controller is developed as the action executor for the mobile robot. Figure

6.10 and Figure 6.11 show the input and the output of the fuzzy controller, respectively.

The results for the mobile robot following a landmark with external disturbances are shown.

For example, it is pushed to the right and then to the left. One can see that the controller

is able to reduce the error to zero instantly.
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Figure 6.10: Input of the Fuzzy Controller.
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Figure 6.11: Output of the Fuzzy Controller.
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Simulation and Experimental Results

In Figure 6.12, simulation results for the cooperation and coordination among the

mobile robot, the overhead crane and the robot manipulator are given. In the figure, the

round object represents the load of the overhead crane, while the square object represents

the mobile robot. The trajectories of both the overhead crane and the mobile robot are

given. From the figure, we can see that the overhead crane starts from the initial position

and delivers the object to the loading area to wait for the mobile robot to pick up the

object. The mobile robot follows the landmarks into the loading area and picks up the

object. Then, the mobile robot turns around. For clarity, the path for the robot returning

to the robot manipulator’s track, which is shown as a long solid bar in the figure, is omitted.

Note that even with a push, the robot can still follow the landmark and finish the desired

task.
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Figure 6.12: Simulation Results for the Heterogeneous Multi-Agent System.

Figure 6.13 illustrates the evolution of the continuous values of the the mobile robot,

which include the position and the direction. It can be seen that the discrete state also
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changes when the robot gets close to the landmarks. It makes turns at corresponding

landmarks.
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Figure 6.13: Simulation Results for the Mobile Robot.

The simulation result shows that the proposed framework can model the control of

this multi-agent system. In addition, experiments also verify that the multi-agent system

can achieve the desired goal successfully, for example, the overhead crane delivers an ob-

ject in its workspace to the designated area, then with the vision navigation control, the

mobile robot picks up the object from the crane’s workspace and delivers it to the robot

manipulator. The robot manipulator then picks up the object and transports it to its

own workspace. The whole process involves cooperation, coordination and communication

among multiple agents. By applying the proposed framework to the control of this multi-

agent system, we are able to achieve coordinated control of the heterogeneous multi-agent

system. The agents cooperatively work together to achieve the desired global goal.
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Figure 6.14, 6.15, 6.16 and 6.17 show the four landmarks setup for the experiment.

Figure 6.18 shows that the robot manipulator is able to pick up the object from the mobile

robot. Figure 6.19 shows that the overhead crane is able to drop the object on top of the

mobile robot. Figure 6.20 shows that the mobile robot follows the landmark. Figure 6.21

shows that the overhead crane picks up the object from its workspace. Figure 6.22 shows

that the mobile robot can overcome the uneven floor when it follows the landmark.

Figure 6.14: The First Landmark.

6.3 Coordination of Multiple Mobile Robots

Since the two scenarios mentioned above do not involve extensive coordination tasks, the

coordination problems can be solved by selecting desired state transitions based on the

designer’s own knowledge. In order to illustrate more complex coordination tasks, we

apply the proposed framework to solve a multi-robot coordination problem. An intelligent

planner is designed for a multi-robot planning scenario, and we use numerical simulations

to illustrate this scenario.
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Figure 6.15: The Second Landmark.

Figure 6.16: The Third Landmark.
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Figure 6.17: The Fourth Landmark.

Scenario 6.3.1 In this scenario, all agents are assumed to be able to finish the desired

actions to move to the next state. In the simulation, there are five agents selected for the

coordination problem. The environment is set to (25× 25) grids with obstacles set in it as

shown in Figure 6.23.

The agents start from their initial positions as shown in Figure 6.23. Target positions

are shown in Figure 6.24. The global goal is that all agents should try to reach their target

positions without any conflicts with others. The sub-goal of each individual agent is to

reach its own target without colliding with others.

6.3.1 Modeling

We assume that the agents can execute the desired actions, for example, going South, going

North, going West, going East, going South East, going South West, going North East,

or going North West. The problem is to develop an intelligent planner for the intelligent

coordination control layer to plan the next actions for the agents. This multi-agent system

is considered as a control system with multiple agents modeled with the CHA framework.
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Figure 6.18: The Robot Manipulator Picks Up the Object from the Mobile Robot.
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Figure 6.19: The Overhead Crane Drops the Object on Top of the Mobile Robot.

Figure 6.20: The Mobile Robot Follows the Landmark.
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Figure 6.21: The Overhead Crane Picks Up the Object from the Workspace.

Figure 6.22: The Mobile Robot Follows the Landmark over the Uneven Floor.
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Figure 6.23: The starting positions of the agents. Large black squares represent obstacles

while small squares represent the robots. White square: Agent 1; Red square: Agent 2;

Green square: Agent 3; Blue square: Agent 4; Yellow square: Agent 5. The numbers are

also marked beside the squares that represent the position of the corresponding agents.

