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ABSTRACT 

SMART SENSING AND PERFORMANCE ANALYSIS FOR 

COGNITIVE RADIO NETWORKS 

Yanxiao Zhao 

Old Dominion University, 2012 

Director: Dr. Min Song 

Static spectrum access policy has resulted in spectrum scarcity as well as low spectrum 

utility in today's wireless communications. To utilize the limited spectrum more efficiently, 

cognitive radio networks have been considered a promising paradigm for future network. 

Due to the unique features of cognitive radio technology, cognitive radio networks not only 

raise new challenges, but also bring several fundamental problems back to the focus of 

researchers. So far, a number of problems in cognitive radio networks have remained un­

solved over the past decade. The work presented in this dissertation attempts to fill some of 

the gaps in the research area of cognitive radio networks. It focuses primarily on spectrum 

sensing and performance analysis in two architectures: a single cognitive radio network 

and multiple co-existing cognitive radio networks. Firstly, a single cognitive radio network 

with one primary user is considered. A weighted cooperative spectrum sensing framework 

is designed, to increase the spectrum sensing accuracy. After studying the architecture of 

a single cognitive radio network, attention is shifted to co-existing multiple cognitive radio 

networks. The weakness of the conventional two-state sensing model is pointed out in this 

architecture. To solve the problem, a smart sensing model which consists of three states 

is designed. Accordingly, a method for a two-stage detection procedure is developed to 

accurately detect each state of the three. In the first stage, energy detection is employed to 

identify whether a channel is idle or occupied. If the channel is occupied, received signal 

is further analyzed at the second stage to determine whether the signal originates from a 

primary user or an secondary user. For the second stage, a statistical model is developed, 

which is used for distance estimation. The false alarm and miss detection probabilities for 

the spectrum sensing technology are theoretically analyzed. Then, how to use smart sensing, 

coupled with a designed media access control protocol, to achieve fairness among multiple 

CRNs is thoroughly investigated. The media access control protocol fully takes the PU 

activity into account. Afterwards, the significant performance metrics including through­

put and fairness are carefully studied. In terms of fairness, the fairness dynamics from 

a micro-level to macro-level is evaluated among secondary users from multiple cognitive 



radio networks. The fundamental distinctions between the two-state model and the three-

state sensing model are also addressed. Lastly, the delay performance of a cognitive radio 

network supporting heterogeneous traffic is examined. Various delay requirements over 

the packets from secondary users are fully considered. Specifically, the packets from sec­

ondary users are classified into either delay-sensitive packets or delay-insensitive packets. 

Moreover, a novel relative priorify strategy is designed between these two types of traffic 

by proposing a "transmission window" strategy. The delay performance of both a single-

primary user scenario and a multiple-primary user scenario is thoroughly investigated by 

employing queueing theory. 
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CHAPTER I 

INTRODUCTION 

Today's wireless communications are governed by the static spectrum access (SSA) pol­

icy, in which fixed spectrum bands are assigned to licensed users for exclusive access [1]. 

With the rapid proliferation of various wireless services, however, SSA is exhausting the 

radio spectrum. This leaves little or no spectrum for future demands, a problem known as 

spectrum scarcity. On the other hand, a large number of licensed spectrum bands are con­

siderably under-utilized in both time and spatial domains, a problem known as low spectrum 

utilization [2]. 

These issues have motivated the development of cognitive radio networks (CRNs), al­

lowing secondary users (SUs) to dynamically detect idle licensed bands and temporarily 

access them. In other words, SUs are allowed to utilize an idle licensed spectrum band 

provided that they withdraw from the band when primary users (PUs) start using it. 

CRNs have been considered as a new paradigm for future network architecture. Due to 

the unique features of cognitive radio technology, CRNs raise new challenges. Furthermore, 

with the emergence of cognitive radio technology, many fundamental problems that were 

well studied for traditional wireless networks are being revisited. Over the past decade, there 

have been considerable research efforts on CRNs, such as spectrum sensing and dynamic 

spectrum allocation [3-8], MAC protocol design [9,10], capacity analysis [11,12], etc. 

However, many problems in CRNs remained unsolved so far. The work presented in this 

dissertation attempts to fill some of the gaps. It consists of a weighted spectrum sensing 

technology in an infra-structured CRN; a design of a novel smart three-state sensing model 
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in co-existing multi-CRNs; a new sensing technology to implement the three-state sensing 

model; performance analysis of smart sensing and the delay investigation on SU packets 

supporting heterogenous traffic. 

1.1 PROBLEM STATEMENT 

Spectrum sensing plays two critical roles in CRNs. First, before an SU transmits a 

packet, it needs to sense the spectrum environment to find an available spectrum band (a 

band without PU signals), which is referred as a channel hereafter. Second, during the SU 

packet transmission, the SU needs to continue sensing its channel to detect if a PU signal 

appears or not. If yes, the SU needs to vacate the channel immediately to avoid interferences 

to PUs. 

Spectrum sensing is quite a challenging problem. This is because an SU cannot have a 

direct measurement of the channel between a PU receiver and a PU transmitter. In fact, an 

SU cannot even measure if a PU receiver exists, e.g., a TV terminal. How to sense channels 

effectively and accurately is an open research area. The work in this dissertation makes an 

effort to solve this problem. 

Performance is a significant aspect of evaluating wireless networks. It is well known that 

throughput, fairness and delay are important performance metrics in traditional networks. 

However, their analysis is relatively new in CRNs and still in their infancy. This dissertation 

primarily focuses on the throughput and fairness in co-existing multiple CRNs and delay 

analysis in a single CRN. 

The main goals of this dissertation are listed as follows: 

• To develop a spectrum sensing technology with accurate sensing. 
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• To build a novel sensing model which is applicable to the scenario in which multiple 

CRNs co-exist in an area. 

• To design a sensing method to enable the new sensing model practical. 

• To analyze how to use a smart sensing model to achieve fairness among multiple 

CRNs. 

• To analyze the queuing delay in a single CRN with one-PU and multiple-PU scenarios 

supporting heterogenous traffic. 

1.2 DISSERTATION CONTRIBUTIONS 

This dissertation is comprised of four major contributions. The first contribution is that 

a weighted cooperative spectrum sensing framework for infrastructure-based cognitive radio 

networks is designed, to increase the spectrum sensing accuracy. The framework contains 

two modules. In the first module, each SU performs local spectrum sensing and computes 

the total error probability, which combines the false alarm probability and the miss detection 

probability. The total error probability and the energy signal from the PU are then sent to the 

base station. In the second module, the base station makes a final decision after combining 

the weighted energy signals from all SUs. The final decision is then broadcasted back to all 

SUs. To reduce the computation complexity and communication overhead, the base station 

also instructs the SUs that have large total error probabilities not to report their local sensing 

results. A theoretical model for the proposed framework is designed, in which the minimum 

number of SUs required to participate in cooperative sensing, subject to a given total error 

probability, is derived. 
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The second contribution is that the scenario with multiple co-existing CRNs is brought 

into focus. To our best knowledge, there has been very limited effort in this area. The ma­

jority of existing spectrum sensing algorithms aim to detect the existence of a signal on a 

channel, i.e., they classify the channel into busy or idle, referred to as a two-state model in 

this dissertation. Once a signal is detected, an SU is restrained from transmission on this 

channel. While this two-state model works properly when there is only one CRN, it signif­

icantly limits the potential and fairness of spectrum access when there are multiple CRNs 

co-existing in an area. This is because if an SU from one CRN is continuously accessing the 

spectrum, SUs from all other CRNs would detect the channel as busy and hence starve. To 

solve this problem, a smart sensing model, i.e., a three-state sensing model is built. This is 

known as the first idea in recent studies. Specifically, this model distinguishes the channel 

as idle, occupied by a PU, or occupied by an SU. To accurately detect each state of the 

three, a methodology of a two-stage detection procedure is presented. In the first stage, en­

ergy detection is employed to identify whether a channel is idle or occupied. If the channel 

is occupied, received signal is further analyzed at the second stage to determine whether the 

signal originates from a PU or an SU. At the second stage, a statistical model is developed, 

which is used for distance estimation. The false alarm and miss detection probabilities for 

the spectrum sensing technology are theoretically analyzed. 

The third contribution lies in analyzing how to use the smart sensing model to achieve 

fairness among SUs from multiple CRNs. To make this analysis complete, a fairness-

achieved media access control (FMAC) protocol is designed. Associated with FMAC, a 

novel Markov chain model is developed, which fully takes the PU activity into account. 
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Afterwards, the significant performance metrics including throughput and fairness are care­

fully studied. In terms of fairness, the fairness dynamics from a micro-level to macro-level 

is evaluated among SUs from multiple CRNs. The fundamental distinctions between the 

two-state model and the three-state sensing model are also addressed. As far as we know, 

the three-state sensing model coupled with the thorough theoretical analysis on performance 

is investigated for the first time. 

The fourth contribution is that the delay performance of a CRN supporting heteroge­

neous traffic is analyzed, an area which has received little attention. In order to guarantee 

PUs licensed membership, packets from PUs are distinguished from SUs by employing an 

absolute priority scheme. Unlike most of the previous studies that assumed all SUs are of 

the same priority, priority differentiation for SU packets is taken into account in this dis­

sertation. The packets from SUs are classified into either delay-sensitive packets or delay-

insensitive packets. Moreover, a novel relative priority strategy is designed between these 

two types of traffic by proposing a "transmission window" strategy. The delay performance 

of one-PU scenario and multiple-PU scenario is thoroughly investigated employing queue-

ing theory. In the multiple-PU scenario, a dynamic and adaptive channel selection scheme 

based on learning automata is developed with the objective of reducing the average delay 

for all SU packets. 



6 

13 DISSERTATION OUTLINE 

The remaining part of this dissertation is organized as follows: Chapter II reviews the 

recent literature on CRNs that are related to this dissertation. In Chapter HI, a weighted co­

operative spectrum sensing framework for an infrastructure-based CRN is presented. Chap­

ter IV firstly brings up a scenario in which multiple CRNs co-exist in an area and further 

points out the disadvantage of the conventional two-state sensing model. Afterwards, a 

smart three-state sensing model is designed to overcome this weakness. Specifically, the 

smart sensing is developed to achieve fairness among SUs from multiple CRNs. Further­

more, to enable this three-state sensing model's practical use, a methodology of a two-stage 

detection procedure, to accurately detect each of the three states, is presented. Chapter V is 

dedicated to analyzing the performance of the smart sensing model coupled with the pro­

posed fairness-achieved MAC (FMAC). A Markov Chain is built to model it. Throughput 

and fairness is thoroughly analyzed based on the Markov chain model. Chapter VI focuses 

on the delay analysis for CRNs supporting heterogeneous traffic. Queueing delay is ana­

lyzed in both the single-PU and multiple-PUs scenarios. Conclusions and future research 

are summarized in Chapter VII. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

This chapter reviews the recent literature on spectrum sensing and performance analysis 

in CRNs. Due to the space limit, only the work closely related to this dissertation will be 

examined. 

This chapter is organized as follows. The state-of-the-art technologies on spectrum 

sensing are first briefly introduced, including local sensing in Section II. 1 and cooperative 

sensing in H.2. The related MAC design is summarized in IL3 and performance analysis is 

reviewed in H.4. 

II.1 LOCAL SENSING 

Spectrum sensing, that is, to detect the usage of channels, plays a critical role in CRNs. 

This is because SUs must be capable of sensing the spectrum environment accurately, and 

thus ensure that they will access the channel only when no PUs are present as well as 

withdraw immediately when PUs start using it. Spectrum sensing can be conducted via two 

modes: single-radio and dual-radio. In the former mode, the single radio is responsible for 

both spectrum sensing and data transmission. These two tasks are performed alternately. 

This mode is easy to implement and the cost is low. However, it is less efficient for the 

spectrum utilization. In the dual-radio mode, one radio keeps sensing all the time while the 

other one is dedicated for data transmission. This mode provides relatively high spectrum 

utilization with the cost of power consumption and implementation complexity. 
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Spectrum sensing in cognitive radio networks can be generally classified into two cat­

egories: local sensing and cooperative sensing. In local spectrum sensing, each SU inde­

pendently makes a decision on channel availability based on the information collected. It 

will then attempt to access a selected channel if there are idle channels; otherwise, it keeps 

sensing. 

A variety of individual sensing approaches have been proposed. Well-known techniques 

include matched filter detection, energy detection and cyclostationary feature detection. 

Theoretically, matched filter detection is the optimal solution for signal detection. Due to 

the considerable difficulty in implementation, however, this solution turns out to be more 

studied theoretically. Energy detection is a sub-optimal solution without any prior knowl­

edge of the PU signal. It has low computation complexity and is easy to be implemented. 

However, it is susceptible to the uncertainty of noise power [13]. Furthermore, energy 

detection is not able to distinguish between noise and signal. To overcome the failure to 

differentiate signal from noise, cyclostationary feature detection attracts the focus of some 

researchers [14] [15]. Nevertheless, the computational complexity of this feature detection 

is significantly high. 

All of three aforementioned approaches can be used alone, that is, with only one method 

involved during the spectrum sensing process. Another possible solution is to combine any 

two of them, which is referred to as two-stage spectrum sensing. A two-stage detection ap­

proach, combining energy detection and feature detection, was proposed in [16] [17]. The 

primary purpose of the existing two-stage detection method is to efficiently differentiate 

signal from noise. In addition to these three methods, several other approaches have been 

developed recently. Eigenvalue based method is designed in [18], which is based on the 
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eigenvalues of the covariance matrix of signals received at the SUs. As a powerful math­

ematical tool for analyzing signals, the wavelet based method is employed to detect the 

spectrum holes [19]. 

Location measurement is a potential solution to determine whether the signal is from a 

PU or not, given the location of PU is known. Location measurement has been studied in 

various fields, such as the security issue in wireless networks. The authors in [20] provide 

two methods to avoid malicious attacks against beacon-based location discovery in sensor 

networks. In [21], the authors present an attack-resilient cooperation stimulation system 

for autonomous ad hoc networks. The basic idea is to stimulate cooperation among selfish 

nodes and defend against malicious attacks. In this dissertation, a distance estimation, in­

stead of location estimation, is employed. Specifically, the possible range of the transmitter 

location rather than a specific estimated location of the transmitter is estimated. In this way, 

the computational complexity will be remarkably reduced. 

II.2 COOPERATIVE SENSING 

An individual SU is not sufficient to provide accurate detection results. This is be­

cause an SU may experience severe fading, shadowing and other issues in the complicated 

wireless environment. Consequently, cooperations among SUs are required to improve the 

detection accuracy, which is known as cooperative sensing. 

In cooperative sensing, each SU independently performs local spectrum sensing and 

makes a binary decision (idle or occupied) for a channel. This channel is determined as 

idle by cooperative sensing if all SUs (or a certain number of SUs) find that it is idle. The 

reader is referred to [3] [22] for the benefits of cooperative sensing. Cooperative sensing 
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can be implemented in a centralized or a distributed mode. In the centralized mode (e.g., 

see [6]), a base station (BS) collects the local sensing information from all SUs, and then 

makes the final decision. In the distributed mode (e.g., see [4]), SUs exchange local sensing 

information with each other and vote for a final decision. 

