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Marcos Torres

B.S, University of New Mexico, 2018
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Abstract

In this thesis, exploiting Fully Autonomous Aerial Systems’ (FAAS) and Mobile

Edge Computing (MEC) servers’ computing capabilities to introduce a novel data

offloading framework to support the energy and time-efficient video processing in

surveillance systems based on satisfaction games. A surveillance system is intro-

duced consisting of Areas of Interest (AoIs), where a MEC server is associated with

each AoI, and a FAAS is flying above the AoIs to support the IP cameras’ computing

demands. Each IP camera adopts a utility function capturing its Quality of Service

(QoS) considering the experienced time and energy overhead to offload and process

remotely or locally the data. A non-cooperative game among the cameras is for-

mulated to determine the amount of offloading data to the MEC server and/or the

FAAS, and the novel concept of Satisfaction Equilibrium (SE) is introduced where

the IP cameras satisfy their minimum QoS prerequisites instead of maximizing their

performance by consuming additional system resources. A distributed learning al-

gorithm determines the IP cameras’ stable data offloading. Also, a reinforcement

learning algorithm indicates the FAAS’s movement among the AoIs exploiting the
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accuracy, timeliness, and certainty of the collected data by the IP cameras per AoI.

Detailed numerical and comparative results are presented to show the operation and

efficiency of the proposed framework.

This work has been published in:

P.A. Apostolopoulos, M. Torres, and E.E. Tsiropoulou, ”Satisfaction-

aware Data Offloading in Surveillance Systems,” in ACM MOBICOM

WKSHPS: CHANTS2019: 14th Workshop on Challenged Networks, 2019
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Chapter 1

Overview

1.1 Introduction

Surveillance systems have recently gained considerable attention due to the increased

number of terrorist attacks, natural disasters, and everyday security issues. All of

which challenge our public safety and homeland security [1]. With the advent of the

Internet of Things (IoT), the smart Internet Protocol (IP) cameras have enabled the

surveillance systems to capture real-time video and process it locally [2] or remotely

at the cloud computing environment. These cameras can observe and record certain

behaviors or activities, making an area known to city officials that more or less help

is needed in the area. For a system to make the right decisions, useful information

must be provided, and the feedback has to be real-time. This allows for emergency

responders to be more informed, and by this everyone involved will be safer. However,

the surveillance systems confront the challenges of increased computing demand to

process the recorded information and provide useful data from it. Even with the

advances of camera systems, the cameras cannot offload all their data locally to be

processed. The concepts of making use of Mobile Edge Computing Servers can help
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Chapter 1. Overview

ease the increasing demand challenges, but even with increased capabilities, users

may not be satisfied.

The problem of resource management in Public Safety Systems (PSS) and Public

Safety Networks (PSNs) has gained great interest in the recent literature in order to

safeguard citizens and improve rescue operations [3]. In [4], the problem of socio-

physical and mobility-aware coalition formation among the trapped users and the first

responders in public safety networks is addressed towards guaranteeing users’ connec-

tivity, stability, and energy-efficient communication. The energy-efficient operation

of the PSNs assisted by UAVs has been further studied in [5] considering multiple

types of devices communicating with the UAV. In [6], a novel evacuation-planning

mechanism is introduced to support the distributed and autonomous evacuation pro-

cess within the operation of a public safety system based on reinforcement learning

and game theory. In [7, 8], the public safety network is assisted with Unmanned

Aerial Vehicles (UAVs), and the problem of energy-efficient operation and communi-

cation of the IoT devices in the disaster area with the UAV is studied. Moreover, the

battery life of the IoT devices in the disaster area is extended by adopting the wire-

less powered communication (WPC) techniques by the UAVs to charge the devices

[9, 10, 11]. Towards providing resilient communications among the users and the

first responders during a disaster, the concept of wireless protocol selection has also

been proposed autonomously based on reinforcement learning techniques [12, 13].

However, all the approaches mentioned above provide efficient and reliable solu-

tions during or after a disaster event in PSSs and PSNs without contributing to the

process of predicting an upcoming disaster. Thus, the challenging problem of sup-

porting PSSs, PSNs, and in general, smart cities environments, with solutions that

can proactively safeguard them and support their smooth operation, while detecting

potential threats becomes a real need rather than a desire. Towards this direction,

the analysis of the content collected by surveillance systems can provide useful in-
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Chapter 1. Overview

formation to the Emergency Control Centers (ECCs) in smart city environments.

In recent years, mobile edge computing (MEC) has gained popularity in order to

offload data real-time and analyze it for use. MEC is a network architecture that runs

applications and processes tasks closer to the user so that congestion decreases, and

thereby, performance increases [14, 15]. In our situation, cameras process data locally

or offload to the MEC servers for data processing depending on if the need is there.

After offloading, and looking at different parameters, for example, time or energy

constraints, the cameras verify if they are ”satisfied” on the performance of offloading

to the MEC servers or processing locally. The term ”satisfaction” is used to express if

the cameras have satisfied their Quality of Service (QoS) requirements. The function

to determine satisfaction will be discussed further in the system model. Even with

assistance from the MEC servers, the cameras still may find themselves unsatisfied

based on time or energy usage. This could have been because certain areas may have

high critically, congestion or energy requirements, and needs more offloading power.

Another tool that can be utilized is an unmanned aerial vehicle (UAV) or commonly

known as drone with computing capabilities. Many communication providers are

moving towards mounting UAVs with base stations or computing devices to offload

data from users [16]. These drones provide a dynamic solution to providing coverage

for areas [17].

Along with this has been a push to make these drones fully autonomous meaning

there would be no human in the loop. Providers would set node destinations, and

drones could get themselves around using their algorithms. These UAVs are known

as fully autonomous aerial systems (FAAS). Utilizing this drone type, we can find

different critical areas, and our drones can dynamically move to these spots to provide

more assistance to satisfy more cameras. In order to dynamically move the FAAS

our problem employs a reinforcement learning technique to learn the environment.

Reinforcement learning is a machine learning technique in which rewards are given

3



Chapter 1. Overview

after an agent (in our situation, the FAAS) makes a decision and ends up in a

new state [18]. All the state and actions will be tried out by the agent, and after

it sufficiently learns the environment, it will maximize its reward by choosing the

path that gave it the most substantial reward. After sufficient time has passed,

the FAAS will proficiently know its environment and explore areas that in the past,

have provided more critically in terms of data and need. The full discussion of the

reinforcement learning algorithm and use is discussed fully in the system model.

1.2 Motivation

Public safety is a high priority in cities across the world, and every day new techniques

are being created to analyze risks to the population more proficiently. Surveillance

systems specifically, camera systems, have gained wide popularity for monitoring

activities and behavior. Using all the information gathered, cities can better assess

threats that may correspond to what these cameras are seeing. One crucial factor

is processing this data, and in order for it to be useful, it must happen in real-time.

To achieve this, authors in [19] have introduced an image uploading process from

the IP cameras to the cloud, where the images captured by the cameras are stored

and processed at cloud to decrease the cost of storing and processing the information

locally. This allows the data to be processed and analyzed to become useful to the

system. As mentioned above, the processing capabilities for these IP cameras need

assistance to be useful. In [20], a drone-assisted surveillance system is studied, where

the videos captured by the drone are forwarded to Fog Computing nodes through

the drones’ ground controller, in order to be processed and track vehicles’ movement.

Following a similar philosophy, in [21] an Unmanned Aerial Vehicle (UAV)-based

crowd surveillance system is introduced where the UAVs capture videos that either

offload to MEC servers for further processing or process them on board. The authors

4



Chapter 1. Overview

discuss the drawbacks and benefits of the two choices in terms of energy consumption

and processing time. In [22], the drones’ video capturing capability is exploited to

track the moving target object, and the drones offload part of the computing tasks

to a control center, while the rest are executed locally at the drone.

It is evident that the UAVs (the drones) and the remote computing capabili-

ties (i.e., Cloud, MEC, and Fog Computing) have improved the performance of the

surveillance systems. They allow for fast processing which makes this more useful to

the user and environment. However, the UAVs and the drones still require human

control from the ground to indicate the path that they follow during their flight.

To address this issue, the FAAS has been recently introduced in the robotics and

automation research field [23]. The FAAS is a flying robotic system equipped with

sensors, surveillance systems, computing resources, wireless communication inter-

faces, or any combination of them and is able to operate fully autonomously with

no human intervention. This increases the dynamism of the aerial system in which

they are self proficient in covering an area. A user would drop specific nodes, and

the system will create its flight plan.

In all the aforementioned approaches, each entity involved in the surveillance

system (i.e., IP cameras) aims at maximizing its Quality of Satisfaction (QoS). The

improvement of those entities’ QoS is proportional to the consumption of commu-

nication and computing resources. However, a surveillance system is a resource-

constrained setting; thus the maximization of each involved entity’s QoS is a sub-

optimal solution. Towards this direction, the games in satisfaction form have been

introduced in the field of Game Theory [24], where the autonomous entities aim to

”satisfy” their minimum QoS prerequisites in a distributed manner instead of tar-

geting at maximizing their QoS, and have been applied in the uplink power control

problem in wireless cellular networks [25, 26]. In this thesis, the FAAS’s and the

MEC servers’ computing capabilities are exploited to introduce a novel data offload-
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Chapter 1. Overview

ing framework based on the satisfaction games in order ultimately to support the

energy and time-efficient video processing in surveillance systems consisting of IP

cameras. Understanding this satisfaction amongst the system can be used in many

real-world applications, specifically public safety. If these cameras can real-time map

out where hot-spots are for illegal activity or unsafe areas, emergency responses can

be more precise and accurate in these areas and deter individuals from performing

these acts. With this increase in information, entire cities will be safer.