Based on the objective of each agent, the intelligent planner should be able to plan the

desired state trajectory that achieves the sub-goal. Action a ∈ A for each step along the

trajectory is executed and the agent moves to the next state.

A neural network based approach inspired by [68] is used for this planning problem.

Only information about the goals of the multi-agent system is required for the intelligent

planner to generate the coordination policies to achieve the goal. In the mean time, the

constraints are defined in the coordination rule base for all the states that are not allowed

which might cause collisions. For a given present state in R, denoted by rp, the next state
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Figure 6.24: The target positions of all agents. Large black squares represent obstacles

while small squares represent the robots. White square: Agent 1; Red square: Agent 2;

Green square: Agent 3; Blue square: Agent 4; Yellow square: Agent 5. The numbers are

also marked beside the squares that represent the position of the corresponding agents.

rn is obtained by rn ⇐ xrn
= max{xi, i = 1, 2, . . . , k} where x is the degree of landscape

activity of the neural network, i is the number of the neighboring states.

6.3.2 Intelligent Planning

In [68], a biologically inspired neural network approach to collision-free motion planning

of mobile robots or robot manipulators is proposed. Each neuron in the topologically

organized neural network has only local connections, whose neural dynamics are charac-

terized by a shunting equation. The robot motion is planned through the dynamic activity
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landscape of the neural network without any prior knowledge of the dynamic environment.

Inspired by this approach, we propose an intelligent planner for the multi-robot coordi-

nation scenario. We implement a topologically organized neural network which is expressed

in a state space S. The location of the jth neuron of the ith agent at the grid in S, de-

noted by a vector qij ∈ RF , uniquely represents a state of an agent in S. Each neuron has

local lateral connections to its neighboring neurons that constitute a subset in S, which is

called the receptive field of the jth neuron of the ith agent in neuro-physiology. The pro-

posed dynamics of the jth neuron of the ith agent is characterized by a modified shunting

equation,

dxij

dt
= −Axij + (B − xij)

([Iij + β ∗ Icoold
ij ]+ + Σm

k=1wijk[xik]
+)

−(D + xij)([Iij + Icoij]
−). (6.6)

Parameters A, B and D represent the passive decay rate, the upper and lower bounds of

the neural activity, respectively. Variable xij is the neural activity of the jth neuron of the

ith agent, which has a bounded continuous value xij ∈ [−D,B]. t is a virtual time index

that only depends on the occurrence of events. The excitatory input, [Iij + β × Icoold
ij ]+ +

Σm
k=1wijk[xik]

+, results from the target, the coordination factors determined by the states

of other agents, and the lateral connections among neurons. The external input Iij to the

jth neuron of the ith agent is defined as Iij = E, if there is a target; Iij = −E, if there

is an obstacle; Iij = 0, otherwise, where E is a positive constant. β is a coordination

recovery rate to adjust the recovery speed of the neural network to the inhibitory stimulus

of the conflict states caused by other agents. Icoold
ij is the stimulus of the previous conflict

state. The inhibitory input [Iij + Icoij]
− results from the obstacles and the conflict states

caused by other agents while Icoij is a coordination term determined by a coordination

coefficient α. Icoij is defined as Icoij = −α × E, if there is another agent at that state;

Icoij = 0, otherwise. The connection weight wijk from the kth neuron to the jth neuron of

the ith agent is defined as wijk = f(|dijk|), where dijk = |qij − qik| represents the Euclidean

distance between qij and qik in S. Function f(a) is a monotonically decreasing function,

for example, a function defined as f(a) = µ/a, if 0 < a < r0; f(a) = 0, otherwise, where

µ and r0 are positive constants. The neuron has only local connections in a small region
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(0, r0), which is called its receptive fieldRij. Parameter m is the number of neurons located

within Rij.

For a given present state in S, denoted by qp, the next state qn is obtained by

qn ⇐
(

xqn
= max{xi, i = 1, 2, . . . , k}

)

, (6.7)

where i is the number of the neighboring neurons including itself (i.e., all the possible next

locations). The present location adaptively changes according to the varying environment.

6.3.3 Results

The neural network based intelligent planner has 25× 25 topologically organized neurons

with zero initial activity. The model parameters are chosen as A = B = D = 1, µ = 0.02,

r0 = 2, E = 1, α = 0.02 and β = 0.85.

The landscape activities of the five agents are shown in Figure 6.25. The intelligent

planners are triggered by the completion of the previous task as defined as a discrete event.

The collision-free trajectories of the five agents generated by the intelligent planners are

shown in Figure 6.26. It can be seen that the five intelligent planners are able to plan the

state trajectories dynamically that lead to the target positions.