Many cooperative sensing schemes have been proposed recently. The detection accu­

racy and sensing efficiency have been studied in [23], where a theoretical framework was 

developed to optimize sensing parameters to maximize the sensing efficiency, subject to the 

interference avoidance constraint. In [24], a coalitional game strategy is proposed to analyze 

the behavior of SUs in distributed cooperative sensing. The relation of the detection accu­

racy and sensing efficiency was modeled as a non-transferable coalitional game. In [25], 

the authors proposed a technique that uses a varying number of samples, and introduced 

a reputation-based mechanism to the sequential probability ratio test. In [26], SUs are di­

vided into a few groups and each group chooses a head with the highest signal-to-noise ratio 

(SNR). Each SU reports its local sensing result to its head which makes a preliminary deci­

sion based on the reports from its members. Afterwards, group heads report their decisions 

to the BS. The BS makes a final decision using an "OR" rule, i.e., the result is 1 (channel 

is occupied by PU) as long as one group head report is 1. In [5], a weighted cooperative 

sensing is proposed based on the SNR, with the objective to maximize the detection sen­

sitivity while meeting a given requirement on the false alarm probability. An SU's weight 

is decreased if it experiences a lower SNR. The authors in [27] propose another weighted 

cooperative sensing scheme, with the motivation of equal probabilities of false alarm and 

miss detection. The idea is that SUs with large SNR are assigned with large weights and 

thus yield more contributions to the global decision. However, as pointed out in [28], in 



the presence of noise uncertainty, SUs below a certain SNR cannot improve their perfor­

mance even with infinite sensing time. In other words, SNR is not a suitable parameter to 

be used for selecting weights, because of its uncertainty in noise power. In addition, it is 

well acknowledged that there is a trade-off between the false alarm probability and the miss 

detection probability. Thus, optimizing one of them as in [5], or simply constraining them 

to be equal and then optimizing one of them as in [27], does not fully consider this trade-off. 

n.3 MAC DESIGN IN CRNS 

The birth of CRNs occurred over a decade ago, however, the MAC design in CRNs is 

still in its infancy. The IEEE 802.22 working group has been making efforts on proposing a 

standard MAC protocol. Currently, the group concentrates primarily on the TV frequency 

spectrum [29]. A general MAC design in CRNs is still an open question and has received 

more and more consideration recently. 

In [30], the authors develop a decentralized cognitive MAC protocol in Ad Hoc Net­

works. The sensing errors and collisions between SUs and PUs are taken into account. 

In [9], a MAC protocol is designed for multi-channel wireless networks. Each available 

channel is divided into recurring superframes. To coordinate among SUs, a rendezvous 

channel is assigned delicately. Several researchers have dedicated themselves to design­

ing a cognitive MAC based on the well-known IEEE 802.11. The authors in [31] consider 

a CRN with a single channel wand and assume the PU operates on a slot-by-slot basis. 

They further divide each slot into mini-slots for SUs' transmission. In [32], the authors 

design a periodic MAC protocol, in which SUs cooperate to periodically sense channels, 

report channel states and exchange control signals. The protocol is analyzed based on the 



two-state model. 

In all the above work on MAC, the two-state model is predominantly employed. Mean­

while, most existing MAC protocols target the throughput improvement while the fairness 

performance receives limited attention. In this dissertation, to fill the void, a MAC with a 

goal to achieve fairness among SUs from multi-CRNs is designed. 

II.4 PERFORMANCE ANALYSIS IN CRNS 

Performance analysis is a significant perspective in CRNs, whereas throughput has re­

ceived considerable attention. The throughput limit in the presence of dynamic and dis­

tributed spectral activity is studied in [11]. Quality of service (QoS) has recently become 

involved in the throughput analysis. In [33], QoS provisioning for voice service is con­

sidered. In [34], the two-state sensing model is employed. Based on this model, the per­

formance of SU transmission over time-selective flat fading channels is studied. The QoS 

constraints and channel uncertainty is taken into account. 

Fairness is another important performance metric that started obtaining attention re­

cently. The authors in [35] consider the fairness in scheduler design for distributed CRNs. 

A timer mechanism is developed to achieve round-robin, max-min and proportional fair­

ness in a CRN. Proportional fairness of two SU groups in a cognitive radio (CR) network 

is studied in [36]. In contrast, the research on fairness of SUs among multiple CRNs is 

fairly few. In this dissertation, co-existing multiple CRNs is one of major concerns. Ac­

cordingly, a smart three-state model is developed to achieve fairness among multi-CRNs. 

To our best knowledge, it is the first time fairness performance among multiple CRNs has 

been evaluated. 



Traffic delay is also a critical network performance metric. However, there have been 

few studies on traffic delay in CRNs. Queueing theory is utilized in [37] to analyze the 

stable throughput of cognitive radios with and without relaying. Specifically, the analysis 

included: 1) random packet arrivals; 2) sensing errors at the secondary link; and 3) power 

allocation at the secondary transmitter. However, the authors in [37] only consider a two 

single-link users model, one PU and one SU. In this dissertation, a model with multiple PUs 

and multiple SUs is studied, which is the common case for typical CRNs. 

The authors in [38] also utilize queueing theory to derive bounds for the throughput and 

delay of SU traffic in CRNs. They consider a network model in which all PUs and SUs are 

in a single-hop single-channel network. Hence, the channel selection for SUs was ignored. 

Most studies on CRNs assume that the bandwidth of every channel is the same, and thus the 

data rate on different channels is the same from the point of view of SUs. The work in [39] 

considers heterogenous bandwidth of channels, but focuses on a CRN consisting of SUs 

only, without consideration for coexistence of PUs and SUs. The authors in [40] take the 

heterogenous multimedia users into account. All their work is based on an absolute priority 

scheme over SUs. In this dissertation, a more general network model is considered and 

hence is significantly more practical than the previous studies. The complicated coexistence 

of PUs and SUs are taken into consideration. Furthermore, a novel priority differentiation 

using relative priority strategy among SUs is proposed. Finally, delay analysis of PUPs, 

DSPs and DIPs is exploited, via coupling queueing theory and channel selection strategy. 

In a multiple-channel CRN, one fundamental problem is how to select an appropriate 

channel for each SU. In this dissertation, learning automata (LA) is employed to design a 

novel channel selection algorithm, with the objective of reducing the average delay for SU 
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packets. LA was invented decades ago [41] and has evolved into a powerful tool to facilitate 

network design. For instance, in [42,43], LA has been used to develop a stochastic channel 

selection scheme for CRNs, with the objective to maximize the probability of successful 

transmission. 
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CHAPTER III 

WEIGHTED COOPERATION SPECTRUM SENSING 

Spectrum sensing plays a critical role in cognitive radio networks. A good sensing 

scheme can reduce both the false alarm and the miss detection probabilities, and thus im­

proves spectrum utilization. In this chapter, a new metric, total error probability, is pro­

posed to measure the accuracy of spectrum sensing. A unique feature of the total error 

probability is that it combines both the false alarm probability and the miss detection prob­

ability, as well as takes the PU activity into account. A weighted cooperative spectrum 

sensing framework for infrastructure-based cognitive radio networks is designed. Two mod­

ules are included in the framework. In the first module, each SU performs local spectrum 

sensing and computes the total error probability. Instead of simply providing a binary de­

cision, the total error probability and the energy signal from the PU are sent to the base 

station (BS). In the second module, the BS makes a final decision after combining the in­

formation from all SUs and notifies them with the final decision. To take the fading and 

shadowing into account, the sensing information from a SU that has a higher total error 

probability is assigned with a lower weight. To minimize the detection error probability, 

an optimal threshold is derived. For SUs that have large total error probabilities, their local 

sensing results have negligible contribution to the decision making at the BS. To reduce the 

computation complexity and communication overhead, it is not necessary for every SU to 

participate in cooperative sensing. The minimum number of SUs required to participate in 

cooperative sensing is also studied. 

This chapter is organized as follows. Section IH.l introduces the network model and 
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the main idea. Section IH.2 presents the detailed design of the proposed spectrum sensing 

framework along with in-depth analysis. The numerical results are presented in Section 

m.3. Summaries are concluded in Section III.4 

IH.1 SYSTEM MODEL AND MAIN IDEA 

An infrastructure-based cognitive radio network is considered, which consists of one 

PU, one BS, and M SUs. SUs opportunistically share a licensed channel with the PU for data 

transmission. From the perspective of SUs, the channel simply alternates between idle (no 

PU activity) and occupied (with PU activity) status. Note that the status of idle or occupied 

is observed at the session level, rather than at the packet transmission level. The short quiet 

intervals between packet transmissions should not be counted as 'usable' idle periods by a 

good channel selection algorithm in CRNs. The channel selection algorithms should select 

the channels that have been idling for the relatively long period of time which happens 

between two consecutive communication sessions. The channel idle/occupied durations are 

assumed as independent random variables, and the channel activity is modeled as a semi-

Markov process. Let Hq and Hi denote the event that the channel is in idle or occupied 

status, respectively. Let a and (J denote the mean occupied and idle durations of the channel, 

respectively. Then, the probabilities of the channel being idle and occupied are given as: 

= (1) 

SUs use energy detection for local spectrum sensing. The PU's signal is assumed reasonably 

higher than the noise level. A basic hypothesis model for the local spectrum sensing can be 

defined as follows: 
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1m, if Ho (2) 

s  +  m,  i fH \  

where is the signal that SU i received, n, is the zero-mean additive white Gaussian noise 

(AWGN), i.e., n, ~ fA£(0,a?), and s is the signal that the PU transmits. The channel gain is 

ignored because it is often assumed to be constant during the detection interval. 

Final decision (0/1) 

PU 

BS 

Fig. 1: Weighted cooperative spectrum sensing framework 

The weighted cooperative sensing framework has two modules as shown in Fig. 1. In the 

first module, each SU performs local spectrum sensing and computes the total error prob­

ability. The total error probability and the energy signal are then sent to the BS through a 

common control channel. For the local sensing process of SU i, the received signal *,• is first 

pre-filtered by an ideal band-pass filter. The output of the band-pass filter is then squared 

and integrated over the observation period. The output of the ith integrator representing the 

energy signal from the ith SU, denoted by yi, is compared with a local threshold y to make 

a local sensing decision. The accuracy of the local sensing decision is characterized by a 

total error probability, defined as follows, 
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(3) 

where Pj = P(yi > Y\Hq) represents the false alarm probability, and Pl
m = P(y; < y |/fi) 

represents the miss detection probability. Notice that both F*m and are conditional prob­

abilities. Thus, the measurement of the total error probability takes the PU activity into 

account. 

In the second module, the BS makes a final decision after combining the weighted en­

ergy signals and then notifies all SUs with the final sensing decision. To differentiate the 

local sensing accuracy, a SU that has a higher total error probability is assigned with a lower 

weight. Mathematically, the output from the BS can be written as: 

where w; is the weight of the i t h  SU. The output of the BS is then compared with a decision 

threshold y. If Y > y, the channel is determined to be occupied by the PU; otherwise, the 

channel is determined to be idle. This decision is then broadcasted to all SUs. Before 

presenting the details of each module in the next section, the performance of the generic 

cooperative spectrum sensing is first analyzed. 

In the generic cooperative spectrum sensing (e.g., [44] [45]), a channel is determined to 

be idle only if all SUs report the channel idle status to the BS. As a result, the false alarm 

probability Pf and the miss detection probability Pm can be derived as follows: 

M 
Y =  Y ,wy i ,  i= 1,2 Af, (4) 

M 
(5) 

i=i 
M 

Pm = IK (6) 
i=l 
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Correspondingly, the total error probability Pe is: 

Pe = P{Ho)-Pf + P{Hi)-P,. 

P 
a + p  

M 

i= 1 

a  M 

a + p y n*- (7) 

Since Fm is in the range (0,1 ),Pm«Pi
m, which means that the generic cooperative sens­

ing substantially decreases the miss detection probability. The price paid, however, is the 

considerable increment of false alarm probability, since Pf» Py As a result, the generic 

cooperative sensing does not perform well in terms of the total error probability (which will 

be verified in Section III.3). 

m.2 ANALYSIS 

in.2.1 LOCAL SPECTRUM SENSING 

Let the bandwidth of the ideal band-pass filter be W. Then, the number of samples 

during the sensing period T is N = 2T • W. Let Nq denote the two-sided noise power density 

spectrum at SU i. Then, the noise variance of = 2Nq • W. The output of the ith integrator 

with N samples can be represented as: 

N 
X=Ete(*)|2 ,  (8) 

k=l 

Here, yi is the sum of the square of N independent Gaussian distributed random variables. 

As such, y, follows the chi-square distribution, i.e., 
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y .  I Xn if #0 (chi-square) 

<? ~ i (9) 

' XnQ*) ifH\ (noncentral chi-square) 

where X,,- = and Es is the signal energy [46]. 

According to the central limit theorem [47], the chi-square distribution approaches a 

normal distribution when the degree of freedom, N, increases. Specifically, 

*t(N,2N) H0 

K ( N  +  h a ( N  +  h ) )  #i 

yi 

~2 ~ of 
(10) 

3\C(W-o?,2tf-cf) Ho 

^((N+X^ajaiN + l^-af) HX 

(11) 

The (conditional) means and variances of yi are represented as: 

E ( y i \ H o ) = N - d f  (12) 

Var{yi\Ho) = 2N-af (13) 

EiyilH^^iN + X^-af (14) 

Var(yi\Hi)=2(N + 2h)-df (15) 

As discussed in the last section, a threshold-based approach is used in cooperative sens­

ing to determine the channel status. Specifically, for the ith SU, if yi is larger than a threshold 

y, the channel is seen as occupied. The false alarm probability Fj and miss detection prob­

ability P'm can be calculated as: 
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(16) 

(17) 

where Q is the Q-function or tail probability of Gaussian distribution. Substituting Eqs. 

(16) and (17) into Eq. (3), it is straightforward to get the total error probability. The deriva­

tion of the optimal threshold i* for the ith SU, because it follows the same rationale as 

the derivation of the optimal threshold 7* for the BS which will be described in the next 

subsection. 

Two issues need to be addressed for the BS to make a decision on the channel status. 

First, how to assign an appropriate weight to each SU in order to alleviate the fading and 

shadowing effects. Second, what is the optimal threshold to be used by the BS in order to 

minimize the total error probability? 

