10 research outputs found

    A novel on-board Unit to accelerate the penetration of ITS services

    Get PDF
    In-vehicle connectivity has experienced a big expansion in recent years. Car manufacturers have mainly proposed OBU-based solutions, but these solutions do not take full advantage of the opportunities of inter-vehicle peer-to-peer communications. In this paper we introduce GRCBox, a novel architecture that allows OEM user-devices to directly communicate when located in neighboring vehicles. In this paper we also describe EYES, an application we developed to illustrate the type of novel applications that can be implemented on top of the GRCBox. EYES is an ITS overtaking assistance system that provides the driver with real-time video fed from the vehicle located in front. Finally, we evaluated the GRCbox and the EYES application and showed that, for device-to-device communication, the performance of the GRCBox architecture is comparable to an infrastructure network, introducing a negligible impact

    Information dissemination in mobile networks

    Get PDF
    This thesis proposes some solutions to relieve, using Wi-Fi wireless networks, the data consumption of cellular networks using cooperation between nodes, studies how to make a good deployment of access points to optimize the dissemination of contents, analyzes some mechanisms to reduce the nodes' power consumption during data dissemination in opportunistic networks, as well as explores some of the risks that arise in these networks. Among the applications that are being discussed for data off-loading from cellular networks, we can find Information Dissemination in Mobile Networks. In particular, for this thesis, the Mobile Networks will consist of Vehicular Ad-hoc Networks and Pedestrian Ad-Hoc Networks. In both scenarios we will find applications with the purpose of vehicle-to-vehicle or pedestrian-to-pedestrian Information dissemination, as well as vehicle-to-infrastructure or pedestrian-to-infrastructure Information dissemination. We will see how both scenarios (vehicular and pedestrian) share many characteristics, while on the other hand some differences make them unique, and therefore requiring of specific solutions. For example, large car batteries relegate power saving techniques to a second place, while power-saving techniques and its effects to network performance is a really relevant issue in Pedestrian networks. While Cellular Networks offer geographically full-coverage, in opportunistic Wi-Fi wireless solutions the short-range non-fullcoverage paradigm as well as the high mobility of the nodes requires different network abstractions like opportunistic networking, Disruptive/Delay Tolerant Networks (DTN) and Network Coding to analyze them. And as a particular application of Dissemination in Mobile Networks, we will study the malware spread in Mobile Networks. Even though it relies on similar spreading mechanisms, we will see how it entails a different perspective on Dissemination