1.3 UAVs for Wireless Networks: Applications,

Challenges, and Open Problems

As mentioned above, the use of flying systems (i.e. UAVs, FAASs) is gaining pop-

ularity amongst the communications community because of their attributes such as

mobility, flexibility, and usability. Significant research has been performed in the

area of aerial systems and their contribution to our wireless communication network

architecture. A leading contributor on the push for UAV systems is the cost bene-

fits, building and maintaining complete cellular infrastructure is expensive, whereas

deploying UAVs become beneficial because it removes the expensive towers and de-

ployment of infrastructure. Application for drone use include military, surveillance,

telecommunication, delivery systems, and rescue operations [27]. This conventional

research was typically focused on controls and navigation aspects of the UAV system.

Communication challenges of these aerial devices have typically been ignored or part

of the control and autonomy components, this is not always a fair assumption.

Proper use of UAVs for specific wireless networking application, several factors

such as the capabilities and their flying altitudes must be taken into account. Dif-

ferent classifications exist and depending on the needs and goals, selecting the ap-
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propriate type of UAV that meets the various requirements set forth will be needed.

UAVs are generally classified depending on the altitude they achieve. High alti-

tude platforms (HAPs) have altitudes of 17km and generally quasi-stationary [28],

meaning there is little movement when the drones altitude is achieved. Low alti-

tude platforms (LAPs) are generally smaller and range from tens of meters to a few

kilometers. LAPs can quickly move and are more flexible than HAPs. It is impor-

tant to note that in the United States, federal aviation regulations exist restricting

some attributes of the drones (i.e., maximum allowable altitude for a LAP without

permit is 400 above ground level [29]). Deployment of LAP is more rapid and used

in time-critical applications like data collection or emergency situations. HAPs are

designed for long term operations, for example, providing wireless coverage for rural

areas. UAVs are also classified based on type of wing, fixed-wing or rotary-wing

UAVs. Fixed-wing UAVs generally weight more, but move faster whereas rotatory

wing UAVs can hover and remain stationary. Authors in [16] provided an infographic

in order to see the full overview of UAV classifications.

Figure 1.1: UAV Classification
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If deployed correctly, UAVs can provide cheap and dependable solutions for wire-

less communications. In communications, UAVs generally fall into two application

categories. The first application being the UAV acts as an aerial base station or

the second, where it is a cellular-connected device. An aerial base station drone

is equipped to provide dependent and cost-effective wireless service to users on de-

mand. Cellular connected UAVs, on the other hand, coexist with users for applica-

tion. These applications could be delivery systems, surveillance, or search and rescue.

Both classes of UAV applications are exciting, but come with many challenges that

must be researched. Open problems to this day exist, but with extended amounts of

research, UAVs have a promising future in the field of wireless communications.

1.3.1 UAVs for Wireless Networks: Applications

The first class of applications for UAV wireless networks is aerial base station UAV,

which is a system that is equipped with a small cell in order to facilitate mobile net-

work providers to assist users. These UAVs are helpful because they can dynamically

adjust their location to handle hotspots that pop up and to have a better line of sight

for devices. Specifically, these drones are used in order to relay information from the

BS to users and vice versa, as seen in Figure 1.2. The implementation of this base

station architecture is becoming more popular amongst the communications commu-

nity because of the unique advantages they hold, such as being faster and cheaper

to deploy, having more flexibility in reconfiguration, and having better communica-

tion channels. The first application described in [16] for aerial base station UAV

is coverage and capacity enhancement for wireless networks for the fifth generation

cellular architectures. Over the last few years, there has been a huge growth in

connected devices to our network, such as smart-phones, tablets, and IoT gadgets.

By this increase, the capacity and coverage of existing networks are being strained.

This led to the need for the fifth generation of wireless communications that plans to
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include device-to-device (D2D) communications, small cell networks, and millimeter-

wave (mmW) communications [30]. Even with these new solutions, all aspects hold

their own limitations. For example, small cell networks face challenges, including

backhauling, interference amongst the network, and network modeling architectures.

Challenges exist in D2D, as well as mmW. These challenges further call for the need

for UAV base station scenarios. UAVs provide the on-demand connectivity, traffic

offloading schemes, and high data rates that are essential for all the new devices that

are connecting everyday [31]. Moreover, drone base stations are promising because

of the potential of providing wireless connectivity in geographical areas with limited

cellular infrastructure and providing additional coverage to temporary events (con-

certs or sporting events). The second application for aerial base stations is the use

of public safety scenarios. Natural disasters such as floods, severe snowstorms, hur-

ricanes are devastating to city or country infrastructures. Both hurricane Sandy and

Irma showed evidence of existing terrestrial communication network damage, which

led to communication overloading and loss of wireless service [32]. In these scenarios,

there is a vital need for public safety communication between emergency responders

and victims. The need for flexible, low-latency, and swift adapting systems is of

great importance in these situations.

UAV based aerial networks can provide these services because they do not require

highly constrained or expensive infrastructure, a drone connects to the users and

the base station to provide services. These systems can easily fly and dynamically

change positions to provide on-demand coverage for responders and victims. In 2017,

AT&T’s deployment of their ”Cell on Wings” in the Puerto Rico natural disaster

situation, drones were deployed to help the access node deliver network traffic to

mobile users or act as a relay to download traffic from the access node to mobile

users [33]. Many other applications exist for aerial base stations including UAV
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Figure 1.2: Example of UAV mounted base station

assisted terrestrial networks for information dissemination, 3D MIMO and Millimeter

Wave Communications, UAVs for IoT Communications, and Cache-Enabled UAVs.

These topics can be explored further and described in [16]. Many prototypes of

these wireless systems have been developed and deployed. Sprint’s ”Magic Box”

was initially launched in 2017 that could extend their 2.5 GHz data service up to

10 square miles. Facebook, Google, and more companies have released aerial base

stations as well.

As mentioned above, the second class of applications for UAV wireless network

deployments fall under cellular-connected devices as user equipment. Connecting and

providing service is just one aspect of how UAVs can be helpful to users, another

application of connected drone is using them as a tool for surveillance, sensing, virtual

or augmented reality systems, or package delivery. Cellular connected drones will be

a crucial enabler for connecting the trend of IoT devices, for example, Amazon is

heavily considering the use of drones for delivering packages but must these systems

connected to the network for notification and diagnostics [34]. Cellular connected

drones potentially could also be used a surveillance systems for government entities.

Equipping a UAV with a camera or sensor can be very beneficial. The flexibility of the

system can provide surveillance and security from just about anywhere. Governments
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are also able to use these drones in search and rescue operations. In natural disasters

or terrorist attacks, the deployment of drones with sensors will allow rescuers to find

survivors more proficiently. As mentioned above, drones have the ability to move

in all directions quickly and have algorithms to optimize their routes. The next

application discussed in this thesis is the use of these types of drones in smart cities.

In this situation, drones are not only used for surveillance or data collection, but can

also be utilized as a mobile cloud computing system [35]. The UAV mounted cloud-

let would be able to perform computationally intensive tasks pushed by the IoT city

devices. Although we see many different application settings, drones still have many

challenges that must be pursued and solved before drones are deployed permanently.

Both cellular-connected drones and aerial base stations need reliable and low latency

communications. Theses drones require the need for a sizeable cellular infrastructure

in order to control the devices properly for them to meet their tasks. Drones also

have energy limitations due to basic flight, adding in application devices deplete the

battery even faster.

1.3.2 UAVs for Wireless Networks: Challenges

As briefly mentioned above, although there are many benefits to UAV drone de-

ployment for wireless communications, there are some obstacles and challenges that

are needed to be resolved before implementation. The first challenge discuss, is the

wireless signal prorogation, which is affected by the medium between the transmitter

and receiver. The Air-to-Ground (AtG) channel modeling characteristics for UAV-

based communications differ significantly from classic approaches which affects both

the coverage and capacity of the communication [36]. Any movement or vibration

from the UAV can affect the channel. Height, angle, type of UAV, and environ-

ment are all conditions that must be considered when created the communication

channel. If even one of these conditions is not met, the UAV will be susceptible to
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communication issues. On account of these conditions, it is essential to optimize the

design and deployment of drone-based communication. This requires accurate AtG

channel models, especially in UAVs applications such as coverage enhancement, or

cellular-connected UAVs. Many different techniques have been proposed, but all lack

in solving all issues described. An example of a solution is ray-tracing, which is an

excellent approach for modeling the channels, but doesn’t have precise accuracy and

performs poorly at lower frequency operations [37].

Another critical challenge discussed is the three-dimensional deployment of UAVs.

The complexity of deployment occurs from the fact that drones have many different

factors in a deployment environment. Geographical area plays a role, location of

users, and AtG channel characterization must be considered when deploying a drone.

This topic has received significant attention from researchers in [5, 38, 39]. As a fact,

deployment is a crucial design attribute while using a UAV for public safety, caching,

smart cities, and coverage and capacity maximization. All the mentioned papers, are

great starts to this research topic and try to optimize some sort of parameter, but

still, with all this research, it is a challenge to deploy drones precisely.