The basic idea for weight assignment is that a SU with a higher error probability is 

assigned with a lower weight, as illustrated in Algorithm 1. First, the weight of each SU 

is computed based on the error probability. Then, all weights are normalized to satisfy 

With the assigned weight for each SU, the output signal at the BS is Y = Y!iL\ wi)>i- Due 

to the fact that all y, (1 <i<M) are independent random variables following Gaussian 

distribution and w, can be viewed as a constant in each sensing period, Y should also follow 

in.2.2 OPTIMAL DECISION MAKING AT THE BS 

E£,w,•(*) = !• 
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Algorithm 1 Weight Assignment 

Input: Pe for (i = 1,...,M) 
l: for i = 1 to M do 
2: W* = \/Fe 

3: end for 
4: for i = 1 to M do 

M 
5: Wi = w*/£ vv£ 

*=1 

6: end for 

(IB) 

a Gaussian distribution, i.e., 

*£(E" l t»i' E" i w? • Var(y,\Ho)) H0 

*C{lOL 1 • £(yil«l), E" 1H? • Var(y(|H,)) Hi 

The (conditional) means and variances of Y are denoted as: 

M 
E(r | f fo)  =  I> .£fo | f fo)  ( 1 9 > 

/= 1 
M 

Var(Y\H0) = £wt-Var(yi\HQ) 
i=i 
M 

E(r|Hl) = I>-«(y<|Hl) (20) 
1=1 

M 
Var(r\Hi) = 'Erf-Va1y,\HI) (21) 

1=1 

Let y denote the threshold to determine channel status by the BS, i.e., if Y > y, then 

BS determines that the channel is occupied. Then the false alarm probability Pf and miss 

detection probability Pm of the weighted cooperative spectrum sensing can be derived as: 

p m  = p r (y<m) =  i -Q(^^j ) .  (22)  
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Accordingly, the total error probability Pe can be computed as: 

P t  = P{HQ)>P f+P{Hi).Pm 

_ P c( y-E(Y\H0) N 
a+P *\y/Var(Y\Ho)J 

a+p \  J  
R /,+°° ,2 

•  J y .  e ~ ? d t +  
VH-(«+W 

r'+oo ,2 
Y-g(y|//i) 1 

x/Vor^lff,) 

To minimize the total error probability Pe, its derivative is computed as: 

ay.) P - iMff l . ] '  
3(y) y/2ii • (a + P) • y/Var(Y\Hn) 

+  . - tBSM'  
V2i-(a+P)Vvi"'(l'|Hi) 

Let 

(23) 
S(Y) a (23) 

The optimal threshold y* to obtain the minimum total error probability (Pe) is as follows 

£(y |tf 1) Var(y |tfp) - £(y |H0) Var(y |Hi) -

[Var(y|Ho)-Var(K|H,)] 

where 

A = [2E{Y|flo) • Var{Y\Hx) - 2E{Y\HX) • Var(Y|tf0)]2 

-4[Var(Y\H0)-Var(Y\Hi)] • {var(Y\H0) -£(F|Hj)2 

- Var(y |Hj) • E(Y\H0)2 + 2Var(F|i/0) • Var(Y\Hi)-
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The shape of Pe and the existence of the minimum of Pe are shown in Figs. 2 and 3 (to be 

discussed in Section IDL3). With the optimal threshold 7* available, the BS then compares 

its output Y with this threshold to determine if the channel is occupied (if Y > 7*). The BS 

then broadcasts this decision to all SUs. Note that Eq. (24) can also be used by each SU to 

calculate the optimal local threshold y * by replacing Y with >>;. 

in.2.3 MINIMUM NUMBER OF SUs REQUIRED FOR COOPERATIVE SENS­

ING 

One way to reduce the computation complexity and communication overhead of the 

weighted cooperative spectrum sensing is to reduce the number of SUs involved in the 

decision-making. For SUs that have large total error probabilities and thus low weights, 

their local sensing results have negligible contribution to the decision making at the BS. 

As such, a sound decision can still be made at the BS even though these SUs do not par­

ticipate in cooperative sensing. On the other hand, if these SUs do not need to participate, 

i.e., transmit their local sensing information to the BS, the computation complexity and 

communication overhead can be reduced, particularly in large networks. 

Let e denote the maximum tolerable error probability, and m denote the minimum num­

ber of SUs required to participate in cooperating sensing, under the constraint that the total 

error probability is not larger than e. To find m, the BS first sorts all SUs by their weights at 

the descending order. Noticing that the total error probability Pe is a non-increasing function 

with respect to the number of SUs, the following equation holds 

m = argmin{Pe(i) < e}, 
i 

(26) 
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where Pe(i) is the total error probability when the BS makes the decision based on the local 

sensing information of the first i SUs. 

By the time the BS broadcasts its decision to all SUs, it will also announce the cut-off 

total error probability C, = Pe(m) (the total error probability of the mth SU in the sorted 

list). In the next sensing period, each SU will utilize the cut-off probability £ as a guide 

to determine if it needs to send its local sensing result to the BS. Specifically, after the SU 

performs the local spectrum sensing, if the computed total error probability is larger than 

£, then this SU does not need to report the local sensing result to the BS. Thus, both the 

computation complexity at the BS and the communication overhead between SUs and the 

BS are reduced. One may note that £ has actually been determined based on the sensing 

results in the current sensing period, and may not be exactly the same as the one for the 

next sensing period. This issue can be resolved by two techniques. First, a margin can be 

added to the cut-off probability to accommodate the sensing variations in the next period, 

i.e., using a larger value than Pe.g., announcing C, = P?+J (j > 0) instead of £ = (note 

that with the sorted list, P?+J > P?) holds. Second, if in a sensing period, the total error 

probability Pe computed by the BS based on the sensing information of all reported SUs is 

larger than e, this means that the cut-off probability t>, announced in the last sensing period, 

was too small, and, based on the difference between e and Pe, a properly adjusted cut-off 

probability £ + A will be announced for the next sensing period, so that more SUs will send 

their sensing results to the BS, to obtain a smaller Pe < e. 
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IH.3 NUMERICAL RESULTS 

In this section, the performance of the proposed weighted cooperative spectrum sensing 

is evaluated. 10 SUs are considered unless otherwise noted. Without loss of generality, the 

transmitted PU signal is assumed to be s(k) = 1. 

First, a moderately noisy environment is considered, where for each SU, the noise vari­

ances a, are randomly generated as Gaussian distribution with mean 0 and variance 1. Fig. 

2 illustrates the false alarm probability Pf, the miss detection probability Pm, and the total 

error probability Pe as a function of the decision threshold y, when P(Hq) = 0.2, 0.5 and 

0.9, respectively. 

It can be seen that in Fig. 2, the false alarm probability decreases when the thresh­

old increases. This fits well with the physical meaning of the false alarm. That is, when 

the decision threshold is low, it is prone to incorrectly detect the presence of PU. With the 

threshold increasing, the false alarm probability decreases, and drops to a small value at 

the optimal threshold. The miss detection probability, however, increases along with the 

threshold. The figure also shows the inherent trade-off relationship between the false alarm 

probability and the miss detection probability. The total error probability also changes with 

varying thresholds. The minimum total error probability is obtained at the optimal thresh­

old. Table 1 compares the theoretical results obtained by Eq. (24) and the simulation results 

with regard to the optimal threshold and the corresponding total error probability. Clearly 

they match very well. Note that the use of Pe as the performance metric is a good trade-off 

between the miss detection and the false alarm probabilities, although other combinations 

of miss detection and false alarm probabilities as performance metrics are also possible. 

This is because the minimum of Pe is usually obtained at a point where the miss detection 
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and false alarm probabilities are at the expected values for the corresponding user activity. 

For instance, the scenario with P(Hq) = 0.9 and P(H\) = 0.1 is examined, which indicates 

that the PU has a low duty cycle. The system obtains the minimum Pe when Pf = 0.05 

and Pm = 0.34, i.e., the false alarm probability is low and the miss detection probability is 

relatively high. This is expected based on the user activity, since when the PU is at low duty 

cycle, the false alarm probability should be low while a relatively higher miss detection 

probability can be tolerated (note that it is not possible to let both be low). 

Table 1: The comparison of yand P'e between theoretical and simulation (denoted as 'Sim') 
results in Fig. 2. 

P(H0) Y n P(H0) Theoretical Sim Theoretical Sim 

0.1 49.7119 50 0.0303 0.0305 
0.2 51.8787 52 0.0546 0.0556 
0.3 52.4793 52 0.0767 0.0769 
0.4 53.2524 53 0.0858 0.0861 
0.5 54.1804 54 0.0908 0.0907 
0.6 55.2552 55 0.0846 0.0848 
0.7 56.5407 57 0.0745 0.0749 
0.8 58.2112 58 0.0597 0.0598 
0.9 60.8281 61 0.0381 0.0383 

Next, the impact of noise on the total error probability is examined. The configurations 

are the same as in the first scenario, except that the noise variances a, are randomly gener­

ated as Gaussian distribution with variance 2, referred to as the heavily noisy environment. 

Fig. 3 illustrates three probabilities, Pf, Pm, and Pe. It can be seen that all probabilities in 

a heavily noisy environment are bigger than those in a moderately noisy environment. To 

illustrate the shape of Pe and the existence of the minimum of Pe, extensive simulations are 

conducted. Figs. 2 and 3 have shown six representative scenarios. The results in other sce­

narios are similar to those in Figs. 2 and 3 with regard to the shape of Pe and the existence 

of the minimum of Pe, i.e., the Pe always first decreases until it reaches a minimum point, 
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and then increases. Due to the space limit, the illustration of the results for other scenarios 

is omitted. 

For comparative purpose, the performance of generic cooperative spectrum sensing, 

equal weighted cooperative sensing (a special case of the proposed scheme in which all 

SUs are assumed the same weight), and the SNR-based weighted cooperative sensing from 

[27] have also been evaluated. Fig. 4 shows the total error probabilities of these schemes 

compared with the proposed scheme. The generic cooperative spectrum sensing has the 

highest error probability. This is because its false alarm probability dramatically increases 

while its miss detection probability smoothly decreases. The proposed scheme outperforms 

all other schemes, including the SNR-based weighted cooperative scheme in [27]. The 

performance gain is more significant in Fig. 4(b). This implies that the proposed scheme is 

more robust to, or less impacted by, the heavily noisy environment than other schemes. 

Fig. 4 also demonstrates the impact of the PU activity on the total error probability. 

Intuitively, the total error probability is expected to be high at P{Hq) = 0.5. This is because 

it is prone to making an incorrect decision when the channel alternates the status equally. 

On the other hand, a correct decision is likely to be made when the channel stays idle 

(or occupied) with a high probability, which is shown on the figure where the total error 

probability approaches 0 when P(Hq) is close to 0 or 1. 

At last, the impact of the number of SUs on the total error probability is examined. Fig. 

5 shows that the total error probability, Pe, decreases when the number of SUs participating 

in the cooperative sensing increases from 1 to 15 for a given P(Hq). That is, Pe is a non-

increasing function with respect to the number of SUs. Therefore, for a given maximum 

tolerable error probability, only a fraction of SUs participate in cooperative sensing. 
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Fig. 6 shows the minimum number of SUs required to participate in cooperative sensing 

for a given maximum tolerable error probability (e). In this scenario, 20 SUs are assumed 

in the network. It can be seen that for a moderately tolerable error probability, much fewer 

than 20 SUs are needed to participate in cooperative sensing. For example, if e = 0.08, 

then the number of SUs required to participate in cooperative sensing are 5, 8, and 10 when 

P(Ho) = 0.1,0.3, and 0.5, respectively. 

ffl.4 SUMMARY 

A weighted cooperative spectrum sensing framework has been proposed. The total error 

probability, which combines the false alarm probability and miss detection probability, is 

defined to measure the detection accuracy. In addition, a theoretical model for the proposed 

weighted cooperative spectrum sensing is proposed, and the optimal detection threshold is 

derived. The number of SUs required to participate in cooperative sensing, subject to a 

given total error probability, is also studied. 
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bility (e) 
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CHAPTER IV 

SENSING TECHNOLOGY FOR THREE-STATE SENSING MODEL 

Chapter III examined spectrum sensing in a single CRN. This chapter will shift the 

attention on spectrum sensing from a single CRN to multiple co-existing CRNs. In fact, 

in most of the existing spectrum sensing literature, the system model constitutes a single 

CRN. Meanwhile, the primary focus is to detect the existence of signals on a channel, i.e., 

classify the channel into idle or busy, referred to as a two-state model, which is described as 

Eq. 2 in Section IHl. Based on this two-state model, any captured signal is identified as a 

PU's signal. Otherwise the channel is determined as idle. This model works properly with 

a single infrastructure-based CRN, in which the base station (BS) can easily notify its SUs 

not to conduct sensing process if an SU is transmitting data. Thus, from the perspective of 

SUs in a single CRN, there are only two channel states. 

In practical systems, not one, but multiple CRNs operate together. The two-state model 

is insufficient for such a system. Consider a scenario that a channel might be occupied 

by an SU from one CRN and therefore SUs in other CRNs misinterpret this channel as 

occupied by the PU. When there is a considerably large number of available idle channels, 

whether a channel is occupied by a PU or an SU is trivial. SUs can simply switch to other 

idle channels. However, with the rapid proliferation of various wireless applications, the 

number of SUs typically exceeds the number of idle channels. In this case, it is essential 

to determine whether a PU or an SU is using the channel. The reason is that if SUs in 

one CRN are continuously accessing the channel, then SUs in other CRNs would detect 

the channel as busy and hence starve. To solve this problem, a smart sensing model, i.e., 
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a three-state sensing model, is invented which consists of Hq (idle), Hi (occupied by a 

PU) and Hi (occupied by an SU). This three-state sensing model effectively addresses the 

fairness concern of the two-state model, and resolves the starvation problem of multiple 

co-existing CRNs. 

With this smart sensing model, a fundamental question is raised: how to effectively de­

tect each of the three states. This task is not straightforward, since distinguishing H\ from 

H% is highly challenging. Feature sensing seems a promising way to achieve this objective. 

However, this method strongly depends on specific signals and it is not trivial to get such a 

feature. Currently, only TV band signal provides detailed signature information. For other 

bands being released, it is possible to get the signature information, but more investigation 

is needed. In this chapter, a novel solution to differentiate between H\ and H% is proposed. 

The methodology is a two-stage detection procedure. In the first stage, energy detection 

is employed to identify whether the channel is idle or not. If the decision metric is lower 

than a predefined threshold, the channel is considered idle (Ho). Otherwise, the channel is 

considered occupied, but, at this point, it is not clear whether a PU or an SU is using the 

channel. Received signal is further analyzed at the second stage that is based on a distance 

estimation technique, with an objective to make a final decision of either Hi or Hi- For the 

second stage, a statistical model is developed for distance estimation. For detection perfor­

mance, the false alarm and miss detection probabilities for our spectrum sensing technology 

are theoretically analyzed in both local and cooperative sensing scenarios. 

The rest of the chapter is organized as follows. Section IV. 1 presents the network model 

and methodology. In Section IV.2, the detailed design of the proposed spectrum sensing 

framework is presented along with in-depth analysis. The numerical results are presented 
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in Section IV.3. Concluding remarks are drawn in Section IV.4. 

IV.l THREE-STATE SENSING MODEL AND METHODOLOGY 

IV.1.1 THREE-STATE SENSING MODEL 

The traditional two-state model, which is predominantly used in the existing spectrum 

sensing methods, is re-written as follows: 

f 

nii Hidle 
n= , (27) 

x+rn, Hbusy 

where r, is the signal that the i th SU received, n, is the zero-mean additive white Gaussian 

noise (AWGN), i.e., n, ~ 5^(0, a?) and * is the signal that a user transmits. Note that the 

channel gain is ignored because it is often assumed to be constant during the detection 

interval. 

This two-state model works properly with a single infrastructure-based CRN. Neverthe­

less, as pointed out in Section IV, it is insufficient with multiple CRNs co-existing in an area. 

Consider a system with one PU, denoted by PU, coupled with multiple infrastructure-based 

cognitive radio networks, denoted as CRN\,CRN2CRNm- For the ith CRN, it consists 

of Ni SUs. SUs inside the same network associate with a dedicated base station, denoted as 

BSi. BSi is responsible for control information broadcasting, transmission scheduling, and 

so on, within the same network. Note that there are no direct communications among BSs 

from distinct networks. All CRNs opportunistically share a licensed channel with the PU 

for data transmission. 