6.4 Summary

This chapter gives some experimental and simulation results for systems modeled using

the proposed framework. The feasibility of the proposed framework is illustrated by three

different scenarios. The control schemes are developed using the proposed framework. It

is demonstrated that the proposed framework is generic and is applicable to both homo-

geneous and heterogeneous multi-agent systems.
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Figure 6.25: Landscape of neural activities (at the end of the simulation). 1. Neural

activity of Agent 1; 2. Neural activity of Agent 2; 3. Neural activity of Agent 3; 4. Neural

activity of Agent 4; 5. Neural activity of Agent 5.
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Figure 6.26: Trajectories of the Agents. Large black squares represent obstacles while

small squares represent the robots. 1. Trajectory of Agent 1; 2. Trajectory of Agent 2; 3.

Trajectory of Agent 3; 4. Trajectory of Agent 4; 5. Trajectory of Agent 5.



Chapter 7

Stability Analysis and Optimization

Examples

This chapter illustrates stability and optimization analysis for MASs using the methodol-

ogy we have proposed and developed in previous chapters. In Chapter 6, we have demon-

strated that we can implement the proposed framework to develop the control algorithm for

both homogeneous and heterogeneous multi-agent systems. The feasibility of the proposed

framework is illustrated through three different scenarios. In this chapter, the stability

of the homogeneous and the heterogeneous MASs is analyzed. In addition, we also apply

the direct identification algorithm we have proposed to optimize the performance of the

heterogeneous MAS.

7.1 Stability Analysis of CHA MASs

In this section, the stability of the homogeneous system introduced in Scenario 1.1.1 and

the stability of the heterogeneous system introduced in Scenario 1.1.2 are analyzed.

7.1.1 Stability of the Homogeneous System in Scenario 1.1.1

Proposition 7.1.1 Based on the definition of the stability of CHA systems, the multi-

crane system in Scenario 1.1.1 is globally stable.

93
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Proof 1. Because of the design of the hardware and the software of the overhead cranes,

the action executors can accomplish the hybrid actions. After the actions have been

executed, the coordination state transitions to the next coordination state according

to the coordination rule base. Each overhead crane agent is locally stable because:

• The action executor is designed such that the continuous state evolution is stable

(i.e., the desired position of the payload can be reached by the overhead crane,

thus the equilibrium point of each abstract state is maintained).

• The abstract state transition is achievable by the proper design of the action

executor, and the reverse state transition does not happen immediately.

• All unsafe regions in the continuous space are avoided with the proper design

of the action executor.

2. As described in Chapter 6 and also in [33], all the actions taken by the overhead

cranes are on the allowed event trajectories Ea which is governed by the coordination

rule base. For r ∈ R, a ∈ A, c ∈ C, we have r |= lo holds and (a, lo) ∈ C, r |= lc

holds and (a, lc) ∈ C respectively. Recall that for the overhead crane, coordination

states 1 and 7 represent state ‘idle’ and state ‘put down without load’ respectively.

The goal set is the region around state (7, 7) for (crane 1, crane 2) and the origin set

corresponds to the coordination state (1, 1). Ea leads the system to the goal set.

3. We wish to show that for this multi-crane system, the goal set, the invariant set

Rm ⊂ R is stable in the sense of Lyapunov w.r.t. Ea.

We use the metric defined by the Euclidean distance between each agent (at the be-

ginning of each abstract state) and the goal region along the allowed event trajectories

Ea, which is

ρ(r, Rm) = Σ2
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|+ |zi(ri)− z̄i|} (7.1)

in which the goal region is defined as Rm = {(7, 7)} which corresponds to {(x̄1, ȳ1, z̄1),

(x̄2, ȳ2, z̄2). Subscript 1 is used to represent overhead crane 1 and 2 represents over-

head crane 2. We choose

V (r) = ρ(r, Rm), (7.2)
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then we need to show that in a sufficiently small r-neighborhood of the set Rm the

Lyapunov function V has the required properties.

(1) If we choose c2 = c1, it is obvious that for all sufficiently small c1 > 0, when

V (r) > c2 for r ∈ r-neighborhood of Rm, ρ(r, Rm) > c1.

(2) Same as above, if we choose c3 = c4 > 0 as small as desired, when ρ(r, Rm) < c3

for r ∈ r-neighborhood of Rm, we have V (r) ≤ c4.

(3) By design, all the agents only move toward the next goal along the allowed event

trajectories Ea, they don’t go backward. So we have V (R(r0, Ek, k)) a non-increasing

function for k ∈ Z+, as long as R(r0, Ek, k) ∈ r-neighborhood for all Ek such that

EkE ∈ Ea(r0).

Proposition 7.1.2 Based on the definition of the stability of CHA systems, the multi-

crane system in Scenario 1.1.1 is asymptotically stable.

