2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

A novel On-Board Unit to Accelerate the
Penetration of ITS Services

Sergio M. Tornell, Subhadeep Patra, Carlos T. Calafate, Juan-Carlos Cano and Pietro Manzoni
Universitat Politecnica de Valéncia
Camino de Vera, s/n, 46022 Valencia, Spain
sermarto @upv.es,subpat@doctor.upv.es, {calafate, jucano, pmanzoni } @disca.upv.es

Abstract—In-vehicle connectivity has experienced a big ex-
pansion in recent years. Car manufacturers have mainly pro-
posed OBU-based solutions, but these solutions do not take
full advantage of the opportunities of inter-vehicle peer-to-
peer communications. In this paper we introduce GRCBox,
a novel architecture that allows OEM user-devices to directly
communicate when located in neighboring vehicles. In this paper
we also describe EYES, an application we developed to illustrate
the type of novel applications that can be implemented on top
of the GRCBox. EYES is an ITS overtaking-assistance system
that provides the driver with real-time video fed from the vehicle
located in front. Finally, we evaluated the GRCbox and the EYES
application and showed that, for device-to-device communication,
the performance of the GRCBox architecture is comparable to
an infrastructure network, introducing a negligible impact.

Index Terms—Vehicular Networks, V2V, Smartphone, GR-
CBox, VANET, ITS, Implementation, Video

I. INTRODUCTION

When applying Intelligent Transportation Systems (ITS) to
roads, several technologies are combined to provide Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nications [1]. Opportunistic V2V networks [2] allow imple-
menting applications such as road-status notifications [3], vehi-
cle platoon coordination, or collaborative content downloading
[4]. Although the technology is ready for deployment, it is
expected that car manufacturers will introduce it gradually,
starting with high-cost models, which, coupled with the low
renewal rate of the vehicle fleet, will slow down the pene-
tration of Vehicular Networks (VNSs). In addition, dashboard-
integrated On Board Units (OBUs) typically become techno-
logically obsolete after a few years, and they are usually not
designed to be updated or replaced during the whole vehicle
lifetime, which leads to unsatisfied users.

Meanwhile, the popularisation of portable devices, such as
smartphones and tablets, has brought devices with multiple
network interfaces to almost everyone’s pocket. Smartphones
are continuously carried by users and have multiple net-
work interfaces, which makes them a suitable platform for
implementing applications based on opportunistic contacts.
However, not only is the smartphone’s connectivity restricted
to infrastructure-based networks, such as WiFi or 3G/4G
networks, but also the number of simultaneous active net-
work interfaces is limited to one. These restrictions limit the
adoption of smartphones for applications based on peer-to-peer
communications in vehicular scenarios.

To connect portable devices to external networks such as
Vehicular Ad-Hoc Networks (VANETS), we have designed the

978-1-4673-9292-1/16/$31.00 ©2016 |IEEE

Fig. 1: A GRCBox Connectivity Manager (GCM) connected
to several networks.

GRCBox Architecture. The GRCBox Architecture is based on
the GRCBox Connectivity Manager (GCM), which is respon-
sible for creating an intra-vehicle WiFi network. User devices
inside the vehicle can connect to this network to share contents
and to reach any of the external networks, as depicted in Figure
1. GRCBox allows implementing Internet-independent solu-
tions that focus on applications that exploit local connectivity
to provide new services, such as platoon-oriented applications
where friends or workers share information while travelling
together in different vehicles. The GRCBox Architecture pro-
vides a Representational State Transfer (REST) interface [5]
and it is based on basic IP networking, thereby minimising the
modifications required to create GRCBox-aware applications.
GRCBox also eliminates the dependency on car manufacturers
when implementing V2V communications; by using GRCBox,
users can now implement their own small-scale VANETS.

To illustrate the use and flexibility of the GRCBox archi-
tecture we have developed EYES. EYES is an application
that streams a video captured from the windshield of the
vehicle ahead to the overtaking vehicle before the overtake
actually starts. This video aids the driver while starting the
manoeuvre, thus he or she can abort it if it can not be
performed safely. EYES is based on the GPS location of cars
involved in the overtaking manoeuvre and uses the rear camera
of a windshield-attached smartphone to capture the video. Its

474



2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

integration with GRCBox allows EYES to establish a direct
ad-hoc link between user devices, reducing the delay and the
cost of the communication.