Since BSs from distinct CRNs are not able to communicate with each other, it is highly 
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likely that an SU from one CRN is using the channel when SUs from other CRNs detect 

the channel as busy. Given a system with one PU and two co-existing CRNs, assume one 

SU from CRNi is transmitting data on the licensed channel. Then other SUs inside CRN\ 

will be notified by BS\ that an SU is using the channel and hence not to perform spectrum 

sensing. In contrast, the SUs in CRNi are unaware of this. They implement regular spectrum 

sensing process. As a result, the channel is detected as busy, which means CRN2 incorrectly 

believes that the channel is occupied by the PU, and thus CRN2 is prohibited to access the 

channel. As a conclusion, a channel will often be wrongly determined as "occupied by a 

PU" as long as any SU is accessing the channel. This results in significantly high false 

alarm probability. To more accurately reflect the channel states with co-existing multiple 

CRNs, a three-state sensing model is proposed which consists of Ho (idle), H\ (occupied by 

a PU) and H% (occupied by an SU) defined as follows: 

rii, Ho 

ri= xp + ni, Hi » (28) 

Xs + W, H2 

where xs is the signal that an SU transmits and xp is the signal that a PU transmits. All the 

other notations follow the same meaning as in the two-state model. 

In fact, CRN2 should take different actions depending on whether the detection result 

is Hi or H2. Specifically, if the channel is actually occupied by the PU (H\), CRN2 is 

prohibited from transmission. On the contrary, if the channel is accessed by an SU in CRN\ 

(H2), CRN2 is allowed to stay and compete for the channel. It is noteworthy that a channel 

is considered as "idle" only after sensing a relatively long idle period. This period is defined 

as "sensing time". So if the detection result is Hi, the very short idle intervals between two 
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successive transmission of PU frames are not treated as an "idle" state. In other words, SUs 

are prohibited to transmit data during those intervals. However, if an SU grasps a channel, 

the SUs from other CRNs are allowed to compete with it for access to the channel, even 

though the current SU still has data to transmit. 

After addressing the significance of the distinction between H\ and Hz, a fundamental 

and challenging question is immediately raised: how to clearly and accurately detect the 

channel state from Ho, Hi and fyl This question presents the primary motivation of this 

chapter and a solution to this problem will be solved in the following sections. 

IV.1.2 METHODOLOGY:TWO-STATE DETECTION PROCEDURE 

The methodology is a two-stage detection procedure. In the first stage, energy detection 

is utilized. The signal energy is assumed reasonably higher than the noise level and hence 

the detection accuracy of energy detection is fairly satisfactory. If the decision metric is 

lower than a predefined threshold, the channel is believed as idle (Ho). Otherwise, the 

channel is considered occupied, but at this point it is not clear whether the PU or an SU 

is using the channel. Received signal is further analyzed by the second stage based on a 

distance estimation technique designed in Section IV.2. The second stage will make a final 

decision of H\ or Hi. 

IV.2 IMPLEMENTATION OF TWO-STATE DETECTION 

For the first stage, energy detection has been well studied and readers are referred to [23, 

48] for the details. The primary concentration is focused on the second stage, which aims 

to effectively differentiate the PU's signals from SUs'. Distance estimation is a promising 
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approach to accomplish this. Normally, PUs are physically protected according to FCC 

policy. For instance, IEEE 802.22 states that there is a protected contour of TV stations. 

In this system model, Dp is assumed as the radius of the protected area centered at the PU. 

Assume SUs have the location knowledge of both themselves and the PU. The location of 

the PU is denoted as (xo^o) and the location of the ith SU is denoted as (xi,yi). Apparently, 

the real distance between the PU and the ith SU, denoted as A, can be directly obtained as: 

A = \J(xj - xo)2 + (yi -yo)2. Pf is the transmitted power from the PU and this information 

can be learned in advance. The received power can be measured at each SU. However, from 

the perspective of the transmitted power, SUs are unlikely to determine the signal source 

ahead of time. That is, SUs do not have the knowledge of the actual transmitted power. The 

signal was hypothesized from the PU and therefore the transmitted power equals Pp. From 

both the transmitted power and the received power, the ith SU estimates the propagation 

distance, which is denoted as di. A decision rule will be designed via comparing di and Di 

to determine whether the signal truly originates from the PU or not. 

IV.2.1 STATISTICAL MODEL FOR PROPAGATION DISTANCE 

It is not trivial to estimate a propagation distance with the knowledge of the transmitted 

and received powers only. Due to the complex and varied terrains, plus the uncertainty 

of noise, a deterministic model is not appropriate. However, there is no existing work 

which statistically models a propagation distance. Instead, the received power has been 

investigated extensively. In the following discussion, a solution to the propagation distance 

will be sought from a signal propagation model. A common statistical model for path-loss 
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propagation in dB is adopted as follows [49]: 

fl,(2) = JV-EW)-*,. (29) 

where P/?(d,) is the received power, £(</,) is average value of the propagation path loss; X0I 

follows a normal distribution with zero mean and standard deviation a, (2-6 dB). Okumura's 

Model is widely used for urban areas to estimate signal propagation. Okumura's model is 

__ A. 
used to obtain L(di) from the following expression: 

L{di) = LF(di) +Amu(f) - G(h t) - G(hr) - GAREA, (30) 

where Lp is the free space propagation path loss; Amu is the median attenuation relative 

to free space; G(ht) is the PU antenna height gain factor; G{hr) is the SU antenna height 

gain factor and GAREA is the correction factor again due to the type of environment. In 

order to find out how to choose suitable values for Amu and GAREA according to a specific 

environment, readers are referred to [49]. 

The path loss for the free space model in dB is: 

L f ( D I )  = m o g ( d , )  - 1 0 P i )  

where Gt is the PU antenna gain in the direction of the receiver and Gr is the SU antenna 

gain in the direction of the transmitter. Calculating using Eq. 29, 30 and 31, the term 

containing di can be derived as follows: 

20log(di) = Q - (PR{di) +X5i), (32) 

where C, can be treated as a constant and derived as follows: 

Ci =  Pr-A m u ( f )  +  G ( h t )  +  G ( h r )  

+ GAREA +10 log( ) (33) 
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At this point, the distribution of di can be found and analyzed from Eq. 32. Note that 

the received power Pr0i) in Eq. 32 is treated as a constant and is replaced by the measured 

received power, denoted by Pf. As a consequence, the estimation of propagation distance 

di can be expressed as follows: 

20log(dj) ~ N(Q — Pf*,$f), (34) 

It can be seen that di follows a Gaussion distribution statistically. This model will be 

used to analyze the propagation distance with the transmitted and received power known. 

IV.2.2 LOCAL SPECTRUM SENSING BASED ON DISTANCE ESTIMATION 

Local spectrum sensing is a good starting point to explore the spectrum sensing tech­

nology. In this subsection, the sensing with an individual SU is first examined based on the 

distance estimation model in Eq. 32. 

After getting the distribution of di from Eq. 8, a threshold is needed to make a decision 

whether the received signal is from PU or not. Let y,- denote the threshold. If the signal is 

from the PU, di = A in an ideal situation. Thus, it is reasonable to conclude that the signal 

is from the PU if di is close to £>,. Specifically, if |di - A | < Y» . the SU makes a decision of 

H\. Otherwise, the detection result is H%. 

False alarm probability and miss detection probability are two significant metrics to 

evaluate the detection accuracy. Let us first examine the false alarm probability, denoted by 

Pf(i). False alarm means that the signal from an SU is wrongly interpreted as a PU signal. 
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Theorem 1: Given a threshold y,, the false alarm probability P f ( i )  is: 

i w H,-^)(g(
q-*-ya+i'>) 

c- i f -aw-D 
Oi 

where a and p are referred to Fig. 7. 

Proof Suppose that the signal source is determined as the PU. From the distribution ex­

pression in Eq. 34, the conditional detection probability, denoted as Pi (i) can be found as 

follows. 

P\{i)=Pr[\di-Di\ < y,] 

— Pr[~yi <dt — Di< Y,] 

= Pr[20log(Di — y,) < 20log(di) < 20/^(A +y,)] 

8/ 

(36) 

Oi 

where Q(x) is a Q-function. 

Eq. 36 works based on the hypothesis that the signal is from the PU. As a matter of fact, 

it might not be accurate that the signal is from the PU merely with an estimated distance. 

Fig. 7 renders an explanation of this. In Fig. 7, Dp is the radius of the protected area. 

|di —Di\ < yi is reflected into a whole ring. The larger radius of the ring is denoted as 

R.2, which equals (A + yi). The smaller radius of the ring is denoted as R\, which equals 

(Di — Y,-). Note that only half of the ring is drawn and shaded. The overlapped area between 

the shaded ring and the circle with a radius Dp is considered that the signal originates from 
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the PU. The corresponding probability of the overlapped area relative to the whole ring can 

be approximately derived as: 

P2(i) = 
a+|3 

2k ' 
(37) 

where a and |3 are radians and satisfy: 

Df+R2
2-D2

p . Dp 

C0Sa= 2D,Rl ' S'n ~Di' 

$ 

Fig. 7: Distance estimation with a single SU (represented by the solid star) 

By the definition of the false alarm, it is from the ring area except the overlapped portion. 

So, the false alarm probability P/ii), is represented as: 

e(C,-i*-20tog(Pi-•»))) 

• 

Another critical metric is the miss detection probability, denoted by Pm. On the contrary 

to Pf(i), miss detection probability means that the signal of PU is incorrectly determined as 

an SU's. Next this will be theoretically analyzed. 
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Theorem 2: Given a threshold % the miss detection probability is: 

Oi 

Proof. Miss detections occur with two conditions. One is that the estimated location of 

the PU falls within the circle area centered at the PU with a radius of Dp. The second is 

that |di - Di\ > y,. Let us calculate the probability of the first condition, denoted as Pi{i). 

Specifically, P3(i) is referred to as a fraction. The numerator is the circle area subtracting 

the overlapped area between the circle and the ring in Fig. 7. The denominator is the whole 

circle area. Therefore, 

1 (PP + Yi)2 - {Dp - Y;)2 a+p 
m -1 Wp 2T 

=  1_4£ a+J5 ( 3 9 )  

Dp 2% 

In addition, the probability of |di — D,| > Yi can be obtained from Eq. 36 easily as: 

Pr(\di — Dj\ > Yi) = 1 (40) 

Combining Eq. 39 and Eq. 40, the miss detection probability can be written as: 

Pm(i)=P3(i)-Pr(\d i-D i\>y i) 

(1 4Y,(<X+P) +Yi), 
2nDp 8,-

+ f l ( q- i f -20  MA-y, )  
Of 
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• 

After calculating both the false alarm and miss detection probabilities, it is time to an­

alyze the critical parameter, threshold y,-. It is commonly acknowledged that there is an 

inherent trade-off relationship between Pf(i) and Pm(i). The threshold is expected to reduce 

both Pf(i) and Pm(i) as low as possible. One possible approach to obtain the threshold y,- is 

to set P/(i) = Pm{i). The threshold y, can also be achieved to meet some specific detection 

requirements, for example, P/(i) < t, or Pm(i) < where £ is a constant and 0 < £ < 1. 

Depending on the specific requirement, y, can be obtained accordingly. 

IV.2.3 COOPERATIVE SPECTRUM SENSING AMONG SUS 

The previous subsection introduced sensing with an individual SU. However, a single 

SU is not accurate enough to distinguish the signal from the PU. This is because all locations 

on the circle edge with a radius of the estimated distance are possible signal sources. Fig. 7 

has depicted this situation. Two SUs are not sufficient to distinguish the signal, either. This 

is interpreted as in Fig. 8(a), where the solid stars represent SUs. It can be seen that the two 

circles, centered at each SU, have two intersection points, i.e., possible signal sources. One 

is the PU and the other is drawn as the solid dot, which is symmetric to the PU. In other 

words, two SUs are not able to determine the transmitter without ambiguity. Three SUs, 

described in Fig. 8(b), are capable of identifying a specific transmitter without ambiguity. 

So, at least three or more SUs are needed to cooperate. 

On one hand, more SUs will enhance the detection accuracy. On the other hand, the 

computational complexity will be increased considerably. A cooperative spectrum sensing 
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<•) 0>) 

Fig. 8: Distance estimation with two SUs in (a): the solid stars represent SUs and the solid 
circle represents another possible single source, which is symmetric to the PU; and three 
SUs in (b): solid stars represent SUs and three of them can determine a specific transmitter 
without ambiguity. 

scheme will be proposed with the objective of improving the detection accuracy. The basic 

idea is that a portion of SUs in the same CRN are chosen to conduct cooperative spectrum 

sensing. First, three SU leaders are selected. Afterwards, the neighbors within a given 

reference range, denoted by Dr, surround each leader, form a group. Finally, SUs of three 

groups will perform sensing cooperatively. 

The selection of three SU leaders is a key issue and should follow two basic rules. 

First, the chosen SUs should not be physically located very far from the PU because the 

signal quality will decrease dramatically with the propagation distance. Second, the distance 

between any two of three leaders should not be very short, since the SUs that are physically 

close are prone to experience similar propagation quality. Obeying the first rule, an area 

with a radius D(D > Dp) is defined, within which three leaders are chosen. To satisfy the 

second rule, two SUs with the largest distance are first selected, then a third one is chosen 

which is relatively far from both. The algorithm showing how to select three SU leaders, 

denoted by a, b and c, is summarized in Algorithm 2: 

After selecting three SU leaders, three respective groups are generated accordingly. SUs 
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Algorithm 2 Selection of three SU leaders 

1: Define a circle area with a radius D centered on the PU. Count the number of SUs in 
this area, denoted as M, 

2: fori= l.l .Mdo 
3: forj = l:l:Mdo 
4: D ( i , j )  = \J (xj — Xj)2 

-f- (yi — yj)2 

5: end for 
6: end for 
7: Choose the two SUs with the largest distance, denoted as a and b, that is: D(a,b) = 

max{D(i,j)} 
8: Select the third SU, denoted as c 
9: for i = 1:1 :M-2 (except a, b) do 

10: &(a,b,i) = \D(a,i)—D(a,b)/\/2\ 
11: end for 
12: b(a,b,c) = min{8(a,fc,i')} 

within three groups first conduct local spectrum sensing based on distance estimation. As­

sume the total number of selected SUs is 5, in the i'h(i = 1,2,3) group. These 5, SUs report 

the decision results, either H\ or Hi, to their SU leader by performing the "Half Voting" 

strategy. That is, the channel is determined as Hi only if over half of the results are Hi. 

Otherwise, the channel is considered as H%. With this rule, let us investigate the coopera­

tive false alarm probability Pj° and cooperative miss detection probability P%° in a single 

group, respectively: 

E (?)nwn'(i-jyM) (4l) 

k=St/ 2  / # *  

*£"('•) = 1- £ (?)FI(l-P».W)n',m(')- (42) 
k=Si/2 l^k 

Afterwards, three SU leaders report their decisions, either Hi or H2, to the BS. If all 

these three reports are Hi, the BS makes a decision of Hi. Otherwise the decision is Hi-

The final false alarm probability Qf and miss detection probability Qm can be found as 
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follows. 

2/=rifM <4 3> 
i=l 

a .=i -n( i -*£°W) w 
i=l 

After conducting cooperation twice, once in a single group and once among three leaders, 

the false alarm probability Qf and miss detection probability Qm degrade significantly. The 

detection performance will be verified in Section IV.3. 

IV.3 NUMERICAL RESULTS 

In this section, the detection performance, including the false alarm probability Pf and 

the miss detection probability Pm, are extensively examined. Both local and cooperative 

sensing scenarios are fully considered. 

IV.3.1 LOCAL SPECTRUM SENSING SCENARIO 

In the local spectrum sensing scenario, only one PU and one SU are involved. Pf and 

Pm are extensively evaluated in numerous cases and all the results have similar curves. One 

representative example of them is demonstrated in Fig. 9. The major parameters used in 

this experiment are illustrated in Table 2. 