One of the most worrisome challenges to researchers is UAV resource management

and energy efficiency constraints. All applications depend on resource management

or energy efficiency and sometimes even both. Resource management is an open

problem in terrestrial networks, and UAVs provide unique and new challenges due to

many factors: 1) UAV flight time, path plan, spectral efficiency, 2) flight limitations

and stringent energy, 3) Line of sight interference from ground or air links, and 4)

mobility of the UAV. Hence, there is a need for managing these resources optimally

in order for UAV-assisted wireless networks to be effective [40]. In the work of [41],

the proposed resource allocation scheme researched was a cache-enabled UAV that

would effectively service users over licensed and unlicensed bands. In [42], the optimal

resource allocation was researched for an energy harvesting flying access point. All

12



Chapter 1. Overview

of the researched schemes are great and should be utilized. Choosing the correct

resource allocation scheme is very tricky and must be considered while developing

research involving UAV wireless communication systems. Performance of a UAV

communication system is affected by the length of the flight time (battery life) and

is dependent on many factors such as energy source, weight, speed, and trajectory.

In the table 1.1 below, examples of battery lifetime provided by [43], is presented.

Size Weight Example Battery Life

Micro < 100g Kogan Nano Drone 6-8 min
Very small 100g - 2kg Parrot Disco 45 min

Small 2kg - 25kg DJI Spreading Wings 18 min
Medium 25kg - 150kg Scout B-3330 UAV helicopter 180 min

Large > 150kg Predator B 1800 min

Table 1.1: Battery Lifetimes of UAVs

Energy consumption of wireless communication UAVs are generally categorized

in two ways [43]. The first being communication-related energy and the second be-

ing propulsion energy. Communication energy is energy expended when the drone is

transmitting a signal, computation of signals, or processing received signals. Propul-

sion energy is the energy exerted when the drone is moving or hovering. Generally,

propulsion energy consumption is more significant than communication energy con-

sumption. Without coming up with solutions, drones cannot be utilized efficiently if

they always have to be recharged.

Other challenges exist in the field, but the most prominent ones are described

above. If interested in the other problems wireless UAVs hold and the state of the art

research being completed in order to overcome these challenges, please explore [16].

In the next section, open problems for the challenges described above are explored.
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1.3.3 UAVs for Wireless Networks: Open Problems

State of the art research is being done revolving around the challenges that wireless

communication drones face. Countless researchers in academia, commercially, and

government agencies around the world are actively looking into optimizing drones to

provide wireless connectivity solutions. Algorithms, models, and test-beds have been

created to test these systems. Even with all this research, many open problems still

exist for wireless signal propagation, UAV deployment, and resource management

and energy efficiency constraints.

The challenge of channel modeling is still a huge research topic in not only UAV

wireless communications, but also just in terrestrial networks. Tools and techniques

to solve these mentioned issues are machine learning algorithms, extensive measure-

ments, and ray tracing. The flexibility that a UAV provides through flight makes the

problem of signal propagation more complex to solve. The foremost problem in air-

to-ground channel modeling is the need for more realistic channels that come from

real measurements, not simulated [44]. Efforts are currently being made, but mainly

in single UAV situations wherein the long term, this is not effective. Furthermore,

the environments that have been explored are very particular to the application. The

need for the UAV to function whether it be an urban, suburban, rural, or indifferent

weather conditions like wind, or rain must be explored, and these channels must be

researched at length. These efforts would nicely complement the research already

being conducted like ray tracing. Additionally, another interesting problem is that

if drones are planned to be used as base stations, or user equipment, the need for

air-to-air channeling modeling must be analyzed. Lastly, one must consider the UAV

altitude or antenna’s position while looking into multipath fading [45].

The second open problem that needs addressing is optimal drone deployment.

Techniques for optimal deployment based on line of sight (LoS), spectral efficiency,
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others have actively been researched. The need for optimal deployment is still a hot

research topic among the community. The need for new solutions that are unique

features to drones such as 3-D position relative to terrestrial networks. There is still

a need to study how UAVs must be deployed in existence with our current architec-

ture in order to consider interference between the aerial system and ground systems.

There are three primary deployment problems, the first being optimized deployment

for bandwidth allocation for low latency communications. Finding the optimal loca-

tion for each drone base station to allocate its bandwidth using the smallest latency

is a must. The second deployment open problem is optimally placing the drone and

cells for flight time minimization. The flight times can be affected significantly by the

load of the data being transmitted and the number of users connected. Minimizing

the number of users each drone handles should be optimally deployment in order to

preserve the battery life to efficiency support users for more extended periods. The

last open problem discussed related to deployment is obstacle aware UAV deploy-

ment to maximize wireless coverage. In high-frequency communication bands, this

becomes a fundamental problem to handle. To maximize the total coverage area,

one must consider not only the location of the users, but the obstacles as well. In

particular, 3-D positions of drones base stations can be determined such that the

max number of users is covered.

The most prominent open problem in wireless drone communication systems is re-

source allocation and energy usage of the UAV. The need for a dynamic architecture

to handle drone positions, bandwidth, transmitter power and energy, and the amount

of users each drone can handle are issues that must be solved by resource manage-

ment. The resource management issue comes from how drones try to adaptively

adjust their transmit power and trajectory that serves ground users. In this case,

the problem is to optimize bandwidth allocation that capture the UAVs’ location

mobility, and line of sight interference. The need for designing efficient scheduling

algorithms and mitigation of interference in the cellular network are pressing issues.
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Novel research is currently being performed because in every situation, a drone is

used to provide a wireless application, both scheduling and interference must be ef-

ficient. If not, the drone can not provide adequate service to the users. The last

open problem discussed in this thesis is energy efficiency. The critical problem is

that in order to be effective, we have to maximize the flight time so that UAV base

stations can support users. As seen in table 1.1, small drones and below have less

than 30 minutes of flight time. In order to maximize these flight times, research

is being done in both resource allocation and deployment areas. It is known that

the propulsion energy consumption is more costly to the drones battery life; optimal

drone deployment is a critical open research topic as discussed above. Key devel-

opments in improving battery performance, making lighter more powerful drones,

and more efficient drones are all important while solving the issues revolving around

drone energy.

1.4 Contributions

Now that we have an understanding of UAV wireless communication systems work

and applications/ challenges that still exist in the area, we discuss the novel research

that has been conducted in this thesis. We first introduce a surveillance system con-

sisting of areas of interest (AoI) with IP cameras; a few examples of these areas could

be banks, schools, hospitals. In these areas, the cameras partially offload computing

tasks related to the videos’ processing to the MEC server that is associated with the

AoI or to the FAAS, if the FAAS is flying above that specific AoI. The rest of the data

the camera has will executed locally at the IP cameras. Each IP camera experiences

a time and energy overhead in order to offload its data and process a part of the data

locally. A holistic utility function is introduced representing the IP cameras’ level

of achieved QoS, while accounting for their time and energy constraints that they

possess in the video processing procedure. A non-cooperative game among the IP
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cameras is formulated, and the concept of Satisfaction Equilibrium (SE) is adopted

to determine a stable data offloading, where the IP cameras satisfy their minimum

QoS prerequisites. A distributed learning algorithm determines the IP cameras’

data offloading at the SE, if the latter exists. If the SE does not exist, the proposed

Distributed Learning Satisfaction Equilibrium (DLSE) algorithm converges to the

Generalized SE, where only a part of the cameras satisfy their QoS prerequisites.

In order to efficiently move the FAAS around the different areas, we utilize a Rein-

forcement Learning (RL), known as the state-action-reward-state-action algorithm

(SARSA). A reward function was created, which considers data criticality, conges-

tion of the area, and the energy expended for the movement of the FAAS. With this

information, the quality of information from the AoIs can be described, and we can

move the FAAS accordingly. Finally, detailed numerical results are presented which

evaluate the proposed framework’s simple operation and its scalability performance,

while a comparative evaluation is provided to show its drawbacks and benefits.

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 describes the data offloading

scheme used in this project for surveillance systems. In this chapter, we explain

and explore the system model that was created. We look at communication and

computation model followed by game theory in satisfaction form. We then dive

into reinforcement learning and how it was used for the FAAS movement scheme.

We concluded Chapter 2 in describing distributed learning utilizing a satisfaction

equilibrium algorithm. In Chapter 3, we divide our results into three main categories:

pure, scalability, and comparative. In pure results, we look at the overall performance

of our algorithms and see if the results are viable. We then introduce scalability

results, which is a look at what occurs in the system if different attributes of the
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system increase or decrease. After that, we look at the implementation of different

algorithms and compare to our algorithms results. Lastly, in Chapter 4, we present

the conclusion and future works.
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Chapter 2

Data Offloading in Surveillance

Systems

2.1 System Model

As discussed, in this thesis, we model a surveillance system that is composed of

multiple areas that all have either the same number of cameras or different. Over the

areas consists of one FAAS system that chooses the area that it supports during the

current timeslot. These cameras can either offload their data locally, offload remotely

to a MEC server, or offload to the FAAS if the FAAS is over the area. Figure 2.1

represents a possible system architecture with six different areas of interest all with

different numbers of cameras, each supported by one MEC and one area having the

FAAS support. A surveillance area is modeled to be of size L×L consisting of AoIs

(e.g., banks, airports), where the set of AoIs is A = {1, . . . , i, . . . , A} and they are

randomly placed with coordinates Zi = (Xi, Yi), Xi, Yi ≤ L.
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Figure 2.1: Possible System Architecture

We denote the set of areas of interest in the system, where each area of interest

(AoI) i, i ∈ A is located at a position in the city area and it has its own surveillance

system that fully autonomous embedded wireless IP cameras Ci = {1, . . . , j, . . . , Ci}

that are capable of collecting and processing data [2] for surveillance purposes (i.e.,

crowd monitoring, face recognition, object detection). Moreover at each AoI i ∈ A a

mobile edge computing (MEC) server Mi, supports the cameras computing demands.