The rest of this paper is organised as follows: in section
I, we survey previous proposals in the fields of VANET
communication devices and driver assistance mobile applica-
tions. Next, section III presents the GRCBox architecture. In
section IV, the EYES application and its interaction with the
GRCBox are presented. Performance tests for the GRCBox
and EYES are presented in sections V and VI. Finally, section
VII concludes the paper and presents some future work.

II. STATE OF THE ART

Previously, vendor-specific alternatives that integrate smart-
phones in VNs has been proposed. The Car Connectivity
Consortium (CCC), which integrates companies from the
automotive and the telecommunications sector, released Mir-
rorlink [6], a standard technology that moves the computing
tasks from the OBU to the smartphone, and presents the
information on the OBU’s display. Users can also interact with
the smartphone through the dashboard elements.

Google and Apple, two of the biggest technology compa-
nies, have also proposed their own solutions, Android Auto
[7], and CarPlay [8], respectively. However, all these proposals
rely on the Internet infrastructure to provide inter-vehicle
connectivity, ignoring the advantages of V2V communication
and opportunistic contacts. Moreover, these proposals are
heavily dependent on content providers like Google or Apple,
and on telecommunication operators.

To the best of our knowledge, GRCBox is the first effort to
provide an interface that integrate off-the-shell smartphones
into VANETs in order to allow users to create their own
autonomous VN and to provide innovative peer-to-peer ap-
plications.

Concerning mobile applications for ITS, both academia and
industry have shown a strong interest in the field. As a con-
sequence many innovative applications have been developed.
Focused on warning dissemination, the works [9, 10, 11,
12] aid drivers in different situations such as driving at high
speed near schools, finding out the probability of accidents
based on the location information, traffic incidents, or when
an emergency vehicle is getting closer to the vehicle. In [13]
and [14] the authors use the On Board Diagnostic 2 (OBD-II)
[15] interface to detect incidents and inform other drivers.

SignalGuru [16] is another application which leverages col-
laborative sensing on windshield-mount smartphones, in order
to predict the schedule of traffic signals. Another interesting
approach is the CarSafe App [17], which analyses images from
front and rear smartphones’ cameras to monitor the status of
the driver as well as the road.

In [18], its authors proposed and tested a system based on
Dedicated short-range communications (DSRC) that, similarly
to EYES, streams video during an overtaking manoeuvre from
the vehicle ahead to the overtaking vehicle. They performed
driving simulation tests that demonstrated the usability of such
a system. Their proposal required the installation of expensive
OBUs in the vehicles. On the contrary, the EYES-GRCBox

Application
| RESTIet Client API |

Control

= 1
[RESTlet Server API||[eaene™|
1

Core Module

Multicast
Proxy
Iface
Monitoring
DBUS

Network
Manager
Daemon

Data Flow

Iptables.
Routing :

I"I"I’"
T

Rules
Database

GCM

Fig. 2: GRCBox Architecture with GCM modules in detail.

combination is based on off-the-shell user devices such as
smartphones and tablets.

III. THE GRCBOX ARCHITECTURE

The GRCBox Architecture defines both the GRCBox Con-
nectivity Manager (GCM), placed in the vehicle, and, the
client-server REST API, that allows applications to interact
with the GCM to reach external networks. To implement the
REST API we used the RESTlet framework [19], which sim-
plifies the implementation. Figure 2 represents the architecture
including both parts the GCM and the client API. An example
of a GCM placed in a vehicle and connected to three different
external networks is shown in Figure 1. In this example an
application running in the user device may choose to connect
to the VANET for local communication, or connect to either
the cellular network or the WiFi network to reach the Internet.
In this section, we first detail the different software modules
running in the GCM. Then, we offer a general overview of
the interaction between the GCM and the User Application.