It can be seen that in Fig. 9, the false alarm probability Pf increases when the threshold 

increases. The miss detection probability Pm, however, decreases along with the threshold. 

This verifies the inherent trade-off relationship between Pf and Pm. Furthermore, this fits 

well with the physical meaning of the false alarm and miss detection. As demonstrated in 
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Table 2: Parameters for the numerical experiment 
Parameter Value 

Frequency (f) 400 MHZ 
Transmitted Power (Pj) 20 dB 

Distance (d) 15 km 
Stand deviation (a,-) 1 

PU Antenna Hight (h t)  200 m 
SU Antenna Hight Qir) 1 m 
PU Antenna Gain (G t)  1 
SU Antenna Gain (G r) 1 

. _. _, False Alarm Probability (Pp 

__ Mas Detection Probability (PJ 
0.9 

| 0.8 

0.7 

0.6 

8 °'8 
0.4 

1 0.3 
i 

0.2 

I 0.1 
U. 

Threshold (Km) 

Fig. 9: The trade-off relationship between Pf and Pm 

Fig. 7 in Section IV.2.2, when the decision threshold y\ increases, it is prone to incorrectly 

determine a signal is from the PU, and therefore Pf rises and Pm decreases. 

IV.3.2 COOPERATIVE SPECTRUM SENSING SCENARIO 

In this subsection, the detection accuracy under the cooperative spectrum sensing sce­

nario will be evaluated. Fig. 10 illustrates a sample network with 1 PU, 2 BSs and 150 

SUs. SUs are randomly distributed and associated with 2 BSs as marked in the figure. The 

smaller circle centered at the PU is the protection area to the PU and the radius Dp is 2km. 
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The bigger circle is the area where the cooperative SUs are chosen from and the radius D is 

10km. 

OPU ;* 

Fig. 10: Distribution of 1 PU, 2 BSs and 150 SUs in 2-D space. SUs are randomly dis­
tributed. 

Essentially, the cooperative sensing is performed within one CRN. CRN2 depicted in 

Fig. 10 is taken as an example. Dr is set as 5km. Firstly, Pf and Pm are evaluated via 

"Half Voting" in one group. Secondly, three SU leaders further cooperate and obtain the 

corresponding Qf and Qm. The comparison is presented in Fig. 11. It can be seen that after 

conducting twice cooperations, the false alarm probability Qf and miss detection probability 

Qm degrade significantly in comparison with Pf and Pm in one group, given the threshold 

obtained when Qf = Qm. 

IV.4 SUMMARY 

In this chapter, the scenario of multiple CRNs co-existing in an area is taken into con­

sideration. A smart three-state sensing model consisting of idle, occupied by a PU and 
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0.6 1 1.5 2 2.5 3 
Threshold (km) 

3.5 4 

Fig. 11: Miss detection probability and false alarm probability: Pm and Pf is obtained in 
one group; Qm and Qf is further obtained with three leader SU. 

occupied by an SU has been proposed in this scenario. To accurately detect each state of the 

three, a two-stage spectrum sensing methodology has been presented. For the second stage, 

a spectrum sensing approach based on statistical distance estimation technology have been 

designed. With this technology, both the local and cooperative spectrum sensing have been 

examined extensively. 
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CHAPTER V 

USING SMART SENSING TO ACHIEVE FAIRNESS AMONG MULTI-CRNS 

The smart sensing model, i.e., a three-state sensing model, has been previously proposed 

in Chapter IV. In this chapter, the performance of the three-state sensing model will be fur­

ther analyzed. It is commonly acknowledged that fairness is a significant metric to evaluate 

the network performance. However, the fairness performance among SUs from multiple 

CRNs has received limited attention. In this chapter, how to using smart sensing to achieve 

fairness among SUs from multiple co-existing CRNs will be thoroughly examined. First, 

a MAC protocol is designed, termed fairness-oriented media access control (FMAC) pro­

tocol, based on the smart sensing model. The PU activity is fully considered in the design 

of FMAC, because PUs have strict priority over SUs and it is likely that they may appear 

or reappear at anytime. The goal of FMAC, together with the smart sensing model, is to 

achieve fairness among SUs from multiple CRNs co-existing in an area. In terms of fair­

ness, this performance can be measured over a long time period (called long-term fairness) 

or over a relatively short time period (called short-term fairness). Unlike the conventional 

fairness metrics that are usually measured in a specific time period, the fairness dynam­

ics from a short (micro-level) to a relatively long (macro level) time period is the primary 

concern. 

In addition, the performance of FMAC, which embodies the smart sensing model, is 

carefully analyzed. A novel Markov chain is tailored to model FMAC, in which a renewal 

process is conducted when the PU reappears. Further, the access probability to the channel 

for SUs is derived from the Markov chain. Both throughput and fairness are carefully 
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explored. Numerical results show that FMAC is able to significantly improve the fairness 

of coexisting cognitive radio networks while maintaining a high throughput. 

The rest of the chapter is organized as follows. Section V.l presents the system model 

and states the problem. In Section V.2, the detailed design of the proposed fairness-achieved 

MAC protocol is introduced. Section V.3 explores the in-depth performance analysis in­

cluding fairness, throughput and delay. The numerical results are presented in Section V.4. 

Concluding remarks are drawn in Section V.5. 

V.l SMART SENSING MODEL 

In this section, the smart three-state sensing model is addressed once again with an 

emphasis on fairness analysis. Consider a system with one PU, denoted by PU, coupled 

with multiple CRNs, denoted by CRNI,CRN2, ...,CRNM• Note that each CRN is assumed to 

consist of SUs only and for the ith CRN, it has N; SUs. Each SU is equipped with two radios. 

One is dedicated to sensing spectrum and the other is for data transmission exclusively. All 

CRNs opportunistically share the channel with the PU for data transmission. Spectrum 

sensing is a crucial step in CRN. Within the same CRN, a centralized device, i.e., a BS, 

is used. Multiple SUs inside the same CRN implement cooperative sensing and their BS 

makes a final decision on the channel state. For the details of cooperative sensing, readers 

are referred to [50] [51]. The requirement time of spectrum sensing is restricted by several 

factors such as hardware components, detection accuracy and so on. On one hand, longer 

sensing time brings higher detection accuracy. On the other hand, it results in relatively long 

delay. So, regulators impose a constraint on the required detection time. Take IEEE 802.22 

as an instance; the required detection time is 2 seconds. Here the required detection time 
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is denoted by DT. This means SUs spend a period of DT to finally determine the channel 

state. In other words, the channel state is updated periodically and the detection result at 

(k +1 )DT actually reflects the channel state atk-DT. Furthermore, ideal spectrum sensing 

is assumed. 

As pointed out in Chapter IV, the two-state model is insufficient for a multi-CRN coex­

isting system. Here, a straightforward quantitative example is illustrated. Given five SUs, 

which are from five different CRNs, one SU named SUi, is capturing the channel and all the 

other four SUs falsely believe the channel is occupied by the PU and hence are restrained 

from transmission. As a result, SU\ will continue its transmission until the PU reappears or 

it has no more traffic. Let us assume this time period is 500s. During this observed period 

of 500s, the transmission time of SUi is t\ = 500s and others are 0. The fairness among 5 

SUs can be further calculated using the Jain Index as follows: 

, (S.i'»)2 i 
Jtwo—state ~ 5 - -

' Ln=\ Tn J 

It can be concluded the fairness would be worse with more CRNs. 

From the above example, the two-state model results in an unfair channel allocation 

among SUs. To solve the unfairness problem, efforts are made in two directions. The first 

and foremost is the smart sensing model, which is represented in Eq. 28 as in Section IV. 1. 

The distinction between the two-state and the three-state lies in that Hbusy splits into H\ 

(occupied by a PU) and Hi (occupied by an SU). The second direction is an appropriate 

MAC protocol based on this model. 

Applying such a smart sensing model into the above-mentioned example, even though 

SUi is using the channel, other SUs are able to detect the channel is occupied by an SU 



55 

and they will compete with SU\. If all five SUs have the same access probability, theoreti­

cally, they will be provided equal transmission opportunities with tn = 100j(n = 1,2,...,5). 

Therefore, the fairness among those 5 SUs can reach an ideal fairness of J three-state = 1. 

In practice, due to a specific contention scheme, a sensing detection requirement and other 

issues, the achieved fairness of the three-state sensing model will be slightly less than 1, but 

significantly better than the fairness of the two-state model. This will be evaluated in the 

Section V.4. 

V.2 FMAC: FAIRNESS-ACHIEVED MAC DESIGN 

FMAC is designed based on the proposed smart sensing model. In a MAC protocol, 

fairness refers to the measure of the ability of a MAC protocol to share a common channel 

equally among multiple users. In this section, the fairness performance will be evaluated 

from the perspective of time-based fairness. For instance, considering N users compete 

for the same channel, the ideal fairness will be achieved if each user is assigned the 1/iV 

proportional time over the total period observed. 

Since PUs have strict priority over SUs, two distinct channel access methods for PUs 

and SUs are employed. To guarantee the privilege of PUs, when PUs have traffic to transmit, 

they will immediately transmit when the channel is idle. Since it takes a while for SUs to 

withdraw from the channel, the PU waits for a period up to the tolerable maximum, denoted 

by Tmax, (Tmax < 2DT), when an SU captures the channel. Additionally, there are no idle 

intervals between two consecutive PU frames (or the idle interval is negligible). In other 

words, the PU will continue to capture the channel until there is no more traffic to transmit. 

Prior to digging into the details of the MAC scheme for SUs, let us lay out the basic 
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principles, or, how an SU can appropriately respond to a distinct channel state. As addressed 

previously, there are three possible states at any time: Ho. H\ and Hi- SUs take distinct 

actions based on these three states. Specifically, if the state of the channel is Hi, SUs keep 

silent and will continue to monitor the channel. Next, let us explore the states of Ho and Hi 

closely. If the channel state is determined as Ho, SUs access the channel immediately. In 

contrast, if the channel is detected as Hi, SUs learn that the channel is occupied by a SU 

instead of the PU. As a result, they will participate in competing for the channel. During 

transmission, SUs keep sensing the channel in every DT period. If the sensing result is 

HQ or Hi, SUs continue accessing the channel. However, they have to vacate the channel 

whenever the PU comes back. The main idea of the proposed MAC protocol is illustrated 

in the Fig. 12. 

busy 
Sensing 

(a) Two-state 

Sensing 

(b) Three-stale 

Fig. 12: Illustration of fairness-achieved MAC (FMAC) design with the two-state model 
shown in (a) and the three-state sensing model shown in (b). 

Note that once an SU accesses an idle channel, in the views of other SUs, the channel 

state will be switched from HQ into Hi. Following how multiple SUs compete for the 

same channel under the state of Hi will be interpreted in details. The basic idea originates 
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from the IEEE 802.11 protocol, i.e., a backoff RTS/CTS scheme is employed. An SU 

monitors the channel activity when it has a packet to transmit. The SU starts transmitting 

only when an idle period equals a Distributed Inter-Frame Space (DIFS). Note that in the 

case of Hi, SUs do not need to wait for a period of DT as they do under the state of 

the HQ. In case the channel is busy, i.e., another SU is occupying the channel, the SU 

will randomly select a backoff interval from [0, Wc — 1], where Wc represents the size of 

a contention window. The backoff time counter is decremented whenever the channel is 

sensed idle, stopped when a transmission is detected and reactivated when the channel is 

sensed idle again for a DIFS. Finally, the user transmits when the backoff time counter 

reaches 0. In case a collision occurs, i.e., two or more SUs transmit simultaneously, the 

same backoff technique is repeated. For the details of IEEE 802.11, readers are referred 

to [52]. Keep in mind that SUs continue sensing the channel during transmission or a 

backoff period and the PU may come back anytime. All SUs are expected to enter a renewal 

process whenever the PU reappears. In the renewal process, an SU randomly selects a 

backoff time from [0, Wc — 1] with an equal probability. 

The fundamental differences between the proposed MAC protocol and IEEE 802.11 are 

two-fold. First, spectrum sensing is the unique feature of the CRNs and it is fully considered 

while designing the MAC protocol. According to the detection result, SUs take distinct 

actions as described previously. Secondly, the proposed MAC protocol is designed towards 

achieving fairness among SUs across multiple-CRNs. Recent studies pointed out that the 

fairness performance of IEEE 802.11 is not satisfactory [53]. The major reason is the binary 

exponential backoff technology. Based on such an exponential backoff technology, users 

that encounter collisions double their contention windows. As studied in [52], there is a 



58 

significant relation between the size of the contention window and the access probability. 

Users with a larger contention window have a relatively lower probability of access to the 

channel. As a matter of fact, the same access probabilities among competing users lead to 

the optimal fairness. Therefore, in order to achieve optimal fairness among SUs, the binary 

exponential backoff technology is not adopted. Instead, the same Wc will be used among all 

SUs and others remain the same as in IEEE 802.11. 

V.3 PERFORMANCE ANALYSIS 

After introducing the detailed FMAC protocol, let us shift attention to the performance 

analysis of FMAC. Throughput and fairness are two crucial metrics and will be thoroughly 

examined in this section. To pave the road to their study, the PU activity which provides 

a statistical model is analyzed first. Second, FMAC is modeled as a Markov chain, from 

which the access probability of SUs is derived. 

V.3.1 PU ACTIVITY ANALYSIS 

This subsection analyzes the PU behavior concerned with the probabilities of the chan­

nel being idle and occupied by the PU. They are represented by PQ and Pi. One method 

to derive PQ and Pi is shown as Eq. 1 presented in Section IDLl. This section provides a 

general method to derive Po and Pi. Let X be a random variable that represents the time 

period that the PU transmits on the channel at once. Use the notation fx(x) to denote the 

probability density function (pdf) for X. 

With this PU model, Fig. 13 illustrates the PU traffic arriving time and the channel 

occupation by the PU and SUs. Let a random variable Y represent the period between two 
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Fig. 13: PU activity modeling 

consecutive SU transmission blocks, which is indicated in Fig. 13 (b). Carefully looking at 

(b) and (c) in Fig. 13, the following equation holds 

Y=(\§f + 1])DT~X+DT• (45> 

Given the exponential distribution of X, let us derive the cumulative distribution function of 

Y ,  d e n o t e d  b y  F y ( y ) .  

ry-DT 
Fy( y )  = Pr(x+DT < y ) —  fx(x)dx (46) 

Jo 

Consequently, the pdf of Y  can be written as: 

frW = ?r( y )  < 4 7 >  

Let us observe a period of time t .  After some calculations, the average of Y ,  denoted by 

E(Y) is expressed as: 

rDT+t 
E(  R )=  yfy(y)dy (48) 

JDT 
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In this chapter, a specific distribution is taken as an example. Assume X follows an 

exponential distribution with a parameter, denoted by fi. That is 

fx fan) = juexp{-/ix} (49) 

Then, the following equation holds: 

friy) = Fyiy) =/iexp {-^(y-DJ)} (50) 

and 

rDT+t 1 
E(Y)= yticxp{-iu(y-DT)}dz.^-+DT (51) 

JDT f* 

Additionally, the traffic from the PU is assumed to follow Poisson distribution with a pa­

rameter X. So, the average arrivals of PU is X • t. Therefore, P\ can be obtained as 

P1 = LL£22 = (l+£,r).x (52) 

Correspondingly, Po can be achieved immediately as: 

Po = l-^i (53) 

V.3.2 SU ACCESS PROBABILITY 

According to the proposed FMAC, W c  states from [0, W c— 1] are modeled as the states in 

a Markov chain described in Fig. 14(a), in which the PU activity is fully taken into account. 