A mobile edge computing (MEC) node (i.e., small data center at the edge of the

network and possibly managed by a Wireless Internet Service Provider (WISP)),

is considered. Furthermore, a fully autonomous aerial service vehicle (FAAS) is

considered, which moves among the different AoIs with a velocity v and altitude d.

At each timeslot t, the FAAS receives and processes data from the AoI’s cameras of

which the FAAS is located above. The whole operation time is divided in T timeslots,

where set of timeslots is T = {1, . . . , t, . . . , T} denotes the corresponding set, and at

each timeslot, t ∈ T the FAAS is located above only one AoI.
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In addition, during each timeslot t ∈ T at each AoI i, i ∈ A, the corresponding

IP cameras Ci collect their data, which then are processed at the end of the timeslot.

The set of collected data by each IP camera j ∈ Ci belonging to the AoI i per timeslot

t is denoted as D
(t)
ij = (B

(t)
ij , CP

(t)
ij , φ

(t)
ij , dt

(t)
ij , de

(t)
ij ), of the timeslot t ∈ T , which is

characterized by specific features and requirements. In particular, let B
(t)
ij [bits] be

the total collected information, in terms of bits, and based on the surveillance task

that the IP camera j at the AoI i performs (e.g., object detection, face recognition)

the CP
(t)
ij = φ

(t)
ij B

(t)
ij is the number of required CPU cycles to process the data. We

set CP
(t)
ij , where φ

(t)
ij > 0 is the level of the video processing task’s intensity of the

B
(t)
ij amount of data. Also, dt

(t)
ij denotes the time constraint during which the data

should be processed, and de
(t)
ij is the IP camera’s j of the AoI i energy availability

for the timeslot t, since each IP camera j ∈ Ci,∀i ∈ A is fully autonomous and

not connected to any energy resource. The amount of collected data B
(t)
ij can be

partitioned into subsets of specific size, which can be offloaded for remote processing

to the MEC server Mi or the FAAS, assuming that the last one is located at the AoI

i for the timeslot t. Therefore, each IP camera j by offloading a part of its collected

B
(t)
ij amount of data for remote processing, it keeps the rest to be processed locally.

2.2 Communication and Computation Model

Utilizing the system model described above, we denote si = (si1, . . . , sij, . . . , siCi
) the

vector of strategies for the IP cameras residing in the AoI i, where sij = (chij, aij) and

aij ∈ [0, 1] is the IP camera’s data offloading percentage, thus aij,∀i ∈ A,∀j ∈ Ci,

and chij = 0 if the IP camera offloads its aij ·Bij amount of data to the MEC server

Mi, while chij = 1 accordingly if it offloads to the FAAS. Therefore, considering that

the FAAS is located at the AoI i, then for each other AoI i′ ∈ A, i′ 6= i it holds true

that chi′j = 0, ∀j ∈ Ci′ . Thus, since the AoIs do not interfere with each other due
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to their distant locations, the IP camera’s j in AoI i uplink data rate is [46]:

Rij = Wi · log(1 +
pijgij

σ2
0 +

∑
k∈Ci\{j},chik=chij ,aik 6=0

pikgik
) (2.1)

where Wi is the AoI’s i bandwidth, Rfix the application’s fixed transmission data

rate, pij is the IP camera’s j transmission power to offload part of its data, gij is the

channel gain between the IP camera j and the MEC server Mi (if chij = 0) or the

FAAS (if chij = 1), and σ2
0 indicates the background noise power.

The IP camera j in the AoI i experiences the data transmission time overhead

Otr,t
ij = aij ·Bij

Rij
[sec] by offloading aijBij amount of data and the data transmission

energy consumption Otr,e
ij = pij

aij ·Bij

Rij
[Joules]. Each MEC server Mi and the FAAS

have the computing capability fMi
and fF [Cycles/sec] respectively, which is shared

among the IP cameras that are being served by them. The allocated computing

capability to each IP camera j in order to remotely process its offloaded data is

given as:

fij =
aijBijφij∑

k∈Ci\{j},chik=chij

aikBikφik
· ((1− chij)fMi

+ chijfF ) (2.2)

where the first factor of Eq. 2.2 reveals that an IP camera with a higher processing

intensity (i.e, φij) and greater amount of offloaded data acquires a higher computing

capability, while the second one reveals that each IP camera j can offload a part of its

data to only one computing resource (i.e., either the MEC server Mi or the FAAS).

Based on the IP camera’s j remote computing capability (Eq. 2.2), its offloaded data

processing time overhead is Op,t
ij = aijBijφij

fij
. Moreover, the IP camera j has a local

computing capability f lij[Cycles/sec] and processes the rest (1−aij)Bij data locally.

Thus, its local processing time overhead is (1−aij)Bijφij
f lij

and its local processing energy

overhead is (1 − aij)Bijφijeij, where eij[J/Cycle] is its local energy consumption to
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process the data. The IP camera’s j overall time overhead is given as follows.

Ot
ij = max {aij ·Bij

Rij

+
aijBijφij

fij
,
(1− aij)Bijφij

f lij
} (2.3)

while its overall energy consumption is formulated as:

Oe
ij = pij

aij ·Bij

Rij

+ (1− aij)Bijφijeij (2.4)

2.3 Games in Satisfaction Form

In the last few years, game theory has played a central role in the analysis of commu-

nication type problems. Game theory is used in specific applications where a model

has to be created to demonstrate different strategies that arise when players make

specific actions in an environment. Some examples that utilize game theory is radio

resource allocation or in quality of service (QoS) provisioning in wireless communi-

cation networks deal with: (i) single or multiple resources [47, 48], (ii) continuous

or discrete resources [49, 50, 51], (iii) usage-based pricing mechanisms [52, 53], (iv)

multicell interference mitigation [54, 55], (v) anomaly detection [56, 57] and others.

There are different branches in game theory; some examples of these games could in-

clude: cooperative games, non-cooperative games, and zero-sum games. Cooperative

games are ones in which the players adopt a strategy through agreements between

them and other players. These games are seen in routing algorithms, sequencing al-

gorithms, and much more. Non-cooperative games are such that players decide their

own strategies to optimize their own returns. Applications for non-cooperative games

are seen in wireless communications, economic market applications, and more. Zero-

sum games are games in which if one player gains a different player or players lose.

The applications for these games are generally found in economics, communications,

and other fields. As discussed later, this project uses a non-cooperative game in order
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for cameras to make decisions. With game theory, the concept of equilibrium was

introduced by Nash in [58], where these equilibrium points are where new choices

by the players will not improve the environment anymore. The Nash equilibrium

point comes from when the players or entities are interested in selfishly maximizing

their own QoS. This isn’t always the most optimal or practical QoS choice a system

should converge. A more suitable choice may come from the entities tying only to

guarantee a minimum QoS value, that way, more entities can be satisfied. This type

of equilibrium point is classed a generalized Nash equilibrium (GNE). Depending on

the system architecture or topology, though, a GNE may not be able to be found.

In this case, a satisfaction equilibrium (SE) point is found. All of these equilibrium

points call for some sort of function in order to tell whether or not an entity is to be

satisfied. These functions are called utility functions and describe mathematically

the welfare of choice being made. Creating utility functions are helpful in different

scenarios because it indicates the patterns of change that occur in the system.

In this section, the IP cameras’ utility function expressing their satisfaction from

processing part of their collected data remotely and the rest locally, are formulated.

Specifically, each IP camera j, j ∈ Ci, ∀i ∈ A aims to satisfy its QoS prerequisites

expressed in terms of time dtij and energy deij demands by offloading an amount of

data and processing the rest locally. Thus, based on each IP camera’s j overall time

and energy overhead, (i.e., Eq. 2.3, 2.4), we formulate a generic utility function that

represents each IP camera’s QoS as follows.

uij(sij, s−ij) =

 −(
dtij−Ot

ij

dtij
) · (deij−O

e
ij

deij
) if Otij ≥ dtij ,Oeij ≥ deij

(
dtij−Ot

ij

dtij
) · (deij−O

e
ij

deij
) otherwise

(2.5)

where s−ij is the strategy vector of all the IP cameras of the AoI i except the IP

camera j. This utility function is used to indicate if a camera is satisfied or not. If the

time constraint or the energy constraint is smaller than its related overhead, than the

utility function will be negative indicating to the system that the camera system is
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unsatisfied with the amount of data offloading it performed in the previous iterations.

When the camera overheads are less than their constraints than the utility will be

positive. These utilities are generated in each iteration for each camera to observe

the effects of how offloading in each iteration are affecting the system. Assuming that

the FAAS is located at the AoI i, it is evident by Eq. 2.3, that when the IP camera’s

j chosen computing resource (i.e., the MEC server or the FAAS) is overloaded, then

its perceived time and energy overhead increase, and its utility value uij is negative

if the IP camera does not satisfy at least on of its QoS prerequisites (i.e., dtij, deij).

Thus, each IP camera j aims to fulfill its time and energy demands, i.e., uij ≥ 0, via

autonomously determining its offloading strategy sij = (chij, aij).