Proof We have proved that the multi-crane system is globally stable. In order to prove

that the system is asymptotically stable, we need to show that the goal set, the invariant

set Rm ⊂ R is asymptotically stable in the sense of Lyapunov w.r.t. Ea.

We have already shown that for the closed invariant set Rm ⊂ R, in a sufficiently

small r-neighborhood of the set Rm there exists a function V (r) = ρ(r, Rm) having all the

properties of Theorem 4.2.1.

Furthermore, overhead crane 1 will move to the target location at (x̄1, ȳ1, z̄1); overhead

crane 2 will move to the target location at (x̄2, ȳ2, z̄2). Thus at state (7, 7), we have

ρ(r, Rm) = Σ2
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|

+|zi(ri)− z̄i|}

= 0.

Recall that when the system terminates, we can append null actions at the end of the

event trajectory Ea. Therefore as k → ∞, we have V (R(r0, Ek, k)) = ρ(r, Rm) → 0 for all

Ek such that EkE ∈ Ea(r0) and for all k ∈ Z+ as long as R(r0, Ek, k) ∈ the r-neighborhood

of the set Rm.
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Proposition 7.1.3 Based on the definition of the stability of CHA systems, the multi-

crane system in Scenario 1.1.1 is exponentially stable.

Proof We have proved that the multi-crane system is globally stable. In order to prove

that the system is exponentially stable, we need to show that the goal set, the invariant

set Rm ⊂ R is exponentially stable in the sense of Lyapunov w.r.t. Ea.

We use the metric defined by the Euclidean distance between each agent (at the be-

ginning of each abstract state) and the goal region along the allowed event trajectories Ea,

which is

ρ(r, Rm) = Σ2
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|+ |zi(ri)− z̄i|} (7.3)

in which the goal region is defined as Rm = {(7, 7)} which corresponds to {(x̄1, ȳ1, z̄1),

(x̄2, ȳ2, z̄2). Subscript 1 is used to represent overhead crane 1, and 2 represents overhead

crane 2. We choose

V (r) = ρ(r, Rm). (7.4)

If we choose c1 = 1 and c2 = 1, it can be seen that c1ρ(r, Rm) = V (r) = c2ρ(r, Rm), which

satisfy the first condition of Theorem 4.2.3.

For the second condition of Theorem 4.2.3, assume that at the goal state, each agent

has taken Ni actions. If we choose c3 <
max

Ni−1
k=1 |ρ(R(r0,Ek+1,k+1))−ρ(R(r0,Ek,k))|

ρ(r0,Rm)
, it can be seen

that the second condition of Theorem 4.2.3, V (R(r0, Ek+1, k + 1)) − V (R(r0, Ek, k)) ≤

−c3(ρ(R(r0, Ek, k), Rm)), is also satisfied.

Therefore, the invariant set Rm is exponentially stable w.r.t Ea.

7.1.2 Stability of the Heterogeneous System in Scenario 1.1.2

Proposition 7.1.4 The action executor for vision navigation of the mobile robot in Sce-

nario 1.1.2 can complete the task, and the continuous state is stable w.r.t. the target in

the sense of Lyapunov.

Proof Recall the model of the mobile robot shown in Figure 5.1. Since the actuators in

the mobile robot we are discussing are DC motors. Based on Newton’s law, we have

Jθ̈m + bθ̇m = τ, (7.5)
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where θm is the displacement of the rotor (radius), J is the moment of inertia of the rotor

(kg ·m2), b is the damping ratio of the mechanical system (N ·m · s) and τ is the motor

torque (N ·m). Assume the friction on both the front wheels are same, then

J
u̇R

r
+ b

uR

r
= τR − f,

J
u̇L

r
+ b

uL

r
= τL − f, (7.6)

where r is the radius of the wheels, f is the friction torque, and u is the velocity. Hence

τR − τL =
J

r
(u̇R − u̇L) +

b

r
(uR − uL). (7.7)

Put Equation 6.3 into Equation 7.7, we have

τR − τL =
J

r
φ̈w +

b

r
φ̇w. (7.8)

Rearrange Equation 7.8, we obtain

φ̈ =
r

Jw
(τR − τL)−

b

J
φ̇, (7.9)

where τR − τL should be given by the fuzzy controller and

τR − τL = Φ(x1, x2). (7.10)

Since we are interested in the control of the turn angle about the desired turn angle

φd, we need to maintain the equilibrium by decreasing the error between φd and the actual

turn angle φ and the change in error to zero. Let

eφ = φ− φd = x1,

ėφ = φ̇− φ̇d = x2, (7.11)

then we have

ẋ1 = x2,

ẋ2 =
rΦ(x1, x2)

