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Resumen

Motivacién y objetivos

En las dltimas décadas, las comunicaciones inalambricas han experimen-
tado un desarrollo espectacular, con el objetivo de proporcionar una
experiencia de usuario similar a los sistemas cableados, pero bajo la
filosofia de poder comunicarse “en cualquier lugar y en cualquier mo-
mento”. El desarrollo de los sistemas comerciales ha sido posible gracias
a la aparicion de nuevas tecnologias, que, en general, requieren cada
vez de canales con un mayor ancho de banda. Sin embargo, el espec-
tro electromagnético es un recurso limitado, cuyo uso viene regulado
por el gobierno de cada pais. En el caso particular de Estados Unidos,
los ultimos resultados publicados por la Comisién Federal de Comunica-
ciones (FCC, Federal Communications Commission) muestran que el es-
pectro electromagnético estd infrautilizado actualmente; algunas bandas
de frecuencias son muy utilizadas, mientras que otras estan solo parcial-
mente ocupadas. De hecho, la ocupacion varia en espacio y tiempo, es
decir, estas bandas estan desocupadas en diferente regiones del espacio
durante ciertos intervalos de tiempo. La tecnologia de radios cognitivas
se propone recientemente como una solucién para promover un uso efi-
caz del espectro, ya que la base de su funcionamiento es la deteccién en
un determinado lugar y momento de “agujeros en el espectro” o bandas
de frecuencias desocupadas por el usuario primario o principal con la
correspondiente licencia. Gracias a esta deteccién, un usuario secun-
dario o sin licencia para ocupar esa banda de frecuencias o canal, puede
transmitir /recibir temporalmente en esas frecuencias utilizando una ra-
dio cognitiva sin perturbar las comunicaciones entre usuarios primarios.
El hecho de compartir el espectro es beneficioso para los usuarios secun-



darios o radios cognitivas, y aumenta la eficiencia en el uso del espectro.
Sin embargo, desde el punto de vista préctico, esta tecnologia presenta
muchos retos que o bien siguen sin resolverse, o bien todavia no se han
resuelto de una forma eficiente. Por un lado, uno de los principales
retos es la implementacion de un método de deteccion fiable para en-
contrar agujeros en el espectro, identificando asi las oportunidades de
transmisién del usuario secundario sin comprometer la integridad de las
comunicaciones entre usuarios primarios. Hay que tener en cuenta que si
un usuario secundario detecta erréneamente que un canal de frecuencias
esta libre y puede transmitir, cuando no lo esté en realidad, producira
una interferencia que degradard la experiencia del usuario primario. Por
tanto, es imprescindible mantener una probabilidad de deteccién errénea
lo suficientemente pequena. Por otra parte, otro criterio de disefio es
disminuir la probabilidad de falsa alarma tanto como sea posible, ya
que ésta refleja el porcentaje de espectro vacante que esta clasificado
erréneamente como ocupado, aumentando asi el uso oportunista del es-
pectro de los usuarios secundarios de radio cognitiva. Por otro lado, con
el fin de limitar la probabilidad de interferir con los usuarios primar-
ios, es deseable mantener la probabilidad de fallo de deteccién tan baja
como sea necesario para cumplir las restricciones exigidas para proteger
a los usuarios primarios. El umbral de deteccion es el parametro que
determina el equilibrio entre la probabilidad de falsa alarma y la prob-
abilidad de fallo de deteccién: un umbral bajo aumenta la probabilidad
de falsa alarma, disminuyendo la probabilidad de fallo (aumentando la
probabilidad de deteccién), y viceversa.

Otro parametro que influye en el proceso de deteccidn es el tiempo de de-
teccidn, es decir, el tiempo que el usuario secundario emplea en el proceso
de deteccion. La eleccidn de este tiempo ofrece una solucién de compro-
miso entre la calidad y la velocidad de deteccién: aumentar el tiempo de
deteccién disminuye tanto la probabilidad de falsa alarma como la prob-
abilidad de deteccién, pero reduce también el tiempo disponible para las
transmisiones secundarias, lo que reduce el rendimiento en transmision
de la radio cognitiva. Esta dependencia entre los parametros es la que
justifica el diseno conjunto de los parametros de deteccién y transmision
de la radio cognitiva, siempre suponiendo que estas radios presentan una
naturaleza egoista y por lo tanto, no estan dispuestas a cooperar entre
ellas.

Esta tesis se centra en las tecnologias de comunicaciones relacionadas
con la radio cognitiva, tomando como base un sistema de comunica-
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ciones de tipo OFDM (Orthogonal Frequency Division Multiplexing),
como los propuestos en los futuros sistemas de comunicaciones de cuarta
generacién (LTE, Long Term Evolution). Concretamente, a lo largo de
la tesis, se investigan sistemas de comunicaciones con un solo usuario
secundario o con varios usuarios secundarios (caso multiusuario). En
el caso de los sistemas con un solo usuario secundario, el objetivo es
resolver el problema de asignacién de potencias de transmisién sobre
diferentes canales en base a la informacién de deteccién disponible bajo
el modelo de acceso oportunista al espectro. En el caso de los sistemas
con multiples usuarios secundarios, el comportamiento no cooperativo
entre las radios cognitivas se modela utilizando teoria de juegos. El
principal objetivo de este segundo caso es modelar y analizar el prob-
lema de optimizacion multiusuario competitivo, teniendo en cuenta la
incertidumbre asociada con el proceso de deteccién.

Metodologia

En esta tesis, se combinan los métodos de anélisis tedrico y la simulacién
por ordenador.

En el andlisis tedrico de los casos de un usuario y de miltiples usuarios
secundarios, se ha seguido la metodologia clasica de construir el nuevo
concepto tedrico como un sistema légico con definiciones y operaciones
para demostrar los distintos teoremas. En primer lugar, el problema
se modela como un problema de optimizacién matematica. Después,
se aplican métodos de optimizacién para analizar y resolver este prob-
lema. Especialmente, la tesis se centra en el problema de optimizacién de
recursos, tanto para sistemas de comunicaciones con una sola radio cog-
nitiva como para el caso multiusuario. Para el caso de un solo usuario,
la funcién objetivo, asi como las restricciones para el problema de op-
timizacién de recursos son no convexas, lo que da lugar a un problema
complejo de resolver que motiva la utilizacién del método alternante
para resolver el problema. Para los sistemas multiusuario, el problema
de optimizacién consiste en un juego no cooperativo, donde se utiliza el
concepto nuevo de cuasi-equilibrio de Nash.

Tras el andlisis tedrico, los algoritmos propuestos para los dos casos
considerados (un unico usuario y miltiples usuarios), se simulan por
ordenador mediante el programa Matlab. Es importante destacar que
tanto para el caso de un usuario como para el caso multiusuario, los es-
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cenarios simulados han tenido en cuenta parametros y modelos de simu-
lacién estdndar, propuestos por organismos de estandarizaciéon o por la
comunidad cientifica, con el objetivo de facilitar la reproduccion de los
resultados obtenidos en esta tesis. Del mismo modo, los algoritmos prop-
uestos se han comparado en todos los casos con los mejores algoritmos
de optimizacién propuestos en la literatura de radios cognitivas. Aunque
las simulaciones se han realizado con el programa Matlab, seria posible
utilizar otras plataformas de simulacién y lenguajes de programacion.

Conclusiones y Contribuciones

En esta tesis, se considera un sistema de comunicaciones de tipo inter-
weave con radios cognitivas donde el objetivo general es maximizar la
tasa de cada usuario secundario mediante la optimizacién conjunta de
la operacion de deteccién y la asignacion de potencias de transmisiéon en
diferentes canales, teniendo en cuenta la influencia de la incertidumbre
en el proceso de deteccion y el hecho de que la potencia de interferen-
cia que puede aceptar un usuario primario estd limitada. KEste prob-
lema se plantea tanto para sistemas de comunicaciones con un tnico
usuario secundario como para sistemas con multiples usuarios secundar-
ios. Ademas, en el caso multiusuario, también se contempla el escenario
donde tanto el usuario primario como los usuarios secundarios disponen
de miultiples antenas (canal MIMO, Multi-Input Multi-Output).

En primer lugar, se estudia el problema de optimizacién de la asignacién
de recursos para sistemas de comunicaciones con un tinico usuario secun-
dario, donde tanto el usuario primario como el usuario secundario dispo-
nen de una tnica antena (canal SISO, Single-Input Single-Output). El
usuario primario dispone de varios canales para transmitir. El objetivo
del usuario secundario es maximizar su tasa mediante la optimizacion de
forma conjunta de la informacién de deteccién (el resultado del proceso
de deteccién es comin a todos los canales) y de la asignacién de potencia
para cada canal.

En este escenario, se considera que el sistema de comunicaciones es de
tipo interweave, con un acceso oportunista al espectro, donde la radio
cognitiva detecta si hay transmisién del usuario primario en todos los
canales, y decide transmitir si los resultados de la deteccién indican que
el usuario primario estd inactivo en ese canal. Sin embargo, debido a
los errores de deteccion, la radio cognitiva podria acceder a un canal

viii



cuando todavia estd ocupado por el usuario primario, provocando inter-
ferencias perjudiciales tanto para los usuarios secundarios como para los
usuarios primarios. Por este motivo, en el algoritmo de asignacién de
potencia se propone una restriccion en la potencia de interferencia in-
troducida por el usuario secundario, llamada rate-loss gap, que asegura
que la degradacion experimentada por el usuario primario estd acotada.
El problema de optimizacién resultante es no convexo. Para resolverlo,
se proponen un algoritmo de optimizacién exhaustivo y un algoritmo de
optimizacion de direccion alternante. El andlisis de la complejidad del
algoritmo de optimizacién de direccién alternante, junto con los resulta-
dos de las simulaciones, prueban que este algoritmo resuelve el problema
de forma eficaz.