A non-cooperative game is played among the IP cameras per AoI to determine a

stable data offloading vector that fulfills the IP cameras’ QoS prerequisites. The game

is written in the satisfaction form Gi = [Ci, {Sij}j∈Ci
, {uij}j∈Ci

, {hij}j∈Ci
], where Ci

is the set of the IP cameras in the AoI i, and considering that the FAAS is located

in the AoI i, then Sij = {(anij, 0), · · · , (aNij , 0), · · · , (anij, 1), · · · , (aNij , 1)}, while Sij =

{(anij, 0), · · · , (aNij , 0)} otherwise, and anij is the nth available offloading percentage,

thus anij ∈ [0, 1], ∀n ≤ N,N ∈ N . Moreover, uij is the AoI’s i IP camera’s j utility

as expressed in Eq. 2.5, and hij is the satisfaction correspondence defined as follows

[24].

hij(s−ij) = {sij ∈ Sij|uij(sij, s−ij) ≥ 0} (2.6)

[Satisfaction Equilibrium - SE] A strategy vector s+
i = (s+

i1, · · · , s+
ij , · · · , s+

iCi
) ∈

Si = S1j×· · ·SiCi
is an SE for the non-cooperative game Gi, if ∀j ∈ Ci, s+

ij ∈ hij(s+
−ij).

Essentially, following the above definition, an offloading strategy vector s+
i is an

SE point for the non-cooperative game Gi if and only if each IP camera j ∈ Ci

fulfills its time and energy demands (i.e., dtij, deij), thus uij ≥ 0. At the SE,

the IP cameras satisfy their minimum QoS prerequisites without overspending the

25



Chapter 2. Data Offloading in Surveillance Systems

system’s resources, where the latter would occur if they were targeting at their QoS

maximization. In our paper, we consider that the computing resources per AoI can

support the IP cameras’ minimum QoS prerequisites, i.e., an SE exists, and our goal is

to achieve the better exploitation of the system’s resources by allocating the cameras’

computing tasks. For each non-cooperative game Gi, i ∈ A there exists at least one

strategy vector s+
i ∈ Si that guarantee the satisfaction (i.e., uij ≥ 0,∀j ∈ Ci) of the

IP cameras of the AoI i, ∀i ∈ A.

2.4 FAAS Movement: Reinforcement Learning

The Quality of Information (QoI) of a surveillance system is an important and chal-

lenging task to capture, since misleading information may lead to undesired conse-

quences, e.g., false alarm. Thus, in this thesis, deployment of three different quality

factors that capture the QoI demonstrate the confidence in the information that

each AoI’s i, i ∈ A surveillance system provides. Considering that several efficient

algorithms (e.g., object detection, move detection) can be executed locally at the

IP cameras’ and remotely at the MEC servers’ and FAAS’s computing resources to

assess each AoI’s QoI. These algorithms assign values to the following quality factors

at the end of each timeslot t ∈ T , based on each IP camera’s captured data.

(a) Accuracy refers to how the observed information inside each AoI i, i ∈ A con-

forms to the reality. Assuming that a local and remote processing of the correspond-

ing IP cameras’ collected amount of data, (i.e., the (1 − aij)Bij amount of data is

processed locally, while the rest aijBij is processed remotely) the number of the cor-

rectly detected events AEij is evaluated, each IP camera’s j of the AoI i and the IP

camera’s accuracy is qaccij = AEij

TEij
. Specifically, the AEij is the number of the correctly

detected events, which is the output of the processing of the Bij amount of data that

was collected by the IP camera j, and TEij is the total number of events that were
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captured. Therefore, based on each IP camera’s j accuracy quality factor, the overall

accuracy of the AoI i can be evaluated as the average provided accuracy by the set

Ci of IP cameras and thus is defined as Qacc
i = 1

Ci

∑
j∈Ci

qaccij .

(b) Timeliness refers to the availability of the information at the desired time. The

value of this quality factor is a measure of information being available. Considering

that each IP camera j, j ∈ Ci inside the AoI i, i ∈ A collects its Bij amount of data,

and then by offloading aijBij amount of data for remote processing, it perceives an

overall time overhead Ot
ij, its timeliness factor can be determined as qtlsij = Dt

Dt+Ot
ij

,

where Dt is the duration of each timeslot t and Ot
ij is the IP camera’s overall time

overhead to offload and process the data. Essentially, the faster the IP camera’s j

amount of data (i.e., Bij) is processed, the higher is the IP camera’s timeliness factor,

and as a result t The AoI’s overall timeliness factor is Qtls
i = 1

Ci

∑
j∈Ci

qtlsij .

(c) Certainty: refers to the measurement of confirmation of the information and is

strictly connected with to each IP camera’s j hardware characteristics and capabil-

ities (e.g., recording rate, sensor’s pixels). In particular, this quality factor depicts

the probability of error regarding the captured data of each IP camera j, and it

is denoted as qcrtij . As a result, the overall certainty of the AoI i is evaluated as

Qcrt
i = 1

Ci

∑
j∈Ci

qcrtij .

Finally, each AoI’s i, i ∈ A overall QoI for a specific timeslot is based on the past

QoI values and is given as follows.

QoIi = wacci

∑
t′≤tQ

′acc
i

t
+ wtlsi

∑
t′≤tQ

′tls
i

t
+ wcrti

∑
t′≤tQ

′crt
i

t
(2.7)

where wacci , wtlsi , w
crt
i ∈ [0, 1] are the corresponding weights of each quality factor.

The weights regarding accuracy, timeliness and certainty factors, respectively, can

be tuned regarding the priorities and considerations of the overall city’s surveillance

system, e.g., a higher weight of the timeliness weight factor may be used in an AoI,

such as airport, where a low real-time processing is needed.
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In this section, the consideration of the FAAS as a sequential decision maker that

aims to maximize a long-term objective is considered. Specifically, at each timeslot,

t, t ∈ T , the FAAS is located at an AoI i, and acting as a computing resource, it

provides a higher QoS to the corresponding IP cameras since the MEC server Mi is

less overloaded. Therefore, the IP cameras’ QoS prerequisites (i.e., time and energy

demands) could be more easily met with the existence of the FAAS at the AoI i, and

the overall AoI’s timeliness quality factor to be increased. The existence of the FAAS

at the AoIs with high QoI for example, a large number of actual detected events, high

certainty of information, is important, since the overall city’s surveillance system’s

performance and effectiveness could be increased by decreasing the delay between an

event’s detection and further actions (e.g., policy, ambulance). As a result, a high

QoI indicates an AoI where the FAAS should be located for the effectiveness purposes

of the overall city’s surveillance system, while the FAAS’s limited energy availability

should be considered for both FAAS’s flying movement and its role as a computing

resource. Considering that the FAAS is located at the AoI i, and by denoting as

EP [Joules/Cycle] the FAAS’s energy consumption to process the received data, then

its processing energy consumption is formulated as:

Ep = EP ·
∑

j∈Ci,chij=1

aijBijφij (2.8)

Furthermore, considering that the FAAS was located at the AoI i′, i′ 6= i at the pre-

vious timeslot and the FAAS’s velocity is v, then its movement energy consumption

is given as:

Em = EM ·

√
(Xi −Xi′)2 + (Yi − Yi′)2

v
(2.9)

where EM [Watts] is the FAAS’s constant consumed energy while moving with ve-

locity v. All the aforementioned factors should be considered in the formulation of

the FAAS’s long-term objective that the FAAS aims to maximize, by optimizing its
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decision policy (i.e., the AoI i that visits at each timeslot t, t ∈ T ), and this objective

that essentially depicts the FAAS decision’s (i.e., the of the AoI i, i ∈ A) reward is

given as follows:

rwi = −
ε3 · E

p+Em

E

ε1 ·QoIi + ε2 · Pi
(2.10)

where Pi =
|Cs

i |
Ci

, Cs
i = {j ∈ Ci|uij ≥ 0} denotes the ratio of the IP cameras that

meet their QoS prerequisites (i.e., dtij, deij), E is the FAAS’s energy availability, and

depicts the achieved relative performance of the AoI i with the existence of the FAAS.

Moreover, the ε1, ε2, ε3 ∈ [0, 1] denote the weights of the AoI’s QoI, performance

(i.e., Pi) and the FAAS’s consumed normalized energy, respectively. The physical

meaning of the negative reward value is that reward values closer to zero benefit the

FAAS. Given that the overall city’s surveillance system is essentially an uncertain

environment, where each AoI’s QoI and the corresponding AoI’s IP cameras’ QoS

prerequisites vary with respect to the timeslots (e.g., timeslots where a large number

of actual events take place at specific AoIs, AoIs that a low real-time processing of

the captured data is needed during specific timeslots), the FAAS acting as a learning

agent, it aims to learn an optimal decision policy (i.e., which AoI i to visit at each

timeslot t, t ∈ T ) in order to maximize its long-term objective (Eq. 2.10).

In the following, in order to capture the uncertainty regarding the FAAS’s sequen-

tial decision making problem, and increase the effectiveness of the city’s surveillance

system, a Reinforcement Learning (RL) [59] approach is applied by the FAAS in or-

der to maximize its long-term objective (Eq. 2.10). The RL algorithms demonstrate

good results [60] - [61] in real-world sequential decision making problems, which are

characterized by the environment’s uncertainty. Two of the most widely used RL

algorithms are the Q-learning [61] and SARSA [62] algorithms, which via stochastic

approximation conditions lead the decision maker to converge to its optimal decision

policy with high probability [63],[64]. The significant difference between Q-learning
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and SARSA is that Q-learning is an off-policy algorithm, whereas SARSA is con-

sidered an on-policy algorithm. The difference lies such that Q-learning regardless

of what the agent does (or doesn’t) an optimal policy will be learned as long as

the agent explores enough. This type of algorithm can be dangerous to a system in

which large bad rewards are currently learned. The opposite, on-policy algorithms,

learn values from what the agent is currently carrying out and can be iteratively

improved. SARSA is also known for its exploration parameter in which the agent

can randomly choose an action regardless of what the maximum Q-value is. This

parameter is typically found to be 5% through 10% and allows the system to update

in case of changes within the environment. In our case, for the FAAS’s sequential

decision making problem (i.e., the AoI i that selects to be located at each timeslot

t) we deploy the SARSA algorithm, which first examines the uncertain environment

(i.e., the set of AoIs A), and then derives the optimal strategy based on the model

knowledge that has already been constructed.