Jw
− φ̈d −

b

J
(x2 + φ̇d). (7.12)
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Assume that at the equilibrium point φ̇d = 0 and φ̈d = 0. Note that the equilibrium

point corresponds to τR = τL (i.e., for the fuzzy controller Φ(0, 0) = τR − τL = 0) so that

the equilibrium is preserved. Choose

V (x) =
1

2
k x2

1 +
1

2
x2

2 (7.13)

as the “Lyapunov function” V : B(h)→ R for some h > 0, where B(h) = {x ∈ R2 : |x| <

h} is a ball centered at the origin with a radius h and | · | is a norm on R2. k is a positive

constant whose value can be changed to guarantee the stability, then

∇V
(

x(t)
)

= [k x1, x2]
T , (7.14)

and

V̇ = [k x1, x2]

[

x2
rΦ(x1, x2)

Jw
− b

J
x2

]

. (7.15)

We would like V̇ < 0 to prove asymptotic stability (i.e., to show that the fuzzy controller

can achieve and maintain the desired turn angle φd). Hence we need

x2

(

k x1 +
rΦ(x1, x2)

Jw
−

b

J
x2) < 0. (7.16)

Note that x2 6= 0, then we need

k x1 +
rΦ(x1, x2)

Jw
−

b

J
x2 > 0 (x2 < 0),

k x1 +
rΦ(x1, x2)

Jw
−

b

J
x2 < 0 (x2 > 0). (7.17)

Rearranging the equations we see that we need

Φ(x1, x2) >
Jw

r
(
b

J
x2 − k x1) (x2 < 0),

Φ(x1, x2) <
Jw

r
(
b

J
x2 − k x1) (x2 > 0) (7.18)

on x ∈ B(h) for some h > 0. As a graphical approach, we can plot the right-hand side

of this equation, design the fuzzy controller Φ(x1, x2), and find h > 0 so that the given
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inequality holds and hence asymptotic stability holds. From Figure 7.1, it can be seen

that the plot for the right-hand side of Equation 7.18 is a curved plane passing the origin.

This can also be proved by setting x1 = 0 and x2 = 0 in Equation 7.18. Note that we can

always scale the Φ coordinate by choosing different value of the positive constant k. Recall

the definition of the rules in Table 6.3, it can be seen that the proposed fuzzy controller

Φ(x1, x2) is below the curved plane in Figure 7.1 when x2 > 0 (corresponds to change in

error ė > 0) and is above the curved plane when x2 < 0 (corresponds to change in error

ė < 0) so that the stability holds. We should also note that Figure 7.1 only shows the

situation when φd = 0. If we set φd to other values rather than 0, it can be seen that for

different φd, the stability will always hold.
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Figure 7.1: Plot of the Right-Hand Side of Equation 7.18.

Proposition 7.1.5 Based on the definition of the stability of CHA systems, the multi-

agent system with the mobile robot, the robot manipulator and the overhead crane in Sce-
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nario 1.1.2 is stable.

Proof 1. Because of the design of the hardware and the software of the overhead crane,

the mobile robot and the robot manipulator, the action executors can accomplish

the hybrid actions. After the actions have been executed, the coordination state

transitions to the next coordination state according to the coordination rule base.

The overhead crane agent is locally stable as shown above. The robot manipulator

agent is locally stable because:

• The action executor is designed such that the continuous state evolution is

stable (i.e., the target position of the end effector can be reached by the robot

manipulator, thus the equilibrium point of each abstract state is maintained).

• The abstract state transition is achievable by the proper design of the action

executor, and the reverse state transition does not happen immediately.

• All unsafe regions in the continuous space are avoided with the proper design

of the action executor.

The mobile robot agent is locally stable because:

• The action executor is designed such that the continuous state evolution is stable

(For the mobile robot, the vision navigation equilibrium point of each abstract

state is maintained as stated in Proposition 7.1.4).

• The abstract state transition is achievable by the proper design of the action

executor, and the reverse state transition does not happen immediately.

• All unsafe regions in the continuous space are avoided with the proper design

of the action executor.

2. As described in Chapter 6, all the actions taken by the overhead crane, the mobile

robot and the robot manipulator are on the allowed event trajectories Ea which is

governed by the coordination rule base. For r ∈ R, a ∈ A, c ∈ C, we have r |= lo holds

and (a, lo) ∈ C, r |= lc holds and (a, lc) ∈ C respectively. Recall that for the overhead

crane, coordination states 1 and 7 represent state ‘idle’ and state ‘put down without

load’ respectively. For the mobile robot, coordination states 1 and 12 represent ‘idle’
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and ‘ready to be unloaded’ respectively. For the robot manipulator, coordination

state 1 represents ‘ready to pick up’. The goal set is the region around state (7, 12,

1) for (crane, mobile robot, robot manipulator) and the origin set corresponds to the

coordination state (1, 1, 1). Ea leads the system to the goal set.