    Téléchargement de Contenus dans les réseaux véhiculaires

    Get PDF
    L’évolution des systèmes de communications sans fil a permis d’envisager de très nombreuses applications pour les systèmes de transport intelligents (ITS). Elles peuvent ou non utiliser une infrastructure et iront de la sécurité routière aux applications de confort du conducteur ou aux jeux en réseaux. La mise à jour de cartes constitue de notre point de vue une application représentative dans la mesure où ce n’est pas une application de sécurité en tant que telle, mais qu’en revanche elle peut contribuer à réduire les embouteillages en améliorant l’efficacité dans la prise de décisions des conducteurs. Elle possède des caractéristiques facilement identifiables : volume élevé de données, faible contrainte de délai, possibilité de mise en œuvre par des communications d’infrastructure à véhicule, entre véhicules, et hybrides. L’objectif est que les contenus soient téléchargés intégralement par tous les véhicules en un temps minimal, en utilisant le moins de ressources possible et au moindre coût. Les solutions qui sont apparues comme les plus adaptées ont concerné l’utilisation de solutions 802.11p avec ou sans infrastructure. Dans le cas de solutions avec infrastructure, un certain nombre de points d’accès diffuseront des informations avec des zones de couverture le plus souvent disjointes. Vu les tailles de zone retenues et/ou le débit consacré à ce type d’applications, le passage devant un seul point d’accès ne suffira pas à télécharger de telles cartes. Il s’agit alors de définir des stratégies de diffusion d’information. Une première étude a consisté à comparer une stratégie unicast à du broadcast/multicast. Cette dernière se révèle largement meilleure. Une combinaison de ces principes n’améliore pas les performances du système, car le débit consacré à la transmission unicast ne compense pas le débit non utilisé par le broadcast. Le problème provient des doublons reçus par les véhicules en passant auprès de plusieurs points d’accès consécutifs. Afin d’atténuer le phénomène des doublons, nous avons eu recours au Codage Réseau linéaire pseudo-aléatoire. L’idée est que le point d’accès diffuse des combinaisons linéaires de morceaux de fichiers. Le grand nombre de ces combinaisons linéaires réduit de façon significative ce phénomène. De façon complémentaire, nous avons étudié l’utilisation de communications ad-hoc pour combler les morceaux de fichier manquants, en particulier dans le cas d’absence d’infrastructure. Nous avons vérifié que l’on pouvait atteindre de bons résultats dans ce contexte en fonction de la diversité des morceaux de fichiers appartenant aux véhicules rencontrés. ABSTRACT : The evolution of wireless communications systems have enabled to consider many applications for Intelligent Transportation Systems (ITS). They may or may not use the infrastructure. They will consider from the traffic safety applications up to the driver’s comfort or network games. The map updates are, from our point of view, a representative application but in the other hand it can help to reduce congestion in improving efficiency in decision making. It has well-defined characteristics : high volume of data, low delay constraint, possibility of implementation of infrastructure-to-vehicle communications, between vehicles and hybrids. The objective is that the contents are fully downloaded by all vehicles in minimum time, using fewer resources and lower costs. The solutions that have emerged as the most suitable concerned the use of the technology 802.11p with or without infrastructure. In the case of solutions with infrastructure, a number of access points broadcast information with coverage areas most often disjointed. Given the size of area used and/or flow devoted to this type of applications, the transition to a single access point is not enough to download these maps. It is then to define strategies of information dissemination. A first study was to compare a unicast strategy face to broadcast/multicast strategy. The latter appears largely improved. A combination of these principles does not improve system performance, because the flow devoted to unicast transmission does not compensate for the flow not used by the broadcast. The problem is duplicate chunks received by vehicles passing from several consecutive access points. To mitigate the phenomenon of duplication, we used the linear network coding pseudorandom. The idea is that the access point broadcasts linear combinations of chunks of files. The large number of these linear combinations significantly reduces this phenomenon. In a complementary manner, we investigated the use of ad hoc communications to fill the missing chunks of file, particularly in the absence of infrastructure. We verified that we could achieve good results in this context based on the diversity of chunks of files which are owned by the encountered vehicles

    Opportunistic Spectrum Utilization for Vehicular Communication Networks

    Get PDF
    Recently, vehicular networks (VANETs), has become the key technology of the next-generation intelligent transportation systems (ITS). By incorporating wireless communication and networking capabilities into automobiles, information can be efficiently and reliably disseminated among vehicles, road side units, and infrastructure, which enables a number of novel applications enhancing the road safety and providing the drivers/passengers with an information-rich environment. With the development of mobile Internet, people want to enjoy the Internet access in vehicles just as anywhere else. This fact, along with the soaring number of connected vehicles and the emerging data-craving applications and services, has led to a problem of spectrum scarcity, as the current spectrum bands for VANETs are difficult to accommodate the increasing mobile data demands. In this thesis, we aim to solve this problem by utilizing extra spectrum bands, which are not originally allocated for vehicular communications. In this case, the spectrum usage is based on an opportunistic manner, where the spectrum is not available if the primary system is active, or the vehicle is outside the service coverage due to the high mobility. We will analyze the features of such opportunistic spectrum, and design efficient protocols to utilize the spectrum for VANETs. Firstly, the application of cognitive radio technologies in VANETs, termed CR-VANETs, is proposed and analyzed. In CR-VANETs, the channel availability is severely affected by the street patterns and the mobility features of vehicles. Therefore, we theoretically analyze the channel availability in urban scenario, and obtain its statistics. Based on the knowledge of channel availability, an efficient channel access scheme for CR-VANETs is then designed and evaluated. Secondly, using WiFi to deliver mobile data, named WiFi offloading, is employed to deliver the mobile data on the road, in order to relieve the burden of the cellular networks, and provide vehicular users with a cost-effective data pipe. Using queueing theory, we analyze the offloading performance with respect to the vehicle mobility model and the users' QoS preferences. Thirdly, we employ device-to-device (D2D) communications in VANETs to further improve the spectrum efficiency. In a vehicular D2D (V-D2D) underlaying cellular network, proximate vehicles can directly communicate with each other with a relatively small transmit power, rather than traversing the base station. Therefore, many current transmissions can co-exist on one spectrum resource block. By utilizing the spatial diversity, the spectrum utilization is greatly enhanced. We study the performance of the V-D2D underlaying cellular network, considering the vehicle mobility and the street pattern. We also investigate the impact of the preference of D2D/cellular mode on the interference and network throughput, and obtain the theoretical results. In summary, the analysis and schemes developed in this thesis are useful to understand the future VANETs with heterogeneous access technologies, and provide important guidelines for designing and deploying such networks