En segundo lugar, la tesis se centra en el problema de la asignacién de
recursos en sistemas de comunicaciones con multiples usuarios primarios
y secundarios, pero con una uUnica antena por usuario. En este escenario,
se asume que cada usuario primario dispone de un canal distinto en el
que transmitir. En este caso, el esquema de acceso al espectro es de
tipo espectro compartido, y el problema de asignacion de recursos se
plantea como un juego de estrategia no cooperativa, donde cada radio
cognitiva es egoista y se esfuerza por utilizar tantos canales como sea
posible con el fin de maximizar su propia tasa, considerando también
el impacto de disponer de informaciéon de deteccién imperfecta. En el
esquema de espectro compartido, las radios cognitivas pueden coexistir
con los usuarios primarios y ajustar la potencia de transmisién en cada
canal en funcién del resultado de la deteccion.

Cuando se aplica la teoria de juegos a este escenario, el juego resultante
pertenece a la clase de juegos no convexos. La no convexidad se debe
tanto a las funciones objetivo como al conjunto de resultados posibles
resultantes de los problemas de optimizacién individual de cada radio
cognitiva. En un primer paso, se propone utilizar un esquema distribuido
de deteccién cooperativa, basado en un algoritmo de consenso, donde las
radios cognitivas comparten su informacién de deteccién tinicamente a
nivel local. Tras la deteccién, para resolver el problema de asignacién
de recursos, se propone el algoritmo de optimizacién de direccién alter-
nante, demostrando que es posible alcanzar un equilibrio local de Nash.
A continuacién, se utiliza el nuevo concepto de equilibrio relajado o
cuasi-equilibrio de Nash. Se realiza el andlisis de las condiciones sufi-
cientes para demostrar la existencia del cuasi-equilibrio de Nash para el
juego bajo consideracién. Tras este andlisis, se propone un algoritmo
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iterativo de punto interior primal-dual que converge al cuasi-equilibrio
de Nash del juego considerado. A partir de los resultados de las simula-
ciones, se comprueba que el método propuesto mejora considerablemente
la tasa de las radios cognitivas con respecto a distintos métodos alter-
nativos propuestos en la literatura.

Finalmente, se investiga un escenario con multiples usuarios primarios
y secundarios, que ademas disponen de multiples antenas. El esquema
de acceso al espectro considerado es el de acceso oportunista. En este
dltimo caso, el problema a resolver sigue siendo la asignacion de recur-
sos de las radios cognitivas cuando cada usuario primario dispone de
una canal distinto en el que transmitir. El problema de optimizacién
se analiza como un juego no cooperativo estratégico, donde la matriz
de covarianza de transmisién, el tiempo de deteccién y el umbral de de-
teccién son las variables a optimizar conjuntamente. El juego resultante
es no convexo, por lo tanto, se utiliza nuevamente el concepto de cuasi-
equilibrio de Nash, y se demuestra analiticamente que el juego propuesto
puede lograr un cuasi-equilibrio de Nash bajo ciertas condiciones, medi-
ante la utilizacién del método de Variational Inequality (VI). En partic-
ular, se demuestra tedricamente la condicion suficiente de la existencia
v la unicidad del cuasi-equilibrio de Nash para el juego propuesto. Por
otra parte, se presenta una posible extension de este trabajo teniendo en
cuenta el tiempo de deteccion para las radios cognitivas. A partir de los
resultados de las simulaciones, se demuestra que el algoritmo iterativo de
punto interior primal-dual converge de forma eficiente al cuasi-equilibrio
de Nash.

Como trabajo futuro, se contempla el desarrollo de la introduccién del
factor de precio en el escenario con multiples usuarios primarios y se-
cundarios. Otra extensién futura es la introducciéon de un método de
detecciéon robusto basado en deteccién cooperativa. Una alternativa a la
detecciodn, es la utilizacién de mapas de interferencia, que actuarian como
soft info. Por ultimo, todos los algoritmos y esquemas presentados en
esta tesis se han analizado mediante simulaciones. Su implementacion en
un testbed seria de gran utilidad de cara a su posible aplicacién practica.
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Abstract

In this thesis, we explore interweave communication systems in cognitive
radio networks where the overall objective is to maximize the sum-rate of
each cognitive radio user by optimizing jointly both the detection oper-
ation based on sensing and the power allocation across channels, taking
into account the influence of the sensing accuracy and the interference
limitation to the primary users. The optimization problem is addressed
in single and multiuser cognitive radio networks for both single-input
single-output and multi-input multi-output channels.

Firstly, we study the resource allocation optimization problem for single-
input single-output single user cognitive radio networks, wherein the
cognitive radio aims at maximizing its own sum-rate by jointly optimiz-
ing the sensing information and power allocation over all the channels.
In this framework, we consider an opportunistic spectrum access model
under interweave systems, where a cognitive radio user detects active
primary user transmissions over all the channels, and decides to trans-
mit if the sensing results indicate that the primary user is inactive at
this channel. However, due to the sensing errors, the cognitive users
might access the channel when it is still occupied by active primary
users, which causes harmful interference to both cognitive radio users
and primary users. This motivates the introduction of a novel interfer-
ence constraint, denoted as rate-loss gap constraint, which is proposed to
design the power allocation, ensuring that the performance degradation
of the primary user is bounded. The resulting problem is non-convex,
thus, an exhaustive optimization algorithm and an alternating direction
optimization algorithm are proposed to solve the problem efficiently.
Secondly, the resource allocation problem for a single-input single-output
multiuser cognitive radio network under a sensing-based spectrum shar-
ing scheme is analyzed as a strategic non-cooperative game, where each
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cognitive radio user is selfish and strives to use the available spectrum in
order to maximize its own sum-rate by considering the effect of imper-
fect sensing information. The resulting game-theoretical formulations
belong to the class of non-convex games, where the non-convexity oc-
curs at both the objective functions and feasible constraint sets of the
cognitive radio users’ optimization problems. A distributed cooperative
sensing scheme based on a consensus algorithm is considered in the pro-
posed game, where all the cognitive radio users can share their sensing
information locally. We start with the alternating direction optimiza-
tion algorithm, and prove that the local Nash equilibrium is achieved by
the alternating direction optimization algorithm. In the next step, we
use a new relaxed equilibrium concept, namely, quasi-Nash equilibrium
for the non-convex game instead of the traditional Nash equilibrium
for the convex game. The analysis of the sufficient conditions for the
existence of the quasi-Nash equilibrium for the proposed game is pro-
vided. Furthermore, an iterative primal-dual interior point algorithm
that converges to a quasi-Nash equilibrium of the proposed game is also
proposed. From the simulation results, the proposed algorithm is shown
to yield a considerable performance improvement in terms of the sum-
rate of each cognitive radio user, with respect to previous state-of-the-art
algorithms.

Finally, we investigate a multiple-input multiple-output multiuser cog-
nitive radio network under the opportunistic spectrum access scheme.
We focus on the throughput of each cognitive radio user under correct
sensing information, and exclude the throughput due to the erroneous
decision of the cognitive radio users to transmit over occupied channels.
The optimization problem is analyzed as a strategic non-cooperative
game, where the transmit covariance matrix, sensing time, and detec-
tion threshold are considered as multidimensional variables to be opti-
mized jointly. The resulting game is non-convex, hence, we also use the
new relaxed equilibrium concept quasi-Nash equilibrium and prove that
the proposed game can achieve a quasi-Nash equilibrium under certain
conditions, by making use of the variational inequality method. In par-
ticular, we prove theoretically the sufficient condition of the existence
and the uniqueness of the quasi-Nash equilibrium for this game. Further-
more, a possible extension of this work considering equal sensing time
is also discussed. Simulation results show that the iterative primal-dual
interior point algorithm is an efficient solution that converges to the
quasi-Nash equilibrium of the proposed game.
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Chapter 1

Introduction

The science is nothing more than a refinement of everyday thinking.
——Albert Einstein(1879-1955)

During the last decade, wireless communication networks have been
greatly developed including third generation 3G, fourth generation cel-
lular networks, IEEE 802.11 Wireless Local Area Networks (WLANS),
IEEE 802.15.4 WPANSs, Bluetooth, etc. The radio spectrum ranging
from 3KHz to 300GHz is the basic resource to carry data in wireless
networks. In each region, spectrum is regulated by its radio regulatory
agency, such as Federal Communications Commission (FCC) in USA [6],
Electronic Communications Committee (ECC) in Europe [7], and Ofcom
in UK [8]. Spectrum is traditionally assigned via a fixed frequency al-
location policy. For example, the spectrum allocation table by FCC is
shown in Figure 1.1, where each portion of spectrum is exclusively al-
located to a specific wireless system, and all subscribers to a wireless
system should be granted to access the exclusive spectrum. Following
this traditional approach, the spectrum resource is in danger of being
exhausted. Obtaining a license on a spectrum band is becoming more
and more difficult and expensive.

The Industrial, Scientific and Medical (ISM) spectrum band, which is
mostly located around 2.4 GHz and 5 GHz, is the only spectrum that can
be shared by different networks. WLANs, WPANSs, cordless phones, and
even microwave ovens are operating simultaneously in the ISM spectrum
band, and thus experiencing interference from each other. Therefore, the
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Figure 1.1: Spectrum allocation table from FCC [1]

performance of wireless networks working in the ISM spectrum band is
highly limited by the coexistence of other nearby wireless networks. In
addition, the licensed spectrum utilization is highly dependent on the
location and time. For instance, during some time periods in a certain
geographic area, the allocated spectrum bands may be seldom used.