A. The GCM

The GRCBox Connectivity Manager (GCM), which is
placed inside vehicles, must have at least one WiFi interface
to which user devices are connected to (called inner inter-
face), and one or more external interfaces used to provide
connectivity to external networks. The GCM is composed of
several modules that work together. A scheme of the different
components, their connections, and the paths traversed by data
flows is presented in Figure 2. The GCM software is based on a
Linux operating system, and it takes advantage of several well-
known Linux services to provide the desired functionality. The
different components running in the GCM are the following:

« Discovery Service: The Linux daemon dnsmasq is used
to answer DHCP and DNS requests. It is configured to
resolve the “grcbox” domain name to the GCM inner
interface. This way clients on the inner network can
connect to the GCM without information about its IP
address by attempting a connection to “http://grcbox/”.

o Packet Forwarding: To define fine grained, per connec-
tion routing, GCM uses Iptables for connection filtering

475



2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Inner interface

Ad-Hoc Interface
USB Hub

Raspberry Pi——
Battery

- S
8

(a) The GRCBox connected to a battery and an ad-hoc
interface.

USB Hub

Inner Interface =

A\

Raspberry Pv;[‘
Battery-E

(b) Schematic view of GRCBox.

Fig. 3: Minimum GRCBox setup used for testing.

and labelling, and the Linux kernel support for “Policy
Routing”.

o Ifaces Monitoring: To monitor the status of the net-
work interfaces, GCM connects to the NetworkManager
daemon using the DBUS interface to perform event-
subscribing tasks.

o Core Module: The most important part of the GCM is its
core module. The core module performs several activities:
it mainly listens to clients’ requests through the REST
API, maintains a database of all registered rules, starts
and stops multicast proxies when needed, and performs
actions when events on the interfaces are notified.

To implement the first version of GCM we chose a Rasp-
berry Pi 2 Model B! single board computer. The RaspberryPi
is a credit-card sized computer whose cost is only 35$, but that
has enough CPU power to perform low-scale network routing.
In this computer we installed a Raspbian [20] distribution,
which is a general-purpose Linux distribution based on Debian
and optimised for the RaspberryPi. Raspbian supports most
current networking hardware, avoiding common problems of
other embedded operating systems. Figure 3 shows a picture of
the GCM with an external ad-hoc network interface attached
to a battery.

B. User Device-GCM Interaction

The GCM creates a WiFi access point to which smart-
phones, tablets, and other user devices in the vehicle will
associate. Once the user devices connect to the GRCBox’s
wireless network, all of them are part of the same local
network and, at the same time, can access to services running
on the external networks. By default, every new connection is
forwarded at the GCM through the default Internet connected
interface. When an application requires the use of any other
available interface, it must notify it to the GCM. The steps
an application must perform in this case, are enumerated in
this section. First of all, we need to introduce the concept of
“rules”: A rule enables applications to choose the outgoing
interface for a certain connection, or to register listeners for
a defined incoming connection. A rule is defined by the
following elements:

"More info at:https://www.raspberrypi.org/

e Rule Type: The GRCBox Architecture defines three
different kind of rules, Incoming, Outgoing and Multi-
cast. Multicast rules define bi-directional multicast packet
flows between the internal interface and one of the
external interfaces.

« Interface Name: The name of the outer interface to which
the rule applies.

o Protocol: The protocol of the connection. Currently, GR-
CBox supports UDP and TCP.

o Source Port: The source port of the connection.

o Source Address: The source IP address of the connection.

o Destination Port: The destination port of the connection.

o Destination Address: The destination IP address of the
connection.

The steps that a GRCBox application must perform are the
following:

1) Check GRCBox availability: Once the device is asso-
ciated to the GRCBox wireless network, the application
must check if a GCM is available. To do so, the
application will try to connect to the “http://grcbox/”
url to check the status of the GCM.

2) Application Registration: After checking the availabil-
ity of the GCM, an application must register itself to get
a key. This key will be used for later application-server
interactions to ensure no other application but the owner
of a rule can renew, remove, or modify it.

3) Check the Status of the Interfaces: The next step is
to check the status of the different network interfaces
to identify if the desired interface is available. At this
point the application can also check other previously
registered rules to avoid conflicts.

4) Register the desired rule: Now the application can
register as many rules as required to configure the GCM
to forward specific incoming and outgoing connections,
or to forward multicast packets to external interfaces.

5) Transmit Data: At this point the application can ef-
fectively use the registered connections which will be
forwarded according to the defined rules.

6) Close the Connection: When a rule is no longer
required, it must be removed from the GCM. This step is
optional since rules are always removed from the GCM

476



2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

Advertisements.

VZ

CAR-D
Advertisements

- —(\‘;\:_:\ —————————————————————————
) - .