SARSA is an algorithm that learns through a Markov decision process policy.

An agent (i.e., FAAS) interacts with the environment (i.e., surveillance system) in

order to update its policy on the action it took (i.e., the AoI that is located). The

experienced reward (Eg. 2.10) is known as the Q-value and is adjusted by a learning

rate that weights new information higher than the previously gathered information.

In order to do this, SARSA algorithm takes the agent’s action in its current state

and multiplies a specified discount future reward that the agent will receive from the

next state action it observes. These Q-values represent the rewards that the agent is

expected to receive in the next time step and will be considered by the agent when

it is deciding which action to take when it is in a specific state. SARSA has a unique

learning exploration factor, in this case, there is always a case the agent chooses

randomly from the table instead of choosing a learned value. This allows for the

agent to continually learn values that may have chanced in the enviroment. Instead

of always chooseing what was good in the past, the agent has the ability to relearn
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to make sure nothing has changed.h

2.5 Distributed Learning Satisfaction Equilibrium

Algorithm

Towards determining the SE for each non-cooperative game Gi, we propose the Dis-

tributed Learning Satisfaction Equilibrium Algorithm (DLSE) that allows the IP

cameras Ci, ∀i ∈ A to autonomously learn and converge to it. Based on Eq. 2.3,

2.4, each IP camera j needs to receive information which is related to the rest AoI’s

i IP cameras’ offloading strategies in order to determine its own data offloading

strategy s+
ij ∈ Sij that fulfills its time and energy demands. Each camera then

evaluates its utility (Eq. 2.5) by receiving its allocated remote computing capa-

bility (Eq. 2.2) from the MEC server or FAAS and the interference factor (i.e.,∑
k∈Ci,chik=chij ,aik 6=0 pikgik in Eq. 2.1) and converges to the strategy s+

ij . For each

non-cooperative game Gi, ∀i ∈ A among the IP cameras, the following distributed

algorithm that are located in the AoI i (i.e., Ci), converges to an SE in a fully dis-

tributed fashion. Assuming that the elements of the offloading strategy set Sij are

indexed with lij, thus s
(lij)
ij is the lijth offloading strategy, then lij ≤ Lij, and Lij = 2N

if the FAAS is located in the AoI i, otherwise Lij = N . Let us denote the IP camera’s

j offloading strategy at instant r > 0 as sij(r) ∈ Sij, where it is chosen following a

discrete probability distribution πij(r) = (π
(1)
ij (r), · · · , π(lij)

ij (r), · · · , π(Lij)
ij (r)), where

π
(lij)
ij (r) is the probability with which the AoI’s i IP camera j chooses its action s

(lij)
ij

at instant r > 0. Using this notation we present the Distributed Learning Satisfac-

tion Equilibrium Algorithm (DLSE), which allows the convergence to an SE point

in a distributed manner.

The initial (i.e., r = 0) probability distribution for each IP camera is π
(lij)
ij (r =
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Algorithm 1 DLSE Algorithm

1: Input/Initialization: AoI i, Ci,Dij,∀j ∈ Ci, conv = 0, r = 1

2: Output: s+
i = (s+

i1, · · · , s+
ij , · · · , s+

iCi
)

3: Each j ∈ Ci sets Sij, Lij based on the FASS’s existence

4: π
(lij)
ij (0) = 1

Lij
, ∀j ∈ Ci, lij ≤ Lij

5: Each j ∈ Ci picks sij(0) based on πij(0), and evaluates Uij

6: while conv == 0 do

7: for j = 1 to Ci do

8: uij = uij(sij(r− 1), s−ij(r − 1)), bij(r) = Uij+uij
2Uij

9: if uij ≥ 0, then sij(r) = sij(r − 1), πij(r) = πij(r − 1)

10: else ∀lij ≤ Lij

11: π
(lij)
ij (r) = π

(lij)
ij (r − 1) + λijbij(r)(1{s

(lij)

ij
=sij(r−1)}

− π(lij)
ij (r − 1))

12: end for

13: if SE or GSE point reached then conv = 1

14: else r = r + 1

15: end while

0) = 1/Lij,∀lij ≤ Lij, where Lij is the number of the IP camera’s j offloading

strategies. Let Uij denote the maximum utility that each IP camera j perceives if it

was the only one inside the AoI i. Each IP camera updates its probability distribution

πij based on a learning parameter λij, so that higher probabilities are allocated to

offloading actions which lead the IP camera j to perceive a higher utility uij. Let

us introduce the definition of a clipping action, which is considered for the study

of the DLSE Algorithm’s convergence to an SE point. [Clipping Action] At each

non-cooperative game Gi, an IP camera j has a clipping action: ∀s−ij ∈ S−ij, scij ∈

hij(s−ij) where S−ij = Si1×· · ·×Si(j−1)×Si(j+1)×· · ·×SiCi
[25]. Therefore, Definition

2.5 reveals that once an IP camera concludes to a clipping action scij at an instance

r′ of the DLSE Algorithm, then ∀r ≥ r′ the IP camera keeps the same offloading

strategy, i.e., sij(r) = scij. As a result, assuming that there exists an IP camera j′ 6= j,
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such that its satisfaction correspondence hij(s−ij′j) = ∅, ∀s−ij′j ∈ S−ij′j, where s−ij′j

is the offloading strategy vector of all the IP cameras except the camera j′ and the

IP camera j which plays its clipping action scij, and S−ij′j is the corresponding set of

vectors, then the DLSE Algorithm converges to a Generalized SE (GSE) point, whose

definition is given as: [Generalized SE] A strategy profile is a GSE s−i = (s−i1, . . . , s
−
iCi

)

of the non-cooperative game Gi, if there exists a partition of the Ci given by Cs
i and

Cu
i , such that ∀j ∈ Cs

i , sij ∈ hij(s−ij) and ∀j′ ∈ Cu
i , hij′(s−ij′) = ∅. Given the DLSE

algorithm and the existence of at least one SE point for each non-cooperative game

Gi, and that there is no clipping action,then the DLSE Algorithm converges to the

SE point for each game Gi. Otherwise, in the existence of a clipping action scij for at

least one IP camera, the DLSE Algorithm converges to a GSE point.
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Experiments

3.1 Experiment Setup

In this chapter, a detailed numerical performance evaluation and comparative study

of the proposed architecture is conducted through modeling and simulations. These

simulations were generated utilizing the programming language Python 3.7. The

python code generated .mat files from the lists collected in which all of the plots

were then created using MATLAB. For the simulations we created a base template

for what a city could possibly expect to see in a real work situation. The simulations

used a surveillance system consisting of A = 7 AoIs with Ci = 30, ∀i ∈ A cameras.

The cameras are randomly distributed in an area with a radius less than L = 500m

from each MEC server Mi. The considered application characteristics are Bij ∈

[1000, 5000]KB and CPij ∈ [1000, 5000]MCycles. The IP cameras’ strategy space

consists of 11 data offloading strategies, where ai,j ∈ [0, 1] with step 0.1. We used

eij = 10−9J/Cycle as the energy constant for cameras offloading, f lij ∈ [10−2, 10−1],

The bandwidth used was Wi = 5MHz, and the white noise σ2
0 = 10−13. For the

power dissipated a value of pi,j ∈ [0, 1]W was used. Also, dti,j ∈ [0, CPij

fj
]sec, dei,j ∈
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[0, CPijeij]J , gi,j = 1
d2ij

, where dij is the IP camera’s j distance from the MEC server

Mi or FAAS. Finally, in our reinforcement learning algorithm the properties for

the constants were set to the following: wacci = 0.333, wtlsi = 0.333, wcrti = 0.333,

Q
′acc
i , Q

′tls
i , Q

′crt
i ∈ [0, 1], EP = 10−9J , EM = 0.0013W , E = 17.28 · 106J , ε1 = 0.35,

ε2 = 0.55, ε3 = 0.10, the duration of a timeslot is 1h, and v = 6.25m/s [65]. The

following analysis below demonstrates: (i) the pure operation and characteristics

of the proposed framework, (ii) its scalability performance, and (iii) a comparative

evaluation.

3.2 Pure Operation of the Algorithm

For this first series of results, we look at the results purely at an operational level.

Pure results were completed in order to validate the algorithm and take an in-depth

look at its performance in the system environment. The results ensure that the algo-

rithm performs as hypothesized and proves it’s helpfulness in the application setting.