In November 2002, the FCC published a report to indicate that during
90% of the time, many licensed frequency bands remain unused [1]. Fur-
thermore, the Shared Spectrum Company (SCC) has published a bunch
of spectrum measurement results of USA and some European Countries
since 2004 [9]. From their spectrum reports [10, 11], the average uti-
lization of many licensed frequency bands in many cities is less than
25%. This means that it is not an actual spectrum scarcity what is
worrisome, but rather the inefficient spectrum usage. As a result, since
2004, FCC has recommended to consider authorizing new devices in the
TV broadcast spectrum at locations where TV channels are not being
used for authorized services, including broadcast television, broadcast
auxiliary services such as wireless microphones, and private land mobile
radio [12]. The IEEE 802.22 Working Group on Wireless Regional Area
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Networks (WRANSs) was formed in October 2004, and has been working
on the standardization for the rural broadband wireless access using the
TV broadcast spectrum by Cognitive Radio (CR) technologies [13].
The basic idea behind IEEE 802.22 is to exploit the unused or not fully
utilized licensed spectrum, which is called “spectrum hole”. Actually,
this idea was proposed in the light of the concept of CR by Joseph Mitola
III at Royal Institute of Technology (KTH), Sweden, in 1999 [14]. In
essence, CR technology differs from conventional radio devices in that
a CR can equip users with cognitive capability and reconfigurability
(e.g., frequency, power, modulation), allowing for Dynamic Spectrum
Access (DSA). Following this concept, many national regulatory bodies
(i.e., the FCC in the USA) have recently proposed expanding the unli-
censed spectral bands to obtain more flexible utilization of the available
spectrum through the use of CR technology. As such, CR is foreseen as
one of the most viable technical paradigms to improve the spectrum uti-
lization significantly, and contribute to solving the problem of spectrum
shortage.

1.1 Motivation

Although spectrum sharing brings opportunities for CR users to access
the licensed channels*, many new challenges come up when deploying
CR in practice. On the one hand, the challenge for a reliable sensing
method to find the “spectrum hole” is to identify suitable transmis-
sion opportunities without compromising the integrity of the Primary
User (PU). One of the design criteria is to make the probability of
false alarm as low as possible, since it measures the percentage of vacant
spectrum that is misclassified as busy, increasing thus the opportunistic
usage of the spectrum from the CR users. On the other hand, in or-
der to limit the probability of having CR users interfering with PUs, it
is desirable to keep the missed detection probability as low as possible.
The detection thresholds are the trade-off factor between the false alarm
and the missed detection probabilities: generally speaking, low thresh-
olds will result in high false alarm rates in favor of low missed detection
probability and vice versa. Alternatively, the choice of the sensing time
offers a trade-off between the quality and speed of sensing: increasing

*In this thesis, a channel means a frequency subband or an aggregation of fre-
quency subbands (frequency bands) for spectrum sensing and transmitting.

3



1. INTRODUCTION

the sensing time permits to decrease both false alarm and miss detection
probability values, however, it reduces the time available for secondary
transmissions, which decreases CR throughput. The above trade-off
calls naturally for a joint determination of the sensing and transmission
parameters of the CR users, assuming a paradigm of selfish behavior
among these CR users, where the CR users have no willing to cooperate
with each other.

In this thesis, for the application of CR technology, we investigate ap-
plications for both single user and multiuser Cognitive Radio Networks
(CRNs). In the case of single user CRNs, we study the problem of
power allocation making use of the detection information under an op-
portunistic spectrum access model. For multiuser CRNs, we analyze
the noncooperative behavior of the CR users based on game theory.
The modeling and analysis of the competitive multiuser optimization,
taken into consideration the sensing accuracy, is the main overall subject
of this thesis.

1.2 Contributions

In [15-19], we have explored a sensing-based access scheme in CRNs
where the overall objective is to maximize the sum-rate (sum-throughput)
of each CR user by optimizing jointly both the detection operation based
on sensing and the power allocation, taking into account the influence
of the sensing accuracy and the interference limitation to the PUs. The
optimization problem is addressed in single and multiuser CRNs for
both Single-Input Single-Output (SISO) and Multiple-Input Multiple-
Output (MIMO) channel. In the following, we enumerate the main
topics where this thesis provides contributions.

1.2.1 Joint optimization of detection and power alloca-
tion in single user CRNs

We start with the resource allocation and optimization problem for single
user CRNs [15,16], where joint power allocation and spectrum detection
are key issues. In single user CRNs, the CR-Transmitter (Tx) has to
perform the spectrum sensing before accessing the channel. We consider
the Opportunistic Spectrum Access (OSA) model under the opportunis-
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tic spectrum access scheme. In the OSA model, CR users are allowed to
transmit over the channel of interest when all the PUs are detected as
not transmitting at this channel. One essential enabling technique for
OSA-based CRNSs is spectrum sensing, where the CR users individually
or collaboratively detect active PU transmissions over the channel, and
decide to transmit if the sensing results indicate that all the PUs are
inactive in this channel. The main contributions of Chapter 3 are the
following;:

e We consider an Orthogonal Frequency Division Multiplexing (OFDM)

based communication system and present efficient algorithms to
maximize the sum-rate of the CR by optimizing jointly both the
detection operation and the power allocation. The problem is
non-convex, and can be formulated as a two-variable problem and
solved by the alternating direction optimization method operating
sequentially over the power allocation and the detection threshold.

e We show that the algorithm operates basically in two regimes de-
pending on the constraints involved. As compared to previous
work, a novel interference constraint is proposed to design the
power allocation scheme, ensuring that the performance degrada-
tion of the PU is bounded.

1.2.2 Joint optimization of detection and power alloca-
tion in multiuser CRNs

In [17], we analyze the resource allocation problem among CR users for
the Sensing-Based Spectrum Sharing (SSS) scheme as a strategic Non-
Cooperative Game (NCG), where each CR user is selfish and strives to
use the available spectrum in order to maximize its own sum-rate by
considering the effect of imperfect sensing information. The resulting
game-theoretical formulations belong to the class of non-convex games,
where the non-convexity occurs at both the objective functions and the
feasible sets of the CR users’ optimization problems. Therefore, tra-
ditional mathematical tools from [20] are not applicable to show the
existence of an equilibrium for this game. We analyze our Non-Convex
Non-Cooperative Power Allocation Game (NNPG) based on the new
relaxed mathematical equilibria concept introduced in [21], namely, the
Quasi-Nash Equilibrium (QNE). The main contributions of Chapter 4

5
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are the following:

e We propose a NNPG, where each CR user aims at maximizing its
own sum-rate by jointly optimizing the sensing operation as well as
the transmit power over all channels, which differs from the disjoint
case, called deterministic game where the sensing parameters are
not considered as a part of the optimization, as shown in [22-26].

e Deviating from the constraints considered in previous work [22—
33] (such as interference temperature and outage probability con-
straints), we introduce a rate-loss constraint in order to effectively
protect the PU from harmful interference caused due to the imper-
fect sensing information. We analyze the optimization problem in
two different limited regimes, namely, power budget limited regime
and rate-loss limited regime. The performance of the CR users in
these regimes are evaluated extensively through simulation.

e In addition, a distributed cooperative sensing scheme based on a
consensus algorithm is considered in the proposed game for a SSS
scenario. Compared with the OSA scenario discussed in [31-33],
in our scenario, the CR users can coexist with PUs, and adjust the
transmit power on each channel based on the sensing result.

e The fourth major contribution of this chapter is to prove that
the proposed NNPG can achieve a QNE under certain conditions,
by making use of the Variational Inequality (VI) method. Mean-
while, we show that, under the so-called linear independent con-
straint qualification, the achieved QNE coincides with the Nash
Equilibrium (NE).

e Finally, an iterative Primal-Dual Interior Point (PDIP) algorithm
that converges to a QNE of the proposed game is provided here.
The PDIP algorithm can run at each node in parallel, since it re-
quires only the local information of each CR user (e.g. its own
transmit power and the channel gain), and hence, it can be re-
garded as a distributed solution. Simulation results show that the
PDIP algorithm yields a considerable performance improvement,
in terms of the sum-rate of each CR user, with respect to previous
state-of-the-art algorithms, such as alternating direction optimiza-
tion algorithm [16] and the deterministic game proposed in [26].
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1.3 Thesis Organization

In Chapter 5, we move a step ahead from Chapter 4, and consider an
OSA scenario in multiuser MIMO CRNs [19]. The optimization problem
is analyzed as a strategic NCG, where the transmit covariance matrix,
sensing time, and detection threshold are considered as variables to be
optimized. The resulting game is non-convex, hence, we also use the
new relaxed equilibria concept QNE, and prove that the proposed game
can achieve a QNE under certain conditions, by making use of the VI
method. Simulations show that the proposed game can achieve a consid-
erable performance improvement with respect to the deterministic game
in [34].

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the background
of CRNs, and summarizes the related works in optimization of power
allocation and game theory in CRNs. Chapter 3 describes the proposed
joint optimization of detection and power allocation schemes for single
user CRNs. The proposed joint optimization of detection and power al-
location schemes for multiuser SISO CRNs is given in Chapter 4. Chap-
ter 5 provides the proposed joint optimization of detection and power
allocation schemes for multiuser MIMO CRNs. Chapter 6 concludes
our study in this thesis and points out several future directions in the
research on CRNs. The relationship between the major chapters from
Chapter 3 to Chapter 5 can be seen from Table 1.1, where we summarize
the scenarios addressed in the different chapters.

Table 1.1: Scenarios addressed in each chapter

Chapter | Number of CR | Spectrum Share Mode | Channel Mode
3 single user OSA SISO
4 multiuser SSS SISO
5 multiuser OSA MIMO
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Chapter 2

State of the Art

Cognitive radio (CR) is viewed as a novel approach for improving the
utilization of a precious natural resource: the radio electromagnetic spec-
trum. The ultimate goal for the CR is to accommodate the increasing
demand for wireless data transmission by using the radio spectrum more
efficiently.