E ) Request Video —
CAR- A CAR-B

(b) The client requests video from the server.

)3 «

CAR-A

Video Sending and Playback

CAR-C-

CAR-B s
CAR A

(c) The server streams the video to the client.

(d) After overtaking, CAR-A stops playing the video and
may stream video to CAR-B.

Fig. 4: Functional overview of EYES application.

database if the application is disconnected.

7) Application Disconnection: Once the application ends
its interaction with the GCM, it should notify it to allow
removing its registered rules.

The interactions between GRCBox applications and the
GCM rely on the RESTlet API exposed by the GCM. The
details of this API are described in [21].

GRCBox also supports the integration of third party appli-
cations by providing a management application that enables
the interactive definition of new rules for non-GRCBox ap-
plications. Thereby, the user can define rules for well-known
application protocols such as HTTP, POP3, etc. To illustrate
the new applications that can be implemented based on the
GRCBox, we present the EYES application in the next section.

IV. USING THE GRCBoOX: THE EYES APPLICATION

The goal of the EYES application is providing assistance
during overtaking by streaming real-time video from the
leading vehicle to the one trying to overtake. From the user
point of view, EYES operation is represented in Figure 4 and
is described as follows:

1) EYES announces the presence of a ready-to-broadcast
smartphone (ideally attached to the dashboard of a
vehicle) by sending multicast advertisements. Those
advertisements include information such as the GPS
location of the vehicle, its speed and its direction.

2) After receiving a multicast advertisement, the EYES
application running in the smartphone placed in the
car whose driver is trying to overtake requests a video
stream from the origin of the advertisement. From now
on, we will refer to these nodes as client, for the one try-
ing to overtake, and server, for the one leading. Before
sending the request, the client discriminates between
different available streams based on the GPS location
and other info included in the advertisements.

3) Once the server receives the request, it sends some
control information over the UDP control connection to
the client and listens for incoming TCP connections at a
certain port. Then, the client establishes the TCP connec-
tion for video streaming. The UDP control connection is
used during the communication to monitor the relative
locations of both server and client, and to stop the video
streaming when the overtaking manoeuvre completes.

To adapt EYES to the GRCBox network environment, only
four rules are required. The first rule is registered when the ap-
plication starts. It defines multicast forwarding from the inner
interface to the external ad-hoc interface. At step 2, the request
triggers the registration of three more GRCBox incoming rules
at the client’s GCM: a TCP rule for video streaming, and two
UDP rules for the control channel established between server
and client.

V. TESTING THE GRCBOX

We have run experiments to evaluate the performance of
the GRCBox Architecture in 2 different scenarios: the first
experiment is an analysis of the maximum throughput, and
the second one analyses the UDP Round Trip Time (RTT)
between client and server. In the first scenario, we used an
Android Nexus 7 tablet and a BQ4.5E smartphone connected
to the same GCM, which acted as a standard WiFi Access
Point, since connections can be established without interaction
with the GCM; this is the baseline scenario. In the second
scenario we connected each device to different GCMs, which
were then connected to the same ad-hoc network. In this case
the connection must be established through the GCMs. Table
I and Figure 5 summarize the configuration of both scenarios.

The GRCBox management application was used to config-
ure the required rules on the GCMs.

a) Maximum Throughput: To evaluate the impact of the
GRCBox Architecture on the maximum throughput experi-
enced by a client-server connection when using the GRCBox,
we tested the network performance using the iperf [22]
tool. We have collected measurements for both UDP and
TCP protocols. Each experiment was repeated 60 times to
discard random effects, and the role of the user devices was
interchanged after half of the experiments to discard the effects
associated to the device’s performance. Results are shown in
Figure 6a in a boxplot chart.

Notice that, no matter whether TCP or UDP is used, the
maximum throughput achieved when using the GRCBox Ar-
chitecture (Scenario 2) is slightly better than the one achieved
when both devices are connected to the same WiFi Network
(Scenario 1). The main cause behind this difference is the use
of a different channel for each wireless network when using
the GRCBox. This setup avoids collisions between nodes,
when transmitting requests and responses. The high variability

477



2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

= Smartphone
Tablet

(a) Scenario 1

W Data Flow

802.11g Chl

802.11g Ch1l

Smartphone

(b) Scenario 2

Fig. 5: Scenarios used in our experiments.