3. We wish to show that for this multi-agent system, the goal set, the invariant set

Rm ⊂ R is stable in the sense of Lyapunov w.r.t. Ea.

We use the metric defined by the Euclidean distance between each agent (at the be-

ginning of each abstract state) and the goal region along the allowed event trajectories

Ea, which is

ρ(r, Rm) = Σ3
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|+ |zi(ri)− z̄i|} (7.19)

in which the goal region is defined as Rm = {(7, 12, 1)} which corresponds to {(x̄1, ȳ1, z̄1),

(x̄2, ȳ2, z̄2), (x̄3, ȳ3, z̄3)}. Subscript 1 is used to represent the overhead crane, 2 rep-

resents the mobile robot, and 3 represents the robot manipulator. Note that for the

mobile robot z2 = z̄2. We choose

V (r) = ρ(r, Rm), (7.20)

then we need to show that in a sufficiently small r-neighborhood of the set Rm the

Lyapunov function V has the required properties.

(1) If we choose c2 = c1, it is obvious that for all sufficiently small c1 > 0, when

V (r) > c2 for r ∈ r-neighborhood of Rm, ρ(r, Rm) > c1.

(2) Same as above, if we choose c3 = c4 > 0 as small as desired, when ρ(r, Rm) < c3

for r ∈ r-neighborhood of Rm, we have V (r) ≤ c4.

(3) By design, all the agents only move toward the next goal along the allowed event

trajectories Ea, they don’t go backward. So we have V (R(r0, Ek, k)) a non-increasing

function for k ∈ Z+, as long as R(r0, Ek, k) ∈ r-neighborhood for all Ek such that

EkE ∈ Ea(r0).
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Proposition 7.1.6 Based on the definition of the stability of CHA systems, the multi-

agent system with the mobile robot, the robot manipulator and the overhead crane in Sce-

nario 1.1.2 is asymptotically stable.

Proof We have proved that the multi-agent system with the mobile robot, the robot ma-

nipulator and the overhead crane is stable. In order to prove that the system is asymptoti-

cally stable, we need to show that the goal set, the invariant set Rm ⊂ R is asymptotically

stable in the sense of Lyapunov w.r.t. Ea.

We have already shown that for the closed invariant set Rm ⊂ R, in a sufficiently

small r-neighborhood of the set Rm there exists a function V (r) = ρ(r, Rm) having all the

properties of Theorem 4.2.1.

Furthermore, the overhead crane will move to the target location at (x̄1, ȳ1, z̄1); the

mobile robot will move to the target location at (x̄2, ȳ2, z̄2); the robot manipulator will

move to the target location at (x̄3, ȳ3, z̄3). Thus at state (7c, 12m, 1r), we have

ρ(r, Rm) = Σ3
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|

+|zi(ri)− z̄i|}

= 0.

Recall that when the system terminates, we can append null actions at the end of the

event trajectory Ea. Therefore as k → ∞, we have V (R(r0, Ek, k)) = ρ(r, Rm) → 0 for all

Ek such that EkE ∈ Ea(r0) and for all k ∈ Z+ as long as R(r0, Ek, k) ∈ the r-neighborhood

of the set Rm.

Proposition 7.1.7 Based on the definition of the stability of CHA systems, the multi-

agent system with the mobile robot, the robot manipulator and the overhead crane in Sce-

nario 1.1.2 is exponentially stable.

Proof We have proved that the multi-agent system with the mobile robot, the robot ma-

nipulator and the overhead crane is stable. In order to prove that the system is exponen-

tially stable, we need to show that the goal set, the invariant set Rm ⊂ R is exponentially

stable in the sense of Lyapunov w.r.t. Ea.
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We use the metric defined by the Euclidean distance between each agent (at the be-

ginning of each abstract state) and the goal region along the allowed event trajectories Ea,

which is

ρ(r, Rm) = Σ3
i=1{|xi(ri)− x̄i|+ |yi(ri)− ȳi|+ |zi(ri)− z̄i|} (7.21)

in which the goal region is defined as Rm = {(7, 12, 1)} which corresponds to {(x̄1, ȳ1, z̄1),

(x̄2, ȳ2, z̄2), (x̄3, ȳ3, z̄3)}. Subscript 1 is used to represent the overhead crane, 2 represents

the mobile robot, and 3 represents the robot manipulator. Note that for the mobile robot

z2 = z̄2. We choose

V (r) = ρ(r, Rm). (7.22)

If we choose c1 = 1 and c2 = 1, it can be seen that c1ρ(r, Rm) = V (r) = c2ρ(r, Rm), which

satisfy the first condition of Theorem 4.2.3.