In this chapter, we introduce the background of CR technologies, a brief
description of game theory and present the related work. We first intro-
duce in Section 2.1 and Section 2.2 the background of CR technologies
including the definition, key technologies, and main topic in CRNs, re-
spectively. The main concepts of game theory that are used in our
optimization problem, are presented in Section 2.3. Finally, the related
work in Section 2.4 is organized around two main themes of our research
in CRNs: (i). Resource allocation in single user CRNs; (ii). Resource
allocation in multiuser CRNs. In Section 2.5, we provide the conclusion.

2.1 Cognitive Radio, a Brief Introduction

2.1.1 Definition of CR

The ever-increasing demand for higher data rates in wireless communi-
cations in the face of under utilization of the electromagnetic spectrum
motivated the detection and exploitation of spectrum holes, which are
defined as [35]: “a spectrum hole is a frequency band assigned to a PU,
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at a particular time and specific geographic location, where the band is
not being utilized by that user.” Spectrum utilization can be improved
significantly by making it possible for an unlicensed secondary user (who
is not being served) to access a spectrum hole unoccupied by the PU at
the right location and time in question. The concept of CR, which is
based on the software-defined radio, has been proposed as the means to
promote the efficient use of the spectrum by exploiting the existence of
spectrum holes.

The term “CR” was firstly introduced by Joseph Mitola in his paper
in 1999, where he defined CR as: “A radio that employs model based
reasoning to achieve a specified level of competence in radio related
domains [14].” In 2005, Professor Simon Haykin defined CR as [36]:
“an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e., outside world), and uses the methodology of
understanding by-building to learn from the environment and adapt its
internal states to statistical variations in the incoming radio frequency
(RF) stimuli by making corresponding changes in certain operating pa-
rameters (e.g., transmit-power, carrier frequency, and modulation strat-
egy) in real-time, with two primary objectives in mind:

e Highly reliable communications whenever and wherever needed;

e Efficient utilization of the radio spectrum.

Six key words stand out in this definition: awareness, intelligence, learn-
ing, adaptivity, reliability, and efficiency.” Implementation of this far-
reaching combination of capabilities is indeed feasible today, thanks to
the spectacular advances in digital signal processing, networking, ma-
chine learning, computer software, and computer hardware [36].

On the other hand, the regulator FCC defined CR as: “A radio that
can change its transmitter parameters based on interaction with the en-
vironment in which it operates [2].” There will be a lot of benefits from
the new radio regulations, such as obtaining more capacity, decreasing
the cost of communications, improving reliability, and reaching longer
distances with wireless equipments.

2.1.2 Main tasks and key technologies

The CR technology makes use of tools from signal-processing and machine-
learning for its implementation. The cognitive process starts with the

10
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passive sensing of RF stimuli and culminates with action. There are
three main tasks for CR [2]:

e Radio-scene analysis, which encompasses the following:

— Estimation of interference temperature of the radio environ-
ment. The interference temperature is defined as a maximum
amount of tolerable interference for a given channel in a par-
ticular location. Any unlicensed transmitter (CR-Tx) utiliz-
ing this channel must guarantee that its transmissions added
to the existing interference must not exceed the interference
temperature limit at a licensed receiver (PU-Rx) [13];

— Detection of spectrum holes.
e Channel identification, which encompasses the following;:

— Estimation of Channel State Information (CSI) for secondary
users;

— Prediction of available channel capacity to be used by the
transmitter.

e Transmit-power control and dynamic spectrum management.

The first task and the second task are carried out at the receiver, and
the third task is carried out at the CR-Tx. Through interaction with
the RF environment, these three tasks form a cognitive cycle, which is
pictured in its most basic form in Figure 2.1, wherein the receiver is
required to perform spectrum sensing, analysis, and estimation before
transmission in order to protect PUs. The transmitter will then select an
appropriate channel and control the transmit power to guarantee that
the interference to PUs is not harmful. Three basic approaches have
been considered to allow concurrent communications for CR: spectrum
overlay, underlay, and interweave.

e In overlay systems, as proposed in [37], CR users allocate part
of their power for secondary transmissions, while the remaining
power is used to assist (relay) primary transmissions. By exploit-
ing sophisticated coding techniques, such as dirty paper coding,
based on the knowledge of the PUs’ message or codebook at the
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Figure 2.1: Cognitive radio operation cycle [2]

CR-Tx, these systems offer the possibility of concurrent transmis-
sions without capacity penalties. However, although these technol-
ogy is interesting from an information theoretic perspective, these
techniques are difficult to implement as they require noncausal
knowledge of the primary signals at the CR-Tx.

e In underlay systems, CR users are allowed to share resources with
the PUs, but without any knowledge about the PUs’ signals and
under the strict constraint that the spectral density of their trans-
mitted signals falls below the noise floor at the primary receivers.
This interference constraint can be met using spread spectrum or
ultra-wide band communications from the CR users. This trans-
mission technique does not require the estimation of the electro-
magnetic environment from CR users, but it is mostly appropriate
for short distance communications, due to the strong constraints
imposed on the maximum power radiated by the CR users.

e Conversely, interweave communications, initially envisioned in [38],
are based on an opportunistic or adaptive usage of the spectrum,
as a function of its real utilization. CR users are allowed to adapt
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their power allocation as a function of time and frequency, depend-
ing on what they are able to sense and learn from the environ-
ment, in a non-intrusive manner. Rather than imposing a severe
constraint on their transmit power spectral density, in interweave
systems, the CR users have to figure out when and where to trans-
mit. As opposed to underlay systems, this opportunistic spectrum
access requires an opportunity identification phase, through spec-
trum sensing, followed by an opportunity exploitation mode [39].
In this thesis, we focus on an interweave communications model,
as it seems to be the most suitable for the current spectrum man-
agement policies and legacy wireless systems [39)].

Spectrum sensing

The main tasks of radio-scene analysis are based on spectrum sensing,
which is one of the most important procedures in CRNs. The essential
problem of spectrum sensing is to decide whether a particular slice of the
spectrum is available or not for transmission. Thus, a spectrum sensor
is required in order to detect spectrum holes. This should provide high
spectral-resolution capability, estimate the average power in each chan-
nel of the spectrum, and identify the unknown directions of interfering
signals [40].

In the literature, there are three major methods for spectrum sensing,
i.e., matched filter detection [40], cyclostationary detection [41] and en-
ergy detection [3,42]. Each of them has its advantages and disadvantages
in different scenarios. Matched filter-based detection is considered to be
an optimal signal-detection method when the signal format of the PU
is known, e.g., modulation type, pulse shaping, and synchronization of
timing and carrier. Moreover, in case of PUs belonging to different types
of networks, the CR will need a dedicated receiver for each type of PU,
which makes it difficult for practical implementation. Cyclostationary
detection needs to know the periodicity of the cyclic prefix of the primary
signal, which may not be available to the secondary users in practice.
In addition, it requires a substantial computational complexity.

On the contrast, energy detection requires no information of the pri-
mary signal and it is robust to unknown channels. This makes it a very
desirable spectrum sensing technique for CR. Among these methods,
energy detection has been widely used in CRNs because of its computa-
tional and implementation simplicities, even though its robustness comes
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Figure 2.2: Energy detection [3]

together with some decrease in detection performance as compared to
previous methods. The energy detection model is shown in Figure 2.2,
which consists of a noise prefilter that serves to limit the noise band-
width, and a square law device followed by a finite time integrator. The
output of the integrator at any time is the energy of the input to the
squaring device over the interval T in the past. The output of the inte-
grator is finally compared with a predefined threshold 7. The detection
is a binary hypothesis test with the following hypothesis:

e Hy: y(t) is noise alone;

e Hjp: y(t) is signal plus noise.

In practice, the reliability of the PU detection at the CR-Tx is limited
by several factors, such as the attenuation due to path loss, as well as
shadowing and fading. Therefore, cooperative sensing [43,44], which al-
lows several nodes to sense jointly the spectrum environment and make
the decision in a cooperative manner combining their sufficient statis-
tics, can be see as an efficient way to solve such problems and ensure
robustness. The concept of cooperative sensing is to use multiple sensors
and combine their measurements into a common decision. There are two
ways for this approach, soft combining and hard combining which are
described in [43,44].

Resource allocation

Spectrum sensing results are used as the basis for optimizing resource
allocation. Several dynamic spectrum access schemes such as [45-47]
have been proposed using the sensing-based opportunistic spectrum ac-
cess approaches.

There are currently two main approaches for interweave cognitive com-
munications:
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e Opportunistic spectrum access (OSA) [48]: In the OSA model, the
CR users are allowed to transmit over channel of interest when
all the PUs are not transmitting there. One essential enabling
technique for OSA-based CRNs is spectrum sensing, where the
CR users individually or collaboratively detect active PU trans-
missions over the channel, and decide to transmit if the sensing
results indicate that all the PUs are inactive at this channel.

e Sensing-based spectrum sharing (SSS) [49]: In the SSS model, the
CR users are allowed to transmit simultaneously with the PUs in
the same channel even if they are active, thus each CR user coexists
with the PU and adapts its transmit power based on the detector
decision from the spectrum sensing, ensuring that the performance
degradation of each active PU link is within a tolerable margin.

As a crucial part of the resource allocation process, CR users should
decide the transmit power on the CR-Tx access the available degree
of freedom. Different from traditional spectrum assignment, the CR
paradigm enables CR users to transmit on channel overlapping with
PUs, provided that the degradation induced on the PUs’ performance
is tolerable. The way about how to measure the interference on PUs in
an efficient way is a complex and open regulatory issue [36]. Restrictive
constraints may marginalize the potential gains offered by the dynamic
resource assignment mechanism, whereas loose constraints may affect
the compatibility with legacy systems [50].