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks

    Scaling Laws for Vehicular Networks

    Get PDF
    Equipping automobiles with wireless communications and networking capabilities is becoming the frontier in the evolution to the next generation intelligent transportation systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, information generated by the vehicle-borne computer, vehicle control system, on-board sensors, or roadside infrastructure, can be effectively disseminated among vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away, known as vehicular networks (VANETs), to enhance the situational awareness of vehicles and provide motorist/passengers with an information-rich travel environment. Scaling law for throughput capacity and delay in wireless networks has been considered as one of the most fundamental issues, which characterizes the trend of throughput/delay behavior when the network size increases. The study of scaling laws can lead to a better understanding of intrinsic properties of wireless networks and theoretical guidance on network design and deployment. Moreover, the results could also be applied to predict network performance, especially for the large-scale vehicular networks. However, map-restricted mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling laws studies for VANETs. As an effort to lay a scientific foundation of vehicular networking, my thesis investigates capacity scaling laws for vehicular networks with and without infrastructure, respectively. Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay for a social-proximity vehicular network, where each vehicle has a restricted mobility region around a specific social spot and services are delivered in a store-carry-and-forward paradigm. It has been shown that although the throughput and delay may degrade in a high vehicle density area, it is still possible to achieve almost constant scaling for per vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular networks, the thesis derives the capacity scaling laws for networks with wireless infrastructure, where services are delivered uniformly from infrastructure to all vehicles in the network. The V2V communication is also required to relay the downlink traffic to the vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes, including one mesh gateway), and roadside access points. The downlink capacity scaling is derived for each kind of infrastructure. Considering that the deployment/operation costs of different infrastructure are highly variable, the capacity-cost tradeoffs of different deployments are examined. The results from the thesis demonstrate the feasibility of deploying non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly, the fundamental impact of traffic signals at road intersection on drive-thru Internet access is particularly studied. The thesis analyzes the time-average throughput capacity of a typical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we show a significant throughput gain for vehicles stopping at intersections due to red signals. The results provide a quick and efficient way of determining the Wi-Fi deployment scale according to required quality of services. In summary, the analysis developed and the scaling laws derived in the thesis provide should be very useful for understanding the fundamental performance of vehicular networks

    Cooperative download in vehicular environments

    No full text
    International audienceWe consider a complex (i.e., non-linear) road scenario where users aboard vehicles equipped with communication interfaces are interested in downloading large files from road-side Access Points (APs). We investigate the possibility of exploiting opportunistic encounters among mobile nodes so to augment the transfer rate experienced by vehicular downloaders. To that end, we devise solutions for the selection of carriers and data chunks at the APs, and evaluate them in real-world road topologies, under different AP deployment strategies. Through extensive simulations, we show that carry&forward transfers can significantly increase the download rate of vehicular users in urban/suburban environments, and that such a result holds throughout diverse mobility scenarios, AP placements and network loads

    Cooperative Download in Vehicular Environments

    No full text

    Cooperative download in vehicular environments

    No full text
    We consider a complex (i.e., nonlinear) road scenario where users aboard vehicles equipped with communication interfaces are interested in downloading large files from road-side Access Points (APs). We investigate the possibility of exploiting opportunistic encounters among mobile nodes so to augment the transfer rate experienced by vehicular downloaders. To that end, we devise solutions for the selection of carriers and data chunks at the APs, and evaluate them in real-world road topologies, under different AP deployment strategies. Through extensive simulations, we show that carry&forward transfers can significantly increase the download rate of vehicular users in urban/suburban environments, and that such a result holds throughout diverse mobility scenarios, AP placements and network loads.Peer Reviewe
    corecore