17,619 research outputs found

    Smart Sensing and Performance Analysis for Cognitive Radio Networks

    Get PDF
    Static spectrum access policy has resulted in spectrum scarcity as well as low spectrum utility in today\u27s wireless communications. To utilize the limited spectrum more efficiently, cognitive radio networks have been considered a promising paradigm for future network. Due to the unique features of cognitive radio technology, cognitive radio networks not only raise new challenges, but also bring several fundamental problems back to the focus of researchers. So far, a number of problems in cognitive radio networks have remained unsolved over the past decade. The work presented in this dissertation attempts to fill some of the gaps in the research area of cognitive radio networks. It focuses primarily on spectrum sensing and performance analysis in two architectures: a single cognitive radio network and multiple co-existing cognitive radio networks. Firstly, a single cognitive radio network with one primary user is considered. A weighted cooperative spectrum sensing framework is designed, to increase the spectrum sensing accuracy. After studying the architecture of a single cognitive radio network, attention is shifted to co-existing multiple cognitive radio networks. The weakness of the conventional two-state sensing model is pointed out in this architecture. To solve the problem, a smart sensing model which consists of three states is designed. Accordingly, a method for a two-stage detection procedure is developed to accurately detect each state of the three. In the first stage, energy detection is employed to identify whether a channel is idle or occupied. If the channel is occupied, received signal is further analyzed at the second stage to determine whether the signal originates from a primary user or an secondary user. For the second stage, a statistical model is developed, which is used for distance estimation. The false alarm and miss detection probabilities for the spectrum sensing technology are theoretically analyzed. Then, how to use smart sensing, coupled with a designed media access control protocol, to achieve fairness among multiple CRNs is thoroughly investigated. The media access control protocol fully takes the PU activity into account. Afterwards, the significant performance metrics including throughput and fairness are carefully studied. In terms of fairness, the fairness dynamics from a micro-level to macro-level is evaluated among secondary users from multiple cognitive radio networks. The fundamental distinctions between the two-state model and the three-state sensing model are also addressed. Lastly, the delay performance of a cognitive radio network supporting heterogeneous traffic is examined. Various delay requirements over the packets from secondary users are fully considered. Specifically, the packets from secondary users are classified into either delay-sensitive packets or delay-insensitive packets. Moreover, a novel relative priority strategy is designed between these two types of traffic by proposing a transmission window strategy. The delay performance of both a single-primary user scenario and a multiple-primary user scenario is thoroughly investigated by employing queueing theory

    Primary user emulation attack mitigation in cognitive radio networks.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal, Durban 2014.The rapid progress in the number of users and applications in wireless communication have led to the problem of growing spectrum scarcity in recent years. This imminent spectrum scarcity problem is in part due to a rapidly increasing demand for wireless services and in part due to the inefficient usage of currently licensed spectrum bands. Cognitive radio (CR) is a new technology that is proposed to improve spectrum efficiency by allowing unlicensed secondary users to access the licensed frequency bands without interfering with the licensed primary users. A malicious secondary user can decide to exploit this spectrum access etiquette by mimicking the spectral characteristics of a primary user, and gain priority access to a wireless channel over other secondary users. This scenario is referred to in literature as Primary User Emulation Attack (PUEA). Though quite a lot of research efforts have been focused on the detection and defense strategy of PUEA in cognitive radio networks, less attention have been given to combating and mitigating PUEA in a cooperative spectrum sensing environment. This dissertation seeks to contribute to research in the field of cognitive radio networks through an investigation into the impacts of Primary User Emulation Attacks (PUEA) on cognitive radio networks, the problem of trust amongst users in the networks and also mitigating the activities of PUEA in the network. An analytical and system model for PUEA in cognitive radio networks is presented and its impacts are also studied using Neyman-Pearson Composite Hypothesis Test. The intention is to evict malicious users from the network and maximize spectrum utilization efficiency. To achieve this, techniques to verify that the source of spectrum occupancy information is from a genuine user are proposed. In a primary user emulation attack, malicious users tend to destruct the spectrum sensing process of a cognitive radio network by imitating the primary signal and deceive other secondary users from accessing vacant frequency bands. An energy detection cooperative spectrum sensing technique is proposed to mitigate this attack. This technique assists in the reduction of errors made by secondary users in detecting primary user signals in frequency bands considering the existence of PUEA in the network. The performance of our proposed method is compared to an existing energy detection spectrum sensing method that does not consider the existence of PUEA in the network. Simulated results show that the proposed method can effectively mitigate PUEA in a cognitive radio network