Several works have considered the interference constraints for CR users,
e.g., both deterministic and probabilistic interference constraints have
been suggested in the literature [14,39], namely: the Multiuser Interference
(MUI) power level perceived by any active PU (the so-called interfer-
ence temperature limit) [36], and the maximum probability that the
MUTI interference level at each PU’s receiver may exceed a prescribed
threshold [39,51]. In the presence of sensing errors, the access to chan-
nels identified as idle should also depend on the goodness of the channel
estimation. As shown in [52], in this case the optimal strategy is proba-
bilistic, with a probability depending on both the false alarm and miss
detection probabilities.
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2.1.3 The main challenges

There are many challenges in making CR to become a reality, includ-
ing hardware, spectrum sensing techniques, resource allocation, and the
common control channel. Many improvements from various perspectives
are necessary, such as:

e Spectrum sensing issue

Without efficient sensing capabilities, the cognition requirement
(for whites spaces, geographical information, etc.) is simply im-
possible. In fact, spectrum sensing is not always perfect, thus it
gives rise to non-zero false alarm and miss detection. False alarm
happens when the spectrum sensing results report activity of PUs,
which actually do not exist. Following the sensing result, CR. users
may stop the current transmission and decide to switch to another
channel. This causes additional channel access delay and reduction
of throughput. In contrast to false alarm, miss detection happens
when CR users fail to detect the active PUs, and continue working
on that channel. Thus, it can cause uncontrolled interference to
PUs. It is not only harmful to PUs but also harmful to CR users.
In terms of cooperative spectrum sensing, the main issues are re-
lated to how to fuse individual CR users’ decisions, and how to
perform distributed spectrum sensing with limited feedback from
each detector.

e Resource allocation issue

A channel is said to be available for CR users when it is not occu-
pied by any PUs or the interference from CR users to PU is under a
tolerable threshold. The channel availability of CR users on differ-
ent locations may be distinct from each other because of different
PU activities. The CR users may have different available channels
because of hardware limitations such as sensing constraints and
transmission constraints. This phenomenon would result in the
problem of channel heterogeneity where CR, users have different
available channels at a certain time [53]. In this heterogeneous sit-
uation, neighbor CR, users should negotiate a common channel to
communicate with each other before data transmission. However,
if the CR users do not have the willing to share the information
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with each other, they will decide to access the available channels
based on their own local information and their behavior will be-
come selfish.

Hardware issue

One of the basic features of CR technologies is the wide spectrum
working capability. The frequent dynamic variations of the carrier
frequency and the communication bandwidth require either wide-
band or narrowband tunable hardware devices (e.g., amplifiers).
From a hardware perspective, frequency tunable elements are dif-
ficult to design and costly, while wideband elements are inherently
less efficient due to the higher noise floor.

Common control channel issue

Before establishing communication, the CR users do not know
which channel can be used by each other, so they need to ex-
change messages to know the available channels globally. A com-
mon channel can be chosen based on their agreement, and gener-
ally, this requires exchanging messages through a Common Control
Channel (CCC) [54].

In order to achieve the “social welfare”, (i,e,. maximize the util-
ity of the CRNs) and avoid a harmful interference to the PU due
to the transmission from CR users, a simple solution is to have
a dedicated CCC. This channel is a dedicated licensed channel
to CR users for the exchange of control messages, thus it will not
be interrupted by any PU. In the literature, many contributions
are based on this assumption such as [55,56]. Another solution
is to choose a control channel among the available channels, such
as in [57]. However, there are several challenges related to this
latter case. Firstly, CR users should vacate the channels or reduce
the transmit power in certain channels when PUs are detected.
Therefore, the control channel should be the most reliable channel
at each moment, so that it can not be interrupted frequently. On
the other hand, if the CR users can not or do not want to exchange
their informations with each other, the CCC is redundant.
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2.2 Game Theory in CRNs

Similar to other types of communication networks, the deployment of
CRNs can be justified in financial terms if and only if the network is
utilized by multiple users [58].

Currently, mobile wireless communication networks, such as cellular sys-
tems, are centralized. These systems require an infrastructure of base
stations to route calls from one user to another. In contrast, for both
civilian and military applications, it is desirable for CRNs to be decen-
tralized, allowing also the existence of device to device (D2D) commu-
nications, as it is being considered in the latest standards (LTE Re-
lease II). In other words, the network is configured in a self organized
manner [59], which makes it possible to dispense with the need for a
costly pre-established infrastructure. Self organization builds on two
basic mechanisms: cooperation and competition; these two mechanisms
operate in a complementary manner so as to “bring order in the network
out of disorder [58]” :

e Cooperation is used to facilitate communication across the nodes
of the network without any fixed infrastructure.

e Competition is used to provide control over the power transmitted
from each individual node of the network to maintain the interfer-
ence temperature at a receiving node below a prescribed limit.

In this thesis, we focus on the problem of distributed power allocation,
thus, the goal is to design an efficient and effective transmit power al-
location policy. Most importantly, this policy does not require synchro-
nization nor centralization among the multiple users, thereby simplifying
the design of the network. In this scenario, there is limited or no infor-
mation exchange among CR users. The common control channel and
any fusion center are then not required in this model. Each CR user will
follow the criterion of competitive optimality for maximizing its own
total achievable throughput based on their own information, subject to
certain constraints. We focus on the transmit power allocation prob-
lem in non-cooperative multiuser CRNs, where the overall objective is
to maximize the sum-rate (throughput) of each CR user by optimizing
jointly both the detection operation based on sensing and the power al-
location across the channels, which can be formulated, as we show, in
terms of an equivalent non-cooperative power game.
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2.2.1 Basic concepts of game theory

Game theory is widely used in the study of economics [60]; it has also
been applied in other areas such as machine learning [61] and neuro-
science [62]. Recently, game theory has been used in CRNs [63], involv-
ing the following ingredients:

e Multiple players who, by virtue of their responsibilities as decision-
makers, are required to take specific actions.

e The actions may lead to consequences, which could be of mutual
conflict to the players themselves.

The formulation of a mathematical framework for a non-cooperative
game is based on three key elements:

e State space, which is the product of the individual players’ states.

e State transitions, which are functions of joint actions taken by
individual players.

e Payoffs to individual players that depend on joint actions as well.

2.2.2 Nash equilibrium

In [64,65], John Nash focused his study of game theory on a class of
games described as non-cooperative, simultaneous-move, one-shot, and
finite games with complete information, where:

e “Simultaneous move” means that each player picks an action with-
out knowledge of the other players’ actions.

e “Omne-shot” implies that the game is played only once.

e “Finite game” refers to the fact that the game involves a finite
number of players, with each player taking only a finite number of
possible actions.

The concept of Nash equilibrium of a game is defined as follows [64]:

19



2. STATE OF THE ART

Definition 1. A NE is defined as an action profile (i.e., vector of play-
ers’ actions) in which the action of each player is a best response to the

actions of all the other players.

The NE is a solution of a non-cooperative game involving two or more
players, in which each player is assumed to know the equilibria actions
of the other players, and no player has anything to gain by changing
only his own action unilaterally [64]. If each player has chosen an action
and no player can benefit by changing actions while the other players
keep theirs unchanged, then the current set of action choices and the
corresponding payoffs constitute a NE. The NE features prominently in
the study of game theory. This concept works perfectly well provided
two assumptions are satisfied:

e The players engaged in a game are all rational.

e The underlying structure of the game is of common knowledge to
all the players.

Under these two assumptions, the NE offers an intuitively satisfying ap-
proach that predicts the equilibrium outcome of the game as follows:
any player, being “rational”, will play a “best-response” action (i.e., the
point at which each player in a game has selected the best response
to the other players’ strategies). Moreover, under the “common knowl-
edge” assumption, this action is known to all the other players and, be-
ing rational, they will therefore play their own “best-response” actions,
leading the game to a NE [58].

2.3 The Main Challenges in This Thesis

2.3.1 Spectrum sensing

In practice, the reliability of the PU detection at the CR-Tx is limited
by several factors, such as the attenuation due to path loss, as well as
shadowing and fading. Therefore, decisions made by independent CR
users with local sensing capability about transmission parameters (e.g.,
power, etc.) generate harmful interference to the PU system or will use
very conservative allocation policies involving unnecessary transmission
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back-off and generating a throughput lower than the one that can be
achieved. As a consequence, a certain degree of performance degradation
of the PU is usually unavoidable. In this case, the influence of the sensing
accuracy on the throughput of the CR user should be taken into account
in order to perform an appropriate power allocation.

In this thesis, the detection results are based on the performance of the
energy detector in terms of its receiver operating characteristics curve,
which gives certain probability of detection and certain probability of
false alarm. The fundamental problem of this detector is to set the
optimal detection threshold, as well as the optimal sensing time, to
achieve the desired detection performance, which is optimized depending
on the particular network utility to be maximized. In order to reduce the
interference from the CR to the PU due to the non-zero probability of
miss detection and increase the probability for CR to access the available
channel, we optimize both the detection threshold and the sensing time
of the energy detector in order to obtain a better sensing accuracy. For
multiuser SISO CRNs, we consider a cooperative sensing scheme, which
can be implemented by a distributed consensus algorithm with limited
interaction among nearby CR users.

2.3.2 Power allocation

Power allocation in CRNs is substantially more complex than in tradi-
tional wireless networks. In CRNs, CR users control transmit power not
only to achieve the “best-response” actions, but also to protect PUs.
The interference generated by CR users to any PU should be carefully
considered, and should not exceed a tolerable threshold.

In this thesis, we consider the power allocation problem in single user
and multiuser CRNs for both SISO and MIMO channels based on the
sensing information. In single user CRNs, we focus on the optimization
of the power allocation for the CR-Txs jointly with the sensing, while
keeping the performance degradation of the PUs due to the transmission
of CR when a miss detection occurs. This can be enforced through a
constraint that limits the rate-loss by the PU. As a explained in Chapter
3, the result optimization problem is non-convex.