Following the transition probabilities is studied associated with this Markov chain. Each 

SU is assumed to always have a packet to transmit at any time. The number of SUs from 

multiple CRNs is considered as N. For a given time slot, there are four possible statuses, 

including PU occupation, successful SU transmission, idle and a collision among multiple 
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SUs. The probability of a PU occupation is actually Pi. The probability of successful SU 

transmissions, denoted by Ps{k), can be derived as: 

Ps^Po-N-Pail-Pa)^, (54) 

where Pa is the access probability of each SU. The derivation of Pa is postponed to the end 

of this subsection. The idle probability of a given time slot is: 

Pi=P0-(l-Pa)N .  (55) 

The probability of collisions caused by multiple SUs, denoted by Pcs can be obtained as: 

Pcs^Po-il-il-Paf-N-Pa-il-Pa)"'1)- (56) 

Note that SU transmissions only happen when the time counter reaches 0. Let us exam­

ine the state 0 first, which is followed by either a successful transmission with a probability 

(1 — Pi — Pcs), a collision with a probability Pcs, or a collision with the PU with a probabil­

ity Pi. In all cases, SUs need to wait for a randomly selected backoff time prior to the next 

transmission. Therefore the corresponding probability to choose any state from [0,WC - 1] 

is 

1 ~ P\ ~ Pes . PZ S  , Pi 1 
wc Wc Wc~wc' 

Now let us study the general case beside the state 0. Keep in mind that PU may reappear at 

any time and disturb a back off process. As a result, SUs may switch to a different channel 

in a multiple-channel scenario. It is reasonable to assume all SUs enter a renewal process 

whenever the PU comes back. In the renewal process, an SU randomly selects a backoff 

time from [0, Wc — 1] with a respective probability of which is described as a lower level 

chain in Fig. 14(a) and further interpreted in Fig. 14(b). Therefore, during a backoff period, 
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the time counter, e.g. k, can either decrease to (k— 1) with a probability of (1 — Pi), or 

return to a renewal process with a probability of Pi once the PU re-appears. 

Renewal Process 
(Lower level Chain) 

(a) Two-level Markov Chain Model 

Wc-l 

(b) Renewal Process (Lower Level Chain) 
for a specific state k 

Fig. 14: (a) illustrates the transition probability among Wc states from [0, Wc-1], in which for 
each state it is possible to conduct a renewal process; (b) shows an example of the renewal 
process at a specific state k. Note that this renewal process applies to each state from [0, 
W c-1].  

Based on the above Markov chain model, one-step transition probabilities associated 

with the Markov chain can be written as follows. For any state k from [1, Wc-1], its preced­

ing one (k— 1) is singled out to stress its distinction with others. 

' pwo}=l^l+wrwc'kmWc-11 

< p{k-i/k} = i-Pi + ̂ - ,ke[i,w c-i\  > 
Wc 

PO'/*} = jr. * € [ l,Wc-l],;y*-l 
^ Wc 

Following are the Wc balance equations of the Markov chain. 
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Tto - (1 - Pi + • *1 + ^"(£ Wf), 
wc ™c ,y0 

a  -  S - )  • " » = 4 - ^ « i  w  - 1 1  
r C C 

After some calculations, 

7CO = 

= 

Wc-Pj 
w} - P\ 

w 

wFX k e [ h W '-l ]  

Recalling that transmissions only occur at the state 0, Tto is actually the transmission 

probability of SUs, which is denoted as Pa. That is 

Pa  = Wg-Pj 
W}-P{ 

(57) 

Note that Pa  is a significant parameter and will be used in the throughput analysis in V.3.3 

and the fairness analysis in V.3.4. 

V.3.3 SU THROUGHPUT ANALYSIS 

As for the throughput addressed in this subsection, only the throughput generated by 

SUs will be considered. We ignore the time periods of PU transmissions and merely con­

centrate on the SU s' throughput. Consequently, the throughput is calculated as: 

0 = P* -Ts 

Pi • 0 + Ps • Ts + Pes • Tcs+Pi • Tcp' 
(58) 

where o is the duration of an empty slot time. T s  is the average time of a successful trans­

mission, Tcs is the average time with a collision among SUs, and Tcp is the average time for 

a collision caused by the PU. Referring to [52], Ts and Tcs can be represented as follows by 
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means of the RTS/CTS Access mechanism: 

T s=RTS + SIFS + $ + CTS + SIFS + b+H 

4 +Tdata + SIFS +  8  + ACK+DIFS+ 8  (59) 

Tcs = DIFS+RTS+b 
* 

Tcp is referred to the tolerable delay of the PU in Fig. 13 (b) and can be expressed as 

rc,=£[(l+x)-DTl, 

where x follows an uniform distribution from [0,1]. It is straightforward to derive Tcp as 

It can be seen that several parameters such as Wc, Pa, Pi, N and others play significant roles 

in the calculation of the throughput. Their impacts will be evaluated in the Section V.4. 

Next, the distinction of the throughput will be discussed between the two-state and the 

three-state models. With the two-state model, SUs that compete for the channel belong to 

a single CRN. Instead, SUs from all CRNs have the opportunity to contend for the chan­

nel. The number of competing SUs increases in the three-state sensing model. As a result, 

with the same contention widow Wc, the throughput may slightly degrade due to the in­

creased collisions caused by more SUs. Nevertheless, the decrease is not considerable. 

Furthermore, the throughput reduction could be compensated by using an appropriate con­

tention window. In other words, the three-state sensing model does not necessarily result in 

throughput reduction. This will be verified in Section V.4. 

Tcp = l-DT, (60) 

The saturation throughput is the optimization of Eq. 58 and represented as: 

0* = max{Q} (61) 
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V.3.4 FAIRNESS MEASUREMENT 

In this section, the fairness performance among SUs across multiple CRNs will be exam­

ined in the perspective of time-based fairness. For convenience, "CRN" is used to represent 

"SUs from this CRN" hereafter unless otherwise specified. In the two-state model, two or 

more CRNs will attempt to use the channel simultaneously once the channel is detected 

idle and collisions may occur. As a result, they both believe the channel is occupied by the 

PU and give up the channel. After a random backoff time, the CRN that first comes back 

will transmit if no other CRNs appear in the following sensing time. Once a CRN grasps 

the channel, all other CRNs will be refrained from accessing the channel. In the three-state 

sensing model, the difference is that when two or more CRNs all sense the channel as idle, 

they will access the channel. They will further detect the signal is from a CRN and continue 

to access. Furthermore, if a CRN is using the channel, other CRNs can join to compete for 

the channel. In this way, all the SUs across multiple CRNs will achieve better transmission 

fairness via taking turns using the channel. Essentially, the three-state sensing model breaks 

the bounds of different CRNs and all SUs from multiple CRNs share the channel together. 

Suppose N SUs contend for the channel access. Keep in mind these N SUs are from 

different CRNs. Let us examine the transmission fairness among them from a short to 

relatively long time period. Since no SUs are permitted to occupy the channel during the 

transmission of the PU, the period of PU transmission is ignored with regard to SUs' fairness 

evaluation. But, we view the discontinuous time period (because of the disruption of PU 

transmission) as virtually continuous. Based on such a virtually continuous concept, a fixed 

time period is defined as a cycle and its length is denoted by Aj. Assume K cycles are 

observed. SU's actual transmission time in the accumulated time period, from Ai (the 
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period of the first cycle), A2 (the period of the first two cycles),... till AK  (the period of the 

first K cycles), is recorded in a matrix, denoted as T, as follows: 

T = 

7i(Ai) 7i(A*) ••• T\ (Ak) 

T„(A\) ••• Tn(A k)  T„(AK)  

Tn(Ai) ••• TN(Aic) ••• TN(AK) 

where the element Tn{Ak) represents the transmission time of the n t h  SU during the period 

of A*. Tn(Ak) is closely related to the access probability Pa as calculated in Eq. 57. Since 

all SUs share the same Pa, theoretically, they can reach an ideal fairness of 1. But, the 

simulation results will be slightly deviated from 1 and this will be verified in Section V.4. 

In each time period, the traditional Jain Index fairness is calculated based on the corre­

sponding column of T. Specifically, we calculate Jain Index in a vector expression as: 

y(f (:,*)) = 
(I -T (: ,k)f  

(62) 
JV||T(:,t)||2 

where T(: ,k) is the column vector in T and 1 = [1,1,..., 1] is a 1 x N row vector whose 

elements are all 1. Note that the value of J ranges from 0 to 1. The larger the Jain Index, 

the better the transmission fairness among SUs. In the ideal case, J should be 1. 

Jain Index in Eq. 62 is used to evaluate the transmission fairness during a specific time 

period. Nevertheless, the fairness dynamics from a short to a relatively long time are our 

principle concern. In order to examine the fairness from micro to macro level, in fact, 

several time periods ranging from Ai to AK are involved. To better measure this, a metric 

termed ALFA is defined, which is essentially the average of Jain Index in all time periods. 
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Mathematically, ALFA, denoted as A(T), is computed as: 

A(T) = ify(f (:,*)), (63) 
A *=1 

Obviously, ALFA falls into [0,1] and the larger ALFA, the better fairness from micro to 

macro level. 

In the two-state model, it is highly likely that SUs from one CRN aggressively occupy 

the channel for a relatively long time and thus it is not fair to SUs from other CRNs. Instead, 

this situation will be avoided in the three-state sensing model. Therefore, SUs from different 

CRNs will achieve better fairness, from micro to macro level, through transmitting by turns. 

ALFA will be measured in Section V.4. 

V.4 NUMERICAL RESULTS 

In this section, the throughput and fairness performance will be evaluated extensively. 

We attempt to verify that fairness of the three-state sensing model is significantly improved, 

while maintaining a similar throughput compared to the two-state model. The major param­

eters used to run numerical results are listed in Table 3 . 

Table 3: Major parameters for the numerical experiment 
Parameter Value 

MAC header 272 bits 
PHY header 128 bits 

ACK 112 bits + PHY header 
RTS 160 bits + PHY header 
CTS 112 bits + PHY header 

Channel Bit Rate 1 Mbits/s 
Propagation Delay 1 /JS 

Slot Time 50 [is 
SIFS 28 f js 
DIFS 128 /js 
DT 6000 f is 
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V.4.1 THROUGHPUT EVALUATION 

In the first experiment, each CRN has 10 users and three scenarios, with 2, 3, and 4 

co-existing CRNs, are studied, respectively. The PU activity is given as PQ = 0.8. In Fig. 

15, each curve represents the throughput of the two-state model or the three-state sensing 

model. For the two-state model, only one CRN is able to share the channel, so the number 

of SUs that compete for the channel is always 10 no matter how many multiple CRNs are 

co-existing. In contrast, for the three-state sensing model, with 2 co-existing CRNs, there 

are 20 SUs that share with the channel. With 3 co-existing CRNs, 30 SUs compete for the 

channel and so on. The throughput in each case is illustrated with a changing contention 

window size. The saturation throughput is reached when the throughput is maximized. 

Note that the optimal window size to maximize the throughput increases with the growth 

of competing SUs. From Fig. 15, we learn that the saturation throughput in each case is 

quite similar. To further verify this conclusion, Fig. 16 plots the saturation throughput of 

the two-state model and the three-state sensing model with 2 co-existing CRNs. This figure 

indicates the saturation throughput of the three-state merely slightly decreases compared to 

the result of the two-state. 

In the second experiment, the impact of the PU activity on the SUs' throughput is ex­

plored. Fig. 17 clearly demonstrates that the saturation throughput of SUs gradually reduce 

when PQ decreases. This is because SUs have less opportunity to transmit when the PU 

occupies the channel more frequently. 
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Fig. 15: Normalized throughput comparison between the two-state model and the three-
state sensing model: Po = 0.8 

V.4.2 FAIRNESS EVALUATION 

The fairness performance is evaluated in the third experiment. Two scenarios with 5 

and 10 co-existing CRNs are studied. For the sake of convenience, we assume each CRN 

contains one SU only. 20 cycles are observed from Ai till A20. The period of Ai equals 

the time to transmit 5 frames. Under the three-state sensing model, all SUs contend for the 

channel with the equal access probability Pa. Under the two-state model, we suppose each 

SU has 5 successive frames to transmit once it grasps the channel. Fig. 18 shows the Jain 

Index results with both models for 5 and 10 SUs. 

It can be seen that the fairness of the three-state sensing model is dramatically im­

proved compared to its peers. Especially, it is noticeable that fairness with differentiation 

is achieved fairly well even in a short period. This conclusion applies to both situations 

with 5 and 10 SUs. Let us next explore the influence of the number of SUs on the fair­

ness performance. When the number of SUs increases from 5 to 10, the fairness of the 
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Fig. 16: Saturation throughput comparison between the two-state model and the three-state 
sensing model: Po = 0.8 

two-state model is dropped drastically. This suggests that the number of CRNs have signif­

icant impact on fairness and that fewer CRNs achieves better fairness. Nevertheless, in the 

three-state sensing model, the fairness has been slightly affected by the number of CRNs. 

ALFA is further evaluated in the above four cases and the results are demonstrated in 

Fig. 19. This matches the conclusion drawn in Fig. 18. Concretely, the fairness from micro 

to macro level, in the three-state sensing model, is obtained satisfactorily (0.9103 for 5 SUs 

and 0.8707 for 10 SUs). The number of SUs does not greatly influence. In contrast, ALFA 

is far lower in the two-state model, with 0.6598 for 5 SUs and 0.4933 for 10 SUs. 

V.5 SUMMARY 

In this chapter, multiple CRNs co-existing in an area have been considered. Accord­

ingly, a three-state sensing model consisting of idle, occupied by a PU and occupied by an 

SU, is proposed. Based on this novel model, a fairness-achieved MAC (FMAC) has been 

designed that fully takes the PU activity into account. A Markov chain model tailored to the 
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Fig. 17: The normalized throughput influenced by the PU activity 

proposed FMAC has been derived. In addition, the performance of throughput and fairness 

of the three-state sensing model has been thoroughly examined. The numerical results have 

verified that the fairness of the three-state sensing model is significantly improved, while 

maintaining nearly the same throughput, in comparison to the two-state model. 
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CHAPTER VI 

DELAY ANALYSIS FOR CRNS SUPPORTING HETEROGENEOUS TRAFFIC 

In Chapter V, two significant performance metrics of throughput and fairness have been 

carefully studied. Besides throughput and fairness, traffic delay is another critical network 

performance metric and has received very limited attention in CRNs. This chapter will 

study the delay analysis in a CRN supporting heterogenous traffic. In general, traffic delay 

is defined as the period it takes for a packet to travel from a source to a destination, and 

can be divided into several components: the processing delay, queueing delay, transmission 

delay and propagation delay. The processing delay, transmission delay, and propagation 

delay can be straightforwardly determined for the given node processing power, network 

card speed, and nodes distance. On the contrary, queueing delay is a complicated quantity 

that depends on traffic load and various network states. 

In this chapter, queueing delay for a CRN supporting heterogeneous service is the pri­

mary concern. In a multi-channel scenario, a channel selection scheme is designed, with 

the objective to reduce the average delay of all SU packets. In particular, the delay of an SU 

packet is affected not only by earlier SU packets in the queue, but also by the PU packets ar­

riving during its waiting time. To address this issue, a virtual queue with different priorities 

is utilized to model the traffic of PUs and SUs on the same channel. 