    Non-convex distributed power allocation games in cognitive radio networks

    Get PDF
    In this thesis, we explore interweave communication systems in cognitive radio networks where the overall objective is to maximize the sum-rate of each cognitive radio user by optimizing jointly both the detection operation based on sensing and the power allocation across channels, taking into account the influence of the sensing accuracy and the interference limitation to the primary users. The optimization problem is addressed in single and multiuser cognitive radio networks for both single-input single-output and multi-input multi-output channels. Firstly, we study the resource allocation optimization problem for single-input single-output single user cognitive radio networks, wherein the cognitive radio aims at maximizing its own sum-rate by jointly optimizing the sensing information and power allocation over all the channels. In this framework, we consider an opportunistic spectrum access model under interweave systems, where a cognitive radio user detects active primary user transmissions over all the channels, and decides to transmit if the sensing results indicate that the primary user is inactive at this channel. However, due to the sensing errors, the cognitive users might access the channel when it is still occupied by active primary users, which causes harmful interference to both cognitive radio users and primary users. This motivates the introduction of a novel interference constraint, denoted as rate-loss gap constraint, which is proposed to design the power allocation, ensuring that the performance degradation of the primary user is bounded. The resulting problem is non-convex, thus, an exhaustive optimization algorithm and an alternating direction optimization algorithm are proposed to solve the problem efficiently. Secondly, the resource allocation problem for a single-input single-output multiuser cognitive radio network under a sensing-based spectrum sharing scheme is analyzed as a strategic non-cooperative game, where each cognitive radio user is selfish and strives to use the available spectrum in order to maximize its own sum-rate by considering the effect of imperfect sensing information. The resulting game-theoretical formulations belong to the class of non-convex games. A distributed cooperative sensing scheme based on a consensus algorithm is considered in the proposed game, where all the cognitive radio users can share their sensing information locally. We start with the alternating direction optimization algorithm, and prove that the local Nash equilibrium is achieved by the alternating direction optimization algorithm. In the next step, we use a new relaxed equilibrium concept, namely, quasi-Nash equilibrium for the non-convex game. The analysis of the sufficient conditions for the existence of the quasi-Nash equilibrium for the proposed game is provided. Furthermore, an iterative primal-dual interior point algorithm that converges to a quasi-Nash equilibrium of the proposed game is also proposed. From the simulation results, the proposed algorithm is shown to yield a considerable performance improvement in terms of the sum-rate of each cognitive radio user, with respect to previous state-of-the-art algorithms. Finally, we investigate a multiple-input multiple-output multiuser cognitive radio network under the opportunistic spectrum access scheme. We focus on the throughput of each cognitive radio user under correct sensing information, and exclude the throughput due to the erroneous decision of the cognitive radio users to transmit over occupied channels. The optimization problem is analyzed as a strategic non-cooperative game, where the transmit covariance matrix, sensing time, and detection threshold are considered as multidimensional variables to be optimized jointly. We also use the new relaxed equilibrium concept quasi-Nash equilibrium and prove that the proposed game can achieve a quasi-Nash equilibrium under certain conditions, by making use of the variational inequality method. In particular, we prove theoretically the sufficient condition of the existence and the uniqueness of the quasi-Nash equilibrium for this game. Furthermore, a possible extension of this work considering equal sensing time is also discussed. Simulation results show that the iterative primal-dual interior point algorithm is an efficient solution that converges to the quasi-Nash equilibrium of the proposed game

    SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS WITH QUALITY OF SERVICE AWARENESS

    Get PDF
    The goal of this thesis is to study performance of cognitive radio networks in terms of total spectrum utilization and throughput of secondary networks under perfect and imperfect sensing for Additive White Gaussian Noise (AWGN) and fading channels. The effect of imperfect sensing was studied by applying non-collaborative and collaborative sensing techniques using energy detecting and square law combining techniques, respectively. Spectrum allocation for heterogeneous networks in cognitive radio networks was discussed and a new sharing algorithm that guarantee Quality of Service (QoS) for different secondary users’ applications was proposed. The throughput degradation of secondary users due to the activities of the primary users was explored by varying the arrival rate of the primary users in a given spectrum band. Computer simulation showed that increasing the primary user’s activity will increase the total spectrum utilization but decreases the secondary users’ throughput simultaneously. The effect of the received Signal to Noise Ratio (SNR) of the primary user on the cognitive radio network performance is studied in which, a high SNR of primary users led to a higher throughput of secondary network in AWGN channels compared to Nakagami fading channels. The effect of applying cooperative sensing is also presented in this thesis. As we increased the number of cooperating sensors, the network throughput increased which proves the advantage of applying cooperative sensing. A spectrum allocation algorithm for heterogeneous network model is developed to study the QoS assurance of secondary users in cognitive radio networks. The system performance of the heterogeneous network was investigated in terms of the total spectrum utilization. It is found that, higher number of secondary users, better channel’s condition and low required QoS of applications would increase the spectrum utilization significantly. vii In this thesis, the proposed allocation algorithm was applied to the heterogeneous cognitive radio model and its performance was compared to the First Come First Served (FCFS) algorithm in both AWGN and fading channels. The proposed algorithm provided a higher average SNR and spectrum utilization than FCFS algorithm and guaranteed the QoS requirement for applications of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total applications’ data rate increases significantly. The proposed algorithm guaranteed the QoS requirement for each application of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total data rate increases significantly