In the multiuser case, we assume that the CR users are not willing to
exchange any information, thus, the optimization problem can be refor-
mulated as a non-cooperative game. The joint optimization of detection
and power allocation result in a non-convex game, which presents a new
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challenge when analyzing the equilibrium of this game. In Chapter 4,
we focus on this non-convex property and find the equilibrium for the
proposed game.

2.4 Related Work

The general resource allocation problem in CRNs includes both the chan-
nel assignment, and the power allocation schemes. The various schemes
depend on the number of PU channels, the number of CR users, the
particular spectrum access schemes that are used, and on what kind of
type of sensing they used for their decision. In the following, we will
discuss the previous works according to different number of CR users.

2.4.1 Power allocation in single user CRNs

The problem of maximizing the throughput of the CR user without sens-
ing information (or under perfect sensing information, e.g., the proba-
bility of miss detection and false alarm are zero) has been widely studied
in the literature [66-70].

Some previous works have focused on the combination of the sensing
information together with the throughput of simplified CRNs with one
CR user and one PU [28-30,49,71-73]. The problem of designing the
optimal sensing time and power allocation strategy that maximizes the
average throughput for SSS schemes was studied in [29]. The work in [29]
was extended in [30], where the problem of finding the optimal sensing
time and power allocation was studied based on the outage capacity
constraint and the truncated channel inversion constraint, namely, a
sensing-enhanced spectrum sharing CR system.

In the literature [28, 71, 72|, the authors considered the optimization
problem considering only the sensing parameters as optimization vari-
ables. In [71], the authors proposed alternative centralized schemes that
optimize the detection thresholds for a bank of energy detectors, in order
to maximize the so-called opportunistic throughput, while keeping the
sensing time and the transmission parameters of the CR fixed and given
a priori. The optimization of the sensing time and detection thresholds
for a given miss detection probability and target transmission rate of
one CR in the presence of one PU was addressed in [28,72], respectively.
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Joint optimization of sensing information and power allocation is dis-
cussed in [49]. In [49], the sensing time and the transmit power of one
CR were jointly optimized while keeping the detection probability (and
thus the decision threshold) fixed to a target value. In [73], the au-
thors focused on the joint optimization of the power allocation and the
equi-false alarm of one CR over all the channels, for a fixed sensing time.

2.4.2 Power allocation in multiuser CRNs

In the case of SISO system model

All the aforementioned schemes are applicable for single user CRNs, and
the schemes are applicable only to CR scenarios composed by one pair
of PU Tx-Receiver (Rx) and one pair of CR Tx-Rx.

The work in [74-80] addresses the optimization of the CR users’ transmit
power in a multiuser OFDM SISO CR scenario, where [74,75] focuses
only on centralized schemes. In a decentralized multiuser scenario, CR
users can self-enforce the negotiated agreements on the usage of the
available spectrum. Every CR user aims at the transmission strategy
that maximizes its own utility function, usually the average throughput.
This inherently competitive nature of the decentralized multiuser sce-
nario leads to a non-cooperative game (NCG) [20], where the solution of
the game is the well-known concept of Nash equilibrium. The NCG the-
oretical model for power allocation in the SISO interference channels has
been addressed in [76-80], while the equilibrium model based on pricing
has been discussed in [81,82]. However, the power allocation schemes
proposed in the mentioned papers are not applicable to CRNs, since
they do not provide any mechanism to limit the performance degrada-
tion caused to PUs.

NCG theory has been successfully applied to the power allocation prob-
lem in CRNs [22-26]. The finite-dimensional variational inequality (VI)
method [83] has been used in [22-25] to analyze the existence and unique-
ness of the solution for the NCG in the CRNs. Those works are ex-
tended in [26] for a more practical scenario with imperfect CSI. How-
ever, in [22-26], no sensing is performed by CR users.

Recently, the sensing information is considered in [31] for a multiuser sce-
nario. The resulting problem is non-convex due to the information from
the sensing information. We provide an alternating direction method
to obtain the sub-optimal solution of the non-convex game. The OSA
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model is considered in [31] and the analysis of the equilibria of this
game in [31] is based on a new concept called quasi-Nash equilibrium
(QNE) [21]. QNE is a solution of a VI problem obtained under the
first-order optimality conditions of each player’s optimization problem
while retaining the convex constraints in the defining set of the VI prob-
lem. The prefix quasi is intended to signify that a NE (if it exists) must
be a QNE under certain conditions to be satisfied by the constraints
(constraint qualifications) [21].

In the case of MIMO system model

The incorporation of MIMO techniques into CRNs can improve the chan-
nel capacity by sending independent data streams simultaneously over
different antennas. There are some works that attempt to protect PUs
in MIMO CRNs while maximizing the CRNs’ throughput [34, 84-89).
In [86], the authors consider the optimization over the set of precoding
matrices for each CR and PU, allocating power over both space and fre-
quency dimensions and yielding radiation patterns that induce minimum
interference, so as to maximize the network throughput. However, due
to the challenges associated with power and spectrum optimization, all
the existing works on MIMO CRNs do not consider the joint optimiza-
tion including also the sensing information. In Chapter 5, we consider
an OSA scenario in MIMO CRNs where the overall objective is to max-
imize the total throughput of each CR by jointly optimizing both the
detection operation and the power allocation over all the channels, un-
der an interference constraint bound to PUs. The optimization problem
is analyzed as a strategic NCG, and the resulting game is non-convex,
hence, the analysis of the equilibria of this game is based on the new
concept QNE.

2.5 Conclusions

In this chapter, we first introduced the main concepts, the main tasks
and key concepts in CRNs. The current state-of-the art CR technologies,
which are certainly not able to satisfy all the technical requirements,
and the existing challenges to make CR a reality are presented in this
chapter. In addition, we discussed the multiuser CRNs that can be
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formulated using a non-cooperative game theoretic approach, as well as
the main challenges of the work in this thesis. Finally, we introduced
the related work in the same area. In the following chapter, we start
with the resource allocation problem in single user CRNs, where the
spectrum sensing problem and the optimal transmit power allocation
are the main issues we focus on.
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Chapter 3

Joint Optimization of
Detection and Power

Allocation in Single User
CRNs*

The first scenario considered in this thesis is the resource allocation opti-
mization problem in single user CRNs, where joint power allocation and
spectrum detection is one of the most important issues. In the single
user CRNs, one pair of CR Tx-Rx performs the spectrum sensing be-
fore accessing the channel. We assume an interweave system, where the
two main approaches for CR users regarding the way secondary users
access the licensed spectrum are opportunistic spectrum access (OSA)
and sensing-based spectrum sharing (SSS).

There exists currently a debate about which operation model, OSA or
SSS, is better to deploy CR users in practical systems. Generally speak-
ing, SSS utilizes the spectrum more efficiently than OSA, since the for-
mer supports concurrent PU and CR transmissions over the same chan-
nel, while the latter only allows orthogonal transmissions between them.
In this chapter, we assume an OSA model, while the SSS model is con-
sidered in Chapter 4.

*The publications associated to this chapter are [15,16]
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Figure 3.1: OFDM modulation [4]

The reliability of the PU detection at the CR-Rx is limited by atten-
uation due to shadowing, fading, as well as the hidden node problem,
that is, a CR-Rx may be interfered from the PU-Tx, but without being
blocked from the PU-Rx, an effect that is known as the hidden terminal
problem. As a result, the PU’ action is not detected and the CR trans-
mission could significantly interfere to the PU-Rx. A CR-Tx usually
needs to deal with a performance tradeoff between maximizing the rate
and minimizing the performance degradation caused to the PU trans-
mission.

OFDM is a modulation technique, depicted in the Figure 3.1, which
uses many sub-carriers, or tones, to carry a signal, which has devel-
oped into a popular scheme for wideband digital communications, such
as digital television and audio broadcasting, wireless networks, and 4G
mobile communications. The primary advantage of OFDM over single-
carrier schemes is its ability to cope with severe channel conditions (for
example, attenuation of high frequencies in a long copper wire, narrow-
band interference and frequency-selective fading due to multipath) with-
out complex equalization filters. OFDM can be viewed as using many
slowly modulated narrowband signals rather than one rapidly modulated
wideband signal. The low symbol rate makes the use of a guard interval
between symbols affordable, making it possible to eliminate intersymbol
interference (ISI) and utilize echoes and time-spreading to achieve a di-
versity gain, i.e. a signal-to-noise ratio improvement [4].

In this chapter, we consider an OFDM based communication system
and present efficient algorithms to maximize the sum-rate of the CR
by optimizing jointly both the detection operation and the power al-
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Table 3.1: Notation for single user SISO CRNs

Symbol | Meaning

Rx Receiver

Tx Transmitter

N Number of channels

T Detection threshold

Py Probability of detection

Pta Probability of false alarm

v SNR of PU at PU-Rx in channel k

Vi SNR of PU at CR-Rx ¢ in channel &

Py Transmit power of CR in channel k

Hy . Channel k is detected to be idle

Hy Channel k is detected to be occupied

Prax Maximum total transmit power of the CR-Tx

T Maximum acceptable rate-loss gap for the PU

It cp Total interference experienced by the PU-Rx in channel k&
|hi.cpl> | Channel gain in channel k between CR-Tx and PU-Rx
|hipel? | Channel gain in channel k between PU Tx and CR-Rx
|hg.er|? | Channel gain in channel k between CR-Tx and CR-Rx

location, taking into account the influence of the probabilities of miss
detection and probabilities of false alarm, namely, the sensing accuracy.
This problem can be formulated as a two-variable problem and it is
solved here by the alternating direction optimization method, operat-
ing sequentially over the power allocation and the detection threshold.
This algorithm operates basically in two regimes depending on which
constraints become active. In addition, a novel criterion is proposed to
design the power allocation, ensuring that the performance degradation
of the PU is bounded.