For the second condition of Theorem 4.2.3, assume that at the goal state, each agent

has taken Ni actions. If we choose c3 <
max

Ni−1
k=1 |ρ(R(r0,Ek+1,k+1))−ρ(R(r0,Ek,k))|

ρ(r0,Rm)
, it can be seen

that the second condition of Theorem 4.2.3, V (R(r0, Ek+1, k + 1)) − V (R(r0, Ek, k)) ≤

−c3(ρ(R(r0, Ek, k), Rm)), is also satisfied.

Therefore, the invariant set Rm is exponentially stable w.r.t Ea.

7.2 Optimization of the CHA MAS

In Figure 6.12, the simulation results for the cooperation and coordination between the

mobile robot and the robot manipulator are given. In the figure, the round object represents

the load of the overhead crane, while the square object represents the mobile robot. The

trajectories of both the overhead crane and the mobile robot are given. For clarity, the

trajectory of the robot manipulator is only partially shown, as represented by a small

square. From the figure, we can see that the overhead crane starts from the initial position

and delivers the object to the loading area to wait for the mobile robot to pick up the

object. The mobile robot follows the landmarks into the loading area and picks up the

object. Then, the mobile robot turns around.

From Theorem 5.4.3, we know that the busy period structure of an optimal sample path

is unique in the sense that for any ark
, k = 0, . . . , Ni− 1, the last action of the busy period
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Figure 7.2: The Tasks that the MAS Has Finished During and After the Optimization

Process.

containing ark
is unique on the optimal sample path. Based on the theorem, the direct

identification algorithm is proposed in Chapter 5 to identify the busy period structure. In

this section, the direct identification algorithm is applied to the optimization of the MAS.

After we apply the direct identification algorithm, we are able to identify the busy period

structure of the MAS. From Figure 7.2, it can be seen that after the direct identification

algorithm is applied, the number of waiting tasks becomes a constant at about 1700s. This

means that the tasks released at a constant rate can be finished by the optimized MAS

while the quality of the tasks is also maintained.
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The simulation results show that for a heterogeneous MAS modeled by the CHA frame-

work as described in Scenario 1.1.2 (i.e., the overhead crane delivers an object in its

workspace to the designated area, then with the vision navigation control, the mobile robot

picks up the object from the crane’s workspace and delivers it to the robot manipulator.

The robot manipulator then picks up the object and transports it to its own workspace),

through the application of the proposed direct identification algorithm to the optimization

of this MAS, we are able to achieve optimized coordinated control of the heterogeneous

MAS. The agents cooperatively work together to achieve the desired global goal with the

optimal function satisfied. As far as we know, there is no similar research done to opti-

mize the performance of a MAS which considers both the time-driven dynamics and the

event-driven dynamics.

7.3 Summary

In this chapter, we have given some examples of the stability and optimization analysis

using the methodology we have proposed. The stability of the homogeneous and the

heterogeneous MASs presented in the previous chapter is analyzed. In addition, we also

apply the direct identification algorithm we have proposed to optimize the performance of

the heterogeneous MAS. In the next chapter, we will conclude this research and give some

future research directions.



Chapter 8

Conclusions and Future Work

Multi-agent systems represent a group of agents operating cooperatively to solve common

tasks in dynamic environments. In this study, a generic framework is proposed for the

control of multi-agent systems.

8.1 Summary

Chapter 1 gives a brief introduction of this dissertation.

In Chapter 2, we have reviewed the background information about various areas related

to this research.

In Chapter 3, a framework is proposed for the distributed control and coordination of

multi-agent systems. In the proposed framework, the control of multi-agent systems focuses

on decentralized control and coordination of agents. Each agent is modeled as a CHA which

is composed of an intelligent coordination control layer and a hybrid control layer. The core

of the proposed framework is on developing coordinated agents for the control of hybrid

multi-agent systems. A robust and generic control architecture is developed to control

either a homogeneous multi-agent system or a heterogeneous multi-agent system. The

proposed framework is able to model the cooperation, coordination and communication

among the members of the multi-agent system. The control scheme is able to control a

multi-agent system where agents cooperate, coordinate and interact with each other.

In Chapter 4, we discuss the stability of MASs modeled using the CHA framework.

106
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We are interested in both the local stability and the global stability of MASs. The local

stability is used to describe each single agent’s ability to maintain the stability of one entity

in a MAS. The global stability of a MAS describes the ability of a group of agents’ ability

to achieve a desired goal. In order to achieve the global stability, the local stability of all

agents has to be guaranteed. For the local stability, we analyze the stability of a CHA

which is modeled as a hybrid system. In order to analyze the global stability of a MAS,

each CHA can be treated as a DES at the upper layer. The dynamics of the DES evolve

in time with the occurrence of events at possibly irregular time intervals.

In Chapter 5, the optimization of MASs modeled by the CHA framework is studied.