    Energy Consumption Control in Cooperative and Non-Cooperative Cognitive Radio using Variable Spectrum Sensing Sampling

    Get PDF
    In cognitive radio (CR) network, the concept of energy-efficient design is very important considering the costly energy consumption that may limit its implementation, especially in battery-powered devices. In these networks, significant part of the energy is consumed in the energy detector during spectrum sensing to detect the presence and absence of the primary user (PU). In this paper, we investigated the reduction of energy consumption in two scenarios: the non-cooperative scenario and the cooperative scenario by reducing the number of sensed samples. We also explained the optimisation criteria for improving energy consumption by controlling the number of sensed samples, and the detection probability in both scenarios. The performance of energy detection system was evaluated in AWGN and Rayleigh fading channels. The simulation results show that in non-cooperative scenario at Eb/No of 10 dB, 50% and 46% of the energy consumed in the detection was saved when the number of sensed samples was reduced by 50% with acceptable loss in detection probability of 5% and 12% in AWGN and Rayleigh channel respectively. In cooperative scenario, the result shows that increasing the number of cognitive users (CU) reduced the average energy consumption per sensor and improved the detection probability

    A weighted hard combination scheme for cooperative spectrum sensing in cognitive radio sensor networks

    Get PDF
    Multi-user spatial sensing diversity exploration through cooperation spectrum sensing greatly improves sensing performance. However, high communication overhead and energy costs for exchanging sensing results may limit its viability in a realistic large scale resource constraint network such as cognitive radio wireless sensor networks. This paper presents a Weighted Hard Combination (WHC) scheme that combines features of both quantized and hard combining schemes to minimize energy cost for reporting sensing result and improve primary user detection performance in cooperative sensing. We evaluate the effectiveness of the scheme through simulation. Performance comparison of the WHC scheme in terms of detection performance, reporting energy cost and reporting time ratio with conventional hard combination, soft combination and quantized schemes indicates viability of the scheme. The results indicate that the WHC scheme minimizes reporting energy cost by 70% and improves detection performance by 5.6% compared to the quantized 3-bits scheme

    Cooperative-hybrid detection of primary user emulators in cognitive radio networks

    Get PDF
    Primary user emulator (PUE) attack occurs in Cognitive Radio Networks (CRNs) when a malicious secondary user (SU) poses as a primary user (PU) in order to deprive other legitimate SUs the right to free spectral access for opportunistic communication. In most cases, these legitimate SUs are unable to effectively detect PUEs because the quality of the signals received from a PUE may be severely attenuated by channel fading and/or shadowing. Consequently, in this paper, we have investigated the use of cooperative spectrum sensing (CSS) to improve PUE detection based on a hybrid localization scheme. We considered different pairs of secondary users (SUs) over different received signal strength (RSS) values to evaluate the energy efficiency, accuracy, and speed of the new cooperative scheme. Based on computer simulations, our findings suggest that a PUE can be effectively detected by a pair of SUs with a low Root Mean Square Error rate of 0.0047 even though these SUs may have close RSS values within the same cluster. Furthermore, our scheme performs better in terms of speed, accuracy and low energy consumption rates when compared with other PUE detection schemes. Thus, it is a viable proposition to better detect PUEs in CRNs