TCP UDP
25 -
23 -
21 -
219 -
Qo
=17 -
315-
=)
313 -
<
11
o E====
7 - .
5] ]

T T T T
Scenario 1 Scenario 2 Scenario 1 Scenario 2

(a) Throughput obtained for UDP and TCP tests.

RTT(ms)

T T
Scenario 1 Scenario 2

(b) UDP RTT results.
Fig. 6: Direct VANET communication results.

TABLE I: Devices Configuration

Element Characteristics

Tablet Google Nexus 7 (2012)
Smartphone BQ Aquaris 4.5E

GCMs RaspberryPi 2 Model B
Ad-Hoc Network || 802.11a, Frequency:5.18 GHz
WiFi 1 802.11g, Frequency:2.462 GHz
WiFi 2 802.11g, Frequency:2.412 GHz

experienced in all the experiments is due to the presence
of interference, which heavily affects throughput in wireless
networks.

b) UDP Round Trip Time (RTT): To test the delay
introduced by the GRCBox Architecture when comparing
against an infrastructure network we have developed a small

Fig. 7: Testing EYES in a real scenario.

application that sends an UDP messages to a server running on
another device. The server will then send a new UDP message
as a response, so the RTT can be measured at the first sender.
We performed the test on both scenarios presented before,
collecting more than 500 measurements per scenario. Figure
6b shows a boxplot that summarises the results we obtained.
We have used a logarithmic scale to be able to clearly represent
infrequent values in both the low and high ranges. It can be
observed that, on average, the RTT is about 2 ms higher when
using GRCBox. This effect is due to the multi-hop nature
of the communication: adding an extra hop between sender
and receiver increases the RTT. During this experiment we
discovered that the main source of delay in Android devices
is the WiFi interface power management performed by the
Android operating system, which in some cases increased the
RTT by up to 508 ms. If we compare the delay introduced by
the GRCBox against the delay introduce by the OS, we can
conclude that the GRCBox impact on the RTT is negligible.

VI. TESTING EYES

To test EYES we have run on-road tests with real hardware.
Those test allowed us to evaluate the user experience®. Figure
7 shows a picture from one of our outside test with a GRCBox
and a tablet running EYES attached to the windshield. After
interviewing the drivers, we noticed several problems: the
users pointed out that the video sometimes froze and that, on
the video, it was hard to identify the cars coming in counter
direction. Moreover, we also noticed that the sight of the
driver was pointing at the screen of the tablet for long periods,
distracting them from the road, which increases the risk of an
accident.

2Video available on youtube(Sp):https://youtu.be/eUQfalxPK0o

478



2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)

We are working on solving the problems described previ-
ously. To solve the problems related to video quality we are
exploring different video codec-framerate-resolution combina-
tions. Concerning the potential risk of driver distraction, we are
establishing contacts with in-car-user-interface specialists. We
envision different ways to warn the driver, like audio signals or
image recognition to highlight the presence of vehicles coming
in counter direction.

VII. CONCLUSIONS

In this paper we presented the GRCBox architecture and
EYES. The GRCBox is an architecture that allows smartphone
application developers to implement applications that exploit
inter-vehicle device-to-device communications. The GRCBox
is based on a cheap and low power computer including basic
Linux networking. EYES is an application that runs on the top
of the GRCBox architecture to stream video from a vehicle to
another overtaking vehicle. Our results in section V showed
that, for device-to-device communication, the performance of
the GRCBox architecture is comparable to an infrastructure
network, and that it has a negligible impact. The results in
section VI showed the viability of EYES and also pointed out
problems related to in-car user interfaces and security.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission under Svagata.eu, the Erasmus Mundus Programme,
Action 2 (EMA?2), the Ministerio de Economia y Compet-
itividad, Programa Estatal de Investigacion, Desarrollo e
Innovacion Orientada a los Retos de la Sociedad, Proyectos
I+D+1 2014, Spain, under Grants TEC2014-52690-R and
BES-2012-052673.

REFERENCES

[1] M. Gerla and L. Kleinrock. “Vehicular networks and the
future of the mobile internet”. In: Computer Networks
55.2 (Feb. 2011), pp. 457-469. 1SSN: 13891286. DOLI:
10.1016/j.comnet.2010.10.015.