In order to guarantee PUs' licensed membership, packets from PUs are distinguished 

from SUs by employing an absolute priority scheme. Meanwhile, various delay require­

ments over the packets from SUs are fully considered. The packets from SUs are classified 

into either delay-sensitive packets or delay-insensitive packets. Moreover, a novel relative 
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priority strategy is designed between these two types of traffic by proposing a "transmission 

window" strategy. The delay performance of both a single-PU scenario and a multiple-

PU scenario is thoroughly investigated employing queueing theory. In the multiple-PU 

scenario, a dynamic and adaptive channel selection scheme based on learning automata is 

developed with the objective of reducing the average delay for all SU packets. Numerical 

experiments are conducted and the results demonstrate the delay performance with respect 

to varied transmission window sizes. The results in the multiple-PU scenario verify that 

the proposed learning automata channel selection scheme significantly improves the delay 

performance of SU packets. 

This chapter is organized as follows. Section VI. 1 introduces the network model and 

main idea. Sections VI.2 and VI.3 present the detailed design of the channel selection 

algorithm as well as the delay performance along with an in-depth mathematical analysis. 

Numerical results are provided in Section VI.4. Summaries are concluded in Section VI.5. 

VI.l NETWORK MODEL 

A cognitive radio network consisting of M PUs and N SUs is considered, denoted 

as PU = {PUi,PU2,...,PUm,...,PUM} and SU = {SUUSU2,...,SU„,...,SUN}. Let C = 

{Ci,C2,...,Cm,...,CM} denote the set of channels. Heterogenous bandwidths of different 

channels is allowed, with the bandwidth of Cm denoted as Bm. 

Due to the limitations of spectrum sensing, it is not feasible for an SU to detect all avail­

able channels. Furthermore, the available channels detected by different SUs may vary. Let 

C„ denote the available channels detected by SUn. Note that C„ c C. The ideal interfer­

ence detection is assumed, i.e., an SU vacates the current channel immediately whenever 
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the corresponding PU reappears. 

SUs are allowed to opportunistically access available channels when PUs are absent. 

An SU is assumed to occupy only one available channel to transmit data at a time. 

Each PU is assumed to occupy a dedicated channel and does not need to consider chan­

nel selection. However, an SU needs to select a channel prior to transmission. Let 

Pn(k) = denote the access probability distribution of SUn over M 

channels. The components ofPn(k) satisfy Pm(k) = 1- Based on its access probabil­

ity distribution, each SU chooses a channel independently at the time slot k. Let denote 

the channel selection result for the user SUn choosing the channel Cm at the k?h time slot, 

where ^(k) = 0 or 1 and = 1. 

Heterogeneous services are supported in the considered network model. In general, 

heterogeneous services have different delay requirements. For instance, traffic delay has a 

significant impact on the quality of real-time data such as voice or video. In contrast, it has 

minor effect on time-insensitive services such as email. SU packets are divided into two 

broad categories in terms of delay requirement, namely the delay-sensitive packets (DSPs) 

m 
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and delay-insensitive packets (DIPs). Each SU is assumed to generate both DSPs and DIPs. 

Our model can be easily extended to address more than two classes of SU packets. The 

priority levels of PUpackets (PUPs), DSPs and DIPs are from high to low, denoted as level 

0,1 and 2. 

In a cognitive radio network, SUs should be capable of correctly differentiating a PU 

signal from other SUs. PUPs from PUm are assumed to follow Poisson distribution with 

rate using the channel CM- Let X", A!} denote the average arrival rate of DSPs and DIPs 

from SUn, which is modeled as a Poisson process. Let \Tm denote the service rate for the nth 

user using the channel Cm, which satisfies: 

„ =Bm 
r-m j ) 

L-n 

where Ln is the average packet size of the n,h user. This definition of applies to both PUs 

and SUs. For a particular SU, note that its service rate under different channels may vary. 

PUPs, DSPs and DIPs on the same channel are modeled as a virtual queue. Fig. 20 

illustrates the whole picture of the system model. 

VI.2 SINGLE-PU SCENARIO 

Before diving into the multiple-PU scenario, a scenario that consists of a single PU and 

a single SU is firstly considered. 

VI.2.1 TWO PRIORITY SCHEMES 

PUPs have a strict priority over DSPs and DIPs. To prevent PUPs from disruption caused 

by DSPs and DIPs, an absolute priority scheme is employed for PUPs. In an absolute 

priority scheme, PUPs always access the channel whenever it appears. DSPs and DIPs 
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access the channel only if there are no PUPs. It is not appropriate to use an absolute priority 

scheme between DSPs and DIP, as the lower priority class may starve since the high priority 

class may seize the channel for a long time. 

To avoid starvation of DIPs, a relative priority scheme is developed between DSPs and 

DIPs. Specifically, the incoming DSPs and DIPs are inserted into the same queue in the ar­

rival order. A parameter W is introduced for the relative priority scheme. When the channel 

is available for SU traffic, the queue is searched from head to tail to find W DSPs (assuming 

that there are at least W DSPs in the queue). These W DSPs are labeled from 1 to W, in 

order of arrival. All packets that arrive earlier than the Wth DSP in the queue, including both 

DSPs and DIPs, form a transmission window (TW). Packets inside the TW are transmitted 

on the channel as follows. First, those W DSPs are transmitted in order of their arrival. After 

all W DSPs have been transmitted, DIPs in the current TW are transmitted, again, in arrival 

order. In case there are fewer than W DSPs in the queue, let L{L<W) denote the number 

of DSPs in the queue. Packets are then transmitted on the channel as follows. The L DSPs 

are transmitted first, followed by the transmission of DIPs, if any. During the transmission 

period, newly arriving DSPs are inserted sequentially after the existing L DSPs. The cur­

rent TW ends when the (W - L)th newly arriving DSP has arrived. The above procedure is 

repeated until all packets in the current TW have been transmitted. Note that the size of TW 

may vary each time even with the same value of W. This depends on how many DIPs arrive 

in the TW. In the relative priority scheme, the higher the value of W, the higher the priority 

for DSPs is. Hence, by adjusting the parameter W, different priority levels between DSPs 

and DIPs can be achieved. 

A relative priority scheme with W = 6 is illustrated in Fig. 21, where clear rectangles 
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Fig. 21: Relative priority mechanism between DSPs and DIPs (W=6) 

represent DIPs and shaded rectangles represent DSPs. Fig. 21(a) shows their arrival order 

of DSPs and DIPs. The TW based on W = 6 is marked by the dotted line. The transmission 

order of DSPs and DIPs in the TW is described in Fig. 21(b). 

VI.2.2 DELAY ANALYSIS IN SINGLE-PU SCENARIO 

In this section, the delay performance of PUPs, DSPs and DIPs is analyzed. Assume all 

the packets have equal size. Let the service time of a packet be a random variable S. As 

the delay of PUPs is not affected by DSPs and DIPs, it can be analyzed as an M/D/l queue. 

Specifically, the delay of a PUP consists of two components: 1) the remaining service time 

of the current PUP (denoted by 7Q ) in service, if any; 2) the time to serve all other PUPs 

(denoted by T£) that are waiting in the queue upon the arrival of this PUP. As a result, the 

mean queueing delay for a PUP, denoted by £ [A)]> can be represented as: 

where po = h>/n- Note that the superscripts of the notations is omitted in the single-PU 

scenario. 

It is challenging to analyze the delay of DSPs and DIPs due to two issues. First, SUs 

E[z>o]=£ra+E[r ,f] 

(64) 
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have to vacate the channel whenever the corresponding PU reappear. Second, with the 

relative priority scheme between DSPs and DIPs, although DSPs have a higher priority 

than DIPs in the same TW, DSPs have a lower priority than the DIPs in previous TWs. Both 

issues in the following delay analysis of DSPs and DIPs will be addressed. 

The queueing delay for a DSP, denoted as D\, consists of four components: 1) the 

remaining service time of the current packet, either a PUP or a DSP, in service, if any; 2) 

the time to serve all other PUPs and DSPs that are waiting in the queue upon the arrival of 

this DSP; 3) the time to serve the PUPs that arrive during the queueing time of this DSP; 

4) the time to serve all the DIPs in previous TWs if there is at least one TW in the queue 

when this DSP arrives. Note that for a DSP falling into the (a+ l)^ TW (a = 1, ...,«>) in 

the queue, all DIPs in the previous a TWs should be served before this DSP. 

The first two components can be obtained using the approach in [54] as E[TQ\ +E[T{]. 

The third component can be represented as po£[Z>i]. The fourth component is calculated in 

the following. The probability that a DSP falling into the (a +1) • W DSPs can be expressed 

as: 

P* = PrjaW < number of DSP packets < (a+ 1)W] 

=  P R _ P (a+
,)w- 1 = P fW(1-p(w-,)) i  ( 6 5 )  

where pi = Xj/ju. 

There are W DSPs inside each TW. Because both DSPs and DIPs follow Poisson arrival 

with rate Xj and X2, respectively, the mean number of DIPs in a TWs is a • W • Thus, the 

mean time to serve DIPs in previous TWs in the queue when a DSP arrives can be derived 
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as: 

Eprd-pf-")-^ «*> 
a=i 

J, / ,  (W-l )s P?W) 
_  ̂ 2Pl(l~Pi ) a=l 

f A  i  d p i  

pzwpru-pi"'-") 
>.i(i-py)2  

~ p^pr 

xid-pD' 

where P2 = ta/p-

Combining all four components of DSP queueing delay, the mean delay of a DSP, E[D\] 

can be expressed as: 

£pi] = E*OT]+Esp;1 
i=0 i=0 

xi ( i -pn  

i1 1 

216 = r£W?] + J>E[A] 
L i=0 »'=0 

+p«£ | D i | +Mi-ppn 

Aq + (1 — po)A.i 

2(1 — Po)(l — Po —Pi)j"2 
•E[D{\ = 

+ p^pr (67) 
^( l -pyx i -po-p , ) '  ;  '  

Eq. (67) indicates that parameter W plays a significant role in the queueing delay of 

DSPs. This will be verified in Section VI.4. 

Next, the analysis for the queueing delay of DIPs is carried out. For an incoming DIP, 

the queueing delay, denoted as £>2, consists of four components: 1) the remaining service 

time of a PUP, DSP, or DIP, in service, if any; 2) the time to serve all other PUPs, DSPs, 
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and DIPs that are in the queue upon the arrival of this DIP; 3) the time to serve PUPs that 

arrive during the queueing time of this DIP; 4) the time to serve DSPs in the same TW that 

arrive during queueing time of this DIP. 

The first three components can be obtained as similarly to those in Eq. (67). The fourth 

component is examined next. Note that although there are W DSPs in each TW, some 

of these W DSPs may have arrived after this DIP leaves the queue and proceeds to the 

destination. Certainly these DSPs cannot be served before this DIP. Furthermore, there may 

be some DSPs that arrive during queueing time of this DIP, but belong to the future TWs 

(after the current TW). These DSPs should not be served before this DIP. Let V denote the 

number of DSPs that are in the same TW of this DIP and have arrived before this DIP. 

Let U denote the number of DSPs that arrive during queueing time of this DIP. Then the 

fourth component, defined as Z, is the time to serve Zs(min{W — V,U}) number of DSPs. 

Unfortunately, it is intractable to directly derive Z. Instead, the lower and upper bounds for 

this quantity is derived. Considering that the W DSPs in a TW are W points and there is one 

position before each point, then, due to the Poisson arrival, a DIP has the same probability 

to arrive at any of the W positions. Therefore, in the current TW, there are at most W DSPs 

arriving during the queueing time of this DIP. On the other hand, there may be no DSP 

arriving, e.g., the DSP following this DIP takes too long to arrive. Then Q<Z <W//I holds. 

As a result, the approximate mean E(Z) « ̂  is obtained. Based on above discussions, the 
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mean delay, £[£>2]. can be expressed as: 

2 2 

E[ih} = ££[r/-l+£E[r/,]+poE[D2]+E(Z) 

= xZ W5[S?1 + E 9iE{Dl] + po£[02] + E(z) 
n ,_n 

«=0 i'=0 
1 2 2 1 *-« « . T~ 

j=0 1=0 

J>i+£pi£[Z>,] + 

(68) 

VI.3 MULTEPLE-PU SCENARIO 

VI.3.1 DYNAMIC CHANNEL SELECTION ALGORITHM 

In the multiple-PU scenario, each SU needs to select a proper available channel 

prior to transmission. Since there can be multiple available PU channels for SUs, a 

dynamic and decentralized channel selection scheme based on LA is developed in this 

section. Each SU implements the channel selection algorithm locally. Let P"(fc) = 

[p"(k),p2{k), denotes the access probability distribution of SUn over M channels. 

Let X n ( k )  =  [ jc( k ) ]  denote the channel selection vector for the user SUn at 

the kfh time slot. Each SU receives a payoff in response to the chosen channel. Let $),(&) 

denote the payoff for the SU» to choose the channel Cm. Our objective for channel selection 

is to decrease the queueing delay for SU traffic. In Eqs. (67) and (68), the queueing delay 

decreases when the service rate increases. All packets are assumed to have the same size 

and hence the service rate on channel Cm is the same for each packet, which is denoted as 

/im. Hence (3JJ, (k) should be proportional to fim. Moreover, for an arriving SU packet, the 

existing SU packets in the queue impact the delay of this arriving packet. Specifically, if 

the arriving packet is a DSP, all existing DSPs and some DIPs affect its delay. On the other 
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hand, if the incoming packet is a DIP, ail existing DSPs and DIPs are taken into account for 

the delay. To differentiate these two cases, a weight 0(0 < 0 < 1) is introduced. Based on 

the above discussion, $„(£) is designed as follows: 

„ "m 
N (®) 

L(^-M)+ e-E(4-M) 
j= i ;=1 

where 0 < 0 < 1 when SUn generates DSP and 0=1 when SUn generates DIP. 

By recording all previous chosen channels and the corresponding payoffs, the reward 

probability can be computed as d^(k) = where Z£(&) is the number of time slots that 

the SUn chooses the channel Cm, until the time slot k. B^k) is the sum of (5JJ, in these time 

slots. The optimal channel is believed to be i = argmaxm{d£}. Then the access probability 

Pn(k) is updated to P"(fc+1) as follows: 

Pn{k+1) = P"(*) + y[e,- - P"(*)], (70) 

where y(0 < y < 1) is a step-size parameter and e/ is the identity vector with the ith element 

1 and all others 0. 

The channel selection algorithm for SUn is described in Algorithm 3, which is a learning 

automata (LA) based algorithm. The advantage of LA is that it can converge to an e-

optimal solution reasonably quickly [41]. This means that Algorithm 3 is feasible and 

a stable access probability will eventually be obtained. Specifically, at time slot k, the 

channel selection vector Xn(k) for the user SUn is obtained based on the channel access 

probability P"(fc). During the first few time slots, the chosen channels might be different 

for a particular SU. Nevertheless, after some startup time, each SU will choose a fixed 
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channel for a relatively long time. That will be verified in Section VI.4. 

VI.3.2 DELAY ANALYSIS IN MULTIPLE-PU SCENARIO 

Let E[DQ] denote the mean delay for the packets of the user P(JM .  Since the PU packets 

are not affected by the SU packets under the absolute priority scheme, and each PU has 

a dedicated channel, E[DQ] is obtained the same as the E[DQ] in the single-PU scenario. 

Hence, from Eq. (64), E[DQ] is given as: 

where 

Next, the delay of DSPs and DIPs is analyzed. After Algorithm 3 terminates, SUs on 

channel CM are statistically stable thanks to the convergence property of LA. The SUs on the 

same channel are treated as a group, and time synchronization is performed among them. 