In the following, we introduce the system model and formulate the op-
timization problem in Section 3.1 and Section 3.2, respectively. Power
allocation with optimal spectrum sensing and the solution based on the
alternating method is presented in Section 3.3. Finally, performance
evaluation results are presented in Section 3.4. Section 3.5 states the
conclusion. Table 3.1 lists the notation used in this chapter. Matrices
and vectors are indicated in boldface.
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Figure 3.2: System Model: one pair of PU Tx-Rx and one pair of CR
Tx-Rx

3.1 System Model

In this chapter, we consider the OSA model, where the CR user can
access the channel only if the PU is detected to be absent, and the CR-
Tx deals with a performance tradeoff between maximizing its sum-rate
and minimizing the performance degradation caused to the PU.
Consider simplified OFDM based CRNs with one pair of single antenna
CR Tx-Rx and N channels belonging to one PU that are available for
the CR user, as given in Figure 3.2. We assume that the local CSI,
i.e., the channel gain between the CR-Tx and its target Rx and the
PU, is known by the CR-Tx. In practice, CSI on the CR user’s own
channel can be obtained via the classical channel training and feedback
methods, while the CSI from the CR user to the PU can be obtained by
the CR-Tx via estimating the reversed channel from the PU-Rx, under
the assumption of channel reciprocity.

In the assumed system model, the possibility that the PU’s transmit
power is a function of the received interference power from the CR-
Tx has been deliberately excluded. Otherwise, we would also need to
take into account any predictable reaction of the PU upon receiving the
interference from the CR-Tx, e.g., changes in the PU transmit power will
result in a change of the interference power level at the CR-Rx. Before
accessing the channel, each CR-Tx must first perform spectrum sensing
to determine the status of each channel. We assume that simultaneous
spectrum sensing of all the N channels is performed by the CR-Rx using
an energy detection scheme. The received signal at the CR-Rx is given
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where gy, is the CR received signal corresponding to the kth channel, Sy
is the PU transmitted signal, hy p. is the CSI from PU-Tx to CR-Rx for
the kth channel, and ny is the background noise at the CR-Rx in channel
k, which is assumed to be independent and identically distributed (i.i.d.)
additive complex Gaussian with zero mean and variance O',%, and [ is the
index of the discrete sample. The statistic is computed as the sum of
the received energy over an interval of L, samples, and the decision is
based on:

H
Yk—Z|yk |2ZH;§ v, k=1,2,... N. (3.2)

where 7, is the threshold of channel %, the hypothesis Hj j represents
the absence of a PU in channel k, and the alternative hypothesis Hj j
represents the presence of a PU in channel &, which can be reformulated
to the following two hypotheses [90]:

Ho: D) = ne(1) 53)
Hl,k : yk(l) = hk,pcsk(l) + nk(l) (34)

According to the central limit theorem, for large Lg, yi(l) are approx-
imately normally distributed. The probabilities of detection Py 4 and
false alarm Py r, for the kth channel for the CR-Tx, under the energy
detection scheme are given, respectively, by [90]:

T tfs
Pra(i,t) = Q <(01’% - —1) (2’>’k+1)> (3.5)

Tusalrit) = Q (%~ DVAF) (3:6)

k

where ¢ and ;. denote, respectively, the sensing time and the received
Signal to Noise Radio (SNR) from the PU-Tx to CR-Rx i on the channel
k. Let Ls = tfs, where f; and a,% represent the sampling frequency and
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the noise power, respectively. The function Q(x) is defined as follows:

400 2
O(z) = \/12?/ % do (3.7)

The choice of the detection threshold 7 leads to a tradeoff between
probability of false alarm Py s, and probability of detection P 4. In
an OSA model, a low probability of false alarm P ¢, is necessary to
maintain high spectral utilization in CR systems, since it would prevent
the unused spectrum from being accessed by CR users. Furthermore,
Pr.q measures the interference of CR users to the PU, which should be
limited in order to protect the PU.

3.2 Problem Formulation

Let Py denote the CR transmit power over the channel k. Since spectral
efficiency is the main overall goal of the CR users, the objective function
chosen to be maximized is the sum-rate. In this section, we analyze the
problem of optimizing the power allocation for the CR user in order to
maximize the sum-rate, taking into account the detection result. We
start from the perfect sensing case, where the probability of false alarm
Pk, fa = 0 and the probability of detection Py 4 = 1, indicating that there
is no interference to the PU. Hence, the total achievable sum-rate for
CR user, denoted as R, f(Py), is given by:

Ryf(Pr) = Zlog2< Pl W' ) (3.8)

k

The total transmit power of the CR-Tx over all channels should not
exceed its maximum allowed power. Thus, a power budget constraint
can be formulated as:

N
> P < Paax (3.9)
k=1

where Pp.x denotes the maximum total transmit power of the CR-Tx
over the N channels. The optimization problem for maximizing the
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sum-rate of the CR user can be formulated as P3.1:

Pk‘hk cr‘
max Zlog ——)

k
N
s.t. ZPk < Pmaxu
k=1
P.>0, k=1,2,...,N. (3.10)
where P = [P]Y |, |hger|? is the channel gain in channel k between

the CR-Tx and the CR-Rx. The optimization problem P3.1 is a convex
problem, thus we can establish the Karush-Kuhn-Tucker (KKT) condi-
tions and solve it efficiently. The solution is the well-known model of
water-filling, given by:

P —[1— % r (3.11)
kyawf 3 ’hk,cr|2 ’

2
where [z]* = max(0, z), Tz Is the water level, and 3 is a non-negative

dual variable associated Wlth the power budget constraint (3.9).
Considering the fact that the spectrum sensing information is not al-
ways reliable, the accuracy of detection is limited by attenuation due to
shadowing, fading, as well as the hidden node problem, leading to prob-
abilities of detection Py 4 < 1 and probabilities of false alarm Py r, > 0.
As a consequence, in the OSA model, four different rates at the CR-Rx
in channel k can be defined as shown in the following, where the first
index number describes the actual status of the PU (“0” for idle and
“1” for busy), and the second index number indicates the sensing result
obtained by energy detection.

e If channel k£ is idle and estimated to be idle, the rate is given by
—1 Prlhier]?
k00 = logg |14+ —5— ).
k

e [f channel k is idle and estimated to be occupied, the rate is given
by 0.

e If channel k is busy and estimated to be idle, the rate is given by
— Pl er|®
Ti10 = logy (1 +

2 2
T YE T,
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e If channel k is busy and estimated to be occupied, the rate is given

by 0.
We can formulate the objective function as follows:

N

R(Pam) = ((1 Pyl + (1 ?k,dm))rk,m) (3.12)
k=1

The most important constraint of CRNs involves protecting the PU
from harmful performance degradation. In this thesis, a rate-loss gap
constraint to design the power allocation is proposed, ensuring that the
performance degradation of the PU due to imperfect sensing in each
channel is bounded. On the one hand, the maximum achievable rate of
the PU in channel k without the interference from CR user is given as:

Uk,max = logg(1 +77) (3.13)

On the other hand, the maximum achievable average rate of the PU in
channel k£ with the interference from the CR user is given by:

p_2

o2
U(Tk) = Pr,a(mi) loga(1 +7) + (1 — Pra(mi)) loga(1 + ;’; By (3.14)
7cp

where 'yg is the SNR of the PU in channel k, I, ., denotes the interference
experienced by the PU-Rx due to the transmission of the CR-Tx in the
same channel k£ and the noise, that is:

Iep = [Pk cpl*Pr + 0} (3.15)
Given this, the rate-loss gap constraint can be written as follows:
Uk,max — Uk(Pk; Tk) < DUk max (3.16)

where 'y, is the maximum acceptable rate-loss gap for the PU in channel
k. Furthermore, the power budget constraint (3.9) is also considered
here. Specifically, in a real system, a high P4 and a low Py s, are
typically required. Thus in this work, we restrict the target detection
probability and false alarm to the ranges Ppq > % and Pppq < %,
respectively. This constraint can ensure that the minimum opportunistic
spectral utilization to be achieved is % According to the monotonicity
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of the Q-function, taking into account expressions (3.5) and (3.6), the
constraints are equivalent to:

Tk,min <7 < Tk,max (317)
The optimization problem for maximizing the sum-rate of the CR user,

R(P,7), P = [P, 7 = [rx]i_,, can be formulated as the following
problem P3.2:

N

max kzl ((1 — Pr.pa(Tk)) 1,00 + (1 — Tk,d(Tk))Tmo)
N

s. t. ZPk < Phax,
=1

Uk,max - Uk(ka Tk) < FkUk,ma}m

Tk, min <7 < Tk,max>
P.>0, k=1,2,...,N. (318)

3.3 Joint Optimization of Detection and Power

Allocation

The objective function in P3.2 is a non-convex function of variables: P
and 7, thus, finding the exact optimal solution for the above problem
entails a high complexity. In the following, we present two iterative
algorithms:

e Exhaustive Optimization of Power Allocation and Detection (EPD)
algorithm, which is based on an exhaustive search of the detection
threshold T;

e Alternating Optimization of Power Allocation and Detection (APD)

algorithm, which solves only convex problems in each iteration and
updates the variables in an alternating fashion.