[2] K. C. Lee and M. Gerla. “Opportunistic vehicular
routing”. In: Wireless Conference (EW), 2010 European.
IEEE, Apr. 2010, pp. 873-880. ISBN: 978-1-4244-5999-
5. por: 10.1109/EW.2010.5483530.

[3] J. Santa and A. Gomez-Skarmeta. “Sharing context-
aware road and safety information”. In: Pervasive Com-
puting, IEEE (2009), pp. 58-65.

[4] O. Trullols-Cruces et al. “Cooperative Download in
Vehicular Environments”. In: IEEE Transactions on
Mobile Computing 11.4 (Apr. 2012), pp. 663—-678. ISSN:
1536-1233. por: 10.1109/TMC.2011.100.

[5] R. T. Fielding. “Architectural styles and the design
of network-based software architectures”. PhD thesis.
University of California, 2000.

[6] Car Connectivity Consortium (CCC).
http://www.mirrorlink.com/. Feb. 2015.

[7] Google Inc. Android Auto.
http://www.android.com/auto/. Feb. 2015.

MirrorLink.

(8]
(9]

[13]

[14]

[22]

479

Apple Inc. CarPlay.
https://www.apple.com/ios/carplay/. June 2014.

J. Whipple, W. Arensman, and M. S. Boler. “A public
safety application of GPS-enabled smartphones and the
android operating system”. In: Systems, Man and Cyber-
netics, 2009. SMC 2009. IEEE International Conference
on. IEEE. 2009, pp. 2059-2061.

J. Yang, J. Wang, and B. Liu. “An intersection collision
warning system using Wi-Fi smartphones in VANET”.
In: Global Telecommunications Conference (GLOBE-
COM 2011), 2011 IEEE. IEEE. 2011, pp. 1-5.

S. Diewald et al. “DriveAssist-A V2X-Based Driver As-
sistance System for Android.” In: Mensch & Computer
Workshopband. 2012, pp. 373-380.

S. M. Tornell et al. “Implementing and testing a driving
safety application for smartphones based on the eMDR
protocol”. In: Wireless Days (WD), 2012 IFIP. 1EEE.
2012, pp. 1-3.

J. Zaldivar et al. “Providing accident detection in ve-
hicular networks through OBD-II devices and Android-
based smartphones”. In: Local Computer Networks
(LCN), 2011 IEEE 36th Conference on. IEEE. 2011,
pp- 813-819.

J. Wideberg, P. Luque, and D. Mantaras. “A smartphone
application to extract safety and environmental related
information from the OBD-II interface of a car”. In:
International Journal of Vehicle Systems Modelling and
Testing 7.1 (2012), pp. 1-11.

I. O. for Standardization. “ISO 14230-1:1999: Road
vehicles, Diagnostic systems, Keyword Protocol 2000”.
In: 1999.

E. Koukoumidis, M. Martonosi, and L.-S. Peh. “Lever-
aging smartphone cameras for collaborative road advi-
sories”. In: Mobile Computing, IEEE Transactions on
11.5 (2012), pp. 707-723.

C.-W. You et al. “Carsafe app: Alerting drowsy and dis-
tracted drivers using dual cameras on smartphones”. In:
Proceeding of the 11th annual international conference
on Mobile systems, applications, and services. ACM.
2013, pp. 13-26.

C. Olaverri-Monreal et al. “The See-Through System:
A VANET-enabled assistant for overtaking maneuvers”.
In: Intelligent Vehicles Symposium (1V), 2010 IEEE.
June 2010, pp. 123-128. por: 10.1109/1IVS.2010.
5548020.

J. Louvel, T. Templier, and T. Boileau. Restlet in Action:
Developing RESTful Web APIs in Java. Greenwich,
CT, USA: Manning Publications Co., 2012. ISBN:
193518234X, 9781935182344.

M. Thompson and P. Green. Raspbian Home Page.
http://http://www.raspbian.org/. June 2014.

S. M. Tornell et al. “GRCBox : Extending Smartphone
Connectivity in Vehicular Networks”. In: International
Journal of Distributed Sensor Networks (2014), Article
ID 478064.

Iperf homepage. https:/fiperf.fr/. Feb. 2015.