Then, SUs can use a collision free MAC scheme, e.g., a collision-free TDMA scheme. 

This can be achieved by employing a base station in the network. Note that the scheduling 

process may introduce additional delay, which is ignored in this chapter. 

In the multiple-PU scenario, the same priority scheme as in the single-PU scenario is 

employed among PUPs, DSPs, and DIPs. Namely, the absolute priority is adopted for PUPs 

against DSPs and DIPs, and the relative priority is used between DSPs and DIPs. Similarly, 

the TW strategy in the single-PU scenario is also utilized for the multiple-PU scenario. 

Specifically, the incoming DSPs and DIPs from all SUs that select the same channel are 

'labeled' based on their arrival orders. The PUPs from PUM, and the DSPs and DIPs from 

the SUs selecting channel CM are processed by one virtual queue. 

The mean delay for a DSP on channel CM is denoted by E[D^\. E[D^\ consists of four 
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components similar to £[£>1] in the single-PU scenario. The major difference is that the 

N 
rate of incoming DSP traffic changes from A,i to ^ (jc^ • X"), denoted by . Similarly, the 

n—1 
N 

rate of incoming DIP traffic changes from %2 to £ OC • denoted by XJ?. Accordingly, 
n= 1 

E[D^\ can be written as 

i 1 ym 
E\p{\ = i £ »>"«$] + Po^fDff] + -±E[0n 

z i=0 

WX?$-)w 

+ p?E[Z>f] 1 

/aT[i-(£)" ']  

(72) 

E m ] =  
m 

2W2(i-py-g)(i-py) , (̂̂ )w 

yjn 
where X™ = —. Continuingly, the average delay of DSPs in the entire system, denoted 

n=l 
by £[Di], can be computed as follows: 

L M 
Epl] = T7 E C73) 

m m= 1 

The mean delay for a DIP on the channel Cm is denoted as E[D%]. The rate of incoming 

DSP and DIP traffic are "k™ and respectively. Similar to £[£>2] in the single-PU scenario, 
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E[D^\ contains four components and can be derived as: 

*ra=iEw?)+poW] 
i=0 

2 \m 
+ Z ( ^ ) E m + p m m  

i=l 

+ E[ZM] 

(i-Pj-S) 

Correspondingly, the average delay of DEPs in the entire system, denoted by E[D2], can 

be computed as follows: 
i M 

=m £ <74> 

m= 1 

VI.4 NUMERICAL RESULTS 

VI.4.1 SINGLE-PU SCENARIO 

In the single-PU scenario, there is only one channel, shared by one PU and one SU. The 

channel bandwidth is assumed 1Mbps. The packet size is assumed as 512 bytes. In the 

first experiment, the Poisson arrival rates Xo, A,i, and %2 of PUP. DSP, and DIP traffic are 

assumed to be 100, 75, and 50 packets per second, respectively. In Fig. 22, the mean delay 

of PUPs, DSPs, and DIPs is plotted as a function of the TW size (W). It can be seen that 

E[DQ\ has a constant value when W changes. The £[Z>i] decreases slightly, while £[£>2] 

increases dramatically, when W increases. As mentioned in Section VI.2, the TW size W is 

used to adjust the relative priority between DSPs and DIPs. The results in Fig. 22 confirm 

our design goal of using the relative priority between DSPs and DBPs. 

In the second experiment, the TW size W is fixed as 5. The DSPs and DIPs arrival rates, 
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Fig. 22: Mean delays of PUPs, DSPs and DIPs in the single-PU scenario 

Xi and X.2, remain the same as in the first experiment, while the PUPs arrival rate Ao varies. 

Fig. 23 shows the mean delay of PUPs, DSPs and DIPs as a function of XQ. It can be seen 

that £[A)]> E[DI], and £[£>2] all increase when Xo grows. £[1)2] has the most significant 

delay followed by E[D\]. £[£>0] has the slightest increase. This can be explained as follows. 

When the arrival rate of PUPs increases, the channel occupancy by the PU becomes longer. 

This reduces the opportunity for DSPs to access the channel. Moreover, the DIPs have the 

lowest priority. When even DSPs have difficulty to access the channel, the chance is even 

worse for DIPs, and thus the delay increment for DIPs is the most significant. 

VI.4.2 MULTIPLE-PU SCENARIO 

The channel selection algorithm (LACS) is first examined. In this experiment, the num­

ber of PUs and SUs is assumed to be 5 and 10. The bandwidths of the five channels are 

set as 4.1353, 8.5600, 5.1785, 6.6997, and 4.1595 Mbps, following a uniform distribution 

between 3 and 10 Mbps. The arrival rates of PUPs, DSPs and DIPs XQ , Xn
x and Ag. are 100, 

75, and 50 packets per second, respectively. For each SU, the channel selection probability 
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Fig. 23: Mean delays as a function of XQ in the single-PU scenario 

is updated dynamically at each time slot. Due to the limited space, only two SUs as exam­

ples are demonstrated, denoted as SU\ and SU2, to examine the channel selection dynamics 

over time. Fig. 24 illustrates the channel selection probabilities of SU\ over time slots 1 to 

10. The probability of selecting channel 2 quickly increases and approaches 1 at the \Q?h 

time slot. On the other hand, the probabilities of selecting other channels decreases over 

time and approach 0 at the 10"1 time slot. Hence the channel chosen for SU\ after some 

startup time should be channel 2. Fig. 25 shows the channel selection probabilities of SUi. 

For SU2, the probability of choosing channel 3 steadily increases and approaches 1. This 

implies that SU2 will finally select channel 3 after some startup time. There is a similar 

observation for all other SUs, i.e., the chosen channel might vary from time slot to time 

slot at the beginning, but will finally settle down to a specific channel after the startup time. 

Such observations verify the convergence of our channel selection algorithm. 

Now, the mean queueing delay will be evaluated. The queueing delay with our proposed 

channel selection algorithm (LACS) is compared with the one obtained using a random 
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Fig. 24: Channel access probability for SU1 

channel selection (RCS) algorithm [55], Four experiments have been carried out, in which 

the channel bandwidths, X" and remain the same as in the previous channel selection 

experiment. In the first experiment, 5 PUs and 10 SUs are assumed. Two values, 100 and 

300 packets per second, are adopted respectively, for the arrival rate of PUPs, Xff. The mean 

delays are plotted in Fig. 26. The delay of PUPs, E[DQ\, remains constant and is not affected 

by the channel selection algorithm, since the channel selection only applies to SUs. For the 

delay of DSPs and DIPs, £[Di] and £[£>2]. the proposed LACS outperforms the RCS in 

both cases. 

In the second experiment, 5 PUs and 20 SUs are assumed. The arrival rates of PUPs, 

DSPs, and DEPs are the same as in the first experiment. The mean delays are shown in Fig. 

27. By comparing Fig. 27 and Fig. 26, it can be seen that the performance improvement of 

LACS compared with RCS is more significant when there are more SUs. This is because 

more SUs result in a higher traffic load, and the role of the channel selection algorithm 

becomes more critical under higher loads. 
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Fig. 25: Channel access probability for SU2 

In the third experiment, the mean delay as a function of the PUPs arrival rate is 

examined, while fixing the TW size W as 5. The number of PUs and SUs, and the arrival 

rates of DSPs and DIPs remain the same as in the first experiment. Similar to Fig. 23, 

Fig. 28 shows that the mean delays of PUPs, DSPs, and DIPs all increase when XQ increases. 

Specifically, £[£>2] grows faster than £[£>1] and E[Do\. This confirms the effectiveness of 

the priority scheme used between PUPs, DSPs, and DIPs. 

In the last experiment, the number of SUs is increased to 20 while maintaining other 

parameters as the same in the third experiment. The results depicted in Fig. 29 verify the 

observations from Fig. 28. That is, the mean delays of PUPs, DSPs and DIPs grow when 

XQ increase. In addition, the mean delays under RCS grows faster compared with Fig. 28. 



91 

2.5 
EPjJwtthRCS 

.4 _ EPj] with LACS 

Ep^wlthRCS 

. * -EP,] with LACS 

-•-6PJ 

2 3 4 
Transmission Window Size (W) 

(a) = 100 

3.5 

2.5 
w 
E 

J" 
& 

1.6 

0.5 

Transmission Window Size (W) 

(b) XQ  = 300 

Fig. 26: Mean delays under LACS and RCS in the multiple-PU scenario, with 5 channels 
and 10 SUs 

VI.5 SUMMARY 

In this chapter, the queueing delay of PU packets^PUPs), delay-sensitive SU packets 

(DSPs), and delay-insensitive SU packets (DIPs) in both single-PU and multiple-PU sce­

narios are analyzed. A relative priority scheme has been proposed using the transmission 
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window technology to differentiate DSPs and DIPs. Furthermore, in the multiple-PU sce­

nario, a channel selection algorithm based on learning automata (LA) has been designed, 

with the objective to reduce the queueing delay. The numerical results show that the priority 

scheme is effective in differentiating the delays of PUPs, DSPs, and DIPs, and the proposed 

channel selection algorithm improves the queueing delay significantly. 
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Algorithm 3 Learning automata based channel selection (LACS) algorithm 

1: Initialization: k = 0,Y= 0.5,2%(0) = Z£(0) = 0. 
2: Assign the initial channel access probability randomly with a constraint: 

E Pm( °) = 1 

meC„(k) 

3: Pick a channel according to Pm{k)' Pm(fy ^ 
4: form=l:l:Mdo 
5: if the mth channel is chosen then 
6: ZJ(*)=ZJ(t) +1; 
7: B"m(k)=B"m(k) + P"m(k); 

8: 

9: end if 
10: end for 
11: Search for the maximum d^(k): i = argmax.{d%,(k)} 

m 
12: Update the channel access probability: 
13: form = 1:1 :Mdo 
14: if m==i then 
15: p?(*+l) = p?(*)+7(l-p?(*)]; 
16: else 
17: p»n(k+ 1) = pn

m{k)-ypn
m{k)\ 

18: end if 
19: end for 
20: if pn(k) contains an element 1 - e (0 < £ << 1) at the jth channel then 
21: if m==j then 
22: xj(jfc) = 1 
23: else 
24: <,(*)= 0 
25 : end if 
26: STOP 
27: else 
28: k = k+ 1; 
29: GOTO Line 3 
30: end if 
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Fig. 27: Mean delays under LACS and RCS in the multiple-PU scenario, with 5 channels 
and 20 SUs. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE RESEARCH 

The preceding chapters have studied several crucial aspects of spectrum sensing, 

throughput, fairness and delay analysis in CRNs. This chapter will summarize the ma­

jor contributions in section VII. 1 and shed light on directions for further research in section 

vn.2. 

VII.1 CONCLUSIONS 

The main contributions presented in this dissertation are listed below: 

• A weighted cooperative spectrum sensing framework for infrastructure-based cogni­

tive radio networks has been designed. The framework consists of two modules. In 

the first module, each SU conducts local spectrum sensing and computes the total 

error probability. The total error probability and the energy signal from the PU are 

then sent to the base station. In the second module, the base station makes a final 

decision through combining the weighted energy signals from all SUs. To reduce the 

computation complexity and communication overhead, not all SUs report their local 

sensing results to the base station. The minimum number of SUs required to partici­

pate in cooperative sensing has been derived. Numerical results have verified that the 

proposed weighted cooperative spectrum sensing framework significantly improves 

the sensing accuracy. 

• Co-existing multiple CRNs in one area have been thoroughly studied, which have 
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received little attention. Accordingly, a smart three-state sensing model has been pro­

posed, which distinguishes the channel as idle, occupied by a PU, or occupied by an 

SU. To accurately detect each state of the three, a methodology of a two-stage detec­

tion procedure has been developed. In the first stage, energy detection is employed 

to identify whether a channel is idle or occupied. If the channel is occupied, the re­

ceived signal is further analyzed at the second stage, aiming at determining whether 

the signal originates from a PU or an SU. At the second stage, a statistical model is 

developed, which is used for distance estimation. With regard to detection perfor­

mance, the false alarm and miss detection probabilities for the proposed spectrum 

sensing technology have been theoretically analyzed in both local and cooperative 

sensing scenarios. 

• The performance analysis of the smart sensing model has been deeply investigated. 

A fairness-achieved media access control (FMAC) protocol has been developed. As­

sociated with the FMAC, a novel two-tier Markov chain model is created, which fully 

considers the PU activity. Two significant performance metrics, namely throughput 

and fairness, have been carefully studied. In terms of fairness, the fairness dynam­

ics from a micro-level to macro-level is evaluated among SUs from multiple CRNs. 

Also, the fundamental distinctions between the two-state model and the three-state 

sensing model have been addressed. 

• The delay performance of a CRN supporting heterogeneous traffic has been exam­

ined, in which priority differentiation for SU packets is taken into account. The 

packets are classified into three classes, PUPs, DSPs and DIPs. The priority levels 
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of PUPs, DSPs and DIPs are denoted as 0, 1,2, from high to low. Furthermore, an 

absolute priority scheme is employed for PUPs to guarantee their licensed privilege. 

To avoid the starvation of the lowest priority traffic, instead, a relative priority strat­

egy is designed between DSPs and DIPs, using a "transmission window" strategy. In 

the multiple-PU scenario, a dynamic and adaptive channel selection strategy based 

on learning automata is developed. It aims to reduce the average delay of SU pack­

ets. Afterwards, the transmission of PUPs, DSPs and DIPs on the same channel are 

modeled as a virtual queue with three different priorities. Queueing delay is analyzed 

in both the single-PU and multiple-PUs scenarios. The numerical results have shown 

that the priority scheme is effective in differentiating the delays of PUPs, DSPs, and 

DIPs, and the proposed channel selection algorithm have improved the queueing de­

lay significantly. 

VII.2 FUTURE RESEARCH 

In this section, the future research will be discussed. There are a number of ways to ex­

tend current research. The following lists some possible directions for the future directions. 

• In the spectrum sensing presented in Chapter III. 1, the PU signal level is assumed rel­

atively higher than noise. However, this does not hold in certain cases. As we know, 

severe noise is an important factor in the degradation of the detection accuracy. The 

inherent uncertainty of noise makes the differentiation between signal and noise very 

challenging. Authors in [56] conclude that there exists an "SNR Wall" for matched 

filter detection, energy detection and feature detection. Below a specific "SNR Wall", 

these three detectors will fail to differentiate noise from signals, no matter how long 
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the detector can observe the channel. To meet the strict requirements of the Fed­

eral Communications Commission (FCC), novel methods are needed to be designed 

which are efficient and robust to noise. 

• Reliability is one of the most significant performance metrics in wireless applications. 

Unfortunately, malicious users always exist and destroy normal user's services. Tak­

ing cognitive radio networks as an instance, malicious SUs may falsely report their 

detection result, or even worse, they imitate the behavior of primary users. This will 

lead to poor detection accuracy and thus degrade the benefits of normal SUs. So one 

possible direction is to extend current spectrum sensing technology while taking the 

security issue into account. 

• Most of the current literature is limited to the theoretical analysis, in which a couple 

of strong assumptions are usually taken for granted. For instance, one fundamental 

assumption is that noise follows Additive White Gaussian Noise (AWGN), which is 

also used in this dissertation. In fact, noise in an actual wireless environment is far 

more complicated. To be more practical, large-scale experimental implementations 

are needed to provide scientific benchmarks for aforementioned issues. Both positive 

and negative results from implementations are valuable to reflect insights back into 

the theoretical studies. 
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