In the first set of figures, a comprehensive look at four different IP cameras consider-

ing the amount of offloaded data, the time and the energy overhead and constraints

for each camera is shown. Figure 3.1, displays the number of bits of data the camera

chooses to offload and the number of iterations it took in order to converge. As seen

in the image, cameras 1 and 28 seemed to converge rather quickly (less than 100

iterations) whereas camera 3 and 12 took around longer (400 iterations). In this

figure, it is shown that the camera is trying to satisfy itself by choosing different

numbers of offloading schemes, so more than likely cameras 1 and 28 were satisfied

right away and didn’t change their offloading scheme. Whereas in cameras 3 and

12 both continually tried to find an offloading number that satisfied their time and

energy constraints. In order to not become infinitely stuck, as described above a

generalized satisfaction equilibrium was used for cameras that were never going to
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be satisfied to still converge to a value.
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Figure 3.1: Data Offloading

In Figures 3.2 and 3.3 a look at the time and energy overheads respectively along

with the constraints are provided. In these figures, we look to see if the time/energy

overheads are less than their constraints. This look is essential because if one is

not met, the camera system itself cannot be satisfied. This is because one or both

constraints set forth by the system were not met. As we see, the overheads fluctuate

with respect to 3.1 in which the camera is offloading more or less data to the MEC

server in order to fall below its constraints. In Figure 3.2, we can see that cameras

that had relatively low time constraints had more variation in their time overheads.

We see that camera 28 started off by not meeting it’s initial time constraint and had

to move to a higher value of data offloading, this though corresponded to falling below

the time constraint and now is likely to be a satisfied system. Whereas in camera 3

we observe a small time constraint and with variation of offloading it was never able

to meet its time constraint. In Figure 3.3, an energy overhead and constraint image

is presented. Similarly to the time overhead, if an energy constraint is not met, the

cameras try to come to an offloading value that will satisfy their energy constraint.

Overall, from these results we can see that at a relatively fast rate (less than

400 iterations), the cameras converge to the amount of data they will offload to the
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Figure 3.2: Time Overhead Overhead and Constraints
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Figure 3.3: Energy Overhead and Constraints

MEC server. The IP cameras with ID 12 and 3 have strict time and energy con-

straints (Figures 3.2, 3.3). Thus they choose to offload a large amount of data to the

MEC server in order to satisfy their QoS prerequisites. However, it is observed that

even if they choose such a strategy, they cannot meet their QoS demands and the

DLSE algorithm converges to a GSE point. On the other hand, the IP cameras with

ID 1 and 28 have relaxed time and energy constraints, and they achieve to satisfy

them, while the stricter the constraints are, the less time and energy overhead they

experience, and the more data they offload. First, we evaluate a camera’s perfor-

mance in the environment while applying a game theory technique. The cameras can
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choose to offload a certain percentage of data to the MEC server trying to satisfy a

time and energy constraint. The first three figures represent specific cameras data

offloading, time constraints and overheads, and energy constraints and overheads.

The first cluster represents that when a time and energy constraint are more strict

for a camera, the camera should choose to offload more data to the MEC server in

order to try to satisfy its constraints. The third cluster demonstrates that cameras

are dependent on one another, so offloading large amounts of data to the MEC server

does not necessarily guarantee satisfaction even if the time and energy constraints

are relatively relaxed.

Several factors influence whether or not an IP camera meets its QoS prerequisites,

such as the MEC server’s computing capability, IP cameras’ average distance from

the MEC server, time and energy constraints, and number of cameras per AoI. In

Table 3.1, the percentages of satisfied IP cameras per AoI are presented for different

scenarios. For these results, only one influential factor was changed per each scenario.

Each scenario consisted of seven different areas of interests, and by changing one

variable, it enables us to see its impact on the whole environment. The variable of

interest was adjusted varying from a scale 1x < 2x < ... < 7x, where x is any of

the aforementioned influential factors and the order follows the AoI’s ID, while the

values of the rest factors remain the same.

Comp. Capab. Distance Time Const. Percentages of Satisfied IP Cameras
Order Order Order AoI1 AoI2 AoI3 AoI4 AoI5 AoI6 AoI7

Scenario1 X 0.22 0.31 0.33 0.94 0.366 0.39 0.43
Scenario2 X 0.82 0.82 0.81 1 0.75 0.49 0.14
Scenario3 X 0.04 0.30 0.59 1 0.76 0.88 0.95

Table 3.1: Percentage of Satisfied Cameras regarding different AoIs’ characteristics and
Cameras’ QoS prerequisities

The results reveal that each one of these factors influence the number of satisfied

cameras there are in the system. As the IP cameras’ average distance from the

MEC server increases, their communication channel conditions deteriorate; thus, a
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Energy Const. Cameras Percentages of Satisfied IP Cameras
Order Order AoI1 AoI2 AoI3 AoI4 AoI5 AoI6 AoI7

Scenario1 X 0.04 0.12 0.34 1 0.72 0.81 0.92
Scenario2 X 1 0.91 0.72 0.92 0.29 0.02 0

Table 3.2: Percentage of Satisfied Cameras regarding different AoIs’ characteristics and
Cameras’ QoS prerequisities

smaller number of IP cameras meet its QoS prerequisites. Also, as the computing

capability of the MEC server per AoI becomes stronger, the MEC server can more

efficiently serve the cameras’ computing demands; thus, a more significant number

of them fulfill its QoS prerequisites. As the cameras’ time and energy constraints

become stricter, a smaller number of IP cameras get satisfied, and again, we see a

shift in less cameras being satisfied. As the number of cameras per AoI increases, the

environment becomes more congested in terms of the communication and computing

aspects. Therefore a smaller number of cameras meet its QoS demands. Finally, it

is essential to note what is occurring in AoI 4. It is observed that AoI 4 has superior

performance in all scenarios as the FAAS resides in that area. From the table, we

see that the variables either influence an area positively or negatively. For example,

when the average distance increases from the camera to the MEC, we see that the

average ratio of satisfied cameras drastically changes from a high percentage to a low

percentage whereas increasing the time or energy constraint will actually help get

higher percentages of satisfaction.

Now that we have an understanding of what it takes for a camera to be satisfied

or not and what factors affect this, we verify the use of a FAAS. We also look

at the performance of the SARSA algorithm that was used for deciding the FAAS

placement. Figure 3.4. presents the FAAS’s average reward versus the timeslots.

After almost 50 timeslots, the FAAS learns its environment, and then it can choose

the path that provides the maximum reward (Eq. 2.10). At the start of the timeslots,

we have negative reward of about -.22, but as time increases we see that the system

starts to learn the environment and flattens out at roughly -.11 in value. It is
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Figure 3.4: FAAS’ Average Reward

important to note that our reward will never be positive, and the system is trying

to find the less harmful value it can find. The reason for convergence after about

50 iterations comes from the fact that the SARSA algorithm will visit all different

combinations of paths before choosing the path that gave it the highest rewards. The

Q-table is populated at first with all zeros, so by the algorithm choosing negative

values will force the FAAS to explore every option, then choose what the best path

was. As mentioned above, SARSA has an exploration parameter in which sometimes

the algorithm will choose a different state randomly instead of choosing the highest

reward. This verifies that if something in the environment changes, it is possible to

find this a better path than the FAAS was on previously.

In Figure 3.5 it is shown if the FAAS is over a specific area, that the percentage

of satisfied cameras is significantly higher and the corresponding IP cameras’ time

and energy overheads are lower as the time evolves, thus showing the great benefits

of adopting the FAAS in the considered overall architecture.

Figure 3.6 presents that as the time evolves if the FAAS is over an area on average,

the time overhead for that area is lower than if the FAAS is not over the area. Similar

behavior is seen in figure Figure 3.7 where the energy in the area the FAAS supports

is less than just supported by the MEC. Both these phenomenons can be explained
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Figure 3.5: Percent of Satisfied Cameras

because the FAAS acts as an additional resource that the area can utilize. Having

now three options of data execution (locally, offload to MEC, and offload to FAAS)

leads to both smaller energy and time overheads. Therefore, one can assume that

this means that more cameras will be satisfied in these scenarios because the time

and energy overheads are smaller and their respective constraints will be met. This

can be verified in Figure 3.5, by the fact that there is an increased in satisfied ratios,

where almost 40 percent of cameras are satisfied whereas in the areas that don’t have

fast are nearly divided by two being closer to 20 percent. These images prove that by

the FAAS being over the area, we see significant improvement for the corresponding

area.

Finally, in Figures 3.8 and 3.9, the average number of FAAS’ visits and the average

Quality of Information per AoI in a time frame of 250 timeslots is presented. It is

observed that if an AoI has high QoI, the SARSA algorithm will efficiently consider

the FAAS’s perceived reward and enable the FAAS to visit more often the critical

AoIs, i.e., the ones having high value of QoI. AoI has a relative high average QoI

value being closer to 1, and therefore a spike in the visits is shown being closer to 50

visits by the FAAS. On the other hand, AoI 5 is shown to be slightly smaller than the

other areas, and the FAAS visited that area the least amount of times. We see this
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Figure 3.6: Time Overhead without or without the FAAS
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Figure 3.7: Energy Overhead without or without the FAAS

occur because as mentioned in section 2.4, data criticality is a factor taken account

by the reward while choosing the next FAAS area. Information criticality could be

something like an area with a high crime rate with activity in evening hours where

the system considers it useful.
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Figure 3.9: Average quality of information per 250 timeslots

3.3 Scalability Results

With the verification of the pure operation of the algorithm, next created test cases

checking the scalability of our results is presented. For these results, a specific

parameter in the system is scaled to see how it affects the percentage of satisfied

cameras. For the first two scalability scenarios, the time and energy overheads as

well as the average ratio of camera satisfaction were extracted. The first scenario

shown is an analysis of the increasing number of cameras. The second analysis

is looking at the available strategies. Looking at the scalability of these different
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parameters, we can show the performance of the proposed framework in order to

validate our proposed algorithm further.

