390 research outputs found

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Satisfaction-Aware Data Offloading in Surveillance Systems

    Get PDF
    In this thesis, exploiting Fully Autonomous Aerial Systems\u27 (FAAS) and Mobile Edge Computing (MEC) servers\u27 computing capabilities to introduce a novel data offloading framework to support the energy and time-efficient video processing in surveillance systems based on satisfaction games. A surveillance system is introduced consisting of Areas of Interest (AoIs), where a MEC server is associated with each AoI, and a FAAS is flying above the AoIs to support the IP cameras\u27 computing demands. Each IP camera adopts a utility function capturing its Quality of Service (QoS) considering the experienced time and energy overhead to offload and process remotely or locally the data. A non-cooperative game among the cameras is formulated to determine the amount of offloading data to the MEC server and/or the FAAS, and the novel concept of Satisfaction Equilibrium (SE) is introduced where the IP cameras satisfy their minimum QoS prerequisites instead of maximizing their performance by consuming additional system resources. A distributed learning algorithm determines the IP cameras\u27 stable data offloading. Also, a reinforcement learning algorithm indicates the FAAS\u27s movement among the AoIs exploiting the accuracy, timeliness, and certainty of the collected data by the IP cameras per AoI. Detailed numerical and comparative results are presented to show the operation and efficiency of the proposed framework

    Technologies for Development: From Innovation to Social Impact

    Get PDF
    Development Engineering; Technologies for Development; Innovation for Humanitarian Action; Emerging Countries; Developing Countries; Tech4De

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    Applications of 5G Communications in Civil Protection

    Get PDF
    Τα δίκτυα πέμπτης γενιάς θεωρούνται ευρέως ως μία από τις πιο θεμελιώδεις τεχνολογικές εξελίξεις του τρέχοντος αιώνα, προσφέροντας υψηλή ταχύτητα, χαμηλή καθυστέρηση και κλιμάκωση. Τα επόμενα χρόνια, τα δίκτυα πέμπτης γενιάς αναμένεται να δημιουργήσουν τη χωρητικότητα, την απόδοση και την ευελιξία του ασύρματου δικτύου για να υποστηρίξουν μια εκρηκτική αύξηση στις συνδεδεμένες συσκευές, μαζί με πρωτοποριακές εφαρμογές. Αυτή η καινοτόμος νέα τεχνολογία μπορεί να βελτιώσει όλο το φάσμα της καθημερινής ζωής από την υγεία στην ψυχαγωγία και από τη γεωργία στην πολιτική προστασία. Οι κρίσιμες επικοινωνίες, ο ακρογωνιαίος λίθος της Πολιτικής Προστασίας, θα επωφεληθούν σε μεγάλο βαθμό από το 5G. Η παρούσα εργασία μελετά πώς νέα στοιχεία και τεχνολογίες του 5G όπως η επαυξημένη πραγματικότητα, η ηλεκτρονική υγεία και η βελτιστοποιημένη δρομολόγηση ασθενοφόρων μπορούν να υποστηρίξουν την Πολιτική Προστασία ενισχύοντας παράλληλα το περιβάλλον και την οικονομία.5G networks are widely considered as one of the most fundamental technology developments of our century, providing ultra-high-speed, low-latency and scalability. Over the coming years, 5G is expected to create the wireless network capacity, performance and flexibility to support an explosive increase in connected devices, along with exciting new use cases. This innovative technology can improve the whole spectrum of everyday life from health to entertainment and from agriculture to civil protection. Mission critical Communications, the cornerstone of civil protection, are to be greatly impacted by 5G. This thesis studies how new 5G components and technologies such as augmented reality, ehealth and optimized routing of ambulances are able to support the role of civil protection while enhancing the protection of the environment and the economy

    The Autonomous Attack Aviation Problem

    Get PDF
    An autonomous unmanned combat aerial vehicle (AUCAV) performing an air-to-ground attack mission must make sequential targeting and routing decisions under uncertainty. We formulate a Markov decision process model of this autonomous attack aviation problem (A3P) and solve it using an approximate dynamic programming (ADP) approach. We develop an approximate policy iteration algorithm that implements a least squares temporal difference learning mechanism to solve the A3P. Basis functions are developed and tested for application within the ADP algorithm. The ADP policy is compared to a benchmark policy, the DROP policy, which is determined by repeatedly solving a deterministic orienteering problem as the system evolves. Designed computational experiments of eight problem instances are conducted to compare the two policies with respect to their quality of solution, computational efficiency, and robustness. The ADP policy is superior in 2 of 8 problem instances - those instances with less AUCAV fuel and a low target arrival rate - whereas the DROP policy is superior in 6 of 8 problem instances. The ADP policy outperforms the DROP policy with respect to computational efficiency in all problem instances

    Crossbow Volume 1

    Get PDF
    Student Integrated ProjectIncludes supplementary materialDistributing naval combat power into many small ships and unmanned air vehicles that capitalize on emerging technology offers a transformational way to think about naval combat in the littorals in the 2020 time frame. Project CROSSBOW is an engineered systems of systems that proposes to use such distributed forces to provide forward presence to gain and maiantain access, to provide sea control, and to project combat power in the littoral regions of the world. Project CROSSBOW is the result of a yearlong, campus-wide, integrated research systems engineering effort involving 40 student researchers and 15 supervising faculty members. This report (Volume I) summarizes the CROSSBOW project. It catalogs the major features of each of the components, and includes by reference a separate volume for each of the major systems (ships, aircraft, and logistics). It also prresents the results of the mission and campaign analysis that informed the trade-offs between these components. It describes certain functions of CROSSBOW in detail through specialized supporting studies. The student work presented here is technologically feasible, integrated and imaginative. The student project cannot by itself provide definitive designs or analyses covering such a broad topic. It does strongly suggest that the underlying concepts have merit and deserve further serious study by the Navy as it transforms itself

    MOSAiC Implementation Plan

    Get PDF
    This document is the second version of the Implementation Plan for the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) initiative and lays out a vision of how associated observational, modeling, synthesis, and programmatic objectives can be manifested. The document was drafted during an international workshop in Potsdam in July 2015, and further developed during two additional workshops at AWI Potsdam in December 2015 and February 2016. Support for this planning activity has been provided by the IASC-ICARPIII process, the Alfred Wegener Institute Helmholtz Centre for Polar- and Marine Research, and the University of Colorado/ NOAA-ESRL-PSD. This document provides a framework for planning the logistics of the project, developing scientific observing teams, organizing scientific contributions, coordinating the use of resources, and ensuring MOSAiC’s legacy of data and products. A brief overview and summaries of key science questions are provided in Section 1. Section 2 includes an overview of specific observational requirements, while Section 3 describes the coordination and design of specific field assets. Practical logistics plans are outlined in Section 4. Links with current and future satellite programs and model activities are given in Sections 5 and 6. The MOSAiC data management strategy is given in Section 7. Links to other programs are outlined in Section 8. The appendix (Section 9) lists the parameters to be measured and the participating groups
    corecore