We consider both time-driven dynamics and event-driven dynamics for the optimization

of a CHA system. The optimization problem of the MASs is analyzed. An example is

also given to illustrate how to define the optimization problem for a CHA. The direct

identification algorithm is introduced for solving the optimal control problem of a CHA

MAS.

Chapter 6 gives some experimental and simulation results for systems modeled using

the proposed framework. The goal is to implement the tools we have introduced to develop

the control algorithm for multi-agent systems. The feasibility of the proposed framework is

illustrated through three different scenarios. It is demonstrated that the proposed frame-

work is generic and can be applied to the control of both homogeneous and heterogeneous

MASs.

Chapter 7 gives some stability and optimization analysis using the methodology we have

proposed in the previous chapters. In this chapter, the stability of the homogeneous and

the heterogeneous MASs is analyzed. In addition, we also apply the direct identification

algorithm we have proposed to optimize the performance of the heterogeneous MAS.

8.2 Conclusion

In the proposed framework, the control of multi-agent systems is regarded as achieving

decentralized control and coordination of agents. Each agent is modeled as a CHA which

is composed of an intelligent coordination layer and a hybrid control layer. The intelligent

coordination layer deals with the planning, coordination, decision-making and computa-
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tion of the agent. The hybrid control layer of the proposed framework takes the output

of the intelligent coordination layer and generates discrete and continuous control signals

to control the overall process. The proposed framework is able to model the coopera-

tion, coordination, and communication of MASs. In order to verify the feasibility of the

proposed framework, experiments for both heterogeneous and homogeneous MASs are im-

plemented. In addition, the stability of systems modeled using the proposed framework

is also analyzed. The conditions for asymptotic stability and exponential stability of a

CHA system are given. In order to optimize a MAS, a hybrid approach is proposed to

address the optimization problem for a MAS modeled using the CHA framework. Both

the event-driven dynamics and time-driven dynamics are included for the formulation of

the optimization problem. A direct identification algorithm is also proposed to solve the

optimization problem. As a conclusion, the proposed framework is able to model MASs.

We have also provided a methodology for the stability analysis of MASs modeled using the

proposed framework. Optimization analysis is also given for the proposed framework.

8.3 Future Work

Some areas of future research that have potential to extend the results of this research are

presented in this section.

8.3.1 Fault Tolerance and Reconfiguration

MASs take the advantage of distributed control to concurrently control multiple entities.

The agent-based control strategy provides more flexibility, potential for greater function-

ality, and unfortunately, more pieces to break. In order to solve problems when modules

of a MAS fail, strategies for reconfiguration of MASs are necessary to provide fault tol-

erance and flexibility to the system. Reconfiguration mechanisms lead to the design of

robust systems that have the capability to allow the service continuity, in the presence of

a failure, on the basis of a minimal degradation of performances. A successful reconfigu-

ration strategy can provide self-reconfigurable agents. A group of the modules can thus

generate various structures and actions. Although the module itself is a simple mechanism,

self-reconfiguration presents a challenging control problem due to the many combinatorial
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possibilities of modular configurations in an agent. The reconfiguration strategy can be

developed based on multi-module blocks to plan the overall clustering strategies and also

to provide cooperative module motions. The hardware feasibility of the reconfiguration

strategy should be verified through self-reconfigurable agents. Future research should be

done to include reconfiguration capabilities in an agent. New modules could be included

in the proposed framework to model reconfiguration of an agent or the MAS.

8.3.2 Learning of MASs

Reinforcement learning can be applied to multi-agent systems to take into account the

needs and behaviors of other agents, and to learn to perform effectively. Cooperation among

agents during learning is essential in improving global performance. We need to develop

coordination methods based on learning, which enables an agent to learn by observing

other agents and the effects on the workspace. Agents learn to coordinate their actions

by including information about other agents. An agent can receive rewards from its own

actions as well as receive some rewards from neighboring agents. In this way, each agent

acts in a social way and the groups of agents learn to behave cooperatively without any

conflicts.

8.3.3 Optimization of Abstract State Evolution

In Chapter 5, we consider both time-driven dynamics and event-driven dynamics for the

optimization of a CHA system. As further study, we should also present a method to

select the optimal actions. The irrelevant actions make the problem difficult. For various

problems, we need a methodology to optimize the actions that agents take. It is not clear

how to define a good heuristic function in order to select the optimal actions. It is obvious

that searching without an accurate heuristic is out of the question. We have shown that

the rule base we have proposed can limit the number of actions that an agent can take. An

intelligent planner can also be developed to automatically generate the action sequence.

However, we still need to construct more sophisticated heuristics that examine the available

actions as well as the structure of the global goal. Then, it becomes possible to find an

optimal sequence of actions for the agents.
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