Increasing the number of cameras influences both time and energy overheads

negatively by adding more congestion into the network. Figure 3.10, represents the

time and energy overhead with the increase in cameras. As we see, there are increases

in both these overheads that will affect the system such that fewer cameras will meet

their constraints and therefore be unsatisfied. Figure 3.11 shows the percentage of

satisfied IP cameras for an increasing number of cameras per AoI. The results reveal

that as the number of cameras increases, the AoIs become more congested in terms

of their communication and computing environment, thus the IP cameras’ time and

energy overhead increases, while the percentage of the cameras that meet their QoS

prerequisites decreases. As we see in the figures, when the cameras are at 5 cameras

per area, the satisfaction is above 60% whereas it’s about 10% when there are more

50 cameras. This corresponds to that fewer cameras had values of around 2 seconds

and 1 Joules overheads less cameras, but closer to 3.5 seconds and 1.6 Joules for a

larger number of cameras in the system. This conclusion can be explained such that

in a more significant number of cameras, more offloading would occur at the MEC

server. The MEC’s computation capability doesn’t increase, and therefore, we see

less cameras being satisfied.

In the second scenario, a look at the varying number of data offloading strategies

is shown. These strategies are percentages that the camera chooses to offload to the

MEC. Having 11 strategies corresponds to offloading 0%, 10%, , 90%, and 100% of

the data to the MEC server. At the number of strategies increases, the IP cameras

have greater flexibility of choices. Looking at the images, when the strategies where

at 11 the time and energy overheads were relatively low close to 3.1 seconds and

1.6 Joules which corresponded to .15 camera satisfaction. Satisfaction continually

rises as the number of strategies increases where when doubled the number at 22
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Figure 3.10: Time/Energy vs. Number of Cameras

strategies, the time overhead was 2.8 seconds, and energy overhead was 1.35, which

had a 25% satisfaction. As shown in Figures ??, allowing the cameras to choose a

more precise amount to offload allows for better decisions to be made in order for a

camera to be satisfied. With the increase in choices the IP cameras can chose from,

we see that the time and energy overhead decrease and the corresponding percentage

of satisfied cameras increases. As the Figure shows at smaller numbers of strategies,

the time and energy overheads are larger and decrease as the number of strategies

increase. At the same time, the percent of satisfied cameras hold the inverse effect

such that less cameras are satisfied when there are less strategies and increase when

more strategies are available.
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Figure 3.11: % of Cameras Satisfied vs. Number of Cameras
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Figure 3.12: Time/Energy vs. Number of Strategies
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Figure 3.13: % of Cameras Satisfied vs. Number of Strategies

46



Chapter 3. Experiments

In the last Figure for scalability section, a look at what happens when increases

the number of Areas of Interest are presented. Using a timeslot of 250, the average

reward of each of these scenarios is taken. As seen in the Figure, the more areas

meant that there are more state action possibilities for the FAAS to choose from.

For example in a situation where 4 AoI are present in the environment then after

16 timeslot iterations the system is known, whereas in an environment with 10 AoI

at least 100 timeslots must be analyzed before all states are known. By this, it

takes a longer time in order for the FAAS to learn its environment as the number

of AoI increases and will not have an opportunity to choose from this list of learned

rewards for longer times. This meant on average for 100 timeslots the reward that

the FAAS was able to choose from were more negative, indicating not as good paths

were chosen.
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Figure 3.14: Increases the number of AoI

3.4 Comparative Results

The final results section is the comparative results that are broken into two different

layers. These comparative results look at other techniques for the camera satisfaction

selection and choosing what area the FAAS visited in the next timeslot. These com-

parative scenarios are presented to confirm the benefits of the proposed algorithmic
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approach presented in this thesis. The comparative scenarios are broken into the two

sets, examining: (i) the Satisfaction Equilibrium’s benefits, and (ii) the benefits of

the adoption of reinforcement learning.

Regarding the first set of comparative scenarios, five different approaches are

presented: i) minimizing the energy overhead (MEO) and ii) the time overhead

(MTO), iii) determining the Nash Equilibrium (NE), vi) offloading the entirety of

the data (OE), and v) random amount of the data to the MEC server. As shown, the

novel concept of SE resulted in the highest percentage of satisfied cameras (Fig. 3.15,

whereas the Nash equilibrium value followed closely. Minimizing the time and energy

overheads both have around .15 satisfaction. Logically thinking, this makes sense to

not perform as well as the satisfaction or Nash equilibrium algorithms. Minimizing

one overhead more than likely other constraints is not met, and therefore we lose

satisfaction. The worse performers were found to be randomly choosing the data to

offload and the worse being offloading the entirety of the data set. Offloading the

entirety of the data set makes sense in being the worse performer; by not using the

cameras locally executing capability, it limits itself to how many cameras can offload

anything at all. All of these runs were performed under Monte Carlo simulations

in which the results were averaged over 250 different runs. This explains why the

random simulations were better than offloading the entirety. In some cases, randomly

actually outperformed the satisfaction equilibrium algorithm, but other times it was

worse than offloading all the data.

In Figure 3.16, different scenarios of FAAS’s navigation among the AoI are pre-

sented. In the examined scenarios, the FAAS visits the area: i) closest to the current

area, ii) with the largest average energy constraint, iii) sequentially, vi) maximizing

its reward, v) randomly, and vi) with the largest average time constraint. The re-

sults reveal that the SARSA algorithm produced an average FAAS’s reward closer

to zero compared to the other scenarios, thus indicating a better FAAS’s path in
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terms of collecting valuable information from the surveillance system. The next best

algorithm followed was the closet area. As shown above in chapter 2, the reward

function depends heavily on the movement and energy expended from the FAAS

itself. Therefore for large movements, the reward will be more negative, so choosing

the closet area will yield more favorable reward values. After moving in order yielded

close to -0.2 reward value. Choosing the max reward from previous runs but not uti-

lizing the best path from SARSA yielded values about -0.21. This can be explained

because choosing the highest reward function every time will continually make the

decision worse if it wasn’t the best path. The worse algorithmic performances oc-

curred when choosing the area that either had the highest time or energy constraint

in the last timeslot. Based on the above analysis, we conclude that the proposed

approach demonstrates superior performance among all the scenarios, achieving both

the highest percentage of satisfied cameras and the largest FAAS’s reward.
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Figure 3.15: Percentage of Satisfied Cameras
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Conclusion and Future Works

In this thesis, the problem of the IP cameras’ data offloading strategies’ determina-

tion in a surveillance system consisting of AoIs and assisted by MEC servers and a

FAAS, in order the IP cameras to fulfill their energy and time QoS prerequisites,

is studied. At first, a brief introduction of the thesis is presented, and explained

surveillance systems, mobile edge computing servers, and drones are presented. Mo-

tivations followed, which included better public safety, utilizing resources more profi-

ciently, and having dynamic means of data offloading. A more extensive description

of drones and their applications is presented with the challenges and open problems

that are associated with the research area. After, began the look into the system

model which is composed of a surveillance area with different areas of interest each

of which can have the same or different numbers of cameras and are supported by a

MEC server and the FAAS if over the certain area. The communication and compu-

tation model is described, explaining the process for which the cameras will offload

and determine their time and energy constraints. This is followed by explaining the

game theory involved in the thesis and the satisfaction equilibrium explored. An

in-depth look at the FAAS movement strategy created by SARSA the reinforcement

learning algorithm is discussed. Then, the thesis introduced a low complexity and
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distributed learning approach that leads the IP cameras to converge to an SE or a

GSE point based only on local information. The SARSA algorithm based on the

FAAS’s long-term objective, which is constructed by several factors (i.e., QoI, AoI’s

performance, FAAS’s energy consumption) determines its optimal movement policy.

Results were then created in order to evaluate the proposed architecture. Three

different types of results were created, which consisted of pure, scalability, and com-

parative. Pure results looked at the performance of first the non-cooperative game

theory portion and how cameras choose to either offload or execute data locally.

A table is then presented in which the parameters that either positively or nega-

tively influence cameras satisfaction. This is followed by a look at convergence of the

SARSA algorithm and its reward it chooses after learning the system. Finally, the

pure results are wrapped up in showing that areas that have relatively high quality of

information are visited more often than areas with competing quality. Scalability re-

sults are then analyzed in which we consider three different cases, increasing cameras

in the area, allowing more strategies to be chosen by the camera system, and increas-

ing areas of interest. It is shown that as the number of cameras increases the overall

ratio of satisfied cameras is decreased. This is because of more competition amongst

the system and overall increase in congestion. We do see that with increasing the

number of strategies, the camera systems are more satisfied, this makes logical sense

because better offloading is being performed. With the increase of areas of interest,

we see that the average reward becomes more negative if the same number of times-

lots is used, this comes from the fact that more exploring by the FAAS must first

be performed. Finally, comparative results are presented, in which we compare first

the techniques for the camera satisfaction selection and then compare choosing what

area the FAAS visited in the next timeslot. Our satisfaction equilibrium method

proved to be the most proficient in camera satisfaction and our SARSA algorithm

outperformed the others when it came to choosing the best rewards.
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The applications for this type of problem are endless. With the advancement in

battery life and UAV performance, the idea of seeing these systems is not far out of

real-world application. Especially, with the increase in IoT systems being connected

every day, the need for better and more dynamic data offloading schemes is necessary.

Part of our current and future work includes the testing of the proposed framework

in a real city environment, as the outcomes will help extend and tune our theoretical

model. Next, a look into what happens if multiple MECs or FAASs exist in the

environment is needed.
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