    MULTI USER COOPERATION SPECTRUM SENSING IN WIRELESS COGNITIVE RADIO NETWORKS

    Get PDF
    With the rapid proliferation of new wireless communication devices and services, the demand for the radio spectrum is increasing at a rapid rate, which leads to making the spectrum more and more crowded. The limited available spectrum and the inefficiency in the spectrum usage have led to the emergence of cognitive radio (CR) and dynamic spectrum access (DSA) technologies, which enable future wireless communication systems to exploit the empty spectrum in an opportunistic manner. To do so, future wireless devices should be aware of their surrounding radio environment in order to adapt their operating parameters according to the real-time conditions of the radio environment. From this viewpoint, spectrum sensing is becoming increasingly important to new and future wireless communication systems, which is designed to monitor the usage of the radio spectrum and reliably identify the unused bands to enable wireless devices to switch from one vacant band to another, thereby achieving flexible, reliable, and efficient spectrum utilisation. This thesis focuses on issues related to local and cooperative spectrum sensing for CR networks, which need to be resolved. These include the problems of noise uncertainty and detection in low signal to noise ratio (SNR) environments in individual spectrum sensing. In addition to issues of energy consumption, sensing delay and reporting error in cooperative spectrum sensing. In this thesis, we investigate how to improve spectrum sensing algorithms to increase their detection performance and achieving energy efficiency. To this end, first, we propose a new spectrum sensing algorithm based on energy detection that increases the reliability of individual spectrum sensing. In spite of the fact that the energy detection is still the most common detection mechanism for spectrum sensing due to its simplicity. Energy detection does not require any prior knowledge of primary signals, but has the drawbacks of threshold selection, and poor performance due to noise uncertainty especially at low SNR. Therefore, a new adaptive optimal energy detection algorithm (AOED) is presented in this thesis. In comparison with the existing energy detection schemes the detection performance achieved through AOED algorithm is higher. Secondly, as cooperative spectrum sensing (CSS) can give further improvement in the detection reliability, the AOED algorithm is extended to cooperative sensing; in which multiple cognitive users collaborate to detect the primary transmission. The new combined approach (AOED and CSS) is shown to be more reliable detection than the individual detection scheme, where the hidden terminal problem can be mitigated. Furthermore, an optimal fusion strategy for hard-fusion based cognitive radio networks is presented, which optimises sensing performance. Thirdly, the need for denser deployment of base stations to satisfy the estimated high traffic demand in future wireless networks leads to a significant increase in energy consumption. Moreover, in large-scale cognitive radio networks some of cooperative devices may be located far away from the fusion centre, which causes an increase in the error rate of reporting channel, and thus deteriorating the performance of cooperative spectrum sensing. To overcome these problems, a new multi-hop cluster based cooperative spectrum sensing (MHCCSS) scheme is proposed, where only cluster heads are allowed to send their cluster results to the fusion centre via successive cluster heads, based on higher SNR of communication channel between cluster heads. Furthermore, in decentralised CSS as in cognitive radio Ad Hoc networks (CRAHNs), where there is no fusion centre, each cognitive user performs the local spectrum sensing and shares the sensing information with its neighbours and then makes its decision on the spectrum availability based on its own sensing information and the neighbours’ information. However, cooperation between cognitive users consumes significant energy due to heavy communications. In addition to this, each CR user has asynchronous sensing and transmission schedules which add new challenges in implementing CSS in CRAHNs. In this thesis, a new multi-hop cluster based CSS scheme has been proposed for CRAHNs, which can enhance the cooperative sensing performance and reduce the energy consumption compared with other conventional decentralised cooperative spectrum sensing modes

    Spectrum sensing, spectrum monitoring, and security in cognitive radios

    Get PDF
    Spectrum sensing is a key function of cognitive radios and is used to determine whether a primary user is present in the channel or not. In this dissertation, we formulate and solve the generalized likelihood ratio test (GLRT) for spectrum sensing when both primary user transmitter and the secondary user receiver are equipped with multiple antennas. We do not assume any prior information about the channel statistics or the primary user’s signal structure. Two cases are considered when the secondary user is aware of the energy of the noise and when it is not. The final test statistics derived from GLRT are based on the eigenvalues of the sample covariance matrix. In-band spectrum sensing in overlay cognitive radio networks requires that the secondary users (SU) periodically suspend their communication in order to determine whether the primary user (PU) has started to utilize the channel. In contrast, in spectrum monitoring the SU can detect the emergence of the PU from its own receiver statistics such as receiver error count (REC). We investigate the problem of spectrum monitoring in the presence of fading where the SU employs diversity combining to mitigate the channel fading effects. We show that a decision statistic based on the REC alone does not provide a good performance. Next we introduce new decision statistics based on the REC and the combiner coefficients. It is shown that the new decision statistic achieves significant improvement in the case of maximal ratio combining (MRC). Next we consider the problem of cooperative spectrum sensing in cognitive radio networks (CRN) in the presence of misbehaving radios. We propose a novel approach based on the iterative expectation maximization (EM) algorithm to detect the presence of the primary users, to classify the cognitive radios, and to compute their detection and false alarm probabilities. We also consider the problem of centralized binary hypothesis testing in a cognitive radio network (CRN) consisting of multiple classes of cognitive radios, where the cognitive radios are classified according to the probability density function (PDF) of their received data (at the FC) under each hypotheses
    corecore