Moreover, we prove analytically that both algorithms can converge to a
fixed point.
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3.3.1 Exhaustive optimization of power allocation and de-
tection

The global optimal solution to problem P3.2 can be found by computing
the optimal P*, for all w possible choices for 7, where ¢ is the
step size for 7, and finding the (P*, 7*) that yield the maximum sum-rate
R(P*,7*) for the CR user. For any given 7y, the optimization problem
P3.2 can be reformulated as the following problem P3.3:

N
1-7 T 1—Pral7
mgx ; (( k,fa(Tk))Tk,OO + ( k,d(Tk))TkJO)

N

st > Pi< Paax, (3.19)
k=1

k,max — Uk(%k) < FkUk,maxa (320)

P.>0, k=1,2,...,N. (3.21)

In order to analyze the problem in a more convenient form, constraint
(3.20) can be rewritten as an equivalent convex form:

Py, < Cy(7x) (3.22)

P 2 2
V%% O

B 17% U max a h 2
<2( 1—9 k,d<7k>) k,ma. N 1) |hk7cp|2 | k,cp|

(3.23)

In order to ensure there is feasible solution of Py, thus the set of P de-
fined in problem P3.3 is nonempty, we need the following two necessary
conditions per channel k:

17r‘7k~ U max
2( TPl Vkmex _ 1<~y (3.24)
ﬂ)k,d(%k) <1-T% (3.25)
The conditions above are based on the constraint (3.20), which shows
the relationship between the sensing performance and system parame-

ters. Regarding the first two constraint inequalities (3.19) and (3.20)
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3.3 Joint Optimization of Detection and Power Allocation

in problem P3.3, the optimization problem is working in two possible
regimes:

e Power Budget Limited Regime (PLR), where Puayx < S0, Ck(71),
implying that the power allocation is bounded by the total power
budget Pnax, which leads to the worst case interference condition
as considered in [36]. In this case, the first two constraints are
equivalent to Z]kV:1 Py, = Phax and Py < Ck(71);

e Rate-Loss Limited Regime (RLR), where Ppax > Zi\;l Cr(Tr),
implying that the power allocation is bounded by the rate-loss
gap constraint. Increasing the total power budget P..x will not
lead to an increase in the sum-rate of the CR user. In this case,
the optimization solution is achieved when P} = Cj(7x).

The Lagrangian of problem P3.3 is denoted as L(P,a, 3), and is given
by:

Mz

L(P,a,B) = < (1 = Pr.a(Tw))rr,00 + (1 — Proa(7a)) 7, 10)
k=1
N N
—B(> _ Pr— Pax) — Y _ on(Px — Ci(72))  (3.26)
k=1 k=1
where a@ = [ak],iv:l and ( are nonnegative multipliers corresponding

to the dual variables associated with the power budget constraint and
rate-loss gap constraint, respectively. The Lagrange dual optimization
problem becomes:

i 3.27
Join g(e, ) (3.27)
where g(a, 3) = max L(P,a,3). Furthermore, P3.3 is a convex problem

in both of those regimes. Thus, we can establish the KKT conditions
and solve P3.3 efficiently:

(Prga(Tr) = Dlhger? | (Pral) — 1)| g er|®
Pk|hk7cr‘2+0,% Pk‘hhmq‘?-i-o%—i-’}/kd%
Ozk<Pk — Ck(%k)) = O, (3.29)

+ar+08=0, (3.28)
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N

B Pe = Puax) =0, (3.30)
k=1

ap >0, B=0. (3.31)

In the RLR, the optimal solution can be obtained similar to the water-
filling (WF) algorithm:

(1= Prpa(@)+ (1 —Pra(f) 177 .. 1

- — if —>wW
P]:(RLR) Oékh’l2—g(Pk) Wi Wk
Cr(Tx) if 1 <W
wy,
(3.32)
where wy, = U':@Zij), and g(Py) and W are given, respectively, by:
k
(1—P% fa(%k))’ykalahk erl?
P — : 7 3.33
I = Bl + o)) Pl + ot vy 5
(1 = P, fa(Tr)) + (1 — Pra(Tr)) 5
W = : - : — Ci(T 3.34
ar — 9(Ck(7i)) (%) (3.54)
In addition, we define the function f(Py) as:
(1= PralTr) + (1 — Pral(e))
(P = arIn2 — g(Py) (3.35)
(1 = Prsa()) + (1 = Pra(7e))
min Py) = : o ’ 3.36
Fmin (P%) arln2 — g(Cr(7x)) ( )
max - .

arIn2 — g(0)

Notice that f(Py) is a decreasing function of Pj. Assuming wik > W,
Figure 3.3 illustrates the solution of P}, which is obtained as the inter-
section between a 45-degree line starting from the point (0, wik), and the
curve of the function f(Pj). In this case, the multi-level water-filling
level f(0) is related to Py tq(7%), Pia(7k) and channel gain |hk7cr\2, the
interference wik is related to channel gain ]hk,ch and .

Interestingly, the extreme case of Py £q(7k) = 0, Pra(7) = 1 is given
by the perfect detection information of each channel. Then, the optimal

solution is a modified version of the standard WF algorithm. Compared
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A

fmaw

fmz’n

Figure 3.3: The optimal solution P

with the standard WF algorithm, (3.32) differs in that the water-level
is no longer a constant, but it is instead a function of g(Pg). If the
function g(Py) = 0, (3 32) becomes the standard WF policy with a con-
stant water-level —, since in this case the CR transmission does not
interfere with the PU. On the other hand, if g(Px) = oo, from (3.32)
it follows that the water-level becomes zero and thus P = 0, regardless
of the interference wik, suggesting that in this case no CR transmission
is allowed since any finite CR transmit power will result in an infinite
interference power at the PU-Rx.

In the PLR, we can obtain the global optimal solution in a similar way,
which is given as:

(1= Prsal) + (1= Pra(@) 1]°
(x + 8)In2 — g(Py) Wk

P}(PLR) = (3.38)

The ellipsoid method can be used here to find the optimal solutions of o,
B and P [36], which require the subgradient form of the dual function.
The subgradlent of the dual function h(a, 3) is given by (Zy, Z1), where
Z() = max Zk 1Pk:? and Zl = [Zk 1]k 1s Zkl = Ck(Tk) PI:, where
P} is the optimal power allocation for any fixed a, §. The proposed
EPD algorithm is summarized in Algorithm 1, where v; and vy are
the iteration values, @ is the step size, and ¢ is the tolerance which is
fixed and dependent on the system accuracy.
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Algorithm 1 EPD Algorithm
1: for 7 = Tmin:Tmax do

2 repeat

3 Initialize B(v1), v1 :=0

4 repeat

5: Initialize a(v2), vy :=0

6 repeat

7 Find P*, solve P2;

8 Update ay(ve + 1) = ag(ve) + 0(P}F — Cy);

9 until If ag(ve + 1) < 0, set ag(ve + 1) = 0, Stop;
10: Or, when |ag(ve + 1) — ax(v2)| < e, Stop.
11: Update B(v1 4+ 1) = B(v1) + 03 p; Pt — Pumax);
12: until G(v1 + 1) <0, set B(v1 + 1) = 0, Stop;

13 Or, when |B(vi + 1) — B(v1)] < €, Stop.

14:  until [P*(v1) —P*(v1 —1)| <¢
15:  Update the optimal P* and the maximum sum-rate R(P*)
16: end for

3.3.2 Complexity analysis of the EPD algorithm

In the case of the EPD algorithm, the complexity is related with the
possible region of the detection threshold 7, the step size 6, as well as
the number of iterations needed to achieve the optimal Lagrange multi-
pliers a* and 8*. The time complexity to find the multipliers e and (3 is
associated with the step size 6 of the ellipsoid method and the number
of constraints. The ellipsoid method shows polynomial complexity [20]
which is given by O(%). Hence, the total complexity of the EPD algo-
rithm is O(ln L 7N2(Tm§%—7mi“)

£

3.3.3 Alternating direction optimization of power alloca-
tion and detection

The complexity of finding the global optimal solution based on the
exhaustive search approach is prohibitively high. Instead of directly
solving the non-convex optimization problem by the EPD algorithm, in
the following, we propose the APD algorithm, which is based on the
Alternating Direction Optimization (ADO) method in [91], and finds ef-
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ficiently a suboptimal solution for the non-convex optimization problem
P3.2. The ADO method is a simple but powerful method that is well
suited to convex optimization. It takes the form of a decomposition-
coordination procedure, in which the solutions to small local subprob-
lems are coordinated to find a solution to a large global problem. The
ADO method can be viewed as an attempt to blend the benefits of dual
decomposition and augmented Lagrangian methods for constrained op-
timization [91]. In ADO, the variables are updated in an alternating
or sequential fashion, which accounts for the term alternating direction.
However, for our non-convex problem, the ADO may not converge to
the global optimal points, therefore, it must be considered just a local
optimization method.

We divide the original problem P3.2 into two stages, referred as opti-
mal power allocation and local threshold optimization, respectively. In
this case, the APD finds the optimal transmit power P and detection
threshold 7 alternately.

e In the first optimal power allocation step, we maximize the sum-
rate of the CR based on the given detection threshold 7. Notice
that Py ¢o(7) and Py q(7) become constants in this case. Then,
P3.2 can be reformulated to the optimization problem P3.3, in a
similar way as for the EPD algorithm.

e Substituting the Pj obtained from the optimal power allocation
step, we optimize the local threshold 7 to get the maximum sum-
rate of the CR in the local threshold optimization step, which is
given as the following P3.4:

N

max Z <(1 = P, ra (7)) 7,00 (PF) + (1 = Pra(Th))7k,10(FF)
s. t. ZI(PII) = Pralme) <0, (3.39)
Tmink < Tk < Tmax,ks Kk =1,2,...,N. (3.40)
where:
AR(PF) =1- LU mox (3.41)

2
Uk max — 108 (1 4+ 5 2%k )

PI:‘hk,cpP'f‘JI%
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The objective and the constraint functions in P3.4 are generally non-
convex. However, this seemingly non-convex problem can be solved by
exploiting the convexity properties. For this purpose, we derive the
following proposition.

Proposition 1. The optimal solution of P3.4 is achieved when 